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A B S T R A C T   

This paper reports on validations of an alpha version of the E3 Forensic Speech Science System (E3FS3) core 
software tools. This is an open-code human-supervised-automatic forensic-voice-comparison system based on x- 
vectors extracted using a type of Deep Neural Network (DNN) known as a Residual Network (ResNet). A 
benchmark validation was conducted using training and test data (forensic_eval_01) that have previously been 
used to assess the performance of multiple other forensic-voice-comparison systems. Performance equalled that 
of the best-performing system with previously published results for the forensic_eval_01 test set. The system was 
then validated using two different populations (male speakers of Australian English and female speakers of 
Australian English) under conditions reflecting those of a particular case to which it was to be applied. The 
conditions included three different sets of codecs applied to the questioned-speaker recordings (two mismatched 
with the set of codecs applied to the known-speaker recordings), and multiple different durations of questioned- 
speaker recordings. Validations were conducted and reported in accordance with the “Consensus on validation of 
forensic voice comparison”.   

1. Introduction 

There have been calls since the 1960s for forensic voice comparison 
to be validated under casework conditions (see [1] for a review). In 
recent years, researchers and practitioners have made substantial 
progress in promoting validation of human-supervised-automatic for-
ensic-voice-comparison systems that output likelihood ratios. Lists of 
published papers including validations under forensically realistic con-
ditions are included in [2] and [3]. These two lists have substantial 
overlap, and include papers published in forensic_eval_01, a 2016–2019 
virtual special issue of the journal Speech Communication in which 
multiple different systems were validated using the same set of data that 
reflected the conditions of a real case.1 In 2019–2020 a consensus on 
validation of forensic voice comparison was developed. The published 
statement of consensus [4] had 13 authors and an additional 7 
supporters. 

The E3 Forensic Speech Science System (E3FS3) is being developed by 

the Forensic Data Science Laboratory at Aston University, with contri-
butions from AUDIAS (Audio, Data Intelligence and Speech) at Uni-
versidad Autónoma de Madrid and from other research laboratories and 
multiple operational forensic laboratories. E3FS3 is designed for con-
ducting both forensic-voice-comparison research and forensic-voice- 
comparison casework. The design of E3FS3 is informed by end-user 
needs assessments conducted with researchers and forensic practi-
tioners at partner organizations including the Chilean Investigative 
Police (Policía de Investigaciones, PDI), the German Federal Criminal 
Police Office (Bundeskriminalamt, BKA), the Netherlands Forensic 
Institute (NFI), the Swedish National Forensic Centre (NFC), and the US 
Federal Bureau of Investigation (FBI). When complete, E3FS3 will 
include open-code software tools, data-collection protocols, databases 
(including those used for the present paper), standards and guidelines 
(including [4]), standard operating procedures, a library of validation 
reports (including the present paper), and training for practitioners. As 
each component of E3FS3 reaches the stage at which it is suitable for 
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general release, it will be made available at http://e3fs3.forensic-vo 
ice-comparison.net/. 

The core software tools of E3FS3 are based on state-of-the-art auto-
matic-speaker-recognition technology, and are accompanied by detailed 
documentation explaining which algorithms were implemented and 
why they were chosen [5]. For maximum transparency, the software is 
written in Python (a popular free high-level programming language) and 
the code is extensively commented.2 

The present paper describes the validation of an alpha version of the 
E3FS3 core software tools (hereinafter “E3FS3α”). The software tools are 
designed to be flexible and provide the user with various options and the 
ability to retrain models. In the present paper we describe the particular 
options and models that formed the system that was actually validated. 
The validations reported here are similar to validations that were per-
formed prior to E3FS3α being used to compare the questioned-speaker 
and known-speaker recordings in a case.3 In the case, the speakers of 
interest on the questioned-speaker and known-speaker recordings were 
female speakers of Australian English, and there were multiple 
questioned-speaker recordings of different durations. In the context of 
the case, validations were conducted using recordings of female 
speakers of Australian English from which exactly the same number of 
feature vectors were extracted as from the questioned-speaker re-
cordings in the case. For the validations reported in the present paper, 
we use recordings with a range of durations but not exactly the same 
number of extracted feature vectors as for the case. We performed three 
blocks of validations:  

• a benchmark validation using the forensic_eval_01 training and test 
data  

• a series of validations reflecting the conditions of the case and a 
range of questioned-speaker-recording durations, but using re-
cordings of male speakers rather than female speakers  

• a series of validations reflecting the conditions of the case and a 
range of questioned-speaker-recording durations, and using re-
cordings of female Australian English speakers 

The benchmark validation allowed us to compare the performance of 
E3FS3α with that of other forensic-voice-comparison systems that had 
previously been validated on the same data. The validations using case- 
specific conditions but with non-case-specific male speakers were orig-
inally conducted so that if performance under those conditions had been 
poor we could have made modifications to the system to potentially 
improve performance before proceeding to validations on case-specific 
female speakers. The final validations should simply be validations of 

the performance of the system that was already selected for use in the 
case, one should not optimize the system using the final validation data 
since this would lead to overly optimistic final validation results. Per-
formance on the male speakers was good, so, in actuality, we did not 
modify the system. 

Below, we first describe E3FS3α, we then describe the benchmark 
validation and results followed by the case-specific validations and re-
sults. We end with discussion and conclusion. 

We write assuming readers who are familiar with human-supervised- 
automatic forensic-voice-comparison systems to the level presented in 
[2], and who are familiar with validation of forensic-evaluation systems 
that output likelihood-ratio values to the level presented in [4]. 

When the core software tools are ready for general release at http 
://e3fs3.forensic-voice-comparison.net/, scripts to run the validations 
reported in the present paper will be also provided at that website. The 
data used for the validations reported in the present paper are already 
available at http://databases.forensic-voice-comparison.net/. 

