Drivers of Type 2 Inflammation in Allergic Airway Disease: Wnt You Like to Know?

Xinhui Wu, PhD¹, Jill R. Johnson, PhD²

¹Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands

²School of Biosciences, College of Health and Life Sciences, Aston University, Birmingham, UK

Corresponding Author: Jill R. Johnson, PhD

Aston University - School of Life and Health Sciences

Birmingham B4 7ET

United Kingdom of Great Britain and Northern Ireland

E: j.johnson1@aston.ac.uk

Allergic asthma is a chronic respiratory disease characterized by profound changes to the structure of the airway wall, resulting in reversible airway obstruction. While it is currently well-understood that these structural and functional changes arise from persistent Type 2 inflammation of the airways in response to aeroallergen exposure, the mechanisms responsible for initiating and maintaining eosinophilic inflammation in allergic airway disease remain unclear. Here, Rai et al. describe their studies of canonical Wnt signaling pathway and its importance in the regulation of the pulmonary immune response to inhaled allergen, particularly regarding the differentiation and activity of alternatively activated M2 macrophages (1).

The Type 2 immune response to inhaled allergen is characterized by the infiltration of Th2 cells, eosinophils, and macrophages into the airway wall (2). Macrophages play critical roles in maintaining this immune response and exhibit a considerable degree of plasticity, defined by the M1 vs. M2 continuum of polarization. While macrophages on the M1 end of the spectrum have robust phagocytic and cytotoxic capacity, M2 macrophages are more important in the resolution of inflammation, tissue repair pathways, and the development of tissue fibrosis (3-5). M2 macrophages are functionally diverse (M2a, M2b, M2c, M2d), with the M2a subtype closely associated with Th2 polarized allergic inflammation in the lung. It is currently understood that M2 macrophages are induced by IL-4 and/or IL-13 and express high levels of IL-10, TGF- β , and inflammatory chemokines (6). However, the importance of other signaling pathway that participate in the maintenance of M2 polarization remain under investigation. IL-33, expressed as a danger signal following allergen-mediated epithelial cell damage (7), can polarize macrophages toward an M2 phenotype (8). Other cell types such as eosinophils, innate lymphoid type 2 cells, CD4+CD25+ T regulatory cells, and mesenchymal stem cells (MSCs) have also been demonstrated to modulate macrophage polarization toward the M2 phenotype (9-12). Rai et al. have now added to this panoply of pathways that contribute to alternative macrophage activation through their observations that genetic ablation or pharmacological inhibition of secreted Frizzled-related protein-1 (SFRP-1), a key regulator of the canonical Wnt signaling pathway, effectively suppresses M2 macrophage polarization in response to aeroallergen exposure, resulting in a notable reduction in airway eosinophilia and improved lung function.

Using a mouse model of allergic airway disease driven by respiratory house dust mite (HDM) extract exposure (at a relatively high allergen dose of 40 µg/day, 5 days per week for 3 weeks), Rai et al. were able to show that genetic ablation of SFRP-1 led to reduced airway resistance at baseline, measured by invasive methacholine challenge using the FlexiVent system. Following chronic HDM exposure, SFRP-1-deficient mice demonstrated reduced airway inflammation, specifically a reduction in IL-5 and eosinophils, with no impact on other inflammatory mediators or a major difference in the intensity of inflammation. As a corollary, further studies using a pharmacological strategy to inhibit SFRP-1 activity using WAY316606 and thereby increase Wnt signaling led to reduced airway resistance and airway inflammation in the chronic HDM model, manifested as reduced total lung inflammatory cell infiltration, reduced numbers of macrophages and eosinophils, and significantly lower levels of IL-4 and IL-5 in the bronchoalveolar lavage fluid. Although both strategies to reduce SFRP-1 activity were able to reduce Type 2 inflammation and airway dysfunction following aeroallergen exposure, the more profound effect of WAY316606 treatment suggests the presence of some compensatory mechanisms in the SFRP-1 knockout mouse that deserve further study.

