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Abstract

In modern Human-Robot Interaction, much thought has been given to accessibility

regarding robotic locomotion, specifically the enhancement of awareness and lowering of

cognitive load. On the other hand, with social Human-Robot Interaction considered, pub-

lished research is far sparser given that the problem is less explored than pathfinding and

locomotion.

This thesis studies how one can endow a robot with affective perception for social aware-

ness in verbal and non-verbal communication. This is possible by the creation of a Human-

Robot Interaction framework which abstracts machine learning and artificial intelligence

technologies which allow for further accessibility to non-technical users compared to the

current State-of-the-Art in the field. These studies thus initially focus on individual robotic

abilities in the verbal, non-verbal and multimodality domains. Multimodality studies show

that late data fusion of image and sound can improve environment recognition, and simi-

larly that late fusion of Leap Motion Controller and image data can improve sign language

recognition ability. To alleviate several of the open issues currently faced by researchers in

the field, guidelines are reviewed from the relevant literature and met by the design and

structure of the framework that this thesis ultimately presents.

The framework recognises a user’s request for a task through a chatbot-like architecture.

Through research in this thesis that recognises human data augmentation (paraphrasing)

and subsequent classification via language transformers, the robot’s more advanced Natural
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Language Processing abilities allow for a wider range of recognised inputs. That is, as

examples show, phrases that could be expected to be uttered during a natural human-

human interaction are easily recognised by the robot. This allows for accessibility to robotics

without the need to physically interact with a computer or write any code, with only the

ability of natural interaction (an ability which most humans have) required for access to all

the modular machine learning and artificial intelligence technologies embedded within the

architecture.

Following the research on individual abilities, this thesis then unifies all of the technolo-

gies into a deliberative interaction framework, wherein abilities are accessed from long-term

memory modules and short-term memory information such as the user’s tasks, sensor data,

retrieved models, and finally output information. In addition, algorithms for model improve-

ment are also explored, such as through transfer learning and synthetic data augmentation

and so the framework performs autonomous learning to these extents to constantly improve

its learning abilities. It is found that transfer learning between electroencephalographic and

electromyographic biological signals improves the classification of one another given their

slight physical similarities. Transfer learning also aids in environment recognition, when

transferring knowledge from virtual environments to the real world. In another example of

non-verbal communication, it is found that learning from a scarce dataset of American Sign

Language for recognition can be improved by multi-modality transfer learning from hand

features and images taken from a larger British Sign Language dataset. Data augmentation

is shown to aid in electroencephalographic signal classification by learning from synthetic

signals generated by a GPT-2 transformer model, and, in addition, augmenting training

with synthetic data also shows improvements when performing speaker recognition from

human speech.

Given the importance of platform independence due to the growing range of available

consumer robots, four use cases are detailed, and examples of behaviour are given by the

Pepper, Nao, and Romeo robots as well as a computer terminal. The use cases involve

a user requesting their electroencephalographic brainwave data to be classified by simply

asking the robot whether or not they are concentrating. In a subsequent use case, the user

asks if a given text is positive or negative, to which the robot correctly recognises the task

of natural language processing at hand and then classifies the text, this is output and the

physical robots react accordingly by showing emotion. The third use case has a request for
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sign language recognition, to which the robot recognises and thus switches from listening

to watching the user communicate with them. The final use case focuses on a request

for environment recognition, which has the robot perform multimodality recognition of its

surroundings and note them accordingly.

The results presented by this thesis show that several of the open issues in the field

are alleviated through the technologies within, structuring of, and examples of interaction

with the framework. The results also show the achievement of the three main goals set out

by the research questions; the endowment of a robot with affective perception and social

awareness for verbal and non-verbal communication, whether we can create a Human-Robot

Interaction framework to abstract machine learning and artificial intelligence technologies

which allow for the accessibility of non-technical users, and, as previously noted, which

current issues in the field can be alleviated by the framework presented and to what extent.
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Chapter 1

Introduction

We can only see a short distance

ahead, but we can see plenty there that

needs to be done.

A M Turing

Since time immemorial, humans have yearned for true social interaction with beings

unlike themselves. What was once the thought experiment of Human Robot Interaction

(HRI), including both its design and implications, has long captivated humans. It has

been a captivation of ours for far longer than robots have, themselves, actually existed;

Homer’s Epic, The Iliad, of around 762BC describes “golden servants” which were intelligent

autonomous robots created by the Ancient Greek god of technology, Hephaestus [1]. Around

a similar time, on the other side of the world, allegories from The Book of Master Lie of the

Ancient Chinese West Zhou Dynasty describe a master craftsman who creates a mechanical

humanoid so realistic that it must be dismantled in order to prove that it is artificial [2].

Naturally, this captivation led to physical implementation, with the legendary Polymath

Leonardo da Vinci designing his Mechanical Knight during the High Renaissance in 1495 [3].

Again, naturally, this long held captivation and more recent mechanical implementations

inevitably led to Alan Turing famously posing his 1950 question, ‘Can machines think?’ [4]

while working alongside the other founding fathers of the field now known as Artificial

Intelligence.

HRI encapsulates Human Computer Interaction (HCI), Artificial Intelligence (AI), Ma-

chine Learning (ML), Natural Language Understanding and Processing (NLU, NLP). The
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initial aims of this PhD study and thesis are centred around the exploration and improve-

ment of individual abilities that an autonomous machine would need in order to mirror a

human’s senses or surpass them. Then, following this, these findings are encapsulated to

present a socially interactive framework as a point of accessibility to artificially intelligent

machines, forming more than a sum of their parts, i.e., enabling emergent properties from

the combination of individual technologies. To give an example, a human’s eyes, optic

nerves, lateral geniculate nucleus, and occipital lobe form our ability to see. Information

from the occipital lobe could then possibly trigger a response in the temporal lobe for entity

recognition, since this entity has been stored as a conscious long term memory [5]. This

memory could then trigger a third response in the frontal lobe, where an emotion is experi-

enced, an impulse is controlled, or a social interaction occurs [6]. This, then, is a biological

framework of three general abilities that have led to the emergence of intelligent behaviour

that no single entity within the framework could have accomplished. To give a more spe-

cific example of the framework which is later presented, a subject within the experiments

in Section 7.2 utters the phrase “can you run EEG mental state recognition so I can see my

concentration level?” to which the framework may respond by (i) processing the speech into

text, (ii) performing natural language processing in order to understand the request, and

(iii) realising the request by executing mental state recognition and outputting a score for

the subject’s concentration level. Similarly to the first example, this has required multiple

abilities that then allow for the emergence of an intelligent interaction that would not have

been possible for any of the individual parts of the process.

For many of the algorithms explored in this thesis, multiple media are explored towards

the solution of the problem. Findings show that a multimodality approach often exceeds

the ability of singular sensor input methods. This work also takes inspiration from IBM

[7], Ahmed et al. [8], and Kelly [9], describing that cognitive computing systems aim to

interact with human beings in a more natural sense than in usual classical computing. By

extension, Cognitive Robotics, as described in [10], is an emerging field of robotics that

concerns the evolution of intelligent robotics towards more human-like ability (in terms

of perception, control, and cognition). The authors note that this definition is somewhat

general by design, since a less amorphous and more strict definition could exclude rele-

vant work in the future. To perform this cognitive computation, both an understanding of

data and information through machine learning is required alongside the additional under-
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standing of natural human interaction. Given the goals of this thesis being focused around

socially interactive HRI, such philosophies are inspired given that a more natural approach

(in the interactive sense) is sought. This thesis progresses towards cognitive computing-

style interaction in Human-Robot Interaction by enabling use of the framework by natural

interaction, specifically from learned examples of social interaction and augmented social

interaction. The main focus in this thesis of this style is within NLP, cognitive computing

also encompasses self-learning and autonomous improvement, which are also explored in

several modalities throughout. In Sections 6.2 and 6.3 for environment recognition and

Section 6.4 for Sign Language recognition, it is found that the algorithms are often found

to be improved through the multi-modality approach aforementioned. In Sections 5.6 and

7.2 it is shown that the synthetic data augmentation of the training process improves model

performance also. The aims thus are to work towards a more than a sum-of-parts mul-

timodal Human-Robot Interaction framework by encompassing several machine and deep

learning paradigms.

1.1 Motivation and Objectives

As to be found during literature review, several HRI researchers have presented sets of

guidelines to overcome current open issues in the field. Thus, the initial motivation of

this thesis is both to work on and improve these modules as individual projects but to

keep in mind the important rules that leading researchers have suggested in order for later

integration. Then, the main motivation of this thesis focuses to integrate all works into a

unified HRI framework and then to revisit these guidelines for discussion towards the end.

Another motivation for this project is to provide and improve accessibility. Many state

of the art Human-Robot Interaction models and frameworks are complex black-box inter-

faces. Given that Machine Learning and Artificial Intelligence are part of the daily life of

almost every, and most likely soon to be every person who uses modern technology, then,

HRI frameworks should be wrapped within accessible frameworks so they can be properly

accessed by a wider range of users. One of the goals of the framework presented by this

thesis is that it is easily accessed by a range of users, either simply by natural social in-

teraction, or through more advanced techniques such as leveraging an API-like design with

programming. In this thesis, within Chapter 7, two examples are presented where this is
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made a possibility; firstly, a chatbot trained via transformer-based paraphrasing wherein

natural social interaction is used as input for the execution of various modules.

In summary, the following three key points will be addressed in this thesis:

• Improvement of several State-of-the-Art Human-Robot Interaction technologies as

individual components that abide by open issue-informed design guidelines.

• Unification of these individual components into a framework, which, based on the

design of modules and framework will still abide by the open issue-informed guidelines.

• Accessibility through technologies that allow for the operation of and input to the

framework with non-programmers in mind.

The aim of this thesis to to achieve the three goals above, where the outputs of each

step provide inputs to the next. The outcome of the final step is an accessible unified

framework of the individual modules that achieves several of the noted open issues in the

field of Human-Robot Interaction

1.2 Scientific Contributions and Research Questions

This thesis answers three main research questions and is structured so that, generally,

answers to the three questions can be found in a consecutive order. The following research

questions, with attention given to the motivations behind this work, are as follows:

1. How can one endow a robot with improved affective perception and reasoning for

social awareness in verbal and non-verbal communication? - The aims of this thesis, as

previously described, are to improve some of the individual skills required to be possessed

by an intelligent social robot and then present this work in the form of a Human-Robot

Interaction framework. That is, answering the aforementioned question of how one could

endow this robot with such abilities both in the form of improving those abilities and

implementing the encompassing framework.

This research question is answered first in Chapters 4, 5 and 6 where verbal, non-verbal,

and multimodal robotic abilities are explored and improved upon with consideration to

their own relevant open issues within their subfield. Naturally, the endowment of these

abilities are shown in Chapter 7 wherein the findings of the aforementioned Chapters are

implemented in an all-encompassing framework.
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Improved machine learning paradigms are engineered and explored to answer this re-

search question. In addition to more classical pipelines, technologies such as Data Aug-

mentation (sections 4.3, 5.6, 6.3, and 7.2), Evolutionary Optimisation of Neural Network

Topologies (sections 4.4, 5.3, 5.7, 6.2, and 6.4), Transfer Learning (sections 4.6, 5.5, 5.7,

6.3, and 6.4) and Data Fusion (sections 6.2 and 6.4) are explored to see to what extent they

can aid the improvement of affective perception and reasoning in the framework.

2. Can we create a Human-Robot Interaction framework to abstract machine learning

and artificial intelligence technologies which allows for accessibility of non-technical users?

- Although it is noted that one of the most prominent open issues and points of interest in

the related work is that of the lack of accessibility when it comes to advanced machine learn-

ing technologies, in Social HRI this has been explored limitedly. State-of-the-art research

in social HRI frameworks to allow for further accessibility is difficult to find, and there is a

deficiency in the available work in this regard. Given this, this thesis aims to finally encap-

sulate all of the improved abilities within an accessibly framework which is made accessible

by a chatbot-like architecture which is accessible via transformer-based data augmentation

in order to allow for natural social interaction with the system. The answer to this research

question is thus presented in Chapter 7 wherein the chatbot system is tuned in Section 7.2

and then the framework in Section 7.3.

3. Which current open issues in Human-Robot Interaction can be alleviated by the frame-

work presented in this thesis? And to what extent? - similarly to the previous question, the

aim of this thesis is to present a research project that encompasses several open issues in the

field of HRI as well as open issues within the actual HRI technologies themselves. While

the latter are presented where appropriate, the currently noted issues in HRI are to be

explored, included in research decisions, and finally revisited for a final conclusion. Details

on current open issues are described in Chapter 2, the literature review on Human-Robot

Interaction. This research question is answered last within Chapter 8 where the open issues

noted are revisited and discussed.

Firstly, question 1 revolves around verbal and non-verbal communication in HRI, which

are explored in Chapters 4 and 5 respectively. Additionally, multi-modality is explored in
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Figure 1.1: An overall diagram of the HRI framework produced towards the end of this thesis.

Chapter 6. Question 2 regards transfer learning, which is explored in Chapter 4 where

transfer learning is explored for speaker recognition and speech synthesis, Chapter 5 where

transfer learning is explored for biological signal classification, and Chapter 6 where transfer

learning is explored for scene and sign language recognition models. Transfer learning is

also explored to an extent in Chapter 7 where paraphrased human speech data enables

higher classification ability. Question 3 is related to the previous discussion of accessibility

to these technologies, that, as aforementioned, are explored in experiments with chatbots

in Chapter 7. The guidelines explored in literature review are related to question 4, which

are then compared to the outputs of this thesis in Chapter 8, the research questions are

also to be revisited and discussed in this chapter.

An overall diagram of the HRI framework produced towards the end of this thesis can
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be observed in Figure 1.1. The aims of this thesis are to endow individual abilities prior to

ultimately encapsulating them all within a HRI framework.

1.2.1 Scientific Novelty

Regarding the scientific contributions of this thesis, the novel contributions of this work

are thus multi-faceted. Those towards individual fields and problems are presented where

appropriate, for example, the framework capabilities that themselves come with scientific

contributions in chapters 4, 5 and 6. Novel approaches to topology optimisation (in the

form of combinatorial optimisation problems) are explored and found to improve robot

capabilities such as speech recognition within Section 4.4, biological signal recognition in

Sections 5.3 and 5.7, environment recognition in 6.2 and gesture recognition for sign lan-

guage classification in Section 6.4. Novel applications of transfer learning are also explored

between domains to improve framework capability, such as the discovery that transfer learn-

ing is possible between, and improves the recognition of, EMG and EEG signals in Section

5.7. Transfer of knowledge is also found to improve the robot’s scene recognition ability

by transferring the knowledge learnt in virtual reality and applying it to the real world in

Section 6.3. Another example of a novel application of transfer learning can be found in

the exploration of sign language classification (for non-verbal interaction), where it is found

that knowledge transfer can be performed to improve the recognition of British and Amer-

ican sign languages in Section 6.4. Another important aspect of novel applied intelligence

in this thesis are the experiments surrounding data augmentation to improve the robot’s

abilities; several novel contributions are made in this regard, such as the discoveries sur-

rounding attention-based augmentation approaches to improve signal recognition in Section

5.6, as well as for the robot’s speaker recognition capability in Section 4.3. Moreover, the

input (human communication) to the overall framework itself is also found to be improved

through paraphrase-based augmentation in Section 7.2. Finally, novel applications of data

fusion are also explored to both implement and improve Human-Robot Interaction, such as

the fusion of sensors to improve sign language recognition capability in Section 6.4. Further

details on novelty, i.e., those that are specifically related to a set of experiments, are pre-

sented where relevant in Chapters 4, 5 and 6. In terms of the bigger picture, the ultimate

goal achieved by this thesis is to unify the findings of each ability (in turn made up from the

findings of several experiments) into a novel framework, i.e., benefitting from the novelty
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Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8

RQ1 RQ2 RQ3

OBJ1 OBJ2 OBJ3

Figure 1.2: Overview of the relationship between Chapters, Research Questions (RQ), and Objectives
(OBJ).

arising from each module.

1.3 Thesis Organisation

This thesis is organised into seven main chapters. The relationship between Chapters,

Research Questions, and Objectives can be observed in Figure 1.2. Following this introduc-

tion, and prior to the research being presented, Chapter 2 presents a literature review on

Human-Robot Interaction; the concept is defined and important scientific research in the

field are presented, noting the evolution from William Walter’s mechanical tortoises towards

the more advanced intelligent robotics we observe today. In a similar approach, Chapter 3

then explores key concepts in Machine Learning and Deep Learning, and provides explana-

tion (both textually and mathematically) concerning how the algorithms work and in which

situations they would normally be applied. These concepts are common throughout each

research project that the thesis encapsulates, and so are presented prior to the main body

of the thesis.

Research projects and results are described along with scientific contributions in the

next three chapters. Each Section within the chapter has a related literature review specific

to the research project, presented alongside them for the purposes of readability.

Chapter 4 encloses verbal interaction in HRI. This chapter includes research projects

that lead to the HRI framework’s capabilities which are interacted with viva voce, begin-
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ning with an explanation of how audio data can be translated into a numerical dataset

containing statistical features (such as Mel-Frequency Cepstral Coefficients). The main

body of this chapter is made up of research projects that classify speech into phonemes

via evolutionary algorithms and deep learning, classification of a speaker’s sentiments and

accent, and recognition of the speaker as an individual entity. Moreover, within this chap-

ter, speaker recognition algorithms are improved through synthetic data augmentation by

both temporal and transformer methods. Chapter 5 similarly presents non-verbal interac-

tions in HRI, where experiments lead to HRI framework abilities that are interacted with

via other means than spoken voice. Several of the works consider biological signals as in-

put (i.e., brainwave and electromuscular activity), and so, this chapter provides an overall

background on biosignal processing, concerning how biological signals can be translated

into a non-temporal numerical vector describing electrical behaviour within a time window.

Following this, research projects are presented on HRI via biological signals. In addition

to the approaches, improvements to algorithms are explored through transfer learning and

synthetic data augmentation.

Following both verbal and non-verbal modes of interaction, Chapter 6 then presents

research into multi-modality interaction in HRI. These are abilities that the framework has

which require multiple modes of input data to an algorithm, similarly to how a human being

may use both vision and hearing to engineer a logical conclusion from a certain situation.

Capabilities such as multimodal scene recognition via consideration of vision and sound, and

sign language recognition via consideration of vision and 3D pose data are endowed within

the framework. Each algorithm is compared to the single-modal counterpart to discern how

much of an improvement multimodality may provide. Similarly to the prior two chapters,

abilities are improved by exploring concepts such as transfer learning.

Then, integration of findings and technologies are performed in Chapter 7. Within this

Chapter, the works performed during PhD studies form more than a sum of their parts

through a framework approach; the framework is presented and use cases are explored. The

contributions are finally discussed in the concluding chapters. Chapter 8 addresses the open

issues that were noted during literature review and discusses them with the framework in

mind. This chapter also finally concludes the thesis where research questions are revisited,

limitations and possible future works are noted, and final remarks are made.
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Chapter 2

Human-Robot Interaction

2.1 Introduction

Human-Robot Interaction (HRI) is the study of the interaction as well as the acceptance of

interaction between man and machine [11]. More specifically, Nouvelle AI robots, which,

rather than simply being computers that can locomote, instead respond and react accord-

ingly to their environment [12]. Nouvelle AI is an interesting and related concept of this

thesis, since a key hypothesis is that intelligence is an organic emergence from simple in-

teractions with the real world leading to further learning (similarly to how an infant child

learns from the world), rather than the opposing symbolic argument wherein all information

must be programmed [13]. This description can be attributed to Alan Turing’s ’situated

approach’ to AI [4, 14] whereby it was argued that a machine equipped with the best sensors

available could be taught to speak English by following ”the normal teaching of a child”.

To give a more recent example, MIT’s Cog aims to follow Turing’s theory by developing

intelligence through experience [15]. Several of the algorithms in the framework presented

by this thesis have multiple methods of improvement available via the collection of obser-

vations of different experiences, and exploring the possibility of improving the machine’s

intelligence through approaches such as transfer learning and synthetic data augmentation.

Social HRI is the ability for humans and robots to socially interact with one another

wherein, naturally, social interaction plays a specific key role for the robot[16, 17], with

Human-centred HRI being a system concerned with achieving tasks in an acceptable manner

according to a human, and Robot cognition-centred HRI being an intelligent system that

must learn to solve problems either alone or with limited direction [18]. Limited direction
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is useful, since it allows for a command “Robot do Task X”, which is deliberated by the

robot with “How do I do X? Then, do X”. To give a more specific example that appears

later on in this thesis, a human says to the robot “Look around and see if you can tell me

where you are.”, to which, the robot deliberates using a transformer-based natural language

classification algorithm which produces the classification of the task of Scene Recognition.

The robot then activates the camera and microphone to perform multi-modality scene

recognition and produces a response, e.g. “I am in the forest.”. Thus, the limited direction

of a human in the form of social interaction is then processed and performed through a

multi-step deliberation and actuation process. HRI in a social context has been noted to be

of growing importance in the applications of psychology and sociology in care. For example,

social robotics has been successful in aiding children with autism an all-important stepping

stone to developing social skills [19]. Social robotics has also been successfully trialled in

geriatric physiotherapy rehabilitation [20], and as a preventative measure for loneliness in

the elderly community [21]. Dar and Bernadet [22] suggest that the quality of Human-

to-Agent Interaction may have rapidly increased yet still remains a shadow of human-

to-human interaction. The authors note that increasing the number of communication

channels (in particular, proxemic and physiological channels of interaction) can lead to

higher resolution communication in the physical domain, and thus further the quality of

natural communication. The article argues that incorporation of implicit interaction would

lead to an alleviation of some of the open issues in interaction with non-human agents. Dar

and Bernadet also describe the process of purpose-based interaction, noting that interaction

should be achieved with minimal resources (e.g., effort and time) to be deemed satisfactory.

Humans communicate with machines differently than other humans, an example within the

aforementioned study being to speak slower and precisely during interaction; one of the

open issues that the work in this thesis aims to alleviate is to improve natural interaction

between human and machine.

Although this thesis explored some initial examples from history within the introduction,

the first experiments on emergent behaviours in robotics occurred in the 1940’s, wherein

William Walter’s ‘robot tortoises’ could autonomously follow light [23]. The intelligent

emergent behaviour was attained via a valve system that would either turn the robot if

light was not detected, or drive the robot towards the light if it was. The three parts,

a light sensor, valve system for turning, and the valve system for driving forwards, could
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not have exhibited this behaviour alone, and thus formed more than a sum of their parts

to complete the task. This work ultimately leads us to intelligent robotics, wherein the

consideration of multiple algorithms enables a growing exhibition of increasingly complex

behaviours, this concept is covered by the remainder of this chapter.

2.2 Emergence of Robotic Behaviour

Duffy noted that modern robot interaction, specifically in a social sense, is to engage in

meaningful and useful social interaction that inherently requires a degree of human-like

quality [24]. Interestingly, the work notes that imperfection is not actually a negative trait,

robots who are seemingly too intelligent can seem prone to weakness. It is important to

note that human interaction is not perfect. Within this impactful work, there is a point

made with high importance to this thesis; a social robot acts as an interfacing layer between

humans and technology, aiming to break down the barriers between digital information and

human beings. One of the goals of the framework in this thesis is just that, to enable

the accessibility of AI-based technologies through a socially interactive framework. In [25],

researchers presented a five-step approach for the classification of social robots: (i) Form,

from abstract to anthropomorphic, (ii) Modality, from unimodal to multimodal, (iii) Social

norms, from no knowledge to full knowledge of social norms, (iv) Autonomy, from no

autonomy whatsoever to a fully autonomous robot, and (v) interactivity ranging from no to

fully causal behaviours. The framework in this thesis aims to provide a software framework

compatible with any platform (to abide by a guideline set out below), and thus form is of less

importance than the other four classifications. Modality depends on the problem at hand,

since some problems may only require one type of sensor but it was noted that the solution

can be improved via late fusion of multiple data sources. Social norms are attained through

paraphrasing transformation of speech to better understand the message or request that the

user is trying to get across. Autonomy is limited outside of Duffy’s aforementioned goal of

breaking down barriers between man and technology, thus autonomy focuses on attaining

this goal. Interactivity, in this framework defined as the machine having the potential to

respond by reaction to an interaction, is relatively high in the presented framework given

that one of the goals is to enable access to technology through social interaction by a service

request.
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In 2006, Gorostiza et al. presented an automatic-deliberated architecture for social

human-robot interaction [26]. The framework is modular, for example, a chatbot platform

which takes input via the microphone and passes the parsed text to the deliberative layer,

which in turn generates an appropriate response and passes this back to the automatic level

in the form of an execution order. The execution order is then enacted with an actuator, in

this example, a text-to-speech unit which uses an artificial voice to say the text within the

execution order. The skills within this framework are greetings, face recognition, dialogue,

audiovisual interaction, non-verbal visual expressions, as well as dancing. The work thus

presented a multimodal interaction framework, noted by the authors that interaction was

more than merely a toy or tool. Glas et al. present a similar architecture with the specific

goals in mind of customer interaction in public [27]. In this example, service robots use

skills such as customer information, environmental information, and robot information to

perform socially interactive customer support.

One of the issues in Human-Robot Interaction is the range of components and scalability

of cognitive architectures. In 2018, Fischer et al. attempted to alleviate some of these issues

following the presentation of the iCub-HRI framework [28]. The framework provides the

abilities of entity recognition, tracking, speech recognition, motor actions, speech synthesis,

and joint attention for the iCub humanoid robot [29]. The framework follows a world-

self-action approach in somatic, reactive, adaptive, and contextual contexts; the world is

perceived, goals are considered, and actions are taken to achieve said goals within the world

environment. There are two main differences between the framework presented in this

thesis and the iCub-HRI framework. Firstly, the framework finally presented by this thesis

is platform agnostic, that is, the framework could be implemented on the iCub robot, but

could also be implemented on other robots that support the libraries used. For example, the

HRI framework presented by this thesis could be applied to any platform which supports

Python, TensorFlow, and Scikit Learn. The second main difference between the iCub-HRI

framework and the one engineered within this thesis, is that the work in this thesis also

deals with model improvement through transfer learning and data augmentation. The goal

of this module is to improve the robot’s learning abilities over time through the transfer of

knowledge from other data, or to learn from entirely synthetically generated data.
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2.3 Open Issues in HRI

Given the social nature of HRI, notable open issues in the field are often noticed by observa-

tion and conveyed through guidelines and rules for future researchers to interpret for their

specific goals in mind, and abide by in order to begin to solve issues that frameworks often

face. When presenting the aforementioned iCub-HRI framework based on much previous

research, Fischer et al. [28] presented five guidelines that HRI research should aim to follow.

Those guidelines are as follows:

• Adaptability and ease of use - adaption to related problems and robotic devices should

be easy to implement. Cross-dependency should be minimal to enable substitution.

• Provision of the overall framework - the provided framework should work as is and as

such provide useful routines and goals.

• Extendibility - integration of new technologies should be easy to implement with the

introduction of new modules. Software must be designed to expect and support new

modules.

• Shared and centralised knowledge representation - each module of the system should

have access to the same sources of data and knowledge.

• Open software - code should be open source and available to researchers

An interesting observation here is on the point of extendibility. The iCub-HRI paper was

authored by ten researchers, and generally contains around eight abilities or categories of

abilities (noted in Section 2.1). Frameworks are thus required to be extendible and scalable

given that a HRI ability tends to be an entire field of applied intelligence in itself, with

differing requirements in terms of the fields of study of the researchers involved. It is for the

same reason that this thesis presents a general suite of abilities which include verbal com-

munication, specifically, speech recognition (phonetic sounds and accent), speech synthesis,

and sentiment analysis. The framework also presents non-verbal and multimodal abilities

including biological signal classification (EEG and EMG), sign language recognition, and

scene recognition. The framework is designed to be easily extended with further abilities in

the future, and the aforementioned general range of abilities are explored and implemented

to provide enough for interaction with the robots. Generally, albeit often focusing moreso
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on physical robotic behaviours such as navigation, most works concerning design of HRI

frameworks encapsulate the above five points [30, 31, 32]. Specifically, in Drury et al. [32],

the authors noted that they observed “major problems” in the field that could be remedied

by attention to the following guidelines:

• Enhancement of awareness - this guideline, as previously noted, focuses moreso on

physical robotic behaviour. An enhancement of awareness, as described in the afore-

mentioned paper, deals with providing a map of where the robot has been and provides

more environmental information to the robot for the benefit of operator awareness.

• Lowering of cognitive load - the operator should not need to mentally fuse modes of

data, rather, the framework itself should provide fused information.

• Increase of efficiency - provide an interface that supports multiple robots within a

single window, and to minimise the use of multiple windows where feasible.

• Provide help - the user of the framework should be aided in the selection of robotic

autonomy and modality.

This thesis considers an enhancement of awareness in terms of single and multi-modality

environment recognition rather than for navigation. Although this differs slightly from

Drury et al.’s description, it still provides the benefit of improved operator awareness by

allowing the robot to autonomously recognise surroundings. Given the importance of the

above guidelines and related works, they are later revisited in the concluding sections of

this thesis (Chapter 8) during the discussion of the framework produced and the scientific

contributions that it thus makes.

2.4 Phonetic Speech Recognition

Phonology is the study of the fundamental components of a spoken language as well as their

relationship with one another [33]. When the English language is considered, spelling does

not consistently represent the sound of language, for example: (i) the same sound may be

represented by many letters or a combination of letters (e.g. he and people); (ii) the same

letter may represent a variety of sounds (e.g. father and many); (iii) a combination of letters

may represent a single sound (e.g. shoot and character); (iv) a single letter may represent
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Table 2.1: The seven diphthong vowels in spoken English language in terms of their phonetic symbols and
examples.

Symbol English Example

I@ Near, ear, clear, fear
e@ Hair, there, care
eI Face, space, rain, case, eight
OI Joy, employ, toy, oyster.
aI My, sight, pride, kind, flight
@U No, don’t, stone, alone
aU Mouth, house, brown, cow, out

a combination of sounds (e.g. xerox); (v) some letters in a word may not be pronounced at

all (e.g. sword and psychology), and (vi) there may be no letter to represent a sound that

occurs in a word (e.g. cute). Most speech sounds are created by pushing air through the

vocal cords. The phonetic alphabet of a language considers the biological source of the sound

(Labial, Dental, Alveolar, Post-alveolar, Palatal, Velar, or Glottal) and a further biological

affect upon the sound (Nasal, Plosive, Fricative, or Approximant), which overall make up

every universally spoken sound found within a dialect, that is, all sounds enabled by the

human vocal system. Consonants are sounds produced with some restriction or closure in

the vocal tract, while vowels are classified by how high or low the tongue is, the position of

the tongue inside the mouth and whether or not the lips are rounded. Diphthongs represent

a sequence of two vowel sounds and require two muscular movements to produce. Table

2.1 shows each of the seven diphthong vowels (considered by the experiments in 4.4) in the

spoken English language by way of their phonetic IPA symbols and examples of spoken

words which contain them.

Early research into the speech processing and recognition fields started in 1952 at Bell

Labs, where single spoken digits were processed and classified [34]. Statistical features

of the power spectrum were observed towards the classification of spoken digits, power

spectrum features are a notable step in modern voice recognition as one of the stages of

Mel-frequency Cepstral Coefficient (MFCC) analysis [35]. In Section 4.4, MFCC features

are considered as static representation of the temporal wave-data gathered in the form

of speech. Many methods of statistical classification [36] have been attempted in speech

recognition. For example, many of the state-of-the-art methods have employed Hidden

Markov Models (HMM) to create speech recognition models that are accurate enough for

keyphrase communication with automated call-centre voices [37, 38]. For example, those
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used when calling a bank to direct a customer’s call to the correct department. Researchers

noted that the success achieved was case-specific and that complex applications of the

HMM for transcription of speech to text may not experience the same level of success. A

related study found that Similar Pattern Analysis (SPA) could classify a very limited set

of sounds with 90% accuracy [39], also noting the application in the domain of human-

machine interaction in terms of aiding children with temporal processing disorders who

have difficulty discerning sounds produced in a short time frame, i.e., those that occur

often in natural speech. Research focusing on the classification of acoustic events such as

keywords in speech achieved 80.79% accuracy using a Random Forest of decision trees [40].

A similar approach was employed with an accuracy of 81.5% for a set of 14 sound effects [41],

although it is worth noting that the acoustic events in the last aforementioned study were

not produced by humans. A particularly powerful method of machine learning approach

for speech recognition, Connectionist Speech Recognition, was noted to be an ensemble

fusion of predictions between a Multilayer Perceptron (MLP) and a Hidden Markov Model

due to their largely statistical differences in prediction and yet high accuracies in terms of

classifying audio data [42]. A more recent work found that generalisation between language

is difficult in [43]; noting the scarcity of data available for Lithuanian speech recognition

systems, researchers found high classification ability of spoken Lithuanian phonetics via a

sequence-to-sequence approach through encoder-decoder models, achieving +99% over 10-

fold cross-validation. A related benchmarking study of the Random Forest classifier found

that language based speech recognition became most optimal, and accurate, at a forest of 50

random decision trees all voting by average probability in a simple ensemble, the error rate of

the multi-language corpus data for classification was found to be a relatively low 13.4% [44].

The Random Forest classification method was also used in classifier feature selection, from a

dataset of acoustic audio features, to select an apt set of attributes for emotion classification

from spoken audio data at approximately 70% accuracy over all test subject sets (who

were divided by gender) [45]. US-based systems such as DARPAs EARS program and

IARPA Babel operate a method of speech recognition with the extra step of specific-goal

keyword segmentation and isolation (a cost-based machine learning approach), which are

then used for security purposes by the National Security Agency (NSA) to autonomously

detect high-risk organisations via a computer system rather than the classical method of

human wiretapping [46].
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Limited work on phoneme-based voice recognition has been performed. A bidirectional

Long Short-term Memory neural network was tuned to an accuracy of 87.7% [47] on a

dataset of phonetic sounds. It is worth noting the usefulness of temporal-considerate ma-

chine learning techniques (inputs as batches/streams of data vectors). A limited dataset

of the sounds “B”, “D”, and “G” was classified with an overall accuracy of 99.1% using

a Time Delayed Neural Network, outperforming a Hidden Markov Model by 1.9% [48].

This study suggests the promising capabilities of a temporal-considerate neural network for

speech recognition. However, the study was performed on a limited dataset that was not

an accurate reflection of the multitude of phonemes found in human language, specifically

in spoken English. A Deep Learning approach through the use of a Convolutional Neu-

ral Network (CNN) offers a preliminary solution to the spoken accent problem in speech

recognition [49]. The approach can derive a matrix which would be applied to the Mel-

Frequency Cepstral Coefficients (MFCC) of a sound which would effectively attempt to

mitigate differences in spoken accent by translating between them, with promising prelimi-

nary experiments resulting in success. It is observed that all of the related works made use

of temporal statistical analysis of soundwaves to create stationary data for classification,

rather than attempting to simply classify the continuous sound. Furthermore, the most

commonly observed method of generating this mathematical description is to analyse pat-

terns found in short-term Mel-Frequency Cepstral Coefficient (MFCC) data at 100-500ms.

It is also worth noting that a majority of the studies discussed here present results based on

train-test split of the data, which is prone to overfitting [50, 51] and thus fail to generalise

to unseen data (which is in itself the point of speech recognition). The study in Section 4.4

therefore performs 10-fold cross validation and presents the mean accuracy over the folds

as well as the standard deviation of the results to avoid overfitting and better model out-

of-sample data, which is important for generalisation and for a genetic search itself, since

an algorithm that simply searches for network hyperparameters that best over-fit the vali-

dation data is undesirable. Due to the temporal nature of speech, it is worth noting that a

Zoughi et al. [52] found success in performing an adaptive sliding window and Convolutional

Neural Network approach to various datasets including the TIMIT phoneme classification

dataset, where the window would adapt to the specific duration of the phonetic sound.
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2.5 Speaker Recognition and Synthesis

Verification of a speaker is the process of identifying a single individual from many others

by spoken audio data [53]. That is, the recognition of a set of the person’s speech data X

specifically from a speech set Y where X ∈ Y . In the simplest sense, this can be expressed

as a binary classification problem; for each data object o, is o ∈ X? Is the speaker to be

recognised speaking, or is it another individual? Speaker recognition is important for social

HRI [54] (the robot’s perception of the individual based on their acoustic utterances),

Biometrics [55], and Forensics [56] among many others. Researchers found the relative

ease of classifying 21 speakers from a limited set [57], but the problem becomes more

difficult as it becomes more realistic, where classifying a speaker based on their utterances

is increasingly difficult as the dataset grows [58, 59, 60]. In Section 4.3, the speaker is

recognised from many thousands of other examples of human speech from the Flickr8k

and Fluent Speech Commands speaker datasets. Data scarcity and its negative impact on

speech processing systems has been noted as an open issue in the current state of the art [58,

61, 62, 63]. Current suggestions to improve these issues include Deep Belief Networks [64]

and compression of utterances into i-vectors [65]. Thanks to their growing prominence,

generative models have been suggested as a potential solution to data scarcity within a

variety of fields [66, 67, 68]. The field of exploring augmented data to improve classification

algorithms is relatively young, but there exist several prominent works that show success in

applying this approach. When augmented data from the SemEval dataset is learned by by

a Recurrent Neural Network (RNN), researchers found that the overall best F-1 score was

achieved for relation classification in comparison to the model learning only from the dataset

itself [69]. A recent study also showed GANs may be able to aid in producing synthetic

data for speaker recognition [70]. Temporal models have been observed to be successful

in generating MFCC data [71], which is the data type considered in Section 4.3. Many

prominent works in speech recognition consider temporal learning to be essential [72, 73, 74]

and for generation of likewise temporal data [75, 71, 76]. If it is possible to generate data

that bares similarity to the real data, then it could improve the models, while also reducing

the need for large amounts of real data to be collected.

Tacotron is a Spectrogram Feature Prediction Deep Learning Network [77, 76] inspired

by the architecture of Recurrent Neural Networks (RNN) in the form of Long Short-term
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Memory (LSTM). The Tacotron model uses character embedding to represent a text, as

well as the spectrogram of the audio wave. Recurrent architectures are utilised due to their

ability of temporal awareness, since speech is a temporal activity [74, 78]. That is, where

frame n does not occur at the start or end of the wave, it is directly influenced and thus has

predictive ability both to and for frames n−1 and n+1. Since audio may possibly be lengthy,

a nature in which recurrence tends to fail, ‘attention’ is modelled to allow for long sequences

in temporal learning and as such its representation [79]. Actual speech synthesis, the

translation of spectrograms to audio data, is performed via the Griffin-Lim algorithm [80].

This algorithm performs the task of signal estimation via its Short-time Fourier Transform

(STFT) by iteratively minimising the Mean Squared Error (MSE) between estimated STFT

and modified STFT. STFT is a Fourier-transform in which the sinusoidal frequency of the

content of local sections of a signal are determined [81]. Alternate notations of English

through encoding and flagging have been shown to provide more understanding of various

speech artefacts. A recent work by researchers at Google found that spoken prosody could

be produced [82]. The work’s notation allowed for the patterns of stress and intonation in

a language. The implementation of a Wave Network [83] has shown to produce similarity

gains of 50% when use in addition to the Tacotron architecture.

2.6 Accent Recognition

Hidden Markov Models (HMM), since their inception in 1966, remain a modern approach

for speech recognition due to their retaining of effectiveness given more computational

resources. An earlier work from 1996 found that, using 5 hidden Markov states due to the

computational resources available at the time, four spoken accents could be classified at

an observed accuracy of 74.5%[84]. It must be noted that deeper exploration into optimal

HMM topology and structure is now possible due to the larger degree of processing power

available to researchers in the modern day. A more modern work found that Support

Vector Machines (SVM) and HMM could classify between three different national locales

(Chinese, Indian, Canadian) at an average accuracy of 93.8% for both models [85], though,

this study only classified data from male speakers due to the statistical frequency differences

between gender and voice. Long Short Term Memory neural networks are often succesfully

experimented with in terms of accent recognition. A related experiment found accuracies
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at around 50% when classifying 12 different locales[86]. Of the dataset gathered from

multiple locations across the globe, it was observed that the highest recall rates were that

of Japanese, Chinese, and German scoring 65%, 61% and 60% respectively. Subjects were

recorded in their native language. An alternative network-based approach, Convolutional

Neural Networks, were used to classify speech from English, Korean and Chinese dialects

at an average accuracy of 88%[87]. A proposed approach to the accent problem in speech

recognition, also using a CNN, offered a preliminary study into deriving a conversion matrix

to be applied to Mel-frequency Cepstral Coefficients which would act to translate the user’s

accent into a specified second accent before speech recognition is performed[88].

In terms of open issues, many accent recognition experiments rarely define the spoken

language itself, often resulting in the classification of a subject speaking their native lan-

guage in their natural locale. Given this, it is therefore possible that classifiers would not

only learn from accent, but from natural language patterns as a form of audible Natural

Language Processing, since such effects are also represented within MFCC data. Towards

the goal of improving voice recognition for non-native English speakers who are speaking En-

glish, the previous models would be therefore questionable. Therefore the originality of the

experiments in Section 4.5 is to classify data retrieved from native and non-native English

speakers (who are all requested to pronounce sounds from the English phonetic dictionary,

as if they were speaking in English), with the ultimate goal of providing a path to improving

voice recognition on English language devices and services for non-native speakers.

2.6.0.1 Acoustic Fingerprint

Acoustic Fingerprinting is the process of producing a summary of an audio signal to identify

or locate similar samples of audio data [89]. To produce similarity, alignment of audio is per-

formed and subsequently the two time-frequency graphs (spectrograms) have the distance

between their statistical properties such as peaks measured. This process is performed to

produce a percentage similarity between a pair of audio clips.

Fingerprint similarity measures allow for the identification of data from a large library,

the algorithm operated by the music search engine Shazam allows for the detection of a song

from a database of many millions [90]. Detection in many cases was succesfully performed

with only a few milliseconds of search data. Although this algorithm is often used for
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plagiarism detection and search engines within the music industry, the ability to spoof a

similarity would argue that the artificial data closely matches that of real data. This is

performed in this experiment by comparing the fingerprint similarities of audio produced

by a human versus the audio produced by the Griffin-Lim algorithm on the spectrographic

prediction of the Tacotron networks.

2.7 Sign Language Recognition

Sign Languhand trackingon (SLR) is a collaboration of multiple fields of research which

can involve pattern matching, computer vision, natural language processing, and linguis-

tics [91, 92, 93]. The core of SLR is oftentimes focused around feature engineering and

learning model-based approach to recognise hand-shapes [94]. Classically, SLR was usually

performed by temporal models trained on sequences of video. Many works from the late

1990’s through to the mid-2000’s found the best results when applying varying forms of

Hidden Markov Models (HMMs) to videos [95, 96, 97, 98], HMMs are predictive models of

transition (prior distribution) and emission probabilities (conditional distribution) of hid-

den states. To give a specific example, researchers found in [95] that hand-tracking via a

camera and classification of hand gestures while wearing solidly coloured gloves (similar to

chroma key) was superior to hand tracking without a glove. In this work, a vector of 8

features were extracted from the hands including 2-dimensional X, Y positions, the angle of

the axis with the least inertia, and the eccentricity of a bounding ellipse around the hand.