2. E3FS3 core software tools 

2.1. System architecture 

The high-level architecture of E3FS3α is presented in Fig. 1. It consists 
of the following stages:  

1. Speaker diarization and voice-activity detection (VAD)  
2. Feature extraction  
3. x-vector extraction  
4. Dimension reduction and mismatch compensation using linear 

discriminant analysis (LDA) 
5. Calculation of uncalibrated likelihood ratios (scores) using proba-

bilistic linear discriminant analysis (PLDA)  
6. Calibration 

Data from the questioned-speaker recording and data from the 
known-speaker recording are processed in parallel through Stages 1–4. 
Stages 5 and 6 operate on data from pairs of recordings. Recordings used 
for training and validating the system (not shown in Fig. 1) are pro-
cessed in the same manner as the data from the questioned-speaker and 
known-speaker recordings. Terminologically: Stage 1 (diarization and 
VAD) are key parts of preprocessing; Stage 3 (x-vector extraction) con-
stitutes the frontend model; and Stages 4–6 (LDA, PLDA, and calibra-
tion) constitute the backend models. 

We briefly describe each stage of the system in its own subsection 
below. Since the particular x-vector-extraction stage used is different 
from that presented in [2] and likely to be less familiar for many readers, 
we describe this stage in somewhat greater detail. 

Fig. 1. High-level architecture of E3FS3α.  

2 Principles for the design of Python, “The Zen of Python”, are listed at htt 
ps://www.python.org/dev/peps/pep-0020/.  

3 The forensic voice comparison for this case was performed by Forensic 
Evaluation Ltd. 
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2.2. Diarization and VAD 

E3FS3 will include a diarization tool based on the VBx algorithm, 
which had the best performance in the DIHARD’19 diarization challenge 
[6–9]; however, all data that were used for training and validation in the 
context of the present paper were supplied already diarized, so this part 
of the system was not validated as part of the E3FS3α validation. 

E3FS3α performs VAD using the rVAD-fast algorithm [10]. This is an 
unsupervised method, which has the advantage of not requiring labelled 
training data. It can achieve a similar level of performance to supervised 
methods when the latter are trained and tested on the same conditions 
[10]. The algorithm applies two noise-removal processes: The first 
process attempts to remove transient noises, and the second process 
attempts to remove background noise. The next stage in the algorithm 
searches for voiced speech sounds using a spectral flatness detector 
(which is faster than fundamental-frequency detection, which used in 
the original rVAD algorithm). In order to also include voiceless sounds, 
the sections of the recording identified as containing voiced sounds are 
extended by 60 frames (600 ms) both before and after. The final stage 
uses heuristics based on the energy differences between frames to select 
frames deemed to be speech. 

2.3. Feature extraction 

Until recently, mel-frequency cepstral coefficients (MFCCs) [11] were 
the most commonly used features for automatic-speaker-recognition 
systems, but log-mel-filterbank features have been found to be more 
effective for x-vector systems [8], [12], [13]. 

E3FS3α uses the implementation of log mel filterbanks described in 
[14] §3.1.5. A 25 ms duration Hamming window is used. All the training 
and validation data were either originally 8 kHz sampling rate 16 bit 
quantization or were resampled to 8 kHz sampling rate 16 bit quanti-
zation, hence 25 ms is equivalent to 200 samples. The power spectrum 
within the window is calculated using a 512-point fast Fourier trans-
form. The filterbank consists of 40 filters, equally spaced on the mel 
frequency scale, that together cover the frequency range 0–4 kHz. Each 
filter has a 50% overlap with each of its neighbours. The window is 
advanced in steps of 10 ms (80 samples). There is therefore a 60% 
overlap between adjacent frames. The window is repeatedly advanced 
until feature vectors have been extracted from all the speech of the 
speaker of interest on a recording. A series of consecutive feature vectors 
we will refer to as a “feature matrix”. 

2.4. x-vector extraction 

E3FS3α extracts x-vectors using a type of deep neural network (DNN) 

Fig. 2. Simplified schematic of the architecture of the ResNet used for 
extracting x-vectors. 

Table 1 
Sizes of the dimensions of the structures and substructures of the ResNet used for 
extracting x-vectors.  

Structure Substructure Dimensions 

time 
T 

frequency 
F 

channels 
C 

Feature vectors – 400 40 1 
Input layer – 400 20 16 

Group 1 3 blocks 400 20 16 
Group 2 4 blocks 200 10 32 
Group 3 6 blocks 100 5 64 
Group 4 3 blocks 100 5 128 

Statistics- 
pooling block 

Layer 1 100 1 128 
Channel-attention 

layer 
1 1 128 

Layer 2 100 1 1 
Layer 3 1 1 128 

x-vector layer – 1 1 512 
Output layer – 1 1 Number of training 

speakers  
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called a Residual Network (ResNet; [15]). In particular, it uses a variant 
of the ResNet34 architecture described in [16] and [17]. The ResNet 
consists of a series of “groups”, each group consists of a series of 
“blocks”, and each block consists of a series of “layers”. The architecture 
of the ResNet is summarized in Fig. 2, and the sizes of the dimensions of 
its structures and substructures are given in Table 1. 

