
1 

 

Optimising the Operation of Renewable 

Energy-Driven Reverse Osmosis 

Desalination 

 

 

Mohamed Tarek Mohamed Abdelmonem Saleh Mito 

Doctor of Philosophy 

 

 

Aston University 

September 2021 

 

© Mohamed Tarek Mohamed Abdelmonem Saleh Mito, 2021 

Mohamed Tarek Mohamed Abdelmonem Saleh Mito asserts his moral right to be identified 

as the author of this thesis 

 

 

 

This copy of the thesis has been supplied on condition that anyone who consults it is 

understood to recognise that its copyright belongs to its author and that no quotation from the 

thesis and no information derived from it may be published without appropriate permission or 

acknowledgement. 

  



2 
M.T.M.A.S. Mito, PhD Thesis. Aston University 2021. 

Aston University 

Optimising the Operation of Renewable Energy-Driven Reverse Osmosis 

Desalination 

Mohamed Tarek Mohamed Abdelmonem Saleh Mito 

Doctor of Philosophy 

2021 

Abstract 

The integration of Renewable Energy (RE) and Reverse Osmosis (RO) is essential for sustainable 

water production. However, it requires large-scale RO plants to accommodate fluctuating power inputs. 

Variable operation of RO plants by matching their load to available power, without battery back-up, has 

only been implemented for small-scale systems. This thesis presents a variable operation control procedure 

suitable for operating large-scale RO systems using RE. The procedure consists of two techniques, i.e., 

variable-speed operation and modular operation, for matching the RO load to varying degrees of RE 

fluctuation. The solutions presented were developed using a pilot RO plant that delivers similar 

performance to large-scale systems to allow implementation to such scale. Wind energy was used as a 

representation of an intermittent and fluctuating RE source. For variable-speed operation, multiple 

strategies were explored for varying the operating parameters according to available power. An advanced 

control system based on Model Predictive Control was designed and compared to a conventional 

Proportional-Integral-Differential controller. For modular operation, neural networks were developed to 

provide long- and short-term wind speed prediction for scheduling the RO units operation. The results 

showed that operation at variable recovery with constant brine flowrate delivered the lowest specific 

energy consumption and widest operation range for a system with an isobaric pressure exchanger. For a 

10% step-change in permeate flowrate, the MPC controller improved the settling time by 47%. The long-

term wind speed prediction was used to estimate the number of operational RO units for a day ahead for 

three random days, reaching a correlation of R2 0.78, 0.64, and 0.79 with the actual wind speed. This 

allowed scheduling the RO units to operate with a smooth operation profile that avoids unexpected 

shutdowns. By combining the optimised variable-speed and modular operations techniques, 90.9%, 91.5% 

and 91.4% of the available wind energy was utilised for Days 1, 2 and 3, which led to a high cumulative 

daily permeate production of 78 m3, 91.5 m3 and 123.4 m3, respectively. The solutions developed in this 

thesis showed that RO systems can be powered efficiently by RE using variable operation. This is 

fundamental for implementing this technology on a large-scale and decarbonising water production. 

Keywords: Desalination; reverse osmosis; renewable energy; variable operation, model predictive 

control, wind speed prediction.  
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1 Chapter 1  Introduction 

1.1 Growth of the desalination industry 

Water security, a global challenge that is faced by several countries, has received 

increasing attention from the scientific community. Global water consumption is growing at 

more than twice the rate of population due to improving standards of living and increasing 

demand from the industrial and agricultural sectors [1, 2]. It is expected to increase by 50% 

by the year 2030 [3]. Currently, two-thirds of the world population suffers from water 

shortage for at least one month per year [2]. This situation is expected to escalate to the point 

where half will suffer from water stress by the year 2025 [4]. 

Although 71% of the Earth is covered by water, 97% of this is unpotable seawater [5]. 

Desalination is a water treatment process that involves removing salt from saline water thus 

making it suitable for drinking. Growing water security challenges have led to intensive 

research and investments in desalination, spurring its rapid growth over the last 40 years [6]. 

The global online desalination capacity has been constantly increasing since 1965, especially 

throughout the last decade [6]. It increased significantly from 66.4 million m3/day in 2012 to 

99.7 million m3/day by 2018 [7-9]. The sector continues to grow, with a yearly contracted 

capacity of about 4 million m3/day from 2015 to 2017 [9]. A number of countries, such as 

Qatar and Kuwait, already rely on desalination as their sole water supply [7]. 

There are various types of desalination technologies. Their principle of operation depends on 

membrane filtration, evaporation-condensation or crystallization, as presented in Fig. 1.1. 

Membrane filtration processes rely on semi-permeable membranes that allow water passage 

and block larger molecules, i.e., salts. Membrane filtration processes that are based on 

osmosis rely on hydraulic pressure to separate salt from seawater. Another approach, namely 

Electrodialysis (ED), relies on the electric potential to remove salt ions [10]. Evaporation-

condensation processes, as the name implies, rely on evaporating seawater and then 

condensing its water vapour to separate water from the salt water solution. Evaporation-

condensation processes can operate by heat energy, such as Multi-Stage Flash Distillation 

(MSF) or Multi-Effect Distillation (MED); other processes operate using electrical energy, 

such as Mechanical Vapour Compression (MVC). Crystallization processes can be used for 

salt removal; however, they have not been used for large-scale desalination. The selection of 
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a suitable desalination process varies according to the scale of implementation, feedwater 

salinity, site conditions and type of available energy [11].  

 

Fig. 1.1. Types of desalination processes [12]. 

1.2 Reverse osmosis 

1.2.1 Background 

Reverse osmosis (RO), a membrane-based desalination technology that depends on 

applying hydraulic pressure to force water through a semipermeable membrane, currently 

dominates the industry [10, 13, 14]. In 2016, RO represented 65% of the globally installed 

desalination capacity ( Fig. 1.2) [15, 16]. The predominance of RO stems from several 

advantages. Firstly, RO can provide a wide range of production capacities, from small 

standalone installations delivering less than 1 m3/day to large-scale plants delivering over 

500,000 m3/day [15]. Secondly, RO can handle a wide range of feedwater salinity including, 

brackish water and seawater. Thirdly, RO plants can provide continuous and reliable 

operation without shutdown for extended periods. Fourthly, RO plants operate at low Specific 

Energy Consumption (SEC) ranging from 2 to 4 kWh/m3, not far above the thermodynamic 

limit (energy released by dissolving salts in water at the respective concentration) of about 

1.1 kWh/m3 for 50% recovery from seawater at 35,000 mg/l [17, 18]. Consequently, the CO2 

emission from seawater RO (SWRO) plants is the lowest compared to other desalination 

processes, ranging from 1.7 to 2.8 kgCO2/m
3 [19]. In contrast, the CO2 emission for MSF 
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ranges from 15.6 to 25 kgCO2/m
3 and from 7 to 17.6 kgCO2/m

3 for MED [19]. Lastly, water 

production by RO is becoming increasingly cost-effective [8]. For large RO plants, with 

production capacities over 40,000 m3/day, costs ranged from 0.8–1.2 $/m3 in 2017 and are 

expected to decrease further by 60% to reach 0.3–0.5 $/m3 within the next 20 years [17].  

 

Fig. 1.2. Contribution of desalination processes to global production (adapted with 

permission from [16]). 

1.2.2 Theory of operation 

Osmosis is a naturally occurring process that happens when two aqueous solutions of 

different salt concentrations are separated by a semi-permeable membrane. Water will flow 

from the low concentration side to the high concentration side until both sides reach the same 

concentration. This flow is driven by osmotic pressure. The osmotic pressure is directly 

proportional to the difference in concentration between the two solutions, water temperature 

and depends on the composition of the total dissolved salts [20].  The osmotic pressure is 

calculated from Van’t Hoff’s thermodynamic law as: 

𝜋 = 𝑅 × (𝑇 + 273) × Σ𝑚𝑖                                                                                                               (1.1) 

where 𝜋 is the osmotic pressure in bar, T is the water temperature in oC, R is the universal gas 

constant which is 0.082 L.atm/mol.K and Σ𝑚𝑖 is the sum of molar concentration of all 

constituents of seawater in mol/L [20]. However, the process required in desalination is the 

opposite of the natural osmosis process. In order to transfer water from the high salinity side 
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to the low salinity side, the osmosis process has to be ‘reversed’, by applying pressure that is 

higher than the osmotic pressure. In RO this pressure is supplied by an electrical pump that 

pushes the water through the membrane. The difference between the osmosis and the RO 

processes is presented in Fig. 1.3.  

 

Fig. 1.3. Osmosis and reverse osmosis processes [20]. 

The semi-permeable membranes are packed together in a standard configuration, to provide a 

large surface area for water separation and to allow for commercialization. Two module 

configurations are widely used; either hollow fibre or spiral wound modules, presented in 

Fig. 1.4 and 1.5 respectively. Hollow fibre modules were mostly used until the mid-1990; 

however, spiral wound modules dominate the current marketplace [20]. Spiral wound 

modules are formed of individual flat membranes that are separated by feed and permeate 

spacers, allowing the feed and permeate streams to flow separately, and spirally wrapped 

around a permeate collecting tube. Feedwater enters the RO module and is separated into two 

streams, as presented in Fig. 1.6. The first stream is the clean water that passes through the 

membranes, called the permeate. The second stream is the highly concentrated feedwater, 

which is called concentrate or brine.   
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Fig. 1.4. Hollow fibre modules (reused with permission from [21]). 

 

Fig. 1.5. Spiral wound modules (reused with permission from [21]). 

 

Fig. 1.6. Flow diagram of a RO module [20]. 

1.2.3 Standard RO plant configuration 

A large-scale RO plant consists of different subsystems, as shown in Fig. 1.7. A pre-

treatment system is included to remove suspended material and biological and organic 

contaminants from seawater before admission to the RO modules [22]. This prevents 

excessive membrane fouling and allows higher recovery [23]. Additionally, an after-

treatment system is included for the addition of chemicals, such as lime (calcium hydroxide) 

to neutralise water acidity and increase hardness [20]. Also, the plant includes a pumping 

system that consists of a) a Low-Pressure Pump (LPP) that draws water from the feed source, 
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b) a High-pressure pump (HPP) that supplies pressure required for water permeation, c) an 

Energy Recovery Device (ERD) that recovers pressure energy from the brine, and d) a 

Booster Pump (BP) to account for pressure losses in the pressure vessels and ERD. Prior to 

using ERDs, the entire system feed was pressurised using the HPP and the brine pressure was 

reduced using a throttle valve. This led to using oversized HPPs to handle the entire system 

feed and wasting pressure energy that still resides in the brine stream. The current industry 

preference is to use an ERD to recover energy from the brine flow for pressurising a portion 

of the feed flow. This leads to reduced HPP capacities and reduced SEC. This configuration 

is referred to as split-feed flow configuration. Lastly, a storage tank is included to store the 

product water and provide it to consumers according to demand. 

 

Fig. 1.7. Standard reverse osmosis plant configuration [11, 24]. 

1.2.4 Challenges to reverse osmosis desalination 

As mentioned earlier, RO desalination plays an important role globally in providing 

clean water. Nevertheless, there are two major concerns about the impact of RO desalination 

on the environment. First, despite ongoing improvements, RO desalination remains energy 

intensive considering its contribution to the worldwide desalination capacity and dependency 

on fossil fuels [22, 25]. Second, the discharge of highly saline brine and chemicals from large 

plants represents a threat to the marine environment [26]. Finding alternative energy sources 

to drive commercial RO desalination plants is key to improving their sustainability, 

decarbonising water production, and making them accessible to countries with limited natural 

and financial resources [18, 27, 28].  

1.3 Renewable energy desalination (RED) 

Renewable energy (RE) is an attractive solution to reduce RO plants’ carbon footprint, 

decrease their running costs and eliminate the link between water prices and fuel costs [22]. 

In general, RE is a sustainable alternative to using fossil fuels due to its abundant availability. 

From 2014 to 2015, the global installed capacity of wind power plants and solar photovoltaic 
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(PV) increased from 370 to 433 GW and from 177 to 227 GW, respectively [29]. Meanwhile, 

the price of RE is constantly decreasing; for example, the price of solar photovoltaic modules 

decreased from 33.44 $/watt in 1979 to just 0.35 $/watt in 2017 [30, 31]. As for wind 

turbines, their price in the United States decreased by one third from 2008 to 2011 [32]. 

Possible combinations between various Renewable Energy Sources (RES) and desalination 

processes are presented in Fig. 1.8. 

Desalination by RO is widely considered for RED applications due to its low SEC compared 

to other processes [13, 33-35]. The SEC is made up of two components. Firstly, the energy 

required for the RO process itself, which depends on factors including water quality, 

membrane efficiency, pump efficiencies, recovery rate and the ERD used. It can range from 

1.7 to 2.5 kWh/m3. Secondly, the energy required for secondary processes, such as feedwater 

pumping, pre-treatment and the plant electrical services, typically ranges from 0.3 to 1.5 

kWh/m3 [28]. The SEC can vary based on plant location, size and design efficiency. While 2-

4 kWh/m3 is typical for larger plants, for smaller standalone systems values tend to be higher, 

from 3 to 7 kWh/m3, due to unusual operating conditions, inefficiencies of scale, or sub-

optimal design and operation [12].  

Electrical energy to drive the RO plant, which accounts for 44% of the water cost [36], can be 

generated directly from RE by solar-, wind- or wave-energy converters, as shown in Fig. 1.8. 

Other important RE sources include hydro- and bio-energy, but these are mostly unsuitable as 

they rely on natural water resources that are inherently scarce in regions where desalination is 

needed [37]. Wind and wave energy can be used directly to produce mechanical movement to 

drive the HPP. However, directly-driven wind-RO systems are not recommended for SWRO 

due to the high osmotic pressure [38-40]. In addition, a separate electrical energy source is 

needed to drive the control system and data logging [41]. Another approach would be to 

couple a thermal energy source, such as solar-thermal or geothermal energy, to a Rankine 

cycle to produce mechanical energy and drive an electric generator [42]; however, this is 

more expensive than solar-PV or wind turbines, except in specific locations where high-grade 

geothermal resources are available [16, 37].  

The use of wind and solar-PV to drive RO plants has been recommended by several studies, 

due to their affordability, availability, technological maturity, and zero water consumption 

compared to other RESs [13, 43-46].  PV-RO and wind-RO are the most widely deployed 
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technologies for RED accounting for 32% and 19% of applications respectively (Fig. 1.9) 

[11, 47]. 

 

Fig. 1.8. Overview of renewable energy desalination [11, 14]. 

 

Fig. 1.9. Current landscape of renewable energy desalination worldwide (data adapted from 

[47-49]). 

1.4 Limitations of steady-state operation 

Whereas the power output of solar-PVs and wind turbines is intermittent and fluctuating, 

commercial RO plants are designed to work at constant flow, pressure and power level. 
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Steady-state operation is considered economical for grid-powered RO plants, as it maximizes 

production capacity and makes good use of invested capital. In addition, it is easier to 

maintain the product water quality and manage the membrane fouling. As such, earlier 

studies of renewable energy-driven RO plants often included a backup, such as a direct 

connection to an electric grid, an energy storage system, or a Diesel generator to operate the 

RO plant with constant power [50, 51]. 

1.4.1 Grid-connected RO systems 

Current large-scale RE-powered RO plants are grid-connected to ensure constant water 

production, such as the Al Khafji solar-PV powered RO plant in Saudi Arabia that has a 

capacity of 60,000 m3/day [52]. Such plants are considered more economical than 

conventional fossil-fuel-powered RO plants, especially when the RES availability and the 

feed-in tariff are high [48]. However, grid-connected RO plants place a high load on national 

grids and affect grid stability. For example, in the Gulf Cooperation Council countries, 

desalination is estimated to consume 4–12% of the total electricity consumption, [53, 54]. It 

would require a high penetration of RE into the electricity grid to support these desalination 

plants. Such penetration would decrease the electric grid’s reliability and power quality by 

introducing voltage rise, flicker and harmonics [55, 56]. The transition to fully renewable RO 

plants is desirable to allow a high fraction of RE while maintaining stable grids. 

1.4.2 Energy storage 

As for energy storage systems, these have been somewhat impractical for large-scale 

applications, as they require a large area, increase capital cost and can complicate the system 

due to requiring additional equipment, such as charge controllers [57]. Specifically, batteries 

tend to be expensive, have a short lifetime and require regular replacements - all features that 

cripple their economic feasibility and increase water production cost [13, 34, 57]. In [50] and 

[58], water production cost was compared for a SWRO system with and without battery 

storage. In one study, the use of batteries increased the cost from 7.8 to 8.3 €/m3 [50], and in 

another from 10 to 13 $/m3 [58]. Accordingly, energy storage is limited to small standalone 

installations and is not economical for large-scale applications [40, 59, 60]. 

1.5 Variable operation 

To address these difficulties, recent advances have included variable operation to directly 

couple the RO plant to the RES, without backup systems [33, 35, 61-65]. Firstly, directly-
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coupled RO plants operate with a variable production rate and recovery ratio that follow the 

available power [35]. The operating pressure and flowrate are controlled to change the 

production rate and recovery ratio, respectively. This technique is referred to in this thesis as 

‘variable-speed operation’, as it uses a Variable Frequency Drive (VFD) to change the HPP 

speed according to the available power. Normally, positive displacement pumps are suitable 

for variable-speed operation, as they offer consistent efficiency at varying flowrates. 

Secondly, RO trains (sets of identical modules that constitute the RO plant) can be 

connected/disconnected based on the available energy [66]. This technique is referred to in 

this thesis as ‘modular operation’. Variable operation, using the variable speed and/or 

modular approach, is interesting for renewable energy-driven RO plants as it omits the need 

for energy storage, backup systems and associated costs. It is especially attractive for islands, 

remote areas and countries with low energy availability from fossil fuels and lacking a 

regional grid interconnection to neighbouring countries [11]. 

1.6 Thesis aims and objectives 

This thesis aims to optimise the operation of RE-driven RO to pave the way for large-

scale implementation. Variable operation was used to directly connect a RO system to a RES 

and accommodate the variation and intermittency of available power. The study considered 

optimising both aspects of variable operation, i.e., variable speed operation and modular 

operation, to present an efficient load management technique transferable to large-scale 

systems. A RO pilot plant was used that delivers similar performance to large-scale systems, 

although at a lower production capacity (3.2 m3/h), to develop solutions suitable for such 

scale. The RE source considered was wind energy, as it is a good representation of a rapidly 

fluctuating and intermittent energy source that does not have a specific pattern. Other types of 

RESs, such as solar, generally vary more slowly and predictably; therefore, a solution 

developed for wind is expected to accommodate a range of RE types including wind, wave 

and solar energies. The research objectives are as follows: 

1) Review published literature to identify state of the art regarding RE-driven RO 

desalination, in addition to identifying technical challenges and potential solutions for 

large-scale implementation.  

2) Design, build and test a RO pilot plant at an industrial scale having comparable 

performance to large-scale systems to develop solutions transferable to such scale. 
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3) Develop and validate a dynamic model that predicts the dynamic behaviour of the 

developed RO system.  

4) Present an optimised variable-speed operation technique to vary the RO operation 

parameters according to available power.  

5) Design and implement an advanced control system based on Model Predictive Control 

(MPC) and compare its performance to a conventional Proportional-Integral-Differential 

(PID) controller. 

6) Develop a wind speed prediction algorithm using neural networks for forecasting long- 

and short-term changes in wind speed.  

7) Develop a modular operation technique to connect/disconnect RO units, while following a 

standardised start-up/shutdown sequence, according to changes in available power. The 

technique utilises wind speed prediction in scheduling the RO units’ start-up/ shutdown 

sequence and parameters variation.  

1.7 Thesis outline and structure 

This thesis consists of 8 chapters. A brief outline of each chapter is provided as follows: 

Chapter 1: This chapter includes the introduction and background information for this thesis. 

It introduces the water scarcity problem, growth of the desalination industry and the operation 

principle of RO systems. Also, the current landscape and modes of operation for RE-driven 

RO are discussed. 

Chapter 2: State of the art and technical challenges for large-scale implementation of RO 

desalination driven by wind and solar photovoltaic energy are presented. Research gaps and 

potential research directions are identified. 

Chapter 3: The experimental setup and procedure used throughout this study are introduced. 

A description of the RO system developed to imitate the operation of large-scale systems is 

provided. The data acquisition systems and instrumentation used in the experimental 

investigation are described. 

Chapter 4: The development and validation of a dynamic model to predict the RO system 

behaviour is described. The model is used in the development and testing of the control 

system and the variable-speed operation technique in chapter 5, in addition to the 

development and testing of the modular operation technique in Chapter 7.  
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Chapter 5: A variable-speed operation technique using an optimised operation strategy and an 

advanced control system based on MPC is introduced. An investigation is performed to select 

the optimum operation strategy for the system configuration. The advanced MPC is 

compared to a conventional PID controller to quantify its effect on performance. 

Chapter 6: The development of neural networks for predicting wind speed is described. Two 

prediction ranges are defined: a) long-term prediction to forecast a full day ahead of hourly 

average timeseries, and b) short-term prediction to forecast the average wind speed for the 

next two minutes. 

Chapter 7: A modular operation technique based on wind speed prediction is introduced. A 

standardised start-up/ shutdown procedure for the RO system is developed. Scheduling of the 

RO units operation using long-term wind speed prediction is described. Modular operation 

guided by short-term wind speed prediction and assisted by variable speed operation is 

modelled for a case study incorporating three identical RO units. 

Chapter 8: The findings and conclusions from this thesis are summarised by responding to the 

research objectives and highlighting the original contribution. Recommendations for further 

development are outlined. 
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2 Chapter 2  Literature review 

2.1 Problem definition and review methodology 

Chapter 1 emphasised the need for coupling RE to RO for large-scale systems as a vital 

step towards sustainable desalination and overcoming water security challenges. This Chapter 

aims to capture the current state-of-the-art and technical challenges in using wind, solar and 

hybrid wind-solar energies as main drivers of large-scale RO plants. Initially, studies of RO 

plants driven by wind and/or solar PV will be presented and analysed, to assess the current 

status of the technology. The technical challenges of variable operation and potential 

solutions will then be discussed, focussing on key elements of the RO plant – namely the 

membranes and energy recovery devices. Strategies for operation and control will be 

analysed and discussed. The chapter is concluded with recommendations for the development 

of RE-RO to satisfy the world’s growing water demand [11]. 

2.2 State of the art in renewable energy-driven RO 

Over the last two decades, several research papers have discussed the variable operation 

of renewable energy-driven RO plants. Theoretical studies covered mostly small or medium 

plants (<40,000 m3/d) and experimental studies covered plants rarely exceeding 1000 m3/d. 

This section reviews studies of specific plants (some constructed and some only taken to the 

theoretical stage) that aimed to efficiently integrate RO with wind, solar or hybrid wind-solar 

energy. The studies are reviewed with regard to the plant configurations and the operational 

strategies adopted. Lessons learnt for improving the plant adaptability to fluctuating energy 

will be useful for application in this study [11]. 

2.2.1 Wind-energy RO desalination 

Wind turbines are playing a major role in achieving sustainability goals in many 

countries [67]. Their low operating cost, high efficiency and energy availability, especially 

for coastal areas, make wind turbines a successful and clean choice to power RO plants [5, 

68, 69], reducing both carbon footprint and water production costs [61, 70]. However, further 

deployment of wind turbines requires certain challenges to be addressed [71]. For example, 

wind turbines have to gain social acceptance and improved public perception due to their 

aerodynamic noise and visual impact. Wind measurement and forecasting should be 

enhanced for accurate prediction of power generation, which would improve the control of 

wind farms and their integration with local grids. Availability of lightweight materials will 
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allow larger turbines with improved efficiencies to be developed [72]. The fluctuating energy 

input of wind-powered RO plants could affect the daily production capacity and have 

negative effects on the plant's performance [68, 70]. Numerous studies considered the design 

of wind-RO plants and presented different approaches to accommodate the variable nature of 

wind power, as summarised in Table 2.1 [11].   

2.1.1.1 Stabilisation of wind power output 

Short-term energy storage devices were suggested for wind-RO plants to smooth wind 

power fluctuations and improve system stability [13]. They are usually selected based on 

their storage capacity, mode of coupling and charging/discharging rate. Common options 

include flywheels, compressed air storage, hydraulic accumulators and supercapacitors [59, 

68, 73]. Batteries were not included in this list, as they are not suitable for stabilising wind 

power output due to limitations on their charging/discharging rate [59]. Flywheels and 

supercapacitors are promising as short-term energy storage devices as they offer high energy 

density and higher roundtrip efficiency of 89% and 86%, respectively, compared to 63% 

efficiency of lead-acid batteries [59]. Fast rotating flywheels have advantages of 

instantaneous response, ability to stabilise system frequency and low energy cost compared to 

supercapacitors [13, 35, 40, 59, 64]. For instance, Rahal [74] used a flywheel connected to a 

synchronous generator integrated into the wind-RO system to overcome wind power input 

fluctuation for an 84 m3/day RO plant. The flywheel inertia smoothed the wind turbulence 

and improved the stability of system frequency, which was beneficial for the RO plant as it 

decreased pump pressure fluctuations. 

Another approach for smoothing the plant operation is by connecting it to a microgrid that 

includes backup systems such as Diesel generators and electricity storage. Bognar et al. [75] 

compared two different operation scenarios for a RO plant powered by a microgrid. The 

constant and variable operation of the microgrid and RO plant were compared. For constant 

operation, a Diesel generator and electricity storage were used to maintain a steady operation. 

However, for variable operation, water storage was used to meet the required production 

demand. Variable operation and water storage lowered electricity usage and water production 

costs by avoiding the fuel use of a Diesel generator [11].  
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2.1.1.2 Variable operation of wind-RO plants 

Several studies have used variable operation to directly couple the RO plant to a wind 

turbine. Both modular and variable-speed operation have been used. Modular operation for 

wind-RO plants uses a high-power wind turbine to operate multiple RO units, such that, 

matching between available power and load is achieved by switching on and off RO units and 

trains [64]. Several research teams used this approach. Peñate et al. [40] presented a variable 

capacity plant, displayed in Fig. 2.1, that consists of three switchable RO trains. The variable 

capacity plant was compared to a fixed capacity system that operated when enough energy 

was available to achieve full production capacity. The variable capacity plant produced 2 – 

8% less than the fixed capacity plant, which operated at a higher recovery ratio. However, the 

variable capacity plant operated for more hours of the year, as it adapted better to the 

available energy using variable-speed operation, thus showing the potential of variable 

operation to achieve higher permeate production subject to improvement in energy utilisation. 

Moreover, Carta et al. [64] presented an operational analysis of an autonomously operating 

RO plant in the Canary Islands. The plant, shown in Fig. 2.2, was directly coupled to a wind 

farm without any backup system. It consisted of 2 wind turbines and a flywheel to operate 8 

identical RO units. A control strategy for the modular operation was developed to match the 

load to the available power. However, no other method, i.e., variable speed operation, was 

used to adjust the RO plant capacity to the transient power supply. Also, an ERD was not 

included, which reflected a high SEC of 6.9 m3/day. In another study, Carta et al. [33] 

designed a small-scale wind–RO plant, with a rated production capacity of 18 m3/day, using a 

combination of variable-speed and modular operation. A comprehensive control system was 

developed, presented in Fig. 2.3, to control the number of operating pressure vessels, the 

operating pressure and feed flowrate according to a predetermined operation strategy. Due to 

the inertia and sensitivity of the desalination plant towards changes in the control parameters, 

a perfect fit between power generated by the wind turbine and power consumed by the 

desalination plant was not achieved, even with constant wind speed over 2-minute intervals. 

This was caused by the slow response of the system in reaching reference control variables 

for feed flowrate and pressure. The aforementioned mismatch would have been more 

prominent if the RO plant included an ERD, if the constant wind speed intervals were 

reduced, or the wind turbine was represented by a dynamic model. A later study [63] 

presented the use of artificial Neural Networks (NNs) for controlling and managing the wind-

RO system mentioned in [33]. The NN control system generated infrequent feed flow and 
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pressure setpoints that tended to drive the permeate recovery ratio over the acceptable limit. 

This was caused by shortcomings in the algorithms controlling the frequency converter and 

the proportional-solenoid throttle valve, which controlled the feed flowrate and pressure 

respectively. Moreover, Lai et al. recommended developing an advanced control system and 

strategy for directly coupled wind-RO [68]. Control systems selection, tuning and 

performance have a significant effect on plant performance (see Section 2.3.4). 

For directly coupled wind-RO plants, the wind turbine is connected to the plant through an 

isolated electric grid. The grid frequency depends on the wind turbine power and plant load. 

A decrease in grid frequency will indicate lower power delivered by the wind turbine and the 

RO plant load must be decreased accordingly. On the other hand, an increase in grid 

frequency indicates an increase in wind turbine power, requiring activation of the blade pitch 

control system [35]. The creation of an isolated electric grid and load connection for a wind-

powered RO plant was described in detail by Subiela et al. [35] and Carta et al. [64]. The 

main difficulties occurred during plant start-up, as the loads could not be connected until the 

frequency reached a specified range between 48 – 50 Hz.  

 

Fig. 2.1. Diagram of the variable capacity plant presented by Peñate et al. (reused with 

permission from [40]). 

The plant consisted of three RO racks, one rack had a capacity of 200 m3/d and two racks had 

a capacity of 400 m3/d. The RO racks operated independently and were connected or 

disconnected depending on the energy available. Rack 1 and 2 shared an isobaric energy 

recovery device that can operate with variable capacity. 
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Fig. 2.2. Connection diagram for the plant presented by Carta et al. (reused with permission 

from [64]). 

 

Fig. 2.3. Control system layout for the plant presented by Carta et al. (reused with permission 

from [33]). 
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Table 2.1. Summary of previous literature discussing wind-RO desalination. 