That is, four features for each hand. These vectors then provided features as input to the

HMM. More recently, given the affordable sensors that provide more useful information

than a video clip, studies have focused upon introducing this information towards stronger

and more robust real-time classification of non-verbal languages. Sign language recognition

with depth-sensing cameras such as Kinect and Leap Motion is an exciting area within the

field due to the possibility of accessing accurate 3D information from the hand through

stereoscopy similar to human depth perception via images from two eyeballs. Kinect allows

researchers to access RGBD channels via a single colour camera and a single infrared depth-

sensing camera. A Microsoft Kinect camera was used to gather data in [99], and features

were extracted using a Support Vector Machine from depth and motion profiles. Experi-

ments in [100] found that generating synchronised colour-coded joint distance topographic
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descriptor and joint angle topographical descriptor and used as input to a two-steam CNN

produced effective results; the CNNs in Section 6.4 are therefore concatenated by late fu-

sion similar to the multi-modality method in this study and results were around 92% for

a 20-class dataset. In terms of RGB classification specifically, many state of the art works

have argued in favour of the VGG16 architecture [101] for hand gesture recognition to-

wards sign language classification [102]. These works include British [103], American [104],

Brazilian [105] and Bengali [106] Sign Languages among others. Given the computational

complexity of multi-modality when visual methods are concerned in part, multi-modality is

a growing approach to hand gesture recognition. Researchers have shown that the approach

of fusing the LMC and flexible sensors attached to the hand via Kalman filtering [107] is

promising. Likewise, in this regard, recent work has also shown that RGBD (Realsense)

along with a physical sensor-endowed glove can also improve hand tracking algorithms [108].

Given the nature of SLR, physically-worn devices are an unrealistic expectation for users

to accept when real-world situations are considered, e.g. should someone wish to sign in

a hotel lobby for staff who do not know sign language. Due to this issue in the field, an

approach is followed in Section 6.4 of two nonphysical sensors that are placed in front of

the subject as a ‘terminal’. That is, facing towards a camera and Leap Motion sensor are

similar to natural social interaction and do not require the adoption of a physical device on

the body.

Transfer Learning is a relatively new idea applied to the field of Sign Language recogni-

tion. In [109], researchers found it promising that knowledge could be transferred between

large text corpora and BSL via both LSTM and MLP methods, given that sign language

data is often scarcely available. In the experiments in Section 6.4, rather than transferring

between syntax-annotated text corpora, the aim is instead to follow the multi-sensor experi-

ments with transfer learning between two different sign languages, i.e., transferring between

the same task but in two entirely different languages (British Sign Language and American

Sign Language). Features recorded from the 26 letters of the alphabet in American Sign

Language were observed to be classified at 79.83% accuracy by a Support Vector Machine

algorithm [110]. Similarly to the aforementioned work, researchers found that a different

dataset also consisting of 26 ASL letters were classifiable at 93.81% accuracy with a Deep

Neural Network [111]. Another example achieved 96.15% with a deep learning approach on

a limited set of 520 samples (20 per letter) [112]. Data fusion via Coupled Hidden Markov
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Table 2.2: Other state of the art works in autonomous Sign Language Recognition, indirectly compared
due to operation on different datasets and with different sensors. Note: it was observed in this study
that classification of unseen data is often lower than results found during training, but many works do not
benchmark this activity.

Study Sensor Input Approach Classes Score (%)

Huang et al. [115] Kinect Skeleton DNN 26 97.8
Filho et al. [116] Kinect Depth KNN 200 96.31
Morales et al. [117] Kinect Depth HMM 20 96.2
Hisham et al. [118] LMC Point Cloud DTW 28 95
Kumar et al. [119] LMC Point Cloud HMM, BLSTM 50 94.55
Quesada et al. [120] RealSense Skeleton SVM 26 92.31
Kumar et al. [100] MoCap Skeleton 2-CNN 20 92.14
Yang [121] Kinect Depth HCRF 24 90.4
Cao Dong et al. [122] Kinect Depth RF 24 90
Elons et al. [123] LMC Point Cloud MLP 50 88
Kumar et al. [124] Kinect Skeleton HMM 30 83.77
Chansri et al. [125] Kinect RGB, Depth HOG, ANN 42 80.05
Chuan et al. [110] LMC Point Cloud SVM 26 79.83
Quesada et al. [120] LMC Skeleton SVM 26 74.59
Chuan et al. [110] LMC Point Cloud KNN 26 72.78

This study LMC, RGB Hand feats, RGB CNN-MLP-LF 18 94.44

Models was performed in [113] between Leap Motion and Kinect, which achieved 90.8%

accuracy on a set of 25 Indian Sign Language gestures.

In much of the state-of-the-art work in Sign Language recognition, a single modality

approach is followed, with multi-modality experiments being some of the latest studies in

the field. Additionally, studies often fail to apply trained models to unseen data, ergo

towards real-time classification (the ultimate goal of SL recognition). With this in mind,

Wang et al. proposed that sign language recognition systems are often affected by noise,

which may negatively impact real-time recognition capabilities [114]. Due to these open

issues in the field, the work in Section 6.4 benchmarks two single-modality approaches

as well as a multi-modality late fusion approach of the two both during training, and on

unseen data towards benchmarking a more realistic real-time ability. Additionally, it is

shown that it is possible to perform transfer learning between two ethnologues with the

proposed approaches for British and American Sign Languages.

Table 2.2 shows a comparison of state-of-the-art approaches to Sign Language recogni-

tion. The training accuracies found in the experiments in Section 6.4 are given as comparison

since other works report such metric, but it is worth noting that several publications in the

field considered in this section have shown that the classification of unseen data is often

lower than the training process.

J. J. Bird, PhD Thesis, Aston University 2021 44



CHAPTER 2. HUMAN-ROBOT INTERACTION

2.8 Sentiment Analysis

Sentiment analysis, or opinion mining, is the study of deriving opinions, sentiments, and

attitudes from lingual data such as speech, actions, behaviours, or written text. Sentiment

Classification is an approach that can class this data into nominal labels (eg. ‘this re-

mark has a negative valence’ ) or continuous polarities or score which map to their overall

sentiment. With the rise of online social media, extensive amounts of opinionated data

are available online, which can be used in classification experiments which require large

datasets. Negative polarity was used to analyse TripAdvisor reviews [126] on a scale of

negative-neutral-positive, the findings show that each review rating of one to five stars each

has unique distributions of negative polarity. This unique pattern suggests the possibility

of further extending the two-polarity three-sentiment system to a further five levels. A sim-

ilar three-class sentiment analysis was successfully trained on Twitter data [127]. Another

related work with Twitter Sentiment Analysis found that hashtags and emoticons/emoji

were effective additional attributes to improve classifiers [128]. Exploration of TripAdvi-

sor reviews found that separation via root terms, ‘food’, ‘service’, ‘ambiance’ and ‘price’

provided a slight improvement for machine learning classification [129].

With increasing availability of computing resources for lower costs, accurate classifi-

cation is enabled on increasingly larger datasets over time, giving rise to cross-domain

applications through more fine-tuned rules and complex patterns of attribute values. That

is, a model trained on dataset A can be used to classify dataset B. This has been effec-

tively shown through multiple-source data to produce an attribute thesaurus of sentiment

attributes [130]. Researchers also found that rule-based classification of large datasets are

unsuited to cross-domain applications, but machine-learning techniques on the same data

shows promising results [131].

Observing the results of the related studies on social media sentiment analysis (Twitter,

TripAdvisor, IMDB, etc.) shows a prominence of three-level sentiment classification, with

only one class for negative and one for positive along with a neutral class, with an overall

result being calculated with derived polarities. With the large amount of data available

correlating to a user’s specification of class outside of this range of three, the work in

Section 4.7 suggests a more extensive sentiment classification paradigm to co-ordinate with

user’s review scores, to better use human-sourced data. The end goal thus is to engineer
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Figure 2.1: A 32-bit OpenBCI Cyton Biosensing Board.

more additional values of polarity to give a finer measurement of sentiment. Moreover,

many of the state-of-the-art studies experiment with single classifiers, many strong models

are produced with Bayesian, Neural Network, and Support Vector Machine approaches, but

they have not been taken further to an ensemble and explored (which is also performed in

Section 4.7).

2.9 EEG and EMG Recognition

Attention state classification is a widely explored problem for statistical, machine, and deep

learning classification [132, 133]. Common Spatial Patterns (CSP) benchmarked at 93.5%

accuracy in attention state classification experiments, suggesting it is possibly one of the

strongest state-of-the-art methods [134]. Researchers have found that binary classification

is often the easiest problem for EEG classification, with Deep Belief Networks (DBN) and

Multilayer Perceptron (MLP) neural networks being particularly effective [135, 136, 137].

The best current state-of-the-art benchmark for classification of emotive EEG data achieves

scores of around 95% classification accuracies of three states, via the Fisher’s Discriminant

Analysis approach [138]. The study noted the importance of the prevention of noise through

introducing non-physical tasks as stimuli rather than those that may produce strong elec-

tromyographic signals. Stimuli to evoke emotions for EEG-based studies are often found

to be best with music [139] and film [140, 141]. OpenBCI, used in the 64-channel ex-

tension of the study in Section 5.4, is an open-source Brain-computer interface device,

which has the ability to interface with standard Electroencephalographic [142], Electromyo-

graphic [143], and Electrocardiographic [144] electrodes. Figure 2.1 [145] shows the 32-bit
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Arduino-compatible board for biosensing. OpenBCI with selected electrodes has seen 95%

classification accuracies of sleep states when discriminative features are considered by a Ran-

dom Forest model in the end-to-end system Light-weight In-ear BioSensing (LIBS) [146]. In

Section 5.4, OpenBCI data is used to detect eye state, that is, whether or not the subject has

opened or closed their eyes. In addition to the obvious nature of muscular activity around

the eyes, according to Brodmann’s Areas, the visual cortex is also an indicator of visual

stimuli [147, 148], and thus a higher resolution EEG is recommended for full detection. In

[149], researchers achieved an accuracy of 81.2% of the aforementioned states through a

Gaussian Support Vector Machine trained on data acquired from 14 EEG electrodes. It

was suggested that with this high accuracy, the system could be potentially used in the

automatic switching of autonomous vehicle states from manual driving to autonomous, in

order to prevent a fatigue-related accident. Another related work found that K-Star clus-

tering enabled much higher classification accuracies of these states to around 97% [150],

but it must be noted that only one subject was considered and thus generalisation and

further use beyond the subject would be considered difficult when generalisation works are

considered [151, 152]; in this study, ten subjects are considered. In a similar dataset as seen

in this work, researchers found that K-Nearest Neighbour classification (where k = 3) could

produce a classification accuracy of 84.05% [153]. In the classification problem of the states

of eyes open and closed (a binary classification problem), a recent work found that statisti-

cal classification via 7-nearest neighbours of the data following temporal feature extraction

achieved a mean accuracy of 77.92%[154]. The study extracted thirteen temporal features

and found that wave kurtosis was a strong indicator for the autonomous inference of the

two states.

In terms of the related work to the EMG experiments in Section 5.5. the discrimination

of affirmative and negative responses in the form of thumbs up and thumbs down was shown

to be possible in a related study [155], within which the two actions were part of a larger

eight-class dataset which achieved 87.6% on average for four individual subjects. Linear

Discriminant Analysis (LDA) was used to classify features generated by a sliding window

of 200ms in size with a 50ms overlap technique similar to that followed in this work; the

features were mean absolute value, waveform length, zero crossing and sign slope change

for the EMG itself and mean value and standard deviation observed by the accelerometer.

In [156], researchers followed a similar process of classification of minute thumb movements
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when using an Android mobile phone. Results showed that accuracies of 89.2% and 82.9%

are achieved for a subject holding a phone and not holding a phone respectively when two

seconds of EMG data is classified with a K-Nearest Neighbour (KNN) classification algo-

rithm. A more recent work explored the preliminary applications of image enhancement

to surface electromyographs showing their potential to improve the classification of muscle

characteristics[157]. Calibrations in the related works, where performed, are through the

process of Inductive Transfer Learning (ITL) and Supervised Transductive Transfer Learn-

ing (STTL). According to [158] and [159], ITL is the process satisfied when the source

domain labels are available as well as the target labels, this is leveraged in the calibration

stage, in which the gesture being performed is known. STTL is the process in which the

source domain labels are available but the target is not, this is the validation stage in this

study, when a calibrated model is benchmarked on further unknown data during the appli-

cation of a calibrated model. Transfer learning is the process of knowledge transfer from one

learned task to another [160], experiments in Section 5.5 found it difficult to generalise a

model to new subjects and thus the application of a model to new data is considered a task to

be solved by transfer learning; transfer learning often shows strong results in the application

of gesture classification in related state-of-the-art works [161, 162, 163, 164, 165]. Often-

times in the related literature, only one method of Machine Learning is applied, and thus

different statistical techniques are rarely compared as benchmarks on the same dataset.

In Section 5.5, many statistical techniques of feature selection and machine learning are

applied to explore the abilities of each in EMG classification. Very little exploration of

generalisation has been performed, researchers usually opt to present classification ability

of a dataset and there is a distinct lack of exploration when unseen subjects are concerned.

This is important for real-world application. Therefore, in Section 5.5, models attempt to

classify data gathered from new subjects and experience failure. This is further remedied by

the suggestion of a short calibration task, in which the generalisaton then succeeds through

the process of inductive transfer learning and transductive transfer learning.

2.10 Biosignal Augmentation and Transfer

Previous work has demonstrated the benefits of augmenting biological signal datasets to im-

prove the classification results. The majority of such research makes use of simple techniques
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to overcome the common issues of data scarcity and calibration time. A common approach is

to generate synthetic signals by re-arranging components of real data. Lotte [166] proposed

a method of “Artificial Trial Generation Based on Analogy” where three data examples

x1, x2, x3 provide examples and an artificial xsynthetic is formed which is to x3 what x2 is to

x1. A transformation is applied to x1 to make it more similar to x2, the same transformation

is then applied to x3 which generates xsynthetic
1. This approach was shown to improve the

performance of a Linear Discriminant Analysis classifier on three different datasets. Dai et

al. [167] performed similar rearrangements of waveform components in both the time and

frequency domains to add three times the amount of initially collected EEG data, finding

that this approach could improve the classification accuracy of a Hybrid Scale Convolutional

Neural Network. This work showed that data augmentation allowed the model to improve

the classification of data for individual subjects that were specifically challenging in terms

of model’s classification ability. Dinarès-Ferran [168], and subsequently Zhang [169] decom-

posed EEG signals into Intrinsic Mode Functions and constructed synthetic data frames by

arranging these IMFs into new combinations, demonstrating improvements of the classifi-

cation performance of motor imagery-based BCIs while including these new signals. Other

researchers have proposed data augmentation techniques commonly used in other domains

such as image classification techniques with positive results. As an example Shovon et

al. [170] applied conventional image augmentation techniques (such as altering the rotation,

zoom, and brightness [171]) to spectral images formed from EEG analysis to increase the

size of a public EEG dataset, which ultimately led to improved classification accuracy when

compared to related state-of-the-art works utilising the same dataset. Most state-of-the-art

research in biological signal augmentation shows great impact can be derived from relatively

simple techniques. For example, both Freer [172] and Wang [173] observed that introducing

noise into gathered data to form additional data points improved the learning ability of

several models, which otherwise performed relatively poorly. Tsinganos et al. [174] studied

the approaches of magnitude warping, wavelet decomposition, and synthetic surface EMG

models (generative approaches) for hand gesture recognition, finding classification perfor-

mance increases of up to +16% when augmented data was introduced during training. More

recently, data augmentation studies have begun to focus on the field of deep learning, more

specifically on the ability of generative models to create artificial data which is then intro-

1Equations for Lotte’s EEG generation technique can be found in [166]
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duced during the classification model training process. In 2018, Luo et al. [175] observed

that useful EEG signal data could be generated by Conditional Wasserstein Generative

Adversarial Networks (GANs), which was then introduced to the training set in a classi-

cal train-test learning framework. The authors found the classification performance was

improved when such techniques were introduced. Likewise, Zhang and Liu [176] applied

similar Deep Convolutional GANs (DC-GAN) to EEG signals given that training examples

are often scarce in related works. As with the previous work, the authors found success

when augmenting training data with DC-GAN generated data. Zanini and Colombini [177]

provided a state-of-the-art solution in the field of EMG studies when using a DC-GAN to

successfully perform style transfer of Parkinson’s Disease to bio-electrical signals, noting

the scarcity of Parkinson’s Disease EMG data available to researchers as an open issue

in the field [177].Many studies observed follow a relatively simple train/test approach to

benchmarking models. Many generative models are limited in that when they generate a

single point, or a set of points of data, each subsequent round of generation has no influence

on the next i.e., a continuous synthetic signal of unlimited length cannot be generated. To

overcome this open issue, the approach presented in this thesis within Section 5.6 allows

for an effectively infinite generation of temporal wave data given the nature of GPT-2; the

synthetic raw signal is continuously generated by inputting the previous outputs of the

model as inputs to the next generation and a feature extraction process is then performed

on the synthetic signals. For the first time in the field, Section 5.6 shows the effectiveness

of attention-based models is shown at the signal level rather than generative based models

at the feature-level.

Cross-domain transfer learning has been given relatively little attention in the field of

biological signal processing, with research almost exclusively opting for same-domain per-

sonalisation or calibration. EEG and EMG signals are excellent candidates for cross-domain

transfer learning, given their similarities, yet this idea has not been investigated. The exper-

iments in Section 5.7 succesfully aimed to fill this gap and establish cross-domain transfer

learning between EEG and EMG domains. It has been shown that models do not gener-

alise well between subjects, thus there is a need for transfer learning to achieve accurate

classification results [178, 179]. A highly promising proposal [151] consists of a two-step en-

semble of filter-bank classification of EEG data via two models, one for the original dataset

and another for a small dataset collected from a new subject. The baseline classification

J. J. Bird, PhD Thesis, Aston University 2021 50



CHAPTER 2. HUMAN-ROBOT INTERACTION

ability for nine individual subjects improved by approximately 10%. Similarly, the kernel

Principal Component Analysis (PCA) approach in leads to an improvement from 58.95%

to 79.83% (+20.88) classification accuracy when transfer learning from the original dataset

is performed for a new subject [180]. Similarly to EEG, transfer learning in EMG is most

often concerned with cross-subject learning rather than cross-domain application [181]. Re-

searchers gathered and combined datasets of EMG data measured from a total of 36 subjects

via the Myo armband (as also used the EMG studies in this thesis). The dataset was split

into sets of 19 and 17 subjects. Transfer learning of learnt features of a Convolutional Neural

Network led to a classification accuracy improvement of 3.5%. Though this improvement

is small, the achieved accuracy is the state-of-the-art for the dataset. Transfer Learning in

EMG has been successful in calibrating to electrode shifts, changes of posture, and distur-

bances due to sweat and fatigue [182] through small calibration recordings that subsequently

require less than 60 seconds of training time. This study noted that the exercises increased

in accuracy after a disturbance from 74.6% to 97.1%. Motivated by the small successes of

cross-subject transfer learning within EEG and EMG domains independently, as well as the

similar nature and behaviour of these biological signals, the studies in Section 5.7 explore

the potential of applying learnt knowledge from one biological signal domain to the other

and vice versa.

2.11 Chatbot Interaction

Chatbots are a method of human-machine interaction that have transcended novelty to

become a useful technology of the modern world. A biological signal study from 2019

(Muscular activity, respiration, heart rate, and electrical behaviour of the skin) found that

textual chatbots provide a more comfortable platform of interaction than with more human-

like animated avatars, which caused participants to grow uncomfortable within the uncanny

valley [183]. Many chatbots exist as entertainment and as forms of art, such as when state-of-

art methods for a character generation from text data [184] were used for an interactive work

where visitors could have a coffee and conversation with historical figures [185] This allowed

for 10,000 visitors to converse with 19th century characters from Machado de Assis’ “Dom

Casmurro”. It has been strongly suggested through multiple experiments that a more casual

and natural interaction with chatbots (similarly to human-human interaction) will provide
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a useful educational tool in the future for students of varying ages [186, 187, 187, 188]. The

main open issue in the field of conversational agents is data scarcity, which in turn can

lead to unrealistic and unnatural interaction. Overcoming these is a requirement for the

Loebner Prize based on the Turing test [189]. Solutions have been offered such as data se-

lection of inputs [190] and more recently paraphrasing of data [191]. These recent advances

in data augmentation by paraphrasing in particular have shown promise in improving con-

versational systems by increasing understanding of naturally spoken language [192, 193].

One of the more widely used solutions for chatbots in industry is Google’s DialogFlow[194]

which couples interaction with intention classification, i.e., anaylsing user input to classify

what it is that they want. One of the open issues regarding this is the lack of available

data to train such a classification model. To give an example, an intent of check bank

balance could be classified from user input “Can you please tell me how much money I

have?” to a bank’s chatbot based on DialogFlow’s intent classification approach. Similarly,

Microsoft Bot uses speech, vision, and language understanding to converse with users by

producing spoken outputs or performing question-answering services[195]. Microsoft Bot

is based on general knowledge and is tuned for use via data sources and manuals such as

tutorials and PDFs etc. to provide useful responses during interaction. Another related

chatbot architecture is RASA, which aims to focus moreso on a conversation’s history to

enrich interaction rather than single question-answering pairs[196]. RASA agents access

an NLP/NLU pipeline alongside policies, and track conversations to properly interact with

users.

2.12 Scene Recognition and Sim2Real

Much state-of-the-art work in scene classification explores the field of autonomous navi-

gation in self-driving cars. Many notable recent works [197, 198, 199] find dynamic envi-

ronment mapping leading to successful real-time navigation and object detection through

LiDAR data. Visual data in the form of images are often shown to be useful in order

to observe and classify an environment [200]; a notable recent work achieved 66.2% accu-

racy on a large scene dataset through transfer learning from the Places CNN compared

to ImageNet transfer learning and SVM which achieved only 49.6% [201]. Similarly Xie

et al. [202] found that through a hybrid CNN trained for scene classification, scores of
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82.24% were achieved for the ImageNet dataset. Though beyond the current capabilities of

autonomous machine hardware (including consumer robotics), recent work has argued for

temporal awareness through LSTM [203], achieving 78.56% and 70.11% pixel accuracy on

two large image datasets. In Li et al. [204], studies showed that memorisation of context

increases performance by 0.7%. In terms of audio, recent work has shown the usefulness

of MFCC audio features in statistical learning for recognition of environment [205], gaining

classification accuracies of 89.5%, 89.5% and 95.1% with KNN, GMM, and SVM methods

respectively. In Peltonen, et al. [206] nearest-neighbour MFCC classification of 25 envi-

ronments achieved 68.4% accuracy compared to a subject group of human beings who on

average recognised environments from audio data with 70% accuracy. In Petetin, et al. [207],

results argue that a deep neural network outperforms an SVM for scene classification from

audio data, gaining up to 92% accuracy. Researchers have shown that human beings use

multiple parts of the brain for general recognition tasks, including the ability to be aware of

the environment [208, 209]. Though many works studied find success in a single modality,

the approach presented in Section 6.2 argues that, since the human brain merges the senses

into a robust percept for recognition tasks, the field of scene classification should find some

loose inspiration from this process through data fusion. Visual and audio data are explored

in the aforementioned (Section 6.2) due to accessibility since there is much audio-visual

video data available to researchers.

The possibility of transfer from modern videogames to reality for complex problems

such as scene recognition is a new and rapidly growing line of thought within the field

of deep learning. Technologies such as realistic Ray Tracing and PBR in conjuction with

photographic or photographically enhanced textures enable photo-realism in simulated en-

vironments (in this context, generated as a videogame environment). The possibility of

knowledge transfer from virtual environments to the real world is desirable for several rea-

sons. Entities can be moved instantly, including those that would be impossible to move in

real life. For example, a number of images can be collected from a house with multiple con-

figurations of furniture, and a number of images could also be collected from the outdoors

where mountains are changed in shape and size. Weather and lighting can also be changed

instantly, data can be collected from a summer scene at one moment and then the same

environments with rainy weather during the night time at the next moment. Another pa-

rameter that can be changed within simulated environments with ease are materials; bricks
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and mortar can be changed almost instantly, as well as grass colour and furniture materials

to name just a few examples. The conclusion, thus, is that if the transfer of knowledge

is possible from simulation to reality for this problem, then a great deal of data can be

collected from the simulation with relative ease in comparison to collecting images from the

real world. The reduced availability of real-world data in comparison to the almost infi-

nite possibilities in virtual environments is such a scenario. Kim and Park recently argued

against a classical heuristic search approach for the tracking of road lanes in favour of a

deep learning approach featuring transfer learning from Grand Theft Auto V (GTA V) and

TORCS environments [210]. GTA V was also used to gather data for a computer vision

experiment in which vehicle collisions were succesfully predicted when transfer learning was

applied [211]. Trial-and-error learning is not suited to high-risk activities such as driving,

and so, reinforcement learning is not possible when the starting point is a real-world sit-

uation; researchers argue that transfer of knowledge can improve the ability to perform

complex tasks, when initially performed in simulation [212] and [213].

For autonomous navigation, environment mapping and recognition is a essential task for

self-driving vehicles, many of which consider LiDAR data as input towards mapping and

subsequent successful real-time navigation [197, 198, 199, 214]. In addition to LiDAR, many

authors have argued for the processing of photographic image data for environment or scene

recognition. Herranz et al. [215] show that classification of both scenes and objects reaches

human-level recognition ability of 70.17% on the SUN397 places dataset via manually chosen

combinations of ImageNet-CNNs and Places-CNNs. Similarly, Wu et al. [216] achieved

accuracy of 58.11% on the same dataset through harvesting discriminative meta-objects,

outperforming Places-CNN (AlexNet fine tuning), which had a benchmark accuracy of

56.2% [201]. Tobin et al. [217] trained computer vision models with a technique of domain

randomisation for object recognition within a real-world simulation, which, when transferred

to real-world data, could recognise objects within an error of around 1.5 centimetres. This

was further improved when it was noted that a dataset of synthetic images from a virtual

environment could be used to train a real-world computer vision model within an error rate

of 1.5 to 3.5 millimetres on average [218]. Researchers noted that virtual environments were

simply treated as simply another variation rather than providing unsuitable noise. Similarly,

computer vision models were also improved when initially trained in simulation for further

application in reality where distance error rates were reduced for a vision-based robotic
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arm [219]. Scene recognition between virtual and real environments has received little

attention. Wallet et al. show via comparison of high and low detailed virtual environments

that high detail in the virtual environment leads to better results for tasks such as scene

classification and way-finding when applied to real environments [220]. The study was based

on the experiences of 64 human subjects.

Thus far, little exploration into the possibility of transfer learning between virtual to

real environments for the task of environment recognition or scene classification has been

performed. In terms of scene classification, either LiDAR or photographic image data are

considered as a data source for the task, with the best scores often being achieved by

deep learning methods such as the Convolutional Neural Network, which features often

in state-of-the-art work. Transfer learning of features are often featured in these works,

either by simply fine-tuning a pre-trained CNN on a large dataset, or training on a dataset

and transfer learning weight matrices to a second, more scarce dataset. Inspired by the

open issues in the field, in Section 6.3, photographic data is selected from virtual and real

environments before transfer learning by initial weight distribution to a fine-tuned network

to attempt to use both methods. The successful transfer of knowledge attained in the

experiments serves as a basis for further exploration into the possibilities of improving

environment classification algorithms by considering the activity of pre-training on the

infinite possibilities of virtual environments before considering a real-world problem.

2.13 Summary

To summarise, this chapter has explored the literature in Human-Robot Interaction which

bares the most relevance to the work performed in this thesis. The history as well as

important concepts regarding general HRI such as social interaction with machines and

humans, emergence of behaviours, and open issues in the field were explored. The open

issues are to be revisited later on, since one of the goals of the work in this thesis is to

alleviate them to some degree. Following this, a literature review was performed on all

modes of HRI that the framework in this thesis is designed to perform; open issues in each

of the individual fields were noted, where the relevant chapters and sections are then aimed

to explore solutions to these issues throughout the thesis.
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Chapter 3

Key Concepts in Machine Learning

3.1 Introduction

In this chapter, the key concepts of machine learning relevant to the research contained

within this thesis are introduced, cited, described and discussed.

A Machine Learning (ML) algorithm, in general terms, is the process of building an

analytical or predictive model with inspiration from labelled (known) data [221, 222]. The

machine learning algorithm effectively provides the computational layer between inputs and

decisions. Therefore, machine learning enables a solution for our first research question,

How can one endow a robot with improved affective perception and reasoning for social

awareness in verbal and non-verbal communication?, by allowing for that endowment of

ability. In this sense, abilities are created through the tuning and training of machine

learning algorithms, and the ability itself is thus the static algorithm post-training which

has learnt to perform a complex task. As previously noted, this chapter focuses on the

specific key concepts of machine learning that make this creation of robotic abilities possible,

techniques which then feature heavily throughout this thesis. Specifically, Chapters 4, 5

and 6 where these techniques are used to endow the robot with verbal, non-verbal, and

multimodality interactive abilities.

3.2 Validation Testing

A learning algorithm executes towards reducing loss or attaining accuracy through their

methods, and scores are given through validation. Some of the widely used and most
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prominent algorithms are covered in this section. Generally, there are three main ways to

validate a model:

• Splitting the dataset - where one split is used to train, and the other is used for

testing. This is represented by a percentage, ie. 70% training and 30% validation

testing. The accuracy in this example is that of how the model performs on the 30%

of unseen data.

• K-fold cross validation - The data points n are split into k equal parts. For each split

k, a model is trained and validated on all of the other splits. The overall score is the

mean of all results and their standard deviation.

• Leave-one-out (LOO) is a form of k-fold where k=n, i.e. a model is trained for each

and every data point of dataset n− 1 and validated on the left-out n datapoint.

Note that the problem must be thought of in terms of its use prior to a validation procedure

being selected. For example, results on a forecasting problem using standard k-fold splitting

would be useless since the model may be able to see both past and future data (which would

not occur in real-world usage) and so the validation method must be customised [223].

Studies have found that LOO cross validation (K = n) is a superior method compared

to K-fold (K < n), which in turn is superior to a two-way percentage split of training

and validation data [224, 225]. Though, with LOO, a large deviation is to be expected

since there is only one test object and thus a classification metric would either be incorrect

or correct (0 or 1) compared to K-Fold where an average ability is given based on all of

the objects within the testing fold. Likewise, these studies showed that the more superior

the method, the more computational resources are required and thus for sufficiently large

datasets, more complex methods of validation are not feasible.

3.3 Attribute Selection

Attribute selection, or dimensionality reduction, is the process of reducing the dataset by

features in order to simplify the learning process. It is the focus of discarding weaker ele-

ments in order to simplify the process but at the smallest cost of classification ability [226].

Additionally, especially in data scarce problems, dimensionality reduction can aid in reduc-

ing overfitting of models. In neural networks, for an example, large input datasets greatly
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increase the number of hyperparameters to be tuned by the optimisation algorithms and

thus the computational resources required [227].

Information Gain is the scoring of an attribute’s classification ability in regards to

comparing a change in entropy when said attribute is used for classification [228]. The

entropy measured for a specific attribute is given in Equation 3.14, when different attributes

are observed for classification thus allow for scoring and ranking of ability.

Symmetrical Uncertainty is a method of dimensionality reduction by comparison of

two attributes in regards to classification entropy and Information Gain given a pair [229,

230]. This allows for comparative scores to be applied to attributes within the vector. For

attributes X and Y , Symmetrical Uncertainty is given as:

SymmU(X,Y ) = 2× (IG(X|Y ))

E(X) + E(Y )
, (3.1)

where Entropy E and Information Gain IG are calculated as previously described.

Embedded Feature Selection is when machine learning models have an inherent ability to

select features during the learning process. For example, Random Decision Trees (and thus

Forests) have a maximum number of features to consider when searching for the best split.

In the original Random Forest paper, Breiman [231] notes that
√
nfeatures is an effective

rule of thumb for the model’s embedded feature selective nature.

3.4 Classical Models

The term classical machine learning is often used contemporaneously in order to define

algorithms that differ from the more modern approaches of Deep Learning [232]1. In this

thesis, a distinction is drawn between classical and deep learning methods following this

definition, but it is also worth noting in modern literature that some research defines classical

machine learning differently, as algorithms that are not quantum mechanical in nature [234].

3.4.1 Decision Trees

A Decision Tree is a data structure of conditional control statements based on attribute

values, which are then mapped to a tree [235, 236]. Classification is performed by cascading

1Although some researchers may consider the Multilayer Perceptron as a classical machine learning
technique [233], it is described within the deep learning section of this literature review due to the importance
of densely connected layers in deep learning.
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a data point down the tree through each conditional check until a leaf node (a node with

no remaining branches), which is mapped to a Class, ie. the prediction of the model. The

growth of the tree is based on the entropy of its end node, that is, the level of disorder in

classes found on that node. Entropy of a node is considered as:

E(S) = −
c∑︂

i=1

Pi × log2Pi, (3.2)

where the entropies of each class prediction are measured at a leaf node. An overfitted tree

is generated for the input set and therefore cross-validation or a test-set are required for

proper measurement of prediction ability.

3.4.2 Support Vector Machines

Support Vector Machines (SVMs) classify data points by optimising a data-dimensional

hyperplane to most aptly separate them, and then classifying based on the distance vector

measured from the hyperplane [237]. Optimisation follows the goal of the average margins

between points and the separator to be at the maximum possible value. Generation of

an SVM is performed through Sequential Minimal Optimisation (SMO), a high-performing

algorithm to generate and implement an SVM classifier [238]. To perform this, the large

optimisation problem is broken down into smaller sub-problems, these can then be solved

linearly. For multipliers a, reduced constraints are given as:

0 ≤ a1, a2 ≤ C,

y1, a1 + y2, a2 = k,
(3.3)

where there are data classes y and k are the negative of the sum over the remaining terms

of the equality constraint.

3.4.3 Näıve Bayes

Näıve Bayes is a probabilistic classifier that aims to find the posterior probability for a

number of different hypotheses and selecting the most likely case. Bayes’ Theorem [239] is

given as:

P (h|d) = P (d|h)P (h)

P (d)
, (3.4)
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where P (h|d) is the posterior probability of hypothesis h given the data d, P (d|h) is the

conditional probability of data d given that the hypothesis h is true. P (h), i.e. the prior,

is the probability of hypothesis h being true and P (d) = P (d|h)P (h) is the probability of

the data. Näıvety in the algorithm is due to the assumption that each probability value is

conditionally independent for a given target, calculated as P (d|h) =
∏︁n

i=1 P (di|h) where n

is the number of attributes/features.

3.4.4 Bayesian Networks

Bayesian Networks are graphic probabilistic models that satisfy the local Markov property,

and are used for computation of probability [240]. This network is a Directed Acyclic

Graph (DAG) in which each edge is a conditional dependency, and each node corresponds

to a unique random variable and is conditionally independent of its non-descendants. Thus

the probability of an arbitrary event N = (n1, ..., nk) can be computed as:

P (X) =
k∏︂

i=1

P (Xi|Xi, ..., Xi−1). (3.5)

3.4.5 Hidden Markov Models

A Markov Chain is a model that describes a sequence and probability of events occurring

based on those that have previously occured, that is, a branched and ordered sequence [241].

Hidden states within a Markov model describe a previously occurring data object (event)

and thus predict the next event in the sequence, the number of hidden states required is

therefore largely data dependent in terms of event length but also predictable event precur-

sor length. A Hidden Markov Model’s probability calculations and subsequent classification

decision are given as follows:

Y = y(0), y(1), ...y(L− 1), (3.6)

where Y is the probability the sequence of length L occurring. Secondly,

P (Y ) =
∑︂
X

P (Y |X)P (X), (3.7)
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describes the probability of Y where the sum runs over all of the generated hidden node

sequences, given as X:

X = x(0), x(1), ..., x(L− 1). (3.8)

The classification is finally chosen based on highest probability on previously studied data

sequences within the hidden model, and is thus inherently Bayesian in nature [239].

3.4.6 Logistic Regression

Logistic Regression is a process of symmetric statistics where a numerical value is linked to

a probability of event occurring [242], ie. the number of driving lessons to predict pass or

fail. In a two class problem within a dataset containing i number of attributes and β model

parameters, the log odds l is derived via l = β0 +
∑︁x

i=0 βi + xi and the odds of an outcome

are shown through o = bβ0+
∑︁x

i=0 βi+xi which can be used to predict an outcome based on

previous observation.

3.4.7 Nearest Neighbour Classification

K-nearest Neighbour (KNN) is a method of classification based on measured distance from k

training data points [243]. KNN is considered a lazy learning technique since all computation

is deferred and only required during the classification stage. KNN is performed as follows:

1. Convert nominal attributes to integers mapped to the attribute label

2. Normalise attributes

3. Map all training data to n-dimensional space where n are are the values of attributes

4. Lazy Computation - For each data point:

(a) Plot the data point to the previously generated n-dimensional space

(b) Have K-nearest points all vote on the point based on their value

(c) Predict the class of the point with that which has received the highest number

of votes
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3.4.8 Linear and Quadratic Discriminant Analysis

Linear Discriminant Anaylsis (LDA), based on Fisher’s linear discriminant [244], is a statis-

tical method that aims to find a linear combination of input features that separate classes

of data objects, and then use those separations as feature selection (opting for the lin-

ear combination) or classification (placing prediction objects within a separation). Classes

k ∈ {1, . . . ,K} are assigned priors π̂k (
∑︁k

i=1 π̂k = 1). With eq.(3.4) in mind, maximum-a-

posteriori probability is thus calculated as:

G(x) = argmax
k

Pr(G = k|X = x) = argmax
k

fk(x)πk, (3.9)

where fk(x) is the density of X conditioned on k:

fk(x) = |2πΣk|−1/2 exp

(︃
−1

2
(x− µk)

TΣ−1
k (x− µk)

)︃
, (3.10)

Σk is the covariance matrix for samples of class k and class covariance matrices are assumed

to be equal. The class discriminant function δk(x) is given as:

δk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + log πk, (3.11)

where µ̂k is the class mean, and finally classification is performed via

G(x) = argmax
k

δk(x). (3.12)

Quadratic Discriminant Analysis (QDA) is an algorithm that uses a quadratic plane to sep-

arate classes of data objects. Following the example of LDA, QDA estimates the covariance

matrices of each class rather than operating on the assumption that they are the same.

QDA follows LDA with the exception that:

δk(x) = −1

2
log |Σk| −

1

2
(x− µk)

TΣ−1
k (x− µk) + log πk . (3.13)

3.4.9 Gradient Boosting

Gradient Boosting [245] forms an ensemble of weak learners (decision trees) and aims to

minimise a loss function via a forward stage-wise additive method. In these classification
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problems, deviance is minimised. At each stage, four trees (n = classes) are fit to the

negative gradient of the multinomial deviance loss function, or cross-entropy loss [246, 228]:

−
K∑︂
c=1

ix,y log(px,y), (3.14)

where, for K classes, i is a binary indicator of whether the prediction that class y is the

class of observed data x is correct, and finally p is the probability that aforementioned data

x belongs to the class label y. XGBoost [247] differs slightly in that it penalises trees, leaves

are shrunk proportionally, and extra randomisation is implemented.

3.5 Deep Learning

The goal of the deep learning classification process is the minimisation of loss (misclassifi-

cation) through backpropagation of errors and optimisation of weights. The goal of multi

label classification is to reduce the categorical cross-entropy loss [246, 228], previously given

as −
∑︁K

c=1 ix,y log(px,y). If this value is algorithmically minimised through optimisation

of weights, the network is then able to learn from the errors and attempt to account for

them and improve its ability. Generally, many deep learning methods can be summarised

as a large set of matrix operations. If many floating point operations per second (FLOPs)

can be performed in parallel, computing operations become more efficient with a Graphics

Processing Unit (GPU) architecture. Although, in the consumer space, a GPU is often

slower than a Central Processing Unit (CPU), the distributed architecture of thousands of

Compute Unified Device Architecture (CUDA) cores allows for many more operations per

second and thus a more efficient method to perform learning algorithms [248]. To give a

more specific example to many works in this thesis that operate on an Nvidia GTX980Ti

GPU (2816 CUDA cores at 1GHz) and an Intel Core i7 8700K (6 cores at 3.7GHz), the

GPU has benchmarked to be capable of 6.1 trillion operations per second and the CPU has

been benchmarked to be capable of 170 billion operations per second. Thus, it is suggested

that several complex operations are best performed on a CPU and many simple operations

are best performed on a GPU [249].
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3.5.1 Multilayer Perceptron

A Multilayer Perceptron [250] is a type of Artificial Neural Network (ANN) that can be

used as a universal function approximator and classifier. It computes a number of inputs

through a series of layers of neurons, finally outputting a prediction of the class or real value.

More than one hidden layer forms a deep neural network. Output nodes are the classes used

for classification with, usually, a softmax layer of Y neurons where Y is the number of

possible predictions. One softmax neuron is activated and the corresponding class is given

as prediction. For regression problems, a single output neuron carries a numerical prediction

(e.g., stock price prediction in GBP). Learning is performed for a defined time measured in

epochs, and follows the process of backpropagation [251]. An epoch has passed when all data

objects have been passed through the network and errors back-propagated - for example,

training on 100 data objects with a batch size of 20 requires 5 back-prop steps to be carried

out before an epoch is complete. Back-propagation is a case of automatic differentiation

in which errors in classification or regression (when comparing outputs of a network to the

ground truth) are passed backwards from the final layer, to derive a gradient which is then

used to calculate neuron weights within the network, dictating their activation. That is, a

gradient descent optimisation algorithm is employed for the calculation of neuron weights

by computing the gradient of the loss function (error rate). After learning, a more optimal

neural network is generated, which is employed as a function to best map inputs to outputs,

or attributes to class. The process of weight refinement for the set training time is given as

follows:

1. Generate the structure of the network based on input nodes, defined hidden layers,

and required outputs

2. Initialise all of the node weights randomly.

3. Pass the inputs through the network and generate predictions as well as cost (errors).

4. Compute gradients.

5. Backpropagate errors and adjust neuron weights.
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3.5.2 Convolutional Layers

A Convolutional Neural Network (CNN) [252, 253] is a Deep Learning algorithm capable of

collecting an input matrix and ascribing weights and bias in parallel under the constraints

of a predictive problem, resulting in specific features. A Convolutional layer performs a dot

product between two matrices, where one matrix is the set of learnable parameters and the

other one is known as a kernel, producing an Activation Map, as shown below:

G[m,n] = (f ∗ h)[m,n] =
∑︂
j

∑︂
k

h[j, k]f [m− j, n− k], (3.15)

where the input matrix is f and the kernel is denoted as h.

Following a layer, or several layers of learnt convolution operations, the result is flattened

(if not one-dimensional) and those values are passed to further perceptron layers in order

to learn from the outputs of the CNNs rather than simply learning from the input data. To

give a specific example, in the famous binary image classification problem of dog or cat? ; a

set of convolutional layers may, for example, learn to extract features pertaining to a certain

shape of ear or nose, or fur texture and colour, which themselves are assigned specific learnt

weights and can then be passed to dense layers to be learnt from in turn. The convolutional

layer receives a perceptive field, that is, not all of the previous values as is the case with a

dense layer, for example a 5 × 5 results in the reception of 5 × 5 values. To refer back to

the example, a 5× 5 field may encompass features such as an ear or fur texture. Receptive

fields are inspired by the occipital cortices of both humans and animals, where the brain

considers visual information within a certain field of view [254, 255] i.e., when looking at

and recognising an entity, the brain will consider a certain size of visual field to perform

the activity.