Each input-layer node of the ResNet receives input from a square 
“patch” of feature values which covers 7 time steps by 7 frequency steps 
of the feature matrix, see Fig. 3. The “stride” in the time dimension is 1 
and the stride in the feature dimension is 2; hence, the length of the 
input-layer rows equals the number of feature vectors entered from a 
recording, T (which for training is 400), and the length of the input-layer 
columns is half the length of each feature vector, i.e., since the length of 
a feature vector is 40, the length of an input-layer column is 20. The 
same “kernel” (set of connection weights between each node in the input 
layer and its corresponding patch of feature values) is used for all input- 
layer nodes (the activations of the nodes of the input layer are the result 
of convolving the kernel with the feature matrix). Additional kernels are 
created by initializing the connections with different sets of weights. 
Each additional kernel is used for all nodes in an additional input layer 
that is parallel to the first input layer. Each parallel input layer creates a 

“channel”. The number of channels, C, for the input layer is 16. 
The input layer is followed by a series of 4 groups, see Fig. 2. Each 

group consists of multiple blocks. Fig. 4 provides a simplified schematic 
of the architecture of a block. The first two layers of each block in each 
group use kernels that cover 3 time steps by 3 frequency steps of the 
output from the immediately preceding layer of each channel, i.e., a 3 ×
3 kernel for each of C channels. In Groups 2 and 3, the stride for the first 
layer of the first block is 2 for both the time and frequency dimensions 
(hence the size of each dimension is halved). For the first two layers of 
all other blocks in all groups, and for the second layer of the first block in 
each of Group 2 and 3, the stride is 1 in each dimension (hence the size of 
the dimensions is unchanged). For the first layer of the first block of each 
of Groups 2 through 4, two kernels are applied to the output of the 
previous group. This results in a doubling of the number of channels. 

After the first two layers of each block in Groups 1 through 4, there is 
a one-dimensional “squeeze-excitation network”. Each node in the input 
layer of this network calculates the mean value of all the nodes in the 
previous layer belonging to a single channel. The network then has a 
bottleneck layer and an output layer. The output layer has the same 
number of nodes as the input layer, i.e., one per channel. The activations 
of the nodes in the output layer are used to weight the channels relative 

Fig. 3. Simplified schematic of the feature vectors and the input layer of the ResNet used for extracting x-vectors. Only one channel is shown.  

Fig. 4. Simplified schematic of the architecture of a block within the ResNet used for extracting x-vectors. Only one channel is shown.  
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to one another. This focuses “attention” on the channels that are more 
useful for distinguishing speakers from one another [18]. 

For each channel, the output of a block is the elementwise sum of the 
channel-weighted output of the block’s second layer and the original 
input to the block. If there is a difference in the number of time or fre-
quency steps or the number of channels between the previous block and 
the current block, in order to be able to perform the elementwise sum, 
the input to the block is processed through a set of kernels that alter its 
dimensions to match those of the current block. This set of kernels is 
independent of other sets of kernels. The addition of the input to a block 
to what would otherwise be its output is the “residual” that gives 
ResNets their name. 

The final stages of the ResNet consist of a statistics-pooling block, an 
x-vector layer, and an output layer, see Fig. 5. 

The first layer of the statistics-pooling block collapses the frequency 

dimension by calculating the mean of the column of frequency values 
corresponding to each time step of the immediately preceding layer. 
This is done separately for each channel, and the result is treated as a 
two-dimensional time by channel (T × C) layer. 

After the first layer of the statistic-pooling block, similar to the 
squeeze-excitation networks in earlier blocks, there is a one-dimensional 
“channel-attention layer” which is the same length at the number of 
channels. Unlike the squeeze-excitation networks, the channel-attention 
layer is a single layer and is only connected to a higher layer, it does not 
have input from a lower layer. The activations of the nodes in the 
channel-attention layer are therefore learned during training, and 
thereafter are fixed. The activations of the nodes in the channel- 
attention layer are used to weight the channels of the statistics- 
pooling block’s first layer. The result, the second layer, is a one- 
dimensional layer that is the same length as the number of time steps, 

Fig. 5. Simplified schematic of the final stages of the ResNet used for extracting x-vectors. In this figure “ × ” indicates matrix multiplication.  
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and in which the activation of each node is a function of the weighted 
sum of the activations of the first layer’s nodes at one of its time steps 
(before being weighted by the channel-attention layer, a non-linear 
function is applied to the activations of each of the nodes in the first 
layer). The activations of the nodes in the second layer are then used to 
weight the time steps of the statistic-pooling block’s first layer. The 
result, the third layer, is a one-dimensional layer that is the same length 
as the number of channels, and in which the activation of each node is a 
function of the weighted sum of the activations of the first layer’s nodes 
for one of its channels. The third layer has combined information from 
across both time and frequency. 

The third layer of the statistics-pooling block is fully connected to the 
x-vector layer, which has 512 nodes, and the x-vector layer is fully 
connected to the output layer. The output layer has one node for each 
speaker in the training data. An angular-margin softmax function 
(AMSoftmax [19]) is applied to the output layer. 

We trained the ResNet using approximately 1M recordings total from 
approximately 6k speakers from the VoxCeleb2 database [20]. Training 
was conducted using 200 epochs of the Adam variant of the stochastic 
gradient descent optimization algorithm [21]. The learning rate started 
at 0.001 and every 10 epochs was decreased by 5%. For training, 400 
feature vectors were presented at a time (T = 400). To prevent over-
fitting on the training data, batch normalization was applied to each of 
the first two layers of each block in Groups 1 through 4 (see [22] [23] 
[24]). Batches of data were used to train the system. Each batch con-
sisted of a set of 200 recordings, one recording from each of 200 
speakers. After every batch, batch normalization adjusted the activa-
tions of the nodes so that, over the whole batch, the mean and standard 
deviation of the activations over all the nodes of each T × F layer were 
0 and 1 respectively. 

For extraction of x-vectors, recordings longer (or shorter) than 400 
feature vectors can be presented to the ResNet. Since the same kernels 
are used for each node in the input layer, the number of nodes in the 
rows of the input layer can be increased (or decreased) to accommodate 
the number of feature vectors, and the kernels simply repeated for each 
node – no retraining is needed to accommodate the different number of 
feature vectors. Because the first two layers of each block in Groups 1–4, 
also use kernels, the number of time steps in higher layers can likewise 
be increased (or decreased) without the need for retraining. The 
statistics-pooling block collapses the time dimension (and the frequency 
dimension) so that the three final one-dimensional layers of the ResNet 
have the same numbers of nodes irrespective of the number of feature 
vectors and irrespective of the numbers of time steps in earlier layers. 

