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Abstract 

Pandemics like COVID-19 have created a spreading and ever-higher healthy threat to the humans in the manufactur-
ing system which incurs severe disruptions and complex issues to industrial networks. The intelligent manufactur-
ing (IM) systems are promising to create a safe working environment by using the automated manufacturing assets 
which are monitored by the networked sensors and controlled by the intelligent decision-making algorithms. The 
relief of the production disruption by IM technologies facilitates the reconnection of the good and service flows in the 
network, which mitigates the severity of industrial chain disruption. In this study, we create a novel intelligent manu-
facturing framework for the production recovery under the pandemic and build an assessment model to evaluate the 
impacts of the IM technologies on industrial networks. Considering the constraints of the IM resources, we formulate 
an optimization model to schedule the allocation of IM resources according to the mutual market demands and the 
severity of the pandemic.
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1  Introduction
Pandemics like COVID-19 have created a spreading and 
ever-higher threat to human health. High mortality and 
morbidity pose complex issues to industrial networks 
and manufacturing, including supply disruptions and 
demand-side shocks [1]. Supply disruptions are attrib-
uted to production disruptions of direct suppliers and 
global transportation due to health risks and quarantine 
policies. Outbreaks have quickly affected production 
and material supply of 938 of the Fortune 1000 compa-
nies due to the disrupted production of tier 1 or tier 2 
suppliers in China [2]. A recent Chinese industrial sur-
vey reports that 82% of enterprises suffered a profit loss, 
and 62% have reduced labor to control operational costs 
[3]. Increasing panic among consumers and firms has 

distorted demand patterns and created market anoma-
lies that has affected the ability to ramp-up production in 
some industries, i.e., in the medical equipment industry, 
and reduced operations in others, i.e., the aircraft indus-
try. These emerging challenges stemming from COVID-
19 require industrial networks to be robust to production 
disruptions and market environment changes, and the 
manufacturing system to be agile so that production 
capacity can be leveraged to control risks and to support 
the needs of prevention.

Intelligent manufacturing (IM) is a promising solution 
to improve production efficiency in light of the demands 
of this highly dynamic epidemic situation. IM is built on 
enabling complex and real-time decision-making within 
automated manufacturing assets, utilizing data from 
networked machines and sensors [4, 5]. Recent break-
throughs in information and communication technolo-
gies (ICTs), including the industrial internet of things 
(IIoT), digital twins, big data analytics, cloud comput-
ing, and artificial intelligence (AI), make the vision of 
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IM practical. IM technologies also support the human 
in managing increasingly complex operations through 
predictive tools [6], automated design [7], AI-predictive 
maintenance [8], and adaptive planning [9]. These tools, 
collectively integrated into human-cyber-physical sys-
tems (HCPS) [10], have the promise to reduce health 
risks created by COVID-19. In this article, we propose a 
novel IM system framework to address the challenges and 
potential for existing IM technologies to fight pandemic 
and similar disruptions. This framework represents a 
production recovery paradigm for the ‘human-work-
safely’. Because of the interconnected nature of an indus-
trial network, relief of a production disruption in targeted 
network nodes holds promise for mitigating the overall 
impact on the entire supply chain and its ability to fulfill 
market demand during the ongoing COVID-19 or future 
pandemics. We further assess the impact of IM technolo-
gies on the industrial network for its ability to support 
production recovery. We propose an optimization model 
that helps determine the best IM implementation strat-
egy that considers an epidemic’s severity, demand pat-
terns, and the industrial network structure.

2 � IM Framework During Pandemic Outbreaks
The proposed IM system combines the cyber world 
(computers, artificial intelligence, and networks) and the 
physical world (mechanical devices, equipment, sensors), 
and limited human workers in a closed-loop system. Fig-
ure  1 provides a schematic of an IM framework under 

pandemic outbreaks with connections to well-estab-
lished IM techniques. The physical world is structured by 
automated assets, i.e., robots in the manufacturing line, 
autonomous vehicles with intelligent logistical control, 
and human operators. All assets are connected by ICT 
technologies with information on their status collected by 
sensors connected to the cloud. The cyber world involves 
a large number of multi-disciplinary methodologies to 
schedule operational decisions and epidemic prevention 
measures using data on equipment condition, part qual-
ity, and inventory levels, with an interface to the human 
decision-maker through a smart device. The information 
fusion and analysis are important for determining sys-
tem performance and operational strategy. The critical 
applications of IM technologies to minimize production 
disruptions and safety risks in an epidemic are adaptive 
planning, big data analysis, and sustainable production.