Author(s) Year Location Study 
Energy 

storage 

Wind turbine 

power 

(kW) 

Production 

capacity 

(m3/day) 

S.E.C 

(kWh/m3) 

Feed 

salinity 

(mg/L) 

Production 

cost 

Energy 

recovery 
Plant description 

Miranda and 

Infield [76] 
2002 Red Sea Exp. None 2.2 8.5 3.4 40,000 

0.8 – 3 

(£/m3) [77] 
Clark pump - 

Carta et al. [64] 2003 
Canary 

Islands 
Exp. 

Battery and 
UPS for 

control 

system 

2 x 230 25 x 8 6.9 Seawater - None 

Eight identical plants connected in 

parallel. 

Each plant has three pressure 
vessels with three RO membranes 

each. 

Moreno and 

Pinilla [78] 
2004 Colombia Exp. None 1.5 0.4 - 35,000 - None One RO membrane. 

Pohl et al. [79] 2009 

Not based 

on wind 

data 

Theo. None 
Power from 

main: 12.5 
30.5 3.2 – 4.22 35,646 - 

Presented by 

an 85% 

efficiency 

Four RO membranes in series. 

Peñate et al. [40] 2011 
Canary 

Islands 
Exp. 

Flywheel - 

batteries 
225 1000 2.7 38,170 - RO Kinetic® 

Three RO trains. 

Each train has 2, 6 and 10 pressure 

vessels, respectively. 
Each pressure vessel includes 

seven RO membranes in series. 

Bognar et al. [75] 2012 Cape Verde Theo. None 275 200 - 600 4.3 Seawater 1.09 (€/m3) 
Hydraulic 
turbocharger 

Two RO trains. 

Carta et al.  [33] 2015 
Canary 
Islands 

Theo. None 15 5.2 – 19.4 

10 – 14.5 35,200 

- None 
Two pressure vessels connected in 
parallel. Three modules per PV. 

11.3 – 16.9 39,800 

Gökçek and 

Gökçek [5] 
2015 Turkey Theo. None 30 24 4.38 43,528 

2.96 – 6.46 
($/m3) 

None Six RO membranes in series. 
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Bilstad et al. [70] 2015 Norway Exp. None 5 7.5 4.24 35,000 - None Eight RO membranes in series. 

Latorre et al. [62] 2015 
Canary 
Islands 

Exp. None 

Power from 

main 

5.5 - 21.5 

45.6 - 120 4 – 5.5 32,237 ppm - None 
One pressure vessel with six RO 
membranes connected in series. 

Cabrera et al. [63] 2017 
Canary 
Islands 

Theo. None 11 19.4 9.73 – 14.63 
29,700 – 
35,600 ppm 

- None 
Two pressure vessels connected in 
parallel. Three modules per PV. 

Carta and Cabrera 
[80] 

2021 
Canary 
Islands 

Theo. 
Flywheel and 
UPS 

2 x 2300 5000 - Seawater 3.52 (€/m3) 
Pressure 
exchanger 

Single-stage RO system with a 
pressure exchanger. 

 Acronyms: UPS: Uninterrupted power supply. 
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2.2.2 Solar-PV RO desalination 

Solar-PV powered RO plants are considered very promising for providing fresh water in 

isolated, arid and remote regions [51]. The success of solar-PV as a driver for RO plants is 

attributed to four factors [81]. Firstly, the modularity of PV systems offers implementation 

with RO on different scales and their capacity can be increased after initial installation. 

Secondly, PVs require low maintenance and offer a long lifetime of 20 years [51]. Thirdly, 

areas that demand high water consumption usually have high solar radiation intensity which 

makes PVs well matched to the application. Fourthly, the somewhat predictable bell-shaped 

diurnal solar irradiance curve, compared to the random variation of wind power, makes it 

easier to schedule the plant operation during daytime and use water storage instead of energy 

storage to meet night-time demand. Table 2.2 presents a summary of previous studies 

discussing solar-PV powered RO plants [11]. With the decrease in PV costs, PV-RO systems 

have become more feasible,  depending on solar resource availability, RO system demand, 

water characteristics and local government policies [82]. Hence, water production cost from 

PV-RO systems is highly site-dependent. Numerous studies [50, 51, 82-85] discussed the 

feasibility of PV-RO systems and suggested different configurations that may offer high 

feasibility. Mohamed et al. [50] compared the performance of a RO plant using batteries for 

energy storage against another plant that is directly coupled to a PV array. The directly 

coupled plant offered less complexity since there is no need for batteries or a charge 

controller. Another approach to ensure a full-day operation is to assist the PV system with a 

conventional energy source such as a Diesel engine. This scheme was tested by Helal et al. 

[51] within a comprehensive techno-economic analysis for different configurations of 

autonomous PV-RO plants. The RO plant was alternatively driven fully by a Diesel engine, 

directly coupled to a PV array, or operated by both the PV array and Diesel engine. The 

directly coupled PV-RO plant produced water at the most competitive price. In general, PV-

RO systems were found to be economically more feasible than Diesel-powered systems 

provided there is sufficient solar resource [82, 84, 85]. The economic feasibility of a RO plant 

operated by an organic-solar Rankine cycle was compared to that of a directly coupled PV-

RO system by Manolakos et al. [83]. Water production cost for the PV-RO system was 

significantly lower than that of the organic-solar Rankine-RO system at 7.77 €/m3 compared 

to 12.53 €/m3.  
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2.1.1.3 Enhancing the PV array performance 

PV array performance holds an important role in the PV-RO integration, as maximising 

the PV power output would lead to higher freshwater production. In previous studies, several 

approaches for improving the PV system performance were considered. For example, the 

collection of solar irradiance during daytime can be maximised by using solar trackers  [86]. 

Richards and Schäfer suggested using single- or dual-axis trackers, which could increase 

water production by nearly 30% [87]. Similarly, Thomson and Infield [88] used a Matlab-

Simulink® model to assess whether a single or dual-axis tracker should be used for their PV-

RO system. The single- and dual-axis trackers increased annual water production, by 33% 

and 36% respectively, when used together with a Maximum Power Point Tracking (MPPT) 

algorithm [23, 88-91]. MPPT adjusts the RO plant load so that the voltage across the PV cell 

is equivalent to the voltage required to achieve the maximum power at the corresponding 

solar irradiance and cell temperature [91]. A drawback for PV-RO, which is especially 

marked in arid regions, is the noticeable degradation of power output due to dust and sand 

accumulation [92]. Scattering by dust in the atmosphere and dust accumulation over the 

panels can lead to an increase in panel temperature, attenuation of incoming solar radiation 

and may lead to physical damage [93]. Several PV cleaning techniques were suggested in the 

literature that includes mechanical methods, PV coating or electrostatic methods  [94, 95].  

Ambient temperature has a significant effect on the PV panel performance, as their 

conversion efficiency decreases with increasing PV temperature [90, 93]. In certain studies 

[90, 96], the RO system feedwater was circulated in heat exchangers to cool the PV array and 

increase the feedwater temperature before entering the RO system. This modification was 

based on the fact that solar panels’ open circuit voltage and output power increase at lower 

temperatures, whereas RO membranes allow more permeate at higher feed temperatures [90]. 

A similar procedure was used by Kelley and Dubowsky [90] to improve PV-RO system 

productivity. However, concentration mirrors were installed to increase the solar irradiance 

collected by the solar panel, which alongside the solar panel cooling and feedwater heating, 

improved water production by 57% (see Fig. 2.4). The concentrating mirrors could not have 

been used without such cooling, as the panels would have overheated and their efficiency 

degraded [90].  
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Fig. 2.4. PV-RO system with panel cooling and concentrator mirrors (reused with permission 

from [90]). 

2.1.1.4 Variable operation of PV-RO plants 

For PV-RO systems to transition to large-scale applications, a reliable operation strategy 

and control system is needed to allow efficient energy use despite variation in solar power. 

As with wind powered-RO, both modular and variable-speed operation have been used. 

Thomson and Infield [88] presented a variable operation PV-RO system, shown in Fig. 2.5, 

that can adapt to a PV array power output without using batteries. Variable-speed operation 

was enabled by a controller that delivers two functions. Initially, it applied MPPT, which 

controls the current drawn from the PV array to maximize the PV array power output at 

varying solar irradiance and array temperature. Then, it executed a control algorithm for two 

variable-speed feed pumps to operate the plant at optimum recovery ratio and minimum SEC. 

In another study, Ntavou et al. [97] analysed the performance of a RO plant that consists of 

three identical sub-units, as presented in Fig. 2.6. The RO sub-units were operated using a 

combination of variable-speed and modular operation. They were operated by a variable 

power input using a frequency inverter to control the HPPs. In addition, the number of 

operating units was varied depending on the available PV array power. This strategy would 

produce, in some cases, 4 m3/day more than a conventional system. However, a wider 

operation range could have been achieved by using an isobaric ERD. The ERD used was an 

axial piston motor coupled to an axial piston HPP that did not allow independent variation in 

feed pressure and flowrate, due to the linear relationship between flowrate and pump speed 
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for positive displacement machines. In addition, both the pump and motor had fixed 

volumetric displacement. These factors resulted in a linear relation between feed pressure and 

flowrate under varying pump speed. Therefore, the recovery ratio was fixed, which is not 

ideal in a variable-speed system. 

 

Fig. 2.5. Layout of the plant presented by Thomson and Infield (reused with permission from 

[88]). 

 

Fig. 2.6. Configuration of the RO plant used by Ntavou et al. (reused with permission from 

[97]). 

The system included a feedwater tank and three sub-units.
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Table 2.2. Summary of previous literature discussing PV-RO desalination. 

Author(s) Year Location Study 
Energy 

storage 

PV power 

(kW) 

Production 

capacity 

(m3/day) 

S.E.C 

(kWh/m3) 

Feed 

salinity 

(mg/L) 

Production 

cost 

Energy 

recovery 
Plant description 

Thomson and 

Infield [88] 
2002 

Massawa, 

Eritrea 
Theo. No 2.4 3 3.5 40,000 2 £/m3 Clark pump Four RO membranes in series 

Mohamed et al. 

[50] 
2007 Athens Exp. No 0.85 0.35 4.6 32,738 7.8 €/m3 Clark pump Two RO membranes in series. 

Helal et al. [51] 2008 
United Arab 

Emirates 
Theo. No 17.9 20 7.33 45,000 7.34 $/m3 yes 

Two-stage system with 

booster pump between stages. 

Two RO membranes in series 
per stage. 

Manolakos et al. 

[83] 
2008 

Thirasia 
island, 

Greece 

Exp. No 0.846 2.4 3.8 - 6 22,000 7.77 €/m3 Clark pump Two RO membranes in series. 

Bilton et al. [82] 2011 USA Exp. 

Batteries to 
power the 

control 
electronics 

0.23 0.3 4 – 2.5 35,000 
4.7 – 6.62 

$/m3 
Clark pump One RO membrane. 

Soric et al. [98] 2012 

Marseille, 

South of 
France 

Exp. No 0.5 0.75 – 1.02 - 25,000 - Clark pump Two RO membranes in series. 

Clarke et al. [99] 2012 Australia Theo. 

Compare 

with/without 
batteries 

0.7 

With Battery: 
0.054 

Without 

battery: 0.047 

- Seawater - No 
One RO membrane 

(Commercial unit). 

Kelley and 

Dubowsky [90] 
2013 USA Exp. No 0.23 0.3 – 0.45 - Seawater - 

Dual-piston 

pressure 
exchanger 

One RO membrane. 
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Kumarasamy et al. 
[91] 

2015 India Theo. No 0.667 0.7 - 35,000 - No One RO membrane. 

Ntavou et al. [97] 2016 

Greece 

Spain 

UAE 

Exp. No 10 - 20 

Single unit 

12 – 16.8 

3 identical units 

5.2 – 5.8 37,500 - 
Axial piston 
motor 

Three identical units 

connected in parallel. 
Four RO membranes in series 

each. 

Salama and 
Abdalla [100] 

2019 Gaza strip Theo. No 10,000 57,600 3 – 3.5 38,400 0.56 $/m3 
Pressure 
exchanger 

Single-stage plant with 670 

pressure vessels. Each vessel 

includes 8 RO elements. 

Ghafoor et al. 
[101] 

2020 Pakistan Exp. No 2 12 - 1720 - 1760 
720 PKR/ 
m3 

No 
Two RO pressure vessels in 
parallel. 

Saleem et al. [102] 2021 

Lahore 

Theo. Battery 

2.5 

8 0.5 - 1 

1495 

- No 

Two stages each with three 
pressure vessels. Each vessel 

includes two RO elements. 

Hasil Pur 4.1 2190 

Two stages each with three 

pressure vessels. Each vessel 
includes two RO elements. 

Faisalabad 11 7638 

Two stages with a single 

pressure vessel that includes 

three RO elements. 
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2.2.3 Hybrid wind-PV RO desalination 

Hybrid renewable energy systems can improve the feasibility and stability of RE-RO by 

exploiting the strength of one RES to overcome the weaknesses of others. For instance, wind 

turbines can be used with solar-PV to extend energy availability to include night-time and 

overcast days, providing more consistent output [45]. This will help improve system 

reliability and economic feasibility, as it will provide better use of capital invested in the RO 

plant [16]. Table 2.3 summarises previous studies of hybrid RE-powered RO plants, giving 

an overview of the current status and trends [11].  

The selection and sizing of the hybrid RES components are not straightforward and have a 

significant effect on economic feasibility. Oversizing its components to overcome the 

intermittent power supply can lead to a wasteful increase in capital cost [51]. Hybrid RES and 

RO plant sizing should be based on cost optimisation as the investment cost of RESs are still 

high compared to conventional grid power systems [50, 103]. Several studies presented sizing 

models for hybrid RESs that power RO plants [104-108]. Hossam-Eldin [106] developed an 

optimisation procedure to optimally select and size the hybrid RES for operating a RO plant. 

The optimisation considered the capital cost and the excess energy generated by the hybrid 

RES. Similarly, Weiner et al. [107] developed a simulation code that helps in component 

selection and sizing of the hybrid wind-PV system and RO plant. Also, a control algorithm 

was developed to determine if wind and solar energy are sufficient to supply the plant load or 

additional energy is needed from the batteries and Diesel generator.  Mokheimer et al. [108] 

studied the optimum component sizing for a hybrid RES-RO plant while considering the RO 

system performance, capital and operation costs. The optimised system achieved water 

production costs less than the range mentioned in literature. 

The majority of studies discussing hybrid RE-RO systems focused on the theoretical aspects 

of sizing and performance without discussing practical operation  [106, 108-110]. For, this 

reason the RO plant was often very simplified. In some cases, the plant was only represented 

by its average SEC and production capacity [104, 105, 111]. Additionally, as presented in 

Table 2.3, the majority of systems included energy storage to ensure the RO plant is 

operating at constant conditions. For example, Smaoui and Krichen [112] presented a control 

and energy management algorithm for a RO plant powered by a hybrid RES that includes 

wind turbines, PVs, a fuel cell and an electrolyser for providing hydrogen energy storage. 

The control algorithm optimised plant operation by considering the energy circulation among 
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all components. Similarly, Spyrou and Anagnostopoulos [109] operated a RO plant in Greece 

by a hybrid RES that included a pumped storage system. The plant, presented in Fig. 2.7, was 

found to be economically feasible despite having high-energy rejection. 

 

Fig. 2.7. Configuration of RO plant presented by Spyrou and Anagnostopoulos (reused with 

permission from [109]). 
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Table 2.3. Summary of previous literature discussing hybrid Wind-PV RO desalination. 

Author(s) Year Location Study 
Backup 

system 

Hybrid 

system  

Production 

capacity 

(m3/day) 

S.E.C 

(kWh/m3) 

Feed 

salinity 

(mg/L) 

Production 

cost 

Energy 

recovery 
Plant description 

Weiner et al. 

[107] 
2001 Israel Exp. Battery + DE 

WT 

PV 
3 - 3500 - 5000 - None 

 Two RO membranes in 

series. 

Kershman et al. 

[110] 
2002 Libya Theo. 

Grid-

connected 

WT 
PV 

Grid 

300 5.6 Seawater 2.3 €/m3 None Two RO trains. 

Spyrou and 

Anagnostopoulo
s [109] 

2010 Greece Theo. 
Pumped 

storage 

WT 
PV 

Hydro. 

3840 
Based on hourly 

average 

3 Seawater 2.53 €/m3 - - 

Hossam-Eldin et 
al. [106] 

2012 Egypt Theo. Battery 

WT 

DG 
150 7.3 33,000 1.6 $/m3 None 

Four pressure vessels with 

Three RO membranes each. 

WT 

PV 

DG 

300 4.6 34,000 1.25 $/m3 Yes 
Five pressure vessels with 
four RO membranes each. 

Mokheimer et al. 

[108] 
2013 

Saudi 

Arabia 
Theo. Battery 

WT 

PV 
5 8 - 20 - 

3.693 – 

3.812 $/m3 
- - 

Maleki et al. 

[105] 
2016 Iran Theo. Battery 

WT 

PV 
10 4 Seawater - Yes - 

Li et al. [113] 2017 UK Theo. Battery 
WT 

PV 
240 - 2880 3 Seawater - - - 

Gökçek [114] 2018 Turkey Theo. Battery 

WT 

PV 
DG 

24 4.38 37,864.4 2.2 None 
Single pressure vessel with 

six RO elements in series. 
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Maleki [115] 2018 Iran Theo. 

Battery + 

Hydrogen 
energy 

storage 

WT 
PV 

10 4 Seawater - Yes - 

Khiari et al. 
[116] 

2019 Tunisia Exp. None 
WT 
PV 

7.2 - 4500 - None A single RO element. 

Elmaadawy et al. 
[117] 

2020 Egypt Theo. Battery 

WT 

PV 

DG 

1500 2.928 43,087 - 
Pressure 
exchanger 

A single-stage RO system 
with energy recovery. 

Ibrahim et al. 
[118] 

2020 Egypt Theo. Battery 

WT 

PV 

DG 

24 4.38 37,864.4 1.10 $/m3 None 
Single pressure vessel with 
six RO elements in series. 

 Acronyms: DG: Diesel generator - Grid: a connection to the local grid - Hydro.: Hydropower - PV: Photovoltaic - WT: wind turbine. 
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2.3 Technical challenges and potential solutions for RE driven RO plants  

The above studies revealed numerous challenges regarding RE-RO plants, especially for 

the main components, operational strategy and control system design. This section analyses 

these aspects in detail, starting with the critical components namely membranes and energy 

recovery devices [11]. 

2.3.1 Membranes performance and lifetime 

RO membranes are the heart of the desalination process. These semi-permeable 

membranes allow fresh water but not salts to pass, creating a concentrate (brine) and a 

permeate stream. Their operation depends on delivering feedwater at a pressure above the 

osmotic pressure for the separation process to occur. In conventional RO plants, the HPP 

supplies feedwater at constant pressure and flowrate. However, for variable operation, 

feedwater pressure and flowrate will vary according to the available RE power.  

Manufacturers normally guarantee a lifetime of 5 years, if the RO membranes are operating 

under recommended steady conditions [64]. According to Cabrera et al. [119], continual 

start-ups, shutdowns, flow variation and pressure fluctuations present unusual operating 

conditions for the RO membranes, causing mechanical fatigue with a negative impact on the 

membrane lifetime and performance. Also, membrane compaction, which is the plastic 

deformation that leads to membrane deterioration, is expected to accelerate under variable 

operating conditions [120]. Accordingly, water production cost could be affected by variable 

operation, as it is influenced by the membrane replacements costs [64]. Hence, the economic 

viability of variable operation is dependent on the extent to which it affects membrane 

performance and lifetime.  

Several studies discussed membrane performance and lifetime in plants operated with 

variable RE power [61, 62, 64], as summarised in Table 2.4. The study of Carta et al. [64] 

using 8 switchable RO units (Fig. 2.8) developed an operational strategy to examine the 

effect of modular operation on component lifetime. Units were connected and disconnected 

in reverse order, which meant that some units underwent fewer start-ups and shutdowns than 

others. In contrast to the claims presented by Cabrera et al. [119], Carta et al. [64] concluded 

that no physical deterioration was observed in the main components. Similarly, Pestana et al.  

[61] and Latorre et al. [62] operated a RO plant for 7000 and 6000 hours respectively, at 

variable flow and pressure under variable-speed operation. In both studies, no membrane 
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deterioration was noted. However, these test periods were insufficient to give a definitive 

conclusion when compared to the average 5-year (43,800 hr) lifetime of a RO membrane 

[64]. 

Performance improvements were reported in several studies [121-124] when testing the 

membrane performance against fluid instabilities and pulsating trans-membrane pressure. For 

instance, Al-Bastaki and Abbas [124] reported a maximum permeate flux improvement of 

13% when testing against square wave pressure pulses at an average pressure of 50 bars. The 

reason for this improvement is the increased turbulence caused by the fluctuating pressure 

and flow instabilities. This turbulence improved the diffusion through the membrane and 

decreased the effect of concentration polarisation which led to increased permeate flux and 

quality [68]. In summary, there are mixed views about the effects of variable operation on 

membranes, with some authors reporting shortened lifetimes and others highlighting 

improvements in performance. 

 

Fig. 2.8. Schematic diagram of the test rig used by Carta et al. (reused with permission from 

[64]). 
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Table 2.4. Studies analysing membrane deterioration in variable operation. 

Study Methodology Outcome 

Carta et al. [64] 
Modules had a different number 

of start-ups and shutdowns. 

No membrane deterioration 

was noted. 

Pestana et al. [61] 

Latorre et al. [62] 

Operated the plant for 7000 and 

6000 hrs. at variable conditions. 

Rodger et al.  [121] 

Winzler et al.  [122] 

Al-Bastaki and Abbas [123, 

124] 

Effect of fluid instabilities and 

pulsating trans-membrane 

pressure. 

Improvement in 

performance was reported. 

 

2.3.2 Energy recovery devices 

A significant amount of the pumping energy still resides in the brine stream as it exits the 

membrane at high pressure [125]. This energy may be recovered by a hydraulic ERD that 

transfers the brine energy to the feed stream, thus reducing the SEC by decreasing the HPP 

power. ERDs can help decrease the power consumption by as much as 60% when compared 

to systems operating without energy recovery [126]. Their introduction in RO desalination 

allowed for a SEC below 5 kWh/m3 [125, 127]. ERDs are generally classified as either 

centrifugal or isobaric devices. Further sub-classification of ERDs is presented in Fig. 2.9 

[126]. In the early eighties, when ERDs were first introduced, centrifugal machines like the 

Pelton wheel or Turbocharger were mostly used, requiring system configurations as shown in 

Fig. 2.10 (a, b) respectively [125]. Centrifugal ERDs are characterised by their suitability for 

high flowrates, limited range of capacity and maximum energy transfer efficiency of around 

82% [126]. On the other hand, isobaric ERDs are gaining popularity because of their higher 

energy transfer efficiency of nearly 97%, low power requirement, decoupled operation from 

the HPP and smaller size compared to centrifugal devices [126]. Many commercial RO plants 

that used centrifugal devices have now been retrofitted with isobaric ERDs, providing 

increased plant production capacity for the same power consumption [128, 129]. Two 

common types of isobaric ERDs are the Dual Work Exchange Energy Recovery DWEER™ 

and the Pressure Exchanger PX® [130-132]. Both devices are presented in Fig. 2.10 (c, d) 
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respectively. For commercial RO plants, the sizing and selection of ERDs are based on the 

plant’s optimum operating point, to ensure that the ERD will operate at its optimum 

efficiency during normal operation [133]. The use of RE to drive RO desalination introduces 

new challenges regarding the variable operation of ERDs.  

 

Fig. 2.9. Classification of energy recovery devices discussed in this article. 

 

Fig. 2.10. RO plant configuration for using a) Pelton wheel, b) Turbocharger, c) DWEER and 

d) Pressure exchanger. 
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2.3.2.1 ERD performance in variable operation 

In case of variable operation, the ERD should offer the flexibility to operate with 

acceptable efficiency at different flowrates, to allow for independent variation in membrane 

flux and recovery ratio [40]. Centrifugal devices cannot deliver this performance because 

their efficiency varies with changing flux and recovery ratio [40]. On the other hand, isobaric 

devices can operate at nearly constant efficiency with a varying flowrate which makes them 

more suitable for variable operation [126, 134]. Additionally, the decoupled operation of 

isobaric ERD from the HPP offers a great advantage for variable operation, as it allows the 

independent variation of membrane flux and recovery [134]. Several studies introduced 

isobaric ERDs that are suitable for variable operation. Peñate et al. [134] described the theory 

of operation and operational data of a patented isobaric ERD called RO Kinetic®, presented 

in Fig. 2.11 (a). The RO Kinetic® is designed in the form of a closed loop, in which, the 

pressure is exchanged between the brine and feedwater. The process of distributing the input 

feedwater and output brine is done by servo-controlled valves. The ERD delivered a robust, 

low maintenance operation and achieved a SEC of slightly higher than 2.2 kWh/m3. The RO 

Kinetic® was recommended for RO plants operating with variable conditions [40]. In another 

study, Paulsen and Hensel  [133] presented an ERD developed by ENERCON (Aurich, 

Germany) specifically for RO plants operated by wind energy. The ERD, displayed in Fig. 

2.11 (b), only uses a single low-pressure pump to drive the desalination process, without the 

need for a HPP. The ERD is a “piston-type accumulator” that operates within a range of 12.5 

– 100% of plant capacity while maintaining a SEC between 2 – 2.8 kWh/m3. A follow-up 

study was presented in [135]. For small-scale standalone applications, the Clark pump was 

used by several studies, as it delivers high efficiency at low flowrates [50, 76, 82, 88, 136]. 

The Clark pump, manufactured by Spectra Watermakers Inc. (California, United States) 

[137], is described as a “positive displacement reciprocating pressure intensifier” ERD. It is 

referred to as a pressure intensifier because it has two pistons that allow energy from the feed 

to be added to the energy of the concentrate such that the output pressure is higher than that 

of the concentrate [138]. 
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(a) 

 

(b) 

Fig. 2.11. a) RO Kinetic® working principle [134] and b) ENERCON piston-type accumulator 

[133] (reused with permission). 

2.3.2.2 Technical challenges for isobaric devices 

The main disadvantage of some isobaric ERDs is mixing between the brine and feed 

streams [126]. Mixing increases feed salinity thus increasing feedwater osmotic pressure and 

required pumping power [139]. The increase in feed salinity can range between 3 – 5%, 

requiring additional pressure of about 2 bar [140]. Stover [126] presented equations to 

describe the salinity increase due to mixing in a rotary isobaric pressure exchanger. Similarly, 

leakage flow occurs between the high-pressure and low-pressure sides of the brine stream. 

This leakage is estimated at 1 – 2.5 % of the brine flow [140]. Mixing and leakage flows 

depend on system pressure, temperature, feed and brine flowrate and device characteristics 

[126, 140]. Variable operation can lead to an increase in brine mixing and leakage due to 

increased fluid instabilities, resulting from changes in flow and pressure. This is especially 

true for the pressure exchanger (PX®), as there is no physical barrier between the brine and 

feed streams. A study was performed by Xu et al. [141] to analyse the effect of rotor speed, 

brine and feed flow velocities on the mixing rate for a rotary pressure exchanger. The 

analysis was performed using a computational fluid dynamics simulation, presented in Fig. 

2.12, and an experimental model. The simulation showed clear signs of mixing.  
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Fig. 2.12. Two-dimensional salinity contour of the central cylindrical surface of the ERD 

(reused with permission from [141]). 

2.3.3 Strategies for variable operation of RO system 

As mentioned earlier, RO plants are designed to operate at constant flow, pressure and 

power levels and with all modules working continuously. Specific strategies are required for 

the RO plant to enable variable operation. This section will review different strategies to 

adapt large-scale RO plants to modular and variable-speed operation [11]. 

2.3.3.1 Start-up and shut down under modular operation 

For the purpose of routine maintenance in standard (non-RE) plants, manufacturers have 

defined operating procedures for start-up, shutdown and steady operation. With RE, modular 

operation will demand much more frequent start-up/shutdown of RO trains to modulate the 

plant according to the available power. This section will discuss the standard membrane 

flushing procedures during the start-up/shutdown cycle, as recommended by membrane 

manufacturers to deliver their claimed water quality and output and to prevent membrane 

fouling and damage under sudden mechanical loading [142]. The implications for variable 

operation are then discussed. 

According to the DuPont Filmtec™ (Delaware, United States) Technical Manual [142], for a 

typical start-up, the system should be flushed with low-pressure clean water, between 2 to 4 

bar, at a low flowrate, to purge air out of the RO elements and the pressure vessels. The 

concentrate and permeate should be discarded during this procedure [142]. After flushing, the 

feed pressure is increased gradually to reach the operation set point. Feed pressure ramping 
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should be limited to 0.7 and 0.5 bar per second for FILMTEC™ and TORAY (Tokyo, Japan) 

modules respectively, to complete a soft start [142, 143]. Otherwise, the element housing 

might be damaged by shock force acting in the radial or flow direction [142].  Once the set 

point is reached, it is suggested to disregard the permeate until it reaches the desired quality 

[143]. 

During a typical shutdown, it is recommended to flush the membrane with fresh water to 

prevent scaling, salt deposition and (forward) osmosis from occurring across the membrane, 

which can cause the membrane to swell and rupture [120, 142]. Flushing is done using low-

pressure water, approximately 3 bar, at a high flowrate, to remove the brine completely from 

the pressure vessel [142]. Permeate water or high-quality feedwater can be used for flushing 

[138, 142]. This procedure should continue until the concentrate conductivity matches the 

feed conductivity. TORAY recommends flushing the membranes every 12 hours for 

shutdowns between 1 to 4 days and adding a preservative solution for shutdowns exceeding 4 

days [143]. Modular operation can involve several start-ups and shutdowns of RO trains in a 

single day depending on RE power variation [33]. The unpredictability of RE variation can 

be problematic since to flush the membranes prior to shutting down, there must be enough 

energy to operate the flushing pumps and enough permeate water to flush the membranes [66, 

138]. In terms of energy requirement, operating the flushing pumps for PV-RO systems can 

be scheduled at the end of peak radiation hours during the day. However, it is more 

challenging for wind-RO plants, as wind speed changes randomly during the day. An 

efficient approach would be to store water in an elevated tank for gravity-driven flushing 

[33]. Moderate elevation is sufficient since the pressure requirement is low. Flushing water 

can be obtained by storing the first batch of permeate for this purpose [66]. Feedwater is 

sometimes used for flushing if it is of sufficient quality [66, 138, 143]. 

