
����������
�������

Citation: Zhang, M.; Lu, Y.; Hu, Y.;

Amaitik, N.; Xu, Y. Dynamic

Scheduling Method for Job-Shop

Manufacturing Systems by Deep

Reinforcement Learning with

Proximal Policy Optimization.

Sustainability 2022, 14, 5177. https://

doi.org/10.3390/su14095177

Academic Editors: Mosè Gallo,

Massimo Bertolini, Mattia Neroni

and Patrick Dallasega

Received: 30 March 2022

Accepted: 22 April 2022

Published: 25 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Dynamic Scheduling Method for Job-Shop Manufacturing
Systems by Deep Reinforcement Learning with Proximal
Policy Optimization

Ming Zhang 1,∗ , Yang Lu 2 , Youxi Hu 1, Nasser Amaitik 1 and Yuchun Xu 1,∗

1 College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK;
180213753@aston.ac.uk (Y.H.); n.amaitik@aston.ac.uk (N.A.)

2 School of Science, Technology and Health, York St John University, York YO31 7EX, UK; y.lu@yorksj.ac.uk
* Correspondence: m.zhang21@aston.ac.uk (M.Z.); y.xu16@aston.ac.uk (Y.X.)

Abstract: With the rapid development of Industrial 4.0, the modern manufacturing system has been
experiencing profoundly digital transformation. The development of new technologies helps to im-
prove the efficiency of production and the quality of products. However, for the increasingly complex
production systems, operational decision making encounters more challenges in terms of having
sustainable manufacturing to satisfy customers and markets’ rapidly changing demands. Nowadays,
rule-based heuristic approaches are widely used for scheduling management in production systems,
which, however, significantly depends on the expert domain knowledge. In this way, the efficiency
of decision making could not be guaranteed nor meet the dynamic scheduling requirement in the
job-shop manufacturing environment. In this study, we propose using deep reinforcement learning
(DRL) methods to tackle the dynamic scheduling problem in the job-shop manufacturing system
with unexpected machine failure. The proximal policy optimization (PPO) algorithm was used in the
DRL framework to accelerate the learning process and improve performance. The proposed method
was testified within a real-world dynamic production environment, and it performs better compared
with the state-of-the-art methods.

Keywords: Industry 4.0; manufacturing sustainability; dynamic scheduling; deep reinforcement
learning; artificial neural networks

1. Introduction

With the rapid development of automation and digitization, Industry 4.0 signifies a
remarkable shift in industrial revolution [1,2]. As a practical application of manufacturing
in the Industry 4.0 era, smart factories are presented through the leverage of new technolo-
gies, including the Internet of Things (IoTs) and artificial intelligence (AI) [3,4]. Through
the full interconnection between the digital and the physical world, smart factories can
realize sustainable development that significantly improves productivity and quality [5].
Sustainability has been proposed as the economic indicator to evaluate sustainable practices
in the manufacturing sector [6–8]. In today’s globalized market, manufacturing industries
need to deploy strategy, demanding that it could continuously maintain high efficiency,
competitiveness, and sustainability [9]. There are several factors that could affect the sus-
tainability of manufactured products, such as the supplement of raw materials, stability
and efficiency of production processes, and distribution capability [10].

As the smart production system becomes increasingly complicated, operation decision
making has become more and more important for keeping sustainable working and produc-
tion efficiency [11,12]. Many factors can seriously affect the utilization and sustainability
of production lines. For instance, the rapidly changing market needs and unexpected
machine failures can significantly reduce the efficiency and performance of the production
system [13]. For the complex job-shop manufacturing system, the job-shop scheduling
problem becomes one of the most important production scheduling problems in smart

Sustainability 2022, 14, 5177. https://doi.org/10.3390/su14095177 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14095177
https://doi.org/10.3390/su14095177
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-5202-5574
https://orcid.org/0000-0002-0583-2688
https://orcid.org/0000-0002-0962-4341
https://orcid.org/0000-0001-6388-813X
https://doi.org/10.3390/su14095177
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14095177?type=check_update&version=1

Sustainability 2022, 14, 5177 2 of 16

manufacturing areas. The scheduling optimization approaches can improve the sustainable
production of manufacturing enterprises as well as their market competitiveness [14,15].

The job-shop scheduling problem is a combinatorial optimization problem related
to scheduling and production control, which aims to identify the optimal sequential and
process order of the jobs in the manufacturing industry [16,17]. It can be analyzed as a non-
deterministic polynomial hard (NP-hard) problem when there are two or more machines
involved [18]. Generally, heuristic-based methods are the main way to solve job-shop
scheduling, including linear programming approaches [19], simulated annealing algo-
rithm [20], genetic algorithm [21], particle swarm optimization [22], and teaching–learning-
based optimization [23]. These approaches can obtain the optimal solution under certain
conditions. However, they do not have the ability to deal with the dynamic job-shop
environment with uncertainties [24]. Combining advanced AI and data-driven approaches,
the dynamic job-shop scheduling methods are proposed to handle the uncertain factors
and dynamic environments of smart manufacturing, which allow both real-time produc-
tion scheduling and dynamic adaptive production scheduling [25–27]. Nowadays, more
and more data-driven AI methods have been proposed to tackle the dynamic scheduling
problem for job-shop manufacturing systems [28–30].