3.5.3 Long Short-Term Memory Layers

Long Short Term Memory (LSTM) [256] is a form of Artificial Neural Network in which

multiple Recurrent Neural Networks (RNN) will predict based on state and previous states.

The data structure of a neuron within a layer is an ’LSTM Block’. Fistly, the forget gate
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will decide on which information to store, and which to delete:

ft = σ(Wf .[ht=1, xt + bf ). (3.16)

where t is the current timestep, Wf is the matrix of weights, h is the previous output (t-1),

xt is the batch of inputs as a single vector, and finally bf is an applied bias. After deciding

which information to forget, the unit must also decide which information to remember. In

terms of a cell input i, Ct is a vector of new values generated.

ot = σ(Wi.[ht=1, xt + bi), (3.17)

C̃t = tanh(Wc.[ht=1, xt + bc). (3.18)

Using the calculated variables in the previous operations, the unit will follow a convolutional

operation to update parameters:

Ct = ft ∗ Ct−1 + it ∗ C̃t. (3.19)

In the final step, the unit will produce an output at output gate Ot after the other operations

are complete, and the hidden state of the node is updated:

ot = σ(Wo.[ht=1, xt + bo), (3.20)

ht = ot ∗ tanh(Ct). (3.21)

Due to the observed consideration of time sequences, i.e., previously seen data, it is often

found that time-dependent data (waves, logical sequences) are successfully classified thanks

to the addition of unit memory. LSTM’s are thus particularly powerful when dealing with

speech recognition [257] and brainwave classification [258] due to their temporal nature.
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3.5.4 Transformer Based Models

According to [259], Transformers are based on the calculation of scaled dot-product at-

tention units. These weights are calculated for each word within the input vector of words

(document or sentence). The output of the attention unit are embeddings for a combination

of relevant tokens within the input sequence. This can be observed later on in this thesis,

in the experiments within Section 7.2, where both correctly and incorrectly classified input

sequences are highlighted with top features that lead to such a prediction. Weights for the

query Wq, key Wk, and value Wv are calculated as follows:

Attention(Q,K, V ) = softmax

(︃
QKT

√
dk

)︃
V. (3.22)

The query is an object within the sequence, the keys are vector representations of said input

sequence, and the values are produced given the query against keys. Unsupervised models

receive Q, K and V from the same source and thus pay self-attention. For tasks such as

classification and translation, K and V are derived from the source andQ is derived from the

target. For example, Q could be a class for the text to belong to ie. for sentiment analysis

“positive” and “neutral” and thus the prediction of the classification model. Secondly, for

a translation problem, values K and V could be derived from the English sentence “Hello,

how are you?” and Q the sequence “¿Hola, como estas?” for supervised English-Spanish

machine translation. Many State-of-the-Art Transformer models explored in this thesis (e.g.

BERT, RoBERTa, XLM etc.) follow the concept of Multi-headed Attention. This is simply

a concatenation of multiple i attention heads hi to form a larger network of interconnected

attention units:

MultiHead(Q,K, V ) = Concatenate(head1, ..., headh)W
O

headi = Attention(QWQ
i ,KWK

i , V W V
i ).

(3.23)

3.5.5 Momentum

Momentum is a learning method within optimisation problems that has been applied in

multiple stochastic gradient descent algorithms in order to prevent stagnation at local min-

ima and faster acceleration towards solutions [260]. For example, if a neural network weight

∆wij is updated as α ∗ δE
δwij

wherein α is the learning rate and δE
δwij

is the weight gradient;
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the weight could instead be updated with momentum as

∆wij = (α
δE

δ
wij) + (y∆wt−1

ij ), (3.24)

where y is the momentum factor and ∆wt−1
ij is the weight increment at the previous iteration.

That is, if a neuron has a weight of 4 and the learning rate is 0.01 and the gradient is

calculated as 5, the weight delta is 0.01×5 = 0.05 and the weight is updated as 4+0.05 = 4.05

without momentum. If this same weight were updated with momentum, with a momentum

factor of 0.5 and a previous weight delta of 0.05, then it would be 4+0.01×5+0.5×0.05 =

4.075. Note that a difference of +0.025 has occurred when the weight has been updated

with momentum rather than without - this is due to the previous iteration affecting the

new weight value when momentum is considered.

Thus, then, the goal of a deep learning model is to update the weights with momentum

through a gradient descent optimisation algorithm at each step to reduce the loss, that is,

to aim to become better at the task at hand by correctly predicting the expected labels or

value outputs of the given inputs.

3.6 Ensemble Learning

With single learners in mind, algorithms that are designed to create a statistical fit to

a certain dataset in order to automate an intelligent process, many individual algorithms

propose different methods of statistical analysis and thus prediction decision making. Given

that, dependent on the nature of the data, different statistical methods may be better than

others for a given problem. For example, in the problem of classes A, B, and C, algorithm

1 may be exceptionally good at correctly predicting class C, and algorithms 2 to n may

be relatively just as good at identifying members of classes B and C but not so much for

class A in comparison to algorithm 1. Thus, given these differing abilities within different

situations within the problem space, it may be useful to attempt to combine the predictive

abilities of all of the chosen algorithms to benefit from their positive traits and possibly

mitigate their errors. The combination of multiple machine learning algorithms is known

as Ensemble Learning, wherein a certain algorithm (which may or may not be a machine

learning algorithm in its own right) is used to combine the predictive abilities of a group of

machine learning algorithm [261]. The predictions of each of the candidates (Level-0 or base
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models) are combined in some way in order to provide a prediction of predictions inspired

by all of the ensemble candidates.

3.6.1 Adaptive Boosting

Adaptive Boosting (AdaBoost) is an algorithm which will create multiple unique instances

of a certain model to attempt to mitigate situations in which selected parameters are less

effective than others at a certain time [262]. The models will combine their weighted

predictions after training on a random data subset to improve the previous iterations. The

fusion of models is given as:

FT (x) =
T∑︂
t=1

ft(x), (3.25)

where F is the set of classifiers and x is the data object being considered [263].

3.6.2 Voting

Voting allows for multiple trained models to act as an ensemble through democratic or

weighted voting. Each model will vote on their outcome (prediction) by way of methods

such as simply applying a single vote or voting by the weight of probability experienced

from training and validation. The final decision of the model is the class receiving the

highest number of votes or weighted votes, and is given as the outcome prediction. The

final decision is derived through a selected voting operation:

• Average of Probabilities - Models vote on all classes with a vote equal to each of

its classification accuracies of said class. eg. if a model can classify a binary problem

with 90% and 70% accuracies, then it would assign those classes 0.9 and 0.7 votes

respectively if voting for them. The final output is the class with the most votes.

• Majority Vote - All models will vote on the class it predicts the data to be, and the

one selected is the class with the most votes.

• Min/Max Probability - The minimum or maximum probabilities of all model pre-

dictions are combined and class is selected based on this value.

• Median - For regression, all models will vote on a value, and the one selected will be

the median of all of their values. Eg. if two models in a median voting process vote

for values of 1.5 and 2, then the output of the classifier will be 1.75.
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3.6.3 Random Forests

A Random Forest [264] is an ensemble of Random Trees through Bootstrap Aggregating

(bagging) and Voting. Training is performed through a bagging process where multiple

random decision trees are generated, a random selection of data is gathered, and trees are

grown to fit the set. Once the training is completed, the generated trees will all vote, and

the majority vote is selected as the predicted class. Random Forests tend to outperform

Random Trees due to their decreasing of variance without increasing of the model bias.

3.6.4 Stacking

Stacking, or Stacked Generalisation, is a method of ensembling models and having their

predictive outputs form a meta dataset for interpretation [265]. The models to be ensembled

are known as either base models or Level-0 Models, which are trained on the training data

and then output their predictions for the testing data through the selected validation method

(i.e. operating as normal). Following this, the meta model, or Level-1 Model interprets

these predictions and produces a final prediction based on them. For example, if three

selected machine learning models (Level-0 models) were to output ’Dog’, ’Dog’, and ’Cat’

respectively; a selected Level-1 Model then receives not the data but these predictions as

input and learns patterns within them. The model could simply learn that a standard

majority vote is apt for the models and as such would predict the label ’Dog’, but, if the

meta-model had learnt that the third base model was specifically very good at recognising

the ’Cat’ label (especially if the first two do not) then it could predict the ’Cat’ label. The

latter may not be a democratic process as was described in the voting section, but may

statistically lead to a better overall score when considering the testing dataset predictions.

To give a simplified description, stacking is the process of learning from an ensemble’s

predictions by the interpretation of these predictions by a decision-making machine learning

algorithm.

3.7 Errors

Errors in regression can be calculated in numerous ways, for example, the value difference

or Root Mean Squared Error (RMSE), i.e. a prediction of 100,000 for a real value 90,000

would result in a RMSE of 10,000. In classification, a measure of entropy is often used, i.e.,
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the level of randomness or predictability for the classification of a set (see Equation 3.14).

Comparing the difference of model entropies gives the Information Gain (relative entropy)

or Kullback-Leibler Divergence (KLD). This is when a univariate probability distribution of

a given attribute is compared to another [228]. The calculation with the entropy algorithm

in mind is thus simply given as:

InfoGain(T, a) = E(T )− E(T |a), (3.26)

that is, with E of Equation 3.14 in mind, the observed change in entropy. For instances of

original ruleset H(T ) and comparative ruleset H(T |a). A positive Information Gain denotes

a lower error rate and thus arguably a better model2.

3.8 Evolutionary Topology Search

The optimal number of hidden layers and neurons (topology structure) for a given network

is largely data dependent. A combinatorial optimisation problem thus occurs, and there is

no simple linear algorithm to derive the optimal solution - there is no free lunch [266]. Since

fully connected neural networks produce a relatively small search space as the connections

themselves are assumed, an optimisation approach for the network topology is a realistic

search problem.

Denser is an alternative novel method of evolutionary optimisation of an MLP [267].

In addition to the number of hidden layers and neurons within fully connected neural

networks, Denser also considers the type of layer itself. This increase of parameters results

in a very complex search space and is subsequently a computationally intensive algorithm.

However, it achieves very high accuracy results, for example, 93.29% on the CIFAR-10

image recognition dataset.

Evolution of Neural Networks through Augmenting Topologies (NEAT) is an algorithm

for the genetic improvement of neural networks which are not necessarily fully connected

between layers [268]. The algorithm has been observed to be effective in learning from user

input problems, such as playing games, for example an evolving ANN that learns to play

Super Mario in real time [269].

In EvoDeep [270], an evolutionary algorithm used to derive a deep neural network for

2When a balanced dataset is considered.
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deep learning (eg. LSTM), researchers found Roulette Selection (random) for each popula-

tion member to be best in the solution breeding process, therefore this method was chosen

for the hyperheuristic evolutionary searches in multiple experiments within this thesis. That

is, each solution is in turn treated as px and a random second solution from solutions− 1

is chosen as py and an offspring solution F (px, py) = oxy is produced by breeding algorithm

F .

Deep Evolutionary Multilayer Perceptron, or DEvo, is an approach to optimising a Neu-

ral Network topology through evolutionary computation. Networks are treated as individual

organisms in the process where their classification ability dictates their fitness metric, thus

it is a single-objective algorithm. The pseudocode for the algorithm is given in Algorithm

1. The process to combine two networks follows the aforementioned work, where the depth

of the hidden layers is decided by selecting one of the two parents at random or mutation

at a defined random chance. Then, for each layer, the number of neurons is decided by

selecting the nth layer of either parent at random (provided both parent networks have

an nth layer), again the mutation chance then dictates a random mutation resulting in the

number of neurons being a random number between 1 and maxNeurons. Once the network

structure is generated, a pre-selected gradient descent problem is initiated and the network

learns through backpropagation. The solution’s performance, i.e., increases of accuracy,

minimisation of loss, etc., is considered as fitness, and the weaker solutions are culled. This

process is repeated with the goal of tuning the improved topologies for the problem at hand,

and results in a final generation containing the strongest solutions found throughout the

simulation.

Thus, after simulation, the goal of the algorithm is to derive a more effective neural

network topology for the given dataset. The algorithm is implemented due to neural net-

work hyper-parameter tuning being a non-polynomial problem [271]. The algorithm can be

computationally expensive; a ten population roulette breeding simulation executed for ten

generations would produce 120 neural networks to be trained, since eleven are produced

every generation. Resource usage is thus high for the simulation, but the final result gives a

network topology apt for the given data, and this finding can be used in further experiments.

The process followed can also be observed in the Flowchart (Figure 3.1). Therefore, it can

be considered that an evolutionary topology search engineers a problem space for a gradient

descent optimiser, since the network structure itself is optimised by the evolutionary search
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Algorithm 1: Evolutionary Algorithm for ANN optimisation.
Result: Array of best solutions at final generation
initialise Random solutions;
for Random solutions : rs do

test accuracy of rs;
set accuracy of rs;

end
set solutions = Random Solutions;
while Simulating do

for Solutions : s do
parent2 = roulette selected Solution;
child = breed(s, parent2);
test accuracy of child ;
set accuracy of child ;

end
Sort Solutions best to worst;
for Solutions : s do

if s index > population size then
delete s;

end

end
increase maxPopulation by growth factor;
increase maxNeurons by growth factor;

end
Return Solutions;

START

Generate	p	random
neural	network
architectures

Train	all	networks
through	forward-pass
and	backpropagation

Calculate	Fitness	Fi	of
each	neural	network	i

Sort	neural	networks	in
descending	order	of	Fi	

Select	parent	networks
for	the	generation

Termination?

For	each	parent	1,
choose	parent	2	and
produce	offspring

Apply	random	mutation

Present	[b1	..	bn]	best
solutions	observed	at
each	generation

END

NO

YES

Figure 3.1: Flow Diagram of the evolutionary search of Neural Network topology. Population size is given
as p and fitness calculation is given as F. Set {b1..bn} denotes the best solution presented at each generation.
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Accuracy

Time

Figure 3.2: Example of a successful Transfer Learning experiment. Transfer Learning (top line) has a
higher starting point, steeper curve, and higher asymptote in comparison to learning via random weight
distribution (bottom line).

which provides a starting point and search space for the gradient descent problem to be op-

timised via backpropagation. Although the problem is considerably more computationally

expensive than simply manually searching the hyperspace (as many scholars indeed do),

studies such as [272] and [273] have shown that interesting topologies are found to be more

optimal than those which were likely found either manually or by a grid search. Consider-

ing this, in this thesis, the hyperheuristic optimisation of neural network hyperparameters

(with a focus on topology) shows improvement to individual abilities for the robot prior to

the unified framework being engineered; for example in the recognition of, spoken phonetic

sounds (Section 4.4), biological signals (Section 5.3), physical environments (Section 6.2),

and physical gesture (Section 6.4). Similar to the previously noted studies, all of these

studies find interesting and complex topologies more optimal to solving the problem than

were likely to be found manually or through grid searching.

3.9 Transfer Learning

Transfer Learning, as the name suggests, consists in transferring something learnt in one

problem or task to another. Oftentimes, Transfer Learning is the application of a model

trained on source data to unseen data of the same domain called target data [274]. The

model trained on the source data can be further trained on the target data, before its de-

ployment on the target data. Cross-domain transfer learning is a similar application of a
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pre-trained model from one domain to another domain of different nature; for example, in

Chapter 5, models trained on two different datasets of biological waves from the brain and

forearm muscles are applied to one another for further training. Transfer of knowledge is

considered successful from one domain to the other when the starting point, the learning

curves and asymptotes are higher than those of the traditional source-train source-classify

approach [275]. A visual representation of a successful Transfer Learning experiment can be

seen in Figure 3.2, where the starting point is higher for transfer learning compared to ran-

dom distribution, and subsequently the learning curve is also steeper and the asymptote is

higher. Generally, there are two main reasons for the application of Transfer Learning [274].

Firstly, pre-trained models and computational resources have become easily accessible [276],

there are countless available models trained over many hours on extremely powerful hard-

ware. Examples include VGG [101], Inception [277], and MobileNet [278]. Secondly, the

issues that can arise when collecting a large amount of training data is impractical may be

negated by transferring previously learnt knowledge to related domains [279].

Pan and Yang [158] define three main types of Transfer Learning as follows:

1. Inductive Transfer Learning is knowledge transfer when the source and target domains

are identical but a new task is to be learned. For example, if five EMG gestures

are classified and further learning enables the model to learn to recognise additional

gestures, based on the current knowledge, then inductive transfer learning takes place.

2. Unsupervised Transfer Learning is the transfer of knowledge between two differing

domains and likewise differing tasks.

3. Transductive Transfer Learning is the process of sharing knowledge between differing

domains but for the same task. For example, if an EEG headband is to be calibrated

to a subject’s data (a slightly different domain) to complete the same mental state

recognition task, then transductive transfer learning takes place.

Recently, many Transfer learning techniques have been applied successfully in real-world

problems, for example, cancer subtype discovery [280], building-space optimisation [281,

282], text-mining [283, 284], and reinforcement-learning for videogame-playing AI [285,

286]. This thesis finds that transfer learning aids in improving several robot abilities with

regard to research question 1; for example, transferring from synthetically generated training

examples for speaker recognition in Section 4.6 and environment recognition in Section
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Real Augmented 1 Augmented 2 Augmented 3 Augmented 4

Figure 3.3: A real image of the Pepper Robot (left) followed by four examples of augmented images.
Augmentation techniques involve offsets, scaling, rotation and mirroring.

6.3, gesture recognition by electromyographical calibration in Section 5.5 and between sign

languages in Section 6.4, and signal classification between the domains of electromyography

and electroencephalography in Section 5.7.

3.10 Data Augmentation

Data augmentation is the process of artificially expanding a training dataset via generating

new data samples through modification of the available data [287]. Augmentation can

be performed by simple approaches, such as injection of Gaussian noise into a numerical

dataset [288], or by more complex algorithms such as repurposing models described in this

chapter to perform a generative approach. That is, rather than training to recognise data, a

model can be trained to generate similar data that, if given as an input, would be classified as

belonging to the real data. For example, work has found that using a Deep Convolutional

Generative Adversarial Network (DCGAN) can augment a dataset for improved image

classification [289], which is especially important when training examples may be scarce.

The goal of the GAN is to train two concatenated neural networks, the first learns to

generate a data object while the second learns to discriminate between what is real and

what is not. Thus, the two networks train adversarially by competing against one another.

This training process leads to the generator being able to create higher quality outputs that

contain useful knowledge to improve an algorithm through training data augmentation3.

Data augmentation is best visualised, as can be seen in Figure 3.3. In these examples,

offset, scale, rotation, and mirroring techniques are used to create new data objects from the

first. Although from a human perspective all of the images are obviously of the same robot, if

the matrix operations of a CNN are considered, varying outputs would be generated. Thus,

3Further detail on GANs can be found in [290].
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to the network, these provide more knowledge such as how an entity would be seen at an

angle, and therefore provide training examples that increase the training and classification

ability of the model.

It is due to this nature of CNNs that many examples of augmented training in literature

within the domain of image recognition. Although this is the case, the growing improved

generative ability of models such as new types of GAN and Transformer architectures have

enabled augmented improvement to gesture recognition [174], biological signal classifica-

tion [175], speech recognition [291], and human activity recognition [292] among many

others. In this thesis, it is explored how data augmentation can improve the Human-Robot

Interaction experience through improved autonomous abilities; for example the improve-

ment of, speaker recognition models in Section 4.3 where LSTMs and transformers are

used to generate new speech data, biological signal classification in Section 5.6 where a

transformer architecture learns to generate useful new signals, environment recognition in

Section 6.3 through training augmentation by simulated environments applied to the real

world, and finally the improvement of a transformer-based chatbot to provide natural input

to the framework by synthetically generating more human examples of written phrases via

parpahrasing in Section 7.2.

3.11 Summary

To summarise, this chapter has presented the methods by which modern machines learn.

In a classical learning sense, algorithms are run to increase a metric from validation data,

such as classification accuracy. Given a balanced dataset, if an algorithm can classify more

data objects correctly, therein lies an argument that the algorithm could be used for fur-

ther unknown data points (i.e., in production). Following on from this, this chapter also

described deep learning, the process of engineering weights within a network via backpropa-

gation and gradient descent. Although more complex and requiring far more computational

resources than their classical counterparts, the notion of deep learning has overtaken them

to become the current state-of-the-art in machine intelligence due to both current findings

and potential future capabilities.

Following the basis of machine learning, further techniques were also explored. This

included the idea of fusing the differing capabilities of individual models for a unified pre-
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diction, and the methods used that can create such an ensemble. Furthermore important

to this thesis were the concepts of transferring weights from one deep learning domain to

another, as well as augmenting datasets with synthetic data objects to improve learning

ability. The techniques and algorithms described in this chapter are to be encountered

throughout this thesis, both as tools to achieve certain robotic abilities, and in the bench-

marking of improving both model and ability such as through transfer learning and data

augmentation. These methods have thus been presented in this unified chapter given that

they feature prominently throughout the remainder of this thesis.
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Chapter 4

Verbal Human-Robot Interaction

4.1 Introduction

It is no surprise that human speech and writing do not convey the same amount of informa-

tion as one another. When conversing, the act of speech contains more useful information

than just words. Verbal introduction in Human-Robot Interaction is an interaction where

input is given as the operator’s voice. This chapter explores voice-based interaction mod-

ules for the final framework in the form of Speaker Recognition, phoneme recognition in

audio for both phoneme and accent classification, synthesis of speech (based on learning

from a real voice), and finally sentiment analysis for classification of five levels of sentiment.

Along with the classification ability of speech, a multi-objective approach is also explored

given that efficiency of tasks is also important in HRI[293]. Given that there is a common

theme underlying these technologies, namely feature extraction of audio, this is explored

initially prior to the aforementioned experiments being presented in their own sections. As

was discussed in the introduction, the scientific contributions of individual experiments are

presented where appropriate within the section introductions.

4.2 Feature Extraction from Audio

The audio feature extraction that takes place within this chapter for speech, and in Chap-

ter 6 scene sounds follows the process of extracting Mel Frequency Cepstral Coefficients

(MFCCs) in order to provide a numerical vector representative of the behaviour of sound

over time. Here, the process is explained. The specific hyperparameters such as window
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length and overlap differ between experiments, and thus are given in the appropriate section.

Since audio waves are complex and non-stationary, classification of the raw data poses

a difficult problem [294]. Due to this, numerical statistical features must be extracted from

the data in order to provide useful input to a model. This thesis focuses mainly on the

the Mel-Frequency Cepstral Coefficients (MFCC) [35] of the audio clips through a set of

sliding windows 0.25s in length (ie frame size of 4K sampling points) and an additional

set of overlapping windows, thus producing 8 sliding windows, i.e., 8 frames/sec. MFCC

extraction is described as follows:

1. The Fourier Transform (FT) of the time window data ω is derived via:

X(jω) =

∫︂ ∞

−∞
x(t)e−jωtdt. (4.1)

2. The powers from the FT are mapped to the Mel scale, the psychological scale of

audible pitch [295]. This occurs through the use of a triangular temporal window.

3. The Mel-Frequency Cepstrum (MFC), or power spectrum of sound, is considered and

logs of each of their powers are taken.

4. The derived Mel-log powers are treated as a signal, and a Discrete Cosine Transform

(DCT) is measured. This is given as:

Xk =
N−1∑︂
n=0

xncos
[︂
π
N (n+ 1

2)k
]︂
k = 0, ..., N − 1, (4.2)

where x is the array of length N , k is the index of the output coefficient being cal-

culated, where N real numbers x0...xn−1 are transformed into the N real numbers

X0...Xn−1 by the formula.

The amplitudes of the spectrum are known as the MFCCs. The resultant data then provides

a mathematical description of audio behaviour and are useful for classification of sound.

4.3 Synthetic Data Augmentation for Speaker Recognition

Data scarcity is an issue that arises often outside of the lab, due to the large amount of data

required for classification activities. This includes speaker classification in order to enable
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personalised Human-Machine (HMI) and Human-Robot Interaction (HRI), a technology

growing in consumer usefulness within smart device biometric security on devices such as

smartphones and tablets, as well as for multiple-user smarthome assistants (operating on

a per-person basis) which are not yet available. Speaker recognition, i.e., autonomously

recognising a person from their voice, is a well-explored topic in the state-of-the-art within

the bounds of data availability, which causes difficulty in real-world use. It is unrealistic to

expect a user to willingly provide many minutes or hours of speech data to a device unless

the device is allowed to constantly record daily life, which is a cause for concern with the

virtual home assistant. This study has shown that data scarcity in speaker recognition can

be overcome by collecting only several short spoken sentences of audio from a user and

then using extracted Mel-Frequency Cepstral Coefficients (MFCC) data in both supervised

and unsupervised learning paradigms to generate synthetic speech, which is then used in a

process of transfer learning to better recognise the speaker in question.

Autonomous speaker classification can suffer issues of data scarcity since the user is

compared to a large database of many speakers. The most obvious solution to this is to

collect more data from the speaker, but with the existence of Smart Home Assistants within

private environments, potentially listening to private data, this produces an obvious problem

of privacy and security [296, 297]. Not collecting more data on the other hand, presents

an issue of a large class imbalance between the speaker to classify against the examples of

other speakers, leading to lower accuracy and less trustworthy results [298], which must be

overcome for purposes such as biometrics, since the results must be trusted when used for

security. In this study, weighting of errors is performed to introduce balance, but it is noted

that the results still have room for improvement regardless.

Through data augmentation, useful new data can be generated by algorithms or models

that would improve the classification of the original, scarce dataset. A simple but prominent

example of this is the warping, flipping, mirroring, and noising of images to better prepare

image classification algorithms [299]. A more complex example through generative models

can be seen in recent works that utilise methods such as the Generative Adversarial Network

(GAN) to create synthetic data, which itself also holds useful information for learning from

and classification of data [300, 301]. Although image classification is the most common

and most obvious application of generative models for data augmentation, recent works

have also enjoyed success in augmenting audio data for sound classification [302, 303]. The
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contributions of this section are three-fold:

1. The dataset is extended to more subjects from multiple international backgrounds and

the extraction of the Mel-Frequency Cepstral Coefficients (MFCCs) of each subject.

2. Speakers are recognised against the Flickr8k and Fluent Speech Commands datasets.

3. Benchmarking of a Long Short Term Memory (LSTM) architecture for 64, 128, 256

and 512 LSTM units in one to three hidden layers towards reduction of loss in gen-

erating synthetic data is performed. The best model is selected as the candidate for

the LSTM data generator.

4. OpenAI’s GPT-2 model is included as a data generator in order to compare the

approaches of supervised (LSTM) and attention-based (GPT-2) methods for synthetic

data augmentation for speaker classification.

The scientific contributions of this work, thus, are related to the application of synthetic

MFCCs for the improvement of speaker recognition. The best LSTM and the GPT-2 model

are tasked with generating 2,500, 5,000, 7,500, and 10,000 synthetic data objects for each

subject after learning from the scarce datasets extracted from their speech. A network then

learns from these data and transfers their weights to another network aiming to learn and

classify the real data. In many cases there is an improvement. For all subjects, several of

the networks perform best after experiencing exposure to synthetic data.

4.3.1 Method

In this section the development of the proposed approach is described, as illustrated overall

in Figure 4.1. For each test, five networks are trained. Firstly, a network is trained simply

to perform the speaker classification experiment without transfer learning (from a standard

random weight distribution). Produced by LSTM and GPT-2, synthetic data are used to

train another network, of which the weights are used to train the final network as an initial

distribution to perform the same experiment as described in the first network (classifying

the speaker’s real data from Flickr8k/Fluent Speech Commands speakers). Thus, the two

networks leading to the final classification score in the diagram are directly comparable

since they are learning from the same data, and they differ only in initial weight distribution

(where the latter network has weights learnt from synthetic data).
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Figure 4.1: A diagram of the experimental method in this work. The two networks being directly compared
are classifying the same data, with the difference that the initial weight distribution is either from standard
random distribution or transfer learning from GPT-2 and LSTM produced synthetic data.

4.3.1.1 Real and Synthetic Data Collection

Speaker recognition in these experiments present a binary classification problem, namely,

whether the individual in question is the one producing the acoustic utterance or not. The

large corpus of data for the “not the speaker” class is gathered via the Flickr8k dataset [304],

which contains 40,000 individual utterances describing 8,000 images by a large number of

speakers, unspecified by the authors. MFCCs are extracted (described in Section 4.2) to

generate temporal numerical vectors, which represent a short amount of time from each

audio clip. 100,000 data objects are selected through 50 blocks of 1,000 objects and then

50,000 other data objects selected randomly from the remainder of the dataset. This is

performed so the dataset contains the individual’s speech at length as well as short samples

of many other thousands of speakers also. The second dataset is gathered from the Fluent

Speech Commands (FSC) dataset [305], which contains 23,132 utterances spoken by 77

different subjects.

To gather data for recognising speakers, seven target subjects are considered. Informa-

tion on the target subjects can be seen in Table 4.1. Subjects speak five random Harvard

Sentences from the IEEE recommended practice for speech quality measurements [306], and

so contain most of the spoken phonetic sounds in the English language. Importantly, this
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Table 4.1: Information regarding the data collection from the seven subjects of the Harvard Sentences.
Real Data denotes the number of data objects (rows) generated by the MFCC extraction.

Subject Sex Age Nationality Dialect Time Taken (s)
Real
Data

1 M 23 British Birmingham 24 4978
2 M 24 American Florida 13 2421
3 F 28 Irish Dublin 12 2542
4 F 30 British London 12 2590
5 F 40 British London 10 2189
6 M 21 French Paris 8 1706
7 F 23 French Paris 9 1952

is a participant-friendly process, because it requires only a few short seconds of audio data.

The longest time taken was by subject 1 in 24 seconds producing 4978 data objects and

the shortest were the two French individuals who required 8 and 9 seconds respectively

to speak the five sentences. All of the audio data were recorded using consumer-available

recording devices, such as smartphones and computer headsets. Synthetic datasets are gen-

erated following the learning processes of the best LSTM and the GPT-2 model, where the

probability of the next character is decided upon depending on the learning algorithm and

characters are generated in blocks of 1,000 within a loop and the final line is removed (since

it was often within the cutoff point of the 1,000-character block). The GPT-2 generates new

data with a temperature of 1, and selecting the topk of 1, in future other hyperparameters

should be benchmarked to better tune the GPT-2’s generative process for speech.

Illogical lines of data (those that did not have 26 comma separated values and class) were

removed, but were observed to be rare as both the LSTM and GPT-2 models had learnt

the data format relatively well since it was uniform throughout. The format throughout

the datasets was a uniform 27 comma separated values where the values were all numerical

and the final value was ‘1’ followed by a line break character.

Feature extraction is then performed on the data via the MFCC extraction process

described in Section 4.2. The parameters for the MFCC extraction are as follows: the

length of the analysis window was 25 milliseconds with a window step of 10 milliseconds.

The number of cepstrums was 13, the number of filters in the filterbank was 26, the fast

fourier transform size was 512, the lowest band edge of mel filters was 0Hz and the highest

was half of the sample rate1. The data objects made of 26 attributes produced from the

1Further information can be found at
https://python-speech-features.readthedocs.io/en/latest/
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sliding window are then treated as the input attributes for the neural networks for both

speaker recognition and synthetic data generation (with a class label). This process is

performed on the Flickr8K and Fluent Speech Commands datasets as well as the real data

recorded from the subjects. The MFCC data from each of the 7 subjects’ audio recordings

are used as input to the LSTM and GPT-2 generative models for training and subsequent

data augmentation.

4.3.1.2 Speaker Classification Learning Process

For each subject, the Flickr/FSC data and recorded audio form the basis dataset and

the speaker recognition problem. Eight datasets for transfer learning are then formed on

a per-subject basis, which are the aforementioned data plus 2500, 5000, 7500 and 10000

synthetic data objects generated by either the LSTM or the GPT-2 models. The number

of synthetic data objects are treated as a hyperparameter tuning and selection problem,

since differing numbers of additional synthetic inputs were noted to improve the models, or

cause classification issues compared to the vanilla classification problem. Thus, the models

selected are those that perform best. LSTM has a standard dropout of 0.2 between each

layer. The baseline accuracy for comparison is given as “Synth. Data: 0” later in Table 4.3

which denotes a model that has not been exposed to any of the synthetic data. This baseline

gives scores that are directly comparable to identical networks with their initial weight

distributions being those trained to classify synthetic data generated for the subject, which

is then used to learn from the real data. As previously described, two sets of synthetic data

to expose the models to during pre-training of the real speaker classification problem are

generated by either an LSTM or a GPT-2 language model. Please note that due to this, the

results presented have no baring on whether or not the network could classify the synthetic

data well or otherwise, the weights are simply used as the initial distribution for the same

problem. If the transfer learning networks achieve better results than the networks that

have not been trained on such data, this provides evidence for the hypothesis that speaker

classification can be improved by these methods of data augmentation (See Figure 4.1 for

the process).

An evolutionary search of neural network topologies found that three hidden layers of

30, 7, and 29 neurons were strong for classification of MFCC phoneme classes, and so this

topology is used. The neurons in the layers are all ReLu activation neurons and the network
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Figure 4.2: The training processes of the best performing models in terms of loss, separated for readability
purposes. Results are given for a benchmarking experiment on all of the dataset rather than an individual.

is trained via the ADAM optimiser [307]. The networks are given an unlimited number of

epochs to train, only ceasing through a set early stopping callback of 25 epochs with no

improvement of ability. The best weights are restored before the final scores are calculated.

This is allowed in order to make sure that all models stabilise to an asymptote and reduce

the risk of stopping the models prior to them achieving their potential best abilities. For the

training process, speech datasets are split into 70/30 train/test sets for validation. Prior to

this, for fine-tuning of synthetic data, the weights are fit to the synthetic data on an unseen

subset of the Flickr8k/FSC datasets, which does not appear in the later experiments where

the results are reported.

Classification errors are weighted equally by class prominence since there exists a large

imbalance between the speaker and the rest of the data. All LSTM experiments performed

in this work were executed on an Nvidia GTX980Ti GPU, while the GPT-2 experiment was

performed on an Nvidia Tesla K80 GPU provided by Google Colab.

4.3.2 Results

Table 4.2 shows the best results discovered for each LSTM hyperparameter set and the GPT-

2 model. Figures 4.2 and 4.3 show the epoch-loss training processes for the LSTMs separated

for readability purposes and Figure 4.4 shows the same training process for the GPT-2

model. These generalised experiments for all data provide a tuning point for synthetic

data to be generated for each of the individuals (given the respective, personally trained
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Figure 4.3: The training processes of LSTMs with 64, 256, and 512 units in 1-3 hidden layers, separated
for readability purposes. Results are given for a benchmarking experiment on all of the dataset rather than
an individual.
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Figure 4.4: The training process of the GPT-2 model. Results are given for a benchmarking experiment
on all of the dataset rather than an individual.
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Table 4.2: Best epochs and their losses for the 12 LSTM Benchmarks and GPT-2 training process. All
models are benchmarked on the whole set of subjects for 100 epochs each, in order to search for promising
hyperparameters.

Model Best Loss Epoch

LSTM(64) 0.88 99
LSTM(64,64) 0.86 99
LSTM(64,64,64) 0.85 99
LSTM(128) 0.53 71
LSTM(128,128) 0.53 80
LSTM(128,128,128) 0.52 93
LSTM(256) 0.83 83
LSTM(256,256) 0.82 46
LSTM(256,256,256) 0.82 39
LSTM(512) 0.81 33
LSTM(512,512) 0.81 31
LSTM(512,512,512) 0.82 25
GPT-2 0.92 94

models). LSTMs with 128 hidden units far outperformed the other models, which were also

sometimes erratic in terms of their attempt at loss reduction over time. The GPT-2 model is

observed to be especially erratic, which is possibly due to its unsupervised attention-based

approach. Note that the models trained in these experiments are not taken forward, these

experiments exist simply as an exploration of topology. Given that LSTM(128, 128, 128)

was the best model when fitting to all data available, this topology is used for the later

generative experiments.

Although some training processes were not as smooth as others, manual exploration

showed that acceptable sets of data could be produced.

4.3.2.1 Transfer Learning for Data-scarce Speaker Recognition

4.3.2.2 Flickr8k Experiments

Table 4.3 shows the results for each subject, both with and without exposure to synthetic

data. Per-run, the LSTM achieved better results over the GPT-2 in 14 instances, whereas

the GPT-2 achieved better results over the LSTM in 13 instances. Of the five runs that

scored lower than no synthetic data exposure, two were LSTM and three were GPT-2.

Otherwise, 51 of the 56 experiments all outperformed the original model without synthetic

data exposure and every single subject experienced their best classification result in all

cases when the model had been exposed to synthetic data. The best score on a per-subject

basis was achieved by exposing the network to data produced by the LSTM three times
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Table 4.3: Results of the Flickr8K experiments for all subjects. Best models for each Transfer Learning
experiment are bold, and the best overall result per-subject is also underlined. Red font denotes a synthetic
data-exposed model that scored lower than the classical learning approach.

LSTM GPT-2
Subject

Synth.
Data Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

0 93.57 0.94 0.93 0.93 93.57 0.94 0.93 0.93
2500 99.5 ∼1 ∼1 ∼1 97.32 0.97 0.97 0.97
5000 97.37 0.97 0.97 0.97 97.77 0.98 0.98 0.98
7500 99.33 0.99 0.99 0.99 99.2 0.99 0.99 0.99

1

10000 99.1 0.99 0.99 0.99 99.3 0.99 0.99 0.99

0 95.13 0.95 0.95 0.95 95.13 0.95 0.95 0.95
2500 99.6 ∼1 ∼1 ∼1 99.5 ∼1 ∼1 ∼1
5000 99.5 ∼1 ∼1 ∼1 99.41 0.99 0.99 0.99
7500 99.7 ∼1 ∼1 ∼1 99.7 ∼1 ∼1 ∼1

2

10000 99.42 0.99 0.99 0.99 99.38 0.99 0.99 0.99

0 96.58 0.97 0.97 0.97 96.58 0.97 0.97 0.97
2500 99.2 0.99 0.99 0.99 98.41 0.98 0.98 0.98
5000 98.4 0.98 0.98 0.98 99 0.99 0.99 0.99
7500 99.07 0.99 0.99 0.99 98.84 0.99 0.99 0.99

3

10000 98.44 0.98 0.98 0.98 99.47 0.99 0.99 0.99

0 98.5 0.99 0.99 0.99 98.5 0.99 0.99 0.99
2500 97.86 0.98 0.98 0.98 99.42 0.99 0.99 0.99
5000 99.22 0.99 0.99 0.99 97.75 0.98 0.98 0.98
7500 97.6 0.98 0.98 0.98 98.15 0.98 0.98 0.98

4

10000 99.22 0.99 0.99 0.99 99.56 ∼1 ∼1 ∼1

0 96.6 0.97 0.97 0.97 96.6 0.97 0.97 0.97
2500 99.47 0.99 0.99 0.99 99.23 0.99 0.99 0.99
5000 99.4 0.99 0.99 0.99 99.83 ∼1 ∼1 ∼1
7500 99.2 0.99 0.99 0.99 99.85 ∼1 ∼1 ∼1

5

10000 99.67 ∼1 ∼1 ∼1 99.78 ∼1 ∼1 ∼1

0 97.3 0.97 0.97 0.97 97.3 0.97 0.97 0.97
2500 99.8 ∼1 ∼1 ∼1 99.75 ∼1 ∼1 ∼1
5000 99.75 ∼1 ∼1 ∼1 96.1 0.96 0.96 0.96
7500 97.63 0.98 0.98 0.98 99.82 ∼1 ∼1 ∼1

6

10000 99.67 ∼1 ∼1 ∼1 99.73 ∼1 ∼1 ∼1

0 90.7 0.91 0.91 0.91 90.7 0.91 0.91 0.91
2500 99.86 ∼1 ∼1 ∼1 99.78 ∼1 ∼1 ∼1
5000 99.89 ∼1 ∼1 ∼1 99.86 ∼1 ∼1 ∼1
7500 99.91 ∼1 ∼1 ∼1 99.84 ∼1 ∼1 ∼1

7

10000 99.94 ∼1 ∼1 ∼1 99.73 ∼1 ∼1 ∼1

Avg. 98.43 0.98 0.98 0.98 98.40 0.98 0.98 0.98
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and the GPT-2 five times (both including Subject 2 where both were best at 99.7%).

The maximum diversion of training accuracy to validation accuracy was ∼ 1% showing

that although high quality results were attained, overfitting was relatively low; with more

computational resources, k-fold and LOO cross-validation are suggested as future ways to

achieve more accurate measures of variance within classification.

These results show that speaker classification can be improved by exposing the network

to synthetic data produced by both supervised and attention-based models and then trans-

ferring the weights to the initial problem, which most often scores lower without synthetic

data exposure in all cases but five, although those subjects still experienced their absolute

best results through synthetic data exposure regardless.

4.3.2.3 Fluent Speech Commands Experiments

Table 4.4 shows the results for each subject similar to the previous experiment but against

the FSC dataset. In 16 of the experiments, the LSTM achieved the best score as opposed

to the GPT-2 which achieved the best score in 10 of the experiments. During one run of

the LSTM (subject 7, 2500 synthetic data), the score was lower than that of the baseline,

similar issues occurred with the GPT-2 four times with three of those for subject 7. For

the best scores overall, the LSTM achieved the best score five times and the GPT-2 the

other two. The baseline score was always outperformed by a model exposed to a number

of synthetic data. Note that for subject 7, results lower than the vanilla learning process

were higher than that of the models also being exposed to GPT-2 synthetic data. It is

likely that this is due to one of two main reasons; subject 7 produced only a small amount

of data objects in total (1952), and thus the training subset for this subject was smaller

than most others, although on the other hand this did not occur for subject 6 (1706). On

the other hand, since it did not occur in the first experiment, compatibility issues between

subject 7 and the FSC dataset may be the cause. In future planned experiments, large-scale

testing with many subjects using the knowledge gained in this work will aid in exploring

this particular issue.
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Table 4.4: Results of the FSC experiments for all subjects. Best models for each Transfer Learning
experiment are bold, and the best overall result per-subject is also underlined. Red font denotes a synthetic
data-exposed model that scored lower than the classical learning approach.