2.3.3.2 Variable speed operation and safe operating window 

Modular operation by switching units on and off may not be enough to accommodate the 

frequency and pattern of RES variation. Variable-speed operation can be used to achieve a 

faster and finer response. To operate a RO plant with variable speed, firstly, a safe operation 

window should be defined to set boundaries for the operation parameters. Secondly, an 

operation strategy is needed to change the operation parameter within the boundaries of the 

safe operation window.  
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The operational window defines the acceptable parameter variation range for safely operating 

the RO plant, providing an important guideline in control system design. The operational 

window is set based on operation parameters subject to hydraulic limitations such as the feed 

pressure and flowrate, permeate and concentrate flowrate. In several studies [76, 78, 79], the 

operational window was based on five parameters: 1) maximum feed pressure that the 

membrane can withstand based on its mechanical resistance; 2) maximum allowed feed/brine 

flow that is based on the membrane mechanical loading; 3) maximum permeate flow per 

element and the maximum recovery per element were constrained as they directly affect the 

concentration polarisation; 4) minimum concentrate flow to avoid precipitation and 

membrane fouling, as the concentrate flow is responsible for clearing the salt out of the 

membranes; and 5) maximum product concentration based on the recommendations of the 

EPA and WHO [79]. Table 2.5 includes the hydraulic limitation for a common proprietary 

membrane. 

Table 2.5. Hydraulic limitations for 8-inch (0.203 m) /37 m2 DOW-FILMTEC SW 

membranes with generic conventional pretreatment [142]. 

Maximum recovery per element 13 % 

Maximum permeate flow per element 1.4 m3/h 

Minimum concentrate flow 3.4 m3/h 

Maximum feed/brine flowrate 14 m3/h 

The operational limits are determined by simulating the membrane hydraulic performance 

while holding specific parameters constant. After defining the plant operational window, an 

operational strategy is used to vary the feed flow and feed pressure, according to the set 

boundaries. Miranda and Infield [76] established an operational window for a variable 

operating small-scale RO plant operating by a 2.3 kW wind turbine. Afterwards, a control 

strategy was developed to operate the system within the operational window. Two positive 

displacement pumps enabled the independent control of feed pressure and flow, to allow 

operation at any point within the operational window. Likewise, in [78, 79], an operational 

window was defined using Reverse Osmosis System Analysis (ROSA) software to vary feed 

flowrate and operating pressure while holding specific membrane parameters constants. The 

operational window set by Pohl et al. [79], for four series SW30-HR400i DOW Filmtec™ 

elements using feedwater at 35,646 mg/l, is displayed in Fig. 2.13.  
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Fig. 2.13. Operational window presented by Pohl et al. (reused with permission from [79]). 

Variable-speed operation requires defining an operation strategy for the plant to respond to 

changes in available power while remaining within the safe operation window. The operation 

strategy should result in feed pressure and flowrate combinations that achieve maximum 

water production and desired water quality while operating at the lowest SEC. Operating at 

the lowest SEC ensures full utilisation of available power and maximum water production 

[138]. The relation between feed pressure, feed and permeate flowrate, permeate recovery 

and SEC can be described as follows [42]: 

𝑄𝑝 = 𝐴𝑤 ∗ 𝐴𝑚 ∗ (∆𝑃 − ∆𝜋)                                                                                                             (2.1) 

𝑄𝑠 = 𝐵𝑠 ∗ 𝐴𝑚 ∗ ∆𝐶                                                                                                                             (2.2) 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 =
𝑄𝑝

𝑄𝑓
                                                                                                                                  (2.3) 

𝑆𝐸𝐶 =
𝑃𝑜𝑤𝑒𝑟

𝑄𝑝
                                                                                                                                     (2.4) 

where 𝑄𝑓, 𝑄𝑝 and 𝑄𝑠 are the feed flowrate, permeate flowrate and salt transport, respectively, 

Aw is the membrane permeability, Bs is the salt transfer coefficient and Am is the membrane 

surface area. (∆𝑃 − ∆𝜋) is the net driving pressure and ∆𝐶 is the concentration difference 

across the membrane. 
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Thomson [138] used two pumps to vary the feed pressure and flowrate individually to operate 

a RO plant at the lowest SEC during power fluctuation from a PV array. Pohl et al. [79] 

compared four different operation strategies to operate a simple RO plant connected to a wind 

energy source. The operation strategies relied on controlling the feed pressure, feed flowrate 

and permeate recovery, to operate the plant at either constant feed pressure, constant 

permeate recovery, constant feed flow or constant concentrate flow. Maintaining constant 

permeate recovery by changing feed pressure and flowrate delivered the best performance 

regarding SEC, permeate quality and wider load range. A study by Kumarasamy et al. [91] 

compared varying either the pressure or the flowrate while keeping other parameters 

constant. While maintaining constant pressure and varying flowrate, the recovery ratio could 

increase and cause increased salt diffusion through the membrane. Alternatively, operating at 

a constant flowrate and variable pressure increased production capacity by 5%; however, this 

introduced a risk of the pressure decreasing below the osmotic pressure. In general, when 

selecting any operation strategy, the safe operational window must be observed to ensure that 

there is no conflict between achieving maximum production and operating within safe limits. 

Meeting the daily water demand and ensuring a suitable product water concentration are 

important objectives in formulating the operation strategy. Several studies suggested 

permeate storage to satisfy a stable water demand and allow monitoring of product water 

quality [51, 88, 91]. Kumarasamy et al. [91] compared operating a directly-coupled PV-RO 

system with and without permeate storage. For the system without permeate storage, the 

permeate water should meet the specified maximum concentration of 500 mg/L at all times; 

however, for the system using permeate storage, permeate concentration could increase above 

the limit temporarily as long as the concentration inside the storage tank remains below 500 

mg/l. Permeate production increased significantly by 28% when using permeate storage due 

to a wider range of acceptable permeate concentrations. In general, permeate storage is 

beneficial for providing a balance between water supply and demand [51, 88, 91]. 

2.3.4 Control system performance 

Process control is an integral part of the RO plant operation and productivity. The control 

strategy for grid-connected RO plants aims to fulfil a daily production demand under constant 

operating conditions and is relatively straightforward when compared to variably operating 

RO plants, which should maximize the RES power output while managing the RO plant load 

against energy fluctuation [40]. 
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 The control procedure for large-scale plants can be simplified into three states: start-up, 

shutdown, and maintenance of setpoint parameters against any disturbances. Disturbance 

variables – such as changes in feed temperature or concentration, reduction in permeate flow, 

increase in permeate concentration, increase in fouling resistance and changes in permeate 

demand – can interfere with the plant operation. Sensors throughout the plant monitor these 

disturbances and send a signal to the controller. A control signal is generated to change the 

manipulated variables according to the difference between the measured and the set values. 

The control action guides the plant towards the desired reference or set point. Systems that 

include supervisory control can perform an optimisation procedure to reach certain goals such 

as maximising daily output and water quality [144]. 

2.3.4.1 Control actions for variably-operating RO plants 

The control system for variably-operating plants is a Multiple-Input Multiple-Output 

(MIMO) system that can handle different manipulated variables such as feed pressure, feed 

flowrate and recovery ratio in order to control target variables such as permeate flowrate and 

permeate concentration. The control is based on the available power from the discontinuous 

RES and water demand, in a manner that ensures proper plant operation and water quality 

[35, 128]. Additionally, the controller should provide fast response, high stability and 

minimum disturbances to adapt the RO plant against the discontinuous energy source [128]. 

Advanced control systems are recommended for variable operating RO plants for their ability 

to provide adequate control performance against the plant time-varying dynamic behaviour 

and RES fluctuation [33, 82]. Unfortunately, the number of studies discussing specifically 

RED plants control systems are low [145]. The following will introduce control systems used 

for RO plants control in general, which can be used for RO plants operated by RES. 

2.3.4.2 Advanced control techniques for RO plants 

PID control and MPC have been frequently described in the literature for controlling RO 

plants [146, 147].  A PID controller, presented in Fig. 2.14, is a common and traditional 

approach to process control as a result of its simplicity and effectiveness [147]. On the other 

hand, MPC, presented in Fig. 2.15, is an advanced optimisation-based control technique that 

is applicable to multivariable control problems, specifically for MIMO systems [148]. It 

relies on currently measured outputs from the process and future predicted outputs supplied 
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by a dynamic model to calculate the required change in the input variable, so the measured 

output reaches the set point in an optimal manner [149].  

 

Fig. 2.14. Proportional-Integral-Differential controller block diagram [11]. 

 

Fig. 2.15. Model predictive controller block diagram [11]. 

Abbas [150] used Dynamic Matrix Control (DMC), a common MPC strategy [151], to 

control a RO plant.  The controller based on DMC was compared to a PI controller and tested 

against process disturbances. MPC showed faster response and robust performance as it 

delivered adequate response despite a ±30% change in the pressure-permeation rate gain.  A 

similar study, performed by Robertson et al. [152], concluded that MPC based on DMC 

control algorithm offered better response and flexibility than the PI controller. The two 

studies used Ziegler–Nichols rule for PID tuning [150, 152]. However, another study 

performed by Esfahani et al. [148] used Internal Model Control (IMC) to tune a RO plant 

PID controller and compared it to the performance of a MPC that uses DMC and a PID 

controller tuned by the Ziegler–Nichols rule. The study found that the PID tuned by IMC 

presented better performance than both MPC and the Ziegler-Nichols tuned PID controller. 
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This indicates that the controller performance is dependent on its design, tuning and the 

control problem.  

A supervisory control system based on MPC was presented by Qi et al. [153] to manage the 

operation of a wind-PV-RO plant. The MPC coordinated the power flow among the wind 

turbine, PV array, battery bank and the RO plant in order to satisfy water demand. Weather 

forecasts were used to predict the maximum power available from the RESs. Similar studies 

were presented by Palacin [145] and Salazar et al. [154] for a MPC that solves an 

optimisation problem at each sample step, to adjust water production based on water demand 

and energy available from hybrid RESs. 

The application of NNs in desalination was first described by El-Hawary in 1993. Since then, 

NNs have been used for the RO plant modelling and performance prediction by several 

studies [155-159]. However, the first use of NNs to control the operation of a standalone 

wind-RO plant was reported by Cabrera et al. [63] in 2017. Cabrera et al. [63] implemented a 

NN in the control system of a wind-powered RO plant, to adapt the plant energy consumption 

to changes in available energy by generating feed flowrate and pressure set points while 

considering the wind power, feed temperature and conductivity. 

2.4 Summary 

The integration between RE and RO promises a cost-effective and sustainable solution to 

decarbonise water production. The use of RE, specifically wind and solar-PV, in driving 

large-scale RO plants has, however, been hampered by the inefficiency and high cost of 

energy storage systems with larger RED systems remaining dependent on grid connection. 

This review has discussed recent studies that provide innovative approaches to RED and 

identified technical challenges and potential solutions for the commercialization of RED in 

large-scale plants [11]. The main conclusions and potential improvements are as follows: 

 Variable operation has been implemented in several studies by using modular ‘on-off’ 

operation and/or variable-speed operation. It has proven to be a successful strategy to 

operate small-scale RO plants and holds promise for large-scale plants with RE. 

 Maintaining membrane performance and lifetime while using variable operation is 

economically crucial for proving RE-powered RO plants feasibility. Previous studies 

tested the membrane performance only for short periods compared to membrane lifetime. 
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Although further testing should be performed to analyse any degradation in membrane 

performance or lifetime due to variable operation, this was not possible due to the set 

duration of this research.  

 Centrifugal ERDs are not recommended for variable operation, as their efficiency varies 

with fluid pressure and flow. On the other hand, isobaric ERDs have a stable efficient 

performance with varying flow and pressure which makes them preferable for variable 

operation. However, the negative effects of mixing and leakage on overall performance 

could worsen under variable operation due to increased pressure and velocity fluctuations.  

 The execution of the RO operational procedure during modular operation is crucial for 

maintaining the lifetime and performance of the RO modules. However, if the start-

up/shutdown procedures for RO trains were performed solely based on energy 

availability, it would be wasteful of energy and product water, both of which are valuable 

during variable operation. The prospect of using RES prediction to schedule the RO trains 

operation is examined in this research for its potential to reduce the unnecessary 

repetition of the start-up/shutdown cycle. 

 Several studies compared advanced control systems such as MPC to classical techniques, 

e.g., PID control, for controlling RO plants. Different conclusions were made as to which 

delivers the best performance, considering response time and performance robustness. 

However, the number of studies discussing specifically RE driven RO plants, as opposed 

to fossil-fuelled RO plants, is low. This research considers the RES fluctuations in 

analysing the control system response, in addition to using a RO plant with a similar 

control structure to large-scale systems for accelerating the implementation for such scale. 

 Hybrid RESs can play an important role in stabilising the operation and enhancing energy 

availability for RE-driven RO plants. Current studies presenting hybrid RESs to drive RO 

plants lack the comprehensive representation and analysis of the RO plant performance 

against variable power. The focus should be guided towards the RO plant performance 

and the benefits and challenges of using hybrid renewable energy. However, this research 

is focused on implementing variable operation using a single RES, i.e., wind energy, 

which is more challenging to achieve than using a more stable power input from a hybrid 

RES, thus, developing a solution that is expected to accommodate a range of RE types 

and their combinations. 
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3 Chapter 3  Experimental setup and procedure 

3.1 Introduction 

A fundamental objective of this study is to develop a load management technique for 

powering RO plants using RE that can be transferable to large-scale systems. An optimum 

approach would be to perform an investigation to determine the prospects of using variable 

operation on an existing large-scale RO system. However, large-scale RO systems are 

expensive to run and mostly in continuous use, such that it is difficult to access and control 

them purely for experimental purposes. Thus, the decision was made to design a RO pilot 

plant that shares the same operating principle as large-scale systems, at a lower production 

capacity, to develop a technology that is transferable to such scale. This enables the 

experimentation in any desired manner needed to validate this study.  

The design and commissioning of such a pilot plant was a demanding task and required a 

great deal of technical and project management skills to get it completed. The design process 

was carried out by making initial projections of the RO plant performance using software 

provided by the membrane manufacturer, i.e., ROSA. The mechanical design was then 

performed, which included the selection and sizing of the plant’s components, e.g., pumps, 

valves, sensors, filters, etc. In addition, a Computer-Aided Design (CAD) assembly was 

developed that included details on the steel frame design, pipe routing, equipment mounting 

and components assembly. The next step was carrying out the electrical design, which 

involved designing the electrical enclosure that houses the main power supply, pumps 

control, and the data acquisition system, in addition to preparing detailed wiring diagrams for 

connecting the power and control circuits. After completing the mechanical and electrical 

designs, the procurement process was carried out by contacting industrial suppliers and 

arranging the equipment purchasing and delivery. As for the system assembly, a local 

contractor, Aston Fitting & Flanges (Birmingham, United Kingdom), was hired to assemble 

the steel frame and to supply and weld the stainless-steel pipes and flanges. The rest of the 

system was assembled by Mohamed Mito including the PVC pipework, membranes loading, 

sensors assembly, and the control and electrical system wiring. Furthermore, a LabVIEW 

based data acquisition and control system was developed for handling the software/hardware 

interaction. The assembling and initial testing process were done at Aston Fitting’s workshop 

and the plant was then transported to Aston University. A CAD drawing showing the 

isometric projection of the pilot plant is presented in Fig. 3.1. More CAD drawings of the RO 
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system are available in Appendix A. The detailed design of the developed RO system and the 

experimental procedure used throughout this study are presented in this Chapter. 

 

Fig. 3.1. Isometric projection of the RO system. 

3.2 System description 

The RO system, shown in Fig. 3.2 and 3.3, is a pilot RO plant designed for testing the 

operation of RE-driven RO systems. It was designed to have the essential features of large-

scale systems and thus comparable performance. It includes two parallel pressure vessels, 

each containing three 8” RO elements arranged in series. The system is arranged in a split-

feed flow configuration, following the current industry practice of splitting the feed between 

a HPP and an ERD. The plant’s rated production capacity is 3.2 m3/h. A schematic diagram 

of the system is shown in Fig. 3.4 and main system specifications are described in Table 3.1. 

The HPP and ERD were selected from equipment designed for large-scale systems to 

investigate their ability to operate efficiently with variable power. Positive displacement 

devices were selected, as they offer consistent efficiency over their operational range. The 

HPP used is the APP 3.5 axial piston pump manufactured by Danfoss (Nordborg, Denmark) 

[160]. As for the ERD, isobaric pressure exchangers are favourable for large-scale systems 

due to their flexibility and modularity, offering high efficiency over the range of operating 

conditions [11]. The ERD used is the ‘Danfoss iSave 21 Plus’, which consists of an isobaric 

pressure exchanger coupled to a vane pump, both driven by the same motor on a single shaft, 

offering flexibility and precision in controlling flowrate through the ERD [161]. The HPP and 
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ERD motors were powered using VFD to control their speed of rotation and thus flowrate 

through each device. This allowed control of permeate output and recovery ratio in response 

to changes in available power, feed concentration and feed temperature.  

 

Fig. 3.2. RO system installed in the laboratory (front). 

 

Fig. 3.3. RO system installed in the laboratory (back). 
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Fig. 3.4. Schematic diagram of the RO system. 

Table 3.1. RO system main specifications. 

Membrane type FilmTech™ SW30HRLE-400 

System arrangement 

Two pressure vessels in parallel, 

each containing three RO elements in 

series 

Rated permeate production 3.2 m3/h 

Rated permeate recovery ratio 25% 

Rated power consumption 7.5 kW 

Rated specific energy consumption 2.34 kWh/m3 

Feedwater  
Salinity 35,000 mg/l 

Temperature 25oC 

Low-pressure pump LOWARA CEA210/5/D-V  

High-pressure pump  Danfoss APP 3.5 

Energy recovery device Danfoss iSave 21 Plus  
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3.3 Main components 

A brief description of the RO system main components is presented in this section. Full 

technical specifications of each component relative to the mathematical model development 

are described later in Chapter 4. 

3.3.1 Feed tank 

The feed tank connections were configured to form a closed loop and provide a 

consistent supply of feedwater. As shown in Fig. 3.5, the feedwater was supplied from the 

bottom and the permeate and brine were returned to the feed tank where they mixed to 

maintain a set concentration within the tank. 

The tank capacity was determined based on the amount of water required to fill the pressure 

vessels and piping volumes. This totalled approximately 0.3 m3. The seawater batch volume 

was set to 1 m3 to ensure a stable feed concentration and flow to the system. The tank was 

oversized to 2 m3 to aid in heat dissipation of energy added by the pumps. However, the 

challenge during testing was raising the temperature to the standard test condition, especially 

during cold days. For that purpose, submerged water heaters were installed in the tank. 

The feedwater used for testing is a sodium chloride (NaCl) solution prepared from tap water 

at the target salinity [97]. Thus, the only solute components considered were Na+ and Cl- and 

the mass concentration of total dissolved solids (TDS) was the same as that of NaCl. The 

standard feedwater concentration and temperature for test conditions were 35,000 mg/l. and 

25oC, respectively. 

 

Fig. 3.5. Schematic diagram of the feed tank. 

3.3.2 Cartridge filter 

The RO system was fitted with two polypropylene cartridge filters arranged in parallel 

that offered pre-treatment for the feedwater. The cartridge filters, shown in Fig. 3.6, are 
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manufactured by Danfoss and can handle a flow of 10.2 m3/h each [162]. They offered 

prefiltration of 10µm to meet the feedwater requirement for the HPP [160]. 

 

Fig. 3.6. Cartridge filters. 

3.3.3 Low-pressure pump 

The LPP used was a LOWARA CEA210/5 single impeller centrifugal pump 

manufactured by Xylem (New York, United States). It was fitted upstream of the HPP and 

ERD and provided the feedwater from the feed tank. The pump’s impeller and enclosure are 

made of stainless steel. It delivered a maximum feed flowrate of 18 m3/h using a 2.2 kW 

motor.  

 

Fig. 3.7. Low-pressure pump. 
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3.3.4 High-pressure pump 

The HPP used was the Danfoss APP 3.5 axial piston pump. It is a positive displacement 

pump with axial pistons specifically designed for seawater applications. The pump was 

powered by a 11 kW motor controlled using a VFD and delivered a maximum flowrate of 3.5 

m3/h.  

 

Fig. 3.8. Danfoss APP high-pressure pump. 

3.3.5 Energy recovery device 

The Danfoss iSave 21 consists of an isobaric pressure exchanger, a built-in BP, and an 

electric motor. The BP is a vane-type positive displacement pump that boosts the feed 

pressure to overcome pressure losses in the RO membranes and the pressure exchanger. The 

pressure exchanger and BP are connected on a single shaft to a 5.5 kW electric motor, which 

was powered using a VFD to control the iSave flow [161, 163]. 

The pressure exchanger transfers pressure from the high-pressure (HP) brine to the low-

pressure (LP) feed by having the two streams in momentary contact with no physical barrier. 

The pressure transfer occurs in the ducts of a rotor that fits between two port plates. One-half 

of the rotor ducts are exposed to the HP stream and the other half are subjected to the LP 

stream, as shown in Fig. 3.9. The two streams are separated by a sealing area, which the rotor 

passes at each revolution to switch the duct from expelling the brine using the LP feed to 

pressurising the feed using the HP brine [161, 163]. The pressurised seawater then exits the 

BP to be mixed with the feed stream from the HPP. As a result of not having a physical 

barrier between the brine and seawater streams, slight mixing occurs between them. 

However, the design ensures that the mixing region never reaches the end of the rotor ducts 
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to maintain a quantity of liquid in the rotor, travelling from one end of the duct to the other, 

thus forming a hydraulic barrier between the brine and feedwater streams [164]. This requires 

a “balanced flow” between the HP and LP ducts of the pressure exchanger. During operation, 

the LP duct flow was matched to the flow through the HP duct and BP using a modulation 

valve on the brine reject line after the iSave. 

 

Fig. 3.9. Schematic diagram for the Danfoss iSave energy recovery device [163, 165]. 

 

Fig. 3.10. Danfoss iSave energy recovery device. 

3.3.6 Brine reject valve 

The LPP flowrate was controlled using a modulated diaphragm valve installed on the 

brine reject line after the iSave. The valve was responsible for matching the flow on the LP 

side of the iSave to the flow on the HP side generated by the BP. The valve was fitted with a 

positioner that offered fine control of the valve opening based on a 4-20 mA signal. The 



 

71 
M.T.M.A.S. Mito, PhD Thesis. Aston University 2021. 

valve operated on a linear control characteristic with a flow coefficient of 27 m3/h at the fully 

opened position [166]. 

 

Fig. 3.11. Brine flow control modulation valve. 

3.4 Instrumentations and measurements 

This section describes the instrumentations used for data collection. The RO system 

included 16 sensors distributed across the RO test-rig to collect data for flowrate, pressure, 

concentration, temperature, and power consumption. The sensors were compatible for use 

with seawater and were selected to meet the operating range of the physical variable to be 

measured. The voltage required to power the sensors was provided by an external 24V DC 

power supply. The sensors were connected in series with the power supply forming a loop, by 

which, the current signal within the loop ranged from 4 – 20 mA and represented the physical 

reading of the sensor. This configuration is referred to as a “Loop-powered” circuit. All the 

sensors, except the conductivity sensors, were factory calibrated. 

3.4.1 Flow measurement 

The flowrates for the feed, brine and permeate streams were measured using the FPB151 

flowmeter manufactured by OMEGA (Manchester, United Kingdom), shown in Fig. 3.12. It 

consists of a paddlewheel flowmeter mounted on a Tee and connected to a transmitter that 

converts the paddlewheel speed to a current signal representing the flow. The transmitter 

generated a 4 – 20 mA signal for a 0 - 30 m3/h flow range with an accuracy of ± 1% of the 

max flowrate reading [167]. 
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Fig. 3.12. Paddlewheel flowmeter. 

3.4.2 Pressure measurement 

The pressure across the RO system was measured using the RS PRO IPS series pressure 

sensors, shown in Fig. 3.13, manufactured by RS components (Northants, United Kingdom). 

They are piezo-resistive ceramic sensors with a stainless-steel housing that generated a 4 - 20 

mA signal with respect to their pressure range with an accuracy of ±0.25% of max value 

[168].  The sensors fitted on the LP piping were rated from 0 to 16 bar, while the sensors on 

the HP side were rated from 0 to 100 bar.  

 

Fig. 3.13. Pressure transmitter. 
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3.4.3 Concentration measurement 

The feed and permeate concentration were measured using the OMEGA CDTX-2854 

conductivity transmitter, shown in Fig. 3.14. It is an integrally mounted conductivity sensor 

and transmitter that delivers an accuracy of ±2% of reading [169]. The sensors provided a 

conductivity reading of 0 to 5000 µS/cm and 0 to 100,000 µS/cm for the feed and permeate 

streams, respectively, in the form of a 4 – 20 mA current signal. The conductivity reading 

was converted to a measurement of TDS using equation (3.1). However, the relationship 

between electrical conductivity and TDS varies with water salinity. The conversion factor, K, 

was considered as 0.64 and 0.55 for feedwater and permeate water, respectively [170]. The 

feed and permeate sensors were calibrated using a NIST compliant conductivity standard 

solution of 12,880 μS/cm. The calibration data are included in Table C.1 in Appendix C. 

𝐶 (𝑚𝑔/𝑙) = 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝜇𝑆/𝑐𝑚) × 𝐾                (3.1) 

 

Fig. 3.14. Conductivity transmitter. 

3.4.4 Temperature measurement 

The feedwater temperature was measured using a temperature transmitter installed on the 

feed line of the RO system.  The transmitter used is the TEAT-LL fluid temperature 

transmitter manufactured by SYXTHSENSE (Exeter, United Kingdom), shown in Fig. 3.15. 

The sensor generated a 4 – 20 mA signal for a 0 to 50oC temperature range. The sensor 

accuracy is ± 0.5oC [171].  
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Fig. 3.15. Temperature transmitter. 

3.4.5 Power consumption measurement 

The power consumption of each motor was calculated using equation (3.2), such that IPh 

is the current through a single phase, VPh is the phase voltage, and PF is the power factor of 

the respective motor. The phase voltage for each motor was constant at 240 V before the 

VFDs and the power factor for each motor was supplied by the manufacturers. The phase 

current for each motor was measured using current sensors installed on single-phase lines 

before the VFDs and used to calculate the power consumption from equation (3.2). The 

current transmitter used were the HOBUT (Walsall, United Kingdom) CT132TRAN, shown 

in Fig. 3.16. They generated a 4 – 20 mA signal for a current range of 0 – 10 A, 0 – 20 A and 

0 – 50 A, depending on the motor power, with an accuracy of ± 0.5% of the max current 

reading [172]. 

𝑃𝑒 = 3𝑉𝑃ℎ𝐼𝑃ℎ𝑃𝐹                      (3.2) 

 

Fig. 3.16. Current transmitter. 
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3.5 Electrical power system 

An electric system was designed to power the LPP, HPP, ERD, sensors, data-acquisition, 

and control systems. It consisted of two circuits fitted in an electric enclosure, shown in Fig. 

3.17, described as follows: 

3.5.1 Power circuit 

A 3-Phase high voltage (415V AC) power circuit was used to supply main power for the 

motors and panel equipment. This circuit included main switches, 3-Phase distribution 

blocks, residual current breakers, circuit breakers and a contactor for each motor. In addition, 

the circuit included a 5.5 kW and 11 kW VFDs used to control the iSave and HPP speeds 

respectively – shown in Fig. 3.18. The detailed wiring diagram for the power circuit is shown 

in Appendix B, Fig. B.1. 

 

Fig. 3.17. Electric control panel. 
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(a) 

 

(b) 

Fig. 3.18. Variable frequency drive for a) the energy recovery device motor (5.5 kW), and b) 

the high-pressure pump motor (11kW). 

3.5.2 Control circuit 

A low voltage (24V DC) control circuit was used to power the sensors, valves, data-

acquisition system, and the low-voltage circuit that energises the contactor coils for the 

pumps on/off control. The circuit included two 24V DC power supplies and low-voltage 

distribution blocks. The contactors control circuits were connected to ensure that the pumps 

are interconnected, such that the iSave cannot be operated without the LPP and the HPP 

cannot be operated without the LPP and BP. In addition, pressure switches were distributed 

across the system to shutdown all pumps if any pressure exceeds the set limit. The detailed 

wiring diagram for the control circuit is presented in Appendix B, Fig. B.2.  

3.6 Data acquisition and supervisory control 

A data acquisition and supervisory control system, based on hardware and software 

developed by National Instruments (NI) (Texas, United States), was used for logging the 

instrumentations readings and providing supervisory control of the system parameters. A 

compact DAQ chassis that includes conditioned input/output (I/O) modules processed signals 

from the RO system instrumentations. The processed signals are sent to a PC-based 

supervisory control system developed on LabVIEW for data logging and process control. The 

structure of the data acquisition and control system is presented in Fig. 3.19. The elements of 

the data acquisition and control system are described as follows: 
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Fig. 3.19. Data-acquisition and control system structure. 

3.6.1 Data logging hardware 

The data acquisition and control system was based on the Compact DAQ chassis NI-

9172, shown in Fig. 3.20. The DAQ chassis provided USB connectivity to connect the sensor 

and electrical measurements to a PC, where the data logging and processing were performed 

using the LabVIEW software. The chassis housed three types of conditioned I/O modules 

providing different roles that are described as follows: 

 NI-9208: An input module that read the current input signal (4 - 20 mA) generated by 

the 16 sensors distributed across the RO system.  

 NI-9265: An output module that generated a current signal (4 - 20 mA) for the pumps 

speed control and modulated valve positioning.  