The dynamic job-shop scheduling problem is difficult to solve by the typical heuris-
tics method due to the existing dynamic events such as random ordering arrivals and
unexpected machine breakdowns. To deal with this issue, the deep reinforcement learn-
ing (DRL) method was proposed to combine deep learning and reinforcement learning
methods [31–34]. DRL can formulate scheduling strategies based on real-time production
data and optimize strategies according to the dynamic changes of the system states. In
the actual scenarios of smart manufacturing, the job-shop environment can apply sensory
technologies to detect and collect large amounts of production process data. Through
processing and training the real-time data of the job-shop environment states, valuable
scheduling information and policy can be learned for dynamic optimizing the schedul-
ing. Zhao et al. proposed the deep Q-network (DQN) to improve the performance of the
adaptive scheduling algorithm in dynamic smart manufacturing [35]. Wang et al. [36] and
Zeng et al. [37] proposed the dual Q-learning (D-Q) method as the solution of the dynamic
job-shop scheduling problem. Luo et al. [38] proposed a two-hierarchy deep Q-network to
deal with flexible job-shop scheduling problems with the disturbance of new jobs. The DRL
method has become one of the dominant methods in dealing with the dynamic job-shop
scheduling problem. However, all the mentioned DRL methods are constructed based on
the designed rules, which means the learned agent is used to select the optimal scheduling
rule, and they did not involve the machine failure situation. There are very few studies
that could directly control the raw actions of agents to schedule the dynamic job-shop
manufacturing system with unexpected machine failure.

To tackle these challenges, we propose a deep reinforcement learning framework under
the proximal policy optimization (PPO) algorithm for addressing the dynamic scheduling
problem of a designed job-shop manufacturing system with unexpected machine failure.
Different from previous works, our method continuously outputs the raw actions that
keep the production system sustainable, working and producing the products with high
efficiency even under the unexpected machine failure situation. Compared with different
policy gradient methods, we select the PPO algorithm that has a stable learning process
and fast optimization speed. Different reward functions were designed and tested to guide
the dispatcher agent in learning varying policies.

Preliminary knowledge of RL is detailed in Section 2. The proposed method and
detailed specifications are described in Section 3. Section 4 contains the detailed experiment
design as well as result analysis. Finally, the conclusions are given in Section 5.

Sustainability 2022, 14, 5177 3 of 16

2. Preliminary

In this section, we briefly describe the fundamental theory of policy gradient-based
reinforcement learning, which we proposed to use for the dynamic job-shop schedul-
ing problem.

2.1. Markov Decision Process

The Markov decision process (MDP) is the idealized mathematical formulation of
reinforcement learning [39] with the control problem, which consists of a state space S,
an action space A, a state transition probability distribution p(st+1|st, at), and a reward
function r : S × A → R . The RL aims at training an agent with policy to act in a
certain environment and maximize the cumulative rewards coming from the selected
actions across the sequence of time. The actions are determined based on the policy
πθ : S→ P(A) in each time step, and a trajectory of states, actions, and rewards, Traj1:T :
{(s1, a1, r1), (s2, a2, r2), . . . , (sT , aT , rT)} from S× A× R can be obtained by the agent using
its policy to interact with the environment. The purpose of the agent is to learn a policy
that can maximize the cumulative discounted rewards from the state–action pair:

J(πθ) = E[rt|πθ], (1)

where the return is the total discounted reward rt = ∑T
i=t γi−tr(si, ai), and γ is the dis-

count factor.

2.2. Policy Gradient Theorem

For the continuous control problem of the reinforcement learning, we usually use the
policy gradient method to maximize the expected total reward. The fundamental idea of
this algorithm is to train the policy with the parameter θ by utilizing the stochastic gradient
descent algorithm with the objective function:

∇θ J(πθ) = E[∇θ logπθ(at|st)Ψt], (2)

where E represents the integration of the variables; the states st and actions at are sampled
from the dynamics model P(st+1|st, at) and policy π(at|st), as is explained in the MDP; and
Ψt denotes the sum of expected rewards which is the value function in practice. So, we can
consider that the Equation (2) consists of the policy gradient and the cumulative rewards,
and the direction of the gradient is significantly related to Ψt. Previous studies [40] have
been conducted to explore the approaches of approximating the total expected rewards Ψt,
and there are several formulations in the discounted way for variance reduction:

Vπ,γ(st) = E(st+1:∞ ,at:∞)[
∞

∑
l=0

γlrt+l], (3)

Qπ,γ(st, at) = E(st+1:∞ ,at:∞)[
∞

∑
l=0

γlrt+l], (4)

Aπ,γ(st, at) = Qπ,γ(st, at)−Vπ,γ(st). (5)

The advantage function, Aπ,γ(st, at) = Qπ,γ(st, at)− Vπ,γ(st), is used for assessing
whether the action is better or worse than the policy’s default behavior. Since the advantage
function has the lowest variance in the process of policy promotion, Ψt should choose the
advantage function Aπ,γ(st, at), so that the objective function can provide the direction of
advance πθ(st, at) only if Aπ,γ(st, at) > 0.

3. Proposed Methods

Figure 1 shows an overview of the proposed dynamic job-shop scheduling approach.
This problem is a typical NP-hard problem and its computational complexity significantly
increases with the number of elements in the environment [18,19]. In the production envi-

Sustainability 2022, 14, 5177 4 of 16

ronment, the transport agents take the jobs or orders to the machines, then the production
is generated from the machine in order to be transported to the sink waiting for delivery
to the next processing station. The transport agents should determine the next actions
based on the current state of the environment. The multiple objective functions should be
considered to increase production efficiency, such as increasing the utilization of machines
and reducing order waiting time and their combinations. The dynamic environment can be
affected by certain random events, such as machine breakdown, resource cut off, etc. The
dynamic scheduling should maintain the production system operating at high-efficiency
conditions so that the stakeholders are able to save more costs when unexpected random
events happen.

Current States

Transport agents Machine nMachine 2Machine 1 …

Job/Order 2Job/Order 1 Job/Order n…

Sink 2Sink 1 Sink n…

Actions

Utilization

T-agents

Dynamic Scheduling

Multiple Objective
Optimization

Time Combination

R1 R2

Rn

R3

NP-hard problem

Visualization of scheduling

Production Environment

Figure 1. The overview of dynamic job-shop scheduling.

3.1. Dynamic Simulation of Production Environment

The simulation environment of job-shop manufacturing production constitutes the
foundation of the proposed method. The agent is trained with a large amount of historical
data, which are the outcome of interacting with the dynamic simulation [34]. The intelligent
scheduling strategy was explored during the interaction procedure and recorded in the
agent model.