LSTM GPT-2
Subject

Synth.
Data Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

0 96.7 0.97 0.97 0.97 96.7 0.97 0.97 0.97
2500 97.5 0.98 0.98 0.98 91.11 0.91 0.91 0.91
5000 97 0.97 0.97 0.97 96.45 0.96 0.96 0.96
7500 97.38 0.97 0.97 0.97 98.97 0.99 0.99 0.99

1

10000 97.33 0.97 0.97 0.97 99.12 0.99 0.99 0.99
0 97.12 0.97 0.97 0.97 97.12 0.97 0.97 0.97
2500 98.98 0.99 0.99 0.99 99.02 0.99 0.99 0.99
5000 99.37 0.99 0.99 0.99 99 0.99 0.99 0.99
7500 99.36 0.99 0.99 0.99 99.3 0.99 0.99 0.99

2

10000 99.49 0.99 0.99 0.99 99.39 0.99 0.99 0.99
0 93.3 0.93 0.93 0.93 93.3 0.93 0.93 0.93
2500 97.44 0.97 0.97 0.97 91.38 0.91 0.91 0.91
5000 98.61 0.99 0.99 0.99 99.23 0.99 0.99 0.99
7500 99.15 0.99 0.99 0.99 99.31 0.99 0.99 0.99

3

10000 97.99 0.98 0.98 0.98 98.59 0.99 0.99 0.99
0 96.78 0.97 0.97 0.97 96.78 0.97 0.97 0.97
2500 99.22 0.99 0.99 0.99 99.31 0.99 0.99 0.99
5000 99.87 ∼1 ∼1 ∼1 99.66 ∼1 ∼1 ∼1
7500 99.86 ∼1 ∼1 ∼1 98.9 0.99 0.99 0.99

4

10000 99.87 ∼1 ∼1 ∼1 99.03 0.99 0.99 0.99
0 97.3 0.97 0.97 0.97 97.3 0.97 0.97 0.97
2500 99.72 ∼1 ∼1 ∼1 99.5 ∼1 ∼1 ∼1
5000 99.94 ∼1 ∼1 ∼1 99.7 ∼1 ∼1 ∼1
7500 99.89 ∼1 ∼1 ∼1 99.91 ∼1 ∼1 ∼1

5

10000 99.96 ∼1 ∼1 ∼1 98.84 0.99 0.99 0.99
0 94.4 0.94 0.94 0.94 94.4 0.94 0.94 0.94
2500 99.81 ∼1 ∼1 ∼1 99.71 ∼1 ∼1 ∼1
5000 99.88 ∼1 ∼1 ∼1 99.6 ∼1 ∼1 ∼1
7500 99.66 ∼1 ∼1 ∼1 99.07 ∼1 ∼1 ∼1

6

10000 99.64 ∼1 ∼1 ∼1 98.99 0.99 0.99 0.99
0 97.6 0.98 0.98 0.98 97.6 0.98 0.98 0.98
2500 96.89 0.97 0.97 0.97 97.62 0.98 0.98 0.98
5000 99.72 ∼1 ∼1 ∼1 95.2 0.95 0.95 0.95
7500 99.81 ∼1 ∼1 ∼1 93.37 0.93 0.93 0.93

7

10000 99.76 ∼1 ∼1 ∼1 93.37 0.93 0.93 0.93

Avg. 98.47 0.98 0.98 0.98 97.60 0.98 0.98 0.98
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Table 4.5: Comparison of the best models found in this work and other classical methods of speaker
recognition (sorted by accuracy) for the Flickr8K experiment.

Subject Model Acc. F-1 Prec. Rec.

1

DNN (LSTM TL 2500) 99.5 ∼1 ∼1 ∼1
DNN (GPT-2 TL 5000) 97.77 0.98 0.98 0.98
SMO 97.71 0.98 0.95 0.95
Random Forest 97.48 0.97 0.97 0.97
Logistic Regression 97.47 0.97 0.97 0.97
Bayesian Network 82.3 0.87 0.96 0.82
Naive Bayes 78.96 0.84 0.953 0.77

2

DNN (LSTM TL 7500) 99.7 ∼1 ∼1 ∼1
DNN (GPT-2 TL 7500) 99.7 ∼1 ∼1 ∼1
SMO 98.94 0.99 0.99 0.99
Logistic Regression 98.33 0.98 0.98 0.98
Random Forest 98.28 0.98 0.98 0.98
Bayesian Network 84.9 0.9 0.97 0.85
Naive Bayes 76.58 0.85 0.97 0.77

3

DNN (GPT-2 TL 10000) 99.47 0.99 0.99 0.99
DNN (LSTM TL 2500) 99.2 0.99 0.99 0.99
SMO 99.15 0.99 0.99 0.98
Logistic Regression 98.85 0.99 0.99 0.98
Random Forest 98.79 0.99 0.99 0.98
Bayesian Network 91.49 0.94 0.98 0.92
Naive Bayes 74.37 0.83 0.96 0.74

4

DNN (GPT-2 TL 10000) 99.56 ∼1 ∼1 ∼1
DNN (LSTM TL 5000) 99.22 0.99 0.99 0.99
Logistic Regression 98.66 0.99 0.98 0.98
SMO 98.66 0.99 0.98 0.98
Random Forest 98 0.98 0.98 0.98
Bayesian Network 95.53 0.96 0.98 0.96
Naive Bayes 88.74 0.92 0.97 0.89

5

DNN (GPT-2 TL 10000) 99.85 ∼1 ∼1 ∼1
DNN (LSTM TL 10000) 99.67 ∼1 ∼1 ∼1
Logistic Regression 98.86 0.99 0.99 0.99
Random Forest 98.7 0.99 0.99 0.99
SMO 98.6 0.99 0.99 0.99
Naive Bayes 90.55 0.94 0.98 0.9
Bayesian Network 88.95 0.93 0.98 0.89

6

DNN (GPT-2 TL 7500) 99.82 ∼1 ∼1 ∼1
DNN (LSTM TL 2500) 99.8 ∼1 ∼1 ∼1
Logistic Regression 99.1 0.99 0.99 0.99
Random Forest 98.9 0.99 0.99 0.99
SMO 98.86 0.99 0.99 0.99
Naive Bayes 90.52 0.94 0.98 0.9
Bayesian Network 89.27 0.93 0.98 0.89

7

DNN (LSTM TL 10000) 99.91 ∼1 ∼1 ∼1
DNN (GPT-2 TL 5000) 99.86 ∼1 ∼1 ∼1
SMO 99.4 0.99 0.99 0.99
Logistic Regression 99.13 0.99 0.99 0.99
Random Forest 99 0.99 0.99 0.99
Bayesian Network 88.67 0.93 0.98 0.89
Naive Bayes 86.9 0.91 0.98 0.87
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Table 4.6: Average performance of the chosen models for each of the 7 subjects for the Flickr8K experiment.

Model Avg acc F-1 Prec. Rec.

DNN (LSTM TL) 99.57 ∼1 ∼1 ∼1
DNN (GPT-2 TL) 99.43 ∼1 ∼1 ∼1
SMO 98.76 0.99 0.98 0.98
Logistic Regression 98.63 0.99 0.98 0.98
Random Forest 98.45 0.98 0.98 0.98
Bayesian Network 88.73 0.92 0.98 0.89
Naive Bayes 83.80 0.89 0.97 0.83

4.3.2.4 Comparison to other methods of speaker recognition

4.3.2.5 Statistical Models with the Flickr8k Dataset

Table 4.5 shows a comparison of the models proposed in this study to well-known state-of-

the-art methods of speaker recognition: Sequential Minimal Optimisation (SMO), Logistic

Regression, Bayesian Networks, and Naive Bayes. It can be observed that the DNN fine

tuned from synthetic data generated by both the LSTM and GPT-2 achieve higher scores

than other methods, although in some cases the results are close. Finally, Table 4.6 shows

the average scores for the chosen models for each of the seven subjects.

4.3.2.6 Statistical Models with the Fluent Speech Commands Dataset

Table 4.7 shows a comparison of the results found for each subject alongside state of the

art statistical models. Interestingly, this was more competitive than the Flickr8k exper-

iment. For example, the second best model for subject 1 was Logistic Regression which

outperformed the DNN transfer learning from 2500 synthetic data objects generated by an

LSTM. For subject 7, the GPT-2 synthetic data-trained DNN was outperformed by three

models (Random Forest, SMO, Logistic Regression). Although this may have been the case,

the best model for each subject remained a DNN that had been pretrained on synthetic

data generated by either the LSTM or GPT-2 model. Average overall performances for all

approaches can be found in Table 4.8.
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Table 4.7: Comparison of the best models found in this work and other classical methods of speaker
recognition (sorted by accuracy) for the FSC experiment.

Subject Model Acc. F-1 Prec. Rec.

1

DNN (GPT-2 TL 10000) 99.12 0.99 0.99 0.99
Logistic Regression 99.11 0.91 0.91 0.91
DNN (LSTM TL 2500) 97.5 0.98 0.98 0.98
Random Forest 97.34 0.97 0.97 0.97
SMO 92.3 0.92 0.92 0.92
Bayesian Network 82.98 0.83 0.84 0.83
Naive Bayes 76.48 0.76 0.78 0.77

2

DNN (LSTM TL 10000) 99.49 0.99 0.99 0.99
DNN (GPT-2 TL 10000) 99.39 0.99 0.99 0.99
Random Forest 99.16 0.99 0.99 0.99
Logistic Regression 94.03 0.94 0.94 0.94
SMO 93.92 0.94 0.94 0.94
Bayesian Network 82.17 0.82 0.83 0.82
Naive Bayes 74.12 0.74 0.75 0.74

3

DNN (GPT-2 TL 7500) 99.31 0.99 0.99 0.99
DNN (LSTM TL 7500) 99.15 0.99 0.99 0.99
Random Forest 98.76 0.99 0.99 0.99
SMO 93.36 0.93 0.94 0.93
Logistic Regression 92.59 0.93 0.93 0.93
Bayesian Network 80.38 0.8 0.81 0.8
Naive Bayes 69.2 0.69 0.7 0.69

4

DNN (LSTM TL 5000) 99.87 ∼1 ∼1 ∼1
DNN (GPT-2 TL 2500) 99.31 0.99 0.99 0.99
Random Forest 99.31 0.99 0.99 0.99
SMO 97.92 0.98 0.98 0.98
Logistic Regression 97.81 0.98 0.98 0.98
Bayesian Network 80.63 0.87 0.98 0.81
Naive Bayes 72.84 0.823 0.97 0.73

5

DNN (LSTM TL 10000) 99.96 ∼1 ∼1 ∼1
DNN (GPT-2 TL 7500) 99.91 ∼1 ∼1 ∼1
Random Forest 99 0.99 0.99 0.99
Logistic Regression 99 0.99 0.99 0.99
SMO 98.91 0.99 0.99 0.99
Bayesian Network 88.98 0.93 0.98 0.89
Naive Bayes 82.49 0.89 0.98 0.83

6

DNN (LSTM TL 5000) 99.88 ∼1 ∼1 ∼1
DNN (GPT-2 TL 2500) 99.71 ∼1 ∼1 ∼1
Random Forest 99.14 0.99 0.99 0.99
Logistic Regression 98.99 0.99 0.99 0.99
SMO 98.97 0.99 0.99 0.99
Bayesian Network 89 0.93 0.96 0.89
Naive Bayes 83.12 0.9 0.98 0.83

7

DNN (LSTM TL 7500) 99.81 ∼1 ∼1 ∼1
Random Forest 99 0.99 0.99 0.99
SMO 98.33 0.98 0.98 0.98
Logistic Regression 98.11 0.98 0.98 0.98
DNN (GPT-2 TL 2500) 97.61 0.98 0.98 0.98
Bayesian Network 91.1 0.94 0.98 0.91
Naive Bayes 83.63 0.9 0.99 0.83
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Table 4.8: Average performance of the chosen models for each of the 7 subjects for the FSC experiment.

Model Acc F-1 Prec. Rec.

DNN (LSTM TL) 99.38 0.99 0.99 0.99
DNN (GPT-2 TL) 95.23 0.97 0.98 0.95
Random Forest 98.10 0.98 0.98 0.98
Logistic Regression 97.09 0.96 0.96 0.96
SMO 97.50 0.97 0.98 0.97
Bayesian Network 85.03 0.87 0.91 0.85
Naive Bayes 77.41 0.81 0.88 0.77

4.4 Multi-objective Evolutionary Phonetic Speech Recogni-

tion

Recent advances in the availability of computational resources allow for more sophisticated

approaches to speech recognition than ever before. This study considers Artificial Neural

Network and Hidden Markov Model methods of classification for Human Speech Recognition

through Diphthong Vowel sounds in the English Phonetic Alphabet rather than the classical

approach of the classification of whole words and phrases, with a specific focus on both single

and multi-objective evolutionary optimisation of bioinspired classification methods.

Our modern life is influenced by technological innovations such as Intelligent Personal

Assistants (IPAs). An Intelligent Personal Assistant is an intelligent software agent [308],

combining voice recognition, natural language processing, machine learning, and web se-

mantics, that has been designed with the goal to assist people with basic tasks based on

user commands by either text or voices. IPAs can be found in gadgets such as smartphones,

tablets, smart watches, and smart speakers. They can, for example, check weather fore-

casts, remotely switch electrical devices on and off, answer questions, play music, place

online shopping orders, provide real-time information, just to name a few tasks. Experts

say that by 2021 there will be almost as many IPAs on the planet as people [309], and

more sectors of the economy such as from healthcare to private automotive industries will

find use for those technologies. Although the most common application of IPAs has been

filtering information from the internet, health, and educational applications can also be

found in contemporary literature. Verlic, et al. [310] presented iAPERAS, an expert sys-

tem designed to aid in the lifestyles of non-professional athletes based on scientific research

findings. Usually, non-professional athletes rely on online information about training meth-

ods and nutritional recommendation and iAPERAS represented a more reliable alternative.
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Virtual digital assistants are becoming increasingly accessible and available to the general

public such as Google Home, Amazon Echo/Alexa, and Apple HomePod [311]. If the home

assistant is asked to perform a task, for example, setting an alarm for the next morning,

the natural language signal produced by a microphone is converted into data through sta-

tistical extraction [312], and following this, classification is performed (that is, what did

the user say? ). Finally, the answer is produced from a pre-defined database. More com-

binations for query within the database will improve the voice assistant system but this

comes at a computational cost, due to the requirement of a more extensive search. Home

assistants are employed in different situations such as helping elderly people, people with

special needs [313], and improving educational processes. Furthermore, in rural areas in

which access is limited by distance, isolation and lack of transportation, the usage of home

assistants can provide medical evaluation and intervention, and enhance quality of life [314].

Computer-mediated support interventions for people with special needs have been proved

to provide socio-emotional support for those with needs [313], so the home assistants may

also help promote this inclusion.

There are many language-dependent key issues in speech recognition despite the benefits

of its usage. Speech recognition is a pattern recognition task in which a signal, or temporal

statistics of the signal, are classified as a sequence of sounds, words, phrases, or sentences. In

some phonetic languages, such as those found across some of Europe (for example, Spanish

or Italian), speech-to-text is a relatively easy task since written sounds and spoken sounds

often correspond in a one-to-one relationship. In the majority of languages, and in the case

of this work, English, the conversion of speech to text is a much more complicated procedure

due to the differing nature of the written text to how it is spoken, something which in many

cases is situationally dependent.

This section proposes an approach to speech recognition via the phonemic structure of

the morphemes to be recognised, rather than classical word and phrase recognition tech-

niques, which could lead to a speech recognition system that requires no retraining when new

words are added to the dictionary. Additionally, the multi-objective scalarisation approach

allows for the definition of a goal-based approach to the system, through the definition of

scores given to the accuracy and resource usage metrics; to give an example of this, an IPA

with cloud access to a powerful distributed computing framework could focus on a model

which maximises accuracy due to abundance of technical resources, whereas a robot with
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Table 4.9: Gender, age, and accent locale of each of the test subjects.

Gender Age Accent Locale

M 22 West Midlands, UK
F 19 West Midlands, UK
F 32 London, UK
M 24 Mexico City, MX
F 58 Mexico City, MX
M 23 Chihuahua, MX

access to only a CPU may find more success in maximising accuracy whilst minimising

resource usage concurrently.

The main contributions of this work are as follows:

• The generation of a large, publicly-available diphthong vowel dataset sourced from

subjects who are both native and non-native English speakers (United Kingdom and

Mexico)2.

• A benchmark of the most common model used for contemporary voice recognition,

the Hidden Markov Model, when trained on a spoken set of phonemes.

• The search method for an optimal Artificial Neural Network topology for phoneme

classification through an single-objective evolutionary hyperheuristic approach (DEvo).

• Extension of the DEvo algorithm towards scalarisation for multi-objective optimisa-

tion.

• A detailed comparison of models in terms of both their classification ability and com-

putational resources required, both of which are considered important for real-time

training.

• The final comparison of the produced models which puts forward the DEvo approach

as the most accurate method of classifying spoken phonemes making up the English

language.
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Figure 4.5: Description of the training and prediction process applied in this study. Initial training happens
to the left of the trained model where phonemes are used as data objects for learning and validated through
10-fold cross-validation; prediction of unknown phonemes from sound data occurs to the right of the model.

4.4.1 Method

4.4.1.1 Data Collection and Attribute Generation

For recording an audio dataset, subjects were all asked to pronounce the sound as if they

were speaking English although not all of the subjects were native English speakers. All of

the seven diphthong vowel sounds were recorded ten times each by the six subjects as can be

seen in Table 4.9. The three subjects from the United Kingdom are native English speakers,

whereas the Mexican subjects were native Spanish speakers but had a fluent proficiency in

English. The resultant dataset of 420 individual sound clips were processed in order to

remove silence and then produce an MFCC dataset by a sliding a window of length 200ms.

Ultimately, this produced a large dataset of 32,398 data objects for classification.

4.4.1.2 Machine Learning

The training and prediction process applied in this study can be summarised in Figure 4.5.

Input parameters are considered to be the set of recorded phonemes to train the selected

model. Data is converted to a relational time-series for HMM, whereas data is randomised

for the MLP. A dataset is then generated from the phonemes recorded via statistical ex-

traction by way of their Mel-frequency Cepstral Coefficients, which are then normalised.

Machine learning models are trained and validated using 10-fold cross validation, and mea-

sured by their overall accuracy. The solution MLPs are given a standard 500 epochs of

training time, learning rate of 0.3, and a momentum of 0.2 which were chosen manually

based on initial exploration. Future work outlines the further optimisation of these param-

eters. The chosen approach for the optimisation of ANN topology is the DEvo approach

2https://www.kaggle.com/birdy654/speech-recognition-dataset-england-and-mexico
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given previously in Section 3.8, due to its observed effectiveness with flat datasets as well

as temporal attributes extracted from wave-like data. Evolutionary algorithms were run

for 10 generations with a population of 5 (which increased by one per generation until 10),

and experiments were repeated and recorded three times. For the multi-objective approach,

experiments were repeated five times for each set of hyperparameters, thus giving a total

of 15 experiments (providing distributions for non-parametric testing). In the second set of

experiments, three simulations of the same hyperparameters are run in which both accuracy

and time are considered for a multi-objective problem. Scalarisation is introduced in order

to explore multiple methods of fitness calculation:

maxF (s) = λ1
A(s)

100
− λ2

T (s)

x
,

T =

⎧⎪⎨⎪⎩
x, if T > x

T, otherwise

,
(4.3)

where the Function F of topology s is scored for its accuracy A(s) on a scale of 0.0...1.0,

and for its time usage T (s) on a scale of 0...x, where x is a modified and values of time usage

larger than x are kept at x. The selection of weight hyperparameters, λ1 and λ2 (negatively

weighted) provide a data-dependent scalarisation problem. Weights are introduced since

the two metrics are vastly unequal in scale, classification accuracy is measured on a scale of

0.0−100.0 while resource usage has no bounds and is often very large. A preliminary random

search is executed prior to the selection of normalisation to choose a reasonable candidate

for parameter x. The proposed approach is compared to a classical Hidden Markov Model.

The HMMs are searched manually from 25 to 175 hidden units, at a step of 25. The upper

limit of 175 is introduced as the next step, 200, failed due to the length of the data being

considered. The best model is then used as a baseline comparison in both classification

ability and resource usage. In terms of hardware, the models are trained on a GTX980Ti

Graphics Processing Unit, with the software executing on a Windows 10 system isolated

from any network. The Operating System is installed as fresh on a formatted drive with

no unimportant background processes allowed, in order to prevent any interference of the

measuring of the time taken to train.
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Figure 4.6: Benchmarking of HMM hidden units.

4.4.2 Results

4.4.2.1 HMM Topology Selection

For choosing the best HMM topology, an approach of manual exploration was applied. Hid-

den Markov Models comprised of a topology of 25 to 175 hidden units were tested, at a step

of 25, and were used to attempt to classify the whole dataset. Figure 4.6 shows the accuracy

of the phoneme classification for each HMM tested. Results showed the HMM having 150

hidden units provided the best accuracy result (86.23%) for phoneme classification on this

dataset. This model was then used as a baseline for comparison to the proposed approach.

200 Hidden Units extended beyond the majority of data series and thus the model could

not be trained without error, therefore, 175 was the upper limit for benchmarking.

4.4.2.2 Single Objective Optimisation of Accuracy

When performing an evolutionary search of the Neural Network topology, the decision

variables were the number of hidden layers ([1, 5]) and number of neurons in each hidden

layer ([1, 100]). In the single-objective optimisation, the accuracy was the function to be

maximised. Table 4.10 shows the best accuracy of the strongest neural net solution at each

generation of the evolutionary search. Due to the complexity of the search in comparison to

the resources available, a relatively limited search was performed but with success. The best

results for each search are shown in 4.10. Their differing areas of the search space suggest
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that an optimal solution is being converged upon rather than local minima. With more

resources available, a more thorough search should be performed in an attempt to derive

an even more effective ANN topology than the three layer network suggested. It is possible

to see that an MLP with hyper-heuristically optimised topology has a high classification

ability (88.84%) when it comes to the MFCC time windows of audio data in terms of spoken

phonemes by both native and non-native English speakers when compared to a classical

HMM (86.23%). The advantage of the optimised deep network over the HMM is greater

than 2% in terms of simply accuracy alone. If efficiency in terms of time is also of concern,

the computational resources required by each of the models for training can be observed in

Figure 4.8. The time spent in 10-fold Cross validation was measured for each final ANN

topology, for each simulation run for the evolutionary approach, and for the HMM. The

best model found was S4 but it had the highest training time of 248.76. It can be observed

that single layer models were competitive but took far fewer computational resources to

train; Solution S1 was the weakest suggestion by the evolutionary approach, and yet still

outperformed the best HMM by 1.27% in terms of accuracy while training in less time,

a successful reduction of 4.09 seconds compared to the Hidden Markov Model. Although

this relatively short decrease in time is observed, an IoT device such as an autonomous

robot with access to only a CPU rather than a GPU would experience a far bigger resource

advantage. Note that when the number of layers increases from one to three, the accuracy

increases from 88.3% to 88.84% and time spent also increases from 180.34 seconds to 232.9

seconds. Also, comparing the obtained ANN with only one layers, layer size seems more

important than depth. One important question that arises is the advantage of deep networks

for the phoneme recognition problem using this dataset and thus, exploration of only one

hidden layer of size n neurons was performed through the subsequent three simulations.

Detailed results from this simulation (S4) are shown in Figure 4.7 where a single layer of

57 neurons gave the best result of 90.77% at a cost of 248.76 seconds in training time, by

far the most computationally complex model produced.
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Figure 4.7: Single-objective optimisation of single hidden layer neural networks. The dashed line denotes
the HMM.

4.4.2.3 Multi-Objective Optimisation of Accuracy and Resource Usage

In this section, the aforementioned multi-objective algorithm is explored in three contexts.

In two, the weights are biased towards each of the objective variables; λ1 = 0.1, λ1 = 0.9

and vice versa, respectively. A third simulation is also executed, with equally weighted

fitness scores, λ1 = 0.5, λ1 = 0.5.

Due to the consideration of the optimisation of resource usage, the search space in these

experiments is expanded; the maximum number of layers allowed are set to 5, and the

maximum number of neurons allowed are set to an increased cap of 2,048. This is due to

the simulations having the goal of reduced time and thus relatively simpler solutions are to

be expected more often than in single-objective optimisation.

The most complex model of the maximum parameters is benchmarked at five hidden

layers of 2,048 neurons each. This simulation required 656.27s of computational resources

and was introduced as the cap for time in the fitness function in equation 4.3. Therefore,

Table 4.11: Final results for simulations S4-S6 observed in figure 4.7

Solution Hidden Layers (Neurons) Accuracy (%)

S4 1 (57) 90.77 ±1.7
S5 1 (50) 90.09 ±2.8
S6 1 (51) 90.46 ±2.3
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Figure 4.8: A comparison of model training time for produced models post-search. S1-S3 are from Table
4.10 and S4-S6 are from Table 4.11.

Table 4.12: Comparison of the results from the final parameters selected by the multi-objective simulations.
Note: best/worst accuracy are not necessarily of the same solutions as best/worst time and thus are not
comparable.

Scalars Accuracy (%) Time (S)

λ1 λ2 Mean Best Worst Mean Best Worst
0.1 0.9 49.75 ±2.3 82.2 ±1.75 16.33 ±3.2 99.33 73.1 62.51
0.5 0.5 85.15 ±1.6 86.73±1.6 83.67±1.6 69.75 66.85 73.03
0.9 0.1 86.7 ±1.3 87.94±1.4 85.25±1.6 80.66 69.07 91.32

the fitness of a T greater than 656.27 is simply λ2, Equation 4.3 becomes:

maxF (s) = λ1
A

100
− λ2

T

656.27
,

T =

⎧⎪⎨⎪⎩
656.27, if T > 656.27

T, otherwise

(4.4)

The final results produced can be observed in Table 4.12. Even with the lowest weighting

towards resource usage, the time to train was consistently below that of the Hidden Markov

Model. In the initial two multi-objective simulations, patterns are as expected; minute

differences seemingly contribute towards higher accuracy and lower complexity.In the third

multi-objective simulation (λ1 = 0.1 and λ2 = 0.9) although, an interesting pattern occurs;

the weighting towards lower resource usage did not completely perform as would logically
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Figure 4.9: Evolution of accuracy for multi-objective algorithms. A value of 16.33 is omitted for purposes
of readability.
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Figure 4.10: Evolution of resource usage for multi-objective algorithms. The dashed line denotes the
HMM.
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Figure 4.11: Final results presented by the multi-objective searches.

be expected. It must be noted that due to the heavy weighting towards the minimisation of

training time, accuracy suffered heavily, as expected, going so far as to most often produce

results that were far below an acceptable classification ability - even though this was the

case, the mean training time of these simulations were actually higher than those observed

when λ1 = 0.5 and λ2 = 0.5. Interestingly, two of the simulations had a similar spike in

resource usage between generations 4 and 8, stabilising to a lower count within a generation

of one another. In addition, the 0.5, 0.5 simulation experienced a single rising spike at

generation 2, which quickly stabilised towards a lower measure soon afterwards. Figure

4.11 shows a Pareto frontier for the solutions, showing that the red (0.5, 0.5) experience

stability as well as strong results for maximising classification accuracy while minimising

the training time required.

The fittest result from the λ1 = 0.9, λ2 = 0.1 simulations was a two-hidden layer neural

network of 471, 1951 neurons which achieved 87.93% accuracy after resource usage of 78.68

seconds. The fittest result from the λ1 = 0.5, λ2 = 0.5 simulations was a two-hidden layer

network topology of 218, 1928 neurons, achieving an 85.57% classification accuracy within

70.05 seconds of training. Finally, the fittest result from the λ1 = 0.1, λ2 = 0.9 simulations

were two hidden layers of 765, 31 neurons, which achieved an extremely low 16.33% classifi-

cation accuracy within 63.35 seconds. As previously described, the chosen solutions depend

on hardware capabilities of the host; discarding λ1 = 0.1, λ2 = 0.9 due to weaker results, it

is recommended that the weaker yet less complex networks (λ1 = 0.9, λ2 = 0.1) are used for
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Table 4.13: Results of the Nemenyi Test for the three sets of accuracy results achieved.

0 1 2 3 4

0 -1 0.819 0.9 0.9 0.9
1 0.819 -1 0.9 0.9 0.9
2 0.9 0.9 -1 0.9 0.9
3 0.9 0.9 0.9 -1 0.9
4 0.9 0.9 0.9 0.9 -1

machines with no cloud access or distributed computing, such as an autonomous robot with

a CPU [315, 316] (since a CPU cannot distribute learning as these experiments did). The

more complex networks that achieve higher accuracy at the cost of higher complexity could

sensibly be used by a learning machine with access to distributed computing hardware such

as a GPU [317].

Upon performing the Friedman Test [318] with an alpha level of 5%, the test statistic

for accuracy was 8.4 with a p-value of 0.015, showing a statistical difference between the

distributions of results. The results of the Nemenyi Post-hoc test [319] can be observed in

Table 4.13.

This section compares the suggested approach to the state-of-the-art in a related dataset.

Unfortunately, no competitive datasets for phoneme classification from MFCC data exist

in the field. Due to this, a subset of data extracted from the TIMIT Acoustic-Phonetic

Continuous Speech Corpus [320] is chosen, which can be found in [321]. The dataset provides

a 5-class problem of spoken phonetic sounds from 50 male speakers. For each phoneme, the

log-periodogram is calculated at length 256, resulting in a numeric representation of the

sound (similar to MFCC).

Table 4.14 shows the proposed approach is competitive with the state of the art when

performed on the TIMIT subset. This search presented a deep neural network of 580,

36, and 910 hidden neurons which scored 92.85% classification accuracy over 10-fold cross-

validation. It is worth noting that the related studies performed a data split approach, and

as such, that the proposed approach is less prone to overfitting. The average ROC area of

this classifier was 0.99 and the F-measure was around 0.93.
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Table 4.14: Comparison of accuracy and standard deviation for the classification of the TIMIT Subset
Dataset.

Study Method Accuracy (%) Std. Dev.

Cao and Fan [322] KIRF 93.1 0.9
Ours DEvo MLP 92.85 1.3
Cao and Fan [322] NPCD/MPLSR 92.8 1.7
Cao and Fan [322] NPCD/PCA 92.1 1.2
Cao and Fan [322] MPLSR 91.1 1.7
Cao and Fan [322] PDA/Ridge 91.1 1.6
Li and Ghosal [323] UMP 89.25 N/A
Li and Ghosal [323] MLO 85.25 N/A
Li and Ghosal [323] QDA 83.75 N/A
Ager et al. [324] GMM 81.5 N/A
Li and Yu [325] FSDA 81.5 N/A
Li and Yu [325] FSVM 78 N/A

4.5 Accent Classification of Human Speech

Following on from Section 4.4, this work then explores the possibility of autonomous accent

recognition from the original dataset collected.

Accent classification provides a biometric path to high resolution speech recognition.

This preliminary study explores various methods of human accent recognition through clas-

sification of locales. Classical, ensemble, timeseries and deep learning techniques are all

explored and compared. A set of diphthong vowel sounds are recorded from participants

from the United Kingdom and Mexico, and then formed into a large static dataset of

statistical descriptions by way of their Mel-frequency Cepstral Coefficients (MFCC) at a

sample window length of 0.02 seconds. Using both flat and timeseries data, various machine

learning models are trained and compared to the scientific standard Hidden Markov Model

(HMM).

As was noted in Section 4.4, speech recognition in the home is quickly becoming a more

viable and affordable technology through systems such as Apple Siri, Amazon Alexa, and

Google Home. Despite the growing abilities and availability of Smart Homes and their

respective devices, there are several issues hampering their usage in terms of the level of

scientific state-of-the-art. Specifically, non-native English speakers often encounter issues

when attempting to converse with automated assistants [326, 327, 328], and thus measures

are required to be able to correctly recognise the accent or locale of a speaker, which can

then be acted on accordingly. In this work, the original dataset of spoken sounds from

the English phonetic dictionary are grouped based on the locale of the speaker. Speakers
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Figure 4.12: Information Gain of each MFCC log attribute in the dataset.

are both native (West Midlands, UK; London, UK) and non-native (Mexico City, MX;

Chihuahua, MX) English speakers producing a four-class problem. Various single, ensemble

and deep learning models are trained and compared in terms of their classification ability

for accent recognition. A flat dataset of 26 200ms Mel-frequency Cepstral Coefficients form

data objects for classification, except for a timeseries of the aforementioned datapoints that

are generated for Hidden Markov Model training and prediction.

The main contributions of this extension are as follows:

• A benchmark of the most common model used for contemporary voice recognition,

the Hidden Markov Model, when training on a uniform spoken audio dataset and

producing predictions of speaker accent/locale.

• Single and ensemble models are presented for the classification of the accent of two

Mexican locales and two British locales.

• The final comparison of the eleven machine learning models in which a vote of average

probabilities of Random Forest and LSTM is suggested as the best model with a high

classification accuracy of 94.74%.

4.5.1 Method

As previously described, the voice recognition dataset contained seven individual phonetic

sounds spoken ten times each by subjects from the United Kingdom and Mexico. Those
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Table 4.15: Single classifier results for accent classification (sorted lowest to highest).

Model NB BN J48 LR RT SVM HMM RF KNN(10) DENSE NN LSTM

Acc (%) 58.29 70.62 85.2 85.8 85.94 86.19 89.65 89.72 90.76 91.55 92.01
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Figure 4.13: Exploration of HMM hidden unit selection.

from the UK were native English speakers whereas those from Mexico were native Spanish

and fluent English speakers who were asked to pronounce the phonetic sounds as if they

were speaking English. 26 logs of MFCC data were extracted from each dataset at a sliding

time window of 200ms, each data object were the 26 MFCC features mapped to the accent

of the speaker. Accents were sourced from the West Midlands and London in the UK

whereas accents from Mexico were sourced from Mexico City and Chihuahua. Weights of

all four classes were balanced (since the clips differed in length) to simulate an equally

distributed dataset. The dataset was formatted into a timeseries (relational attributes) for

HMM training and prediction. The Information Gain classification ability of each of the

individual attributes are shown in in Figure 4.12.

A neural network of two hidden layers (256, 128) was trained using the Keras library[329]

on an NVidia GTX680Ti for 100 epochs per fold, with a batch size of 100. This is labelled

as “DENSE NN” in the results.
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Figure 4.14: Exploration of LSTM hidden unit selection.

Table 4.16: Democratic voting processes for ensemble classification.

Democracy
Model Accuracy

RF, LSTM KNN, LSTM KNN, RF

Average Prob. 94.74 94.63 92.62
Product of Prob. 94.73 94.62 92.62

4.5.2 Results

4.5.2.1 Manual Tuning

Hidden Markov Units as well as hidden LSTM units were linearly explored. Preliminary

experimentation found that a single layer of LSTM units persistently outperformed deeper

networks, and thus only one layer was linearly searched. The chosen amount of HMM

hidden units was selected as 200 since it had the superior classification accuracy of 89.65%

as observed in Figs 4.13 and 4.14 respectively. The chosen number of hidden units for

the LSTM were selected as 75 since it too had the most superior classification accuracy of

92.01%.

4.5.2.2 Overall Results

Table 4.15 displays the overall classification accuracy of the selected single models when

predicting the locale of the speaker at each 200ms audio interval. The best single model

was an LSTM with 92.01% accuracy, closely followed by the extremely complex dense neural

network for benchmark purposes, and then the K-Nearest Neighbours, and Hidden Markov
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Models.

The best ensemble, and the overall best, was a vote of average probability between the

Random Forest and LSTM, achieving 94.74% accuracy, this can be seen in the exploration

of democratic voting processes with the best models, in Table 4.16.

4.6 Phonetic Speech Synthesis

In Sections 4.4 and 4.5, it was discovered that phonemes hold speech recognition ability as

well as classification of the accent spoken, respectively. Following these findings, the work

in this section explores a comparison of raw text and phoneme representation for speech

synthesis. The models themselves were not released given that they could be used to imitate

the author with potential consequences due to the produced speech sounding relatively

realistic, but a demonstration is available at http://jordanjamesbird.com/tacotron/

tacotrontest.html. Artificial Intelligence researchers often seek the goal of intelligent

human imitation. As was discussed within the introduction; in 1950 Alan Turing proposed

the Turing Test, or as he famously called it, the ‘Imitation Game’ [4]. In the seven decades

since, Computer Scientists continue to seek improved methods of true imitation of the multi-

faceted human nature. In this section, the experiments explore a new method towards the

imitation of human speech in terms of audio. In this competition of two differing data

representation methods, rather than a human judge, statistical analyses work to distinguish

the differences between real and artificial voices. The ultimate goal of such thinking is to

discover new methods of artificial speech synthesis in order to fool a judge when discerning

between it and a real human being, and thus, explore new strategies of winning an Imitation

Game.

Speech Synthesis is a rapidly growing field of artificial data generation not only for

its usefulness in modern society, but for its forefront in computational complexity. The

algorithm resource usage for training and synthesising human-like speech is taxing for even

the most powerful hardware available to the consumer today. When hyper-realistic human

speech synthesis technologies are reached, the implications when current security standards

are considered are somewhat grave and dangerous. In a social age where careers and lives

could be dramatically changed, or even ruined by public perception, the ability to synthesise

realistic speech could carry world-altering consequences. This report serves not only as an
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exploration into the effects of phonetic awareness in speech synthesis as an original scientific

contribution, but also as a warning and suggestion of a path of thought for the information

security community. To give a far less grave example of the implications of speaker-imitative

speech synthesis, there are many examples of diseases or accidents that result in a person

losing their voice. For example, Motor Neurone Disease causes this through weakness in the

tongue, lips, and vocal chords [330, 331]. In this study, only 1.6 hours of data are used for fine

tune transfer learning to derive realistic speech synthesis, and of course, would likely show

better performance with more data. Should enough data be collected before a person loses

their ability to speak, a Text-To-Speech (TTS) System developed following the pipeline in

this study could potentially offer a second chance by artificially augmenting a digital voice

which closely sounded to the voice that was unfortunately lost. This section presents a

preliminary state-of-the-art contribution in the field of speech synthesis for human-machine

interaction through imitation. In this section, two differing methods are presented for data

preprocessing before a deep neural network in the form of Tacotron learns to synthesise

speech from the data. Firstly, the standard English text format is benchmarked, and then

compared to a method of representation via the International Phonetic Alphabet (IPA)

in order to explore the effects on the overall data. State-of-the-art implementations of

Speech Synthesis often base learning on datasets of raw text via speech dictation, this study

presents preliminary explorations into the new suggested paradigm of phonetic translation

of the original English text, rather than raw text.

4.6.1 Method

4.6.1.1 Data Collection and Preprocessing

An original dataset of 950 megabytes (1.6 hours, 902 .wav clips) of audio was collected

and preprocessed for the following experiments. This subsection describes the processes

involved. Due to security concerns, the dataset is not available and is thus described in

greater detail within this section. The ‘Harvard Sentences’3 were suggested within the IEEE

Recommended Practices for Speech Quality Measurements in 1969 [332]. The set of 720

sentences and their important phonetic structures are derived from the IEEE Recommended

Practices and are often used as a measurement of quality for Voice over Internet Protocol

3https://www.cs.columbia.edu/ hgs/audio/harvard.html
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(VoIP) services [333, 334]. All 720 sentences are recorded by the subject, as well as tense

or subject alternatives where available ie. sentence 9 “Four hours of steady work faced us”

was also recorded as “We were faced with four hours of steady work”. The aforementioned

IEEE best practices were based on ranges of phonetic pangrams. A sentence or phrase that

contains all of the letters of the alphabet is known as a pangram. For example, “The quick

brown fox jumps over the lazy dog” contains all of the English alphabetical characters at

least once. A phonetic pangram, on the other hand, is a sentence or phrase which contains

examples of all of the phonetic sounds of the language. For example, the phrase “that quick

beige fox jumped in the air over each thin dog. Look out, I shout, for he’s foiled you again,

creating chaos” required the pronunciation of every one of the 45 phonetic sounds that

make up British English. 100 British-English phonetic pangrams are recorded. The final

step of data collection was performed to extend the approximately 500MB of data closer

to the 1GB mark, random articles are chosen from Wikipedia, and random sentences from

said articles are recorded. Ultimately, all of the data was finally transcribed into either raw

English text or a phonetic structure (where lingual sounds are replaced by IPA symbols),

to provide a text input for every audio data. From this the two datasets are produced, in

order to compare the two preprocessing approaches. All of the training occurs via the 2816

CUDA cores of an Nvidia GTX 980Ti GPU, with the exception of the Griffin-Lim algorithm

which is executed on an AMD FX8320 8-Core Central Processing Unit at a clock speed of

3.5GHz.

4.6.1.2 Fine Tune Training and Statistical Validation

The initial network is trained on the LJ Speech Dataset4 for 700,000 iterations. The dataset

contains 13,100 clips of a speaker reading from non-fiction books along with a transcription.

The longest clip is 10.1 seconds, the shortest is 1.1 seconds, and the average duration of

the clips are 6.5 seconds. The speech is made up of 13,821 unique words at which there are

an average of 17 per clip. Following this, the two datasets of English language and English

phonetics are introduced and fine tune training occurs for two different models for 100,000

iterations each. Thus, in total, 800,000 learning iterations have been performed where the

final 12.5% of the learning has been on the two differing representations of English.

For comparison of the two models, statistical fingerprint similarity is performed. This

4https://keithito.com/LJ-Speech-Dataset/
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Table 4.17: Ten strings for benchmark testing which are comprised of all phonetic English sounds.

ID String

1 “Hello, how are you?”
2 “John bought three apples with his own money.”
3 “Working at a University is an enlightening experience.”
4 “My favourite colour is beige, what’s yours?”
5 “The population of Birmingham is over a million people.”
6 “Dinosaurs first appeared during the Triassic period.”
7 “The sea shore is a relaxing place to spend One’s time.”
8 “The waters of the Loch impressed the French Queen”
9 “Arthur noticed the bright blue hue of the sky.”
10 “Thank you for listening!”

Figure 4.15: Spectrogram of “Working at a University is an Enlightening Experience” when spoken by a
human being.

is due to model outputs being of an opinionated quality, ie. how realistic the speech sounds

from a human point of view. This is not presented in the benchmarking of models, and

thus comparing the loss of the two model training processes would yield no opiniative

measurement. To perform this, natural human speech is recorded by the subject that the

model is trained to imitate. The two models both also produce these phrases, and the

fingerprint similarity of the models and the real human are compared. A higher similarity

suggests a better ability of imitation, and thus better quality speech produced by the model.

A set of 10 strings are presented in Table 4.17. Overall, this data includes all sounds within

the English language at least once. This validation data is recorded by the human subject

to be imitated, as well as the speech synthesis models. Each of the phrases are recorded

three times by the subject, and comparisons are given between the model and each of the

three tests, comprising thirty tests per model.

Figures 4.15, 4.16 and 4.17 show examples of spectrographic representations when both

a human being and a Tacotron network speak the sentence “Working at a University is
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Figure 4.16: Spectrogram of “Working at a University is an Enlightening Experience” when predicted by
the English written text Tacotron network.

Figure 4.17: Spectrogram of “Working at a University is an Enlightening Experience” when predicted by
the phonetically aware Tacotron network.
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Table 4.18: Thirty similarity tests performed on the raw English speech synthesis model with averages of
sentences and overall average scores. Failures are denoted by F. Overall average is given as the average of
experiments 1, 2 and 3.

Phrase
Experiment

1 2 3 Avg.

1 F F F 0 (3F)
2 22.22 22.22 66.67 37.02
3 56.6 56.7 75.4 62.9
4 0 51.28 0 17.09 (2F)
5 6 2 4 4
6 20 41.67 62.5 41.39
7 55.56 18.52 22.43 32.17
8 24.39 24.39 48.78 32.55
9 22.72 22.72 22.72 22.72
10 F 71.4 F 23.8 (2F)
Avg. 20.74 31.09 30.25 27.36

an Enlightening Experience”. Though the frequencies are slightly mismatched in that the

network seems to be predicting higher frequencies than those in human speech, the peaks

within the data discerning individually-spoken words are closely matched by the Tacotron

prediction. Although the two predictions look similar, the fingerprint similarity of the

phonetically aware prediction is far closer to a human than otherwise, this is due to the

fingerprint consideration of the most important features rather than simply the distance

between two matrices of values. Additionally, the timings of values are not considered, the

algorithm produces a best alignment of the pair of waves before analysing their similarity.

For example, the largest peak is the first syllable of the word “University”, and thus those

two peaks would be compared, rather than differing data if alignment had not been per-

formed. Therefore, silence before and after a spoken phrase is not considered, rather, only

the phrase from its initial inception to the final termination.