2.1 � Adaptive Planning
Optimization algorithms and AI can realize functions 
in the cyber world such as supply and demand forecast-
ing, design of manufacturing layout, capacity planning 
and configuration, and intelligent scheduling optimi-
zation. Epidemiological models can be integrated with 
these capabilities to help firms proactively shift their 
human resources, inventory levels, and sourcing strat-
egies in factories, distribution centers, and consumer 
markets worldwide. The IIoT facilitates collaboration 
between manufacturing entities by sharing inventory 

Figure 1  A framework of intelligent manufacturing systems in pandemic outbreaks
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and production plans in real-time, thus balancing capac-
ity and demand [11]. Moreover, given precedence con-
straints in operations, system layouts and autonomous 
manufacturing assets can be adaptively adjusted to create 
safe spacing that separates human operators and mini-
mizes health risks and the spread of disease. With suffi-
cient computational power, production planning can be 
updated in real-time to adapt to the epidemic’s changing 
circumstances, thus an optimal policy can be adopted 
that balances production and health risks with profit 
objectives based on the latest status of the pandemic [12].

2.2 � Big Data Analysis
Big data analysis techniques are designed to explore and 
systematically extract information from large and diverse 
datasets with structured, semi-structured, or unstruc-
tured formats. In manufacturing, system performance 
is described from data that includes time-series signals, 
categorical variables, images, sounds, continuous sensor 
signals, and text, representing elements such as techni-
cal product characteristics to customer engagement and 
satisfaction surveys. External epidemic data together 
with Geographical Information Systems (GIS) can also 
be analyzed to predict the severity of the pandemic [13] 
and thus estimate the availability of components and 
raw materials from suppliers. Moreover, correlation 
analysis can reveal the impact of the pandemic severity 
on changes in market demand and production disrup-
tions. With an estimate of the pandemic’s affect, a man-
ufacturer can identify bottleneck suppliers during the 

recovery, trade-off product production volumes based on 
demand, and make decisions that improve cash flow and 
human resource utilization, and avoid material shortages.

2.3 � Sustainable Production
IIoT techniques and smart devices make remote equip-
ment condition monitoring and maintenance schedul-
ing practical. With AI and deep learning algorithms, 
advanced self-repair algorithms are able to diagnose 
product quality based on part images [14], identify the 
source of defects based on scheduled operations [8], and 
improve part quality through equipment and system 
reconfigurations [15]. An ability to self-repair minimizes 
the need for human effort in repeated inspection and 
testing, thus reducing health risks. Moreover, the travel 
needs of domain experts are considerably reduced, com-
plying with pandemic travel bans and mitigating their 
exposure to risky environments.

3 � Impact Assessment
The implementation of IM technologies benefits both the 
recovery of production in the manufacturing sector and 
facilitates the reconnection of the flow of goods and ser-
vices to the industrial network, thus providing a profound 
influence on relieving disruptions [16]. Considering the 
urgency and limited IM resources available to implement 
IM during the current or future pandemics, determin-
ing an optimal priority for factory upgrades enhances 
the effectiveness for IM technologies to minimize dam-
age to the industrial network and public health. Upgrade 

Figure 2  Hypothetical IIoT-based industrial network under a pandemic
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priority depends on the network structure, a forecast of 
the epidemic’s severity, and consumer demand patterns. 
The following assessment model shows the impact of 
IM technologies to disruptions. In this example, three 
industrial supply chains that deliver automotive, food, 
and health care personal protective equipment (masks) 
are considered. We aggregate the collective impact of IM 
techniques in their capacity to facilitate recovery from 
an outbreak. Figure  2 shows a hypothetical IIoT-based 
industrial network with circles representing factories, 
arrows representing material flows, and the pandemic 
region represented in grey.

The objective is to maximize production capacity of 
the end product by prioritizing which factories should be 
upgraded with an IM system based on changes in market 
demand, public health needs, and the pandemic severity 
in different regions. The industrial supply chain network 
is represented as graph N = (V ,E) , with a set of source 
nodes S = {s1, . . . , sn} being raw material providers, and 
a set of sink nodes T = {t1, . . . , tm} being end products to 
markets. The flow f (u, v) of an edge (u, v) ∈ E is the mate-
rial flow between the factories. The base capacity c(u) 
represents the maximum amount of production capac-
ity that factory u ∈ U  can achieve in normal operation. 
When a factory u is impacted by an epidemic, its capacity 
is calculated as c(u) = (1− αu + iuβu)c(u) , where iu is a 
binary variable which is 1 when IM is applied and 0 oth-
erwise, αu is the capacity loss due to the epidemic, and βu 
is the capacity improvement and/or recovered due to the 
resilience that IM technology provides. To maximize the 
production capacity of all industrial supply chains, a lin-
ear optimization model is formulated as follows:

s.t.,

(1)max
f (u,v),ik

k=m∑

k=1

wk

∑

u:(u,tk )∈E

f (u, tk),

(2)
∑

v:(u,v)∈E

f (u, v) =
∑

v:(v,w)∈E

f (v,w), ∀v ∈
V

{S,T }
,

(3)f (u, v) ≤ c(u), ∀u : (u, v) ∈ E,

where wk represents the demand of end product tk . 
Constraint (2) ensures the balance of the capacity flows 
between the adjacent manufacturers, which can be 
relaxed with consideration of inventory levels, con-
straint (3) ensures the flows cannot exceed the capacity 
of the factory, and constraint (4) is an upper bound on 
available IM resources, i.e., a limit, b , to the total num-
ber of factory upgrades possible. Note that constraint (2) 
represents a significant limitation to the simple exam-
ple studied in this article. This constraint can be relaxed 
by using inventory levels and other methods already 
developed for a variety of manufacturing systems. In 
this example, we will set the network parameters as 
α = 0.2, β = 0.6, b = 5, c(u) = 10, ∀u . The results for 
different scenarios, solved using the Simplex algorithm in 
the CPLEX package, are shown in Table 1.

In Table 1, the columns indicate the priority of upgrade 
for the identified factory index, while the percent in the 
brackets shows the accumulated production recovery. 
For example, factory 12 is ranked fourth for IM technol-
ogy upgrade in the automotive demand scenario, and the 
capacity recovery will be improved by 30% when factory 
3 and its predecessors, i.e., nodes 4 and 11, are upgraded. 
The amount of capacity recovery increases with more 
IM technology implementations. Capacity also satu-
rates such that more upgrades will not lead to a further 
improvement, i.e., once factory 3 is upgraded, no addi-
tional capacity is recovered in the automotive demand 
scenario, denoted by the gray shading. Note that factory 
11 is ranked high in all demand scenarios due to its close 
connection to all of the industrial supply chains. Factory 
4 shows higher priority in the automotive demand sce-
nario, as factory 11 is not as vital an automotive supplier. 
The results show the responsiveness of the model to the 
changes in the demands pattern wi , pandemic severity α , 
and supply chain network N .

4 � Conclusions and Future Work
In this study, we explore the application of intelligent 
manufacturing (IM) as a proactive solution to miti-
gate production disruptions caused by a pandemic. A 

(4)
∑

u∈V

iu ≤ b,

Table 1  Performance improvement with changing demands under a pandemic

Scenario Weight ( wi) Priority 1 Priority 2 Priority 3 Priority 4 Priority 5

All equal [1/3,1/3,1/3] 11 (15%) 3,4 (22.5%) 3,4 (30%) 12 (30%) 16 (30%)

Mask [1/2,1/4,1/4] 11 (7.5%) 16 (15%) 3,4,12 (20%) 3,4,12 (25%) 3,4,12 (30%)

Automotive [1/4,1/2,1/4] 4 (10%) 11 (20%) 3 (30%) 12 (30%) 16 (30%)

Food [1/4,1/4,1/2] 11 (15%) 12 (20%) 3/4 (25%) 3/4 (30%) 16 (30%)
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decision-making model is proposed for determining the 
optimal deployment of IM resources that strengthens an 
existing industrial network. Several promising research 
directions are recommended to address the depth of 
the IM development problem. First, advanced methods 
to connect factories through IIoT are needed to share 
inventory information. Second, a pandemic-driven job 
scheduling model with the objective of minimizing pro-
duction risk due to the supply chain disruption and plant 
closures should be developed. This model, along with the 
IIoT connecting the factories, can provide guidance when 
reacting to a pandemic, e.g., switch to ventilator produc-
tion or suspend certain product lines. To implement an 
industrial network model, big data analysis should be 
used to estimate the values of the pandemic impact factor 
α, which may vary in different industries or regions. The 
IM capability impact factor β, should also be determined, 
distinguishing the most critical IM capabilities when 
fighting a pandemic. Finally, worker health risks can be 
reduced by optimizing the factory layout and operations 
to maximize social distancing by mixing automated man-
ufacturing assets and human operators. Further, imple-
menting IM that minimizes capacity losses on products 
critical to fighting a pandemic will reduce societal health 
risks. This work provides a vision for the potential of IM 
and its implementation during pandemic outbreaks or 
similar future global or regional disruptions.
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