As shown in Figure 1, the input of the simulated production system is ordered, and
the entry resource is called Source. Machine is responsible for processing orders, then the
disposed orders are transported to the resource called Sink. The critical resource called
Dispatcher is going to transport the order between Source, Machine, and Sink. Therefore,
there are three states for each order, including waiting, intransport, and inprocess. When
the order is in the waiting state, it should be put in one of the buffers. There are entrance
and exit buffers for each machine, which are used to receive undisposed orders and store
the disposed of orders, respectively.

The constraints of the real-world production system are considered in this dynamic
simulation environment, making it similar to the real-world application.

• Machines that have similar disposal ability of orders are put into the same group.
• Orders are released by the sources and they are performed according to specific

probability.
• The processing time of each order is decided by the predefined probability distribution.
• Machine failures are considered in this environment, which can result in the break-

down of all of the machines. The failure events are random triggered based on the
mean time between failure (MTBF) and mean time off-line (MTOL).

Sustainability 2022, 14, 5177 5 of 16

3.1.1. Action module

The transport agent is the most important in the dynamic environment because it
dispatches all orders from the source to machine and machine to sink. It is called the
dispatcher in this work. Accordingly, there are three types of actions, i.e., Awaiting, AS→M,
and AM→S, as shown in Table 1.

Table 1. Action Type.

Action Type Description

Awaiting Dispatcher waits at its current position.
AS→M Dispatcher takes an undisposed order from a source to a machine.
AM→S Dispatcher takes a disposed order from a machine to a sink.

The actions of AS→M and SM→S belong to executable actions Aexec. At every time step,
the dispatcher selects an action. However, not every Aexec could be performed. It would be
relying on the states of current production. For instance, an action at

Si→Mj
could be valid

only if the source Si has a new order while the machine Mj has a free buffer and they are
working at normal function and capable of processing it. Therefore, the action could be
determined as either valid At

valid or invalid At
invalid at each time step. If the transport agent

successively selects the invalid action when it is repeated up to a maximum recursion count,
the Awaiting is performed.

3.1.2. States

The states are the current observations from the production environment, which are
the outcome of previous actions. The agent can determine the next action based on the
historical and current states. Ideally, the state contains all the information both related and
unrelated to the production process. However, an excess of unrelated states can increase
the dimension of solution space, which leads to a significant decline in the performance.
Therefore, the states in this simulation environment are carefully designed and could
synchronize with the real-world system. Each element in the states can be calculated at the
current time t, and we neglect the t for better readability.

• Firstly, the state of action Sasi shows whether the current action is valid or not, and it is
defined as:

Sasi =

{
1 ai ∈ Avalid

0 else
(6)

• The machine breakdown was designed in the simulation, and the state of failure for
each machine Sm fi

is also considered, which is defined as:

Sm fi
=

{
1 i f Mi has a f ailure

0 else
(7)

• The remaining processing time of each machine Mi is defined as:

Srpti =
Trpti

Tapti

(8)

where Trpti is the remaining processing time, and Tapti is the average processing time
at Mi.

• Sbeni
indicates the state information of remaining free buffer spaces of each machine

Mi in its entry buffer:

Sbeni
= 1−

Noccen
i

Ncapen
i

(9)

Sustainability 2022, 14, 5177 6 of 16

where Noccen
i

is the number of occupied buffers, and Ncapen
i

is the capacity of the
entry buffer.

• Sbexi
indicates the remaining free buffer space in the exit buffer for each machine Mi:

Sbexi
= 1−

Noccex
i

Ncapex
i

(10)

where Noccex
i

is the number of occupied buffers, and Ncapex
i

is the capacity of the exit
buffer.

• Swti indicates the waiting times of orders waiting for transport:

Swti =
Twtmax

i
− Twtmean

i

Twtstd
i

(11)

where Twtmax
i

is the longest waiting time, and Twtmean
i

and Twtstd
i

are the average and
standard variation of waiting time of orders.

3.2. Deep Reinforcement Learning for Dynamic Scheduling

The framework of deep reinforcement learning for the dynamic scheduling problem
is shown in Figure 2. The initial dispatcher agent interacts with the simulation of the
production environment randomly. Then, the inside policy of the agent is optimized using
certain periods of trajectories including the state, action, and the reward of each time t. The
intelligent policy is explored at the interaction procedure, and the deep neural network
records and transfers them as the parameters. Following the foundation of MDP, the DRL
method aims at obtaining a long period of rewards. It is obvious that the proposed method
should be more suitable for the dynamic scheduling problem than the general method,
such as FIFO and NJF [41], which make decisions depending on the current states.

Agent

Production
Environment

State
Action

Reward

Agent

𝑠𝑠1

𝑎𝑎1

Env

𝑠𝑠2

Env

𝑠𝑠1

𝑎𝑎1

Agent

𝑠𝑠2

𝑎𝑎2

…
…

𝑟𝑟2

update

𝑟𝑟1

Trajectory
Storage

States

Actions

Rewards

Deep
Neural
Network

R
ei

nf
or

ce
m

en
t

L
ea

rn
in

g
Fr

am
ew

or
k

Figure 2. Deep reinforcement learning framework for dynamic scheduling problem.

Sustainability 2022, 14, 5177 7 of 16

3.2.1. Optimization Objectives

As shown in Figure 2, to continuously perform the expected actions that meet the
designed requirements, the DRL agent need to receive the rewards at each time step.
Following the MDP, it is obvious that the DRL agent not only considers the best action
at present but also aims at acquiring good performance in the long-term period. As
the multiple objective optimization, there are two objectives in the proposed production
environment, including average utilization of the machines and average waiting time
of orders.