4.6.2 Results

Within this section, the preliminary results are presented. Firstly, the acoustic fingerprint

similarities of the models and human voices are compared. Finally, the average results for

the two models are compared with one another.

Table 4.18 shows the results for the tests on the raw English speech dataset. Of the thirty

experiments, 23% (7/30) were failures and had no semblance of similarity to natural speech.

One test, phrase 1, was a total failure with all three experiments scoring zero. Overall, the

generated data resembled the human data by an average of 21.07%. Table 4.19 shows the
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Table 4.19: Thirty similarity tests performed on the phonetic English speech synthesis model with averages
of sentences and overall average scores. Failures are denoted by F. Overall average is given as the average
of experiments 1, 2 and 3.

Phrase
Experiment

1 2 3 Avg.

1 58.8 0 0 19.6 (2F)
2 85.7 28.57 57.14 57.14
3 93.7 78.12 46.88 72.9
4 51.28 25.64 25.64 34.19
5 38.46 38.46 39 38.64
6 35.71 35.71 17.8 29.74
7 34.5 34 17.2 28.57
8 43.4 21.7 43.48 36.19
9 20.4 20 26.4 22.27
10 0 41.6 0 13.89 (2F)
Avg. 46.19 32.38 27.35 35.31

results for the tests on the phonetic English speech dataset. Of the thirty experiments,

13% (4/30) were failures and had no semblance of similarity to natural speech, this was

slightly lower than the raw English dataset. This said, there did not occur an experiment

with complete catastrophic failure in which all three tests scored zero. On an average of

the three experiments, the human data and the generated data were 35.31% similar. Figure

4.18 shows the average differences between the acoustic fingerprints of human and artificial

data in each of the ten sets of three experiments. In comparing head-to-head results, the

phonetics dataset produced experiments that on average outperformed the written language

dataset in six out of ten cases. This said, experiment nine was extremely close with the two

models achieving 22.27% and 22.72% with a negligible difference of only 0.45%. In the cases

where the language set outperformed the phonetics set, the difference between the two were

much smaller than the vice versa outcomes. In terms of preliminary results, the phonetic

representation of language has gained the best results in human speech imitation when

comparing the acoustic fingerprint metrics. Often, inconsistencies occur in the similarity

of human and robotics speech (in both approaches); this is likely due to either a lack of

enough data within the training and validation sets, or an issue of there not being enough

training time to form a stable model that produces a consistent output - or, of course, a

combination of the two. Further exploration via future experimentation could pinpoint the

cause of inconsistency.
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Figure 4.18: Comparison of the two approaches for the average of ten Sets of three experiments.

4.7 High Resolution Sentiment Analysis by Ensemble Clas-

sification

The applications of Sentiment Analysis are increasingly growing in importance in both

the sciences and industry, for example, through human-robot interaction [335] and as a

business tool in terms of user feedback to products [336], giving more prominence to the

field of Affective Computing. Affective Computing [337] is the study of systems capable

of empathetic recognition and simulation of human affects including but not limited to

sentimental and emotional information encapsulated within human-sourced data.

In this section, various methods of Sentiment Classification are tested on top of a gen-

erated set of word-stem attributes that are selected by their ranking of information gain

correlating to their respective classes. The best model is then analysed in terms of its error

matrix to further document the classification results. The main contributions of this work

are as follows:

• Effective processing of text by word-stems and information gain based selection sug-

gests a set of 684 attributes for effective classification of high resolution sentiment.

• Single and ensemble models are presented for the classification of sentiment scores on

a scale of 1-5 as opposed to the standard three levels of classified sentiment (Positive-
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Table 4.20: Reduced dataset for sentiment analysis (1 is most negative and 5 is most positive).

Sentiment Score Instances in the Dataset

1 2960
2 2983
3 3179
4 3821
5 4283

Neutral-Negative). In this study, 1 is the most negative result, and 5 is the most

positive.

• Methods of Sentiment Classification are based entirely on text and correlative scores

rather than taking into account metadata (user past behaviour, location etc.), enabling

a more general application to other text-based domains.

4.7.1 Method

A dataset of 20,000 user reviews of London based restaurants was gathered from TripAdvi-

sor5, in which a review text was coupled with a score of 1 to 5, where 1 is the most negative

and 5 is the most positive review. All reviews were in English, and all other meta infor-

mation such as personal user information was removed, this was performed for the more

general application of the classifier to all text-based data containing opinions. All restau-

rants from the Greater London Area were chosen randomly as well as the reviews themselves

selected at random. Resampling was performed with a 0.2 weighting towards the lower re-

views due to the prominence of higher reviews, to produce a more balanced dataset. The

resulting dataset of 17,127 reviews with their respective scores can be seen in Table 4.20.

It is worth noting that even after weighted resampling, there remains a higher frequency of

positive reviews which will be factored into the analysis of results, specifically in analysis

of the classification accuracy of low review scores by way of error matrix observation. With

unprocessed text having few statistical features, feature generation was performed via a

filter of word vectors of the string data, based on the statistics of word-stem prominence.

Firstly, worthless stopwords were removed from the text using the Rainbow List [338] (i.e.,

words that hold no important significance), and then the remaining words were reduced to

their stems using the Lovins Stemmer algorithm [339]. Stopword removal was performed

to prevent misclassification of the class based on the coincidental prominence of words with

5TripAdvisor - http://tripadvisor.co.uk
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Table 4.21: Classification accuracy of single classifier models.

Classifier Classification Accuracy

OneR 29.59%
MLP 57.91%
NB 46.28%
NBM 59.02%
RT 78.6%
J48 75.76%
SMO SVM 68.94%

Table 4.22: Classification accuracy of ensemble models.

Ensemble Classifiers Classification Accuracy

RF 100 RT 84.9%
Vote NBM, RT, MLP 80.89%
Vote RF, NBM, MLP 91.02%
AdaBoost RT 79.36%
Adaboost RF 84.93%

no real informative data, and stemming was performed to increase the frequency of terms

by removing their formatting eg. time-based suffixes and clustering them to one stem.

The process of word vectorisation with the aforementioned filtering produced 1455 nu-

merical attributes mapped to the frequency of the word stem. Further attribute selection

was required to remove attributes that had little to no influence of class, which would

reduce the computational complexity of classification. In terms of feature selection, word-

stems were judged based on their Information Gain (previously described in Chapter 3).

A cutoff point of 0.001 Information Gain was implemented which removed 771 attributes

(word-stems) that were considered to have no impact on the class. This meant that all

the remaining attributes had a measurable classification ability when it came to sentiment.

Of the highest information gain were the word-vector attributes “disappointing” (0.08279),

“worst” (0.06808), “rude” (0.0578) and “excellent” (0.05356) - which, regardless of domain,

can be observed to have high sentimental polarity. The dataset to result from this processing

was taken forward for classification experiments.

4.7.2 Results

Results of single classifiers can be seen in Table 4.21. The two best models were both

Decision Tree algorithms, with the best being Random Tree with an accuracy of 78.6%.

Results of ensemble methods and their classifiers can be seen in Table 4.22. The best model
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0.986 0.009 0.002 0.001 0.002

0.014 0.968 0.008 0.006 0.003

0.017 0.022 0.904 0.04 0.017

0.004 0.007 0.036 0.811 0.143

0.004 0.003 0.015 0.067 0.911

Figure 4.19: Error matrix for the classifications given by the best model, a Vote(RF, NBM, MLP)

was a Vote of Average Probability by the three previously trained models of Random Forest,

Naive Bayes Multinomial, and a Multilayer Perceptron.

4.7.2.1 Analysis

ZeroRules benchmarking resulted in an accuracy of 24.88%, all models far outperformed the

benchmark except for OneR which had an only slightly better accuracy of 29.59% (+4.71),

this is due to One Rule Classification having diminishing returns on higher dimensionality

datasets, the one in this particular experiment taking place in 684-dimension space. All

ensemble approaches to classification outperformed the single classifiers. Interestingly, an

‘ensemble of ensemble’ approach produced better results when it came to AdaBoost of a

Random Forest (+0.03%), and most importantly factoring in the Random Forest within

a vote model along with Naive Bayes Multinomial and a Multilayer Perceptron, which

produced a classification accuracy of 91.02%. In terms of the error matrix (Figure 4.19),

it is observed that the best model put forward misclassified predictions with a gradient

around the real class, due to the crossover of sentiment-based terms. Most prominently,

classes 4 and 5 were the most difficult to predict, and further data analysis would give

concrete examples of lingual similarity between reviews based on these two scores.

In terms of contribution, a comparison of the results of this study and the state of the
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Table 4.23: Indirect comparison of this study and state-of-the-art sentiment classification work (different
datasets).

Study Resolution Accuracy

This study (Ensemble - Vote) 5 91.02%
Read [127] 3 84.6%
Bollegala, et al. [130] 2 83.63%
Denecke [131] 2 82%
This study (Single - RT) 5 78.6%
Kouloumpis, et al. [128] 3 75%

art can be seen in Table 4.23. With a higher resolution than the 3 (Pos-Neu-Neg) or 2

(Pos-Neg) observed in many works, a high accuracy of 91.02 was still achieved through the

method of ensemble.

4.8 Summary and Conclusion

This chapter has explored the possibility of non-verbal abilities for the HRI framework.

The speech augmentation studies in Section 4.3 led to strong success for all 7 subjects in

improving the classification accuracy of speaker recognition via generating augmented data

by LSTM and OpenAI GPT-2 models. In the future, this hypothesis will be strengthened

by running the experiments for a large range of subjects and considering the emerging pat-

terns. The experiments in this study provided a strong argument for the use of deep neural

network transfer learning from MFCCs synthesised by both LSTM and GPT-2 models for

the problem of speaker recognition. One of the limitations of this study was hardware avail-

ability since it was focused on those available to consumers today. The Flickr8k dataset was

thus limited to 8,000 data objects and new datasets created, preventing a direct comparison

with other speaker recognition works, which often operate on larger data and with hardware

beyond consumer availability. It is worth noting that the complex nature of training LSTM

and GPT-2 models to generate MFCCs is beyond that of the task of speaker recognition

itself, and as such, devices with access to TPU or CUDA-based hardware must perform

the task in the background over time. The tasks in question took several minutes with

the two GPUs used in this work for both LSTM and GPT-2 and as such are not instan-

taneous. As previously mentioned, although it was observed that overfitting did not occur

too strongly, it would be useful in the future to perform similar experiments with either

K-fold or leave-one-out Cross Validation in order to achieve even more accurate represen-
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tations of the classification metrics. In terms of future applications, the then-optimised

model would be then implemented within real robots and smart home assistants through

compatible software. As found during the literature review, there has been a pattern of

GPT-2 being notably powerful in terms of dataset augmentation with a focus on written

language, given that GPT-2’s initial weights are trained via a large and complex text corpus

(Open WebText). Note that in Section 4.3, GPT-2 was often outperformed in some way

by the LSTM; it may be that these two points go hand in hand, and that GPT models

may provide a better solution in the future if and when trained on a comparatively large

dataset of natural speech in the form of MFCCs or other types of audio feature extraction

techniques.

To summarise Section 4.3, seven subjects were benchmarked with both a tuned LSTM

and OpenAI’s GPT-2 model. GPT-2 generated new data with hyperparameters tempera-

ture of 1, and selecting the topk of 1, in future other hyperparameters should be benchmarked

to better tune the GPT-2’s generative process for speech. Trials for model training were re-

peated multiple times with differing random seeds, but minuscule differences (< 10−4) were

noted in the metrics. Literature review saw that some research found promise in i-vector

representation [64, 65], if future exploration finds success in either temporal or attention-

based models to generate i-vectors then it would be promising for non-fixed length utterance

classification. Especially since it was found during data collection that the speed subjects

utter phrases differs greatly based on their accent. With larger scale testing based on the

knowledge from this part of the thesis, other speaker identification metrics[340] such as

Equal Error Rating based on a threshold of false accept rate equalling the false reject rate,

and various Detection Cost Functions etc. should be considered in order to further discern

the effects of introducing synthetic speech during model training. Additionally, in future,

as was seen with related works, a GAN could also be implemented to provide a third possi-

ble solution to the problem of data scarcity in speaker recognition as well as other related

speech recognition classification problems - bias is an open issue that has been noted for

data augmentation with GANs [341], and as such, this issue must be studied if a GAN

is implemented for problems of this nature. In terms of real world usage on devices, the

current computational costs of the models prior to further tuning and optimisation mean

that the training process could likely only be performed on newer models of Smartphones

with access to newer hardware. Execution and inference of the model incurs a relatively
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lower computational cost, and so a larger range of devices could perform speaker recognition

if the model is trained via a cloud service or external machine and then deployed to the

device, additionally if execution is also performed on a cloud service then any device with

internet access could then run inference via the models presented in this work. One of the

main drawbacks of the suggested approach is the computational complexity of transformer

and temporal models, and as such smaller model architectures could be explored in the

future via either training from scratch or through similar to that performed by Michel et

al. [342]. It was demonstrated in Section 4.3 that data augmentation can aid in improving

speaker recognition for scarce datasets. Following the 14 successful runs including LSTMs

and GPT-2s, the overall process followed by the experiments could be scripted and thus

completely automated, allowing for the benchmarking of many more subjects to give a

much more generalised set of results, i.e., more representative of the general population.

Additionally, samples spoken from many languages could also be considered to provide lan-

guage generalisation, rather than just the English language spoken by multiple international

dialects in this study. Should generalisation be possible, future models may require only

a small amount of fine-tuning to produce synthetic speech for a given person rather than

training from scratch as was performed here. More generally, the transfer learning methods

presented here have the potential to improve additional areas of machine learning that have

not yet been attempted.

This study in Section 4.4 showed that hyper-heuristically optimising the topology of

an Artificial Neural Network led to a high classification ability of the MFCC data from

spoken phonetic sounds by both native and non-native English speakers. In addition to

this, in comparison to the Hidden Markov Model, models that required less computational

resources and yet still outperformed HMM were derived through a multi-objective algo-

rithm. Further work should explore a more fine-tuned minimisation of resources (λ2) since

a value of 0.9 seemed to be too extreme and produced weak results, and thus further pairs

weights should be explored towards this end. Following the success of both the single and

multi-objective approaches to hyperheuristic optimisation of phoneme classification, further

MLP parameters could be considered as those to be optimised, such as activation, training

time, momentum, and learning rate etc. In addition, further network architectures could be

considered for optimisation in order to explore the abilities and effects, such as temporally-

aware recurrence through RNN and Bi-directional LSTM which have shown promise in
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recent advances in speech recognition [47, 257] and CNN with Bi-directional LSTM [343].

Improvements on these studies in the future could also consider the heuristic optimisation of

HMM hidden units, in a one-dimensional problem space, since the experiments in Section 4.4

focused on manual optimisation which was not exhaustive. Since the evolutionary method

was successful, in the future, other heuristic searches could be explored and compared, such

as Particle Swarm Optimisation or Ant Colony Optimisation, for example. Additionally,

the dataset could be expanded beyond the limited 6-subject data gathered to explore the

possibility of generalisation to a large dataset of phonetic utterances. In terms of the ideal

models produced, and with the post-construction of complete words, phrases, and sentences,

a speech recognition system could further be produced without the need for retraining in

future. That is, should English lexicon evolve, as it does often (in 2018, Merriam-Webster

added 800 new words to their dictionary [344]), speech recognition models would not re-

quire retraining; simply, these words would be constructed from already learnt phonetic

sounds. Thus, speech recognition systems would then only be hampered by the evolution

of phonetic structure in language; as was previously described, the evolution of phonetic

language occurs over great lengths of time, compared to which Machine Learning paradigms

become obsolete and replaced far quicker. To summarise Section 4.4, several evolutionar-

ily optimised Neural Network topologies of varying classification ability and computational

complexity were presented via both single and multi-objective approaches. The Hidden

Markov model was fine-tuned by a linear search, producing seven different models, all of

varying classification ability, with the strongest for classification being 150 hidden units.

All suggested ANN topologies outperformed the Hidden Markov Model in the phoneme

recognition problem within single-objective optimisation, whereas multi-objective optimi-

sation presented many solutions that required fewer resources to train, and in many cases,

lead to better classification ability. For real-time techniques such as lifelong learning of

an autonomous machine, some of the less complex multi-objective solutions are suggested

in situations such as the availability of only a single CPU, whereas, in a situation where

resources are not at a premium, single-objective solutions are suggested.

Following on from the findings in Section 4.4, Section 4.5 explored the effectiveness of

various machine learning techniques in terms of classifying the accent of the subject based

on recorded audio data. The diphthong phoneme sounds were succesfully classified into four

different accents from the UK and Mexico with an accuracy of 94.74% when a manually
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tuned LSTM of 200 units and a Random Forest are ensembled through a vote of average

probability. Leave-one-out (LOO) cross-validation has been observed to be superior to test-

set and k-fold cross-validation techniques but requires far more processing time[224], this

study therefore would have been around 3000 times more complex due to there being 30,000

classifiable data objects. It is likely that more accurate results would be attained through

this approach but with the resources available, this was not possible. Furthermore, more

intense searching of the problem spaces of HMM and LSTM hidden unit selection should

be performed since relatively large differences were observed in minute topological changes.

Most importantly, a larger range of accent classes should be considered to more generalise

to populations.

The experiments in Section 4.6 then proposed the possibility of enriching speech data

with phonetic awareness to improve speech synthesis from a given text. Although re-

sults suggested the phoneme aware approaches were preliminarily more promising than raw

English notation, the phonetic awareness approach was faced with a disadvantage in the

fine-tuning process. The pre-existing model was trained on raw English language in a US

dialect and fine tuned for raw English language in British dialect as well as English pho-

netics in British dialect. Thus, the phonetic model would require more training in order

to overcome the disadvantaged starting point it faced. For a more succinct comparison,

future models should be trained from an initial random distribution of network weights

for their respective datasets. In addition to this, it must be pointed out that the input

data from the English written text dataset had 26 unique alphabetic values whereas this

is extended in the second dataset since there are 44 unique phonemes that make up the

spoken English language in a British dialect. Statistical validation through the comparison

of acoustic fingerprints are considered, with similarities to real speech compared to the same

input sentence or phrase. Though an acoustic fingerprint does give a concrete comparison

between pairs of output data, human opinion is still not properly reflected. For this, as

the Tacotron paper did, Mean Opinion Score (MOS) should also be performed. MOS is

given as MOS =
∑︁N

n=1 Rn

N , where R are rating scores given by a subject group of N par-

ticipants. Thus, this is simply the average rating given by the audience. MOS requires a

large audience to give their opinions, denoted by a nominal score, to rate the networks in

terms of human hearing. Such MOS would allow for a second metric, real opinion, to also

provide a score. A multi-objective problem is then presented through the maximisation of
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acoustic fingerprint similarities as well as the opinion of the audience. Additionally, other

spectrogram prediction paradigms such as Tacotron2 and DCTTS could be studied in terms

of the effects of English vs. Phonetic English. As mentioned in the previous subsection,

further work should also be performed for pinpointing the cause of inconsistent output from

the models. Explorations into the effects of there being a larger dataset as well as more

training time for the model could discover the cause of inconsistency and help to produce

a stronger training paradigm for speech synthesis.

To summarise Section 4.6, 100,000 extra iterations of training on top of a publicly

available dataset, then fine-tuned on a human dataset of only 1.6 hours worth of speech

translated to phonetic structure, produced a network with the ability to reproduce new

speech at 35.31% accuracy. It is not out of question whatsoever for postprocessing to

enable the data to be completely realistic, which could then be ‘leaked’ to the media, the

law, or otherwise. Such findings present a dangerous situation, in which a person’s speech

could be imitated to create the illusion of evidence that they have said such things that in

reality they have not. Although this section serves primarily as a method of maximising

artificial imitative abilities, it should also serve as a grave warning in order to minimise the

potential implications on an individual’s life. Future information security research should,

and arguably must, discover competing methods of detection of spoof speech in order to

prevent such cases. On the other hand, realistic speech synthesis could be used in real time

for more positive means, such as an augmented voice for those suffering illness that could

result in the loss of the ability of speech.

The experiments in Section 4.7 explored methods for high resolution sentiment analysis.

This section presented results from models for classification of multi-level sentiment at five

distinct levels after performing effective feature extraction based on lingual methods. The

best single classifier model was a Random Tree with a classification accuracy of 78.6%, which

was outperformed by all applied ensemble methods and their models. The best overall

model was an ensemble of Random Forest, Naive Bayes Multinomial, and a Multilayer

Perceptron through a Vote of Average Probability, with a classification accuracy of 91.02%.

These findings suggest future work is required in the development of text-based ensemble

classifiers as well as their single classification parameters, due to the trained models in

these experiments successfully being improved when part of an ensemble. The effectiveness

of Neural Networks for sentiment classification is well documented [345], implying that
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further work with more computational resources than were available for these experiment

is needed due to the low results achieved. Successful experiments were performed purely

on a user’s message and no other meta-information (e.g., previous reviews, personal user

information) which not only shows effectiveness in the application in the original domain of

user review, but also a general application to other text-based domains such as chatbots and

keyword-based opinion mining. The applications of the classifiers put forward in Section 4.7

are useful in the aforementioned domains, although future work could encompass a larger

range of sources to smooth out some of the remaining domain-specific information.

To finally conclude this chapter, several experiments have led to multiple modules that

are to be unified in the final framework. This chapter explored several technologies that

were verbal in nature, which included recognition of the speaker and how synthetic data

can improve this process, phoneme recognition in audio (by ability and resource usage) for

both phoneme and accent classification of speakers, synthesis of speech and how phonetic

representation seemingly improved speech synthesis in preliminary tests with an example

of the audio files produced by the two models, and finally a multi-level sentiment analysis

model that considered extra sentiments outside of the classical neg-neu-pos approaches. The

studies therefore complement one another and lead to the verbal abilities of the HRI frame-

work; accents can be recognised, phonemes can be classified from speech, and also, data

augmentation can be performed to autonomously improve the recognition of the speaker

from their voice. Following all of this, sentiment analysis can then be performed on the

recognised speech. Given these abilities, the HRI framework can then interact with human

beings via spoken communication, which then leads to further interaction and task delib-

eration. Towards the end of this thesis, in Chapter 7, further integration can be observed

based on the findings in this Chapter, where commands are further deliberated upon and

tasks are performed.

The ability to understand speech aids the robot during the input stage. Audio can

be considered, and a textual representation of utterances can be generated. Following

this operation, the framework will now have text as input, which can be considered by

the subsequent modules and deliberated upon. With the particular implementation of

phoneme-aware speech recognition, as the experiments in this chapter found to be possible,

this may lead to a speech recognition module which would not need to be retrained when

new words or phrases are added. Since all words are constructed from a set of phonemes, a
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dictionary is required in place of spending computational resources to retrain the module.

The classification of sentiment also provides useful information as input to the framework,

since both text and sentiment could, in some cases, better describe the inputs. Towards the

interpersonal abilities of the HRI framework, the recognition of speakers would allow for

outputs to be engineered and personalised specifically to an individual. In another case of

interpersonal ability but regarding output, being able to respond in a realistic human voice

aids in improving the HRI experience.
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Chapter 5

Non-Verbal Human-Robot

Interaction

5.1 Introduction

Non-verbal interaction is the ability to convey social interaction without the voice (or in

addition to the voice). For example, if a person asks another a question, and they respond

with a thumbs up, this non-verbal interaction can be inferred as an affirmative answer or a

positive sentiment depending on what the question was. In this interaction, the thumbs up

gesture has been ’classified’ by the other person via their vision, but the activity that led to

this gesture was nervous and then electromyographic in nature and could thus be recognised

by these activities. To give another example, the answer to ”are you concentrating?” (in the

casual sense) could be responded to and inferred with speech. This could also be interpreted

by the electrical activities within the lobe and classified in this way, effectively removing

the need for the subject to have to convey their state. These examples given are from some

of the experiments explored in this chapter.

Similarly to the previous chapter, this chapter presents several experiments for non-

verbal communication with machines which have individual scientific contributions pre-

sented where appropriate within the section introductions. Given the nature of the ex-

periments sharing a background of biological signal processing, an overall background sec-

tion is given initially. This section explores classification of electroencephalographic and

electromyographic signals as well as transfer learning between them by models since bio-
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electrical natures are shared to an extent. In addition, the classification of signals is also

notably improved when the training data is augmented with synthetic signals produced by

transformer-based models (similarly to the speaker recognition experiments in the previous

chapter).

5.2 Biosignal Processing

5.2.1 Electroencephalography

Brain-Computer Interfaces (BCI) are devices that allow for direct communication between

the brain and a computer [346]. By skipping the usual brain outputs of nerves and mus-

cles, BCIs allow for the interpretation of brain activity directly as a form of control. For

example, enabling a cursor on a screen to be moved by thought alone [347], rather than

through muscular movements of the arm and hand to interact with a physical mouse. The

majority of BCIs record and process eelctroencephalographic data from the brain. Elec-

troencephalography (EEG) is the measurement and recording of electrical activity produced

by the brain [348]. The collection of EEG data is carried out through the use of applied

electrodes, which reads the minute electrophysiological currents produced by the brain due

to nervous oscillation [349, 350]. The most invasive form of EEG is subdural [351] in

which electrodes are placed directly on the brain itself. Far less invasive techniques require

electrodes to be placed around the cranium, of which the disadvantage is that signals are

being read through the thick bone of the skull [352]. Raw electrical data is measured in

microvolts (uV ), which over time produce wave patterns. Several electroencephalographic

methods compose the state-of-the-art in the field. These include the P300 [353] which is a

wave thought to be involved in decision making, elicited by interrupting a repeated stimulus

with an infrequent event - P300 has been used to allow for brain-machine control of digital

text [354]. Similarly, Contingent Negative Variation (CNV) [355], an event-related potential

component related to the reaction between warning and action signals, has been shown to

predict potential movement intention [356].

Machine learning techniques with inputs being that of statistical features of the wave

are commonly used to classify mental states [133, 132] for brain-machine interaction, where

states are used as dimensions of user input. Probabilistic methods such as Deep Belief Net-

works, Support Vector Machines, and various types of neural networks have been found to
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Figure 5.1: The Muse EEG headband.

experience varying levels of success in emotional state classification, particularly in binary

classification [135].

The Muse EEG headband as seen in Figure 5.1, used in several of the EEG works in this

thesis, is comprised of four dry electrodes. These are placed on the TP9, AF7, AF8, and

TP10 placements and can be seen in Figure 5.2. TP9 and TP10 electrodes are placed on

the temporal lobes on the left and right side of the brain, whereas AF7 and AF8 electrodes

are placed on the frontal lobe. Signal noise often occurs in EEG recordings due to the

vast strength of electromyographic (EMG) muscular signals compared to the brain. For

non-invasive EEG this presents issues, since the electrodes are placed on the cranium, and

thus a layer of muscle is present between it and the signal source [357]. Muse operates an

on-board artefact separation algorithm to remove the noise from the recorded data [358].

The muse streams over Bluetooth Low Energy (BLE) at around 220Hz, which is reduced

to 150Hz to make sure that all data collected is uniform.

Muse has been used in various Brain-computer interface projects since its introduction in

May 2014. They have been particularly effective for use in neuroscientific research projects,

since the data is of relatively high quality and yet the device is both low-cost and easy to

use since it operates dry electrodes. This was shown through an exploration of Bayesian

binary classification [359]. Sentiment analysis via brainwave patterns has been performed

in a process of regression in order to predict a user’s level of enjoyment of the performed

task [360, 361]. The works were shown to be effective for the classification of enjoyment of

a mobile phone application.

The classification of minute parts of the sleep-wake cycle are one of the many focuses of

researchers in terms of EEG data mining. Low resolution, three-state (awake, sleep, REM
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Figure 5.2: EEG sensors TP9, AF7, AF8 and TP10 of the Muse headband on the international standard
EEG placement system.

sleep) EEG data was classified with Bayesian methods to a high accuracy of 92-97% in both

humans and rats using identical models [362], both showing the ease of classification of these

states as well as the cross-domain application between human and rat brains. Random

Forest classification of an extracted set of statistical EEG attributes could classify sleeping

patterns with higher resolution than that of the previous study at around 82% accuracy[363].

It is worth noting that for a real-time averaging technique (prediction of a time series of, for

example, every 1 second), only majority classification accuracies at ¿50% would be required,

although the time series could be trusted at shorter lengths with better results from the

model. Immune Clonal Algorithm, or ICA, has been suggested as a promising method for

EEG brainwave feature extraction through the generation of mathematical temporal wave

descriptors[364]. This approach has found success in the classification of epileptic brain

activity through generated features as inputs to Naive Bayes, Support Vector Machine,

K-Nearest Neighbours and Linear Discriminant Analysis classifiers.

5.2.2 Electromyography

Electromyography (EMG) is a measure of the electrical potential difference between two

points whose origin are individual or groups of muscle fibres [365]. Similarly to EEG, the

activity of the muscle can largely be summed up by the electrical impulses produced, and

can thus form a point of control in a Muscle-Computer Interface (muCI) [366]. Similarly

to the Muse headband operated in many EEG studies, due to its consumer-friendliness
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Figure 5.3: The MYO EMG armband.

and future potential based on its low-cost yet high-performing nature, the Myo armband

is a prominent device used in muCI systems, frameworks, and applications. For example,

researchers collaborating from multiple fields found that accurate gesture classification could

lead to a new standard for New Interfaces for Musical Expression (NIME) [367].

The MYO Armband [368], as shown in Figure 5.3, is a device comprised of 8 electrodes

ergonomically designed to read electromyographic data from on and around the arm via

an embedded chip within the device. Researchers have noted the MYO’s quality as well as

its ease of availability to both researchers and consumers [369], and is thus recognised as

having great potential in EMG-signal based experiments. In this section, state-of-the-art

literature is presented within which the MYO armband has succesfully provided EMG data

for experimentation.

The Myo Armband was found to be accurate enough to control a robotic arm with 6

Degrees of Freedom (DoF) with similar speed and precision to the subject’s movements [370].

In this work, researchers found an effective method of classification through the training of

a novel Convolutional Neural Network (CNN) architecture with a mean accuracy of 97.81%.

A related study, also performing classification with a CNN, successfully classified 9 physical

movements from 9 subjects at a mean accuracy of 94.18% [371]; it must be noted that

in this work, the model was not tested for generalisation ability. This has shown to be

important in some of the studies in this thesis, since the strongest method for classification

of the dataset was ultimately weaker than another model when it came to the transfer of

ability to unseen data in Section 5.5.
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Researchers have noted that gesture classification with Myo has real-world application

and benefits [372], showing that physiotherapy patients often exhibit much higher levels of

satisfaction when interfacing via EMG and receiving digital feedback [373]. Likewise in the

medical field, Myo has been shown to be competitively effective with far more expensive

methods of non-invasive electromyography in the rehabilitation of amputation patients [374],

and following this, much work has explored the application of gesture classification for the

control of a robotic hand [375, 376]. Since the armband is worn on the lower arm, the goal

of the robotic hand is to be teleoperated by non-amputees and likewise to be operated by

amputation patients in place of the amputated hand. Work from the United States has

also shown that EMG classification is useful for exercises designed to strengthen the gleno-

humeral muscles towards rehabilitation in Baseball [377].

Recently, work in Brazilian Sign Language classification via the Myo armband found

high classification ability of results through a Support Vector Machine on a 20-class prob-

lem [378]. Researchers noted ’substantial limitations’ in the form of real-time classification

applications and generalisation, with models performing sub-par on unseen data. For ex-

ample, letters A, T, and U had almost-negligible classification abilities of 4%, 4%, and 5%

respectively. The Myo armband’s proprietary framework, through a short exercise, boasts

up to an 83% real-time classification ability. Although seemingly relatively high, this mar-

gin of error that is a statistical risk in 17% of cases prevents the Myo from being deployed

in situations where such a rate of error is unacceptable and considered critical. Although

it may be considered acceptable to possibly miscommunicate 17% of the time in sign lan-

guage dictation, this error rate would be unacceptable, for example, for the control of a

drone where a physical risk is presented. Thus, the goal of many works is to improve this

ability. In terms of real-time classification, there are limited works, and many of them

suggest a system of calibration during short exercises (similarly to the Myo framework) to

fine-tune a Machine Learning model. In [379], authors suggested a solution of a ten second

exercise (five two second activities) in order to gain 89.5% real-time classification accuracy.

This was performed through K-Nearest Neighbour (KNN) and the Dynamic Time Warping

(DTW) algorithms. EMG has also been applied to other bodily surfaces for classification,

for example, to the face to classify emotional responses based on muscular activity[380].

J. J. Bird, PhD Thesis, Aston University 2021 136



CHAPTER 5. NON-VERBAL INTERACTION

5.2.3 Feature Extraction

Biological signal data are non-linear and nonstationary in nature, and thus single values

are not indicative of class. That is, the classification is based on the temporal nature of the

wave, and not the values specifically. For example, concentrating and relaxed brainwave

patterns can be visually recognised due to the wavelengths of concentrative mental state

class data is far shorter, and yet, a value measured at any one point might be equal for

the two states (i.e., x microVolts). Additionally, for EEG, the detection of the natures that

dictate alpha, beta, theta, delta and gamma waves also require analysis over time. It is

for these reasons that temporal statistical extraction is performed. For temporal statistical

extraction, sliding time windows of total length 1s are considered for EEG and EMG data,

with an overlap of 0.5 seconds. That is, windows run from [0s− 1s), [1.5s− 2.5s), [2s− 3s),

[2.5s− 3s), continuing until the experiment ends.

The remainder of this subsection describes the different statistical features types which

are included in the initial dataset:

• A set of values of signals within a sequence of temporal windows x1, x2, x3, ...xn are

considered and the mean values are computed:

µ
1

N

i∑︂
N

xi. (5.1)

• The standard deviation of the values is recorded:

σ =

⌜⃓⃓⎷ 1

N

i∑︂
N

(xi − µ)2. (5.2)

• Asymmetry and peakedness of waves is statistically represented by the skewness and

kurtosis via the statistical moments of the third and fourth order. Skewness:

y =
µk

σk
, (5.3)

and kurtosis:

µk =
1

N

i∑︂
N

(xi − µ)k. (5.4)

are taken where k=3rd and k=4th moment about the mean.
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Algorithm 2: Algorithm to extract features from raw biological signals.
Result: Features extracted from raw data for every wt

User defined the size of the sliding window wt = 1s;
Input: raw wave data;
Initialisation of variables init = 1, wt = 0;
while getting sequence of raw data from sensor (> 1min) do

if init then
prev lag = 0;
post lag = 1;

end
init = 0;
;
for each slide window (wt − prev lag) to (wt + post lag) do

Compute mean of all wt values y1, y2, y3...yn; ȳk = 1
N

∑︁N
i=1 yki ;

;

Compute asymmetry and peakedness by 3rd and 4th order moments skewness and

kurtosis g1,k =
∑︁N

i=1(yki−ȳk)
3/N

s3
k

and g2,k =
∑︁N

i=1(yki−ȳk)
4/N

s4
k

− 3 ;

;
Compute the max and min values of each signal wt

max = max(wt) and wt
min = min(wt) ;

;
Compute sample variances K ×K matrix S of each signal

;

Compute sample covariances of all signal pairs, skℓ = 1
N−1

∑︁N
i=1 (yki − ȳk) (yℓi − ȳℓ) ;

∀ k, ℓ ∈ [1,K];
;
Compute Eigenvalues of the covariance matrix S, λ solutions to: det (S− λIK) = 0,
where IK is the K ×K identity matrix, and det(·) is the determinant of a matrix;

;
Compute the upper triangular elements of the matrix logarithm of the covariance
matrix S, where the matrix exponential for S is defined via Taylor expansion
eB = IK +

∑︁∞
n=1

Sn

n!
, then B ∈ CK×K is a matrix logarithm of S;

;
Compute magnitude of the frequency components of each signal via Fast Fourier
Transform (FFT), magFFT(wt);

;
Get the frequency values of the ten most energetic components of the FFT, for each

signal, getFFT(wt, 10);

end
wt = wt + 1s;
prev lag = 0.5s; post lag = 1.5s;
Output Features Fwt extracted within the current wt

end
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• Max value within each particular time window {max1,max2, ...,maxn}.

• Minimum value within each particular time window {min1,min2, ...,minn}.

• Derivatives of the minimum and maximum values by dividing the time window in half

and measuring the values from either half of the window.

• Performing the min and max derivatives a second time on the pre-split window, re-

sulting in the derivatives of every 0.25s time window

• For every min, max, and mean value of the four 0.25s time windows, the euclidean

distance between them is measured. For example, the maximum value of time window

one of four has its 1D Euclidean distance measured between it and the max values of

windows two, three, and four of four.

• From the 150 features generated from quarter-second min, max, and mean deriva-

tives, the last six features are ignored and thus a 12x12 (144) feature matrix can be

generated. Using the Logarithmic Covariance matrix model [381], a log-cov vector

and thus statistical features can be generated for the data as such:

lcM = U(logm(cov(M))). (5.5)

Where U returns the upper triangular features of the resultant vector and the covari-

ance matrix cov(M) is:

cov(M) = covij =
1

N
∑︁k

N (xik − µi)(xkj − µj)
. (5.6)

• For each full 1s time window, the Shannon Entropy is measured and considered as a

statistical feature:

h = −
∑︂
j

Sj × log(Sj). (5.7)

The complexity of the data is summed up as such, where h is the statistical feature

and S relates to each signal within the time window after normalisation of values.
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• For each 0.5s time window, the log-energy entropy is measured as:

loge =
∑︂
i

log(S2
i ) +

∑︂
j

log(S2
i ). (5.8)

where i is the first time window n to n+0.5 and j is the second time window n+0.5

to n+1.

• Analysis of a spectrum is performed by an algorithm to perform Fast Fourier Trans-

form (FFT)[382] of every recorded time window, derived as follows:

Xk =

N−1∑︂
n=0

St
ne

−i2πk n
N , k = 0, ..., N − 1. (5.9)

The above statistical features are used to generally represent the wave behaviour, and

then a process of feature selection or dimensionality reduction is performed to select the

most useful statistical features from the set. Additionally, Algorithm 2 shows the process

followed in terms of pseudocode.

5.3 An Evolutionary Approach to Brain-machine Interaction

Bioinspired algorithms have been extensively used as robust and efficient optimisation meth-

ods, especially concerning optimisation of Human-Robot Interaction techniques (which need

to be both accurate and executed quickly too). Despite that they have been criticised for

being computationally expensive during the model engineering stage, they have also been

proven useful to solve complex optimisation problems. With the increasing availability of

computing resources, bioinspired algorithms are growing in popularity due to their effec-

tiveness at optimising complex problem solutions. Scientific studies of natural optimisation

from many generations past, such as Darwinian evolution, are now becoming a viable inspi-

ration for solving real-world problems. This increasing resource availability is also allowing

for more complex computing in applications such as Internet of Things (IoT), Human-

Robot Interaction (HRI), and Human Computer Interaction (HCI), providing more degrees

of both control and interaction to the user. One of these degrees of control is the source of

all others, the human brain, and it can be observed using electroencephalography. At its

beginning, EEG was an invasive and uncomfortable method, but with the introduction of
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dry, commercial electrodes, EEG is now fully accessible even outside of laboratory setups.

It has been noted that a large challenge in brain-machine interaction is inferring the

attentional and emotional states from particular patterns and behaviours of electrical brain

activity. Large amounts of data are needed to be acquired from EEG, since the signals are

complex, non-linear, and non-stationary. To generate discriminative features to describe

a wave requires the statistical analysis of time window intervals. This study focuses on

bringing together previous related research and improving the state-of-the-art with a Deep

Evolutionary (DEvo) approach when optimising bioinspired classifiers. The application

of this study allows for a whole bioinspired and optimised approach for mental attention

classification, emotional state classification and to guess the number in which a subject

thinks of. These states can then be taken forward as states of control in, for example,

human-robot interaction.

In addition to the experimental results, the contributions of the work presented in this

section are:

• A pipeline for the classification of complex signals (brainwave data) through processes

of evolutionary optimisation and bioinspired classification.

• A new evolutionary approach to hyper-heuristic bioinspired classifiers to prevent con-

vergence to local minima in the EEG feature space.

• To gain close to identical accuracies, and in one case exceeding them, with resource-

intensive deep learning through the optimised processes found in nature.

5.3.1 Method

Building on top of previous works which have succeeded using bio-inspired classifiers for

prediction of biological processes, this work suggests a completely bioinspired process. It

includes biological inspiration into every step of the process rather than just the classification

stage. The system as a whole therefore has the following stages:

1. Generation of an initial dataset of biological data, EGG signals in particular (collec-

tion).

2. Selection of attributes via biologically-inspired computing (attribute selection).

3. Optimisation of a neural network via biologically-inspired computing (hyper-heuristics).
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Figure 5.4: A graphical representation of the Deep Evolutionary (DEvo) approach to complex signal
classification. An evolutionary algorithm simulation selects a set of natural features before a similar approach
is used, then this feature set becomes the input to optimise a bioinspired classifier.

4. Use of an optimised neural network for the classification of the data (classification).

The steps allow for evolutionary optimisation of data preprocessing as well as using

a similar approach for deep neural networks which also evolve. This leads to the Deep

Evolutionary, or DEvo approach. A graphical representation of the above steps can be seen

in Figure 5.4. Nature is observed to be close to optimal in both procedure and resources,

the goal of this process therefore is to best retain the high accuracy of complex models, but

to reduce the processing time required to execute them.

The rest of this section serves to give detail to the steps of the DEvo approach seen in

Figure 5.4.

5.3.1.1 Data Acquisition

As previously mentioned, this section explores three experiments dealing with the classifica-

tion of the attention, emotional state, and ‘thinking of’ state of subjects. The first dataset

(Mental State) distinguishes three different states related to how focused the subject is:

relaxed, concentrative, or neutral1. This data was recorded for three minutes, per state, per

person of the subject group. The subject group was made up of two adult males and two

adult females aged 22± 2. The second dataset (Emotional State) was based on whether a

person was feeling positive, neutral, or negative emotions2. Six minutes for each state were

recorded from two adults, 1 male, 1 female aged 21± 1 producing a total of 36 minutes of

1https://www.kaggle.com/birdy654/eeg-brainwave-dataset-mental-state
2https://www.kaggle.com/birdy654/eeg-brainwave-dataset-feeling-emotions

J. J. Bird, PhD Thesis, Aston University 2021 142



CHAPTER 5. NON-VERBAL INTERACTION

brainwave activity data. The experimental setup of the Muse headset being used to gather

data from the TP9, AF7, AF8, and TP10 extra-cranial electrodes can be seen in Figure

5.5. All subjects were in fine health, both physical and mental. Further detail on the Muse

can be found in Section 5.2.1.

The two mental state datasets are a constant work in progress in order to become

representative of the whole human population rather than those described in this section,

the data as-is provides a preliminary point of testing and a proof of concept of the DEvo

approach to bioinspired classifier optimisation, this would be an ongoing process if subject

diversity has a noticeable impact, since the global demographic often changes.

For the third experiment, the ‘MindBigData’ dataset was acquired and processed 3.

This publicly available data is a large dataset gathered during two years from one subject in

which the subject was asked to think of a digit between and including 0 to 9 for two seconds.

This gives a ten class problem. Due to the massive size of the dataset and computational

resources available, 15 experiments for each class were extracted randomly, giving a uniform

extraction of 30 seconds per digit class and therefore 300 seconds of EEG brainwave data.