 NI-9482: A relay output module used to provide on/off control for the LPP, iSave and 

HPP.  

The connections to the terminals of the I/O modules are shown in Appendix B, Section B.3. 

 

Fig. 3.20. NI-9172 compact DAQ chassis. 
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3.6.2 User-interface 

LabVIEW is the PC-based system-design platform that handled the data acquisition, data 

processing and instrument control for the RO system. The software was used to develop a 

supervisory control system with a bespoke user-interface, shown in Fig. 3.21, that offered 

data monitoring, data logging and supervisory control of system parameters. 

LabVIEW offered programming on two levels. The user-interface, named the Front Panel, 

was designed during control system development. It included data monitoring elements, i.e., 

graphs and indicators, and system control elements, i.e., switches and dials. The Block 

Diagram, shown in Fig. 3.22, included the graphical source code, where the programming 

and wiring for the data logging and processing was performed. 
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Fig. 3.21. Graphical user-interface. 
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Fig. 3.22.  A segment of the LabVIEW Block Diagram. 
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3.6.3 Signal processing and data logging 

The sensors readings were sent to LabVIEW through the DAQ chassis as a current signal 

of 4 – 20 mA. The signal from each channel was scaled and linearised to convert into real-

world units of flow, pressure, concentration, and power and then distributed for either display 

through the user-interface, logging in an Excel file, or used in calculating other parameters. 

The data were acquired at 1 Hz sampling rate, this allowed high-speed data to be collected to 

project the dynamic performance of the RO system. 

3.6.4 Supervisory control 

The data acquisition system was also used to provide open-loop supervisory control for 

the RO system during experimental testing. It offers on/off control for the pumps, motor 

speed control for the iSave and HPP through the VFDs, and position control for the 

modulated valve. In addition, operation constraints were integrated into the control system as 

a set of alarms that compare the operational boundaries to the actual measurement from the 

sensors and issues a warning or shuts down the system accordingly. The closed-loop control 

system used for controlling the operating parameters according to changes in available power 

was developed using MATLAB/Simulink and is described in Chapter 5. 

3.7 Experimental procedure 

This section provides a brief description of the experimental procedure used throughout 

this study. A more detailed description is presented for a standardised start-up and shutdown 

procedure in Chapter 7. 

3.7.1 System preparation 

Prior to system start-up, the RO system was flushed using freshwater to clear out any 

membrane preservative or left-over brine in the pressure vessels. Next, a seawater batch was 

prepared in the feed tank. The synthetic seawater was a NaCl solution prepared from tap 

water by adding NaCl at the required concentration [97]. The standard concentration for 

testing was 35,000 mg/l, which translated to 35 kg for a 1 m3 batch. The salt was added half a 

kilogram at a time while running the LPP, to circulate water from the bottom to the top of the 

tank. This guaranteed that the salt was properly mixed and there was no salt accumulated at 

the bottom of the tank, thus ensuring a consistent feed concentration during operation. The 

system preparation process was not included in the control system development or the 
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modular operation technique as it is specific to the experimental procedure of this pilot plant 

due to recirculating the feedwater. Generally, large-scale RO systems would have an open 

feedwater supply, which can be used for system flushing. In addition, it is assumed that the 

system is not resuming operation from a long-term shutdown. 

3.7.2 Start-up 

The first step of system start-up was to purge the air out of the RO system, otherwise, air 

left in the system during operation would lead to excessive forces on the elements causing the 

fibreglass shell to crack [142]. The RO system included automatic air vents distributed across 

the LP piping. However, for the HP side, a manual globe valve was opened to allow air to 

rise to an air vent connected after the pressure vessel for purging the HP piping. The manual 

globe valve was closed before operating the HPP to prevent damage to the air vent. The LPP 

and iSave were used to circulate LP feedwater through the RO system to ensure that the 

system was completely purged and filled with water. 

After the air purge was completed and the LPP and iSave were operational, the HPP is 

started. The HPP speed was increased gradually to maintain a pressure ramp rate of 0.7 bar/s 

[142]. This was achieved by ramping the pump speed by 0.5 Hz/s until reaching the desired 

permeate flowrate. The permeate was discarded until it reached an acceptable concentration. 

3.7.3 Shutdown 

During system shutdown, the HPP was ramped down to a complete stop, then the iSave 

was left operational to clear the remaining brine out of the pressure vessels using feedwater. 

This was guaranteed by monitoring the brine concentration until it reaches the feed 

concentration. In case of an extended shutdown, the system was flushed using permeate water 

and sodium metabisulfite was added as membrane preservative. After the brine was flushed, 

the iSave was ramped down to a complete stop and the LPP was turned off. The system 

remains pressurised for approximately 30 minutes after shutdown. The pressure decreased 

gradually as water leaks through the iSave to the reject line. 
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4 Chapter 4  Reverse osmosis model development  

4.1 Dynamic model development 

This chapter describes the model developed to predict the RO system dynamic 

performance. The whole RO system model is introduced, then the modelling for each 

component is presented. The model has been implemented in MATLAB-Simulink and 

validated using experimental data from the laboratory RO system. As presented in Fig. 4.1, 

the dynamic model was used for tasks that require detailed analysis, such as development and 

testing of the control system and the variable operation procedure. Other tasks that require 

experimental investigation and verification, such as model validation, open-loop response, 

and sensitivity analysis, were performed using the pilot plant described in Chapter 3. 

 

Fig. 4.1. Classification of research tasks based on the used methodology (experimental or 

simulation-based investigation). 

4.2 Reverse osmosis system model 

The dynamic model uses the solution-diffusion model to describe water and salt transport 

across the membrane [173]. Another alternative for modelling the permeation process is the 

pore-flow model, however, the solution-diffusion model has been widely accepted in recent 

publications [174, 175]. A detailed comparison between the solution-diffusion and pore-flow 

model can be found in [174]. As for the concentration polarisation, it is described using the 

analytical film theory to estimate the mass transfer coefficient variation along the membrane 

surface within the boundary layer [176, 177]. The RO modules used in this study are the 

DuPont FilmTec™ SW30HRLE-400 8-inch (0.203 m) membrane (see specifications in Table 

4.1). A schematic diagram of the RO membrane structure is shown in Fig. 4.2. The 

assumptions made throughout this model are as follows: 

 The solution-diffusion model is valid. 
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 The analytical film theory is valid for representing the effect of concentration 

polarisation. 

 The clearances between RO elements inside a pressure vessel are neglected. This 

allows the in-series RO elements to be modelled as a single element having the same 

total length and membrane area. 

 The pressure in the permeate channel is atmospheric. 

 The membrane sheets are modelled as flat channels with negligible curvature. 

 The flow in the spiral direction is assumed negligible. 

 The feed, brine and permeate temperatures are equal and constant along the 

membrane. 

 Despite variations in permeate concentration along the permeate channel length, the 

average value is regarded as the output permeate concentration.  

 The feedwater is prepared using sodium chloride (NaCl) solution to achieve the same 

osmotic pressure as seawater [97].  

 The brine channel thickness is equal to the feed-spacer thickness (tbc = tsp) and the 

permeate channel thickness, tpc, is assumed 0.5×10-3 m [177, 178]. 

 

Fig. 4.2. Schematic diagram showing the RO membrane structure.  

Each brine channel has one membrane leaf folded into two layers and glued from the 

opposite side. Therefore, there are two active layers per brine channel. 
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Table 4.1. Specifications of the SW30HRLE-400 membranes [177-180]. 

Parameter Value 

Active area (Am) 37 m2 

Module diameter (d) 0.2 m 

Membrane length (lbc) 0.8665 m 

Membrane width (wbc) 1.34 m 

Number of membrane leaves/ brine channels (nl) 16 

Feed-spacer thickness (tsp) 0.7112 × 10-3 m 

Brine channel thickness (tbc) 0.7112 × 10-3 m 

Permeate channel thickness (tpc) 0.5 × 10-3 m 

Brine channel void fraction (𝜙𝑏𝑐) 0.9 

Water transport coefficient (Aw) 4.39 × 10-7 m/bar.s 

Salt transport coefficient (Bs) 1.35 × 10-8 m/s 

 

4.2.1 RO modules 

The split-feed flow configuration forms two flow loops around the pressure vessels. The 

outer loop flow, QHPP, is pressurised by the HPP and represents the permeate portion of the 

feed stream. The inner loop flow, QiSave, is pressurised by the iSave and represents the brine 

portion of the feed stream. A defined quantity of the brine stream (0.5 – 4%), QLub, is used in 

the iSave to lubricate moving parts [163]. This quantity is lost to system discharge along with 

the reject brine. The lubrication flow is supplied by the HPP and can be verified 

experimentally by subtracting the permeate flow, Qp, from the HPP outlet flow, QHPP [163]. 

An empirical relation to calculate the lubrication flow can be found in Section 4.2.2.3. In 

steady-state condition, the flow balance per pressure vessel can be described as follows: 

𝑄𝑓 = (𝑄𝐻𝑃𝑃 + 𝑄𝑖𝑆𝑎𝑣𝑒)/𝑁𝑝𝑣                                    (4.1) 

𝑄𝑏 = (𝑄𝑖𝑆𝑎𝑣𝑒 + 𝑄𝐿𝑢𝑏)/𝑁𝑝𝑣                             (4.2) 

𝑄𝑝 = (𝑄𝐻𝑃𝑃 − 𝑄𝐿𝑢𝑏)/𝑁𝑝𝑣                         (4.3) 
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where Qf is the feed flowrate, Qb is the brine flowrate and Npv is the number of pressure 

vessels. 

RO relies on applying pressure higher than the osmotic pressure forming a net driving 

pressure that pushes water through the membrane. This process is described by the solution-

diffusion model as follows:  

𝐽𝑤 =
𝑄𝑝

𝐴𝑚
= 𝐴𝑤𝑇𝐶𝐹(∆𝑃 − ∆𝜋)                    (4.4) 

where Jw is the permeate water flux and Aw is the membrane water permeability coefficient. 

Am is the membrane active area calculated by:  

𝐴𝑚 = 2𝑛𝑒𝑛𝑙𝑤𝑏𝑐𝑙𝑏𝑐                     (4.5) 

where 𝑛𝑒 is the number of RO elements in series, 𝑛𝑙 is the number of membrane leaves that 

are folded to form the feed channel,  𝑤𝑏𝑐 is the membrane width and 𝑙𝑏𝑐 is the membrane 

length. The pressure difference across the membrane, ∆𝑃, is calculated using equation (4.6) 

as: 

∆𝑃 = 𝑃𝑓 − 𝑃𝑝 −
𝑃𝑑𝑟𝑜𝑝

2
                      (4.6) 

where Pf and Pp are the feed and permeate pressures, respectively. Pdrop is the pressure drop 

along the membrane that is given by: 

𝑃𝑑𝑟𝑜𝑝 = 0.01
1

14.8
𝑛𝑒(

3600

0.227
𝑄𝑏𝑢𝑙𝑘)1.7                  (4.7) 

where Qbulk is the bulk flowrate inside the brine channel. The osmotic pressure difference 

across the membrane, ∆𝜋, is calculated from equation (4.8) as follows:  

∆𝜋 = 𝑛𝑖𝑅(𝑇 + 273)
1

𝑀𝑊
 (𝐶𝑤 − 𝐶𝑝)                 (4.8) 

where R is the universal gas constant, 𝑛𝑖 is the number of moles in a NaCl molecule, MW is 

the NaCl molecular weight, T is the feedwater temperature in °C, Cw is the average 

concentration on the membrane wall and Cp is the product water concentration. The 

coefficients of water permeability, Aw, and salt permeability, Bs, are calculated empirically 

from the solution-diffusion model using data collected along the operation range at a feed 

temperature of 25oC. Variations in water and salt permeability due to changes in feed 
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temperature are accounted for using an empirical temperature correction factor, TCF, 

provided by the manufacturer as follows [142, 181]: 

𝑇𝐶𝐹 = {
exp [2640 (

1

298
−

1

273+𝑇
)] ; 𝑇 ≥ 25o𝐶

exp [3020 (
1

298
−

1

273+𝑇
)] ; 𝑇 ≤ 25o𝐶

               (4.9) 

Feed pressure after the positive displacement HPP is dependent on the system backpressure, 

which is caused by the osmotic pressure gradient across the membrane. Thus, the feed 

pressure, Pf, is calculated from a derivation of the permeate flux equation as follows:  

𝑃𝑓 =
1

𝐴𝑤𝑇𝐶𝐹

(𝑄𝐻𝑃𝑃−𝑄𝐿𝑢𝑏)/𝑁𝑝𝑣

𝐴𝑚
+ 𝑃𝑝 +

𝑃𝑑𝑟𝑜𝑝

2
+ ∆𝜋                (4.10) 

where the brine pressure, Pb, is calculated according to the pressure drop along the brine 

channel by:  

𝑃𝑏 = 𝑃𝑓 − 𝑃𝑑𝑟𝑜𝑝                    (4.11) 

Based on the concentration polarisation theory, the average seawater concentration at the 

membrane wall, Cw, is calculated as:  

𝐶𝑤−𝐶𝑝

𝐶𝑏𝑢𝑙𝑘−𝐶𝑝
= 𝑒𝑥𝑝 (

𝐽𝑤

𝐾𝑚
)                   (4.12) 

where Cbulk is the bulk flow concentration and Km is the mass transfer coefficient through the 

membrane, which is calculated using Sherwood analogy as follows: 

𝑆ℎ =
𝐾𝑚𝑑ℎ

𝐷𝐵
= 0.2𝑅𝑒0.57𝑆𝑐0.4                             (4.13) 

where Sh is the Sherwood number, DB is the brine diffusivity, dh is the hydraulic diameter of 

the brine channel, Sc is the Schmidt number and Re is the Reynolds number in the brine 

channel [42, 177, 182]. The seawater diffusivity DB and the Schmidt number are given 

respectively by equations (4.14) and (4.15) as: 

𝐷𝐵 = 6.725 × 10−6 × exp (0.1546 × 10−3 × 𝐶𝑏𝑢𝑙𝑘 −
2513

𝑇+273
)          (4.14) 

𝑆𝑐 =
𝜇

𝜌𝐷𝐵
                     (4.15) 
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where 𝜇 is the seawater viscosity given by equation (4.16) and 𝜌 is the seawater density 

calculated from equation (4.17) according to the feed concentration, Cf, as follows [42]:  

𝜇 = 1.234 × 10−6 × 𝑒𝑥𝑝 (0.0212 × 𝐶𝑏𝑢𝑙𝑘 +
1965

𝑇+273
)            (4.16) 

𝜌 = 498.4 × 𝑚(𝑇) + (248,400 × 𝑚(𝑇)2 + 752.4 × 𝑚(𝑇) × 𝐶𝑓)
1/2

        (4.17) 

where 𝑚(𝑇) = 1.0069 − 2.757 × 10−4 × 𝑇 

As for the Reynolds number inside the brine channel, it is given by:  

𝑅𝑒 =
𝜌𝑑ℎ𝑉𝑏𝑢𝑙𝑘

𝜇
                    (4.18) 

where Vbulk, the bulk flow velocity through the brine channel, is calculated as follows: 

𝑉𝑏𝑢𝑙𝑘 =
𝑄𝑏𝑢𝑙𝑘

n𝑙w𝑏𝑐𝑡𝑏𝑐𝜙𝑏𝑐
                     (4.19) 

where tbc is the brine channel thickness and 𝜙𝑏𝑐 is the void fraction that represents the 

reduction of void volume inside the brine channel [177, 183]. The hydraulic diameter, dh, 

represents the non-circular geometry of the spacer-filled brine channels. It is calculated using 

the void fraction, 𝜙𝑏𝑐, and the feed spacer thickness, tsp, to include the effect of the spacer’s 

surface area on the flow as follows [177, 183]: 

𝑑ℎ =
4𝜙𝑏𝑐

2

𝑡𝑠𝑝
+(1−𝜙𝑏𝑐) 

8

𝑡𝑠𝑝

                    (4.20) 

As a result of high concentration difference between the brine and product water streams, salt 

permeates the membrane along with water molecules. This mass transport phenomenon can 

be described by equation (4.21), which represents the salt transport flux Js as follows: 

𝐽𝑠 = 𝐵𝑠𝑇𝐶𝐹𝑒𝑥𝑝 (
𝐽𝑤

𝐾𝑚
) (𝐶𝑏𝑢𝑙𝑘 − 𝐶𝑝)                (4.21) 

The transient characteristics of the RO module performance are associated with variation in 

brine concentration along the membrane length. These variations directly affect the system 

pressure response and permeate flowrate through changes in osmotic resistance. The change 

in bulk flow concentration, Cbulk, related to salt accumulation in the membrane channel, is 
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represented by the salt balance along the membrane length and through the active layer using 

the concentration conservation formula as follows: 

𝑉𝑏𝑐
𝑑𝐶𝑏𝑢𝑙𝑘

𝑑𝑡
= 𝑄𝑓𝐶𝑓 − 𝑄𝑏𝐶𝑏 − 𝑄𝑝𝐶𝑝                (4.22) 

where the brine channel volume, Vbc, and the brine concentration, Cb, are calculated 

respectively from equations (4.23) and (4.24) as: 

𝑉𝑏𝑐 = 𝑛𝑒𝑛𝑙𝑤𝑏𝑐𝑙𝑏𝑐𝑡𝑏𝑐𝜙𝑏𝑐                  (4.23) 

𝐶𝑏 = 2𝐶𝑏𝑢𝑙𝑘 − 𝐶𝑓                   (4.24) 

Similarly, the transient change in the bulk permeate flow concentration, Cp, is given by: 

𝑉𝑝𝑐
𝑑𝐶𝑝

𝑑𝑡
= 𝑄𝑝𝐶𝑝,𝑚 − 𝑄𝑝𝐶𝑝                   (4.25) 

where Cp,m is the local permeate concentration at the membrane surface and Vpc is the 

permeate channel volume, which are given respectively by equations (4.26) and (4.27) as 

follows: 

𝐶𝑝,𝑚 = (
𝐽𝑠

𝐽𝑤
)                     (4.26) 

𝑉𝑝𝑐 = 𝑛𝑒𝑛𝑙𝑤𝑏𝑐𝑙𝑏𝑐𝑡𝑝𝑐𝜙𝑝𝑐                    (4.27) 

Although the above equations describe the output streams characteristics for a single pressure 

vessel, they can also be used to predict the same outputs for a RO unit containing multiple 

pressure vessels. Thus, the permeate flowrate, permeate concentration, brine flowrate and 

brine concentration from the two pressure vessels are calculated for Npv = 2, respectively, as 

follows: 

𝑄𝑝 = ∑ 𝑄𝑝,𝑖
𝑁𝑝𝑣

𝑖=1
                     (4.28) 

𝐶𝑝 =
∑ 𝐶𝑝,𝑖𝑄𝑝,𝑖

𝑁𝑝𝑣
𝑖=1

𝑄𝑝
                     (4.29) 

𝑄𝑏 = ∑ 𝑄𝑏,𝑖
𝑁𝑝𝑣

𝑖=1
                     (4.30) 
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𝐶𝑏 =
∑ 𝐶𝑏,𝑖𝑄𝑏,𝑖

𝑁𝑝𝑣
𝑖=1

𝑄𝑏
                    (4.31) 

4.2.2 Pumping system 

The detailed model for the LPP, HPP and iSave are presented in this section. Each 

subsection below outlines the flowrate and power consumption calculation of the respective 

pump. The total power consumption of the RO system is thus calculated as follows:  

𝑃𝑒,𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑒,𝐿𝑃𝑃 + 𝑃𝑒,𝑖𝑆𝑎𝑣𝑒 + 𝑃𝑒,𝐻𝑃𝑃               (4.32) 

4.2.2.1 Low-pressure pump 

Specifications of the LPP are presented in Table 4.2 [184]. The pump flowrate was 

controlled using a modulated diaphragm valve installed on the brine reject line after the 

iSave. The flowrate through the LPP and control valve, QLPP (m3/s), is calculated as follows: 

𝑄𝐿𝑃𝑃 = 𝐶𝑣√
Δ𝑃𝐿𝑃𝑃

𝑆𝐺
                         (4.33) 

where Δ𝑃𝐿𝑃𝑃 (bar) is the differential pressure across the LPP, SG is the feedwater specific 

gravity and Cv is the valve flow coefficient (m3/s) at the respective position. The valve 

operates on a linear control characteristic with a flow coefficient of 27 m3/h at the fully 

opened position. The inlet pressure to the pump was assumed atmospheric since an open-top 

feed tank was used. The flowrates through the suction and discharge ports were assumed 

equal by neglecting the leakage flow through the pump casing. The LPP discharge pressure is 

calculated through the pump curve in Table 4.2. The LPP power consumption, Pe,LPP, is 

calculated from equation (4.34) based on the pump and motor efficiency. 

𝑃𝑒,𝐿𝑃𝑃 =
𝑄𝐿𝑃𝑃×∆𝑝𝐿𝑃𝑃×102

𝜂𝑝,𝐿𝑃𝑃×𝜂𝑚,𝐿𝑃𝑃
                  (4.34) 
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Table 4.2. Low-pressure pump specifications. 

Pump 

Type LOWARA CEA210/5/D-V 

Maximum flowrate (QLPP) 18 m3/h 

Efficiency (𝜂𝑝,𝐿𝑃𝑃) 0.53 % 

Pump 

curve 

QLPP = 7.2 m3/h QLPP = 12 m3/h QLPP = 18 m3/h 

Δ𝑃𝐿𝑃𝑃 = 2.82 bar Δ𝑃𝐿𝑃𝑃 = 2.66 bar Δ𝑃𝐿𝑃𝑃 = 2.31 bar 

Motor  

Power (Pe,LPP) 2.2 kW 

Efficiency (𝜂𝑚,𝐿𝑃𝑃) 0.85 % 

Pole (Np,LPP) 2 

 

4.2.2.2 High-pressure pump 

Specifications of the HPP are presented in Table 4.3 [160].  The pump flowrate is 

directly proportional to the shaft speed regardless of discharge pressure. The pump pressure 

differential, Δ𝑃𝐻𝑃𝑃, is the difference between the RO feed pressure and the LPP supply 

pressure. The pump was controlled using a VFD that varies the supply frequency and voltage 

to proportionally control the rotational speed. The pump’s rotational speed NHPP is calculated 

as follows: 

𝑁𝐻𝑃𝑃 =
120𝐹𝐻𝑃𝑃

𝑁𝑝,𝐻𝑃𝑃
                          (4.35) 

where FHPP is the VFD supply frequency and Np,HPP is the number of poles of the induction 

motor. Accordingly, the flowrate supplied by the pump QHPP is calculated from equation 

(4.36) based on the volumetric displacement Vd,HPP, assuming no leakage losses in the pump 

casing.  

𝑄𝐻𝑃𝑃 = 𝑉𝑑,𝐻𝑃𝑃 ×
𝑁𝐻𝑃𝑃

60
                   (4.36) 

The shaft power transmitted by the HPP motor, Pshaft,HPP, is calculated from equation (4.37), 

which is an empirical formula provided by the pump’s manufacturer. The HPP power 

consumption, Pe,HPP,  is calculated from equation (4.38) based on shaft power and motor 

efficiency. 
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𝑃𝑠ℎ𝑎𝑓𝑡,𝐻𝑃𝑃 =
16.7×𝑄𝐻𝑃𝑃×3600×∆𝑃𝐻𝑃𝑃

530
                       (4.37) 

𝑃𝑒,𝐻𝑃𝑃 =
𝑃𝑠ℎ𝑎𝑓𝑡,𝐻𝑃𝑃 

𝜂𝑚,𝐻𝑃𝑃
                          (4.38) 

Table 4.3. High-pressure pump specifications. 

Pump 

Type Danfoss APP 3.5 

Maximum flowrate (QHPP) 3.5 m3/h 

Volumetric displacement (Vd,HPP) 20.54 × 10-6 m3/rev 

Motor  

Power (Pe,HPP) 11 kW 

Efficiency (𝜂𝑚,𝐻𝑃𝑃) 
1/1 3/4 1/2 

92.5% 92.7% 90.9% 

Pole (Np,HPP) 2 

 

4.2.2.3 Energy recovery device 

Specifications of the Danfoss iSave are shown in Table 4.4 [161]. The iSave’s motor was 

controlled using a VFD for flow control. The iSave’s motor speed, NiSave, is calculated from 

equation (4.39), such that FiSave is the supply frequency and Np,iSave is the number of poles of 

the induction motor. The flowrate through the iSave is calculated based on the volumetric 

displacement, Vd,iSave, from equation (4.40).  

𝑁𝑖𝑆𝑎𝑣𝑒 =
120𝐹𝑖𝑆𝑎𝑣𝑒

𝑁𝑝,𝑖𝑆𝑎𝑣𝑒
                         (4.39) 

𝑄𝑖𝑆𝑎𝑣𝑒 = 𝑉𝑑,𝑖𝑆𝑎𝑣𝑒 ×
𝑁𝑖𝑆𝑎𝑣𝑒

60
                               (4.40) 

The iSave power consumption Pe,iSave is calculated from equation (4.41) based on the shaft 

torque 𝜏𝑠ℎ𝑎𝑓𝑡,  the motor efficiency 𝜂𝑚,𝑖𝑆𝑎𝑣𝑒 and the rotational velocity 𝜔 (rad/s). The shaft 

torque and motor efficiency are presented in the iSave’s datasheet [161]. 

𝑃𝑒,𝑖𝑠𝑎𝑣𝑒 =
𝜏𝑠ℎ𝑎𝑓𝑡×𝜔

𝜂𝑚,𝑖𝑆𝑎𝑣𝑒
                          (4.41) 

The lubrication flow for the iSave is presented based on the iSave flowrate QiSave and the 

brine pressure Pb in Fig. 4.3 [161]. Slight mixing occurs between the brine and seawater 
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streams due to the lack of a physical barrier between them [163]. The increase in feed 

concentration can be estimated by calculating the outlet feed salinity from the mixing 

percentage as follows [126]: 

𝑀𝑖𝑥𝑖𝑛𝑔 (%) =
𝐶𝑖𝑆𝑎𝑣𝑒−𝐶𝑓

𝐶𝑏−𝐶𝑓
× 100                      (4.42) 

where CiSave is the concentration of the High-pressure (HP) feed leaving the iSave, Cf is the 

feedwater concentration and Cb is the HP brine concentration. The mixing volume is 

primarily subject to the flow balance between the HP and LP ducts of the pressure exchanger. 

The iSave was assumed to be operating with a balanced flow to minimise calculations, at 

which the volumetric mixing is estimated at 5% [161]. 

 

Fig. 4.3. Lubrication flow required to lubricate the iSave moving parts. 

Table 4.4. Energy recovery device specifications [161]. 

Pump 

Type Danfoss iSave 21 Plus 

Flowrate (QiSave) 6 - 22 m3/h 

Volumetric displacement (Vd,iSave) 273 × 10-6 m3/rev 

Motor  

Power (Pe,iSave) 5.5 kW 

Efficiency (𝜂𝑚,𝑖𝑆𝑎𝑣𝑒) 
1/1 3/4 1/2 

87.7% 88.2% 87.1% 

Pole (Np,iSave) 4 
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4.2.3 Wind turbine 

The wind turbine used in the simulations is the Ryse Energy (Blackpool, United 

Kingdom) E-10, which is a 3-bladed horizontal axis wind turbine that delivers 10 kW rated 

power, thus matching the power requirement of the laboratory RO system [185]. Initially, the 

wind turbine performance was represented using a single-mass dynamic model, as in [186], 

which included the rotor and generator inertia in the rotor speed calculation. However, the 

inertial response was found to be negligible due to the low mass of the rotor and generator 

assembly, which showed an insignificant delay in rotor speed relative to changes in wind 

speed. The effect of such inertia would be more significant for larger wind turbines and 

would tend to smooth the power output under fluctuating wind conditions. Thus, for the 

selected turbine, a simple quasi-steady-state model was used to calculate the wind power 

using the wind turbine power curve. This quasi-steady-state model reflects the real-time wind 

speed fluctuations without any delays, leading to the design of a more robust control system. 

If the control system can accommodate the rapid fluctuations from a small, zero-inertia wind 

turbine, it will also be able to accommodate those from a larger turbine, and from a range of 

RE sources in general. The wind turbine power curve for the E-10 wind turbine is presented 

in Fig. 4.4 [185]. 

 

Fig. 4.4. Wind turbine power curve.  

4.3 Model implementation 

MATLAB-Simulink was used for implementing the RO system dynamic model. It uses a 

graphical programming environment for modelling, simulating, and analysing dynamic 

systems. The RO system was modelled in the form of interconnected blocks, with each block 

representing a specific component, i.e., RO pressure vessels, LPP, ERD, HPP, and wind 
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turbine. The component blocks were connected hierarchically by their input/output operating 

parameters. This modelling approach is beneficial for representing the relationship between 

all the components and the dependencies of operating parameters on each other. Another 

advantage of using MATLAB-Simulink is its ability to solve algebraic loops using Newton’s 

method. This is important for modelling a system such as an RO plant in which the operating 

parameters of a component can be dependent on the states of the downstream components. 

For example, the flowrate through a centrifugal pump is function of the pressure downstream 

of the pump. This requires model states to be fed backwards for the model to converge. 

The Simulink solver was set to a fixed sample time of 0.1s and it used ode14x for calculating 

the model’s states. Ode14x uses a combination of Newton’s method and an extrapolation 

from the current value to calculate the model’s states at the next time step. The model inputs 

were the wind speed, HPP speed, iSave speed, feed temperature and feed concentration. The 

model outputs were the power consumption of the LPP, iSave and HPP, SEC, permeate 

recovery, and the stream characteristics (flowrate, pressure, and concentration) of the feed, 

brine and permeate flows. 