• The constant reward Rconst rewards the valid action with value ω1 for AS→M, and ω2
for AM→S is defined as:

Rconst(St, At) =

ω1 At ∈ AS→M

ω2 At ∈ AM→S

0 else

(12)

• To promote the average utilization U, Ruti was designed with exponential function
when the agent provides a valid action. The purpose of this reward function is to
maximize utilization, and it is defined as:

Ruti(St, At) =

{
exp

U
1.5 −1 At ∈ Avalid

0 else
(13)

• To shorten the waiting time WT of orders, Rwt is designed to award the valid action
determined by the agent. The reward function also follows the exponential function
to accelerate the order leaving the system, which is defined as:

Rwt(St, At) =

{
exp−0.1WT −0.5 At ∈ Avalid

0 else
(14)

• Combining Rconst with Ruti and Rwt, two complex reward functions are designed
as follows:

Rω−uti(St, At) =

ω1Ruti(St, At) At ∈ AS→M

ω2Ruti(St, At) At ∈ AM→S

0 else

(15)

Rω−wt(St, At) =

ω1Rwt(St, At) At ∈ AS→M

ω2Rwt(St, At) At ∈ AM→S

0 else

(16)

• For implementing the multiple-objective optimization, the hybrid reward function
with Ruti and Rwt is defined as:

Rhybird(St, At) = w1Ruti + w2Rwt (17)

3.2.2. Proximal Policy Optimization

We take advantage of the proximal policy optimization (PPO) algorithm [42] to im-
plement the proposed deep reinforcement learning framework to tackle the dynamic
scheduling problem in the production process system. The loss objective of the PPO algo-
rithm is the surrogate item with a little change to the typical policy gradient (GP) algorithm.
The implementation of the objective function is to construct the loss LCLIP

t to substitute
LPG, and then perform multiple steps of stochastic gradient descent on this objective. In

Sustainability 2022, 14, 5177 8 of 16

this work, we adopt the clipped version of objective LCLIP which performs best in the
comparison results. The objective is expressed as follows:

LCLIP(θ) = Ê[min(rt(θ)Ât, clip(rt(θ)), 1− ε, 1 + ε)Ât], (18)

where rt(θ) denotes the probability ratio rt(θ) =
πθ(at |st)

πθold
(at |st)

and ε is a hyperparameter. With

the clipping constraint, the policy promotes or declines into a certain boundary, this can
make the optimization of policy performance more stable and reliable.

There is a critical part in the policy gradient method, which is to estimate the variance-
reduced advantage function Â by utilizing the learned state-value function V(s). The
generalized advantage estimation (GAE) algorithm [40] is one of the most effective ap-
proaches for policy gradient implementation, living on the policy running through T time
steps and updating with the collected trajectory. The generalized advantage estimation
function is defined as:

Ât = δt + (γλ)δt+1 + · · ·+ (γλ)T−t+1δT−1, (19)

where δt = rt + γV(st+1)−V(st) is the temporal-difference error.
The final objective of the PPO algorithm with fixed-length trajectory segments com-

bines the surrogate policy loss item, the value function error item, and an entropy item for
sufficient exploration, and it can be expressed as follows:

LCLIP+VF+S
t = Êt[LCLIP

t (θ)− c1LVF
t (ϕ) + c2S[πθ](st)], (20)

where LCLIP+VF+S
t denotes the surrogate policy loss; c1, c2 are coefficients; S denotes

an entropy for exploration; and LVF
t is a squared-error loss (Vϕ(st) − Vtarg(st))2. The

pseudocode of the proposal method is summarized in Algorithm 1.

Algorithm 1 DRL with PPO for dynamic scheduling

1: Initialize the actor πθ and the critic Vϕ in global network
2: Initialize the dynamic production environment
3: for episode = 1, 2, . . . do
4: for t = 1, 2, . . . , T do
5: Determine action at based on the current policy πθ with state st as input
6: Obtain the target Vtarg(st) from the critic Vϕ with state st as input
7: Act at in environment to obtain the current reward rt and next state st+1
8: Save (st, at, rt, Vtarg(st)) in trajectory storage Bπ

9: end for
10: Compute the TD error δt
11: Compute the GAE advantage Â based on δt and save it in trajectory storage Bπ

(s, a, r, Vtarg, Â)
12: for k = 1, . . . , K do
13: Sample mini-batch {(si, ai, ri, Vtarg

i , Ai)
π}m

i=1 from Bπ

14: Update the actor parameters θ ← θ − α∇θ LCLIP+VF+S
t

15: Update the critic parameters ϕ← ϕ− α∇θ LCLIP+VF+S
t

16: end for
17: end for

4. Experiments
4.1. Case Description

The simulation case is built based on a real-world wafer front-end fab [43], which is
composed of three source entries (SE1, SE2, and SE3), eight machines (M1, . . . , M8), and
three sinks (S1, S2, and S3). The layout of the simulation environment is shown in Figure 3.
There are three working areas including W1 : {SE1, M1, M2, S1}, W2 : {SE2, M3, M4, M5, S2},

Sustainability 2022, 14, 5177 9 of 16

and W3 : {SE3, M6, M7, M8, S3}. One dispatcher is used to transport the material or product
from source to machine and from machine to sink, as described in Section 3.1.

Source 1

Machine 1 Machine 2

Sink 1

Source 2

Machine 3 Machine 4

Sink 2

Machine 5

Source 3

Machine 6 Machine 7

Sink 3

Machine 8

D : Dispatcher

: Route

D

Figure 3. Layout of the dynamic job-shop simulation environment.

4.2. Implementation Details

In this work, we proposed using the PPO algorithm as the default method for the DRL
framework. The neural network with two hidden layers of 64 nodes and tanh activation
function can serve as the dispatcher, and the Adam optimizer is selected as the default
optimizer for training the deep learning model. The parameters of PPO algorithm are
shown in Table 2.

Table 2. Parameter configuration of PPO algorithm.