It must be critically noted that a machine learning model would be classifying this single

subject’s brainwaves, and in conjecture, transfer learning is likely impossible. Future work

should concern the gathering of similar data from a range of subjects. The MindBigData

dataset used a slightly older version of the Muse headband, corresponding to two slightly

different yet still frontal lobe sensors, collecting data from the TP9, FP1, FP2, and TP10

electrode locations. Features are extracted as described at the beginning of this chapter.

The evolutionary optimisation process as detailed previously was applied when selecting

discriminative attributes from the full dataset for more optimised classification. An initial

population of 20 attribute subsets were generated and simulated for 20 generations with

tournament breeding selection [383]. Evolutionary optimisation was also applied to explore

the n-dimensional MLP topological search space, where n is the number of hidden layers,

with the goal of searching for the best accuracy (fitness metric). With the selected attributes

forming the new dataset to be used in the experiments, two models were generated; an

LSTM and an MLP.

Before finalising the LSTM model, various hyper-parameters are explored, specifically

the topology of the network. This was performed manually since evolutionary optimisation

3http://www.mindbigdata.com/opendb/
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Figure 5.5: A subject having their EEG brainwave data recorded while being exposed to a stimulus with
an emotional valence.

of LSTM topology would have been extremely computationally expensive. More than one

hidden layer often returned worse results during manual exploration and thus one hidden

layer was decided upon. LSTM units within this layer would be tested from 25 to 125 at

steps of 25 units. Using a vector of time sequence statistical data as an input in batches of

50 data points, an LSTM was trained for 50 epochs to predict the class for each number of

units on a layer, and thus a manually optimised topology was derived.

A multilayer perceptron was first fine-tuned via an evolutionary algorithm with the

number of neurons and layers as population solutions, with classification accuracy as a fit-

ness. A maximum of three hidden layers and up to 100 neurons per layer were implemented

into the simulation. Using 10-fold cross validation, the MLP had the following parameters

manually set: 500 epoch training time; Learning rate of 0.3; Momentum of 0.2.

Finally, the two models were boosted using the AdaBoost algorithm in an effort to

mitigate both the ill-effects of manually optimising the LSTM topology as well as to fine-

tune the models overall.

5.3.2 Results

5.3.2.1 Evolutionary Attribute Selection

An evolutionary search within the 2550 dimensions of the dataset was executed for 20

generations and a population of 20. For Mental State, the algorithm selected 99 attributes,

whereas for the Emotional State, the algorithm selected a much larger set of 500 attributes.
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Table 5.1: Datasets generated by evolutionary attribute selection.

Dataset Population Generations No. Chosen Attributes

Mental State 20 20 99
Emotional State 20 20 500
MindBigData 20 20 40

This suggests that emotional state has far more useful statistical attributes for classification,

whereas the mental state recognition requires around 80% fewer. The MindBigData EEG

problem set, incomparable due to the previous due to its larger range of classes, has 40

attributes selected by the algorithm. This can be seen in Table 5.1.

The evolutionary search considered the Information Gain (Kullback-Leibler Divergence)

of the attributes and thus their classification ability as a fitness metric, ie. where a higher

information gain represents a more effective and less entropic a model when such attributes

are considered as input parameters. The search selected large datasets, between sizes 40 for

the MBD dataset, to 500 selected for the Emotional State dataset. Though too numerous

to detail the whole process4, the observations were as follows:

• For the mental state dataset, 99 attributes were selected, the highest was the entropy

of the TP9 electrode within the first sliding window at an IG of 1.225. This was

followed secondly with the eigenvalue of the same electrode, showing that the TP9

placement is a good indicator for the concentration state. It must be noted that these

values may correlate with the Sternocleidomastoid Muscle’s contractional behaviours

during stress ergo, the stress encountered during concentration, or the lack thereof

during relaxation, and thus EMG behaviour may be inadvertently included also.

• Secondly, for the emotional state dataset, the most important attribute was observed

to be the mean value of the AF7 electrode in the second overlapping time window.

This gave an Information Gain of 1.06, closely followed by a measure of 1.05 for the

first covariance matrix of the first sliding window. Minimum, mean, and covariance

matrix values of the electrodes all followed with IG scores from 0.98 to 0.79 until the

standard deviation of the electrodes followed. Maximum values did not appear until

the lower half of the ranked data, in which the highest max value of the second time

window of the AF8 electrode had an IG of 0.66.

4All datasets are available freely online for full recreation of experiments
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Table 5.2: Accuracies when attempting to classify based on only one attribute of the highest Information
Gain.

Dataset MS ES MBD

Benchmark
Accuracy (%)

49.27 85.27 17.13

• Finally, for the MBD dataset, few attributes were chosen. This was not due to their

impressive ability, but due to the lack thereof when other attributes were observed.

For example, the most effective attribute was considered the covariance matrix of the

second sliding windows of the frontal lobe electrodes, FP1 and FP2, but these only

has Information Gain values of 0.128 and 0.125 each, far lower than those observed

in the other two experiments. To the lower end of the selected values, IG scores of

0.047 appear, which are considered very weak and yet still chosen by the algorithm.

The MBD dataset is thus an extremely difficult dataset to classify.

Since the algorithm showed clearly a best attribute for each, a benchmark was performed

using a simple One Rule Classifier (OneR). OneR will focus on the values of the best

attribute and attempt to separate classes by numerical rules. In Table 5.2, the observations

above are shown more concretely with statistical evidence. Classifying MindBigData based

on the 0.128 IG attribute detailed above gains only 17.13% accuracy, whereas the far higher

attributes for the other two datasets gain 49.27% and 85.27% accuracies.

The datasets generated by this algorithm are taken forward in the DEvo process, and

the original datasets are thus discarded. Further experiments are performed on this data

only.

5.3.2.2 Evolutionary Optimisation of MLP

During the algorithm’s process, an issue arose with stagnation, in which the solutions would

quickly converge to a local minima and an optimal solution was not found. On average, no

further improvement would be made after generation 2. It can be noted that the relatively

flat gradient in Figure 5.6 and Figure 5.7 suggests that the search space’s fitness matrix

possibly had a much lower standard deviation and thus the area was more difficult to

traverse due to the lack of noticeable peaks and troughs. The algorithm was altered to

prevent genetic collapse with the addition of speciation. The changes were as follows:

• A solution would belong to one of three species, A, B or C.
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Figure 5.6: Three evolutionary algorithm simulations to optimise an MLP for the Mental State dataset.

• A solution’s species label would be randomly initialised along with the population

members.

• During selection of parent1’s breeding partner, only a member of parent1’s species

could be chosen.

• If only one member of a species remains, it will not produce offspring.

• An offspring will have a small random chance to become another species (manually

tuned to 5%)

The implementation of separate species in the simulation allowed for more complex,

better solutions to be discovered. The increasing gradients as observed in Figure 5.6, Figure

5.7 and 5.8 show that constant improvement was achieved. The evolutionary optimisation

of MLP topology was set to run for a set 10 generations. This was repeated three times for

the purposes of scientific accuracy. Tables 5.3, 5.4 and 5.5 detail the the accuracy values

measured at each generation along with details of the network topology. Figs. 5.6, 5.7 and

5.8 graphically represent these experiments to detail the gradient of solution score increase.
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Figure 5.7: Three evolutionary algorithm simulations to optimise an MLP for the Emotional State dataset.
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Figure 5.8: Three evolutionary algorithm simulations to optimise an MLP for the MindBigData dataset.
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Figure 5.9: Manual tuning of LSTM topology for Mental State (MS), Emotional State (ES) and Mind-
BigData (MBD) classification.

5.3.2.3 Manual LSTM Tuning

Manual tuning was performed to explore the options for LSTM topology for both mental

state and emotional state classification. Evolutionary optimisation was not applied due to

the high resource usage of LSTM training, due to many single networks taking multiple

hours to train on the 1280 CUDA cores of an NVidia GTX 1060. Results in Table 5.6 show

that for mental state, 100 LSTM units are the most optimal, whereas 25 LSTM units were

discovered to be the most optimal for Emotional State classification and 100 LSTM units

are best for the MindBigData digit set but this result is extremely low for a uniform 10-class

problem, with very little information gain. Comparison of the LSTM units to accuracy for

both states can be seen in Figure 5.9. For each of the experiments, these arrangements of

LSTM architecture will be taken forward as the selected model.

Additionally, empirical testing found that 50 epochs for training of units seemed best

but further exploration is required to fine tune this parameter. A batch size of 50 formed

Table 5.6: Manual tuning of LSTM topology for Mental State (MS), Emotional State (ES) and EEG
MindBigData classification.

LSTM Units MS (%) ES (%) MBD (%)

25 82.47 96.86 10.22
50 83.08 96.66 9.67
75 83.04 96.48 10.64
100 83.84 95.73 10.77
125 83.68 95.87 10.36
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Figure 5.10: Graph to show the time taken to build the final models post-search.

Table 5.7: Classification accuracy on the two optimised datasets by the DEvo MLP, LSTM, and selected
boost method.

Dataset
Accuracy (%) Boosted Accuracy (%)

DEvo MLP LSTM AB(DEvo MLP) AB(LSTM)

Mental State 79.81 83.84 79.7 84.44
Emotional State 96.11 96.86 96.23 97.06
MindBigData Digits 27.07 10.77 31.35 9.94

input vectors of sequential statistical brainwave data for the LSTM. Gradient descent was

handled by the Adaptive Moment Estimation (Adam) algorithm, with a decay value of

0.9. Weights were initialised by the commonly used XAVIER algorithm. Optimisation

was performed by Stochastic Gradient Descent. Manual experiments found that a network

with a depth of 1 persistently outperformed deeper networks of two or more hidden layers

for this specific context, interestingly, this too is mirrored in the evolutionary optimisation

algorithms for the MLP which always converged to a single layer to achieve higher fitness.

5.3.2.4 Single and Boost Accuracy

Figure 5.10 shows a comparison of the approximate time taken to train the various models.

Note that 10-fold cross validation was performed to prevent overfitting and thus the actual

time taken with this in mind is around ten times more than the displayed value. Addition-
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Figure 5.11: Final results for the experiment.

ally, this time was measured when training on the 1280 CUDA cores of an NVidia GTX1060

(6GB) would take considerably longer on a CPU. Although the mental state dataset had

approximately five times the number of attributes, the time taken to learn on this dataset

was only slightly longer than the emotional state by an average of 11% (30.26s).

Since the LSTM topology was linearly tuned in a manual process whereas the MLP

was searched via an evolutionary algorithm, the processes are not scientifically comparable

since the former depends on human experience and the latter upon the resources available.

Thus, time for these processes are not given since only one is a measure of computational

resource usage, it is suggested that a future study should use the evolutionary algorithm

within the search space of LSTM topologies too, in which case they can be compared.

Although, it can be inferred from Figure 5.10 that the search for an LSTM would take

considerably longer due to the increased resources required in every experiment performed

compared to the MLP. Additionally, with this in mind, a Multi Objective Optimisation

(MOO) implementation of DEvo that considers both accuracy and resource usage as fitness

metrics could further find more optimal models in terms of both their classification ability

and optimal execution.

The overall results of the experiments can be seen firstly in Table 5.7 and as a graphical

comparison in Figure 5.11. For the two three-state datasets, the most accurate model
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was an AdaBoosted LSTM with results of 84.44% and 97.06% accuracies for the mental

state and mental emotional state datasets respectively. The single LSTM and Evolutionary

Optimised MLP models come relatively close to the best result, though take far less time

to train when the measured approximate values in Figure 5.10 are observed. On the other

hand, for the MindBigData digits dataset, the best solution by far was the Adaptive Boosted

DEvo MLP, and the same boosting method applied to the LSTM that previously improved

them, actually caused a loss in accuracy.

Manual tuning of LSTM network topology was performed due to the limited compu-

tational resources available, the success in optimisation of the MLP suggests further im-

provements could be made through an automated process of evolutionary optimisation in

terms of the LSTM topology. A further improvement to the DEvo system could be made

by exploring the possibility of optimising the LSTM structure through an evolutionary

approach.

The three experiments were performed within the limitations of the Muse headband’s

TP9, AF7, AF8, and TP10 electrodes. Higher resolution EEG setups would allow for further

exploration of the system in terms of mental data classification, e.g., for physical movement

originating from the motor cortex.

5.4 CNN Classification of EEG Signals represented in 2D

and 3D

The novelty of this study consists of the exploration of multiple new approaches of data

pre-processing of brainwave signals, wherein statistical features are extracted and then

formatted as visual images based on the order in which dimensionality reduction algorithms

select them. This data is then treated as a visual input for 2D and 3D CNNs which further

extract ‘features of features’. Statistical features derived from three electroencephalography

datasets are presented in visual space and processed in 2D and 3D space as pixels and

voxels respectively. Three datasets are benchmarked, mental attention states and emotional

valences from the four TP9, AF7, AF8 and TP10 10-20 electrodes and an eye state data

from 64 electrodes. 729 features are selected through three methods of selection in order to

form 27x27 images and 9x9x9 cubes from the same dataset. CNNs engineered for the 2D

and 3D preprocessing representations learn to convolve useful graphical features from the
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data.

Recent advances in consumer-facing technologies have enabled machines to have non-

human skills. Inputs which once mirrored one’s natural senses such as vision and sound

have been expanded beyond the natural realms. An important example of this is the grow-

ing consumerist availability of the field of electroencephalography (EEG); the detection

of thoughts, actions, and feelings from the human brain. To engineer such technologies,

researchers must consider the actual format of the data itself as input to the machine or

deep learning models, which subsequently develop the ability to distinguish between these

nominal thought patterns. Usually, this is either statistically 1-Dimensional or temporally

2-Dimensional since there is an extra consideration of time and sequence. Due to the avail-

ability of resources in the modern day, a more enabled area of research into a new formatting

technique is graphical representation, i.e., presenting 1-Dimensional mathematical descrip-

tors of waves in multiple spatial dimensions in order to form an image or model in Euclidean

space. This format of data can then be further represented by feature maps from convolu-

tional operations. With preliminary success of the approach, a deeper understanding must

be sought in order to distinguish in which spatial dimension brainwave signals are most apt

for interpretation. With the classical method of raw wave data being used as input to a

CNN in mind, dimensionality reduction is especially difficult given the often blackbox-like

nature of a CNNs internal feature extraction processes. In this work, statistical temporal

features are extracted from the waves which serve as input to the CNN, which allows for

direct control of input complexity since dimensionality reduction can be used to choose

the best n features within the set with the task in mind. Reduction of a CNN topology,

whether that be network depth or layer width, gives less control over which features are

and are not computed. Given the technique of feature extraction as input to the CNN, and

thus the aforementioned direct control of input complexity, reduction of CNN complexity

reduces the number of ‘features of features’ computed; that is, all chosen input attributes

are retained.

In this work, an experimental framework is presented in which the evolutionary optimisa-

tion of neural network hyperparameters is applied in conjunction with a visual data prepro-

cessing technique. This work explores visual data reshaping in 2 and 3 dimensions to form

pixel image and voxel cube representations of statistical features extracted from electrical

brain activity, through which 2D and 3D CNN convolve ‘features of features’. In addition,
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Figure 5.12: Overview of the methodology. EEG signals are processed into 2D or 3D data benchmarked
by a 2D or 3D CNN. Three different attribute selection processes are explored. Finally, the best models
have their interpretation topologies optimised heuristically for a final best result.

multiple methods of dimensionality reduction are also explored. In comparison to previous

works on both attention (concentrating/relaxed) and emotional (positive/negative), many

of the techniques explored in this study produce competitive results. Finally, the applica-

tion to other EEG devices is shown by the application of the method to an open-source

dataset. The three 2D and 3D approaches are applied to classification to a 64-channel EEG

dataset acquired from an OpenBCI device, which achieves 97.96% 10-fold mean classifica-

tion accuracy on a difficult binary problem (Eyes open/closed), arguing that the approach

is dynamically applicable to BCI devices of higher resolution and for problems other than

the frontal lobe activity classification in the first two experiments. This both suggests some

future work with other devices, as well as collaboration between research fields to build on

and improve the framework further.

5.4.1 Method

In this section, the methodology of this experiment is described. A diagram of the process

described in this study can be seen in Figure 5.12.

Two datasets for the experiment are sourced from a previous study (detailed in Section

3.8) which made use of the aforementioned Muse headband (TP9, AF7, AF8, TP10). Firstly,

the ‘attention state’ dataset 5, which is collected from four subjects; two male, two female,

at an age range of 20-24. The subjects under stimuli were either relaxed, concentrating, or

from lack of stimuli, neutral. In the second experiment, the “Emotional State’ dataset 6 is

5https://www.kaggle.com/birdy654/eeg-brainwave-dataset-mental-state
6https://www.kaggle.com/birdy654/eeg-brainwave-dataset-feeling-emotions

J. J. Bird, PhD Thesis, Aston University 2021 157



CHAPTER 5. NON-VERBAL INTERACTION

Table 5.8: Class labels for the data belonging to the three datasets.

Dataset No. Classes Labels

Concentration State 3 Relaxed, Neutral, Concentrating
Emotional State 3 Negative, Neutral, Positive
Eye State 2 Closed, Open

acquired. To gather this data, six minutes of EEG data are recorded from two subjects of

ages 21 and 22. negative or positive emotions are evoked via film-clip stimuli, and finally

a stimulus-free ‘neutral’ class of EEG data is also recorded. Further detail on the datasets

was previously given in Section 5.3, where the datasets were originally collected for those

experiments. Further detail on the Muse headband can be found in Section 5.2.1.

With the subject-limited dataset (emotions) and a relatively less limited dataset (con-

centration), a third dataset is explored to benchmark the algorithms when a large subject

set is considered. The dataset is sourced from a BCI2000 EEG device [384, 385, 386]. This

data describes a multitude of tasks performed by 109 subjects for one to three minutes with

64 EEG electrodes. A random subset of 10 people is taken due to the computational com-

plexity requirements, thus the experiments are focused on datasets of 2, 4, and 10 subjects

in order to further compare performance. In this work, each subject had their EEG data

recorded for 2 minutes (two 1 minute sessions) for each class. Thus, in total, a dataset was

formed of 40 minutes in length - 20 minutes for each class, made up from ten individuals.

Classes are reduced from the large set to a binary classification problem, due to the findings

of the literature review on the behaviours of binary classification in Brain-machine Interac-

tion. The classes chosen are “Eyes Open” and “Eyes Closed”, since these two tasks require

no physical movement from the subjects and thus noise from EMG interference is minimal.

Table 5.8 gives detail on the number of classes in the dataset as well as their class labels.

Mathematical temporal features are subsequently extracted via the aforementioned method

in Section 5.2.3.

Firstly, a reduction of dimensionality of the datasets is performed. The chosen number

of attributes is 729; this is due to 729 being a square and a cube number and thus therefore

being directly comparable in both 2D and 3D space. 729 features thus are reformatted into

a square of 27x27 features for 2-dimensional space classification, as well as a cube of 9x9x9

features for 3-dimensional space classification. Alternatives of 64 and 1000 are discarded;

firstly, 64 in previous work has been shown to be a relatively weak set of attributes, and
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Table 5.9: Pre-optimisation network architecture.

Layer Output Params

Conv2d (ReLu) (0, 14, 14, 32) 320
Conv2d (ReLu) (0, 12, 12, 64) 18496
Max Pooling (0, 6, 6, 64) 0
Dropout (0.25) (0, 6, 6, 64) 0
Flatten (0, 2304) 0
Dense (ReLu) (0, 512) 1180160
Dropout (0.5) (0, 512) 0
Dense (Softmax) (0, 3) 1539

larger datasets outperform such a number by far. Secondly, 1,000 in preliminary exploration

showed numerous weak attributes selected. Reduced data is then normalised between values

of 0 to 255 to correlate with a pixel’s brightness value for an image. Note that the CNN

for learning will further normalise these values to the range of 0 to 1 by dividing them by

255. The order of the visual data is dictated by the dimensionality reduction algorithms

from left to right, with the most useful feature selected by the algorithm in the upper left

and the least useful in the lower right (and front to back for 3D). The CNN then extracts

‘features of features’ by convolving over this reshaped data.

Secondly, with the reduced data reshaped to both squares and cubes, classification is

performed by Convolutional Neural Networks operating in 2D and 3D space. The order

of attributes represented visually are selected by feature selection algorithms. Scoring is

applied by each algorithm and the attributes are sorted in descending order, which is then

reshaped into 27× 27 square or 9× 9× 9 cube. Visual representation, thus, is performed in

three different ways, dependent on the scores applied by the three feature selection methods

in this study. This is discussed as a point for further exploration in the Future Work section

of this study.

In this stage, the topology of networks is simply selected based on the findings of previous

experiments (see Section 2.9). Preliminary hyperparameters from previous work are given

as a layer of 32 filters with a kernel of length and width of 3, followed by a layer of 64 filters

with a kernel of the same dimensions, a dropout of 0.25 before the outputs are flattened

and interpreted by a layer of 512 ReLu neurons. These kernels are to be extended into a

third dimension matching the length and width of the windows for the 3D experiments. A

generalised view of the network pre-optimisation can be seen in Table 5.9.

Samples of visually rendered attention states can be seen in Figures 5.13 and 5.14. Note
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Figure 5.13: Thirty samples of attention state EEG data displayed as 27x27 Images. Row one shows
relaxed data, two shows neutral data, and the third row shows concentrating data.

Figure 5.14: Three attention state samples rendered as 9x9x9 cubes of voxels. Leftmost cube is relaxed,
centre is neutral, and the rightmost cube represents concentrating data.

Figure 5.15: Thirty samples of emotional state EEG data displayed as 27x27 images. Row one shows
negative valence data, two shows neutral data, and the third row shows positive valence data.

Figure 5.16: Three emotional state samples rendered as 9x9x9 cubes of voxels. Leftmost cube is negative
valence, centre is neutral, and the rightmost cube represents positive valence data.
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that within the cubes, a large difference between relaxed and the other two states can be

observed where it seemingly contains lower values (denoted by lighter shades of grey). In

comparison to the 2D representations, it is visually more difficult to discern between the

classes, which may also be the case for the CNN when encountering these two forms of

data as input. Firstly, figure 5.13 shows thirty samples of attention state data as 27x27

images, whereas figure 5.14 shows the topmost layer of 9x9x9 cubes rendered for each state.

Likewise, examples of emotional state in 2D and 3D space can be seen in Figures 5.15 and

5.16. This process is followed for each and every data point in the set respectively for either

a 2D or 3D Convolutional Neural Network.

Following this, the algorithm as described in Section 3.8 is executed upon the best 2D

and 3D combinations of models in order to explore the possibility of a better architecture.

A population size of 10 are simulated for 10 generations. Hyperparameter limits are intro-

duced as a maximum of 5 hidden layers of up to 4096 neurons each. Networks train for

100 epochs. The goal of optimisation are the interpretation layers that exist after the CNN

operations. Following this, the best sets of hyperparameters for each dataset are used in

further experiments. During these experiments, the networks are retrained but rather than

the 70/30 train/test split used previously, the value of k = 10 is selected. Hyperparameters

for each 2D and 3D network are those that were observed to be best in the previous heuris-

tic search, this is performed due to the intense resource usage that a heuristic search of a

problem space when k-fold cross validation is considered (and would thus be impossible).

These experiments are performed due to the risk of overfitting during hyperparameter op-

timisation when a train/test split is used, due to hyperparameters possibly being overfit to

the 30% of testing data, even though a dropout rate of 0.5 is implemented.

The final step of the methodology of this experiment is to compare and contrast with

related studies that use these same datasets.

5.4.2 Results

5.4.2.1 Attention state Classification

Firstly, attribute selection for the attention state dataset is performed. Overviews of these

processes can be seen in Table 5.10. Selection via Information Gain selected the attribute

with the highest KBD, with a value of 1.225, and its minimum KBD was also the highest at
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Table 5.10: Datasets produced by three attribute selection techniques for the attention state dataset, with
their minimum and maximum Kullback-Leibler divergence values of the 729 attributes selected.

Selector Max KBD Min KBD

Kullback-Leibler Divergence 1.225 0.278
One Rule 0.621 0.206
Symmetrical Uncertainty 1.225 0.233

Table 5.11: Benchmark scores of the pre-optimised 2D CNN on the attention state selected attribute
datasets.

Dataset Acc. (%) Prec. Rec. F1

Kullback-Leibler Divergence 91.29 0.91 0.91 0.91
One Rule 93.89 0.94 0.94 0.94
Symmetrical Uncertainty 85.06 0.85 0.85 0.85

0.278. Interestingly, the OneRule approach selected much lower KBDs of maximum 0.621

and minimum 0.206 values. The Symmetrical Uncertainty dataset was relatively similar to

KBD in terms of maximum and minimum selected values.

The classification abilities of the 2D CNN can be seen in Table 5.11. The strongest 2D

CNN was that applied to the One Rule dataset, achieving 93.89% classification ability.

The classification abilities of the 3D CNN can be seen in Table 5.12. The strongest 3D

CNN was that applied to the One Rule dataset, which achieved 93.62% classification ability.

In comparison, the results show that the 2D CNN was slightly superior with an overall

score of 93.89% as opposed to a similar score achieved by the 3D CNN benchmarking in at

93.62%. Both superior results came from the dataset generated by One Rule selection, even

though its individual selections were much lower in terms of their relative entropy when

compared to the other two selections, which were much more difficult to classify.

5.4.2.2 Emotional State Classification

Table 5.13 shows the range of relative entropy for the results feature selection algorithms

on the emotional state dataset. Similarly to the attention state dataset, the KBD selection

Table 5.12: Benchmark Scores of the pre-optimised 3D CNN on the attention state selected attribute
datasets.

Dataset Acc. (%) Prec. Rec. F1

Kullback-Leibler Divergence 91.52 0.92 0.92 0.92
One Rule 93.62 0.94 0.94 0.94
Symmetrical Uncertainty 85.2 0.85 0.85 0.85
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Table 5.13: Datasets produced by three attribute selection techniques for the emotional state dataset, with
their minimum and maximum Kullback-Leibler divergence values of the 729 attributes selected.

Dataset Max KBD Min KBD

Kullback-Leibler Divergence 1.058 0.56
One Rule 0.364 0.107
Symmetrical Uncertainty 0.364 0.168

Table 5.14: Benchmark scores of the pre-optimised 2D CNN on the emotional state selected attribute
datasets.

Dataset Acc. (%) Prec. Rec. F1

Kullback-Leibler Divergence 98.22 0.98 0.98 0.98
One Rule 97.28 0.97 0.97 0.97
Symmetrical Uncertainty 97.12 0.97 0.97 0.97

technique had much higher values in its selection, also as previously seen, the One Rule

selector preferred smaller KBD attributes. Unlike the previous attribute selection process

though, was that the Symmetrical Uncertainty this time bares far more similarity to the

One Rule process whereas in the attention state experiment it closely followed that of the

KBD process.

Table 5.14 shows the results of the 2D CNN on the datasets generated for emotional

state. The best model was that of which was trained on the KBD dataset, achieving a very

high accuracy of 98.22%.

Table 5.15 shows the results for the 3D CNN when trained on datasets of selected

attributes from the emotional state dataset. The best model was trained on the KBD

dataset of features, which achieved 97.28% classification accuracy.

In comparison, the most superior method of data formatting for emotional state EEG

dataset is in two dimensions, but very scarcely with a small difference of 0.94%. Unlike the

attention state experiment, the best data in both instances on this experiment seemed to

be those selected by their relative entropy. 2D One Rule and 3D relative entropy achieved

the same score, likewise the 2D and 3D Symmetrical Uncertainty experiments also achieved

Table 5.15: Benchmark scores of the pre-optimised 3D CNN on the emotional state selected attribute
datasets.

Dataset Acc. (%) Prec. Rec. F1

Kullback-Leibler Divergence 97.28 0.97 0.97 0.97
One Rule 96.97 0.97 0.97 0.97
Symmetrical Uncertainty 97.12 0.97 0.97 0.97
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Figure 5.17: Twenty samples of eye state EEG data displayed as 27x27 images. Row one shows eyes open,
row two shows eyes closed.

Figure 5.18: Two eye state EEG samples rendered as 9x9x9 cubes of voxels. Left cube is eyes open and
right is eyes closed.

the same score.

5.4.2.3 Extension to 64 EEG Channels

For an extended final experiment, the processes successfully explored in this section are

applied to a dataset of differing nature. The whole process is carried out in the given order.

Details of the dataset and experimental process can be found in Section 5.4.1.

Figures 5.17 and 5.18 show samples of eye state data in both 2D and 3D. Table 5.16

shows the attribute selection processes and the relative entropy of the gathered sets. As

could be logically conjectured, all of the feature selectors found much worth (0.349) in the

log covariance matrix of the Afz electrode, located in the centre of the forehead. Closely

following this in second place for all feature selectors (0.3174) was the log covariance matrix

of the Af4 electrode, placed to the right of the Afz electrode. Interestingly, as well as this

data which is arguably electromyographical in origin, many features generated from the

activities of Occipital electrodes O1, Oz and O2 were considered useful for classification,

these electrodes are place around the area of the brain that receives and processes visual

information from the retinae, the visual cortex. With this in mind, it is logical to conjecture

Table 5.16: Attribute selection and the relative entropy of the set for the eye state dataset.

Selector Max KBD Min KBD

Kullback-Leibler Divergence 0.349 0.102
One Rule 0.349 0.025
Symmetrical Uncertainty 0.349 0.0597
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Table 5.17: Benchmark scores of the pre-optimised 2D and 3D CNN on the eye state selected attribute
datasets.

Dims Dataset Acc. (%) Prec. Rec. F1

2D
Kullback-Leibler Divergence 97.03 0.97 0.97 0.97
One Rule 95.34 0.95 0.95 0.95
Symmetrical Uncertainty 96.89 0.97 0.97 0.97

3D
Kullback-Leibler Divergence 96.05 0.96 0.96 0.96
One Rule 94.49 0.95 0.95 0.95
Symmetrical Uncertainty 97.46 0.97 0.97 0.97
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Figure 5.19: Evolutionary improvement of DEvoCNN for the attention state classification problem.

that such a task will produce strong binary classification accuracies since feature selection

has favoured areas around the eyes themselves and the cortex within which visual signals

are processed.

Table 5.17 shows the comparison of results for the 2D and 3D CNNs on the Eye State

dataset. As would be expected, very high classification accuracies are considered since the

eyes and visual cortex both feature in the 64-channel OpenBCI EEG. Unlike the prior ex-

periments, the 3D CNN on a raster cube prevails over its 2D counterpart when Symmetrical

Uncertainty is used for feature selection with a score of 97.46% classification accuracy. As

observed previously, other than this one model, all 2D models outperform the 3D alterna-

tive.
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Figure 5.20: Evolutionary search of network topologies for the emotional state classification problem.
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Figure 5.21: Evolutionary search of network topologies for the eye state classification problem.
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5.4.2.4 Hyperheuristic Optimisation of Interpretation Topology

In this section, the best networks for the three datasets are evolutionarily optimised in

an attempt to improve their capabilities through augmentation of interpretation network

structure and topology, the dense layers following the CNN. Figures 5.19, 5.20, and 5.21

show the evolutionary simulations for the improvement of the interpretation of networks

for Attention, Emotional, and Eye State datasets, respectively. For the deep hidden layers

following the CNN structure detailed in 5.9, the main findings were as follows:

• Attention state: The best network was found to be a 2D CNN with three hidden

interpretation layers (2705, 3856, 547), which achieved 96.1% accuracy. The mean

accuracy scored by 2D CNNs was 96%. These outperformed the best 3D network

with 5 interpretation layers (3393, 935, 2517, 697, 3257) which scored 95.15%, with a

mean performance of 95.02%.

• Emotional State: The best network was found to be a 2D CNN with two hidden

interpretation layers (165, 396), which achieved 98.59% accuracy. The mean accuracy

scored by 2D CNNs was 98.41%. Close to this was the best 3D network with 1

interpretation layer (476) which scored 98.43%, with a mean performance of 98.07%.

• Eye State: The best network was found to be a 3D CNN with three hidden inter-

pretation layers (400, 2038, 1773) which achieved 98.31% classification accuracy. The

mean accuracy scored by 3D CNNs was 98.16%. The best 2D network was 98.02%,

with a mean performance of 97.88%.

Table 5.18 shows the overall results gained by the four methods applied to the three

datasets, from the findings of the two previous experiments. The best results for 2D and

3D CNNs are taken forward in the following section in order to perform cross validation. It

can be observed that the DEvoCNN approach is slightly improved on all networks, but the

findings in the first experiment carry over in that the best dimensional awareness remains

so even after evolutionary optimisation.

Figures 5.22, 5.23 and 5.24 show the confusion matrices for the concentration, emotions,

and eye state unseen data, respectively. Most errors in the concentration dataset arise from

relaxed data being misclassified as neutral data, which was also observed to occur vice versa,

albeit limitedly. The small number of mistakes from the emotions dataset occurred when
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Table 5.18: Benchmark scores of the pre and post-optimised 2D and 3D CNN on all datasets (70/30 split
validation). Model gives network and best observed feature extraction method. (Other ML metrics omitted
and given in previous tables for readability).

Experiment Model Accuracy (%)

Attention State

2D CNN, Rule Based 93.89
3D CNN, Rule Based 93.62
2D DEvoCNN, Rule Based 96.1
3D DEvoCNN, Rule Based 95.15

Emotional State

2D CNN, KLD 98.22
3D CNN, KLD 97.28
2D DEvoCNN, KLD 98.59
3D DEvoCNN, KLD 98.43

Eye State

2D CNN, KLD 97.03
3D CNN, Symm. Uncertainty 97.46
2D DEvoCNN, KLD 98.02
3D DEvoCNN, Symm. Uncertainty 98.3
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Figure 5.22: Normalised confusion matrix for the unseen concentration data.
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Figure 5.23: Normalised confusion matrix for the unseen emotions data.
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Figure 5.24: Normalised confusion matrix for the unseen eye state data.
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Table 5.19: Final benchmark scores of the post-optimised best 2D and 3D CNN on all datasets via K-fold
cross validation.

Experiment Model Acc. (%) Std. Prec. Rec. F1

Attention State
2D CNN 97.03 1.09 0.97 0.97 0.97
3D CNN 95.87 0.82 0.96 0.96 0.96

Emotional State
2D CNN 98.09 0.55 0.98 0.98 0.98
3D CNN 98.4 0.53 0.98 0.98 0.98

Eye State
2D CNN 97.33 0.79 0.97 0.97 0.97
3D CNN 97.96 0.44 0.98 0.98 0.98

Table 5.20: Leave one subject out (unseen data) for the concentration state dataset.

Subject left out 1 2 3 4 Mean Std.

Accuracy (%) 84.33 86.27 81.91 89.66 85.54 0.03

misclassifying negative as positive and vice versa, the neutral class was classified perfectly.

In the eye state dataset, eyes closed were the most misclassified data at 0.97 to 0.03.

5.4.2.5 K-fold Cross Validation of Selected Hyper-parameters

In this section, the best sets of hyperparameters for each dataset are used in further exper-

iments where each model is benchmarked through 10-fold cross-validation.

Table 5.19 shows the mean accuracy of networks when training via 10-fold cross-validation.

As was alluded to through the simpler data split experiments, the best models for the first

two datasets were found when the data was arranged as a 2-Dimensional grid of pixels,

whereas the best model for the eye state dataset was in 3D with both a higher accuracy

and lower standard deviation of per-fold accuracies. Standard deviation was relatively low

between folds, all below 1% except for the 2D CNN attention state model which has a

standard deviation of 1.09%.

Tables 5.20, 5.21 and 5.22 show the leave one subject out results for each of the three

datasets with the best CNN model. The model is trained on all subjects except for one,

and classifies the data belonging to that left-out subject.

Tables 5.23, 5.24 and 5.25 show comparisons of the best models found in this study to

Table 5.21: Leave one subject out (unseen data) for the emotions dataset.

Subject left out 1 2 Mean Std.

Accuracy (%) 91.18 84.71 87.95 0.03
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Table 5.22: Leave one subject out (unseen data) for the eye state dataset (individual 109 subjects removed
for readability purposes).

Subject left out Mean Std.

Accuracy (%) 83.8 3.44

Table 5.23: Comparison of the best concentration dataset model (2D CNN) to other statistical models.

Model Acc. (%) Std. Prec. Rec. F1

2D CNN 97.03 1.09 0.97 0.97 0.97
Extreme Gradient Boosting 93.62 0.01 0.94 0.94 0.94
Random Forest 91.64 0.02 0.92 0.92 0.92
KNN(10) 86.03 0.03 0.87 0.86 0.86
Decision Tree 84.65 0.02 0.85 0.85 0.85
Linear Discriminant Analysis 79.44 0.02 0.81 0.79 0.8
Support Vector Classifier 77.46 0.02 0.78 0.78 0.77
Quadratic Discriminant Analysis 74.27 0.02 0.74 0.74 0.73
Naive Bayes 52.18 0.03 0.53 0.52 0.47

Table 5.24: Comparison of the best emotions dataset model (3D CNN) to other statistical models.

Model Acc. (%) Std. Prec. Rec. F1

3D CNN 98.4 0.53 0.98 0.98 0.98
Extreme Gradient Boosting 98.38 0.01 0.98 0.98 0.98
Random Forest 98.36 0.01 0.98 0.98 0.98
Decision Tree 94.98 0.02 0.95 0.95 0.95
Linear Discriminant Analysis 93.9 0.02 0.94 0.94 0.94
KNN(10) 92.64 0.01 0.93 0.93 0.93
Support Vector Classifier 92.03 0.01 0.93 0.92 0.92
Quadratic Discriminant Analysis 77.35 0.11 0.82 0.78 0.77
Naive Bayes 65.24 0.04 0.65 0.65 0.63

Table 5.25: Comparison of the best eye state dataset model (3D CNN) to other statistical models.

Model Acc. (%) Std. Prec. Rec. F1

3D CNN 97.96 0.44 0.98 0.98 0.98
Extreme Gradient Boosting 97.95 0.01 0.98 0.98 0.98
Random Forest 97.9 0.01 0.98 0.98 0.98
KNN(10) 94.82 0.01 0.95 0.95 0.95
Linear Discriminant Analysis 94.32 0.01 0.94 0.94 0.94
Support Vector Classifier 92.75 0.02 0.93 0.93 0.93
Decision Tree 90.79 0.02 0.91 0.91 0.91
Quadratic Discriminant Analysis 83.12 0.02 0.84 0.83 0.83
Naive Bayes 66.61 0.03 0.7 0.67 0.65

J. J. Bird, PhD Thesis, Aston University 2021 171



CHAPTER 5. NON-VERBAL INTERACTION

other statistical machine learning models. Although the top mean scores were noted to be

the CNNs found in this study, their deviance is relatively high. In some cases such as in the

emotions and eye state datasets for example, the CNN only slightly outperforms a Random

Forest, which is far less computationally expensive to execute in comparison. Although the

experiments in this work are chosen because of a small amount of increase in classification

accuracy, the size of the dataset leads to a small increase of accuracy covering the correct

classification of a considerable number of samples.

5.5 Real-time EMG classification via Inductive and Super-

vised Transductive Transfer Learning

Within a social context, the current state of Human-Robot Interaction is arguably most

often concerned with the domain of verbal, spoken communication. That is, the transcrip-

tion of spoken language to text, and further Natural Language Processing (NLP) in order

to extract meaning; this framework is oftentimes multi-modally combined with other data,

such as the tone of voice, which too carries useful information. With this in mind, a recent

National GP Survey carried out in the United Kingdom found that 125,000 adults and

20,000 children had the ability to converse in British Sign Language (BSL) [387], and of

those surveyed, 15,000 people reported it as their primary language. With those statistics

in mind, this shows that those 15,000 people only have the ability to directly converse with

approximately 0.22% of the UK population. This argues for the importance of non-verbal

communication, such as through gesture. To answer in the affirmative, negative, or to not

answer at all are three very important responses when it comes to meaningful conversation,

especially in a goal-based scenario. In this study, a ternary classification experiment is

performed towards the domain of non-verbal communication with robots; the electromyo-

graphic signals produced when performing a thumbs up, thumbs down, and resting state

with either the left or right arms are considered, and statistical classification techniques

are benchmarked in terms of validation, generalisation to new data, and transfer learning

to better generalise to new data to increase reliability within the realms of classical speech

recognition. That is, to reach interchangeable accuracy between the two domains and thus

enable those who do not have the ability of speech to effectively communicate with machines.

The main contributions of this work are as follows:
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• An original dataset is collected from five subjects for three-class gesture classification7.

A ternary classification problem is thus presented; thumbs up, thumbs down, and

relaxed.

• A feature extraction process retrieved from previous work is used to extract features

from electromyographic waves, the process prior to this has only been explored in elec-

troencephalography (EEG) and in this work is adapted for electromyographic gesture

classification8.

• Multiple feature selection algorithms and statistical/ensemble classifiers are bench-

marked in order to derive a best statistical classifier for the ground truth data.

• Multiple best-performing models attempt to predict new and unseen data towards the

exploration of generalisation, which ultimately fails. Findings during this experiment

show that 15 seconds (5 seconds per class) performs considerably better than 3, 6,

9, 12, 18, and 21 seconds of data. Model generalisation only slightly outperforms

random guessing.

• Failure of generalisation is then remedied through the suggestion of a calibration

framework via inductive and supervised transductive transfer learning. Inspired by

the findings of the experiment described in the previous point, the models are then

able to reach extremely high classification ability on further unseen data presented

post-calibration. Findings show that although a confidence-weighted vote of Random

Forest and Support Vector Machine performed better on the original, full dataset,

the Random Forest alone outperforms this method for calibration and classification

of unseen data (97% vs. 95.7% respectively).

• Finally, a real-time application of the work is preliminary explored. Social interac-

tion is enabled with a humanoid robot (Softbank’s Pepper) in the form of a game,

through gestural interaction and subsequent EMG classification of the gestures to

answer yes/no questions while playing 20 Questions.

7Available online,
https://www.kaggle.com/birdy654/emg-gesture-classification-thumbs-up-and-down/
Last Accessed: 22/10/2020

8Available online,
https://github.com/jordan-bird/eeg-feature-generation/
Last Accessed: 25/02/2020
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To present the aforementioned findings in a structured manner, the exploration and

results are presented in chronological order, since a failed generalisation experiment is then

remedied with the aid of the findings through limitation.

5.5.1 Method

In this section, the methodology of the experiments in this study are described. Initially,

data is acquired prior to the generation of a full dataset through feature extraction. Machine

Learning paradigms are then benchmarked on the dataset, before the exploration of real-

time classification of unseen data.

The experiments performed in this study were executed on a AMD FX-8520 eight-core

processor with a clock speed of 3.8GHz. In terms of software, the algorithms are executed

via the Weka API (implemented in Java). The machine learning algorithms are validated

through a process of k-fold cross validation, where k is set to 10 folds. The voting process

is to vote by average probabilities of the models, since two models are considered and

thus a democratic voting process would result in a tie should the two models disagree.

Machine learning is employed towards solving this problem of gesture classification since

accelerometer and gyroscope sensors are not used, and thus the classification of only EMG

data proves a difficult problem.

The Myo Armband records EMG data at a rate of 200Hz via 8 dry sensors worn on

the arm, and it also has a 9-axis Inertial Measurement Unit (IMU) recording at a sample

rate of 50Hz. Further details on the Myo can be found in Section 5.2.2. In this study, data

acquisition is performed on 5 subjects, which are three males and two females (aged 22-40).