2.5. LDA 

From Stage 6 onward, the data used for training or adapting the 
backend models should be representative of the relevant population for 
the case and should reflect the conditions of the questioned-speaker and 
known-speaker recordings for the case, including any mismatch in 
conditions between the questioned-speaker and known-speaker 
recordings. 

Although referred to in the automatic-speaker-recognition literature 
as LDA, Stage 6 is actually the use of linear discriminant functions 
(LDFs). LDFs are used for mismatch-compensation and to reduce the 
number of dimensions of the x-vector. E3FS3α trains the LDFs using the 
algorithm described in [25] §4.3, and reduces the x-vectors from 512 to 
120 dimensions. In addition to using x-vectors from recordings that 
actually reflect the population and conditions for the case (in-domain 
data), using the correlation-alignment algorithm (CORAL) [12], [26], 
x-vectors from a large number of non-case-specific recordings of a large 
number of speakers (out-of-domain data) are adapted to simulate this 
population and these conditions. E3FS3α uses the CORAL algorithm 
described in [12], which linearly shifts and scales the out-of-domain 
data so that their total covariance matrix (within-speaker plus 
between-speaker covariance matrix) matches that estimated from the 

in-domain data. 
As out-of-domain data for CORAL, we used approximately 30k re-

cordings total from approximately 2.7k speakers from the SRE2018 test 
set [27]. 

2.6. PLDA 

E3FS3α implements the two-covariance variant of PLDA described in 
[28]. The training algorithm is iterative. 100 iterations are used. PLDA 
calculates a common-source likelihood ratio [29], but because of the 
large number of parameter values that have to be estimated to fit the 
model in the 120 dimension space, the output is treated as an uncali-
brated log likelihood ratio (also known as a “score”).4 

Prior to training the PLDA model, to better fit the assumptions of the 
model, the training data are centered, whitened (i.e., rotated and scaled 
so that for the entire training set the variance in each dimension is 1 and 
the covariance between dimensions is 0), then scaled to unit length in 
the Euclidian multidimensional space [33]. The x-vectors that will be 
used for calibration and validation are transformed using the centering 
and whitening functions derived from the training data, and then scaled 
to unit length. 

2.7. Calibration 

E3FS3α uses logistic regression to convert the uncalibrated log like-
lihood ratios to calibrated log likelihood ratios. The calibration model is 
trained using a regularized version of the conjugate-gradient method 
[34], [35], with a regularization weight equivalent to 1 pseudo-speaker 
[36].5 This regularization reduces the probability of overstating the 
strength of evidence in either direction. 

To maximize use of available case-relevant data, and to avoid 
training and testing on the same data, the calibration model is trained 
using leave-one-speaker-out/leave-two-speakers-out cross-validation, 
see [4] §2.5.4. 

3. Benchmark validation 

3.1. Data 

The forensic_eval_01 benchmark dataset and validation protocols are 
described in [37] and [38]. The speakers are male Australian-English 
speakers. The questioned-speaker condition reflects a 46 s long 
landline-telephone call, with background babble noise, saved using lossy 
compression (G.723.1). The known-speaker condition reflects a 126 s 
long interview recorded in a reverberant room, with background 
ventilation-system noise. The durations just stated refer to the amount of 
speech of the speaker of interest after semi-manual diarization but 
before applying VAD. The questioned-speaker-condition and 
known-speaker-condition recordings were recorded on different occa-
sions separated by approximately a week or more. Each speaker in the 
calibration/validation set was recorded on at least two occasions. The 
calibration/validation set consists of a total of 223 recordings from 61 
speakers, 61 in questioned-speaker condition and 162 in known-speaker 
condition, allowing for the construction of 111 same-speaker pairs of 
recordings and 6,720 different-speaker pairs of recordings (from 3,660 
pairs of speakers). The dataset also includes a training set consisting of a 
total of 423 recordings from 105 speakers (191 recordings in 
questioned-speaker condition and 232 in known-speaker condition). 

The forensic_eval_01 training set was used to train the LDA and PLDA 

4 Note that scores output by PLDA are uncalibrated likelihood ratios, they are 
not similarity-only scores [30-32].  

5 Each pseudo-data point is weighted by wψ = κψ/2N, where κψ is the number 
of pseudo-speakers (κψ = 1) and N is the number of speakers used to train the 
model. See [36] for further explanation. 
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models (along with the previously-mentioned out-of-domain data that 
was adapted using CORAL, see §2.5). The forensic_eval_01 calibration/ 
validation set was used for leave-one-speaker-out/leave-two-speakers- 
out cross-validated training of the calibration model. 

3.2. Results and discussion 

A Tippett plot showing validation results for E3FS3α using the for-
ensic_eval_01 data is presented in Fig. 6. Table 2 presents the Cllr results 
from the best-performing version of each system validated in the Speech 
Communication virtual special issue [39], plus the Cllr result from the 
validation of E3FS3α. 

In the Tippett plot (Fig. 6), the same-speaker and different-speakers 

curves have relatively shallow slopes, indicating good performance, and 
they cross near a log-likelihood-ratio value of 0, indicating good cali-
bration. The Tippett plot indicates that the validation results for E3FS3α 
would support likelihood-ratio values into the thousands in favour of the 
same-speaker hypothesis and into the tens of thousands in favour of the 
different-speaker hypothesis (log10 likelihood ratios beyond +3 and − 4 
respectively), but not values far beyond these ranges (see [4] §2.11). 

The Cllr value for E3FS3α was 0.208. The lower the Cllr value, the 
better the performance of the system. In terms of Cllr, E3FS3α performed 
equally as well as the best-performing system from the virtual special 
issue, Phonexia SID-BETA4 [40]. 

Based on these benchmark-validation results, we were happy with 
the performance of E3FS3α, and proceeded to test it under conditions 
that reflected those of the case to which it was to be immediately 
applied. 