Parameter Value

Learning rate 0.001
Batch size 128

Epoch number 5
Gamma γ 0.9
Lamda λ 0.95

Clipping ε 0.01

In this work, we set up three scenarios for testing the proposed method and compar-
ing it with other alternative methods. The setup parameters of the dynamic simulation
environment are shown in Table 3. The changes are focused on the dispatcher speed factor
and machine buffer factor. The mean time between failure (MTBF) and mean time off-line
(MTOP) subject to exponential distribution which is defined as:

f (x;
1
β
) =

1
β

exp
(
− x

β

)
(21)

where β is the expected value. The two parameters ω1 and ω2 of reward function are set to
0.5 for the three scenarios shown in Table 3. Finally, the different combinations of ω1 and
ω2 are tested to analyze their effect.

Sustainability 2022, 14, 5177 10 of 16

Table 3. Experiment setup parameters.

Parameter Default Scenario Scenario 1 Scenario 2

Dispatcher speed factor 1 0.3 1
Machine buffer factor 6 0.5 1

MTBF β 1000 1000 1000
MTOL β 200 200 200

ω1 0.5 0.5 0.5
ω2 0.5 0.5 0.5

4.3. Results and Analysis

In order to testify the performance of the PPO algorithm [42], we compare it with two
different methods including PG [44] and TRPO [45] under the default scenario. In this task,
we select high dispatcher speed and very large machine buffer size so that the utilization of
machines could be as high as possible. The overall learning process is shown in Figure 4.
The results show that the DRL framework has the best performance by applying the PPO
algorithm. It only takes 0.08× 106 simulation steps to converge, and the average rewards
could be over 0.9. Meanwhile, the PG algorithm needs at least 0.2× 106 steps and the TRPO
needs 2× 106. All average rewards are under 0.85. Although the learning speed of PG is
reasonable, the learning process of PG is seriously fluctuated. It is difficult to determine the
optimal policy in this way. The TRPO algorithm has a stable learning process, however, it
takes too many steps to determine the optimal solution. It is 20 times slower than the PPO
algorithm.

𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟔𝟔

(a)

𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟔𝟔

(b)

𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟔𝟔

(c)

Figure 4. Learning process of different algorithms; (a) policy gradient (PG), (b) trust region policy
optimization (TRPO), and (c) proximal policy optimization (PPO).

The parameters of the PPO algorithm are determined following the original re-
search [42]. The clipping ε is the most sensitive parameter because it controls the range of

Sustainability 2022, 14, 5177 11 of 16

policy progress for each update. As shown in Figure 5, the ε equal to 0.01 obtains the best
performance. The ε = 0.1 and ε = 1.0 results show they have a faster learning speed, but
the average rewards could not reach the best average rewards. Meanwhile, the ε = 0.001
result shows that the best performance could be reached with longer learning steps.

𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟔𝟔

(a)

𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟔𝟔

(b)

𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟔𝟔

(c)

𝟏𝟏 × 𝟏𝟏𝟏𝟏𝟔𝟔

(d)

Figure 5. Parameter sensitivity analysis of the PPO algorithm, (a) ε = 0.001; (b) ε = 0.01; (c) ε = 0.1;
(d) ε = 1.0.

In order to demonstrate the performance and effectiveness of the proposed method,
we test the optimal policy of the dispatcher under the same condition and compare it with
a random policy. The Gantt chart of operation state is shown in Figures 6 and 7. The
dark blue represents the machines are working and the orange represents the dispatcher.
The simulation environment is set to run 12 h with random policy and trained policy,
respectively. Due to the existence of MTBF and MTOL, each machine breaks down, then
needs a certain time period to recover. Therefore, one of the most important goals is to
take full advantage of the machines when they become available. From the results, it is
obvious that the learned policy could keep the machines continuously working, while it
can be difficult to implement this goal with the random policy.

To further analyze the proposed method, two scenarios have been set up for deploying
quantitative comparison. In the first scenario, the dispatcher has a relatively slow speed
(f actor = 0.3) and the buffers of machines are relatively small (f actor = 0.5). On the
contrary, the speed of the dispatcher is faster (f actor = 1.0) and the machines have larger
buffers (f actor = 1.0). Meanwhile, we compare these with different rule-based policies
including Random, FIFO, and NJF [41]. Different reward functions are carried out for deep
analysis. The average utilization of machines U, the average waiting time of orders (WT),
and the alpha value (α) [46,47] are selected based on the evaluation criterion.

Sustainability 2022, 14, 5177 12 of 16

Figure 6. Gantt chart of operating state working with random policy.

Figure 7. Gantt chart of operating state working with optimal policy trained by the PPO algorithm.

As shown in Table 4, the rule-based dispatching methods are compared with the
random policy. Compared with random policy, both FIFO and NJF performed well. The
NJF method is inclined to the utilization, while the FIFO method contributes more to
waiting time. The utilization is affected by the transport speed of the dispatcher and the
waiting time is affected by the size of the machine buffer. Therefore, compared with the
first scenario, the U is higher and WT is fewer under the second scenario. The alpha value
α is a composite index combining multiple indicators, where a small value represents good
performance.

According to the proposed DRL framework with the PPO algorithm, we test the per-
formance in both production scenarios with different reward functions. In this experiment,
we set two parameters ω1 and ω2 of all the reward functions as 0.5. The results are shown in
Table 5. It is obvious that the performance of dispatchers under different reward functions
reached a great level based on the comparison of results in Table 4. From the results, Rω−uti
leads to a higher machine utilization and Rω−wt results in less order waiting time in both
scenarios. The constant reward Rconst is also a good objective function but less flexible. The
Rhybird is to identify the optimal solution which can balance the utilization and waiting time.
Just by adjusting different combinations of ω1 and ω2, the dispatcher could learn different
policies to meet the varying requirements. As shown in Table 6, the results show that
utilization increase with the ω1 tend to 1.0, while the waiting time is controlled by ω2. All

Sustainability 2022, 14, 5177 13 of 16

in all, the results of different reward functions indicate that the proposed DRL framework
can be more flexible than the general rule-based method. It could be implemented for
different purposes by simply changing the reward shapes or their parameters. Meanwhile,
the PPO algorithm guarantees the convergence efficiency of the optimal policy.