4.4 Model validation 

This section describes the model validation using measured data collected from the lab 

RO system. The model prediction accuracy was assessed for predicting the permeate 

flowrate, brine flowrate, feed pressure, permeate concentration, and power consumption, for 

defined inputs, i.e., the HPP and iSave speed, and input disturbances. The model steady-state 

output and dynamic response prediction accuracy are presented as follows: 

4.4.1 Steady-state model validation 

The steady-state model outputs were compared to measured data obtained with varying 

feed concentration (25,000 to 40,000 mg/l) and feed temperature (20 to 30oC). The data were 

recorded and averaged for one minute after the permeate concentration stabilised, thus 

indicating that the system reached steady state. Details of the measuring instruments and 

experimental errors can be found in Section 3.4. The dataset was simulated using the RO 

model at the same inputs and disturbances and compared to the experimental data. A 

regression analysis showing the correlation between the experimental and simulated data is 

shown in Fig. 4.5. The prediction accuracy was assessed using the coefficient of 

determination (R2) and Root Mean Square Error (RMSE), as summarised in Table 4.5. The 
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model showed high accuracy for predicting the permeate flowrate, brine flowrate, feed 

pressure and power presented by a R2 of 0.93, 0.97, 0.98 and 0.99 and a RMSE of 0.253 

m3/h, 0.14 m3/h, 1.124 bar and 0.303 kW, respectively. The prediction accuracy for the 

permeate concentration was more modest compared to other parameters, at a R2 of 0.77 and 

RMSE of 70.145 mg/l, due to an overestimation of the permeate concentration at low 

flowrates, as shown in Fig. 4.5 (e). To ensure that this overestimation is not a modelling 

error, the simulated data were compared to that of ROSA, at the same inputs and 

disturbances, and a correlation presented by a R2 of 0.97 was achieved, which validated the 

accuracy of the model. Since the deviation between the model and actual permeate 

concentration is an overestimation, it should not affect the results in terms of the actual 

product quality exceeding 500 mg/l. 

Fig. 4.6 compares the measured and simulated data of the feed pressure and power 

consumption for a specific permeate flowrate. The error between the measured and simulated 

feed pressure and power consumption remained below ±2.5% and ±4.7%, respectively. The 

estimated experimental error for the feed pressure and power consumption based on the 

accuracy of measuring instruments were 0.25% and 0.5%, respectively. 

Table 4.5. Validation of the Steady-state model output represented by the coefficient of 

determination (R2) and Root Mean Square Error (RMSE). 

 
Permeate 

flowrate (Qp) 

Brine 

flowrate (Qb) 

Feed 

pressure (Pf) 

Power 

(Pe,total) 

Permeate 

concentration 

(Cp) 

Regression 

analysis 
R2 = 0.93 R2 = 0.97 R2 = 0.98 R2 = 0.99 R2 = 0.77 

RMSE 0.253 m3/h 0.14 m3/h 1.124 bar 0.303 kW 70.145 mg/l 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 4.5. Regression analysis showing the correlation between the experimental and 

simulated data for the a) permeate flowrate, b) brine flowrate, c) feed pressure, d) power 

consumption and e) permeate concentration. 
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(a) 

 
(b) 

Fig. 4.6. A comparison between the measured and simulated a) feed pressure and b) power 

consumption for the same permeate flowrate. The data is collected at a feed concentration of 

35,000 mg/l and a feed temperature of 25oC. 

4.4.2 Dynamic model validation 

The model prediction accuracy for the plant dynamic response was assessed by its ability 

to predict a transient change in permeate flowrate, feed pressure, and permeate concentration 

for a 10% step-change in the HPP rotational speed, NHPP. As for the brine flowrate, a 

validation for its dynamic response was not possible due to lack of resources to install a 

flowrate sensor with high-pressure rating on the iSave high-pressure inlet/outlet line. Instead, 

the brine flowrate was calculated using mass balance via the low-pressure flowrate sensors 

and the developed model was validated for estimating the steady-state value, as presented in 

Fig. 4.5 (b). Nonetheless, this does not affect the results or accuracy of this model as the 

dynamic response of the brine flowrate to changes in the iSave speed is expected to be 

instantaneous due to using a positive displacement booster pump.  

Fig. 4.7 presents the measured and simulated system response for a step-change in permeate 

flowrate. The model provided high accuracy in predicting the measured data, as the error 

remained within a ±5% margin along the step-test. The change in permeate production 

reached steady state almost instantly for the change in HPP speed. This was due to using a 

positive displacement HPP, where the pump discharge flow is directly proportional to the 

pump speed. The fluctuations in the measured flow data were due to the sensitivity of the 

paddle-wheel flow sensor to any turbulence or pulsation in the flow stream. The data 

collected from the step-test were later used in the control system design and tuning in Section 

5.3. 
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Fig. 4.7. Validation of model accuracy for predicting the permeate flowrate dynamic 

response. The step-response test was performed at 28oC feed temperature and 35,195 mg/l 

feed concentration. The permeate recovery varied from 20.7% to 22.9%. 

The model also delivered high accuracy when simulating the feed pressure. As shown in Fig. 

4.8, the measured and predicted data remained within a 3% error margin. The change in feed 

pressure due to a step-change in HPP speed exhibited two characteristic behaviours. Initially, 

the change in pressure was instantaneous in alignment with the change in HPP discharge flow 

and increased flow volume in the brine channel. The second part of the response, exhibiting 

the characteristics of a first-order system, was an osmotic pressure increase due to increased 

concentration and salt accumulation accompanying the increase in permeate flowrate. 

 

Fig. 4.8. Validation of model accuracy for predicting the feed pressure dynamic response. 

The step-response test was performed at 28oC feed temperature and 35,195 mg/l feed 

concentration. The permeate recovery varied from 20.7% to 22.9%. 
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The comparison between the predicted and measured permeate concentration due to a step 

increase in HPP speed is presented in Fig. 4.9. The model accurately predicted the decline in 

permeate concentration by approximating its response to a first-order system. The model 

showed high accuracy, such that the predicted and measured data remained within a 5% error 

margin. This confirmed the validity of the concentration conservation equations presented in 

Section 4.2.1. 

 

Fig. 4.9. Validation of model accuracy for predicting the permeate concentration dynamic 

response. The step-response test was performed at 27oC feed temperature and 35,429 mg/l 

feed concentration. The permeate recovery varied from 20.7% to 22.9%. 

4.5 Summary 

This chapter presented a bespoke dynamic model developed to predict the RO system 

performance. The model was based on the solution-diffusion theory and the Analytical-Film 

concentration polarisation theory. It has been implemented in MATLAB-Simulink and will 

be used in the development and testing of the control system, and the variable operation 

procedure. The model steady-state output and dynamic response prediction accuracy have 

been validated using experimental data from the RO system. The main conclusions are as 

follows: 

 The model showed high accuracy for predicting the RO system steady-state 

performance. The prediction accuracy for the permeate flowrate, feed pressure, power 

and permeate concentration was presented by a R2 of 0.93, 0.98, 0.99, and 0.77 and a 

RMSE of 0.253 m3/h, 1.124 bar, 0.303 kW, and 70.145 mg/l, respectively. 
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 Moreover, the model accurately predicted the transient change in permeate flowrate, 

feed pressure and permeate concentration for a 10% step-change in the HPP rotational 

speed, whereas the error between the predicted and measured data remained within a 

5% margin along the step-test. 
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5 Chapter 5  Variable-speed operation: operation strategy and control 

system design  

5.1 Introduction 

The concept of ‘Variable Operation’ has been presented in recent studies and it  has 

shown adequate performance compared to systems operating at constant load [11, 35]. 

Variable operation would allow direct operation of commercial RO plants by mature 

renewables, i.e., winds and solar energy, without the need for energy storage and backup 

systems [11, 35, 187]. Variable operation consists of two techniques, the choice of which 

depends on the extent of RE variation, i.e.: 

 Variable-speed operation: The RO plant operates at variable production rate and 

permeate recovery to adjust its power consumption with respect to available energy 

[11]. This allows fine adjustment in matching RO system power consumption to RE 

fluctuations, but only over a limited power range. 

 Modular operation: The RO units/trains are connected/disconnected depending on 

available energy. This relies on the modularity of RO systems to tackle the 

intermittency and considerable power variations of RE sources [66]. Though it 

accommodates larger variations, this technique only allows discrete changes in power 

input. 

The possibility of combining variable-speed operation and modular operation as a load 

management technique for large-scale RO systems would give the greatest flexibility [187]. 

However,  there are technical challenges in implementing variable operation in large-scale 

application [11]. This chapter focuses on tackling operation limitations specific to variable-

speed operation. 

To operate a RO system at variable speed, two steps are required. Initially, a safe operational 

window is defined to set the boundaries of acceptable variation in operating parameters [76, 

79, 116]. Then, an operational strategy is selected that defines the control strategy for varying 

the operation parameters with respect to available power. This helps create a systematic 

approach to changing the operating parameters and thus match the RO consumption to 

available RE. 
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A study performed by Pohl et al. [79] compared the performance of four control strategies for 

a simple RO plant connected to a RES. The strategies controlled the feed flowrate and feed 

pressure to operate the system at either constant feed flow, constant feed pressure, constant 

concentrate flow or constant permeate recovery. The study concluded that maintaining 

constant permeate recovery provided the optimum performance regarding SEC, permeate 

quality and range of operation. Although, more recent studies [33, 188] have used constant 

recovery, others have used different control strategies [91, 189, 190], suggesting that the 

optimum control strategy depends on system design and operation requirements. This 

emphasizes the importance of using system configurations and components that are used in 

large-scale system to develop solutions that are transferable to commercial applications [11].  

Another challenge is developing a control system having fast and robust performance when 

implementing the chosen operational strategy. Although control system performance is 

crucial, only a few studies have discussed this topic for RE-powered RO plants [11, 145]. An 

investigation by Carta et al. [33] reported a mismatch between power generated by a wind 

turbine and the power consumption of a small-scale RO plant, despite using a stable 2-minute 

resolution wind speed signal as an input. Advanced control systems were recommended for 

their fast response in adjusting controlled variables, despite RE fluctuations and RO system 

inertia [11, 33, 68, 82].  

This chapter aims to improve the efficiency of variable-speed operation of RE powered RO 

systems to facilitate implementation for large-scale applications. The RE source considered is 

wind energy, as it is a good representation of a fluctuating and intermittent energy source that 

does not have a predictable pattern. Other types of RE, such as solar, generally vary more 

slowly and predictably; therefore, a solution developed for wind is expected to accommodate 

a range of RE types. The objectives for this chapter are to: 

 Present an optimised variable-speed operation technique using a RO system having 

comparable performance to large-scale plants.  

 Investigate and compare the performance of alternative control strategies to vary the 

operating parameters with respect to changes in available power from a wind turbine. 

 Design and implement an advanced control system based on MPC and compare its 

performance to a conventional PID controller. 
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The chapter is structured as follows. Section 5.2 outlines the development process for an 

optimised operation strategy. Section 5.3 presents the PID and MPC control systems design.  

The results and discussion are presented in Section 5.4, where a sensitivity analysis to define 

the effect of input disturbances on system performance is introduced. The analysis and 

selection of an optimum operational strategy is also presented, and a detailed comparison 

between the conventional PID controller and MPC is performed. Section 5.5 summarises the 

findings and conclusions of this chapter. 

5.2 Variable-speed operation  

Variable-speed operation involves operating the RO system at varying power 

consumption based on available energy. The plant’s power consumption is varied by 

changing operating parameters that affect production rate and permeate recovery [11]. The 

process of defining a safe operational window and operation strategy is described as follows: 

5.2.1 Definition of an operational window 

The operational window defines the acceptable range of parameter variation for safely 

operating the RO system. Several studies [76, 79, 116] have presented design specific 

operational windows but all using the same general concept. The operational window is 

defined based on the RO membrane constraints across the feed pressure and flowrate using 

the ROSA software. A full description of the procedure replicated in this study can be found 

in [79]. Constraints of the FilmTec™ SW30HRLE-400 membranes are described as follows 

[79, 142]: 

1) Maximum feed pressure that the membrane can withstand (83 bar). 

2) Maximum allowed feed flow based on the membrane mechanical loading (14 

m3/h). 

3) Maximum permeate flow per element (1.4 m3/h) and the maximum recovery per 

element (13%) that could lead to excessive concentration polarisation.  

4) Minimum concentrate flow to avoid salt precipitation and membrane fouling (3.4 

m3/h). 

5) Maximum product concentration based on the recommendations of the WHO 

(500 mg/l). 
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As presented in Fig. 5.1, the operational window was defined for two pressure vessels in 

parallel, each containing three SW30HRLE-400 RO elements in series, for feedwater of 

35,000 mg/l NaCl concentration at 25oC. During the process of RO system development, the 

system design and component selection reflected the limitation imposed by the operational 

window. More complexity can be added to the operational window development by 

considering variations in feed concentration and temperature, in addition to using other 

operation parameters such as permeate flowrate, permeate quality, power consumption and 

SEC [33]. 

 

Fig. 5.1. Safe operational window.  

5.2.2 Development of an operational strategy 

The second step in implementing variable-speed operation is developing an operational 

strategy for the plant to respond optimally to wind power variation [11]. The operational 

strategy is developed by mapping the controlled operating parameters corresponding to the 

RO system power consumption over the range of operation [11]. The controlled parameters 

are then varied during operation depending on available power from the wind turbine. 

The process of generating an operational strategy depends on two procedures. Firstly, 

identifying the manipulated and controlled variables that have a direct effect on the RO 

power consumption, which could vary depending on system design. Secondly, defining a 

control strategy outlining how these controlled variables will vary depending on available 

power.  
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5.2.2.1 Identifying the manipulated and controlled variables 

The manipulated variables are independent input parameters that are varied by the 

control system, e.g., pump speed or valve opening, to maintain the controlled outputs, e.g., 

flowrate or pressure, at a reference value corresponding to specific power consumption. For 

RO systems, the manipulated variables and controlled outputs directly affecting the power 

consumption depend on system design and used equipment. Previous studies [33, 79, 97, 

116] have used feed flowrate and feed pressure as controlled outputs for varying the power 

consumption. This concept is true for systems using a throttle valve, a Pelton wheel, or a 

turbocharger in the brine reject line. These systems can offer active control of the feed 

pressure by manipulating the throttle valve opening or changing the input nozzle valve 

opening in case of a Pelton turbine or a turbocharger [11]. However, for the system used in 

this study and for systems using split-feed flow configuration in general, their operational 

control is based purely on flow control, such that the variation in system pressure is a by-

product of changes in permeate flux, brine flowrate, feed concentration and temperature. To 

further explain, the split-feed flow configuration creates two flow loops through the RO 

membrane. The outer loop flow is supplied by the HPP, representing the permeate portion of 

the feed stream, and the inner loop flow is supplied by the iSave, representing the brine 

portion of the feed stream. This in turn creates two independent control loops, by which the 

HPP speed, NHPP, directly controls the permeate flowrate and the iSave speed, NiSave, directly 

controls the brine flowrate, and both ultimately dictate the power consumption.  

Fig. 5.2 presents the finalised control system structure and signals between each element. The 

control system generates the control signal based on available wind power and input 

disturbances. The control system consists of the embedded operation strategy that generates 

the set-points for the permeate and brine flowrates corresponding to a specific power 

consumption, in addition to the controller that generates the control signal depending on the 

error signal. The controller then sends a control signal to the RO system to vary the 

manipulated variables, i.e., HPP and iSave speeds, to control the controlled variables, i.e., the 

permeate and brine flowrates. 
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Fig. 5.2. High-level block diagram showing the control system structure and signals between 

each element.  

5.2.2.2 Defining the control strategy 

The control strategy defines the rule for changing the permeate and brine flowrates with 

respect to available wind power. The optimum control strategy should present a wide 

operation range, allowing for longer periods of permeate production, and operating at the 

lowest SEC, to efficiently utilize the available power [138]. An investigation was performed 

to determine the optimum control strategy considering, a) operation at constant recovery, b) 

operation at constant brine flowrate and c) operation at a constant feed flow. Operation at 

constant feed pressure was not considered, as it requires maintaining a constant permeate 

flowrate [79]. The investigation was performed by simulating the system performance along 

the full operation range using each control strategy. The results are presented in Section 5.4.2. 

5.3 Control system design 

This section presents the control system design for the PID and MPC controllers. The 

control system manipulated variables are the HPP speed NHPP and iSave speed NiSave. The 

controlled outputs are the permeate and brine flowrates. The input disturbances are the feed 

concentration and feed temperature.  

5.3.1 Proportional-Integral-Differential controller 

PID control is the most widely used process control technique for industrial applications, 

due to its simplicity and effectiveness [150]. The transfer function of a standard PID 

controller is presented in parallel form as follows: 

𝐺(𝑠) = 𝐾𝑝 + 𝐾𝑖
1

𝑠
+ 𝐾𝑑𝑠                                                    (5.1) 
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where Kp is the proportional gain, Ki is the integral gain, Kd is the derivative gain [191]. The 

proportional gain delivers a control action proportional to the present error value between 

plant input and the reference signal. The integral term eliminates steady-state error by 

summing the error over time. The derivative term adds damping and decreases overshoot by 

generating a control signal proportional to the rate of change of the process variable. For this 

study, only the proportional and integral terms were used, since the RO system open-loop 

response exhibited minimal overshoot and to avoid system instability that could occur due to 

sensors noise [33]. The derivative term is set to zero. For future investigations, a filter can be 

used to reduce the sensor noise when applying the derivative term, however, this is not in this 

study for the sake of simplicity. 

The PID controller performance is dependent on the proportional, integral, and derivative 

gains. These tuning parameters are selected to generate a desired response based on the 

process dynamics [192]. Various techniques have been proposed for PID tuning that offer an 

educated guess for gain values for a stable system and provide a starting point for fine-tuning 

until the desired response is obtained [192, 193]. The PID tuning parameters were initially 

selected using the open loop Ziegler-Nichols tuning method, a popular PID tuning technique, 

and were later adjusted using the MATLAB PID Tuner to obtain an optimised performance 

[192, 193]. The PID Tuner allows for tuning the controller gains based on response time and 

transient behaviour for a step-input in the time domain [194-196]. The tuning parameters 

were selected to deliver the fastest rise time with minimum overshoot, while maintaining a 

change in pump speeds below 2 Hz/s for smooth operation [165]. The finalised PID tuning 

parameters are presented in Table 5.1. A schematic diagram of the PID controller developed 

is presented in Fig. 5.3. Depending on the wind turbine power and the selected operation 

strategy, the PID controllers receive reference signals for the permeate flowrate, Qp,ref, and 

the brine flowrate, Qb,ref., The controllers then generate control signals for the HPP speed, 

NHPP, and iSave speed, NiSave, which are sent to the VFDs for generating a variable frequency 

electric signal for the HPP, FHPP, and iSave, FiSave. 
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Fig. 5.3. Structure of the Proportional-Integral-Differential Controller. FT represents the flow 

transmitters sending feedback signals to the controller.  

Table 5.1. Proportional-Integral-Differential (PID) controllers tuning 

parameters.  

Derivative gain is set to zero for both controllers. 

 Proportional gain (Kp) Integral gain (Ki) 

High-pressure pump 1.607 4.02 

Danfoss iSave 0.1 0.615 

5.3.2 Model predictive controller 

MPC is an advanced control technique that is becoming increasingly popular for process 

control [197]. Unlike traditional PID control, MPC is specifically designed for multiple-input 

multiple-output systems and has the ability to handle system constraints such as those 

occurring in the RO process [150, 151]. 

Standard MPC comprises two components: a) a built-in dynamic model that predicts system 

response towards a control sequence, and b) an optimiser that calculates an optimal control 

sequence based on minimisation of the error between output and target values. During 

operation,  the prediction and optimisation procedures are performed in parallel at each 

sample time, such that a control sequence is calculated from the optimisation problem and 

then tested on the prediction model for a specific prediction horizon [150]. The first control 

step of the control sequence is applied, and the prediction horizon is displaced one step 

forward to repeat the process and calculate a new control sequence. This is referred to as 

receding horizon approach [149]. The recalculation at each sample time is essential to 
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overcome inaccuracies in prediction and optimisation stages, and periodically make up for 

any unexpected disturbances. 

The MPC controller used in this study is a direct extension of the Dynamic Matrix Control 

algorithm, which is a widely used MPC control algorithm [150, 198]. It uses a discrete state-

space model as the prediction model and a quadratic criterion that is minimised over the 

prediction horizon to generate an optimal control sequence [199, 200]. The controller, 

presented in Fig. 5.4, receives a reference signal for the permeate flowrate, Qp,ref, and brine 

flowrate, Qb,ref, that are generated through the operational strategy, selected in Section 5.4.2, 

depending on the available wind power Pw. The controller generates a control signal in the 

form of HPP speed, NHPP, and iSave speed, NiSave, which are sent to the VFDs that generates 

an electric signal with the corresponding frequencies, FHPP and FiSave. The relation between 

the pump speeds, N, and input frequencies, F, are presented in sections 4.2.2.2 and 4.2.2.3 for 

the HPP and iSave, respectively. The MPC controller is developed using the MPC Designer 

of MATLAB-Simulink. The formulas for the prediction model and optimiser are described as 

follows: 

 

Fig. 5.4. Structure of the Model Predictive Controller.  

5.3.2.1 Prediction model 

The discrete linear time-invariant model used for prediction uses the following general 

form: 

𝒙(𝑘 + 1) = 𝐴𝒙(𝑘) + 𝐵𝒖(𝑘)                          (5.2) 

𝒚(𝑘) = 𝐶𝒙(𝑘) + 𝐷𝒖(𝑘)                           (5.3) 

where k is the sampling time, A, B, C and D are coefficient matrices for the model states, 

model inputs, model outputs and feedforward matrix, respectively. x(k), u(k) and y(k) are 
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vectors representing the model states, model inputs and model outputs respectively [201, 

202]. The state-space prediction model was generated from input/output data using a data-

driven modelling technique called System Identification [203]. System Identification is based 

on estimating values of the coefficient matrices by minimising the error between model 

output and measured response to fit the model to the input/output data [201]. The generated 

multi-input multi-output state-space model is as follows: 

[
𝑥1(𝑘 + 1)
𝑥2(𝑘 + 1)

] = [
−0.272 0

0 −17.27
] [

𝑥1(𝑘)
𝑥2(𝑘)

] + [
−0.3591 0

0 129900
] [

𝐹𝐻𝑃𝑃(𝑘)
𝐹𝑖𝑆𝑎𝑣𝑒(𝑘)

]              (5.4) 

[
𝑄𝑝(𝑘)

𝑄𝑏(𝑘)
] = [

−0.0507 0
0 6.712 ×  10−5] [

𝑥1(𝑘)

𝑥2(𝑘)
] + [

0 0
0 0

] [
𝐹𝐻𝑃𝑃(𝑘)

𝐹𝑖𝑆𝑎𝑣𝑒(𝑘)
]                       (5.5) 

where the model inputs are the HPP input frequency FHPP and the iSave input frequency 

FiSave. The model outputs are the permeate flowrate Qp and the brine flowrate Qb. The data 

used for parameters estimation are time-domain input/output data recorded experimentally at 

0.1s sampling interval during an open-loop step-response test of 10% deviation in the pumps’ 

speed from the rated operating point. The model prediction accuracy is represented by its fit 

to the estimation data and RMSE in Table 5.2. 

Table 5.2. Prediction accuracy of the State-Space model compared 

to the estimation data. 

 Fit to estimation data RMSE 

Permeate flowrate, Qp  86.83 % 0.00212 

Brine flow, Qb 81.25 % 0.00581 

5.3.2.2 Optimiser 

The MPC uses the prediction model to estimate the controlled outputs y with respect to 

the manipulated inputs u. The error between the predicted output and the reference values is 

minimised by generating an optimised control sequence 𝒖𝑘, 𝒖𝑘+1, … 𝒖𝑘+𝑚−1 along the 

control horizon. The first element of the control sequence Δ𝒖(𝑘) is sent to the plant as a 

control signal in the form of 𝒖(𝑘) = 𝒖(𝑘 − 1) + Δ𝒖(𝑘). The remaining samples Δ𝒖(𝑘 + 𝑖) 

are discarded and a new optimisation problem is solved at the next sampling step k + 1 based 

on new measurements. The control action at time k is calculated by solving the optimisation 

problem as follows [201, 202]: 
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min
Δ𝒖(𝑘),…,Δ𝒖(𝑘+𝐻𝑐−1)  

𝑱 = ∑ 𝑾𝑦[𝒚(𝑘 + 𝑖 + 1) − 𝒚(𝑘 + 𝑖 + 1)𝑟𝑒𝑓]
2𝐻𝑃−1

𝑖=0 + ∑ 𝑾Δ𝒖[Δ𝒖(𝑘 +
𝐻𝑐−1
𝑖=0

𝑖)]2 + ∑ 𝑾𝑢[𝒖(𝑘 + 𝑖) − 𝒖(𝑘 + 𝑖)𝑟𝑒𝑓]
2𝐻𝑐−1

𝑖=0   

Subject to: { 

𝒚𝑚𝑖𝑛 < 𝒚(𝑘 + 𝑖) < 𝒚𝑚𝑎𝑥

Δ𝒖𝑚𝑖𝑛 < Δ𝒖(𝑘 + 𝑖) < Δ𝒖𝑚𝑎𝑥

𝒖𝑚𝑖𝑛 < 𝒖(𝑘 + 𝑖) < 𝒖𝑚𝑎𝑥

  , For 𝑖 = 0, … , 𝐻𝑃 − 1                       (5.6) 

where Wu and WΔu and Wy are the inputs, inputs increment and outputs weight factors, Hp and 

Hc are the prediction and control horizon, respectively. The weights set the priority of each 

variable behaviour to the overall performance. The weights for the controlled outputs 

(permeate and brine flowrate) were set to one, since each manipulated input (HPP and iSave 

speed) only affect one output, thus forming two independent control loops. The prediction 

horizon, Hp, is the future time horizon before which the controller aims to achieve the desired 

output response. It was selected to cover the process steady-state response to ensure that the 

entire process dynamics are considered and anticipate constraints violation early enough to 

allow for corrective action [204]. The control horizon, Hc, is the number of time steps of the 

control sequence that is computed. It was selected at a small value that would reduce the 

required computations while providing a robust control action [202]. yref is the reference 

value for the output vector and uref is a setpoint for the input vector, which is used if the input 

is desired to be at a certain value. In this MPC, the inputs are only constrained to minimum, 

𝒖𝑚𝑖𝑛, and maximum values, 𝒖𝑚𝑎𝑥, in addition to limiting the rate of change of pumps 

speeds, Δ𝒖, according to the manufacturer’s recommendation. The weight, Wu, that sets the 

input to a reference value, uref, is set to zero. Overall, the calculation of the control sequence 

using the objective function is subject to a set of constraints that are specific to the plant’s 

input/output physical limitations. The control parameters, constraints and weights defined for 

the MPC controller are presented in Table 5.3. 
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Table 5.3. The Model Predictive Controller tuning parameters. 

Controller parameter Value 

Sample time (k) 0.1 s 

Prediction horizon (Hp) 50 samples 

Control horizon (Hc) 2 samples 

Input constraints Range Rate 

iSave speed (FiSave) 0 - 50 Hz 2 Hz/s 

HPP speed (FHPP) 0 - 50 Hz 0.5 – 2 Hz/s 

Output constraints Range Weight (Wy) 

Permeate flowrate (Qp) 0 – 3.5 m3/h 1 

Brine flowrate (Qb) 0 - 18 m3/h 1 

 

5.4 Results and discussion 

5.4.1 Sensitivity analysis 

An input disturbance is an uncontrollable input parameter that acts on the system and 

affects its output response. Thus, the controlled outputs can exhibit different behaviour for 

the same inputs depending on input disturbances. As such, a vital step in control system 

design is defining the input disturbances and assessing the controller’s ability to maintain a 

target value despite changes in disturbances. Accordingly, a sensitivity analysis was 

performed to analyse the influence of initially selected input disturbances, i.e., feed 

concentration and temperature, on the RO plant operation.   

5.4.1.1 Concentration 

Fig. 5.5 presents the effect of feed concentration on operating parameters. The feed 

concentration was varied from 25,000 to 40,000 mg/l with 5000 mg/l increments. The data 

was collected experimentally from the RO system at a standard feed temperature of 25oC 

with a ± 1oC uncertainty. Fig. 5.5 (a) shows that the feed concentration has an impact on the 

process pressure, such that the feed pressure required to achieve the same permeate flux 

increased at higher feed concentrations. The increase in required pressure led to more torque 

acting on the HPP motor shaft, thus requiring more power and higher SEC for the same 

permeate flux, which is evident in Fig. 5.5 (b). As for the permeate quality, Fig. 5.5 (c) shows 
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that the permeate concentration increased for higher feed concentration due to higher salt 

gradient across the membrane. 

(a) 

 

(b) 

 

(c) 

Fig. 5.5. Sensitivity analysis for the effect of feed concentration on a) feed pressure, b) 

specific energy consumption, and c) permeate concentration. 

5.4.1.2 Temperature 

The effect of feed temperature on feed pressure and permeate concentration is presented 

in Fig. 5.6. The feed temperature was varied from 20oC to 30oC, while the feed concentration 

was maintained constant at 35,000 mg/l. The notion behind including the temperature as an 

input disturbance is the effect it has on the water and salt permeability of the polymeric 

membrane. Higher feed temperatures can lead to changes in the physical properties of the 

membrane structure and possibly, changes in water diffusivity [205]. This was evident from 

the relationship between permeate flux and feed pressure presented in Fig. 5.6 (a), which 

showed that, for the same permeate flux, the required feed pressure was reduced at higher 
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temperatures. As for the permeate quality, Fig. 5.6 (b) shows an increased permeate 

concentration for the same permeate flux at higher feed temperature.  

 

(a) 

 

(b) 

Fig. 5.6. Sensitivity analysis for the effect of feed temperature on a) feed pressure, and b) 

permeate concentration. 