4. Case-specific validations 

4.1. Casework conditions 

The forensic case involved a number of questioned-speaker re-
cordings in which the speaker of interest was a female speaker of 
Australian English, and a number of known-speaker recordings in which 
the speaker of interest was a female speaker of Australian English. All 
recordings were of telephone calls made from a mobile telephone to a 
call centre and were recorded at the call centre. Multiple call centres 
were involved, and multiple calls were recorded at each call centre. 

All recordings were converted to PCM, 8 kHz sampling rate, 16 bit 
quantization using FFmpeg software,6 and the results were checked 
using MediaInfo7 (the condition characterization and format conversion 
tools of E3FS3 were still under development). Each recording was 
manually diarized using Audacity8 (the manual diarization tool of E3FS3 

was still under development), and reference headphones (AKG K701 or 
K702) for listening. The questioned-speaker recordings were diarized by 

Fig. 6. Tippett plot of the results of validating E3FS3α using the forensic_eval_01 data.  

Table 2 
Cllr values from the best-performing version of each system validated in the 
Speech Communication virtual special issue, plus the Cllr result from E3FS3α, 
each validated using the for ensic_eval_01 data. Alternating background 
shading groups types of systems. 

6 FFmpeg version 4.3.1-2020-11-19-full_build-www.gyan.dev. http://ffmpeg. 
org/.  

7 MediaInfo version 20.09. https://mediaarea.net/en/MediaInfo.  
8 Audacity version 2.4.2. https://www.audacityteam.org/. 
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one practitioner and the known-speaker recordings were diarized by a 
second practitioner. Sections of speech of the speaker of interest were 
excluded if they:  

• overlapped with the speech of the interlocutor or with transient 
noises;  

• were obviously distorted or muffled; or  
• had raised vocal effort, non-modal phonation, or appeared to reflect 

an agitated emotional stage. 

After initial diarization, the original diarizer checked the results and 
made corrections as needed. This included checking the labels to make 
sure that only speech of the speaker of interest was marked as such. It 
also included listening to every section that had been marked as speech 
of the speaker of interest. A third practitioner then checked the diari-
zation results. The third practitioner was instructed to flag any errors 
they found including:  

• sections with missing labels;  
• noise labelled as speech;  
• speech labelled as noise;  
• speech labelled as belonging to the speaker of interest but potentially 

belonging to another speaker;  
• speech labelled as belonging to another speaker but potentially 

belonging to the speaker of interest;  
• speech labelled as belonging to the speaker of interest but including 

substantial distortion or transient noises;  
• beginning or end markers that appeared to be misplaced. 

The third practitioner then discussed with the original diarizer any 
errors the third partitioner had flagged, with both practitioners able to 
see and listen to the relevant sections of the recordings. If both imme-
diately agreed on the appropriate correction to be made, the original 
diarizer made the correction. If they did not immediately agree on the 
appropriate correction to be made, the original diarizer deleted the 
markers and the label for the section. 

These procedures were adopted in order to reduce the potential for 
cognitive bias: Since neither of the first two practitioners listened in 
detail to the speech on both the questioned-speaker recording and the 
known-speaker recording, the strength-of-evidence conclusions could 
not be affected by subjective judgements related to their perceptions of 
the speech on the recordings. The third practitioner waited 2 months 
between finishing checking the diarization of the questioned-speaker 
recordings and starting checking the diarization of the known-speaker 
recordings. This time interval was intended to be sufficient to prevent 
the third practitioner from perceptually comparing the speech on the 
questioned-speaker and known-speaker recordings. The third practi-
tioner was instructed not to attempt to perceptually compare the 
questioned-speaker and known-speaker recordings, and not to discuss 
with either of the first two practitioners any perceptions or opinions the 
third practitioner may have inadvertently formed. The third practitioner 
did not play any role in subsequent processing of the case data or in 
writing or reviewing the casework report. 

Most of the known-speaker recordings had the same format:  

• μ-law þ G.723.1: 2 channels, μ-law (commonly used in landline- 
telephone systems), 8 kHz sampling rate, 8 bit quantization. En-
quiries made through the instructing party to the suppliers of the 
recordings revealed that these recordings had previously been saved 
using G.723.1 compression (commonly used for VoIP). 

The speaker of interest was on one channel and the interlocutor on 
another, and over the whole or substantial portions of each recording 
the speaker of interest’s channel had no apparent background noise 
(measured signal-to-noise ratios were above 60 dB). A group of re-
cordings consisting of the 7 longest recordings in this condition (each 

having at least ~120 s net speech) was used for comparison with each of 
the questioned-speaker recordings. The other recordings in this condi-
tion had less than ~90 s net speech.9 The latter were used to conduct an 
additional set of validations (results of which are not reported in the 
present paper): The group of the longest recordings was compared with 
each of the shorter recordings (these are same-speaker comparisons), 
and with recordings of other female Australian English speakers in the 
same condition and of the same duration (these are different speaker 
comparison). The remaining known-speaker recordings had other con-
ditions, including poorer conditions, and were not used. 

The same number of feature vectors (corresponding to ~120 s net 
speech) were extracted from each recording in the group of the 7 longest 
known-speaker recordings. An x-vector was independently extracted 
from each recording in this group, and the mean vector of these x-vec-
tors used as input to the backend models. 

On initial screening, some questioned-speaker recordings with poor 
recording conditions were excluded from use on the grounds that they 
were a priori unlikely to lead to log likelihood ratios far from 0 in either 
direction. The remaining questioned-speaker recordings each had one of 
three formats:  

• GSM 06.10: 1 channel, GSM 06.10 (commonly used in mobile- 
telephone systems), 8 kHz sampling rate, 13 kb/s bit rate. En-
quiries made through the instructing party to the suppliers of the 
recordings revealed that these recordings had not previously been 
saved in another format.  