Table 4. Results for different rule-based heuristic dispatching approaches in both production scenarios.

Heuristic Scenario 1

U(%) WT(s) α

Random 38.93± 8.28 203.76± 54.76 5.21± 3.40
FIFO 46.15± 3.68 182.58± 17.44 2.94± 0.78
NJF 50.84± 5.29 196.48± 19.07 2.57± 0.87

Heuristic Scenario 2

U(%) WT(s) α

Random 54.86± 10.71 138.79± 57.54 1.57± 1.10
FIFO 70.72± 6.82 125.18± 22.51 0.48± 0.16
NJF 72.99± 7.35 125.68± 23.57 0.38± 0.11

Table 5. Results for PPO dispatching approaches under different reward function in both production
scenarios.

PPO Scenario 1

U(%) WT(s) α

Rconst 43.20± 3.72 119.30± 11.04 2.30± 0.63
Rω−uti 44.21± 3.60 130.65± 11.51 2.37± 0.59
Rω−wt 43.68± 4.11 126.61± 12.02 2.38± 0.71
Rhybird 43.35± 3.67 124.53± 19.15 2.32± 0.62

PPO Scenario 2

U(%) WT(s) α

Rconst 62.29± 5.02 80.79± 14.87 0.56± 0.15
Rω−uti 66.31± 7.09 99.87± 20.55 0.54± 0.18
Rω−wt 62.03± 5.98 80.10± 15.63 0.57± 0.18
Rhybird 62.75± 6.99 80.56± 17.12 0.54± 0.19

Table 6. Results for different combination of parameters ω1 and ω1 under reword function Rhybrid in
production scenario 2.

U(%) WT(s) α

ω1 = 0.1, ω2 = 0.9 61.89± 5.81 80.99± 16.14 0.57± 0.16
ω1 = 0.25, ω2 = 0.75 62.30± 6.08 80.35± 14.69 0.56± 0.17

ω1 = 0.5, ω2 = 0.5 62.75± 6.99 80.56± 17.12 0.54± 0.19
ω1 = 0.75, ω2 = 0.25 68.46± 7.02 106.22± 19.30 0.48± 0.16

ω1 = 0.9, ω2 = 0.1 69.79± 7.16 104.88± 20.29 0.44± 0.16

5. Discussion and Conclusions

In this paper, we proposed a deep reinforcement learning framework with the PPO
algorithm to address the dynamic scheduling problem of the job-shop manufacturing
system. The new method is designed to improve learning efficiency and performance. The
dynamic simulation of a real-world production environment was used for testifying the
proposed method. The results demonstrate that the DRL with the PPO algorithm performs
well, and it could obtain the fastest converge speed and the best rewards compared with the
other state-of-the-art algorithms. The different reward functions on behalf of the multiple
objectives were tested and compared with the rule-based heuristics approaches. The

Sustainability 2022, 14, 5177 14 of 16

quantified results indicate that the proposed framework is more flexible and could perform
effectively as well as the carefully designed rule-based method.

The proposed framework was testified and analyzed based on a real-world job-shop
manufacturing system. However, there are other complicated industrial applications
that need more comprehensive algorithms and solutions. Future extensions that may be
beneficial to the proposed framework include the following:

1. The optimal policy is only learned from the massive interaction data with the produc-
tion environment. Expert knowledge would be considered as a support of further
enhancement of efficiency and performance.

2. In the current simulation, only one dispatcher is used as the transport agent. How-
ever, a dynamic simulation environment with multiple transport agents should be
developed in future studies. The proposed deep reinforcement learning framework
needs to be improved in multiagent situations.

3. Toward the dynamic job-shop scheduling problem, other well-known algorithms,
such as GA, PSO, and TLBO, will be implemented and compared with the deep
reinforcement learning framework. With the corresponding benchmark problems
developed, we will validate all the algorithms within the dynamic environment.

Author Contributions: Conceptualization, M.Z. and Y.X.; methodology, M.Z. and Y.L.; formal
analysis, M.Z. and Y.L.; investigation, M.Z.; writing—original draft preparation, M.Z. and Y.H.;
writing—review and editing, Y.L., N.A. and Y.X.; supervision, Y.X.; project administration, Y.X.;
funding acquisition, Y.X. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by RECLAIM project “Remanufacturing and Refurbishment
Large Industrial Equipment” and received funding from the European Commission Horizon 2020
research and innovation programme under grant agreement No 869884.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository that does not issue
DOIs Publicly available datasets were analyzed in this study. This data can be found here: https:
//github.com/AndreasKuhnle/SimRLFab (accessed on 22 April 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sanchez, M.; Exposito, E.; Aguilar, J. Autonomic computing in manufacturing process coordination in industry 4.0 context. J. Ind.

Inf. Integr. 2020, 19, 100159. [CrossRef]
2. Csalódi, R.; Süle, Z.; Jaskó, S.; Holczinger, T.; Abonyi, J. Industry 4.0-driven development of optimization algorithms: A systematic

overview. Complexity 2021, 2021, 6621235. [CrossRef]
3. Zenisek, J.; Wild, N.; Wolfartsberger, J. Investigating the potential of smart manufacturing technologies. Procedia Comput. Sci.

2021, 180, 507–516. [CrossRef]
4. Popov, V.V.; Kudryavtseva, E.V.; Kumar Katiyar, N.; Shishkin, A.; Stepanov, S.I.; Goel, S. Industry 4.0 and Digitalisation in

Healthcare. Materials 2022, 15, 2140. [CrossRef]
5. Zhang, W.; Yang, D.; Wang, H. Data-driven methods for predictive maintenance of industrial equipment: A survey. IEEE Syst. J.

2019, 13, 2213–2227. [CrossRef]
6. Kleindorfer, P.R.; Singhal, K.; Van Wassenhove, L.N. Sustainable operations management. Prod. Oper. Manag. 2005, 14, 482–492.