Activation of the canonical Wnt pathway results in the accumulation of β-catenin in the cytoplasm and its translocation into the nucleus, where it acts as a transcriptional coactivator of TCF/LEF family transcription factors. At the Frizzled receptor, interactions with proteins other than Wnt can antagonize signaling; these Wnt antagonists include Dickkopf (Dkk), Wnt inhibitory factor 1 (WIF-1), and secreted Frizzled-related proteins (SFRP). Of the latter, SFRP-1 has been demonstrated to be a complex modulator of Wnt signaling, as it can suppress Wnt activity at high concentrations and promote it at lower concentrations. Extensive studies have demonstrated that the complex regulatory roles of the Wnt cascade, including Wnt proteins as well as diverse Wnt receptors and effectors, are

Page 4 of 9

pivotal in the induction of Type 2 immune responses to allergen exposure in the lung specifically and chronic inflammatory diseases in general (13).

Manipulation of Wnt antagonists has been performed in other studies, in an attempt to mitigate type 2 inflammation in response to aeroallergen exposure. In agreement with Rai et al., Chae et al. have demonstrated that high levels of Dkk-1 enhance Type 2 immune responses by promoting Th2 polarization. Moreover, functional inhibition of Dkk-1 in mice following HDM exposure or *Leishmania major* infection led to reduced Th2 cell cytokine production and leukocyte infiltration (14). Wu et al. have more recently demonstrated the importance of Wnt antagonists in driving type 2 responses by showing in *C. albicans*-induced allergic airway disease that robust Th2 and Th17 cell responses are driven by the release of the Wnt antagonist Dickkopf-1 (Dkk-1) from platelets, stimulated by the peptide toxin candidalysin (15). Here, Rai et al. further strengthen the notion that the expression of Wnt antagonists enhances Type 2 inflammation by showing that the ablation of SFRP-1 facilitates the nuclear translocation of β -catenin in macrophages, thereby impeding M2 macrophage polarization and inhibiting Type 2 inflammation after chronic HDM exposure.

In summary, Rai et al. elegantly demonstrate that canonical Wnt/β-catenin signaling is critical to the suppression of the M2 macrophage phenotype in allergic inflammation. In response to a three-week period of respiratory HDM exposure, a time point that has previously been shown to induce a robust Th2-polarized inflammation affecting the large airways (16), mice in which the activity of the Wnt antagonist SFRP-1 had been impaired either genetically or pharmacologically showed marked suppression of airway inflammation and lung dysfunction. Additional studies at later time points are now critical to assess the effects of SFRP-1 inhibition on airway remodeling.

It is anticipated that further studies will be performed to define the role of individual Wnt proteins and modulators of this pathway in eosinophils and macrophages. The authors specifically mention performing experiments on cell-specific SFRP-1 knockout mice, which hopefully will clarify the mechanisms by which SFRP-1 promotes allergic inflammation. Clearly, a better understanding of the molecular mechanisms regulating macrophage polarization and the downstream effects of these pathways on other immune and structural cell types is essential to clarify the relationship between allergen exposure, macrophage activity, and the development of airway remodeling and respiratory symptoms in allergic asthma. **Figure 1.** Canonical Wnt signaling, when suppressed by elevated expression of the Wnt antagonists Dickkopf (Dkk), Wnt inhibitory factor 1 (WIF-1), and secreted Frizzled-related proteins (SFRP) in allergic airway disease, facilitates the polarization of macrophages to the M2 phenotype, resulting in enhanced Th2 inflammation, eosinophil infiltration of the airways, and airway hyperresponsiveness. Effective ablation of Wnt antagonist activity, by either genetic or pharmacological methods, promotes activation of the Wnt signaling pathway and the suppression of M2 macrophage polarization. Created with BioRender.com

References

1. Rai N, Arteaga-Solis E, Goldklang M, Zelonina T, D'Armiento. The Role of Secreted Frizzled Related Protein-1 in Allergic Asthma. Am J Respir Cell Mol Biol [online ahead of print] 20 December 2021; https://www.atsjournals.org/doi/abs/10.1165/rcmb.2020-0314OC.

2. Chabra R, Gupta, M. Allergic And Environmental Induced Asthma. StatPearls2021.

3. Dewhurst JA, Lea S, Hardaker E, Dungwa JV, Ravi AK, Singh D. Characterisation of lung macrophage subpopulations in COPD patients and controls. Sci Rep. 2017;7(1):7143.