5.4.2 Operational strategy 

5.4.2.1 Selecting a control strategy 

The control strategies investigated were operation at constant recovery, constant brine 

flowrate or constant feed flowrate. A comparison between the control strategies is presented 

in Fig. 5.7. Operation at a constant recovery was considered at three recovery ratios (15, 20, 

and 24%). For operation at constant brine flowrate, the brine flow was maintained at the 

minimum flowrate, 9.8 m3/h, which allows for pressure higher than 1 bar on the iSave brine 

discharge [161]. The permeate flowrate was varied independently by manipulating the HPP 

speed as the brine was maintained constant, achieving variable recovery. For operation using 

constant feed flow, the permeate and brine flowrates were interchanged to maintain a 

constant feed flow at 13.3 m3/h, which is the sum of the minimum brine flowrate and 

maximum permeate flowrate.  

In terms of operation range, Fig. 5.7 shows that operation at variable permeate recovery, i.e., 

constant brine flow and constant feed flow, guaranteed a wider operation range compared to 

operation at constant recovery. Moreover, the operation range for operating at constant 

recovery decreased for higher recovery ratios due to a drop in the brine flowrate below the set 

minimum.  
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As for the SEC, operating at constant recovery showed higher SEC compared to other 

strategies due to higher power consumption by the iSave. For operation at variable recovery, 

the constant brine flowrate strategy achieved the lowest SEC consumption due to minimised 

brine flowrate and operation at higher recovery ratios. Accordingly, operation with variable 

permeate recovery and constant brine flowrate was the optimum control strategy for this 

system configuration, as it allowed the widest operational range at lowest SEC. This finding 

contrasts with other studies that used constant recovery [33, 79, 188], thus highlighting the 

advantage of using a test-rig with similar performance to large-scale systems to determine a 

control strategy better suited to such scale. 

 

Fig. 5.7. Comparison of possible control strategies.  

5.4.2.2 Mapping the controlled parameters 

After defining an optimum control strategy, the controlled parameters are mapped with 

respect to power consumption, presented in Fig. 5.8, for the entire operating range while 

considering input disturbances, i.e., feed temperature and concentration, and maintaining the 

brine flowrate at a constant value. The data were calculated from the model at feed 

concentrations ranging from 30,000 to 40,000 mg/l and temperatures ranging from 20 to 

30oC. The fine variation between the concentration and temperature ranges were accounted 

for by using linear interpolation. The generated operation parameters were then fed to the 

controller to generate the control signal for the HPP and iSave depending on the error signal. 

This approach of selecting the process parameters based on a complete overview of the 
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process inputs (i.e., available power, feed concentration and feed temperature) ensures a 

match between the RO system energy consumption and available power. 

 

Fig. 5.8. The developed operational strategy based on variable recovery at a constant brine 

flowrate.  

5.4.3 Control system performance analysis 

The performance of the PID and MPC controllers are compared in this section. The 

controllers were assessed based on three criteria: a) tracking a reference signal during a step-

change in a controlled variable, b) maintaining a reference signal during a step-change in an 

input disturbance, and c) cumulative permeate production for the same operating conditions. 

The control system analysis was performed using the dynamic model of chapter 4. 

5.4.3.1 Reference tracking 

The controller’s ability to track a reference signal was assessed using a step-response 

test, whereby the simulation was stabilised and a step input of 10% increase in the controlled 

output was introduced. The step-response test for the PID controlling the HPP and the MPC 

was performed by introducing a step-change in the permeate flowrate reference signal from 

2.57 m3/h to 2.827 m3/h at a feed concentration of 35,000 mg/l and 25oC feed temperature. 

The results, presented in Fig. 5.9 (a), showed a significant advantage for the MPC controller 

over the PID. The settling time, time until the error between the actual output and reference 

signal is within 2%, improved by 47% from 11.95s to 6.33s. 
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(a) 

 

(b) 

Fig. 5.9. The simulated PID and MPC controller’s response to a 10% step change in the 

reference signal. 

The step-response test performed for the MPC and PID controlling the iSave is presented in 

Fig. 5.10. A 10% step-change in the brine flowrate reference signal was introduced from 

10.06 m3/h to 11.06 m3/h at a feed concentration of 35,000 mg/l and 25oC feed temperature. 

The MPC presented a faster response than the PID controller, improving the settling time by 

92.1% from 13.18s to 1.04s.  

 

(a) 

 

(b) 

Fig. 5.10. The simulated PID and MPC controller’s response to a 10% step change in the 

reference signal.  

5.4.3.2 Disturbance rejection 

The ability of the control system to maintain the power consumption at a reference level 

despite input disturbances is examined in this section. Based on the sensitivity analysis, the 

input disturbances considered were the feed concentration and feed temperature. Both of 



 

119 
M.T.M.A.S. Mito, PhD Thesis. Aston University 2021. 

these influence the system pressure leading to a deviation in power consumption relative to 

available power, if corrective action is not taken. The disturbance rejection tests were 

performed for both controllers by introducing a 10% step change in feed concentration from 

35,000 to 38,500 mg/l at 25oC and a 10% step change in feed temperature from 25oC to 

27.5oC at 35,000 mg/l. The controllers were compared for their ability to maintain a power 

consumption corresponding to a wind speed of 7.5 m/s against changes in disturbances.  

Fig. 5.11 shows that the MPC controller offered a faster response to changing the permeate 

flowrate, such that the settling time improved by 47.2% from 13.3s for the PID to 7.02s for 

the MPC. However, the value of the power consumption reached steady-state at a similar 

time for both controllers. 

 

(a) 

 

(b) 

Fig. 5.11. Disturbance rejection test for a step-change in feed concentration presented by a) the 

permeate flowrate and b) the power consumption. The test is performed at a feed temperature of 

25oC. 

Fig. 5.12 shows the disturbance rejection test for a step-change in feed temperature. An 

increase in feed temperature led to an increase in membrane permeability, thus decreasing the 

required power for the same permeate flux. This allowed increasing the permeate flowrate 

and maintaining the power consumption at the reference value, thus achieving higher energy 

utilisation. The MPC showed a faster response to changes in feed temperature, such that the 

settling time for the permeate flowrate improved by 43.9% from 15.5s using the PID to 8.7s 

using the MPC. As for the power consumption, presented in Fig. 5.12 (b), the settling time 

improved from 25.74s using the PID to 19.36s using the MPC. 
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(a) 

 

(b) 

Fig. 5.12. Disturbance rejection test for a step-change in feed concentration presented by a) the 

permeate flowrate response and b) the power consumption. The test is performed at a feed 

concentration of 35,000 mg/l. 

5.4.3.3 Performance projection 

The control systems performance was compared during hourly operation by, a) analysing 

the match between actual and reference permeate production, and b) comparing the 

cumulative permeate production for the same input signal. Three wind speed scenarios with 

distinct wind speed variation were used, as presented in Table 5.4. The three wind speed 

scenarios were based on a random signal with Gaussian distribution around a mean speed of 

6.5 m/s. A high-resolution sample time of 10s was selected for the three scenarios to reflect 

the wind speed fluctuations. The difference in variation intensity between each signal was 

subject to a standard deviation representing an increasing percentage of the mean speed as 

presented in Table 5.4. In addition, a high variation in feed concentration and temperature 

were introduced for each scenario to include the disturbance rejection performance of both 

controllers in the assessment. Each scenario was tested for one hour of operation with the 

same disturbance signal. A sample of the wind speed time-series used in the medium wind-

variation scenario is presented in Fig. 5.13. 
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Table 5.4. Properties of the wind speed input and disturbance signals used for assessing the 

control systems performance. 

Scenario Signal type Sample time Mean Standard deviation 

Low wind-variation 

Random 

signal with 

Gaussian 

distribution 

10 seconds 6.5 m/s 

0.325 m/s (5% of mean) 

Medium wind-variation 0.65 m/s (10% of mean) 

High wind-variation 0.975 m/s (15% of mean) 

Feed concentration-

variation, Cf 
1 second 

35,000 mg/l 700 mg/l (2% of mean) 

Feed temperature-

variation, Tf 
25oC 0.5oC (2% of mean) 

 

Fig. 5.13. A sample of the wind speed signal used in the medium wind-variation scenario. 

Initially, the ability of the controllers to track a reference signal subject to wind speed 

fluctuations was assessed. The operational strategy defined in Section 5.4.2 was used to 

generate the permeate flowrate reference signal based on available wind power from each 

scenario. The PID and MPC controllers applied the control steps while maintaining a change 

in pumps speeds below 2 Hz/s in accordance with the manufacturers’ recommendation [160, 

165]. Fig. 5.14 and 5.15 show a sample (15 minutes) of the performance projection for the 

medium wind-variation scenario compared to the reference signal generated by the 

operational strategy for the PID and MPC controllers, respectively. 

The PID controller showed adequate performance for tracking the reference signal at low 

wind speed fluctuations. However, there was an evident mismatch between the actual and 
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reference permeate flowrate in cases of high amplitude wind speed variation, which occurred 

as a delay in tracking the reference signal or overshoot from the steady-state value. On the 

other hand, the MPC performance, presented in Fig. 5.15, showed an efficient match between 

the actual and reference permeate flowrate at different levels of wind speed variation. The 

MPC showed less delay in tracking the reference signal and minimal overshoot from the 

steady-state value. The improved performance delivered by the MPC is associated with its 

predictive ability to test and optimise the control sequence before execution. A similar 

improvement occurred in the low and high wind-variation scenarios. 

 

Fig. 5.14. Performance projection of the PID controller reference tracking capability for the 

input signal defined in the medium wind-variation scenario.  

 

Fig. 5.15. Performance projection of the MPC controller reference tracking capability for the 

input signal defined in the medium wind-variation scenario.   

To quantify the efficiency of the PID and MPC controllers in matching the variable reference 

signal, their cumulative permeate production for each scenario was compared for one hour of 

operation. In all three wind speed scenarios, the MPC controller achieved higher permeate 
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production per hour compared to the PID with varying amounts subject to wind speed 

fluctuations. Fig. 5.16 presents the improvement percentage in hourly permeate production 

when the MPC controller was used compared to the PID. The results showed that with 

increasing wind speed disturbance, the MPC delivered improved performance compared to 

the PID controller, which translated to higher permeate production and better utilisation of 

available wind energy. The improvement in permeate production per hour reached 0.31%, 

1.76% and 2.35% for the low, medium, and high wind-variation scenarios, respectively. 

These improvements are considered a step-forward for operating RO systems with variable 

power, especially considering that the aim is to implement this type of control with medium 

to large-scale systems with capacities exceeding 40,000 m3/day [11].  

 

Fig. 5.16. Improvement in cumulative permeate production for one hour of operation due to 

using a model predictive controller instead of a proportional-integral-differential controller, 

for three scenarios are detailed in Table 5.4. 

5.5 Summary 

This Chapter has taken a novel approach to the integration of RO and RE. An optimised 

variable-speed operation technique has been developed using a RO system with similar 

characteristics to large-scale plants. The technique defines an operation strategy to optimally 

vary the RO system power consumption based on rapid power input disturbances from a wind 

turbine with negligible rotor inertia. In addition, an advanced MPC that delivers fast and 

robust performance has been developed to implement the optimised operation strategy. The 

main conclusions are: 

 Feed concentration and temperature fluctuations can affect the RO system 

performance by altering the power consumption for the same HPP and iSave speeds. 
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This highlights the importance of including the input disturbances in control system 

design and operation strategy development, especially for systems subject to seasonal 

variations in feed water temperature and to tidal variations in feed concentration. 

 Selection of an optimised operation strategy plays a crucial role in the feasibility of 

operating RO systems using RE. Operating a RO system based on variable recovery 

with constant brine flowrate presented the lowest specific energy consumption, 

indicating best utilisation of available energy, and widest operation range, allowing 

for permeate production at low power. This finding can be applied to commercial 

systems using split-feed flow configuration and an isobaric pressure exchanger. 

 A RO system operating with variable power from a RE source requires an advanced 

control system for implementing the mapped control strategy, as highlighted by 

previous studies [11, 33]. This study has shown that MPC offered superior control 

compared to a conventional PID controller due to its prediction ability. MPC 

improved the settling time for a 10% step-change in permeate flowrate by 47%. It also 

improved the disturbance rejection for a 10% step-change in feed concentration and 

temperature by 47.2% and 43.9%, respectively. Overall, the MPC gave improved 

energy utilisation compared to PID control, resulting in a 2.35% increase in hourly 

permeate production for a Gaussian wind speed distribution with a standard deviation 

of 15% around a 6.5 m/s mean.  

 The operation strategy and control system presented show that variable-speed 

operation can accommodate rapid fluctuations from a wind RE source to operate a RO 

system. The ability of the control system to accommodate the wind turbine output 

indicates that it will also accommodate other RE sources, such as solar, that fluctuate 

less rapidly. The following chapters will aim to improve the efficiency of RO system 

modular (on/off) operation to accommodate intermittency of RE sources and 

substantial power fluctuations.  
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6 Chapter 6  Wind Speed Prediction Using Neural Networks  

6.1 Introduction 

The intermittency and fluctuation of RE is a prominent characteristic of their 

performance. Their random nature and unpredictability pose a challenge for operating large-

scale RO systems. As examined earlier, the MPC control system can handle small 

fluctuations in RE using variable-speed operation. The next step is implementing modular 

operation by connecting or disconnecting RO units to handle high magnitude RE variation or 

intermittency. Some studies favoured using solar-PV for modular operation to schedule the 

RO units operation based on the solar time, a feature unique to solar energy compared to 

other renewables [47]. However, extending the advantage of a predictable pattern to other RE 

sources that can be available all day, i.e., wind energy, would be a breakthrough for RE-

driven RO. Wind power prediction can be beneficial for both aspects of variable operation, 

i.e., modular operation and variable-speed operation. Long-term prediction can help with 

operation scheduling to maintain the standard start-up/shutdown operation procedure during 

modular operation of RO trains. Short-term prediction can help in smoothing the plant 

operation against power variation.  

The concept of wind speed prediction has been examined by previous studies due to its 

relevance for wind generation applications such as grid operations and power prediction 

[206]. Models presented for wind speed prediction included physical models, conventional 

statistical models, spatial correlation models and Neural Networks [206, 207]. Neural 

networks, a data-based modelling technique, have been recommended for wind speed 

prediction for their ability to provide high prediction accuracy for different prediction ranges 

[208-210]. However, their use in RO applications was limited to modelling the RO modules 

or integrated into the control system. Using NN wind speed prediction to enhance the 

performance of wind-driven RO was not previously introduced [11, 187]. 

Wind speed prediction by NNs can be defined into three categories as follows: immediate 

short-term within several seconds, short-term prediction in the range of minutes, medium-

term in the range of hours and long-term prediction of an entire day. Accurate prediction of 

wind speed requires special investigation and collection of accurate comprehensive data for 

prediction [206, 211]. This Chapter aims to present a wind speed prediction algorithm using 

NNs to be implemented in the operation scheduling and control of RO systems. Initially, 
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background information on NNs will be given followed by a literature review on applications 

using NNs for wind speed prediction. Then, the methodology used in this study to develop 

the NNs is described. This is followed by a results and discussion section and a conclusion to 

summarise the findings of this chapter. 

6.2 Literature review on Neural networks 

6.2.1 Background 

Artificial NNs are mathematical systems that imitate the structure and function of the 

human nervous system to model physical systems by using the same mechanism of learning 

and training. NNs are used in broad applications to provide data-driven modelling when 

physical models are challenging to derive [211]. A feed-forward NN, which is a widely used 

type for modelling non-linear systems, consists of a multi-layer structure that includes an 

input layer, an output layer and one or more hidden layers in between them, as shown in Fig. 

6.1 [212, 213]. Each layer consists of elements called ‘neurons’, which are single 

computation points that form the building block of the NN. The neuron in a specific layer is 

connected to all neurons in the following layer. This is why NNs are referred to as feed-

forward networks [214].  

 

Fig. 6.1. A feed-forward neural network structure [213]. 

The neuron accepts inputs from single or multiple sources and generates an output, to be 

passed onto the next layer, based on a simple calculation with a set activation function. A 

model of a single hidden layer neuron j is presented in Fig. 6.2 [214]. The neuron receives 

inputs Ii from the previous layer, which is multiplied through a connection with weight wij 
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that is specific for the connection between the two neurons. In the neuron, all the weighted 

signals are added to form the weighted input signal. In addition, a bias bj is added to the 

weighted input to shift the transfer function g by a value of bj. Afterwards, the weighted input 

signal is passed through the transfer function to generate an output Hj [214]. The transfer 

function g can be a linear transfer function, step function, hard-limit function, log-sigmoid 

transfer function, etc. [215].  

The network weights are adjusted to train the network to perform specific tasks. This process, 

described in Fig. 6.3, is called supervised learning. Learning or training is performed until a 

specific input led to the desired target output. This is done by comparing the actual network 

output to the target output and adjusting the network weights to minimize the Mean Square 

Error (MSE), equation (6.1), between the output and target data [212, 215-217]. 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖 −  𝑡𝑎𝑟𝑔𝑒𝑡𝑖)

2                                                                                     (6.1)

𝑁

𝑖=0

 

 

Fig. 6.2. Model of a hidden layer neuron [214]. 

 

Fig. 6.3. Supervised learning [217]. 
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6.2.2 Wind speed prediction techniques using neural networks 

Several studies investigated the use of NNs for wind speed prediction. Philippopoulos 

and Deligiorgi [218] designed two NNs for predicting hourly wind speed for a complex 

topography in Chania plain in Greece. The NN algorithm offered higher prediction accuracy 

than conventional interpolation schemes of wind speed prediction. Azad et al. [211] 

combined statistical and NN-based approaches to predict hourly wind speed data of an 

upcoming year. The forecast was applied to two locations in Malaysia and a Mean Absolute 

Error (MAE) of 0.17 - 0.36 m/s and 0.24 - 0.35 m/s were achieved.  

NNs can be used to predict the wind speed in locations that lack measuring equipment using 

measured data from a nearby location [212, 219, 220]. For instance, Ramasamy et al. [212] 

used NNs to predict the average daily wind speed in 11 locations in India using measured 

data from a nearby location. The network inputs were air temperature, air pressure, solar 

radiation and altitude. The NN achieved a Mean Absolute Percentage Error (MAPE) of 

4.55% and a correlation coefficient of 0.98. Similarly, Bilgili et al. [220] developed NN 

models to predict monthly average wind speeds for multiple regions in Turkey. The NN used 

wind speed data of neighbouring stations as an input to predict wind speed at a target station. 

The MAPE for the prediction accuracy varied from 4.49% to 14.13%. 

The performance of NNs depends on the type of input data used for prediction. Ü.B. Filik and 

T. Filik [219] compared the performance of different NNs trained for wind speed prediction 

while using a different set of metrological data as inputs. The study concluded that using the 

wind speed, air temperature and pressure achieved the lowest RMSE of 0.6759 m/s for a 

lead-time of 90 seconds. A NN was used by Mabel and Fernandez [221] to predict the wind 

energy output of wind farms in Muppandal, India. The NN predicted the wind energy output 

using the average wind speed, relative humidity, and generation hours as inputs. The NN 

prediction accuracy was presented by a RMSE of 0.0806 kWh [221]. 

From the preceding literature review, it was shown that NNs have a high potential to deliver 

accurate wind speed prediction with different prediction ranges. The NN structure and inputs 

used would vary depending on the application, prediction range and available data. The 

timeframe for prediction ranged from average monthly wind speed to prediction in the range 

of minutes. The inputs to the NNs were either historical wind speed data, wind properties or 

wind data from reference meteorological stations. 
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This chapter aims to develop NN algorithms for long-term and short-term wind speed 

prediction for the same location. Although long-term prediction requires using NN due to the 

prediction complexity, it is possible to use a simpler modelling technique, e.g., autoregressive 

model, for short-term prediction due to minor variation in wind speed in that range. However, 

NN was still used for short-term prediction based on the recommendation of previous studies 

for its suitability for different prediction ranges and to focus on one solution for wind speed 

prediction [208-210]. Long-term prediction involves predicting hourly average wind speeds 

for a full day ahead. This was used to schedule the RO system operation. Short-term 

prediction involves predicting average wind speed for the upcoming 2 minutes using an input 

of 5 element timeseries of 2-minute averages representing the past 10 minutes. This was used 

in guiding the control system according to wind speed variations. The choice of the 2-minutes 

resolution was based on the time required to complete the shutdown sequence of the RO 

system. This is explained in detail in Section 7.2.2. 

6.3 Wind speed prediction for the wind-RO system 

6.3.1 Neural Network design 

A feed-forward backpropagation NN is used in this study for predicting wind speed. The 

selected network type and configuration, presented in Fig. 6.4, has shown adequate 

performance for approximating different functions in previous studies regarding the 

convergence time, accuracy and generalization [212, 217]. Network generalization is the 

ability to generate output from data that was not exposed to the network before. The network 

consists of three layers: an input layer, a hidden layer, and an output layer. Each layer 

consists of several neurons and the layers are connected by weighted connections. The 

neurons receive the inputs from the previous layer and produce an output based on an 

activation function.  

The input layer neurons transmit the input to the hidden layer without alteration such that 

𝐼𝑖 = 𝑋𝑖 [214]. The number of neurons in the input layer is equivalent to the network inputs. 

As for the hidden layer, it includes a nonlinear hyperbolic tangent sigmoid transfer function, 

given by equation (6.2), which produces an output in the range (-1 to +1). The nonlinear 

transfer function allows the NN to approximate both linear and nonlinear relationships. The 

number of neurons in the hidden layer is determined by trial-and-error, such that the training 

starts with a few neurons and increases gradually until reaching the lowest error [211]. As for 

the output layer, a linear transfer function is used so the output can have any value, otherwise, 
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if a sigmoid transfer function is used the output will be constrained to (-1 to +1) [220]. The 

number of neurons in the output layer is equivalent to the network outputs. 

g(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
                                                                                                                                (6.2) 

 

Fig. 6.4. Structure of the three-layer feed-forward backpropagation neural network. 

For network training, the Levenberg-Marquardt backpropagation algorithm is used as a 

training algorithm. Backpropagation is the most used supervised learning technique for 

multiple layer NNs [217, 222]. It utilises the gradient steepest descent method to correct the 

weight of the connected neurons to minimize the output error for a given input [213, 223]. 

The error is calculated at the output layer of the NN, and it propagates back to the input layer, 

through the hidden layer, hence the name “backpropagation”. Levenberg-Marquardt is a 

derivation of the backpropagation algorithm that offers faster convergence by accelerating 

and stabilising the training process [214]. A description of the standard backpropagation 

algorithm is presented in this study, however, for the sake of being brief, a full description of 

the Levenberg-Marquardt modification can be found in [216, 224]. 

6.3.2 Backpropagation training algorithm 

In Fig. 6.4, the three-layer NN structure used in this study is presented. Xi is the network 

input, Hi is the output of the hidden layer, �̂�𝑖 is the output of the output layer. The weights 

between the input and hidden layer are written as 𝑤𝑖𝑗
ℎ , such that i refers to the number of the 

input neuron and j refers to the number of the hidden layer neuron. The weights between the 
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hidden and output layer are given by 𝑤𝑗𝑘
𝑜 , such that j and k represent the number of the hidden 

and output neuron, respectively.  

During the training stage, the network is fed several input patterns, each with a specific 

output combination, such that the training data is a certain number of input/output pairs 

{𝑥𝑖
𝑝, 𝑦𝑘

𝑝}, with p indicating the input/output pattern. The training set can be presented multiple 

times to the network depending on the convergence. The number of times that the entire 

training set is presented to the network is referred to as the number of epochs, such that the 

network weights are updated every epoch [214]. As presented in equation (6.3), the weights 

of the network are adjusted to minimise the square sum of the error between the network 

output �̂� and desired output y. 

𝐸(𝑤) = 𝑚𝑖𝑛
1

2𝑁
∑ ∑(�̂�𝑘

𝑝 − 𝑦𝑘
𝑝)

2
𝑀

𝐾=1

𝑁

𝑝=1

                                                                                             (6.3) 

Considering an input 𝑥𝑖
𝑝

 to the input layer for an input/output pattern p, the input to the 

hidden layer neuron j is as follows: 

ℎ𝑗
𝑝 = ∑ 𝑤𝑖𝑗

ℎ 𝑥𝑖
𝑝

𝑖

                                                                                                                                  (6.4) 

Accordingly, the output of the hidden layer neuron j is given by: 

𝐻𝑗
𝑝 = g(ℎ𝑗

𝑝) = g (∑ 𝑤𝑖𝑗
ℎ 𝑥𝑖

𝑝

𝑖

)                                                                                                        (6.5) 

where g is the nonlinear hyperbolic tangent sigmoid transfer function used in the hidden 

layer, presented in equation (6.2). Thus, the input received by the output neuron k from the 

hidden layer neuron j is as follows: 

𝑜𝑘
𝑝 = ∑ 𝑤𝑗𝑘

𝑜

𝑗

𝐻𝑗
𝑝 = ∑ 𝑤𝑗𝑘

𝑜

𝑗

g (∑ 𝑤𝑖𝑗
ℎ 𝑥𝑖

𝑝

𝑖

)                                                                                   (6.6) 

and the output of neuron k, which is the actual network output is given by: 

�̂�𝑘
𝑝 = 𝑓(𝑜𝑘

𝑝)                                                                                                                                          (6.7) 
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where 𝑓 is the linear transfer function included in the output layer. 

The weights are adjusted using the gradient descent method. The interconnected weights 

between the hidden layer and the output layer are modified as follows:  

∆𝑤𝑗𝑘
𝑜 = −𝜂

𝜕𝐸

𝜕𝑤𝑗𝑘
𝑜 = −𝜂

𝜕𝐸

𝜕�̂�𝑘
𝑝

𝜕�̂�𝑘
𝑝

𝜕𝑜𝑘
𝑝

𝜕𝑜𝑘
𝑝

𝜕𝑤𝑗𝑘
𝑂 = −𝜂 ∑(�̂�𝑘

𝑝 − 𝑦𝑘
𝑝)𝐻𝑗

𝑝

𝑝

                                              (6.8) 

where 𝜂 is the learning rate that establishes the step size. A low learning rate leads to slower 

convergence, however, a high rate could lead to a large step size and the minimum might not 

be found. As for the weights between the input layer and the hidden layer, they are calculated 

by: 

∆𝑤𝑖𝑗
ℎ = −𝜂

𝜕𝐸

𝜕𝑤𝑖𝑗
ℎ = −𝜂

𝜕𝐸

𝜕𝐻𝑗
𝑝

𝜕𝐻𝑗
𝑝

𝜕ℎ𝑗
𝑝

𝜕ℎ𝑗
𝑝

𝜕𝑤𝑖𝑗
ℎ = −𝜂 ∑ ∑(�̂�𝑘

𝑝 − 𝑦𝑘
𝑝)𝑤𝑗𝑘

𝑜

𝑘

ǵ(ℎ𝑗
𝑝)𝑥𝑖

𝑝

𝑝

                      (6.9) 

The Neural Network Fitting Tool developed by MATLAB was used to implement this NN. 

The network error was monitored by the MSE, calculated using equation (6.1), between the 

network outputs and the target outputs, for which the network weights were adjusted until the 

MSE was minimised [225]. The input and target data were normalised in the range of -1 to 

+1 using a MATLAB mapping function called mapminmax. The wind speed data were 

randomly divided into three sets. The training data used to adjust the network weights during 

training constituted 70% of the entire dataset. The validation data used to assess network 

generalization was 15% of the dataset, such that the network converges and the training stops 

if generalization stops improving. The testing data that was excluded during training and used 

to measure the network performance was 15% of the dataset [212]. The accuracy of the NN 

prediction was presented using the RMSE and correlation coefficient R2.  

6.3.3 Wind data 

The wind data used for this study is six months of wind speed data collected at the University 

of Bahrain at 12 m height with a one-minute resolution. The data was averaged according to 

the prediction range, either as one hour average for long-term prediction or 2-minute average 

for short-term prediction. The wind speed was extrapolated to the wind turbine rotor height of 

25 m, to account for changes in the wind speed profile due to surface roughness that is 

referred to as wind shear, using the wind speed power law as follows [226]: 
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𝑉𝑤𝑠,2 = 𝑉𝑤𝑠,1 (
𝑍2

𝑍1
)

𝛼

                                                                                                                           (6.2) 

where Vws,1 is the actual measured wind speed at height Z1, Vws,2 is the wind speed at the 

required height Z2,  and 𝛼 is the power-law exponent [227]. The power-law exponent is 

influenced by the height, season, time of day, surface wind speed, surface roughness and 

terrain. A study focussing on wind speed variation with height in Bahrain suggested that the 

appropriate power exponent between 10 m to 30 m would be 0.409 [227, 228]. 

6.3.4 Long-term prediction 

Long-term prediction is forecasting the wind speed for a full day ahead using measured 

data. A  NN was developed to predict the wind speed for the upcoming 24 hours in the form 

of hourly average timeseries using data measured from the previous day as input. The one-

minute resolution data for the six months were converted to hourly averages. The dataset was 

arranged into input and target column matrices, such that each column included 24 elements 

representing the input to the NN with the corresponding 24 element output presented in the 

target matrix. The NN included an input layer with 24 neurons based on the number of inputs, 

an output layer with 24 neurons based on the number of outputs, and a hidden layer with 10 

neurons. Generally, the number of neurons for the hidden layer was defined using trial and 

error, however, the default value defined in MATLAB of 10 neurons was used. The network 

structure is presented in Fig. 6.5. 

 

Fig. 6.5. Structure of the long-term prediction neural network. 

6.3.5 Short-term prediction 

Short-term prediction is forecasting the wind speed in the range of minutes. A NN was 

developed to predict the average wind speed for the upcoming 2 minutes using an input of 5 

element timeseries of 2-minute averages representing the past 10 minutes. The one-minute 

resolution data for the six months was converted to 2-minute averages. The dataset was 
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arranged into input and target column matrices, such that each column of the input matrix 

included 5 elements corresponding to the network inputs, and each column of the output 

matrix includes one element representing the network output. The NN included an input layer 

with 5 neurons for the network inputs, a 1 element output layer representing a single output 

of 2-minute average wind speed. Also, the NN included a hidden layer of 10 neurons based 

on the default value defined by MATLAB. The network structure is presented in Fig. 6.6. 