[CrossRef]
7. Kiel, D.; Müller, J.M.; Arnold, C.; Voigt, K.I. Sustainable industrial value creation: Benefits and challenges of industry 4.0. In

Digital Disruptive Innovation; World Scientific: Singapore, 2020; pp. 231–270.
8. Saxena, P.; Stavropoulos, P.; Kechagias, J.; Salonitis, K. Sustainability assessment for manufacturing operations. Energies 2020,

13, 2730. [CrossRef]
9. Henao, R.; Sarache, W.; Gómez, I. Lean manufacturing and sustainable performance: Trends and future challenges. J. Clean. Prod.

2019, 208, 99–116. [CrossRef]
10. Rajeev, A.; Pati, R.K.; Padhi, S.S.; Govindan, K. Evolution of sustainability in supply chain management: A literature review. J.

Clean. Prod. 2017, 162, 299–314. [CrossRef]

https://github.com/AndreasKuhnle/SimRLFab
https://github.com/AndreasKuhnle/SimRLFab
http://doi.org/10.1016/j.jii.2020.100159
http://dx.doi.org/10.1155/2021/6621235
http://dx.doi.org/10.1016/j.procs.2021.01.269
http://dx.doi.org/10.3390/ma15062140
http://dx.doi.org/10.1109/JSYST.2019.2905565
http://dx.doi.org/10.1111/j.1937-5956.2005.tb00235.x
http://dx.doi.org/10.3390/en13112730
http://dx.doi.org/10.1016/j.jclepro.2018.10.116
http://dx.doi.org/10.1016/j.jclepro.2017.05.026

Sustainability 2022, 14, 5177 15 of 16

11. Serrano-Ruiz, J.C.; Mula, J.; Poler, R. Smart manufacturing scheduling: A literature review. J. Manuf. Syst. 2021, 61, 265–287.
[CrossRef]

12. Serrano-Ruiz, J.C.; Mula, J.; Poler, R. Development of a multidimensional conceptual model for job shop smart manufacturing
scheduling from the Industry 4.0 perspective. J. Manuf. Syst. 2022, 63, 185–202. [CrossRef]

13. Zhang, X.; Liu, W. Complex equipment remanufacturing schedule management based on multi-layer graphic evaluation and
review technique network and critical chain method. IEEE Access 2020, 8, 108972–108987. [CrossRef]

14. Yu, J.M.; Lee, D.H. Scheduling algorithms for job-shop-type remanufacturing systems with component matching requirement.
Comput. Ind. Eng. 2018, 120, 266–278. [CrossRef]

15. Cai, L.; Li, W.; Luo, Y.; He, L. Real-time scheduling simulation optimisation of job shop in a production-logistics collaborative
environment. Int. J. Prod. Res. 2022, 1–21. [CrossRef]

16. Satyro, W.C.; de Mesquita Spinola, M.; de Almeida, C.M.; Giannetti, B.F.; Sacomano, J.B.; Contador, J.C.; Contador, J.L. Sustainable
industries: Production planning and control as an ally to implement strategy. J. Clean. Prod. 2021, 281, 124781. [CrossRef]

17. Wang, L.; Hu, X.; Wang, Y.; Xu, S.; Ma, S.; Yang, K.; Liu, Z.; Wang, W. Dynamic job-shop scheduling in smart manufacturing using
deep reinforcement learning. Comput. Netw. 2021, 190, 107969. [CrossRef]

18. Garey, M.R.; Johnson, D.S.; Sethi, R. The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1976, 1, 117–129.
[CrossRef]

19. Manne, A.S. On the job-shop scheduling problem. Oper. Res. 1960, 8, 219–223. [CrossRef]
20. Van Laarhoven, P.J.; Aarts, E.H.; Lenstra, J.K. Job shop scheduling by simulated annealing. Oper. Res. 1992, 40, 113–125.

[CrossRef]
21. Wang, Y.; Qing-dao-er-ji, R. A new hybrid genetic algorithm for job shop scheduling problem. Comput. Oper. Res. 2012,

39, 2291–2299.
22. Sha, D.; Lin, H.H. A multi-objective PSO for job-shop scheduling problems. Expert Syst. Appl. 2010, 37, 1065–1070. [CrossRef]
23. Xu, Y.; Wang, L.; Wang, S.y.; Liu, M. An effective teaching–learning-based optimization algorithm for the flexible job-shop

scheduling problem with fuzzy processing time. Neurocomputing 2015, 148, 260–268. [CrossRef]
24. Du, Y.; Li, J.q.; Chen, X.l.; Duan, P.y.; Pan, Q.k. Knowledge-Based Reinforcement Learning and Estimation of Distribution

Algorithm for Flexible Job Shop Scheduling Problem. IEEE Trans. Emerg. Top. Comput. Intell. 2022, 1–15. [CrossRef]
25. Mohan, J.; Lanka, K.; Rao, A.N. A review of dynamic job shop scheduling techniques. Procedia Manuf. 2019, 30, 34–39. [CrossRef]
26. Azadeh, A.; Negahban, A.; Moghaddam, M. A hybrid computer simulation-artificial neural network algorithm for optimisation

of dispatching rule selection in stochastic job shop scheduling problems. Int. J. Prod. Res. 2012, 50, 551–566. [CrossRef]
27. Wang, C.; Jiang, P. Manifold learning based rescheduling decision mechanism for recessive disturbances in RFID-driven job

shops. J. Intell. Manuf. 2018, 29, 1485–1500. [CrossRef]
28. Zhao, Y.; Zhang, H. Application of machine learning and rule scheduling in a job-shop production control system. Int. J. Simul.

Model 2021, 20, 410–421. [CrossRef]
29. Tian, W.; Zhang, H. A dynamic job-shop scheduling model based on deep learning. Adv. Prod. Eng. Manag. 2021, 16, 23–36.