4. Saradna A, Do DC, Kumar S, Fu QL, Gao P. Macrophage polarization and allergic asthma. Transl Res. 2018;191:1-14.

5. Johnson JR, Swirski FK, Gajewska BU, Wiley RE, Fattouh R, Pacitto SR, et al. Divergent immune responses to house dust mite lead to distinct structural-functional phenotypes. Am J Physiol Lung Cell Mol Physiol. 2007;293(3):L730-9.

6. Ross EA, Devitt A, Johnson JR. Macrophages: The Good, the Bad, and the Gluttony. Front Immunol. 2021;12:708186.

7. Kamijo S, Takeda H, Tokura T, Suzuki M, Inui K, Hara M, et al. IL-33-mediated innate response and adaptive immune cells contribute to maximum responses of protease allergen-induced allergic airway inflammation. J Immunol. 2013;190(9):4489-99.

8. Kurowska-Stolarska M, Stolarski B, Kewin P, Murphy G, Corrigan CJ, Ying S, et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol. 2009;183(10):6469-77.

9. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011;332(6026):243-7.

10. Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci U S A. 2007;104(49):19446-51.

11. Kim J, Chang Y, Bae B, Sohn KH, Cho SH, Chung DH, et al. Innate immune crosstalk in asthmatic airways: Innate lymphoid cells coordinate polarization of lung macrophages. J Allergy Clin Immunol. 2019;143(5):1769-82.e11.

12. Domenis R, Cifù A, Quaglia S, Pistis C, Moretti M, Vicario A, et al. Pro inflammatory stimuli enhance the immunosuppressive functions of adipose mesenchymal stem cells-derived exosomes. Sci Rep. 2018;8(1):13325.

13. Jridi I, Canté-Barrett K, Pike-Overzet K, Staal FJT. Inflammation and Wnt signaling: target for immunomodulatory therapy? Front Cell Dev Biol. 2020;8:615131.

14. Chae WJ, Ehrlich AK, Chan PY, Teixeira AM, Henegariu O, Hao L, et al. The Wnt antagonist Dickkopf-1 promotes pathological type 2 cell-mediated inflammation. Immunity. 2016;44(2):246-58.

15. Wu Y, Zeng Z, Guo Y, Song L, Weatherhead JE, Huang X, et al. *Candida albicans* elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization. Immunity. 2021;54(11):2595-610.e7.

16. Johnson JR, Wiley RE, Fattouh R, Swirski FK, Gajewska BU, Coyle AJ, et al. Continuous exposure to house dust mite elicits chronic airway inflammation and structural remodeling. Am J Respir Crit Care Med. 2004;169(3):378-85.

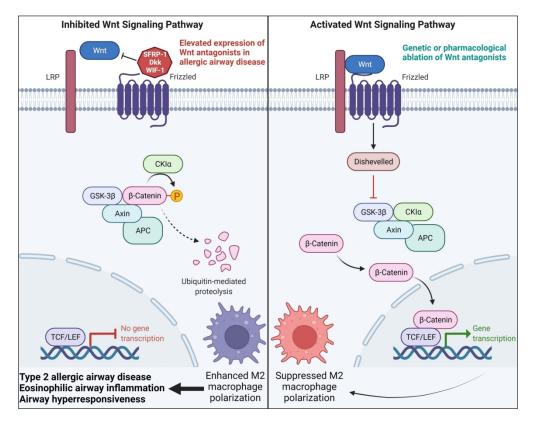


Figure 1. Canonical Wnt signaling, when suppressed by elevated expression of the Wnt antagonists Dickkopf (Dkk), Wnt inhibitory factor 1 (WIF-1), and secreted Frizzled-related proteins (SFRP) in allergic airway disease, facilitates the polarization of macrophages to the M2 phenotype, resulting in enhanced Th2 inflammation, eosinophil infiltration of the airways, and airway hyperresponsiveness. Effective ablation of Wnt antagonist activity, by either genetic of pharmacological methods, promotes activation of the Wnt signaling pathway and the suppression of M2 macrophage polarization. Created with BioRender.com

210x165mm (300 x 300 DPI)