 

Fig. 6.6. Structure of the short-term prediction neural network. 

6.4 Results and discussion 

6.4.1 Long-term prediction 

6.4.1.1 Error analysis 

The accuracy of the NN was determined by investigating the RMSE and correlation 

between the NN outputs and target data during the training, validation and testing processes. 

The error analysis during each stage for the long-term prediction NN is presented in Table 

6.1. For the training process, the network weights were adjusted until the error between the 

output and training datasets was minimised. After the training process converged, the RMSE 

between the output and target data was 1.29 m/s and the R2 was 0.8, which represented high 

accuracy and correlation between the network output and target data. The validation error 

presents the error between the output and target data using the validation data. The network 

training converged once the validation error seizes to improve. The RMSE and R2 for the 

validation process were 1.7 m/s and 0.74 respectively. The network testing was done using 

15% of the wind speed samples that were excluded during the training process. The purpose 

was to represent the actual performance of the network towards new samples. The testing 

showed good agreement between target and predicted data, presented by a low RMSE of 1.54 

m/s and R2 of 0.64 from the regression analysis. 
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Table 6.1. Error analysis for the long-term neural network prediction during 

the development phase 

 Samples RMSE R2 

Training 126 1.29 0.80 

Validation 27 1.70 0.74 

Testing 27 1.54 0.64 

In Fig. 6.7, the accuracy of the long-term NN is presented using linear regression analysis 

that estimates the correlation between the target and predicted values for the samples 

included during training, validation, and testing. For a perfect fit, the data should fall along 

the Identity line (45o line), meaning that NN outputs are equal to the target values. 

Considering the long prediction range and limited data, the fit is relatively good for the 

complete dataset presented by a R2 of 0.59. The suitability of this prediction accuracy for RO 

units operation scheduling was later explored in Section 7.5.2. 

 

Fig. 6.7. Regression analysis representing the correlation between the long-term neural 

network outputs and targets dataset during training, validation, and testing. 

6.4.1.2 Case studies 

The long-term NN was tested using three random days that were excluded from the 

training dataset to present the network accuracy for different cases studies. For each day, the 

wind speed timeseries of the previous day was used as input to predict the hourly average 

timeseries for a full day ahead. The NN prediction compared to the measured data for Days 1, 
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2 and 3 are presented in Fig. 6.8, 6.9 and 6.10 respectively. The prediction accuracy varied 

depending on the randomness of wind speed on that day. 

For Day 1, the network prediction is considered a good match with the actual value based on 

a R2 and RMSE of 0.76  and 1.54 m/s respectively. The NN was successful at predicting the 

same wind speed pattern as the measured data, however, struggled to predict unusual 

fluctuations in wind speed at certain hours. For Day 2, the NN offered improved prediction 

accuracy compared to Day 1 with a R2 of 0.77 and a RMSE of 1.46 m/s. The NN managed to 

predict the wind speed pattern accurately and the error between the predicted and measured 

data was minimal at certain times of the day. As for Day 3, the NN output was a good match 

for the measured data during the first half of the day, as the wind speed was stable around 9 

m/s. The prediction error increased later during the day as the measured wind speed dropped 

from around 9 m/s to below 2 m/s. However, the NN was successful at predicting the trend in 

wind speed change along the day, showing a high correlation between measured and 

predicted data quantified by a R2 of 0.904. 

 

Fig. 6.8. Predicted hourly average wind speed timeseries on 18 August 2020 with respect to 

measured data. 
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Fig. 6.9. Predicted hourly average wind speed timeseries on 30 March 2020 with respect to 

measured data. 

 

Fig. 6.10. Predicted hourly average wind speed timeseries on 24 November 2020 with respect 

to measured data. 

6.4.2 Short-term prediction 

6.4.2.1 Error analysis 

The prediction accuracy for the short-term prediction NN is assessed in this section by 

investigating the RMSE and correlation between the network outputs and target data during 

the training, validation and testing processes. A summary of the error analysis for each stage 

is presented in Table 6.2. After the training process converged and the weights of the network 

are set, the error between the network output and target data from the training dataset was 

0.14 m/s and 0.99 for the RMSE and R2 respectively. As for the error during the validation 

stage and testing network generalisation, the prediction error was 0.15 m/s for the RMSE and 
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0.99 for R2. Similarly, the prediction error between the network output and target data for the 

testing dataset was significantly accurate, such that the RMSE and R2 were 0.15 m/s and 0.99 

respectively. 

Table 6.2. Error analysis for the short-term neural network prediction during 

the development phase 

 Samples RMSE R2 

Training 91201 0.14 0.9958 

Validation 19543 0.15 0.9957 

Testing 19543 0.15 0.9957 

The short-term NN accuracy towards predicting the complete dataset is presented using linear 

regression in Fig. 6.11. It shows the correlation between the network output and target data 

for the samples used for training, validation, and testing. The regression analysis showed a 

high coefficient of determination R2 0.99, which is represented by the closeness of fit of all 

the data points relative to the Identity line, on which the NN outputs are equal to the target 

values. 

 

Fig. 6.11. Regression analysis representing the correlation between the short-term neural 

network outputs and targets dataset during training, validation, and testing. 

6.4.2.2 Case studies 

The performance of the short-term prediction NN was tested using the data for the three 

random days excluded from the training dataset. This showcased the network accuracy 
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towards new inputs and the change in prediction accuracy relative to the randomness of wind 

speed for each day. The NN prediction of the 2-minute average wind speed compared to the 

measured data for Day 1, 2 and 3 are presented in Fig. 6.12, 6.13 and 6.14 respectively.  

The results showed that the accuracy of the NN prediction improved significantly when using 

it for short-term prediction in the range of minutes compared to predicting a full day. For the 

three case studies, the RMSE was approximately 0.2 m/s, which is considered very accurate 

relative to the stochastic nature of wind speed. As for the correlation between the predicted 

output and measured wind speed, the NN showed a high correlation for predicting the trend 

in wind speed change along the day. This was quantified by a R2 of 0.99, 0.96 and 0.94 for 

Days 1, 2 and 3 respectively. The NN prediction showed the lowest correlation with 

measured data for Day 3 due to the increased fluctuations on that particular day. 

 

Fig. 6.12. Predicted 2-minute average wind speed timeseries on 18 August 2020 with respect 

to measured data. 
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Fig. 6.13. Predicted 2-minute average wind speed timeseries on 30 March 2020 with respect 

to measured data. 

 

Fig. 6.14. Predicted 2-minute average wind speed timeseries on 24 November 2020 with 

respect to measured data. 

6.5 Summary 

Wind speed prediction using NNs has not been considered for RO operations in previous 

studies. This Chapter showcased the prospects of using NNs for wind speed prediction to be 

implemented for RE powered RO applications. Three-layer feed-forward backpropagation 

NNs were developed to provide long-term and short-term wind speed prediction that would 

integrate with a RO plant scheduling and control. The long-term prediction NN provided 
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wind speed prediction of a full day ahead wind speed data in the form of hourly averages. 

The short-term prediction NN predicted wind speed average for 2-minutes ahead using a 5 

element timeseries of 2-minute averages as an input. The main conclusions are as follows: 

 Long-term prediction of a full day ahead offered relatively high accuracy considering 

the range of prediction. The NN delivered a good fit between the output and target for 

the complete dataset presented by a R2 of 0.59. and a RMSE of approximately 1.5 m/s 

for testing data. This highlights the potential for using long-term prediction for 

scheduling the RO system operation.  

 Short-term prediction of the average wind speed for 2-minute ahead delivered an 

impressive prediction accuracy presented by a R2 of 0.95, thus indicating a high 

correlation between network output and target data for the complete dataset, in 

addition to a low RMSE of approximately 0.15 m/s for the testing data. 

 The prediction accuracy of the short-term NN was significantly higher than that of the 

long-term NN. This indicated that the prediction accuracy is inversely proportional to 

the range of forecast. Moreover, it highlighted the potential of using the predicted 

wind speed as a reference signal to the control system for predictive control, which is 

discussed in the next chapter. 
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7 Chapter 7   Modular operation based on wind power prediction 

7.1 Introduction 

Modular operation is a variable operation technique for matching the RO load to 

available energy during high magnitude RE variation  [187]. It depends on the RO system 

modularity, such that RO units/trains are connected/disconnected according to available 

power. Modular operation is promising for large-scale RO system that includes multiple RO 

units to handle energy intermittency and considerable power variations while operating with 

RE [187]. However, there are challenges for safely repeating the start-up and shutdown 

sequence of RO units based on the random RE variation. This chapter presents a description 

of the challenges of modular operation and introduces the application of wind speed 

prediction into RO system scheduling and control as a solution. 

7.1.1 Challenges for modular operation 

For commercial RO systems, starting up or shutting down a RO unit requires adhering to 

certain guidelines defined by the membrane and components manufacturers. These guidelines 

aim to prevent excessive membrane fouling, prevent membrane damage due to excessive 

loading, and ensure the water quality and productivity are delivered as claimed [142, 143]. 

RO membrane manufacturers guarantee a working life of around 5 years if the recommended 

start-up/shutdown procedure and operating conditions are met [64]. RO trains start-up 

procedure include purging the air out of the membranes using low-pressure water before 

gradually increasing pressure at a rate of 0.7 bar per second until reaching the set point [142]. 

The permeate is discarded during this process until it reaches the desired quality [143]. 

During shutdowns, the RO membranes are flushed using low pressure permeate water or 

high-quality feedwater to prevent scaling and salt deposition. Membrane flushing takes place 

until the concentrate conductivity reaches the feed conductivity [138, 142]. Start-

up/shutdown procedures consume clean water to flush the membranes, energy to operate the 

flushing pumps and time wasted that the plant could be producing permeate - all of which are 

finite in the case of RE powered RO [66, 138]. The time, energy and clean water required for 

start-up and shutdown are subject to the capacity and design of the RO trains. In addition, 

large-scale systems require the readiness of auxiliary systems that operates beside the RO 

trains. These auxiliary systems include pre-treatment processes such as coagulation, 

flocculation, filtration, antiscalant dosing, water softening, chlorination/de-chlorination, etc. 

In addition to after-treatment processes such as remineralisation, discharge management, etc. 
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This shows that the unpredictability of RE variation can be problematic considering that 

during modular operation using RE, start-up and shutdown of RO trains are more frequent 

compared to constant operation [33]. Thus, the decision to connect or disconnect a RO train 

should not be done solely following the changes in available power, however, it requires 

planning to make sure the recommended start-up and shutdown procedures are followed and 

to guarantee the readiness of the auxiliary system that operates beside the RO trains.  

Scheduling the startup and shutdown procedure for solar-photovoltaic operated RO plants is 

achievable by using the solar irradiance distribution curve. For wind-powered RO, it is 

challenging to schedule the RO trains startup/shutdown procedure due to the fluctuation and 

intermittency of wind speed, wherein a single day there might be several start-up/shutdown 

cycles for a specific RO train [33]. For modular operation using wind energy to be effective, 

the RO units modulation cannot be a random process, but rather a precisely managed one 

[11]. RE forecasting is promising for improving the possibility of operation scheduling for 

wind-powered RO systems. 

7.1.2 Prospects of neural network prediction and RO operation 

NNs were suggested by several studies for predicting wind speeds [208-210]; however, 

their use in wind speed prediction for enhancing the performance of wind-driven RO was not 

previously introduced [11, 187]. As presented in Chapter 6, NNs were successfully used for 

predicting wind speeds for long-term and short-term prediction ranges. Long-term prediction 

of wind energy allows for scheduling the RO trains operation according to energy availability 

and water demand. This ensures planning to maintain the standard start-up and shutdown 

sequences; thus, guaranteeing smooth transitions during the on/off cycles, minimising 

shutdowns, and maintaining equipment lifetime. As for the short-term prediction, it offers the 

potential to smooth out the RO system operation and maintain the safe shutdown procedure 

for the RO trains by anticipating sudden drops in available power. Generally, the prospects of 

using wind energy prediction for wind-powered RO systems have the potential to offer a 

paradigm shift in how RO systems are operated with RE sources. RE availability prediction 

can be used with other renewables to further increase the penetration of RE in operating RO 

and become a standard for operating RO systems with renewables. 

To date, the concept of modular operation has not been implemented for large-scale systems 

due to the challenges mentioned in Section 7.1.1. This chapter aims to present an optimised 
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modular operation technique to connect/disconnect RO units according to changes in 

available power while adhering to a standardised start-up/shutdown sequence. It also aims to 

include wind speed prediction for scheduling and controlling the RO units operations. The 

modular operation is presented alongside the variable-speed operation, developed in Chapter 

6, to allow the RO plant to adapt to various amplitudes of wind power variation. Two 

solutions based on wind speed prediction are implemented into the modular operation 

technique as follows: 

 Operation scheduling of the RO system is developed using the long-term prediction 

NN. This is beneficial for the smooth operation of RO units, maintaining the standard 

start-up and shutdown sequences, and avoiding excessive on/off cycling.  

 The short-term wind speed prediction is implemented in the RO system control, such 

that the predicted averaged wind speed is supplied to the control system as a system 

input instead of the real-time wind speed. Using an averaged wind speed signal will 

improve variable-speed control by smoothing out the RO system operation, in 

addition to anticipating power drops that can lead to a unit shutdown, thus enhancing 

the efficiency of modular operation. In general, this ‘predictive control’ approach 

ensures that the control system is always 2 minutes ahead of the wind speed change. 

This chapter is structured as follows. Section 7.2 summarises the long- and short-term wind 

speed prediction NN developed in Chapter 6. Section 7.3 describes a case study for a RO 

system that includes three RO units of the test-rig presented in Chapter 3. This case study is 

used in the simulation and analysis of the modular operation technique and developed 

solutions. Section 7.4 introduces the developed modular operation technique including the 

guidelines for the start-up and shutdown sequences, rules for modular operation and the 

algorithm used for its implementation. The results and discussion are presented in section 7.5, 

where the standardised start-up and shutdown sequences are described, the accuracy of the 

RO units operation scheduling is assessed, and operation using the short-term wind speed as 

an input signal ‘predictive control’ is examined. Section 7.6 summarise the findings of this 

chapter. 

7.2 Wind speed prediction using neural networks 

NNs are data-based modelling techniques that are used to model physical systems 

without a predefined mathematical model. They have been recommended by several studies 
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for wind speed prediction [208-210]. In Chapter 6, two NNs were developed for long-term 

and short-term speed prediction. The NNs have shown high accuracy for predicting wind 

speed in terms of predicting the wind speed pattern and the steady-state value. The long-term 

and short-term NNs are summarised as follows:  

7.2.1 Long-term prediction 

The long-term prediction NN provided wind speed prediction of hourly averages for a 

full day ahead, using data collected from the previous day as input. A period of a full day 

ahead was selected to schedule the daily operation of the RO units beforehand and prepare 

the auxiliary systems that operate alongside them. 

7.2.2 Short-term prediction 

The short-term NN was trained to forecast the average wind speed for the upcoming 2 

minutes using data of the last 10 minutes as input. It aimed to provide predictive control for 

the RO system by using the predicted wind speed as the wind speed signal for the control 

system. In addition, it guarantees that the shutdown procedure is followed without 

interruption in case of a sudden drop in available power. The selection of the short-term 

prediction period is subject to the time required to complete the shutdown procedure. Ideally, 

the short-term prediction horizon should cover the shutdown procedure of a RO train.  

7.3 Case study 

Assessing the efficiency of modular operation using wind speed prediction requires a RO 

system that includes multiple RO units to simulate the modularity of large-scale systems. For 

this study, the system used for investigation consists of three identical RO units connected to 

the same water tank and powered by a single wind turbine, as presented in Fig. 7.1. The 

design and performance of each RO unit were based on the test-rig presented in Chapter 3. 

The RO system description and the control system are presented as follows: 
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Fig. 7.1. Schematic diagram of the RO plant configuration. The RO plant consists of three 

RO units driven by a 30 kW wind turbine. 

7.3.1 RO system description 

As mentioned in Chapter 3, the RO unit consists of two pressure vessels connected in 

parallel, each vessel contains three 8” RO modules in series. The HPP used is the APP 3.5 

axial piston pump manufactured by Danfoss [160]. Moreover, the system includes an isobaric 

ERD, Danfoss iSave 21 Plus, which recovers energy from the brine [161]. The rated 

production capacity of the RO unit is 3.2 m3/h at a power consumption of 7.5 kW (at 35,000 

mg/l and 25oC). A schematic diagram of the system is shown in Fig. 7.2 and full details on 

the RO unit design can be found in Chapter 3. The testing and analysis were simulation-based 

using the RO dynamic model presented in Chapter 4. 

The wind turbine used in the simulations to power the three RO units is the Zenia (Ikast, 

Denmark) ZA30, which is a 3-bladed horizontal axis wind turbine that delivers 30 kW rated 

power. A simple steady-state model was used to calculate the wind power using the wind 

turbine power curve, which is presented in Fig. 7.3 [229].  
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Fig. 7.2. Schematic diagram of the RO unit presented previously in Chapter 3. 

 

Fig. 7.3. Wind turbine power curve. 

7.3.2 Control system 

The operational control system for each RO unit uses ‘variable-speed control’ to match 

the RO plant load to the available wind power. This was achieved by manipulating the HPP 

and iSave motor speeds using VFDs to vary the operating parameters, i.e., permeate 

production and recovery ratio, thus varying the RO power consumption. The operating 

parameters were varied such that the RO unit operates with variable permeate recovery with a 

constant brine flowrate with changes in wind power. This was found to be the optimum 

operating strategy for this system configuration as it delivered the widest operation range, 

guaranteed longest production times, and the lowest SEC offering efficient energy utilisation. 
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The control system for each RO unit was based on the MPC presented in Chapter 6. It 

includes a prediction model to predict the plant response to the generated control signal, in 

addition to an optimiser that adjusts the control signal to minimise the error between the 

output and target values. The control system was tuned to deliver a fast and robust response 

towards changes in available power and input disturbances, i.e., feed concentration and 

temperature. The structure of the MPC is presented in Fig. 7.4. A detailed description of the 

operation strategy and control system for each RO unit can be found in Chapter 5. 

 

Fig. 7.4. Structure of the Model Predictive Controller. The input disturbances are the feed 

concentration and feed temperature.  

7.4 Modular operation  

The development of the modular operation technique used for modulating the RO units 

operation is presented in this section. The modular operation technique involves making 

decisions on which RO system is on or off, distributing the power between RO units, and 

defining the operational state of each unit, i.e., start-up, shutdown or permeate production. 

The development of the modular operation technique requires the definition of standardised 

start-up and shutdown sequences and setting the rules and constraints for modulating the RO 

units operation, which defines the order of connecting or disconnecting the RO units and the 

power threshold for each units’ operation. 

7.4.1 Start-up and shutdown sequences 

The development of a standardised sequence for the start-up and shutdown of RO 

systems is essential for efficient operation. Their simplicity and smoothness have a direct 

impact on the RO system performance, equipment lifetime and product water quality. A well 

designed start-up and shutdown sequence is more vital for RO systems operating with 

variable power as they will undergo more start-up/shutdown cycles.  
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The development of a standardised start-up/shutdown sequence can vary depending on the 

plant design. It should consider the hydraulic constraints and the recommended operation 

procedure for the membranes that would guarantee their performance and longevity, in 

addition to operation constraints for the pumps, such as the constraints on the flowrate, 

pressure and ramping rates [142]. Moreover, the product quality should be considered in the 

start-up sequence design. The standard operation sequence for the RO unit used in this study 

is divided into three stages as follows: 

7.4.1.1 Initial start-up 

The initial start-up is performed after prolonged shutdown or generally when the 

pressure in the RO system is equivalent to the atmospheric pressure. Its main objectives are 

purging air from the RO system, controlling the feed pressure ramp rate and ensuring an 

acceptable permeate quality.  

Air purging is an important step of the initial start-up sequence. Generally, air enters the RO 

system when it is at atmospheric pressure from the pipework and inlet/outlet ports. In other 

situations, forward osmosis causing water to permeate from the permeate to the brine side can 

lead to a vacuum being formed on the permeate side and air being drawn into the membrane 

element. This phenomenon, referred to as permeate suck-back, can be avoided by ensuring 

enough water volume is available in the permeate line [142]. Air remaining in the elements or 

the pressure vessels after starting the HPP may lead to excessive forces on the elements in the 

flow or radial directions causing the fibreglass shell to crack if the feed pressure is increased 

rapidly. Accordingly, membrane manufacturers recommend that all the air should be properly 

vented from the RO system. 

Pressure and flow changes during the start-up sequence can cause mechanical stresses to the 

membrane elements. The start-up sequence should maintain a slow feed pressure increase to 

minimise excessive loading and mechanical stresses on the membranes. Generally, the feed 

pressure ramp rate can be controlled by either using a VFD to control the HPP speed, valves 

on the brine reject line or a combination of both, depending on the system design. For the RO 

system presented in Section 7.3, the feed pressure is directly proportional to the HPP flow, 

allowing for the pressure ramp rate to be controlled using the HPP VFD. The recommended 

feed pressure ramp rate by DuPont is slower than 0.7 bar/s to achieve a soft start [142]. 
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Accordingly, the HPP speed increase rate was caped to 0.5 Hz/s during start-up to aim for a 

smooth start.  

At the start of permeation, the permeate quality is not adequate to be collected in the product 

tank due to high salt passage compared to the permeate flux, causing the permeate flow to 

have an unacceptably high salt concentration. During start-up, all the permeate is discarded 

until it reaches an acceptable value below 500 mg/l based on the guidelines of the WHO [79]. 

The time required for the permeate quality is subject to the plant design. This will be 

determined experimentally for the RO unit used by noting the average time until the permeate 

concentration stabilises and reaches a value below the maximum limit of 500 mg/l. 

7.4.1.2 Rolling start-up 

A rolling start for the RO unit can be performed when the system has been shut down for 

a brief interval and the system pressure is still above atmospheric pressure. This guarantees 

that air did not leak back into the RO system and air purging is not required before starting 

the HPP. Defining a rolling start-up sequence is beneficial for increasing the periods of 

production during short-term shutdowns by reducing the start-up sequence time. The time 

until the RO unit is depressurised was monitored during experimentation. On average, the RO 

unit took 21 minutes to de-pressurise and reach atmospheric pressure. This de-pressurisation 

time is subject to the RO unit design and capacity. 

7.4.1.3 Shutdown 

For the RO unit shutdown, the main objective is to flush the membrane with fresh water 

to prevent scaling, salt deposition and (forward) osmosis from occurring across the 

membrane, which can cause the membrane to swell and rupture [120, 142]. The membranes 

are flushed using low-pressure feedwater to clear the concentrated brine out of the membrane 

elements and pressure vessels. Membrane flushing takes place until the concentrate 

conductivity reaches the feed conductivity, thus indicating that all the concentrate was 

replaced.  

7.4.2 Rules for Modular operation  

After outlining the start-up and shutdown sequences, the rules constituting the modular 

operation algorithm were defined. This included defining the order for connecting or 
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disconnecting the RO units and defining the power threshold for the number of operating 

units. The rules for modular operation are described as follows: 

 Connection – disconnection strategy: The order for connecting or disconnecting the RO 

units is based on operating them in sequential order, such that a RO unit operates when 

the preceding unit has reached full capacity. In addition, the order in which the RO units 

are disconnected is inverse to the order in which they were connected. For example, in 

case of a power drop, the first RO unit to be connected is the last to be disconnected. This 

strategy aims to maximise permeate production by not interrupting the RO units operation 

and maintaining their production at full capacity as much as possible. Another alternative 

is distributing the available power across units to keep them operational. Although this 

would reduce the number of shutdowns and deliver longer periods of operation, it 

requires further analysis to determine how to allocate power between units and the 

tradeoff between longer operation, cumulative permeate production and permeate quality. 

The simple approach of sequentially ramping down units was used in this study. 

  Power threshold: The power threshold of each RO unit defines the minimum power 

consumption of a single RO unit that allows for permeate production and operating the 

HPP, which is 4.09 kW, and the maximum power consumption of a single RO unit, which 

is 8.48 kW, at the maximum production capacity. This is essential to form the decision to 

connect or disconnect a RO unit. Generally, a RO unit operates only if there is enough 

power to run the HPP. The number of operational RO units relative to available power are 

presented in Table 7.1.  

Table 7.1. Number of operational RO units relative to available power. 

Power threshold Number of operational units 

Power < 4.09 kW 0 units 

Power > 4.09 kW 1 unit 

Power > 12.57 kW 2 units 

Power > 21.05 kW 3 units 

7.4.3 Programming the modular operation algorithm 

Lastly, the elements of the modular operation procedure, i.e., standardised start-

up/shutdown sequences, power thresholds and rules of connecting/disconnecting the RO 
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units, were implemented in the control system within the modular operation block to 

automate the RO units modulation. As presented in Fig. 7.5, the modular operation block 

receives the available power and the current operational state of each RO unit as an input 

signal and sends three output signals for each RO unit. The first signal prompts a unit on or 

off depending on the available power and the power threshold defined in Table 7.1. The 

second signal is the power allocated for each unit. The third signal defines the operational 

state of each RO unit, whether it should be in the initial start-up, rolling start-up, permeate 

production, or shutdown state. For the initial start-up, rolling start-up and shutdown 

sequences, a separate algorithm in the control system contains the instructions to perform the 

standardised sequences developed for each operational state. This includes the running time 

of each pump, the sequence of pumps operation and the pumps’ ramp up/ down rate. As for 

the production stage, the control system used is the MPC controller presented in Section 7.3.2 

that operates the RO units at a variable recovery with respect to wind power variation 

following the variable-speed operation technique. 

Fig. 7.6 presents a flowchart describing the algorithm implemented in the modular operation 

technique block that modulates the RO units operation. Initially, the control system compares 

the wind power to the power threshold to determine the number of operational RO units. The 

first RO unit is started followed by the subsequent units if the preceding unit reaches full 

capacity, as defined in the connection-disconnection strategy. The RO units are disconnected 

in the opposite order they were connected.  Once a RO unit is signalled to start, the shutdown 

timer is examined to determine whether to initiate the initial start-up or the rolling start-up 

procedure. As long as there is enough power for permeate production, the RO unit is left 

operational based on the variable-speed operation technique. Once the available power falls 

below the threshold for permeate production, the control system sends a signal to the RO unit 

controller to initiate the shutdown sequence. When the system started the shutdown sequence, 

a time delay is used to delay changes in the RO unit operational state to ensure that the 

shutdown sequence is completed successfully without interruption. 
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Fig. 7.5. Control system structure after implementing the modular operation technique.  

The modular operation technique block identifies if a RO unit is on or off, allocates the 

power for each unit and prompts the operational state for each unit. Each RO unit includes a 

separate MPC control system that operates it with variable recovery based on the allocated 

power. The feedback signal from the RO units to the modular operation technique block 

includes the operational state of each RO unit. 
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Fig. 7.6. Algorithm for the modular operation procedure. 
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7.5 Results and discussion 

7.5.1 Standardised start-up and shutdown sequences 

In this section, the standardised start-up and shutdown sequences, which were developed 

experimentally for the RO units, are described. The sequences were designed to operate the 

RO units based on the membrane manufacturers recommendations and the operational 

guidelines set in the HPP and ERD manuals [160, 165]. The theoretical operation guidelines 

were implemented experimentally to the RO unit and presented as follows: 

7.5.1.1 Initial start-up procedure 

The developed initial start-up procedure is presented in Fig. 7.7. The first step was 

operating the LPP to supply feedwater from the feed tank and fill up the RO system. The LPP 

was left operational for 2 minutes to ensure the entire system was filled with water and to 

bleed air from the pressure vessels, pipework and iSave. Then, the iSave was started and its 

motor speed was increased at a rate of 2 Hz/s, based on a maximum rate of 5 Hz/s 

recommended by Danfoss [165]. The iSave was left operational at a minimum speed of 20 

Hz, delivering its minimum flowrate of 9.8 m3/h, for 5 minutes to circulate water through the 

pressure vessels and vent the air out of the system [165]. After the system fill up and the air 

venting process were complete, all the air vents were closed and the HPP was started to 

pressurise the system. The HPP speed was increased to the desired speed at a rate of 0.5 Hz/s 

to maintain an increase in feed pressure below 0.7 bar/s [142]. Once the HPP reached the 

desired speed, the permeate was discarded until it reached an acceptable concentration. For 

the RO unit used in this study, the time until the permeate concentration stabilised at a value 

below the maximum limit of 500 mg/l was recorded during experimentation to be an average 

of 7.2 minutes. The entire initial start-up sequence required around 15 minutes to be 

completed until an acceptable product quality. This time is subject to RO system design and 

capacity. 

 



 

156 
M.T.M.A.S. Mito, PhD Thesis. Aston University 2021. 

 

Fig. 7.7. Initial start-up procedure. 

7.5.1.2 Rolling start-up procedure 

The rolling start-up procedure is presented in Fig. 7.8. It included the same steps as the 

initial start-up excluding the air purging process. The rolling start-up sequence began with 

operating the LPP for 30 seconds to ensure steady flow, then the iSave was started at a 

ramping rate of 2 Hz/s as per the manufacturer's recommendation [165]. The HPP was 

powered on and ramped at a rate of 0.5 Hz/s to maintain an increase in feed pressure below 

0.7 bar/s [142]. After reaching the desired speed, the permeate was discarded until it reached 

an acceptable concentration. On average, the permeate concentration dropped below 500 mg/l 

after approximately 5.3 minutes after the HPP is started. The complete rolling start-up 

sequence required approximately 7 minutes to be completed. This was significantly lower 

than the initial start-up process, which indicated why it is beneficial to develop more than one 

start-up procedure depending on the status of the RO system. 
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Fig. 7.8. Rolling start-up procedure. 