[CrossRef]
30. Tassel, P.; Gebser, M.; Schekotihin, K. A reinforcement learning environment for job-shop scheduling. arXiv 2021, arXiv:2104.03760.
31. Kuhnle, A.; Schäfer, L.; Stricker, N.; Lanza, G. Design, implementation and evaluation of reinforcement learning for an adaptive

order dispatching in job shop manufacturing systems. Procedia CIRP 2019, 81, 234–239. [CrossRef]
32. Kuhnle, A.; Röhrig, N.; Lanza, G. Autonomous order dispatching in the semiconductor industry using reinforcement learning.

Procedia CIRP 2019, 79, 391–396. [CrossRef]
33. Xia, K.; Sacco, C.; Kirkpatrick, M.; Saidy, C.; Nguyen, L.; Kircaliali, A.; Harik, R. A digital twin to train deep reinforcement

learning agent for smart manufacturing plants: Environment, interfaces and intelligence. J. Manuf. Syst. 2021, 58, 210–230.
[CrossRef]

34. Kuhnle, A.; Kaiser, J.P.; Theiß, F.; Stricker, N.; Lanza, G. Designing an adaptive production control system using reinforcement
learning. J. Intell. Manuf. 2021, 32, 855–876. [CrossRef]

35. Zhao, Y.; Wang, Y.; Tan, Y.; Zhang, J.; Yu, H. Dynamic Jobshop Scheduling Algorithm Based on Deep Q Network. IEEE Access
2021, 9, 122995–123011. [CrossRef]

36. Wang, H.; Sarker, B.R.; Li, J.; Li, J. Adaptive scheduling for assembly job shop with uncertain assembly times based on dual
Q-learning. Int. J. Prod. Res. 2021, 59, 5867–5883. [CrossRef]

37. Zeng, Y.; Liao, Z.; Dai, Y.; Wang, R.; Li, X.; Yuan, B. Hybrid intelligence for dynamic job-shop scheduling with deep reinforcement
learning and attention mechanism. arXiv 2022, arXiv:2201.00548.

38. Luo, S.; Zhang, L.; Fan, Y. Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning. Comput. Ind.
Eng. 2021, 159, 107489. [CrossRef]

39. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
40. Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; Abbeel, P. High-dimensional continuous control using generalized advantage

estimation. arXiv 2015, arXiv:1506.02438.
41. Waschneck, B.; Altenmüller, T.; Bauernhansl, T.; Kyek, A. Production Scheduling in Complex Job Shops from an Industry 4.0

Perspective: A Review and Challenges in the Semiconductor Industry. In Proceedings of the SAMI@ iKNOW, Graz, Austria, 19
October 2016; pp. 1–12.

http://dx.doi.org/10.1016/j.jmsy.2021.09.011
http://dx.doi.org/10.1016/j.jmsy.2022.03.011
http://dx.doi.org/10.1109/ACCESS.2020.3001134
http://dx.doi.org/10.1016/j.cie.2018.04.048
http://dx.doi.org/10.1080/00207543.2021.2023777
http://dx.doi.org/10.1016/j.jclepro.2020.124781
http://dx.doi.org/10.1016/j.comnet.2021.107969
http://dx.doi.org/10.1287/moor.1.2.117
http://dx.doi.org/10.1287/opre.8.2.219
http://dx.doi.org/10.1287/opre.40.1.113
http://dx.doi.org/10.1016/j.eswa.2009.06.041
http://dx.doi.org/10.1016/j.neucom.2013.10.042
http://dx.doi.org/10.1109/TETCI.2022.3145706
http://dx.doi.org/10.1016/j.promfg.2019.02.006
http://dx.doi.org/10.1080/00207543.2010.539281
http://dx.doi.org/10.1007/s10845-016-1194-1
http://dx.doi.org/10.2507/IJSIMM20-2-CO10
http://dx.doi.org/10.14743/apem2021.1.382
http://dx.doi.org/10.1016/j.procir.2019.03.041
http://dx.doi.org/10.1016/j.procir.2019.02.101
http://dx.doi.org/10.1016/j.jmsy.2020.06.012
http://dx.doi.org/10.1007/s10845-020-01612-y
http://dx.doi.org/10.1109/ACCESS.2021.3110242
http://dx.doi.org/10.1080/00207543.2020.1794075
http://dx.doi.org/10.1016/j.cie.2021.107489
http://dx.doi.org/10.1613/jair.301

Sustainability 2022, 14, 5177 16 of 16

42. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

43. Mönch, L.; Fowler, J.W.; Mason, S.J. Production Planning and Control for Semiconductor Wafer Fabrication Facilities: Modeling, Analysis,
and Systems; Springer Science & Business Media: Berlin, Germany, 2012; Volume 52.

44. Silver, D.; Lever, G.; Heess, N.; Degris, T.; Wierstra, D.; Riedmiller, M. Deterministic policy gradient algorithms. In Proceedings of
the International Conference on Machine Learning, PMLR, Beijing, China, 21–26 June 2014; pp. 387–395.

45. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the International
Conference on Machine Learning, PMLR, Lille, France, 6–11 July 2015; pp. 1889–1897.

46. Boebel, F.; Ruelle, O. Cycle time reduction program at ACL. In Proceedings of the IEEE/SEMI 1996 Advanced Semiconductor
Manufacturing Conference and Workshop. Theme-Innovative Approaches to Growth in the Semiconductor Industry. ASMC 96
Proceedings, Cambridge, MA, USA, 12–14 November 1996; pp. 165–168.

47. Schoemig, A.K. On the corrupting influence of variability in semiconductor manufacturing. In Proceedings of the 31st Conference
on Winter Simulation: Simulation—A Bridge to the Future, Phoenix, AZ, USA, 5–8 December 1999; Volume 1, pp. 837–842.

	Introduction
	Preliminary
	Markov Decision Process
	Policy Gradient Theorem

	Proposed Methods
	Dynamic Simulation of Production Environment
	Action module
	States

	Deep Reinforcement Learning for Dynamic Scheduling
	Optimization Objectives
	Proximal Policy Optimization

	Experiments
	Case Description
	Implementation Details
	Results and Analysis

	Discussion and Conclusions
	References