• μ-law þ G.729a: 1 channel, μ-law, 8 kHz sampling rate, 8 bit 
quantization. Enquiries made through the instructing party to the 
suppliers of the recordings revealed that these recordings had pre-
viously been saved using G.729a compression (commonly used for 
VoIP).  

• μ-law þ G.723.1: The same as the known-speaker condition. 

Over the whole or substantial portions of each recording there was 
no apparent background noise (measured signal-to-noise ratios were 
above 60 dB). The questioned-speaker recordings had a range of 
different durations leading to a range of different numbers of feature 
vectors extracted from each recording. For the case, a different valida-
tion was conducted for each different number of feature vectors. For the 
validations reported in the present paper, we do not use exactly the same 
number of extracted feature vectors. Instead, we use the numbers of 
feature vectors given in Table 3. 

Table 3 
Numbers of feature vectors and corresponding net-speech durations of the 
questioned-speaker-condition recordings used for the case-specific validations 
reported in the present paper.  

Number of feature vectors extracted Net-speech duration (s) 

500 5 
1,000 10 
1,500 15 
2,000 20 
3,000 30 
4,500 45 
6,000 60 
9,000 90 

12,000 120 
18,000 180  

9 In the descriptions of case-specific validations “net speech” refers to the 
duration equivalent to the number of feature vectors extracted. 1 s equals 100 
feature vectors. 
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4.2. Data 

Training and calibration/validation data were taken from the 
AusEng 500+ database [41]. The data-collection protocol for this 
database is described in [42]. 

The database includes recordings of 169 male Australian-English 
speakers who were recorded in at least two recording sessions. Each 
session was separated by approximately a week or more. 43 male 
speakers had two sessions, 107 had three, and 19 had more (5 had four, 
4 had five, 4 had six, 4 had seven, and 2 had eight). The database also 
includes recordings of 233 female Australian-English speakers who were 
recorded in at least two recording sessions. 69 female speakers had two 
sessions, 159 had three, and 5 had more (2 had four, 1 had five, and 2 
had seven). 

In each session, the speaker completed multiple speaking tasks. We 
concatenated and used recordings of two tasks: telephone conversation, 
and information exchange over the telephone. The lead forensic prac-
titioner considered the combination of these two tasks to be sufficiently 
reflective of the speaking styles in the diarized portions of the 
questioned-speaker and known-speaker recordings (this is a subjective 
judgement). The recordings were high-quality audio recordings (direct 
microphone recordings, not recordings of a signal transmitted through a 
telephone system). One speaker was recorded on each channel. Prior to 
release of the database, the channels had been separated, an automated 
VAD process had been applied to find the sections of each recording that 
potentially contained speech, and those sections had been manually 
checked and corrected as needed. The sections within a recording had 
then been concatenated and saved as PCM, 16 kHz sampling rate, 16 bit 
quantization. As part of the concatenation process, ramp-up and ramp- 
down windows were used to avoid introducing discontinuities. 

E3FS3 includes a condition-simulation tool. Using this tool and the 
AusEng 500+ recordings, we simulated three different sets of condi-
tions. In order to simulate each condition, a chain of transformations 
was applied:10 

GSM 06.10: PCM, 16 kHz, 16 bits → PCM, 8 kHz, 16 bits → AMR 
codec to simulate mobile telephone transmission → G.711 a-law 
codec to simulate landline telephone transmission → GSM 06.10, 8 
kHz, 13 kb/s codec → PCM, 8 kHz, 16 bits 
μ-law þ G.729a: PCM, 16 kHz, 16 bits → PCM, 8 kHz, 16 bits → 
AMR codec to simulate mobile telephone transmission → G.711 a- 
law codec to simulate landline telephone transmission → G.729a 
codec → G.711 μ-law, 8 kHz, 8 bits, codec → PCM, 8 kHz, 16 bits 
μ-law þ G.723.1: PCM, 16 kHz, 16 bits → PCM, 8 kHz, 16 bits → 
AMR codec to simulate mobile telephone transmission → G.711 
a-law codec to simulate landline telephone transmission → 
G.723.1 codec → G.711 μ-law, 8 kHz, 8 bits, codec → PCM, 8 
kHz, 16 bits. 

The AMR-NB codec for simulation of GSM mobile telephone trans-
mission uses the reference implementation for Adaptive Multi-Rate 
speech traffic [43]. The AMR codec has 8 encoding rates. For each 
recording, one of the rates was randomly selected from a uniform dis-
tribution. G.711 a-law and μ-law landline encoding uses the reference 
implementation [44]. The GSM 06.10 codec for GSM mobile telephone 
transmission uses the reference implementation [45]. The G.723.1 codec 
for VoIP compression uses the reference implementation [46]. The 
G.723.1 codec has 2 encoding rates. For each recording, one of the rates 
was randomly selected from a uniform distribution. The G.729a codec 
for VoIP compression uses the reference implementation [47]. 

Recordings from each speaker’s second and later recording sessions 
were used to create known-speaker-condition recordings. From each 

known-speaker-condition recording, a set of 12,000 contiguous feature 
vectors was randomly selected and the remainder discarded. For each 
recording, the start of the contiguous set of feature vectors was 
randomly selected from a distribution that was uniform over the first to 
the last-minus-12,000th feature vector. An x-vector was independently 
extracted from each known-speaker recording of each speaker. For each 
speaker who had more than one known-speaker-condition recording, 
the mean vector of their x-vectors was used as input to the backend 
models. 

Recordings from each speaker’s first recording session were used to 
create questioned-speaker-condition recordings. From each questioned- 
speaker-condition recording, using the same procedure as described 
above for the known-speaker-condition recordings, sets of contiguous 
feature vectors were randomly selected and the remainder discarded. A 
different set of feature vectors was extracted corresponding to each net 
speech duration listed in Table 3. 