For model generalisation, 4 more subjects ware taken into account, of which two of them

are new subjects and two are performing the movements again. The gestures performed

were thumbs up, thumbs down, and resting (a neutral gesture in which the subject is asked

to rest their hand). For training, 60 seconds of forearm muscle activity data was recorded

for each arm (two minutes, per subject, per gesture). In the case of benchmark data, the

muscle waves were recorded in intervals of one to seven seconds each.

As previously described in Section 5.2.3, features are then extracted from the waves via

a sliding time window statistic extraction algorithm. Feature extraction thus produced a

dataset of 2040 numerical attributes from the 8 electrodes, of which there are 159 megabytes

of data produced from the five subjects. A minor original contribution is also presented in
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Table 5.26: A comparison of the three attribute selection experiments. Note that scoring methods are
unique and thus not comparable between the three.

Method No. Attributes Selected Max Score Min Score

One Rule 2000 64.39 30.51
Information Gain 1898 0.62 0.004
Symmetrical Uncertainty 1898 0.32 0.003

the form of the application of these features to EMG data, since they have only been shown

to be effective thus far in EEG signal processing.

Following data acquisition and feature extraction, multiple ML models are benchmarked

to compare their classification abilities on the EMG data. The particularly strong mod-

els are then considered for generalisation and real-time classification. In this work, two

approaches towards real-time classification are explored. Small datasets are recorded se-

quentially from four subjects, varying in lengths of 1 second, from 1 second to 7 seconds

per class. These then constitute seven datasets per person {3,6,...,21}. Initially, the best

four models observed by the previous experiments are used to classify these datasets to

derive the ideal amount of time that an action must be observed before the most accurate

classification can be performed. Following this, a method of calibration through transfer

learning is also explored. The result from the aforementioned experiment (the ideal amount

of observation time) is taken forward and, for each person, appended to the full dataset

recorded for the classification experiments. Each of the chosen ML techniques are then

retrained and used to classify further unseen data from the said subject.

5.5.2 Results

In this section, the preliminary results from the experiments are given. Firstly, the chosen

machine learning techniques are benchmarked in order to select the most promising method

for the problem presented in this study. Secondly, generalisation of models to unseen data

is benchmarked before a similar experiment is performed, within which transfer learning is

leveraged to enable generalisation of models to new data through calibration to a subject.

5.5.2.1 Feature Selection and Machine Learning

Table 5.26 shows the results of attribute selection performed on the full dataset of 2040

numerical attributes. One Rule feature selection found that the majority of attributes
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held strong One Rule classification ability, as is often expected [388]. Information Gain and

Symmetrical Uncertainty produced slightly smaller datasets, both of 1898 rows, and it must

be noted that the two datasets are comprised of differing attributes.
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Figure 5.25: Benchmarking of vote (best two) model generalisation ability for unseen data segments per
subject, in which generalisation has failed due to low classification accuracies.

In Table 5.27, the full matrix of benchmarking results are presented. An interesting

pattern occurs throughout all datasets, both reduced and full; an SVM is always the best

single classifier, scoring between 87.11% and 87.14%. Additionally, a voting ensemble of

Random Forest and SVM always produce the strongest classifiers with results of between

91.3% and 91.74%. Interestingly, the One Rule dataset is slightly less complex than the

full dataset but produces a slightly superior result. The Information Gain and Symmetrical

Uncertainty datasets are far less complex, and yet are only behind the best One Rule score

by 0.44% and 0.34% respectively. Logistic Regression on the whole dataset fails due to its

high resource requirements, but is observed to be viable on the datasets that have been

reduced.

5.5.2.2 Benchmarking Requirements for Realtime Classification

In this section, very short segments of unseen data are collected from four subjects to

attempt to apply the previously generated models to new data. That is, to experiment on the

generalisation ability or lack thereof of the models on the 5-subject dataset. Generalisation

initially fails, but with the least catastrophic model in mind, leading the focus to calibration

of a user in ideally short amounts of time via transfer learning.

When the best model from Table 5.27 is used, the ensemble vote of the average prob-

abilities between a Random Forest and SVM fails in being able to classify unseen data.

Observe Figure 5.25, in which 15 seconds of unseen data performs, on average, in excess of
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Figure 5.26: Initial pre-calibration mean generalisation ability of models on unseen data from four subjects
in a three-class scenario. Time is given for total data observed equally for three classes. Generalisation has
failed.

Table 5.28: Results of the models generalisation ability to 15 seconds of unseen data once calibration has
been performed.

Model Generalisation Ability (%)

Single
Models

OneR 63
RT 91.86
SVM 94
NB 53.35
BN 66.05
LR 90.1

Ensemble
Models

RF 97
Vote (RF, SVM) 95.7
Vote (RF, SVM, BN) 87.8

any other amount of data, but yet still only reaches a mean classification ability of 55.12%

(which is unacceptable for a ternary classification problem).

In Figure 5.26, the mean classification abilities of other highly performing models from

the previous experiment are given when unseen data are attemptedly classified. Likewise

to the vote model observed in Figure 5.25, generalisation has failed for all models. Two

interesting insights emerge from the failed experiments; firstly, 15 seconds of data (5s per

class) most often leads to the best limited generalisation as opposed to both shorter and

longer experiments. Furthermore, the ability of the Random Forest can be seen to exceed all

of the other three methods, suggesting that it is superior (albeit limited) when generalisation

is considered.

As previously described, calibration is attempted through a short experiment. Due to
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Table 5.29: Errors for the random forest once calibrated by the subject for 15 seconds when used to
predict unseen data. Counts have been compiled from all subjects. Class imbalance occurs in real-time due
to bluetooth sampling rate.

Prediction
Ground Truth

Rest Up Down

300 0 1 Rest
0 324 1 Up
0 19 376 Down

R
E
ST U
P

D
O
W
N

RE
ST

UP

DO
WN

0.997 0 0.003

0 0.997 0.003

0 0.048 0.952

Figure 5.27: Confusion matrix for the random forest once calibrated, based on Table 5.29.
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the findings aforementioned, 15 seconds of known data (that is, requested during ‘setup’ )

is collected. These labelled data are then added to the training data, to expand knowledge

at a personal level. Once this is performed, and the models are trained, they are then

benchmarked on a further unseen dataset of 15 seconds of data, again, five seconds per

class. No further training of models are performed, and they simply attempt to classify this

unseen data. Table 5.28 shows the abilities of all previously benchmarked models once the

short calibration process is followed, with far greater success than observed in the previous

failed experiments, where those previous were benchmarked. As was conjectured from

the failed experiments, the Random Forest showed to be the most successful calibration

experiment for generalisation towards a new subject. The errors made by the best model

are shown in in Table 5.29 and Figure 5.27. The most difficult task was the prediction of

‘thumbs down’, which, when a subject had a particularly smaller arm would sometimes be

classified as a resting state. Observed errors are extremely low, and thus future work to

explore this is suggested in Section 5.8.

Following the results, an application of the framework is presented in a HRI context. The

Random Forest model observed to be the best model for generalisation in Section 5.5.2.2

is calibrated for 5 seconds per class in regards to the benchmark results, then enabling the

subject to interact non-verbally with machines via EMG gesture classification. Note that

only preliminary benchmarks are presented, and Section 5.8 details potential future works

in this regard, that is, these preliminary activities are not considered the main contributions

of this work which were presented in Section 5.5.2.

20Q, or 20 Questions, is a digital game developed by Robin Burgener based on the

20th Century American parlor game of the same name and rules; it is a situational puzzle.

Through Burgener’s algorithm, computer opponents play via the dissemination and subse-

quent strategy presented by an Artificial Neural Network [389, 390]. In the game between

man and machine, the player thinks of an entity and the opponent is able to ask 20 yes/no

questions. Through elimination of potential answers, the opponent is free to guess the entity

that the player is thinking of. If the opponent cannot guess the entity by the end of the 20

questions, then the player has won.

In this application, the 20 Questions game is played with a humanoid robot, Softbank

Robotics’ Pepper. Initially, the subject is calibrated with 15 seconds of data (5 per class)

added to the full dataset, due to the findings in this work. Following this, for every round
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Figure 5.28: Softbank Robotics’ Pepper robot playing 20 Questions with a human through real-time EMG
signal classification.

Table 5.30: Statistics from two games played by two subjects each. Average accuracy is given as per-data-
object, correct EMG predictions are given as overall decisions.

Subject
Yes Avg.
Confidence
(Accuracy)

No Avg.
Confidence
(Accuracy)

Avg.
Confidence
(Accuracy)

EMG
Predictions
Confidence
(Accuracy)

1 96.9% 96.5% 96.7% 100%
2 97% 97% 97% 100%

of questioning, the robot will listen to 5 seconds of data from the player, perform feature

generation, and finally will consider the most commonly predicted class from all data objects

produced to derive the player’s answer. This process can be seen in Figure 5.28 in which

feedback is given during data classification. Two players each play two games each with

the robot. Thus, the model used is a calibrated Random Forest (through inductive and

transductive transfer learning) and a simple meta-approach of the most common class.

As can be seen in Table 5.30, results from the four games are given as average accuracy

on a per-data-object basis, but the results of the game operate on the final column, EMG

Predictions Accuracy, this is the measure of the correct predictions of thumb states by the

most common prediction of all data objects generated over the course of data collection

and feature generation. As can be observed, the high accuracies of per-object classification

contribute towards perfect classification of player answers, all of which were at 100%.
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5.6 Data Augmentation by Synthetic Biological Signals Machine-

generated by GPT-2

Given that it was discovered in Section 4.3 that speaker recognition could be improved when

GPT-2 creates synthetic training data to augment the training process, this section explores

the application of a similar Transformer based approach for the improvement of biological

signal classification. Synthetic data augmentation is of paramount importance for machine

learning classification, particularly for biological data, which tend to be high dimensional

and with a scarcity of training samples, moreover, they can rarely be generalised to the

whole population and appear to over-complicate simple recognition tasks. This work shows

for the first time that multiple GPT-2 models can machine-generate synthetic EEG signals

and improve real classification processes.

When presenting their GPT model, researchers at OpenAI hypothesised that language

models are unsupervised multitask learners [391, 392]. At the current state-of-the-art, this

claim has been proven correct multiple times through applications such as fake news iden-

tification [393], patent claims [394], and stock market analysis [395] to name just a few

in a rapidly growing area of research. In this work, experiments follow those before who

explored the capabilities of these models in a brand new field of application: the generation

of biosynthetic signals (in this case, electroencephalographic (EEG) activity). In detail,

this work aimed at exploring whether or not GPT-2’s self-attention based architecture was

capable of creating synthetic signals, and if those signals could improve the performance of

classification models used on real datasets. The scientific contributions and results arising

from this work suggest that:

1. It is possible to generate synthetic biological signals by tuning a language transfor-

mation model.

2. Classifiers trained on either real or synthetic data can classify one another with rela-

tively high accuracy.

3. Synthetic data improves the classification of the real data both in terms of model

benchmarking and classification of unseen samples.
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Figure 5.29: Initial training of the GPT-2 model and then generating a dataset of synthetic biological
signals.

Fold	1 Fold	2 Fold	K

Full	dataset

Synthetic	Data

GPT-2
Signal	Generator

Fold	1 Fold	2 Fold	K Synthetic	Data

Fold	1 Fold	2 Fold	K Synthetic	Data

Train

Test

Figure 5.30: The standard K-Fold cross validation process with the GPT-2 generated synthetic data being
introduced as additional training data for each fold.

5.6.1 Method

The electroencephalographic dataset used was initially acquired for a previous study which is

given in Section 5.3. A total of 5 participants were presented with stimuli while wearing the

InteraXon Muse headband to collect EEG data at the TP9, AF7, AF8, and TP10 electrode

sites of the International 10-20 EEG Placement Standard [396]. EEG data corresponding

to three mental states was collected from each participant: a neutral class with no stimulus

present, relaxation enabled by classical music, and concentration induced by a video of

the “shell game” (wherein they had to follow a ball placed underneath one of three shuffled

upturned cups). While the data was provided to GPT-2 in its raw format (temporal waves),

an ensemble of features was extracted from the dataset to enable classification which has

been previously described in Section 5.2.3. Further detail on the Muse can be found in

Section 5.2.1.

5.6.1.1 Generating and Learning from GPT-2 Generated Signals

GPT-2 models are initially trained on each class of data for 1,000 steps each. Then, for n

classes, n GPT-2s are tasked with generating synthetic data and the class label is finally

manually added to the generated data. This process can be observed in Figure 5.29 where
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Figure 5.31: Comparison of GPT-2 generated (left) and genuine recorded (right) EEG data across “Concen-
trating”, “Relaxed”, and “Neutral” mental state classes. AF8 electrode readings are omitted for readability
purposes.

the generative loop is prefixed by the latter half of the previously generated data. The

synthetic equivalent of 60 seconds of data per class are generated (30,000 rows per class

of raw signal data). To benchmark machine learning models, a K-fold cross validated

learning process is followed and compared to the process observed in Figure 5.30 where the

training data is augmented by the synthetically derived data at each fold of learning. This

process is performed for the EEG experiments for six different models: Support Vector

Machine (SVM), Random Forest (RF), K-Nearest Neighbours (KNN, K = 10), Linear

Discriminant Analysis (LDA), Logistic Regression (LR), and Gaussian Näıve Bayes (GNB).

These statistical models are selected due to their differing nature, to explore the hypothesis

with a mixed range of approaches.
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Figure 5.32: Comparison of Power Spectral Densities of GPT-2 generated (left) and genuine recorded
(right) EEG data. For readability, only the PSD computed from electrode TP9 is shown.
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Table 5.31: Classification results when training on real or synthetic EEG data and attempting to predict
the class labels of the other (sorted for real to synthetic).

Classifier
Training and Prediction Data

Real to Synthetic Synthetic to Real

Support Vector Machine 90.84 66.88
Random Forest 88.14 70.71
10 Nearest Neighbours 85.18 72.13
Linear Discriminant Analysis 77.90 68.90
Logistic Regression 70.22 64.91
Gaussian Näıve Bayes 67.52 74.71

5.6.2 Results

During observation of the transformer’s outputs, it was noted that all synthetic data was

unique compared to the real data. A sample of real and synthetic EEG data can be observed

in Figure 5.31. Interestingly, natural behaviours, such as the presence of characteristic

oscillations, can be observed within data, showing that complex natural patterns have

been generalised by the GPT-2 model. It is noted that in the real data, some spikes are

observed in the signals from all electrodes, but those are likely due to involuntary (and

unwanted) eye blinks. Moreover worth nothing is that the GPT-2 does not replicate similar

patterns, most likely as a filtering side effect of data generalisation, since such occurrences

are random and unrelated to the underlying EEG data. The Power Spectral Densities of

the GPT-2 generated data were computed with Welch’s method [397] and compared with

those computed from real human data as can be seen in Figure 5.32. In observing the

frequency domain plots of the genuine data, there is a clear 50Hz component in all classes

likely due to power-line interference. Interestingly, there has been a clear attempt by GPT-2

to mimic this feature, albeit with a much shallower roll-off. Table 5.31 shows the effects of

training models on the real and synthetic EEG data and then attempts to classify the other

data. Interestingly, the Support Vector Machine when trained on real data can classify the

synthetic data with 90.84% accuracy. Likewise, the Gaussian Näıve Bayes approach when

trained on the synthetic data can then classify the real data with 74.71% accuracy.
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Table 5.32: Comparison of the 10-fold classification of EEG data and 10-fold classification of EEG data
alongside synthetic data as additional training data.

Classifier Without GPT-2 With GPT-2 Data

Random Forest 95.81 (1.46) 96.69 (1.12)
Logistic Regression 93.71 (1.05) 93.30 (1.37)
Support Vector Machine 93.67 (1.35) 93.71 (1.33)
Linear Discriminant Analysis 91.93 (1.24) 94.03 (1.29)
10 Nearest Neighbours 89.83 (1.75) 90.68 (2.07)
Gaussian Näıve Bayes 70.27 (2.53) 72.41 (2.33)

Table 5.33: EEG classification abilities of the models on completely unseen data with regards to both with
and without synthetic GPT-2 data as well as prior calibration.

Classifier
Uncalibrated Calibrated

Vanilla Synth. Vanilla Synth.

Random Forest 38.84 42.90 59.75 59.98
Logistic Regression 46.35 47.01 46.92 48.10
Support Vector Machine 47.11 47.00 53.45 52.80
Linear Discriminant Analysis 56.07 57.48 63.85 66.02
10 Nearest Neighbours 48.29 48.78 59.64 60.60
Gaussian Näıve Bayes 48.25 48.97 49.62 50.37

5.6.2.1 Classification of real-to-synthetic data and vice-versa

5.6.2.2 EEG Classification

The results for EEG classification can be seen in Table 5.32. The best result overall for the

dataset was the k-fold training process with additional training data in the form of GPT-2

generated synthetic brainwaves, using a Random Forest. This achieved a mean accuracy of

96.69% at a deviance of 1.12%.

Table 5.33 shows the classification abilities of the models when given completely unseen

data from three new subjects. The results show the difficulty of the classification problem

faced, with many scoring relatively low for the three-class problem. The best result was

found to the the Linear Discriminant Analysis model when trained on both calibration

and synthetic GPT-2 data alongside the dataset, which then scored 66.02% classification

accuracy on the unseen data.
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5.7 Cross-Domain MLP and CNN Transfer Learning for Bi-

ological Signal Processing

This section explores the success of unsupervised transfer learning between Electroen-

cephalographic (brainwave) classification and Electromyographic (muscular wave) domains

with both MLP and CNN methods. The significance of this work is due to the success-

ful transfer of ability between models trained on two different biological signal domains,

reducing the need for building more computationally complex models in future research.

It is no secret that the hardware requirements of Deep Learning are far outgrowing the

average consumer level of resource availability, even when a distributed processing device

such as a GPU is considered [398]. In addition to this, limited data availability often ham-

pers the machine learning process. It is for these reasons that researchers often find similar

domains to transfer the learning between, effectively saving computational resources through

said similarities by applying cross-domain interpretation. By doing so, once impossible tasks

become possible, despite limited resources. A well-known example is VGG (Visual Geome-

try Group), a set of 16 and 19 hidden-layer Convolutional Neural Networks (CNNs) which

have been trained to the extreme on a large image dataset [101]. Useful recognisable fea-

tures from images such as points, lines, curves, and geometric shapes can be transferred

over to a differing CNN task since these features always exist within the domain. Thus,

cross-domain transfer learning is enabled in order to interpret new data [399, 400]. Elec-

trical biological signals show a similarly non-juxtapose pattern of behaviour [401, 402], and

thus the domain-transfer may be possible, although it is currently not yet well-understood.

If it is possible, then to what extent and effects are those possibilities?

This work studies, for the first time, whether cross-domain transfer learning can impact

the classification ability of models when trained on Electroencephalographic (brainwave)

and Electromyographic (muscular wave) data. This is performed through the transfer of

initial weights via the best models of each, and learning is continued from this initial starting

point. When compared to the classical method of random weight distribution initialisation,

it is argued that knowledge can be transferred from EMG to EEG and vice-versa, succesfully.

There is also a comparison of the results to a model fine-tuned by ImageNet weights in order

to discern that useful domain-related knowledge is actually being transferred rather than

simply general image rules, which could be learnt from any range of sources and domains.
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With better classification results come higher impact applications. In the domain of Human-

Robot Interaction, the control of prosthetic devices [376, 403, 404], enabling telepresence

within settings such as care assistance [405, 406], as well as within hazardous settings such as

bomb disposal [407], and remote environments [408], as well as risk of potential injury [409,

410, 411] are just a few of many possible fields that successful knowledge transfer could

potentially advance, through both improved classification ability and lower computational

expense required to train models.

The most notable scientific contributions of this section are the following:

1. The collection of an original EMG dataset of hand gestures gathered from the left and

right forearms.

2. Derivation of a strong set of neural network hyperparameters through an evolutionary

search algorithm, via a multi-objective fitness function towards the best interpretation

and classification ability of both EEG and EMG data.

3. Successful transfer of knowledge between the two domains through unsupervised trans-

fer learning, enabling increased classification ability of the neural networks when

weights are transferred between them as opposed to traditional random initial weight

distribution. Better starting abilities, learning curves, and asymptotes of the network

learning process are observed when knowledge is transferred.

4. To the authors’ knowledge, cross-domain transfer learning is performed between dif-

fering biological signals (EEG and EMG) for the first time.

5.7.1 Method

For topology selection,the DEvo algorithm is executed for 15 generations. Hard limits of a

maximum of 5 hidden layers and 512 neurons were set. Evolutionary topology optimisation

allowed for 100 epochs of training and transfer learning was observed with 30 epochs of

training. These values were chosen based on the observation that in preliminary experiments

there was little or no further improvement after these numbers of generations and epochs,

respectively. Training validation is enabled through 10-fold cross validation, where the

ten folds are shuffled. Other hyperparameters that were chosen were the ReLu activation

function for the hidden layers, and the ADAM optimisation algorithm [307] for tuning of

weights during training.
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Figure 5.33: Data collection from a male subject via the Myo armband on their left arm.

5.7.1.1 Data Acquisition

Two datasets are used in this experiment, EEG and EMG. The EEG dataset was obtained

from four subjects aged 20-24 with the Muse headband, two male and two female. The sub-

jects performed three tasks, while the sensors were recording the data. The tasks involved

three different states of brain activity: concentration, relaxation and neutral. Further detail

on the Muse can be found in Section 5.2.1. The EMG dataset was gathered with a Myo

armband where only the EMG data are used and so the inertia of the arm is not consid-

ered. Ten subjects contributed to the EMG dataset, six male and four female all aged

22-40. The subjects performed four different gestures for 60 seconds each, and the sensors

recorded EMG data produced by the muscles in the forearm. The gestures performed were;

clenching and relaxation of the fist, spreading and relaxation of fingers, swiping right, and

swiping left. The observations were performed twice, once for the right arm and once for

the left. Figure 5.33 shows the experimental setup of a subject wearing the Myo armband.

Features are then extracted as previously described with the algorithm in Section 5.2.3.

5.7.2 Method I: MLP Transfer Learning

5.7.2.1 Derivation of Best MLP Topology

Although many studies focus on grid search of topologies[412, 413, 414], this study applies

a multi-objective evolutionary algorithm in order to select the best neural network archi-

tecture for both classification problems. The evolutionary described previously in Section

3.8 is applied instead of a classical grid search for two main reasons [415, 416, 417]:

1. Evolutionary search allows for exploration within promising areas of the problem space
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at a finer level. Previous experiments, such as speech recognition (Section 4.4), found

complex best solutions for the problem, e.g. a combination of three deep layers of 599,

1197, and 436 neurons. Including such multiples within a grid search would increase

computational complexity of the search beyond realistic possibility.

2. With multi-objective optimisation through mean accuracy via equal scalarisation (see

Equation 5.10), the algorithm was able to search for a best solution for both of the

problems rather than having to be executed twice, followed by statistical analyses to

calculate a best topology.

Since the search must derive a ‘best of both worlds’ solution for both the EMG and EEG

problems, a new fitness function is introduced to score a solution:

F (s) = 0.5
A(EMG)

100
+ 0.5

A(EEG)

100
, (5.10)

where A(EMG) and A(EEG) are the mean accuracy scores of the networks when trained

with EMG and EEG data respectively through shuffled 10-fold cross validation. Equal

weights are allocated to the two components as EEG and EMG training are equally impor-

tant. Only hidden layers are to be optimised, therefore the input and output layers of the

network are simply hard-coded.

5.7.2.2 Benchmarking of Transfer Learning

For transfer learning, the following process is followed:

1. A neural network with randomly distributed weights is trained to classify the EMG

dataset.

2. A neural network with randomly distributed weights is trained to classify the EEG

dataset.

3. The best weights from the EMG network are applied to a third neural network, which

is then trained to classify the EEG dataset.

4. Mirroring step 3, the best weights from the EEG network (step 2) are initialised to a

fourth neural network, which is then trained to classify the EMG dataset.
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Figure 5.34: 30 Samples of EEG as 31x31 Images. Top row shows relaxed, middle row shows neutral, and
bottom row shows concentrating.

Figure 5.35: 40 Samples of EMG as 31x31 Images. Top row shows close fist, second row shows open
fingers, third row shows wave in and bottom row shows wave out.

The four networks are then compared. EEG to EMG-EEG and EMG to EEG-EMG in order

to discern whether knowledge has been transferred. If higher starts, curves, and asymptotes

are observed, then knowledge is considered succesfully transferred between the two domains.

5.7.3 Method II: CNN Transfer Learning

5.7.3.1 Representing Biological Waves as Images

In order to generate a square matrix, after the feature extraction process, the final 28

attributes are removed from each dataset. This is done because 961 is the closest square

number within the attribute set (31x31) and the final attributes are chosen in order to retain

identical inputs to the networks for both datasets. After normalisation of all attributes

between the values of 0 and 255, they are then projected as 31px square images. Examples

of waves projected into visual space can be observed in Figures 5.34 and 5.35. Though

padding would be applied in the situation where a square reshape is not possible (if square
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Table 5.34: Network topology and parameters used for these experiments.

Layer Output Parameters

Conv2d (ReLu) (0, 14, 14, 32) 320
Conv2d (ReLu) (0, 12, 12, 64) 18,496
Max Pooling (0, 6, 6, 64) 0
Dropout (0.25) (0, 6, 6, 64) 0
Flatten (0, 2304) 0
Dense (ReLu) (0, 512) 1,180,160
Dropout (0.5) (0, 512) 0
Dense (Softmax) (0, 3) 1,539

input is considered), this is not needed in this experiment since 961 attributes are selected

(31x31 reshape).

5.7.3.2 Benchmarking of Transfer Learning

The benchmark of the CNN transfer learning follows the same process as detailed in Section

5.7.2.2, except the weight transfer applies to input, convolutional, and hidden interpretation

layers. The CNN network structure is given in Table 5.34.

The hypothesis of this experiment ie. that transfer learning has occurred cross-domain,

not simply through deep learning, is tested by comparison to a popular pre-trained model.

For this purpose, the ResNet50 architecture and weights [418] are used when trained on the

ImageNet dataset. This architecture is chosen based on its aptitude for smaller images as

opposed to the previously mentioned VGG16 model, more fitting to the nature of the images

generated by the algorithm. The experiments are given unlimited time to train in order to

explore this, with an early stop executing after 10 epochs with no observed improvement of

validation accuracy. Other model hyperparameters are identical to their transfer learning

counterparts.

5.7.4 Results

In this section, the results from the two experiments are discussed. Firstly, an MLP network

topology is derived through the previously described DEvo method before transfer learn-

ing capabilities are benchmarked. Initially, the models are trained starting from random

weight distribution (baseline) in order to provide the baseline. Secondly, the model trained

on EMG dataset is used to transfer knowledge to a model training to classify the EEG

dataset and then vice-versa. These are then compared to their baseline non-transfer learn-
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Figure 5.36: Highest (best) fitness observed per generation of the combined and normalised fitnesses of
EEG and EMG data classification. The two fitness components are considered equally weighted to produce
the same topology in order to allow direct transfer of weights.

ing counterparts. This is carried out a second time with Convolutional Neural Networks

(without evolutionary search) where signals have been projected as raster images.

The MLP experiments are presented and discussed in Subsection 5.7.5 and the CNN

experiments are then presented and discussed in Subsection 5.7.6.

5.7.5 Experiment I: MLP Transfer Learning

5.7.5.1 Hyperparameter Selection for Initial Random Distribution Learning

Figure 5.36 shows the fitness evolution (Equation 5.10) of neural network topology for the

two datasets, where each point is the combined mean fitness for EEG and EMG and the best

topology. The best result was found to be a network of 5 hidden layers, with neuron counts

206, 226, 298, 167, 363 respectively, at a combined fitness of 0.74. This network topology

is thus taken forward in the experiments towards transfer learning capability between the

networks of EEG to EMG and vice-versa.

5.7.5.2 MLP Transfer Results

Finally, the transfer learning experiment is executed following the process described in sec-

tion 5.7.2.2. Figure 5.37 and Table 5.35 detail the learning processes of both EMG and EEG

as well as the transfer learning experiments, from one domain to the other and vice-versa.

Transfer learning was most successful when EMG data was used to fine-tune the EEG prob-
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Figure 5.37: Test and training accuracies of EMG, EEG, and transfer between EMG and EEG. ‘EEG
Transfer’ denotes EMG to EEG and likewise for ‘EMG Transfer’.

Table 5.35: Comparison of the MLP training processes of EMG and EEG with random weight distribution
compared to weight transfer learning between EMG and EEG.

Experiment
Training Accuracy (%)

Epoch 0 Final Epoch Best Epoch

EMG 62.84 83.57 84.76
EEG 54.7 62.1 62.73
Transfer Learning
(EEG to EMG)

65.22 (+2.38) 85 85.12 (+0.36)

Transfer Learning
(EMG to EEG)

84.95 (+30.25) 93.28 93.82 (+29.95)
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Table 5.36: Comparison of the CNN training processes of EMG and EEG with random weight distribution
compared to weight transfer learning between EMG and EEG.

Experiment
Training Accuracy (%)

Epoch 0 Final Epoch Best Epoch

EMG 52.4 88 88.55
EEG 72.5 95.3 96.24
Transfer Learning
(EMG to EEG)

82.39 (+9.89) 96.4 97.18 (+0.94)

Transfer Learning
(EEG to EMG)

58.18 (+5.78) 84.24 85.18 (-3.37)

lem, with an increase of best classification accuracy from 62.37% to 93.82% (+29.95). A

very slight increase was also observed in reverse, when EEG network weights were used as

the initial distribution for the EEG problem, with the best accuracy rising from 84.76%

to 85.12% (+0.36). In terms of starting accuracy, that is, the accuracy of classification

with no training at all, a success of knowledge transfer also occurred; EEG classification

increased from 54.7% to 84.95% (+30.25), and thus even prior to any training the network

outperformed the network initially trained on EEG data. Likewise, the EMG classification

prior to training at epoch 0 increased from 62.84% to 65.22% (+2.38). It was observed that

learning had ceased prior to epoch 30 being reached.

The epoch zero results are particularly interesting since transfer learning has occurred

between two completely different domains, from EMG gesture classification to EEG mental

state recognition. This shows that knowledge transfer is possible even without training

being required.

5.7.6 Experiment II: CNN Transfer Learning

Figure 5.38 shows the learning processes for the four networks. It was observed that learn-

ing was still occurring at epoch 30 (unlike in the MLPs in Experiment 1), and due to

this, the learning time was increased to 100 epochs. Table 5.36 shows the outcome of the

experiments. Some transfer learning successes were achieved, with higher starts in TL ex-

periments, of +9.89% and +5.78% for EEG and EMG, respectively. The best classification

accuracy of EEG was improved by 0.94%, whereas this was not the case for EMG, which

actually decreased by 3.37%. Thus, the CNN transfer learning approach is only successful

in the case of EMG to EEG but not vice versa.
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Figure 5.38: Test and training accuracies of EMG, EEG, and transfer between EMG and EEG with a
Convolutional Neural Network, over 100 epochs. As with the previous figure, ‘EEG Transfer’ denotes EMG
to EEG and likewise for ‘EMG Transfer’.

J. J. Bird, PhD Thesis, Aston University 2021 198



CHAPTER 5. NON-VERBAL INTERACTION

Table 5.37: Best CNN accuracy observed for ResNet50, Baseline (Non-Transfer), and Transfer Learning.

Best CNN Accuracy Observed (%)

ResNet50 Baseline Transfer Learning
EEG EMG EEG EMG EEG EMG
92.34 74.92 96.24 88.55 97.18 85.18

It is important to note that previously, the One Rule Random Forest approach (Section

5.3) gained 87.16% accuracy and the image representation and CNN approach (Section 5.4)

gained 89.38% accuracy on EEG data. Our network is competitive at 82.39% accuracy on

the same dataset with no training whatsoever, using simply the weights from the EMG net-

work. Similarly, it is also important to note that the final accuracy of 97.18% substantially

outperforms these previous approaches.

5.7.6.1 Comparison to ResNet50

For comparison of transfer quality, the ResNet 50 CNN architecture is used. Table 5.37

shows that the ResNet50 achieves weaker results for both problems. The ResNet50 ar-

chitecture was observed to stop improving after 35 and 39 epochs for EEG and EMG

respectively, similarly to the behaviour of our architecture shown in Figure 5.38.

5.8 Summary and Conclusion

The experiments and results presented in this chapter have led to several non-verbal com-

munication abilities for the HRI framework. Initially, Section 5.3 suggested DEvo, a Deep

Evolutionary approach to optimise and classify complex signals using bio-inspired com-

puting methods in the whole pipeline, from feature selection to classification. For mental

state and mental emotional state classification of EEG brainwaves and their mathematical

features, the two best models were selected. Firstly, a more accurate AdaBoosted LSTM,

that took more time and resources to train in comparison to other methods, but man-

aged to attain accuracies of 84.44% and 97.06% for the two first datasets (attentional and

emotional state classification). Secondly, a AdaBoosted Multilayer Perceptron that was op-

timised using a hyper-heuristic evolutionary algorithm. Although its classification accuracy

was slightly lower than that of the AdaBoosted LSTM (79.7% and 96.23% for the same
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two experiments), less time was required for training. For the MindBigData digits dataset,

the most accurate model was an Adaptive Boosted version of the DEvo optimised MLP,

which achieved an accuracy of 30%. For this problem, none of the LSTMs were able to

achieve any meaningful nor useful results, but the DEvo MLP approach saved time, and

also produced results that were somewhat useful. Results were noted to be impressive for

application due to the high classification ability along with the reduction of resource usage

- real-time training from individuals would be possible and thus provide a more accurate

EEG-based product to the consumer, for example, in real-time monitoring of mental state

for the grading of meditation or yoga session quality. Real time communication would also

be possible in human-computer interaction where the brain activity acts as a degree of in-

put. The goal of the experiments were successfully achieved, the DEvo approach has led to

an optimised, resource-light model that closely matches that to an extremely resource heavy

deep learning model, losing a small amount of accuracy but computing in approximately

10% of the time, except for in one case in which it far outperformed its competitor models.

The aforementioned models were trained on a set of attributes that were selected with a

bioinspired evolutionary algorithm. The success of these processes led to future work sug-

gestions, which follow the pattern of further bioinspired optimisation applications within

the field of machine learning. Future work should also consider, for better application of the

process within the field of Electroencephalography, a much larger collection of data from a

considerably more diverse range of subjects in order to better model the classifier optimi-

sation for the thought pattern of a global population rather than the subjects encompassed

within this study.

Following on from these experiments, Section 5.4 then explored the possibility of using

image recognition techniques for EEG signal processing. 729 features were selected to

directly compare 2D and 3D visual space for EEG classification, since 729 can be used

to make both a perfect square and cube. Experiments showed the superiority of the 2-

Dimensional approach and there are of course many more numbers within the bounds of

the attribute set that make only a perfect square, 1273 to be exact. If cube comparison is

discarded, the image size could be explored to test whether there is a better set of results

totalling either more or fewer than the 729 that was chosen. The feature extraction for

the 64-channel dataset produced 23,488 attributes and thus further studies on this could

attempt to compare different sized images and cubes due to the abundance of features.

J. J. Bird, PhD Thesis, Aston University 2021 200



CHAPTER 5. NON-VERBAL INTERACTION

Furthermore, the method of reshaping to 2D and 3D through the order of their feature

selection scores was performed in a relatively simple fashion for the purposes of preliminary

exploration. In future studies, due to the success found in this work, the method of reshaping

and ordering of the attributes within the shape will be studied considering the reshaping

method an additional network hyperparameter. This presents a combinatorial optimisation

problem that should be further explored and solved in order to present more scientifically

sound methods for reshaping. In addition, in future, it would be useful to explore other

methods of feature extraction using the CNN model. In Section 5.4, the approach presented

was compared to statistical models which also had the same features as input - although

this would not be possible in the raw signal domain, the raw signals may be more useful for

convolutional neural networks to learn from in future benchmarking experiments. Another

limitation of the study is that the unseen data was restricted to both holdout test sets and

unseen subjects, in future a further dataset should be collected in order to enable testing

on a larger amount of unseen data. As previously described, the main limitation of the

work in Section 5.4 is the method of reshaping, three methods were explored which were

dictated by the score metrics of three different dimensionality reduction techniques. In

the future, a combinatorial optimisation algorithm could be used with CNN classification

metrics as a function fitness to optimise. Future work could specifically explore the effects

of reshaping on CNNs operating in different numbers of spatial dimensions and thus then

how this may be useful for future tasks. The techniques were applied generally to four

and 64-channel EEG recordings, thus applied to datasets of much different width (given

that temporal techniques are extracted from each electrode), and future work could explore

if differing successful techniques could be applied with either a task or electrode count in

mind. Datasets with larger numbers of subjects and leave-one-subject-out testing could

also be explored in future works to discern whether these models improve the ability of

unseen subject classification or whether calibration is required. To summarise Section 5.4,

initially, nine preliminary deep learning experiments were carried out twice for three EEG

datasets. Three in 2-Dimensional space and three in 3-Dimensional space and compared.

In the cases of attention and emotional state, the 2D CNN outperforms the 3D CNN when

rule-based and entropy-based feature selection is performed, respectively. On the other

hand, for eye state with a 64-channel EEG, the 3D CNN produced the best accuracy when

features were selected via their Symmetrical Uncertainty. The best 2D and 3D models for
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each were then taken forward for topology optimisation, and finally, to prevent overfitting,

said topologies were validated using 10-fold cross validation. Final results showed that the

data preprocessing methods not only retained their best overall score, but all were improved

upon after topology optimisation and subsequent k-fold cross validation.

Towards real-time HRI via hand gestures, Section 5.5 explored transfer learning tech-

niques to improve gesture recognition via EMG signals. In the calibration experiment,

error rates were found to be extremely low. Accuracy measurements exceeded the original

benchmarks and thus further experimentation is required to explore this. Calibration was

performed for a limited group of four subjects, further experimentation should explore a

more general affect when a larger group of participants are considered. Towards the end of

Section 5.5, preliminary benchmarks were presented for potential application of the induc-

tive and supervised transductive transfer learning calibration process. The 20 Questions

game with a Pepper Robot was possible with 15 seconds of calibration data and 5 seconds

of answering time per question, and predictions were at 100% for two subjects in two dif-

ferent experimental runs. Further work would could both explore more subjects as well as

attempt to perform this task with shorter answering time, i.e., a deeper exploration into

how much data is enough for a confident prediction. For example, rather than the simplistic

most common class Random Forest approach, a more complex system of meta-classification

could prove more useful as the pattern of error may be useful also for prediction; if this were

so, then it stands to reason that confident classification could be enabled sooner than the

5-second mark. Additionally, when a a best-case paradigm is confirmed, the method could

then be compared to other sensory techniques such as image/video classification for gesture

recognition. Furthermore, should the said method be viable, then a multimodal approach

could also be explored to fuse both visual and EMG data. This section showed that the

proposed transfer learning system is viable to be applied to the ternary classification prob-

lem presented. Future work could explore the robustness of this approach to problems of

additional classes and gestures in order to compare how the results are affected when more

problems are introduced. To summarise Section 5.5, the work firstly found that a voting

ensemble was a strong performer for the classification of gesture but failed to generalise to

new data. With the inductive and transductive transfer learning calibration approach, the

best model for generalisation of new data was a Random Forest technique which achieved

relatively high accuracy. After gathering data from a subject for only 5 seconds, the model
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could confidently classify the gesture at 100% accuracy through the most common class-

based Random Forest classifier. Since high accuracies were achieved by the transfer learning

approach in this work when compared to the state-of-the-art related works and the pro-

prietary MYO system, future applications could be enabled with this approach towards a

much higher resolution of input than is currently available with the MYO system.

Two other methods were also explored for the improvement of signal classification, ulti-

mately leading to better HRI abilities. The first was data augmentation, which was explored

in Section 5.6. The study presented multiple experiments with real and synthetic biological

signals to ascertain whether classification algorithms can be improved by considering data

generated by the GPT-2 model. The first experiments showed that although the data are

different, i.e., real and synthetic data were comparatively unique, a model trained on one of

the two sets of signals shows promising results in being able to classify the other. Thus the

GPT-2 model is able to generate relatively realistic data which holds useful information that

can be learnt from for application to real data. An SVM trained on synthetic EEG data

was observed to classify real data at 74.71% accuracy. Following on from this observation,

experiments then showed that several learning algorithms of differing statistical natures

were improved for EEG classification when the training data was augmented by GPT-2.

The main hypothesis that this section has argued through the experiments performed, is

that synthetic biological signals output by a generative attention-based transformer hold

enough knowledge for data augmentation to improve learning algorithms for classification

of real biological signal data. In the future, larger datasets could be leveraged and thus deep

learning would be a realistic possibility for classification, where deep learning processes are

similarly augmented with GPT-2 data. Finally, given that this work showed promise in

terms of the model architecture itself, similar models could also be benchmarked in terms

of their ability to create augmented training datasets, e.g. BART, CTRL, Transformer-XL

and XLNet. The second method of model improvement that was explored was cross-domain

transfer learning in Section 5.7. The study demonstrated that cross-domain transfer learn-

ing is possible between the domains of electroencephalography and electromyography via

the electrical signals produced by the frontal lobe of the brain and forearm muscles. Cross-

domain transfer learning with EMG to EEG and vice versa has not been explored before

in the related literature prior to these experiments. Limited selection of network topologies

was performed through a single multi-objective evolutionary search. With the possibility
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of a local minimum being encountered and stagnation occurring, further executions of the

search should be performed in a subsequent study in order to explore the problem space

and thus reduce the chance of stagnation. Scalarisation was considered equal between the

two datasets, although the EMG dataset was more diverse and much larger than the EEG

dataset and thus alternative scalars with preference to either dataset should also be bench-

marked. Future work could also involve the possibility of cross-domain transfer learning

in multiple biological signal domains, such as including other areas of the muscular sys-

tem and brain, and additionally, other domains such as electrocardiography. The potential

for transfer learning between these domains should be applied in Human-Machine Interac-

tion in the future, since the application of a framework as described here shows not only

the advantage of improved accuracy of classification, but additionally, the derivation of a

less computationally expensive process compared to learning from scratch. To summarise,

Section 5.7 argued that, through initial weight distribution, cross-domain transfer learn-

ing between two biological signal domains is possible and, in some cases, has a positive

effect on machine learning. Identical mathematical features were extracted from the waves

to provide a stationary description fit for classification, and transfer between features was

also noted. Initial pre-training abilities were higher than random weight distribution, the

learning curves and final classification abilities for both domains were also better, indicating

that useful knowledge had been shared between both domains during the transfer learning

process. The exploration of the possibility of transfer of knowledge from/to other biological

signal domains such as ECG is also an exciting topic for future study.

To finally conclude this chapter, as was noted in the previous chapter, the experiments

performed have led to several new technologies and modules to be implemented within the

overall framework when all works are unified. Classification of concentrative and emotional

states from EEG data are now possible, with varying levels of complexity and often rela-

tive ability, which are useful since the framework could be operating with varying levels of

computational complexity - for example, the CNN approach was strong for mental state

recognition but a weak machine may prefer to use the Random Forest or Extreme Gradient

Boosting approaches which achieve a lower ability but through a much less complex model.

In addition to this ability, the interpretation of gestures is now possible for affirmative or

negative responses via electromyography as another mode of social interaction with ma-

chines. Towards the end of this chapter, it was also discovered that transfer learning was
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possible between the two signal domains and useful knowledge could be shared between

them. Finally, it was then discovered that the classification of signals was improved when

the model was exposed to synthetic data augmentation via training generative transformer

models.
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Chapter 6

Multimodality Human-Robot

Interaction

6.1 Introduction

In Machine Learning, Multimodality is the application of multiple, differing inputs towards

a common goal [419]. To give a specific example in the field, a human’s emotional state

(the common goal) can be interpreted and predicted by considering multiple physiological

signals (as in, multiple, differing inputs) to improve the predictive ability of a model when

classifying emotional states[420].