7.5.1.3 Shutdown procedure 

The standard shutdown procedure is presented in Fig. 7.9. The HPP was ramped down 

from the set speed to a complete stop at a fast rate of 2 Hz/s to stop water permeation and 

allow the pressure to drop below the osmotic pressure. The permeation stoped as soon as the 

HPP halts completely. The iSave was left operational at a minimum flowrate of 9.8 m3/h for 

30 seconds to flush the brine out of the RO elements and pressure vessels. This period was 

more than enough to replace the full water volume inside the pressure vessels. Then, the 

iSave was ramped down at a rate of 2 Hz/s and the LPP was turned off after 10 seconds to 

allow for a smooth shutdown. The complete shutdown sequence required one minute to 

complete. This showed that there must be an anticipation of a sudden shutdown to guarantee 

enough power to complete the shutdown sequence. 
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Fig. 7.9. Shutdown procedure. 

7.5.2 Operation scheduling using long-term wind speed prediction 

This section presents the implementation of long-term wind speed prediction for 

scheduling the RO units operation. The long-term NN was used for predicting hourly average 

wind speeds for a full day ahead to estimate the available wind power based on the wind 

turbine power curve presented in Fig. 7.3. The predicted wind power was then used to 

estimate the possible number of operational RO units during the day according to the power 

threshold presented in Table 7.1. This allowed for scheduling the RO units operation while 

considering a smooth operation profile that minimises unexpected shutdowns. Prior 

knowledge of the RO units start-up/shutdown cycles can provide a form of reliability similar 

to operating with constant power in terms of adhering to the standardised start-up/shutdown 

procedure and guaranteeing the readiness of the auxiliary systems. 

In Fig. 7.10, 7.11 and 7.12, the accuracy of estimating the number of operational units along 

the day is presented by comparing the number of operational RO units using the actual and 

predicted wind speeds.  The comparison was done using wind speed data for three random 

days that were excluded from the NN training dataset. In addition, a sample of possible 

scheduling for the RO units is presented for each day based solely on the predicted wind 

speed. This showcases how wind speed prediction can be used to plan the RO units operation 
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for a day ahead. The scheduling provided is considered very conservative to guarantee 

operation without unexpected shutdowns, however, it will not lead to the highest permeate 

production. The process of scheduling the RO units operation is subject to the operator’s 

decision to assess whether to risk an unexpected drop in power for the sake of higher 

permeate production. 

In Fig. 7.10, the predicted number of operating units is compared to the actual according to 

the hourly average wind speed for Day 1. During the first hours of the day, the wind power 

was not sufficient to operate any RO unit. As the wind power increased, the number of 

operational units increased to a maximum of 3 units during mid-day before it decreased again 

as the power dropped after 15:00. The bell-shaped pattern is associated with the effect of sea 

breeze that led to higher wind speeds during mid-day. This applies to Bahrain being an island 

country with high air temperatures, especially in August. The estimation based on the NN 

prediction successfully predicted periods of insufficient power to operate any RO unit during 

the day, specifically the last eight hours. For the remainder of the day, there was an 

underestimation of the possible number of operational units caused by lower predicted wind 

speed compared to the actual value. Despite that the underestimation would lead to lower 

energy utilisation, it would present a smooth operation profile by avoiding sudden power 

drops. Generally, there was a good correlation between the predicted number of operating 

units and the actual, represented by a R2 of 0.78, considering the prediction range of a full 

day ahead. As for operation scheduling, a scheduling plan for the RO units operation is 

presented solely based on the predicted wind power. The wind speed prediction had shown 

the bell-shaped wind speed pattern for the day indicating an increase in wind power during 

mid-day. Accordingly, a single RO unit would be operated from 06:00 to 08:00, then another 

will be added to utilise the rise in power near mid-day. The number of units will be reduced 

gradually during the afternoon in anticipation of a power drop after 15:00. 
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Fig. 7.10. Possible number of operational RO units based on actual and predicted hourly 

average wind speed on 18 August 2020. 

For Day 2, the predicted wind power indicated the possibility of permeate production from 

the start of the day. The number of operational units based on the predicted power was more 

than the actual due to an overestimation of the predicted wind speed. The prediction accuracy 

increased towards mid-day with the predicted number of operational units reaching 3 units. 

The wind power dropped after 14:00 leading to insufficient power to operate any units, which 

was predicted successfully by the NN. The correlation between the predicted and actual 

number of operating units was R2 0.64. Based solely on the prediction, the RO system can be 

scheduled to operate a single unit from the period of 01:00 to 04:00 instead of 2 units to allow 

for any prediction inaccuracies. The number of operating units could be increased to two 

units as wind power increases towards 08:00. Three units could be operated from 09:00 till 

11:00 before ramping down the RO units in anticipation of the power drop after 13:00. As 

mentioned earlier, this scheduling strategy sets a reserved operation profile that would 

minimise unexpected shutdown. 
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Fig. 7.11. Possible number of operational RO units based on actual and predicted hourly 

average wind speed on 30 March 2020. 

As for Day 3, the high wind speed allowed for two RO units to operate at the start of the day 

and three units to be operated until 10:00. As the wind speed dropped towards night-time the 

number of operating RO units decreased. The correlation between the predicted and actual 

number of operating units was quantified by a R2 of 0.79. It is noted that the prediction 

accuracy increased with higher wind power as a result of reaching the maximum power 

required to operate the 3 units. The estimation of number of operating units accurately 

predicted the number of operating units from the start of the day till mid-day. As the wind 

power dropped near the limit of operating 1 unit, the error between the actual and predicted 

wind speed led to underestimating the wind power at certain times, which is not a 

disadvantage as operation near the marginal limit of 1 RO unit could result in sudden 

shutdown due to insufficient wind power. Given the predicted number of operational units a 

day earlier, an operator could schedule the operation within the period from 01:00 to 10:00 

for two units to avoid unscheduled shutdowns. Another operator might schedule 3 units for 

operation to achieve higher water demand, however, there will be a chance of a shutdown for 

the third unit in case of a power drop. The selected operation profile will be subject to water 

demand and the plant operators judgment.  
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Fig. 7.12. Possible number of operational RO units based on actual and predicted hourly 

average wind speed on 24 November 2020. 

7.5.3 Predictive control using short-term wind speed prediction 

The second solution is a predictive control procedure that directly implements the short-

term wind speed prediction into the RO system control.  The predicted wind speed average 

for the upcoming 2 minutes was used as the control system input instead of the real-time 

wind speed signal. As such, the control system generated reference signals to control the RO 

unit based on the averaged wind speed for the next 2 minutes. In this manner, the RO unit 

control system was always two minutes ahead of the real-time wind speed variation. Using an 

averaged wind speed signal would guarantee smoother operation of the RO unit instead of 

matching the RO unit load to the random wind power variation. In addition, averaging the 

wind speed signal over a period that covers the time required for the shutdown sequence 

would guarantee enough energy to perform it without interruption. The high accuracy of the 

2-minute average short-term prediction omits the need to operate the RO system with short-

term energy storage, e.g., flywheel.  

Initially, the short-term NN generated the wind speed average for the next 2 minutes, which 

was used to calculate the predicted wind power using the wind turbine power curve in Fig 

7.4. Then, the predicted wind power was sent to the control system to generate reference 

signals for the permeate production and brine flowrate to which the motor speeds were 

controlled, thus, matching the RO plant load to the predicted average power. The modular 

operation procedure presented in Section 7.4 was implemented, such that the RO units are 
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started or shut down depending on the available wind power and the defined power threshold 

for each unit. To test the performance delivered by the presented predictive control 

procedure, the RO units load based on the wind speed prediction was compared to the real-

time wind power for three random days that were excluded from the NN training. 

In Fig. 7.13 (a), the RO system power consumption based on the 2-minute averaged wind 

speed signal is compared to the real-time measured wind power. The figure highlights the 

start-up and shutdown of the RO units along the day. Using the predicted wind power average 

as the input for the control system provided more stable performance than the control system 

reacting to the real-time power variation. In addition, the high accuracy delivered by the 

short-term NN meant that the control system can accurately track real-time wind power 

changes. This meant that the RO plant load matched with the available wind power while 

securing a two-minute lead time to account for sudden changes in available power. In 

addition, the implementation of the modular operation technique by switching the RO units 

on/off ensured the RO system can accommodate wide changes in available power. The 

combination of modular operation and predictive control using the short-term wind speed 

prediction offered high utilisation of the available energy such that the ratio between the RO 

plant energy consumption and the energy generated by the wind turbine, named the utilisation 

factor, was 90.9%. This translated to high cumulative permeate production by the end of the 

day. Fig. 7.13 (b) presents the rate of permeate production along the day for the RO system. 

The figure highlights the periods of permeate production for each RO unit subject to the start-

up/shutdown cycles. By using the predicted wind power as the control system input, along 

with using the modular and variable-speed operation, the RO system produced 78 m3 for Day 

1 of fresh water at a 147.1 mg/l concentration.  

The only disadvantage noticed in Fig. 7.13 (a) is the short duration start-ups for the RO units, 

especially for unit 3, due to power drop below the operation threshold. However, 

implementing the modular operation procedure in addition to defining a standard start-

up/shutdown sequence, ensured that these short-duration start-up/shutdown cycles were 

performed as smoothly and safely for the RO units as possible. Moreover, these short-

duration start-ups can be avoided by using the long-term prediction, described in Section 

7.5.2, for scheduling the RO units operation in advance.  

Similar performance was noticed for Days 2 and 3 presented in Fig. 7.14 and 7.15. The 

energy utilisation factor for Days 2 and 3 were 91.5% and 91.4%, respectively. As for total 
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permeate production, the RO system produced a total of 91.5 m3 of fresh water at 145.1 mg/l 

NaCl concentration for Day 2 and 123.4 m3 at a 145.5 mg/l concentration for Day 3. A 

summary of the RO system performance for Days 1, 2 and 3 is presented in Table 7.2. 

 

(a) 

 

(b) 

Fig. 7.13. The RO units operation using the predicted wind power from the short-term neural 

network as the power input for the control system.  

The modular and variable-speed operation strategies are implemented to vary the RO units 

load according to the predicted wind power. The figure presents a) a comparison between the 

RO system power consumption and real-time wind power, and b) the rate of permeate 

production during Day 1. 
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(a) 

 

(b) 

Fig. 7.14. The RO units operation using the predicted wind power from the short-term neural 

network as the power input for the control system.  

The modular and variable-speed operation strategies are implemented to vary the RO units 

load according to the predicted wind power. The figure presents a) a comparison between the 

RO system power consumption and real-time wind power, and b) the rate of permeate 

production during Day 2. 
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(a) 

 

(b) 

Fig. 7.15. The RO units operation using the predicted wind power from the short-term neural 

network as the power input for the control system.  

The modular and variable-speed operation strategies are implemented to vary the RO units 

load according to the predicted wind power. The figure presents a) a comparison between the 

RO system power consumption and real-time wind power, and b) the rate of permeate 

production during Day 3. 

 

 

 

 



 

167 
M.T.M.A.S. Mito, PhD Thesis. Aston University 2021. 

Table 7.2. Summary of the RO system performance for Days 1, 2 and 3. 

 
Total wind 

energy (MJ) 

RO energy 

consumption 

(MJ) 

Permeate 

production 

(m3/day) 

Permeate 

quality 

(mg/l) 

Energy 

utilisation 

(%) 

Day 1 855.1 777.3 78 147.1 90.9 

Day 2 965.0 883.2 91.5 145.1 91.5 

Day 3 1313.0 1200.0 123.4 145.5 91.4 

 

7.6 Summary 

This chapter presented a modular operation technique that uses wind speed prediction for 

operation scheduling and predictive control of the RO units. Two solutions were introduced 

based on the long-term and short-term wind speed prediction to improve the efficiency of 

modular operation. Initially, the long-term prediction was used to schedule the daily 

operation of the RO units. Secondly, the short-term prediction was used as the wind speed 

signal for the control system, such that the control system predictively generated a reference 

signal and was always ahead of the actual wind speed change. The modular operation 

technique was presented alongside the variable-speed operation technique and the MPC 

control system developed in Chapter 5, thus forming a complete load management technique 

for matching the RO load to wind power variation. A RO system consisting of multiple RO 

units was used in the analysis to reflect the modularity of large-scale systems. The tests were 

performed using the wind speed time-series for three random days that were excluded from 

the NN training. The conclusions are presented as follows: 

 The development of a standardised start-up/shutdown sequence can vary depending 

on the plant design. A standardised start-up and shutdown sequence was developed 

experimentally using guidelines set by the membrane manufacturers and operation 

limitations for the pumps that ensure smooth and efficient operation during the start-

up/shutdown cycles. The operating sequences included the running time of each 

pump, the sequence of pumps operation and the pumps’ ramp up/ down rate. The 

initial start-up and rolling start-up sequences required approximately 15 and 7 minutes 

to be completed, respectively. The shutdown sequence required around one minute to 
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be completed, indicating the necessity to anticipate power drops to guarantee an 

uninterrupted shutdown sequence.  

 The long-term wind speed prediction was used for scheduling the RO units operation 

to operate according to a smooth operation profile that minimises unexpected 

shutdowns. The number of operating units according to the predicted hourly-average 

wind speeds was compared to the actual for Days 1, 2 and 3. A good correlation was 

achieved indicated by R2 of 0.78, 0.64, and 0.79 for Days 1, 2 and 3, respectively. In 

addition, a sample schedule was presented for the RO units, based solely on the 

predicted wind speed, that delivered a conservative and smooth operation profile 

without risking an unexpected shutdown. 

 The two-minute average wind speed generated by the short-term NN was used as the 

wind speed signal for the control system. As such, the control system predictively 

generated reference signals for the permeate and brine flowrates based on the 

averaged wind speed. The comparison between the RO system power consumption 

based on the predicted wind speed signal and the real-time measured wind power 

indicated that using the predicted wind speed average led to a smoother operation 

profile than the control system reacting to the real-time power variation. In addition, 

the RO plant load matched with the real-time available power due to the high 

accuracy of the short-term wind speed prediction, while securing a two-minute lead 

time to account for sudden changes in wind speed and available power. 

 The combination of variable-speed operation and modular operation, enhanced using 

predictive control via the short-term wind speed prediction, presented a complete load 

management technique that matches the RO load to wind energy variations. Overall, it 

offered high utilisation of the available energy, such that the energy utilisation factor, 

was 90.9%, 91.5% and 91.4% for Days 1, 2, and 3, respectively. This translated to 

high cumulative daily permeate production of 78 m3, 91.5 m3 and 123.4 m3 for Days 

1, 2 and 3, respectively. 
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8 Chapter 8  Conclusions 

8.1 Introduction 

This chapter summarises the research findings and highlights the original contributions 

arising from this work. Responses to individual objectives are presented to summarise the 

research activities and outcomes. The extent to which the overall aim was achieved is 

assessed by examining the original contributions of this study. Lastly, recommendations for 

further development are outlined.  

8.2 Responses to the objectives 

 Objective 1: Review published literature to identify state of the art regarding RE-driven 

RO desalination, in addition to identifying technical challenges and potential solutions for 

large-scale implementation (Chapter 2).  

The literature review indicated that variable operation by directly connecting the RO system 

to a RES, without backup systems, has shown feasible performance compared to RO systems 

operating with constant power. The findings of the literature review helped identify points of 

potential improvements for RE powered-RO and conceptualise the objectives for this thesis. 

They are presented as follows: 

a) Previous studies used small-scale systems as a proof-of-concept for operating RO 

systems using RE. Although these systems presented a good platform to develop and 

analyse their proposed solutions, they do not reflect operation characteristics or 

include equipment similar to large-scale systems to guarantee that their technology is 

suitable to such scale. 

b) Maintaining the performance and lifetime of the RO modules during variable 

operation was an important point raised in previous studies. This indicated the need to 

operate the system within the safe operating limits and based on the manufacturer’s 

recommendations during load variation. 

c) An advanced control system that can deliver fast and robust performance is required 

to operate the RO systems using variable power for matching the RO plant load to the 

RE fluctuations. Limited studies were found that specifically discussed the control 

system of RE powered RO plants. 
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d) The execution of modular operation requires the development of a standardised start-

up/shutdown sequence that guarantee the smoothness of the modulation cycles and 

maintain the recommended operating procedure. In addition, modular operation 

would subject the RO units/trains to multiple start-ups/shutdowns during the day due 

to RE variation. This highlighted the need to schedule the RO units’ operation to 

avoid their random connection/disconnection. 

 Objective 2: Design, build and test an RO pilot plant at an industrial scale having 

comparable performance to large-scale systems to develop solutions transferable to such 

scale (Chapter 3). 

A RO test-rig was designed and built at Aston University as a platform for testing the 

operation of RE-driven RO systems. The test-rig was arranged in a split-feed flow 

configuration by splitting the feed between a HPP and an isobaric ERD. In addition, it 

utilised commercial equipment used in large-scale RO systems to reflect their capability for 

operating with variable power. The plant rated production capacity is 3.2 m3/h.  

 Objective 3: Develop and validate a dynamic model that predicts the dynamic behaviour 

of the developed RO system (Chapter 4).  

A dynamic model was developed for the RO system that included the solution-diffusion 

theory and the concentration polarisation theory to describe the RO membrane performance, 

in addition to individual models for the components of the pumping system. The prediction 

accuracy of the model steady-state output and dynamic response were validated using 

experimental data from the RO system. The model accurately predicted the transient change 

in permeate flowrate, feed pressure, and permeate concentration, such that the error between 

the predicted and measured data remained within a 5% margin along a 10% step-change in 

the HPP rotational speed. The model was used for the development and testing of the 

solutions presented throughout this study. 

 Objective 4: Present an optimised variable-speed operation technique to vary the RO 

operation parameters according to available power (Chapter 5).  

Selection of an operation strategy, to optimally vary the RO system load according to the 

available power and input disturbances, is essential for the feasibility of operating RO 

systems using RE. Multiple operational strategies were explored in this study for varying the 
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operating parameters. The investigation considered operation at constant recovery, operation 

at constant brine flowrate, and operation at a constant feed flow. The operation strategy is 

selected to provide the widest operation range at the least SEC. The results revealed that 

operation at variable recovery with constant brine flowrate delivered the lowest specific 

energy consumption, indicating best utilisation of available energy, and widest operation 

range, allowing for permeate production at low power. This original finding can be applied to 

commercial systems using split-feed flow configuration and an isobaric pressure exchanger. 

 Objective 5: Design and implement an advanced control system based on MPC and 

compare its performance to a conventional PID controller (Chapter 5). 

Operating a RO system using variable power from a RE sources requires a control system 

delivering fast and robust performance. An advanced control system based on MPC was 

designed and compared to a conventional PI controller. The MPC controller improved the 

settling time for a 10% step-change in permeate flowrate by 47% compared to the PI 

controller. Moreover, the disturbance rejection improved by 47.2% and 43.9% for a 10% 

step-change in feed concentration and temperature, respectively. The MPC offered better 

energy utilisation indicated by a 2.35% increase in hourly permeate production for a defined 

wind speed time-series. 

 Objective 6: Develop a wind speed prediction algorithm using NNs for forecasting long- 

and short-term changes in wind speed (Chapter 6). 

Two NNs were developed to provide long- and short-term wind speed prediction for use in 

RO plant scheduling and control. The NNs were trained using wind speed data spanning six 

months for a site in the Kingdom of Bahrain. The long-term NN predicted the hourly average 

wind speed for a full day ahead and delivered a good fit between the output and target data 

for the complete dataset presented by a R2 0.59. and a RMSE of approximately 1.5 m/s. As 

for the short-term NN, it predicted the average wind speed for 2 minutes ahead using wind 

data of the previous ten minutes. It delivered a high prediction accuracy presented by a R2 

0.95, indicating an impressive correlation between the network output and target data, and a 

low RMSE of approximately 0.15 m/s. The accuracy delivered by the long-term and short-

term NNs highlighted their potential in scheduling the operation of RO systems, which was 

explored in the next objective.  
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 Objective 7: Develop a modular operation technique to connect/disconnect RO units, 

while following a standardised start-up/shutdown sequence, according to changes in 

available power. The technique utilises wind speed prediction in scheduling the RO units’ 

start-up/ shutdown sequence and parameters variation (Chapter 7).  

Two solutions were presented based on the long-term and short-term NNs. Initially, the long-

term prediction was used to schedule the daily operation of the RO units. This was done by 

estimating the number of operational units along the day based on the predicted power and 

generating a schedule for the RO units operation that maintained a smooth operation profile 

and minimised unnecessary repetition of the start-up/shutdown cycle. For assessing this 

solution, the estimated number of operating units according to the predicted hourly-average 

wind speeds was compared to the actual and a good correlation was achieved of a R2 0.78, 

0.64, and 0.79 for Days 1, 2 and 3, respectively. In addition, a sample schedule was presented 

that ensures a conservative operation of the RO units while avoiding unexpected shutdowns. 

For the second solution, referred to as ‘predictive control’, the two-minute average wind speed 

signal generated by the short-term NN was used as the input wind speed signal for the control 

system. This led to a smoother operation profile than reacting to the real-time power variation 

while securing a two-minute lead time to account for sudden changes in wind speed and 

available power. The RO plant load matched the real-time available power due to the high 

accuracy of the short-term wind speed prediction. 

Combining variable-speed operation and modular operation, while using the predictive control 

supported by the short-term wind speed prediction, presented an efficient load management 

technique that matched the RO load to wind energy variations. Overall, it offered high 

utilisation of the available energy indicated by a utilisation factor of 90.9%, 91.5% and 91.4% 

for Days 1, 2 and 3, respectively. This led to a high cumulative daily permeate production of 

78 m3, 91.5 m3 and 123.4 m3 for Days 1, 2 and 3, respectively. 

8.3 Overview and original contributions 

This section presents an overview of the overall aim in the context of describing the 

original contribution towards achieving it. This thesis aimed to optimise the operation of RE-

driven RO and thus pave the way for large-scale implementation. The original contributions 

arising from this work are as follows: 
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 The current state-of-the-art and technical challenges in using RE as the main driver of 

large-scale RO plants were identified. Several reviews covered progress in driving RO 

plants with RE. However, the technical challenges for the direct operation of large-

scale RO plants using RE were not discussed specifically [11]. 

 Variable operation was recognised as the procedure for directly connecting the RO 

plant to the RE source. It is essential to allow the RO system to accommodate the RE 

variation. As national grids become more dependent on RE, there will be a necessity 

to manage the connected loads rather than the current practice of changing the power 

output of the fossil-fuelled powered plants.  

 A RO test-rig with similar design and performance characteristics to large-scale 

systems was used to develop solutions transferable to such scale. This is a 

fundamental contribution by this research as previous studies used small-scale 

systems that did not reflect the performance of utility-scale systems. 

 An investigation was performed to determine the optimum control strategy for 

implementing variable-speed operation of the RO system. Operating the RO system 

based on variable recovery with constant brine flowrate presented the lowest specific 

energy consumption, indicating best utilisation of available energy and widest 

operation range, and allowing for permeate production at low power. This original 

finding applies to commercial systems using split-feed flow configuration and an 

isobaric pressure exchanger. 

 An advanced control system is developed for implementing the mapped control 

strategy and operating the RO system using fluctuating power. The MPC offered 

superior control compared to a conventional PID controller, due to its prediction 

ability, in terms of maintaining the controlled output at the reference value and 

suppressing output variation due to changes in disturbances. The introduction of MPC 

in RE powered-RO applications fulfils a knowledge gap highlighted by [11, 33] for 

the necessity of advanced control systems for such applications. 

 A modular operation technique was developed to handle high magnitude variations in 

RE by connecting/disconnecting RO units according to the change in available power. 

Standardised start-up and shutdown sequences were developed for the RO system 
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described in Chapter 3 based on the guidelines of the equipment manufacturers to 

maintain safe/smooth operation during the start-up/shutdown sequence. 

 Another novel contribution was implementing wind speed prediction using NN into 

RO system modular operation. Wind speed prediction allowed for scheduling the RO 

units operation based on a forecast of available wind power for a full day ahead, thus 

minimising unnecessary start-up/ shutdown cycles. Furthermore, the concept of 

predictive control by controlling the RO system based on the averaged wind speed 

prediction provided smooth operation and secured enough reaction time to perform 

the shutdown procedure. 

Powering RO systems using RE is essential for decarbonising water production. It has the 

potential to improve the sustainability of RO desalination and reduce its reliance on fossil 

fuels, thus allowing for more deployment. The benefits of RO-driven RO can extend to two 

communities. Countries that have enough resources to meet their water demand through RO 

can reduce their operational cost and environmental footprint. On the other hand, developing 

countries with limited resources can meet their water demand by investing in RO with 

lowered operational costs. 

8.4 Recommendations for future work 

Although this thesis provided a load management technique that can be used to power 

RO systems using RE, more aspects require investigation. 

Several studies had different outcomes on the effect of flow and pressure variation on 

membrane performance. An investigation is required that spans the membrane lifetime to 

give a definitive conclusion on how/if the membrane performance and lifetime would be 

affected. This was not possible during this study due to time limitations.  

Another aspect to consider is the effect of flow and pressure fluctuations on mixing between 

the feed and brine streams within the ERD. Mixing between the two streams can lead to an 

increase in osmotic pressure, thus increasing the power consumption. This requires additional 

sensors to be installed for the pilot plant described in Chapter 3. 

The strategy used in modular operation for disconnecting/ ramping down the RO units during 

a power drop requires further investigation. Alternatives such as power distribution for 

maintaining units operation can reduce the number of shutdowns. However, this requires 
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detailed analysis to determine the method of distributing power between units and the trade-

off between longer operation, cumulative permeate production and permeate quality. 

Another potential improvement is using hybrid RE sources for stabilising the power input to 

the RO systems. This can help improve operational reliability and allow operation for 

extended periods. However, the economic feasibility and performance efficiency of using 

hybrid RE is subject to the optimised selection and sizing of the RE sources. 

In addition, the majority of previous studies have focused on either solar or wind energy as 

alternatives to fossil fuels. This is justified as solar and wind energy are considered mature 

renewables. However, wave energy can also be a feasible option for powering RO systems, 

especially due to its high energy density and that RO systems are mostly located in coastal 

areas. 

Another topic to consider is the development of short-term energy storage that can smooth 

the power fluctuation from the RE source and improve operation stability. Storage systems 

such as flywheels, hydraulic accumulators and supercapacitors have been presented in 

previous studies, however, require further improvement for use with large-scale RO systems. 

It is also worth mentioning that the environmental impact of discharging highly saline brine 

from large-scale RO plants is concerning. Currently, the desalination industry is moving 

towards zero liquid discharge for minimising brine water. This extends to benefiting from the 

brine by extracting valuable minerals, e.g., Lithium, Magnesium and Boron, that are present 

in high concentrations compared to seawater. Future studies should aim to improve the zero 

liquid discharge technology and its integration with RE powered-RO. 

Lastly, the solutions presented in this study should be implemented on a large-scale system, 

whether through simulations or experimentally, to analyse its efficiency for directly coupling 

the RO system to the RES and to showcase the economic and environmental feasibility of 

variable operation. This requires collaboration with industrial partners to provide data for 

modelling and validation, and possibly allow for testing on their systems. 
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Appendix A  RO system design drawings 

A.1     Frame design 

 

Fig. A.1. Frame design. 
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A.2     RO system assembly 

 

Fig. A.2. Front view of the RO system. 
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Fig. A.3.  Side view (right) of the RO system. 
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Fig. A.4. Side view (left) of the RO system. 
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Fig. A.5. Plane view of the RO system. 
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A.3     Process and instrumentations diagram 

 

Fig. A.6. Process and instrumentations diagram of the RO system. 
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Appendix B  Electrical panel design drawings 

B.1    High-voltage power circuit 

 

Fig. B.1. High-voltage power circuit. 
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B.2    Low-voltage control circuit 

 

Fig. B.2. Low-voltage control circuit. 
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B.3    NI DAQ chassis terminals 

Table B.1. NI DAQ chassis terminal 

DAQ card terminal Function 

NI 9482 – Relay (1) 

0A – 0B On/Off LPP (31) 

1A – 1B On/Off iSave (32) 

2A – 2B On/Off HPP (33) 

3A – 3B - 

NI 9208 – Current input 

Vsup +ve DC supply (36) 

Com -ve DC supply (37) 

A10 PT 1 (38) 

A11 PT2 (40) 

A12 PT3 (42) 

A13 PT5 (44) 

A14 PT6 (46) 

A15 FT1 (48) 

A16 FT2 (50) 

A17 FT4 (52) 

A18 FT5 (54) 

A19 CT1 (56) 

AI10 CT2 (58) 

AI11 CT3 (60) 

AI12 TT1 (62) 

AI13 CS1 – LPP (64) 

AI14 CS2 – iSave (66) 
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AI15 CS3 – HPP (68) 

NI 9265 – Current output 

Vsup +ve DC supply (69) 

Com -ve DC supply (70) 

AO 0 VFD iSave (+ve) (71) 

COM 0 VFD iSave (-ve) (72) 

AO 1 VFD HPP (+ve) (73) 

COM 1 VFD HPP (-ve) (74) 

AO 2 Modulated valve (77) 

COM 2 Modulated valve (78) 

AO 3 - 

COM 3 - 

NI 9482 – Relay (2) 

0A – 0B Isolation valve (on) (79) 

1A – 1B Isolation valve (off) (81) 

2A – 2B Modulated valve (Open) 

3A – 3B Modulated valve (Close) 
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Appendix C  Sensors calibration 

C.1    Flowmeter 

 

Fig. C.7. Flow sensor calibration. 

C.2    Pressure sensors 

 

Fig. C.2. Pressure sensor calibration. 
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C.3    Conductivity sensors 

The feed and permeate conductivity sensors were calibrated based on a single-point 

calibration using a 12,880 μS/cm NIST compliant conductivity solution. 

Table C.1. Conductivity sensor calibration. 

Sensor 
Target value 

(μS/cm) 

Sensor reading 

(μS/cm) 

Actual Error 

(% of reading) 

Rated accuracy 

(% of reading) 

Feed 

conductivity 
12,880 13078.9 +1.54 ±2% 

Permeate 

conductivity 
12,880 12987.7 +0.84 ±2% 

 