The within-speaker variance, calculated using the known-speaker- 
condition mean vectors and the questioned-speaker-condition individ-
ual vectors, will be less than if the variance of the known-speaker- 
condition individual vectors had been used, and the more individual 
vectors that contribute to each known-speaker-condition mean vector 
the smaller the variance.11 For most speakers, the number of known- 
speaker-condition recordings per speaker was 2 (for some it was less, 
and only for a few was it more). The calculated within-speaker variance 
for the validation data will therefore be greater than if 7 individual 
known-speaker-condition vectors had been used to calculate each mean 
vector (in the case, 7 vectors were used to calculate the known-speaker 
mean vector). The smaller the within-speaker variance compared to the 
between-speaker variance, the further the log likelihood ratios can be 
away in both directions from the neutral value of 0. The validation re-
sults will therefore underestimate the performance of the system 
compared to if 7 individual vectors had been used. This is a limitation of 
the available data, but produces a conservative set of validation results. 

For male speakers: 91 of the speakers were randomly selected and 
their x-vectors were used for training the LDA and PLDA models. x- 
vectors from the remaining 78 speakers were used for leave-one- 
speaker-out/leave-two-speakers-out cross-validated training of the 
calibration model. For each questioned-speaker condition including 
each duration, this resulted in 78 likelihood-ratio values from same- 
speaker comparisons and 6,006 likelihood-ratio values from different- 
speaker comparisons. 

For female speakers: 125 of the speakers were randomly selected and 
their x-vectors were used for training the LDA and PLDA models. x- 
vectors from the remaining 108 speakers were used for leave-one- 
speaker-out/leave-two-speakers-out cross-validated training of the 
calibration model. For each questioned-speaker condition including 

Table 4 
Cllr values for case-specific conditions – male speakers.  

Questioned-speaker net-speech 
duration (s) 

Questioned-speaker condition 

GSM 
06.10 

μ-law +
G.729a 

μ-law +
G.723.1 

5 0.330 0.341 0.376 
10 0.241 0.156 0.253 
15 0.208 0.133 0.189 
20 0.129 0.100 0.136 
30 0.090 0.097 0.085 
45 0.118 0.094 0.057 
60 0.090 0.069 0.075 
90 0.084 0.079 0.054 

120 0.083 0.064 0.067 
180 0.077 0.059 0.057  

10 The arrows indicate the transformation of the audio recording from one 
format to another. 

11 This is similar to the behaviour of the standard error of the mean compared 
to the sample standard deviation. 
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each duration, this resulted in 108 likelihood-ratio values from same- 
speaker comparisons and 11,556 likelihood-ratio values from 
different-speaker comparisons. 

5. Results and discussion 

Table 4 and Table 5 present the Cllr values for the validation results 
from the case-specific conditions for male and female speakers respec-
tively. Fig. 7 provides a graphical representation of the relationship 
between questioned-speaker conditions, including net-speech duration, 
and Cllr values. 

We can make the following observations on the results of the case- 
specific validations:  

• Overall, Cllr values were substantially lower than those that we 
would have expected from earlier generations of technology (i-vector 
or GMM-UBM).  

• Male speakers with a questioned-speaker net-speech duration of 45 s 
are the most similar population and duration to those of foren-
sic_eval_01. Cllr values for this case-specific population and duration 
combination were substantially lower than that for forensic_eval_01: 
0.118, 0.094, or 0.057 depending on the questioned-speaker condi-
tion (GSM 06.10, μ-law + G.729a, or μ-law + G.723.1 respectively), 
compared to 0.208 for forensic_eval_01. This is likely due to the case- 

specific conditions not being as poor as those of forensic_eval_01, 
which were based on a different case.  

• Cllr values for male speakers were consistently lower than for female 
speakers. Given current information, we cannot assess whether the 
difference is due to the larger amount of validation data available for 
female speakers (a larger dataset may include more speakers who are 
similar to other speakers in the dataset), or whether it is due to a bias 
in E3FS3 training that results in better performance on males, or 
whether it is due to an intrinsic difference between properties of 
male and female speakers’ speech. These are questions that can 
potentially be investigated in future research. 

• Irrespective of questioned-speaker condition, and despite some sta-
tistical noise in the pattern of results, there was a clear exponential 
relationship between questioned-speaker net-speech duration and 

Cllr: From 5 s to 30 s there was a rapid decline in Cllr values, after 
which the rate of decline slowed, and by 60s for male speakers and 
90 s for female speakers they had asymptoted. This result can inform 
expectations for performance in future casework, and also suggests 
that for future data collection it may not be necessary to collect 
questioned-speaker-condition recordings that are longer than 90 s 
net speech.12  

• Across male and female speakers, and across different durations of 
questioned-speaker recordings, the order of which condition gave 
best, second best, and worst results was not consistent. The 
questioned-speaker condition that had no mismatch with the known- 
speaker condition (μ-law + G.723.1) did not consistently result in 
lower Cllr values than the other conditions. One could conclude that, 
in general, the differences in Cllr values between the different con-
ditions were relatively small. The biggest differences tended to occur 
for shorter durations (15 s or less), which one would expect to be 
more susceptible to statistical noise. 

Fig. 8 presents a set of Tippett plots for female speakers and 
questioned-speaker condition μ-law + G.729a. The patterns of results for 
other combinations of population and questioned-speaker condition 

Table 5 
Cllr values for case-specific conditions – female speakers.  

Questioned-speaker net-speech 
duration (s) 

Questioned-speaker condition 

GSM 
06.10 

μ-law +
G.729a 

μ-law +
G.723.1 

5 0.374 0.451 0.456 
10 0.251 0.349 0.238 
15 0.276 0.311 0.285 
20 0.206 0.214 0.184 
30 0.150 0.122 0.144 
45 0.138 0.143 0.167 
60 0.117 0.120 0.106 
90 0.095 0.081 0.088 

120 0.112 0.074 0.104 
180 0.096 0.074 0.101  

Fig. 7. Cllr values for case-specific conditions. (a) Male speakers. (b) Female speakers.  

12 We say more about this in the general discussion and conclusion section, §5. 
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were broadly similar. At all different questioned-speaker net-speech 
durations, the results were well calibrated – the same-speaker and 
different-speaker curves crossed near a log-likelihood-ratio value of 0. 
Even for the shortest questioned-speaker net-speech duration (5 s), the 
Tippett plot indicates that the validation results would support 
likelihood-ratio values into the hundreds in favour of either the same- 
speaker hypothesis or the different-speaker hypothesis (log10 

likelihood ratios beyond +2 and − 2 respectively), but not values far 
beyond these ranges (see [4] §2.11). For questioned-speaker net-speech 
durations of 30 s or more, the range extended into the thousands in 
favour of the same-speaker hypothesis and the tens of thousands in 
favour of the different-speaker hypothesis (log10 likelihood ratios 
beyond +3 and − 4 respectively). Asymmetries of this type are often 
observed in the results of validations of forensic-voice-comparison 

Fig. 8. Tippett plots of the results of validating E3FS3α using case-specific data (female Australian-English speakers and questioned-speaker condition μ-law +
G.729a) at different questioned-speaker net-speech durations. 
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systems, but the large negative log likelihood ratios may correspond to 
pairs of speakers who sound quite different from one another and are 
therefore unlikely to be submitted for forensic comparison. 

6. General discussion and conclusion 

In the context of the case: We were happy with the results of the 
benchmark validation of E3FS3α using the forensic_eval_01 data – per-
formance was equal to that of the best-performing system with previ-
ously published results validated on this dataset. We therefore 
proceeded with validations using case-specific recording conditions and 
durations, but using recordings of male speakers rather than the case- 
specific female speakers. We were again happy with the validation re-
sults. We therefore proceeded with fully-case-specific validations using 
recordings of female Australian-English speakers. We were again happy 
with the validation results, and we included the latter set of validation 
results in the casework report. The report also documented that our 
validation procedures followed the recommendations in the Consensus 
on validation of forensic voice comparison [4] – a checklist was developed, 
and a second practitioner checked whether the report written by the first 
practitioner described whether, and if so how, each recommendation 
had been followed.13 We then proceeded to use E3FS3α to compare the 
actual questioned-speaker and known-speaker recordings in the case, 
and to report the resulting likelihood-ratio values. The reported 
likelihood-ratio values were supported by the validation results. Usu-
ally, in the context of a case, we would only conduct a fully-case-specific 
validation and report the results. Because E3FS3α was a new system that 
had not been previously validated, we conducted the other validations 
first. 

The questioned-speaker net-speech durations used for the case- 
specific validations reported in the present paper did not match the 
exact durations of the questioned-speaker recordings in the case, but 
covered a range of durations providing results that are potentially 
informative for expectations regarding performance in future casework, 
and potentially informative for future data-collection plans. E3FS3α 
performance asymptoted by 90 s questioned-speaker net speech. This 
suggests that for future data collection it may not be necessary to collect 
questioned-speaker-condition recordings that are longer than 90 s net 
speech. Note, however, that this is 90 s worth of extracted feature vec-
tors. In order to be able to extract this number of feature vectors the 
recordings will usually have to be substantially longer, e.g., for a con-
versation involving two people, in order to have a high probability of 
being able to extract at least this many feature vectors from each 
speaker, we would recommend making a 5-min-long recording. It may 
be more useful to make more 5-min-long recordings in more different 
conditions than to make fewer longer recordings in fewer conditions. 

E3FS3α is the first working version (an alpha version) of the E3FS3 

core software tools. We will continue to develop E3FS3 overall, including 
core software tools. In due course, a beta version of the software tools 
will be released to our partner organizations for field testing by their 
operational forensic laboratories. After revisions informed by field 
testing, we plan to produce the first general release (some components 
that can stand alone may be released earlier than others). E3FS3 core 
software tools are designed to be flexible and provide the user with 
various options and the ability to retrain models. We plan to explore 
different options and additions, and to use different datasets for training 
the x-vector extractor and as out-of-domain CORAL data (or CORAL+
data), which may lead to improved performance. This may include 
exploring whether performance on female speaker can be improved to 
match the performance on male speakers. 

The present paper has provided an example of validation of a 
forensic-voice-comparison system under casework conditions. We hope 

that that this example can be copied in both casework practice and in 
future research aimed at informing casework practice. 
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clustering for speaker diarization, Proceedings of Interspeech (2019) 346–350, 
https://doi.org/10.21437/Interspeech.2019-2813. 

[7] M. Diez, L. Burget, F. Landini, J. Černocký, Analysis of speaker diarization based on 
Bayesian HMM with eigenvoice priors, IEEE/ACM Transactions on Audio, Speech, 

13 A version of this checklist is available at http://e3fs3.forensic-voice-compar 
ison.net/. 

P. Weber et al.                                                                                                                                                                                                                                   

https://doi.org/10.1016/j.scijus.2013.07.004
https://doi.org/10.1201/9780367527709
https://www.nist.gov/document/essentialscientificliteratureforhuman
https://www.nist.gov/document/essentialscientificliteratureforhuman
https://doi.org/10.1016/j.scijus.2021.02.002
https://doi.org/10.1016/j.scijus.2021.02.002
http://e3fs3.forensic-voice-comparison.net/
http://e3fs3.forensic-voice-comparison.net/
https://doi.org/10.21437/Interspeech.2019-2813
http://e3fs3.forensic-voice-comparison.net/
http://e3fs3.forensic-voice-comparison.net/


Forensic Science International: Synergy 4 (2022) 100223

13

and Language Processing 28 (2020) 355–368, https://doi.org/10.1109/ 
TASLP.2019.2955293. 

[8] F. Landini, S. Wang, M. Diez, L. Burget, P. Matejka, K. Zmolíková, L. Mosner, 
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