In this Chapter, several experiments are performed to enable Multimodality learning

within the framework that is ultimately derived in Chapter 7. The three experiments focus

on the fusion of audio and images to improve scene recognition in Section 6.2, the transfer of

knowledge from simulated environments to real environments to improve scene recognition

in Section 6.3, and then the fusion of image and Leap Motion data to improve a Sign

Language Recognition system’s robustness when interpreting new subjects in Section 6.4.

6.2 Multimodality Late Fusion for Scene Classification

The novelty of this study consists in a multi-modal approach to scene classification, where

image and audio complement each other in a process of deep late fusion. Specifically, it is

found that situations where a single model may be confused by anomalous data points are

now corrected through an emerging higher order integration. Prominent examples include
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Figure 6.1: Overview of the multi-modality network. Pre-trained networks without softmax activation
layer take synchronised images and audio segments as input, and classify based on interpretations of the
outputs of the two models.

a water feature in a city misclassified as a river by the audio classifier alone and a densely

crowded street misclassified as a forest by the image classifier alone, both are examples

which are correctly classified by the multi-modal approach presented.

‘Where am I?’ is a relatively simple question answered by human beings, although

it requires exceptionally complex neural processes. Humans use their senses of vision,

hearing, temperature etc. as well as past experiences to discern whether they happen to

be indoors, outdoors, and moreover specifically where they find themselves. This process

occurs, for all intents and purposes in an instant. Visuo-auditory perception is optimally

integrated by humans to solve ambiguities; it is widely recognised that audition dominated

time perception while vision dominates space perception. Both modalities are essential

for awareness of the surrounding environment [421]. In a world rapidly moving towards

autonomous machines outside of the laboratory or home, environmental recognition is an

important piece of information which should be considered as part of interpretive processes

of spatial awareness.

Current trends in Robotic Vision [422, 423, 424, 425] present two main reasons for

the usefulness of scene classification. The most obvious reason is simply the ability of an

awareness of where one currently is, but furthermore, and in more complex situations, the

awareness of one’s surroundings can be further used as an input to learning models or as
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a parameter within an intelligent decision making process. Just as humans ‘classify’ their

surroundings for every day navigation and reasoning, this ability will very soon become

paramount for the growing field of autonomous machines in the outside world such as self-

driving cars and self-flying drones, and possibly, autonomous humanoid androids further into

the future. Related work (Section 2.12) explores this further, and finds that although the

processes of classification themselves are well-explored, multi-modality classification is a ripe

area enabled by the rapidly increasing hardware limits faced by researchers and consumers.

With this finding in mind, this work explores the possibility of considering a bi-modal

sensory cue combination for environment recognition. This enables the autonomous machine

the ability to look (Computer Vision) and to hear (Audio Processing) before predicting

the environment with a late fusion interpretation network for higher order functions such

as anomaly detection and decision making. The main motivation for this is to prevent

anomalous data causing confusion in the classification process; for example, if a person were

to observe busy traffic on a country road, hearing their surroundings only could possibly

lead to the confusion of a city street, whereas vision enables the observer to recognise

the countryside and correct this mistake. To give an example vice-versa, that is shown

in this experiment, a densely crowded city street confuses a strong vision model since at

many intervals no discernable objects are recognised, but the sounds of the city street

can still be heard. Although this anomalous data point has confused the visual model, the

interpretation network learns these patterns, and the audio classification is given precedence

leading to a correct prediction. Later in this section, concrete examples are given where

single-modal networks encounter anomalous data which causes confusion, but the late fusion

of both networks corrects for many such cases. The main contributions of this study are

centred around the proposed multi-modality framework illustrated in Figure 6.1 and are

the following:

1. The formation of a large publicly available dataset1 encompassing multiple dynamic

environments, ranging from a classroom to cities, rainforests and lakes, to mention

a few. This dataset provides a challenging problem, since many environments have

similar visual and audio features.

2. Supervised Transfer Learning of the VGG16 model towards scene classification by

1Full dataset is available at:
https://www.kaggle.com/birdy654/scene-classification-images-and-audio
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training upon the visual data. A range of interpretation neurons are engineered for

fine-tuning. Accurate classification abilities are found.

3. The evolutionary optimisation of a deep neural network for audio processing of at-

tributes extracted from the accompanying audio, leading to accurate classification

abilities, similarly to the vision network.

4. A final late fusion model, which multi-modally considers the previously trained net-

works and performs interpretation in order to discern and correct various anomalous

data points that led to mistakes (examples of this are given in Section 6.2.2.4). The

multi-modality model outperforms both the visual and audio networks alone, therefore

it is argued that multi-modality is a better solution for scene classification.

For lifelong learning in autonomous machines, the efficiency of algorithms is an im-

portant factor. In situations where vast cloud resources are not available, learning must

be performed locally. For this reason there is a focus on consumer-level hardware with a

mid-range Graphical Processing Unit. Temporal awareness pre-learning is introduced to an

extent through video frames, and most prominently the statistical extraction of MFCCs.

Although temporal learning techniques such as RNN and LSTM have shown success in

the field, the learning process presented is applicable to consumer-level hardware and thus

accessible for the current capabilities of autonomous machines.

6.2.1 Method

The majority of state-of-the-art work dealing with the interpretation of real-world data often

considers a single input, as the literature review shows. The idea of multi-modality learning

is to consider multiple forms of input [426]. That is, from a bio-inspired perspective, to

consider multiple senses. This is of course not limited to humans, for example, the use of

vision, hearing, and smell are often used in the animal kingdom to detect potential predators.

This study considers the senses of vision and hearing to discern the environment and enable

this via a late fusion decision making process. It is thus worth noting that the problem faced

is not Simultaneous Localisation and Mapping (SLAM), i.e. the autonomous machine is

not required to navigate the scene whilst mapping out said scene; rather, the problem faced

by the work in this section is to recognise the environment in the form of a classification

task. Specifically, this is the processing of an image or audio clip (or both together, in
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Figure 6.2: Example of extracted data from a five second timeline. Each second, a frame is extracted from
the video along with the accompanying second of audio.

the case of the fusion problem) to derive a class label. Simply put, the question posed to

the classifier is ‘where are you?’. Synchronised images and audio are treated as inputs to

the classifier, and are labelled semantically in regards to the interpreted outputs of models

that consider each form of data. A diagram of this process can be observed in Figure 6.12;

visual and auditory functions consider the synchronised image and audio independently,

before a higher order of function occurs as the two neural networks are concatenated into

an interpretation network via late fusion to a further hidden layer before a final prediction

is made.

Following dataset acquisition of videos, video frames, and accompanying audio clips, the

general experimental processes are as follows. (i) For audio classification: the extraction of

MFCCs of each audio clip to generate numerical features and evolutionary optimisation of

neural network topology to derive network hyperparameters. (ii) For image classification:

pre-processing through a centre-crop (square) and resizing to a 128x128x3 RGB matrix due

to the computational complexity required for larger images, and subsequent fine tuning of

the interpretation layers for fine-tune transfer learning of the VGG16 trained weight set. (iii)

For the final model: freeze the trained weights of the first two models while benchmarking

an interpretation layer for synchronised classification of both visual and audio data.

Initially, 37 videos as sources are collected in varying length for 8 environmental classes

at NTSC 29.97 FPS: Beach (4 sources, 2080 seconds), City (5 sources, 2432 seconds), Forest

(3 sources, 2000 seconds), Jungle (3 sources, 2000 seconds), Football Match (4 sources, 2300

seconds), Classroom (6 sources, 2753 seconds), Restaurant (8 sources, 2300 seconds), and

Grocery Store (4 sources, 2079 seconds).

The videos are dynamic, from the point of view of a human being. All audio is nat-

2VGG Convolutional Topology is detailed in [427]
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urally occurring within the environment. It must be noted that some classes are similar

environments and thus provide a difficult recognition problem. Due to an imbalance of

data, the longest videos from classes exceeding 2000 seconds are selected and shortened in

length to satisfy that the class has 2000 seconds of data. Thus, a large balanced data set

of 16,000 seconds of data is finally produced (2,000 per class). To generate the initial data

objects, a crop is performed at each second. The central frame of the second of the video is

extracted with the accompanying second of audio, an example of data processing for a city

is shown in Figure 6.2. Initial exploration showed that the image classifier was not affected

greatly by 0.25, 0.5, and 1 second extractions, but the audio classifier suffered from shorter

clips and thus 1 second was chosen as the crop length. Further observation lengths should

be explored in future. This led to 32,000 data objects, 16,000 images (128x128x3 RGB

matrices) accompanied by 16,000 seconds (4.4 hours) of audio data. 13 MFCC attributes

are extracted from each frame, producing 104 attributes per 1 second clip.

For audio classification, an evolutionary algorithm was developed to select the number of

layers and neurons contained within a MLP to derive the best network topology. Population

is set to 20 and generations to 10, since stabilisation occurs prior to generation 10. The

simulation is executed five times to avoid stagnation at local minima being taken forward

as a false best solution. Activations of the hidden layers are set to ReLu.

For image classification, the VGG16 layers and weights [427] are implemented except

the dense interpretation layers beyond the convolutional layers, which is then followed by

{2, 4, 8, · · · , 4096} ReLu neurons for interpretation and finally a softmax activated layer

towards the eight-class problem.

To generate the final model, the previous process of neuron benchmarking is also fol-

lowed. The two trained models for audio and image classification have their weights frozen,

and the training concentrates on the interpretation of the outputs of the networks (higher

order function). Referring back to Figure 6.1, the softmax activation layers are removed

from the initial two networks in order to pass their interpretations to the final interpretation

layer through concatenation i.e., a densely connected layer following the two networks and

{2, 4, 8, · · · , 4096} ReLu neurons are benchmarked to show multi-modal classification abil-

ity. All neural networks are trained for 100 epochs with shuffled 10-fold cross-validation to

prevent overfitting of weights and topology in both training and hyper-parameter selection.
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Figure 6.3: Image 10-fold classification ability with regards to interpretation neurons.

Table 6.1: Final results of the (#) five Evolutionary Searches sorted by 10-fold validation Accuracy,
Simulations are shown in Figure 6.4. Conns. denotes the number of connections in the network.

Simulation Hidden Neurons Connections Accuracy

2 977, 365, 703, 41 743,959 93.72%
4 1521, 76, 422, 835 664,902 93.54%
1 934, 594, 474 937,280 93.47%
3 998, 276, 526, 797, 873 1,646,563 93.45%
5 1524, 1391, 212, 1632 2,932,312 93.12%

6.2.2 Results

In this section, results of the experiments are given. Initially the exploration of neural

network topologies for image and audio classification, and finally the tuning of interpretation

layers for the final multi-modality network.

6.2.2.1 Fine Tuning of VGG16 Weights and Topology

Figure 6.3 shows the tuning of interpretation neurons for the image classification network.

The best result was 2048 neurons which resulted in 89.27% 10-fold classification ability.

6.2.2.2 Evolving the Sound Processing Network

In this section, the evolutionary selection of network topologies and results of audio pro-

cessing are presented.

Figure 6.4 shows the evolutionary optimisation of neural network topologies for classifi-

cation of audio. Regardless of the initial (random) population, stabilisation is seen within
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Figure 6.4: Optimisation of audio classification network topologies. Final results of each are given in Table
6.1.

the 92-94% accuracy mark. The best solution was a deep network of 977, 365, 703, 41

hidden-layer neurons which gained 93.72% accuracy via 10-fold cross validation. All final

solutions are presented in Table 6.1. Five simulations are performed for scientific accuracy

and to alleviate possible anomalies or a local minima being reached via evolutionary search.

Interestingly, a far less complex solution scores a competitive score of 93.54% accuracy with

79,057 fewer network connections. A difference of 0.6% is found across the results of the

simulations; although this is the case, the marginally strongest model (Simulation 2) is

chosen for simplicity. It is worth noting that this model is also the second least complex of

the final solutions.

6.2.2.3 Fine Tuning the Final Model

With the two input networks frozen at the previously trained weights, the results of the

multimodal network can be observed in Figure 6.5. The best interpretation layer was

selected as 32, which attained a classification ability of 96.81% as shown in Table 6.2. Late

fusion was tested with other models by treating the two networks as feature generators for

input, a Random Forest scored 94.21%, Naive Bayes scored 93.61%, and an SVM scored

95.08%, which were all outperformed by the tertiary deep neural network.
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Figure 6.5: Multi-modality 10-fold classification ability with regards to interpretation neurons.

(a) Beach (with speech at 3s-4.5s). (b) Restaurant (with speech throughout).

Figure 6.6: Sonograms of two short samples of audio files from a crowded beach and restaurant, human
speech occurs in both and due to this the single-modality audio classifier can confuse the two.

Image:	"CITY"
Audio:	"CITY"

Multi-modality:	"CITY"

Image:	"FOREST"
Audio:	"CITY"

Multi-modality:	"CITY"

Figure 6.7: An example of confusion of the vision model, which is corrected through multi-modality. In the
second frame, the image of hair is incorrectly classified as the “FOREST” environment through Computer
Vision.
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Image:	"CITY"
Audio:	"RIVER"

Multi-modality:	"CITY"

Image:	"CITY"
Audio:	"RIVER"

Multi-modality:	"CITY"

Figure 6.8: An example of confusion of the audio model, which is corrected through multi-modality. In
both examples, the audio of a City is incorrectly classified as the “RIVER” environment due to the sounds
of a fountain and flowing water by the audio classification network.

Table 6.2: Scene classification ability of the three tuned models.

Model Scene Classification Ability

Visual 89.27%
Auditory 93.72%
Multi-modal 96.81%

6.2.2.4 Comparison and Exploration of Models

To present final comparisons of the classification models, Table 6.2 shows the best perfor-

mances of the tuned vision, audio, and multimodal models, through 10-fold cross-validation.

Although vision was the most relatively difficult task at 89.27% prediction accuracy, it was

only slightly outperformed by the audio classification task at 93.72%. Outperforming both

models was the multi-modal approach (Figure 6.1), when both vision and hearing are con-

sidered through network concatenation, the model learns not only to classify both network

outputs concurrently, but more importantly calculates the relationships between them.

An example of this can be seen in Figure 6.7, in which the Vision model has been

confused by a passerby. The audio model recognises the sounds of traffic and crowds,

etc. (this is also possibly why the audio model outperforms the image model slightly), the

interpretation network has learnt this pattern and thus has ‘preferred’ the outputs of the

audio model in this case. Since the multi-modal model outperforms both single models,

this confusion also occurs in the opposite direction; observe that in Figure 6.8, the audio

model has inadvertently predicted that the environment is a river due to the sounds of

water, yet the image classifier correctly predicts it is a city, in this case, Las Vegas. The

multi-modal model, again, has learnt such patterns and has preferred the prediction of the
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Figure 6.9: Confusion matrix for the multi-modality model applied to completely unseen data (two minutes
per class).

Table 6.3: Results of the three approaches applied to completely unseen data (two minutes per class).

Approach Correct/Incorrect Classification Accuracy

Audio Classification 359/1071 33.52%
Image Classification 706/1071 65.92%
Multi-modality 856/1071 79.93%

image model, leading to a correct recognition of environment. A further example in which

human speech can confuse a model can be seen in Figure 6.6; multiple frames of audio from

the beach clip were confused as ‘Restaurant’ by the audio classification model, but were

correctly classified as ‘Beach’ by the image classification model as well as the multi-modal

approach. Likewise this confusion can also occur additionally within ‘City’, ‘Grocery Store’,

and ‘Football Match’ due to the mis-classification of human voices to specific environments,

although multi-modality corrects this since they are visually very different. Note that this

sonogram shows the frequency of the raw audio (stereo averaged to mono), and MFCC

extraction occurs after this point.

The results of applying the models to completely unseen data (two minutes per class)
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can be seen in Table 6.3. It can be observed that audio classification of environments is

weak at 33.52%, which is outperformed by image classification at 65.92% accuracy. Both

approaches are outperformed by the multi-modality approach which scores 79.93% classi-

fication accuracy. The confusion matrix of the multi-modality model can be observed in

Figure 6.9; the main issue is caused by ‘Restaurant’ being confused as ‘Supermarket’, while

all other environments are classified strongly. On manual observation, the videos for both

classes in the unseen data both feature a large number of people with speech sound in the

background, this is possibly most similar to the supermarkets in the training dataset and

thus the model is confident that both of these instances belong to supermarket. This sug-

gests that the data could be more diversified in the future in order to feature more minute

details and thus improve the model’s ability for discerning between the two.

6.3 CNN transfer learning for Scene Classification

This section explores experiments which show that both fine-tune learning and cross-domain

sim-to-real transfer learning from virtual to real-world environments improve the starting

and final scene classification abilities of a computer vision model. The main finding is that

not only can a higher final classification accuracy be achieved, but strong classification

abilities prior to any training whatsoever are also encountered when transferring knowledge

from simulation to real-world data, showing useful domain knowledge transfer between the

datasets.

The possibility of transfer learning from simulated data to real-world application is

promising due to the scarcity of real-world labelled data being an issue encountered in

many applications of machine learning and artificial intelligence [428, 429, 430]. Based on

this, Fine-tune Learning and Transfer learning are often both considered to be viable so-

lutions to the issue of data scarcity in the scientific state-of-the-art via large-scale models

such as ImageNet and VGG16 for the former and methods such as rule and weight transfer

for the latter [431, 432, 433]. Here, both of these methods are performed in a pipeline for

scene classification, by fine-tuning a large-scale model and transferring knowledge between

rules learnt from simulation to real-world datasets.

The consumer-level quality of videogame technology has rapidly improved towards arguably

photo-realistic graphical quality through ray-traced lighting, high resolution photographic
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textures and Physically Based Rendering (PBR) to name several prominent techniques.

This then raises the question, since simulated environments are ever more realistic, is it

possible to transfer knowledge from them to real-world situations? Should this be possi-

ble, the problem of data scarcity would be mitigated, and also a more optimal process of

learning would become possible by introducing a starting point learned from simulation. If

this process provides a better starting point than, for example, a classical random weight

distribution, then fewer computational resources are required to learn about the real world

and also fewer labelled data points are required. In addition, if this process is improved

further, learning from real-world data may not actually be required at all.

This work explores 12 individual topology experiments to show that real-world classifi-

cation of relatively scarce data can be improved via pre-training said models on simulation

data from a high-quality videogame environment. The weights developed on simulation

data are applied as a starting point for the backpropagation learning of real-world data,

and it is found that both starting accuracy and asymptote (final ability) are often higher

when the model has been able to train on simulation data before considering real data.

The main scientific contributions of this work are threefold:

1. The formation of two datasets for a 6-class scene classification dataset, both artificial

simulation and real-world photographic data3.

2. 24 topology tuning experiments for best classification of the two datasets, 12 for

each of the datasets by 2, 4, 8...4096 interpretation neurons following the fine tuning

of a VGG16 CNN network (with interpretation and softmax layers removed). This

provides a baseline comparison for Transfer Learning as well as the pre-trained weights

to be used in the following experiment.

3. 12 transfer learning experiments of the weights trained on simulation data transferred

to networks with the task of classifying real-world data. The results are evidence

that transfer learning of useful domain knowledge is possible from the classification of

simulated environments to the classification of real-world photographic data, further

improving classification ability of real data.

3https://www.kaggle.com/birdy654/environment-recognition-simulation-to-reality
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Figure 6.10: In order to collect artificial data, a camera is attached to a humanoid robot for height reference
in the Unity game engine.

6.3.1 Method

The proposed question here is “Can knowledge be transferred from simulation to real world,

to improve effectiveness and efficiency of learning to perform real world tasks, when real

world training data are scarce?”. Here, the approach is explained, starting from building

the datasets, following with the experiment, the choice of models, and their practical imple-

mentation. Chosen hyperparameters and computational resources are included to promote

replicability as well as for future improvement and application to related state-of-the-art

problems.

6.3.1.1 Datasets

Initially, two large photography datasets are gathered from the following environments;

Forest, Field, Bathroom, Living Room, Staircase, and Computer Lab. The first two are

natural environments and the final four are artificial environments. For the simulation data,

1,000 images are collected per environment from the Unity videogame engine via a rotating

camera of 22mm focal length (chosen since it is most similar to the human eye [434]) affixed

to the viewpoint of a 120cm (3.93ft) robot model, as can be seen in Figure 6.10. The camera

is rotated 5 degrees around the Y axis per photograph, and then rotated around the X axis

15 degrees three times after the full Y rotation has occurred.4 In total, 6,000 images are

4Unity script for data collection is available at https://github.com/jordan-bird/Unity-Image-Dataset-
Collector

J. J. Bird, PhD Thesis, Aston University 2021 219



CHAPTER 6. MULTIMODALITY INTERACTION

Figure 6.11: Samples of virtual (top) and real (bottom) environments from the two datasets gathered for
these experiments.

collected in order to form a balanced dataset.

For the photographic real-world data, a Google Images web crawler is set to search and

save the first 600 image search results for each environment name. Each set of collected

images are sought through manually in order to remove any false results and more data is

then collected if needed to retain a perfect class balance. In figure 6.11 samples of the virtual

visual data gathered from the Unity game engine (top row) and photographs of real world

environments gathered from Google Images (bottom row) are shown. Various similarities

can be seen, especially through the colours that occur in nature. Some of the more photo-

realistic environments, such as the living room, bare similarity due to the realistic high-poly

models, for example, through the creases in the sofa material. Less realistic environments,

such as the bathroom, feature fewer similarities through the shapes of the models, although

lighting differs between the two.

6.3.1.2 Experiment

With all image data represented as a 128 × 128 × 3 array of RGB values, the datasets are

used to train the models. Convolutional Neural Network layers are fine-tuned from the

VGG16 network [435] with the input layers replaced by the shape of our data, and the

interpretation layers are removed to benchmark a single layer of 2, 4, 8, ..., 4096 neurons.

All of these sets of hyperparameters are trained on the simulation image dataset, and an

additional set of hyperparameters are then trained on the real image dataset, both for 50

epochs. Following this, all weights trained on the simulation dataset are then transferred to

real-world data for a further 10 epochs of training to benchmark the possibilities of transfer
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Figure 6.12: Overall diagram of the experiment showing the derivation of ∆S and ∆F (change in starting
and final classification ability) for comparison.

learning. Thus, both methods of fine-tune and transfer learning are explored. All training

of the models is via 10-fold cross-validation where starting (pre-training) and asymptotic

(ultimate ability) abilities are measured to discern whether knowledge transfer is possible

between the domains. A diagram of the experiment can be observed in Figure 6.12 within

which the changes in starting (∆S) and final abilities (∆F ) of the classification of real-world

environments are compared with and without weight transfer from a model pretrained on

data gathered from virtual environments.

In this work, all models were trained on deep neural networks developed in the Keras

library with a TensorFlow backend. Implementation was performed in Python. Random

weights were generated by an Intel Core i7 CPU which was running at a clock speed of

3.7GHz. RAM used for the initial storage of images was 32GB at a clock speed of 1202MHz

(Dual-Channel 16GB) before transfer to the 6GB of VRAM and subsequent learning on a

GTX 980Ti GPU via its 2816 CUDA cores.

6.3.2 Results

In this section, the results from the experiments are presented following the method de-

scribed above. Firstly, the classification ability of the networks trained on virtual data is

outlined, then a comparison between networks to classify real-world data initialised with

random weight distribution and weights transferred from the networks trained on virtual
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Table 6.4: Benchmarking of interpretation network topologies for simulation environments only. High
Results (90%+) can be expected due to repeated textures, bump maps and lighting.

Interpretation Neurons Classification Accuracy (%)

2 33.28
4 49.69
8 88
16 96.04
32 98.33
64 98.33
128 98.16
256 98.76
512 97.02
1024 97.86
2048 64.08
4096 93.93

Table 6.5: Comparison of non-transfer and transfer learning experiments. ∆S and ∆F define the change
in starting and final accuracies between the selected starting weight distribution. A positive value denotes
successful transfer of knowledge between simulation and reality.

Interp.
Neurons

Experiment
Non-TL TL Comparison
Starting Acc. (%) Final Acc. (%) Starting Acc. (%) Final Acc. (%) ∆S ∆F

2 18.25 18.69 21.35 36.5 +3.1 +17.81
4 15.27 27.32 33.74 51.88 +18.47 +24.56
8 12.5 80.31 59.29 85.29 +46.79 +4.98
16 21.57 85.07 60.37 86.73 +38.8 +1.66
32 14.16 87.06 61.06 87.06 +46.9 0
64 16.04 88.27 54.42 89.16 +38.38 +0.89
128 15.93 87.17 61.17 86.95 +45.24 -0.22
256 17.26 85.73 60.95 87.94 +43.69 +2.21
512 14.27 77.88 62.61 79.65 +48.34 +1.77
1024 19.58 68.69 62.83 85.29 +43.25 +16.6
2048 17.7 67.7 56.75 63.72 +39.05 -3.98
4096 14.27 56.19 62.39 75.88 +48.12 +19.69
Average 16.4 69.16 54.73 76.34 38.33 7.15

environments.

6.3.2.1 Initial Training for Virtual Environments

The classification accuracy of the 12 sets of weights corresponding to 2, ..., 4096 interpre-

tation neurons to be transferred in the experiment can be observed in Table 6.4. High

accuracy is observed with regards to interpretation neurons 8...4096, this is likely due to

the CNN generating sets of similar features due to the repetitive nature of videogame envi-

ronments. In order to optimise the rendering of frames to a desired framerate, textures and

bump maps are often repeated to reduce the execution time of the rendering pipeline [436].
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Note that scaling is not experienced, likely due to the fine tuning of an unchanging CNN

architecture.

6.3.2.2 Transfer Learning vs Random Weights

The results of the transfer learning experiment can be observed in Table 6.5. The columns

∆S and ∆F show the change in Starting (epoch 0, no back propagation performed) and

final classification accuracies in terms of transfer versus non-transfer of weights, respec-

tively. Interestingly, regardless of the number of interpretation neurons, successful transfer

of knowledge is achieved for pretraining, with the lowest being +3.1% via 2 interpretation

neurons. The highest is +48.34% accuracy in the case of 512 hidden interpretation neurons.

This shows that knowledge can be transferred as a starting point. The average increase of

starting accuracy over all models was +38.33% when transfer learning was performed, as

opposed to an average starting accuracy of 16.4% without knowledge transfer. In terms of

the final classification accuracy, success is achieved as well, 9 experiments lead to a higher

final accuracy whereas are were slightly lower (-0.22% 128 neurons and -3.98% 2048 neu-

rons), and one does not change (32 neurons). The average ∆F over all experiments is

+7.15% with the highest being +24.56% via 4 interpretation neurons. On average, the final

accuracy of all models when transfer learning is performed is 76.34%m in comparison to the

average final accuracy of 69.16% without transfer of weights.

Overall, the best model for classifying the real-world data is a fine-tuned VGG16 CNN

followed by 64 hidden interpretation neurons with initial weights transferred from the net-

work trained on simulation video game environments, this model scores a final classification

accuracy of 89.16% highlighted in bold in Table 6.5 when both fine-tune and sim-to-real

transfer learning are used in conjunction. The majority of results, especially the highest

∆S, ∆F , and final accuracy, show that transfer learning is not only a possibility between

simulation and real-world data for scene classification, but also promote it as a viable solu-

tion to both reduce computational resource requirements and lead to higher classification

ability overall.

The results serve as a strong argument that transfer of knowledge is possible in terms of

pretraining of weights from simulated environments. This is evidenced especially through
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the initial ability of the transfer networks prior to any training for classification of the real

environments, but it is also shown through the best ultimate score achieved by a network

with initial weights transferred.

6.4 Sign Language Recognition via Late Fusion of Computer

Vision and Leap Motion

This sections shows that a late fusion approach to multi-modality in British Sign Lan-

guage recognition improves the overall ability of the model in comparison to the singular

approaches of RGB and Leap Motion data classification. Additionally, the work in this

section also discovers the possibility of transfer learning from the singular and multi-modal

models towards the improvement of a scarce dataset of American Sign Language via initial

weight distribution.

Sign language is the ability to converse mainly by the use of the hands, as well as in

some cases the body, face, and head. Recognition and understanding of Sign Language

is thus an entirely visuo-temporal process performed by human beings. In the United

Kingdom alone, there are 145,000 deaf adults and children who use British Sign Language

(BSL) [387]. Of those people, 15,000 report BSL as their main language of communica-

tion [437] which implies a difficulty of communication with those who cannot interpret the

language. Unfortunately, when another person cannot interpret sign language (of who are

the vast majority), a serious language barrier is present due to disability. In addition to

individuals who act as interpreters for those who can only converse in Sign Language, or

who only feel comfortable doing so, this work aims to improve autonomous classification

techniques towards dictation of Sign Language in real-time. The philosophy behind this

work is based on a simple argument, if a building were to have a ramp in addition to stairs

for easier access of the disabled, then why should a computer system not be present in order

to aid with those hard of hearing or deaf?. This work initially benchmarks two popular

methods of sign language recognition with an RGB camera and a Leap Motion 3D hand

tracking camera after gathering a large dataset of gestures. Following these initial exper-

iments, a multi-modality approach is then presented which fuses the two forms of data to

achieve better results for two main reasons; firstly, mistakes and anomalous data received

by either sensor has the chance to be mitigated by the other, and secondly, a deep neural
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network can learn to extract useful complimentary data from each sensor as well as the

standard approach of extracting information towards the class itself. The driving force be-

hind improving the ability of these two sensors is mainly cost, in that the solution presented

is of extremely minimal cost and with further improvement beyond the 18 gestures explored

in this study, could easily be implemented within public places such as restaurants, schools,

and libraries etc. to improve the lives of disabled individuals and enable communication

with those they otherwise could not communicate with.

In this work, the approaches of single modality learning and classification are compared

to multi-modality late fusion. The main scientific contributions presented by this work are

as follows:

1. Collection of a large BSL dataset from five subjects and a medium-sized ASL dataset

from two subjects5.

2. Tuning of classification models for the RGB camera (processing layer prior to output),

Leap Motion Classification (evolutionary topology search), and multi-modality late

fusion of the two via concatenation to a neural layer. Findings show that multi-

modality is the strongest approach for BSL classification compared to the two single-

modality inputs as well as state of the art statistical learning techniques.

3. Transfer learning from BSL to improve ASL classification. Findings show that weight

transfer to the multi-modality model is the strongest approach for ASL classification.

6.4.1 Method

Within this section, the proposed approaches for late fusion experiments are described.

The experiments that this section mainly refers to can be observed in Figure 6.13 which

outlines the image classification, Leap Motion classification, and multi-modality late fusion

networks. The camera is used to record an image, and features are extracted via the VGG16

CNN and MLP. The Leap motion is used to record a numerical vector representing the 3D

hand features previously described, which serves as input to an evolutionarily-optimised

deep MLP. Given that the data is recorded synchronously, that is, the image from the

camera and the numerical vector from the Leap Motion are captured at the same moment

5The dataset is publicly available at https://www.kaggle.com/birdy654/sign-language-recognition-leap-
motion
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Figure 6.13: An overall diagram of the three benchmarking experiments. Above shows the process of
image classification and below shows Leap Motion data classification for the same problem of sign language
recognition. The higher order function network shows the late fusion of the two to form a multi-modality
solution.

in time, the data objects are used as the two inputs to the multi-modality network since

they both describe the same frame captured. The Leap Motion Controller, a sketch of which

can be observed in Figure 6.14, is a device that combines stereoscopy and depth-sensing to

accurately locate the individual bones and joints of the human hand. An example of the

view of the two cameras translated to a 3D representation of the hand can be seen in Figure

6.15. The device measures 3.5x1.2x0.5 inches and is thus a more portable option compared

to the Microsoft Kinect. An example of Leap Motion data can be observed in Figure 6.15

6.4.1.1 Dataset Collection and Pre-processing

Five subjects contributed to a dataset of British Sign Language where each of gestures was

recorded for thirty seconds each, 15 per dominant hand. Rather than specific execution

times, subjects are requested to repeat the gesture at a comfortable speed for the duration

of the recording; a recording of 15 seconds in length prevents fatigue from occurring and

thus affecting the quality of the data. An example of recorded image data can be observed

in Figure 6.16. 18 differing gestures were recorded at a frequency of 0.2s each using a laptop,

an image was captured using the laptop’s webcam, and Leap Motion data is recorded from
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Figure 6.14: Photograph and labelled sketch of the stereoscopic infrared camera array within a Leap
Motion Controller, illuminated by three infrared LEDs.

Figure 6.15: Screenshot of the view from Leap’s two infrared cameras and the detected hand reproduced
in 3D. Note that this study uses a front-facing view rather than up-facing as shown in the screenshot.

0s	-	0.2s 0.2s	-	0.4s 0.4s	-	0.6s 0.6s	-	0.8s 0.8s	-	1s

Frame	1 Frame	2 Frame	3 Frame	4 Frame	5

t	=	0 t	=	1

Figure 6.16: An example of one second of RGB image data collected at a frequency of 0.2s per frame
(5Hz). Alongside each image that is taken, a numerical vector is collected from the Leap Motion Controller.
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Figure 6.17: Labelled diagram of the bone data detected by the Leap Motion sensor. Metacarpal bones
are not rendered by the LMC Visualiser.

the device situated above the camera facing the subject. This allowed for ’face-to-face’

communication, since the subject was asked to communicate as if across from another

human being. The ’task-giver’ was situated behind the laptop and stopped data recording

if the subject made an error while performing the gesture. Each 0.2s recording provides a

data object that is inserted into the dataset as a numerical vector to be classified.

Using the Leap Motion sensor, data was recorded for each of the thumb, index, middle,

ring, and pinky fingers within the frame (labelled ’left’ or ’right’). The names of the fingers

and bones can be observed in the labelled diagram in Figure 6.17. For each hand, the start

and end positions, 3D angles between the start and end positions, and velocities of the arm,

palm, and finger bones (metacarpal, proximal, intermediate and distal bones) were recorded

in order to numerically represent the gesture being performed. The pitch, yaw, and roll of

the hands were also recorded. If one of the two hands were not detected then its values were

recorded as ’0’ (eg. a left handed action will also feature a vector of zeroes for the right

hand). If the sensor did not detect either hand, data collection was automatically paused

until the hands were detected in order to prevent empty frames. Thus, every 0.2 seconds, a

numerical vector is output to describe the action of either one or two hands. The θ angle is

computed using two 3D vectors by taking the inverse cosine of the dot product of the two
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vectors divided by the magnitudes of each vector as shown below:

θ = arccos

(︃
ab

| a || b |

)︃
, (6.1)

where | a | and | b | are:

| a |=
√︂
ax2 + ay2 + az2

| b |=
√︂
bx

2 + by
2 + bz

2,

(6.2)

Regarding the x, y, and z co-ordinates of each point in space. The start and end points of

each bone in the hand from the LMC are treated as the two points.

The following is a summary of each feature collected from the hierarchy of arm to finger

joint:

• For each arm: Start position of the arm (X, Y, and Z), End position of the arm (X,

Y, and Z), 3D angle between start and end positions of the arm, Velocity of the arm

(X, Y, and Z)

• For each elbow: Position of the elbow (X, Y, and Z)

• For each wrist: Position of the wrist (X, Y, and Z)

• For each palm: Pitch, Yaw, Roll, 3D angle of the palm, Position of the palm (X, Y,

and Z), Velocity of the palm (X, Y, and Z), Normal of the palm (X, Y, and Z)

• For each finger: Direction of the finger (X, Y, and Z), Position of the finger (X, Y,

and Z), Velocity of the finger (X, Y, and Z)

• For each finger joint: Start position of the joint (X, Y, and Z), End position of the

joint (X, Y, and Z), 3D angle of the joint, Direction of the finger (X, Y, and Z),

Position of the joint (X, Y, and Z), Velocity of the joint (X, Y, and Z)

Each feature was pre-processed via a minmax scaler between 0 (min) and 1 (max):

Feat = Featstd(max−min) +min where Featstd = ( Feat−Featmin
Featmax−Featmin

). Thus, each feature

value is reduced to a value between 0 and 1. This was performed since it was observed that

non-processed feature values caused issues for the model and often resulted in classification

accuracy scores of only approximately 4%, showing a failure to generalise. The 18 British
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Figure 6.18: The sign for ‘Hello’ in British Sign Language.

Figure 6.19: The sign for ‘Hello’ in American Sign Language.

Sign Language6 gestures recorded were selected due to them being common useful words or

phrases in language. A mixture of one-handed and two-handed gestures were chosen. Each

gesture was recorded twice where subjects switched dominant hands.

The useful gestures for general conversation were “Hello/Goodbye”, “You/Yourself”,

“Me/Myself”, “Name”, “Sorry”, “Good”, “Bad”, “Excuse Me”, “Thanks/Thank you”, and

“Time”. The gestures for useful entities were: “Airport”, “Bus”, “Car”, “Aeroplane”,

“Taxi”, “Restaurant”, “Drink”, and “Food”.

Following this, a smaller set of the same 18 gestures in American Sign Language7 are

collected from two subjects for thirty seconds each (15 per hand) towards the transfer learn-

ing experiment. ‘Airport’ and ‘Aeroplane/Airplane’ in ASL are similar, and so ‘Airport’

and ‘Jet Plane’ are recorded instead. Figures 6.18 and 6.19 show a comparison of how one

signs ‘hello’ in British and American sign languages; although the gestures differ, the hand

is waved and as such it is likely that useful knowledge can be transferred between the two

languages.

6Visual examples of the BSL gestures can be viewed at https://www.british-sign.co.uk/british-sign-
language/dictionary/

7Visual examples of the ASL gestures can be viewed at https://www.handspeak.com/
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Figure 6.20: Feature extraction from the RGB branch of the network, the input image is passed through
a fine-tuned VGG16 CNN and then a layer of 128 ReLu neurons provide output. The network is trained via
softmax output, but this softmax layer is later removed and the 128 outputs are used in late fusion with the
Leap Motion network.

6.4.1.2 Deep Learning Approaches

For the image classification network, VGG16 [427] convolutional layers are used as a start-

ing point for feature extraction from image data, as can be seen in Figure 6.20, where

the three 4096 neuron hidden layers are removed. The convolutional layers are followed

by 2, 4, 8, ..., 4096 ReLu neuron layers in each of the ten benchmarking experiments to as-

certain the best-performing interpretation layer. For the Leap Motion data classification

problem, an evolutionary search is performed to ascertain the best-performing neural net-

work topology; the search is set to a population of 20 for 15 generations, since during manual

exploration, stabilisation of a final best result tends to occur at around generation 11. The

evolutionary search is run three times to mitigate the risk of a local maxima being carried

forward in the latter experiments.

With the best CNN and Leap Motion ANN networks derived, a third set of experiments

is then run. The best topologies (with softmax layers removed) are fused into a single layer

of ReLu neurons in the range 2, 4, 8, ..., 4096.

All experiments are benchmarked with randomised 10-fold cross-validation, and training

time is uncapped to a number of epochs and rather executed until no improvement of

accuracy occurs after 25 epochs. Thus, the results presented are the maximum results
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Figure 6.21: Transfer learning experiments which train on BSL and produce initial starting weight distri-
butions for the ASL models.

attainable by the network within this boundary of early stopping.

Following the experiments on BSL, initial preliminary experiments for Transfer Learning

between languages were performed. Figure 6.21 shows the outline of the transfer experi-

ments, in which the learnt weights from the three BSL models are transferred to their

ASL counterparts as initial starting weight distributions and ultimately compared to the

usual method of beginning with a random distribution. This experiment is performed to

benchmark whether there is useful knowledge to be transferred between each of the model

pairs.

6.4.1.3 Experimental Software and Hardware

The deep learning experiments in this study were performed on an Nvidia GTX 980Ti

which has 2816 1190MHz CUDA cores and 6GB of GDDR5 memory. Given the memory

constraints, images are resized to 128x128 although they were initially captured in larger

resolutions. All deep learning experiments were written in Python using the Keras [329]

library and TensorFlow [438] backend.

The statistical models trained in this study were performed on a Coffee Lake Intel Core

i7 at a clock speed of 3.7GHz. All statistical learning experiments were written in Python

using the SciKit-Learn library [439].
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Figure 6.22: Mean Image 10-fold classification accuracy corresponding to interpretation neuron numbers.

Table 6.6: Final results of the three Evolutionary Searches sorted by 10-fold validation Accuracy along
with the total number of connections within the network.

Hidden Neurons Connections Accuracy

171, 292, 387 243,090 72.73%
57, 329, 313 151,760 70.17%
309, 423, 277 385,116 69.29%

6.4.2 Results

6.4.2.1 Fine Tuning of VGG16 Weights and Interpretation Topology

Figure 6.22 shows the results for tuning of the VGG network for image classification. Each

result is given as the classification ability when a layer of neurons are introduced beyond

the CNN operations and prior to output. The best result was a layer of 128 neurons prior

to output which resulted in a classification accuracy of 88.14%. Most of the results were

relatively strong except for 2-8 neurons and, interestingly, layers of 256 and 2048 neurons.

Thus, the CNN followed by 128 neurons forms the first branch of the multi-modality system

for image processing alongside the best Leap Motion network (in the next section). The

SoftMax output layer is removed for purposes of concatenation, and the 128 neuron layer

feeds into the interpretation layer prior to output.

6.4.2.2 Evolutionary Search of Leap Motion DNN Topology

The evolutionary search algorithm is applied three times for a population of 20 through

15 generations, which can be observed in Figure 6.23. The maximum number of neurons
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Figure 6.23: Three executions of optimisation of Neural Network topologies via an evolutionary algorithm.

was 1024, and the maximum number of layers was 5. After an initial random initialisation

of solutions, the algorithm performs roulette selection for each solution and generates an

offspring (where number of layers, number of neurons per layer are bred). At the start of

each new generation, the worst performing solutions outside of the population size 20 range

are deleted, and the process runs again. The final best result is reported at the end of the

simulation. Table 6.6 shows the best results for three runs of the Leap Motion classification

networks. Of the three, the best model was a deep neural network of 171, 292, 387 neurons,

which resulted in a classification accuracy of 72.73%. Interestingly, the most complex model

found was actually the worst performing of the best three results selected. This forms the

second branch of the multi-modality network for Leap Motion classification in order to

compliment the image processing network. Similarly to the image processing and network,

the SoftMax output layer is removed and the final layer of 387 neurons for Leap Motion

data classification is connected to the dense interpretation network layer along with the 128

hidden neurons of the image network. In terms of mean and standard deviations of the

runs on a generational basis, Run 1 was 65.48% (5.37), Run 2 was 66.98% (4.87), and Run

3 was 68.02% (5.05). With regards to the mean and standard deviation of the three final

results, they were 70.5% (1.14).

6.4.2.3 Fine Tuning the Final Model

Figure 6.24 shows the results of fine-tuning the best number of interpretation neurons within

the late fusion layer, the best set of hyperparameters found to fuse the two prior networks
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Figure 6.24: Multi-modality 10-fold classification accuracy corresponding to interpretation neuron numbers
towards benchmarking the late-fusion network.

Table 6.7: Sign language recognition scores of the three models trained on the dataset.

Model Sign Language Recognition Ability

RGB 88.14%
Leap Motion 72.73%
Multi-modality 94.44%

was a layer of 16 neurons which achieved an overall mean classification ability of 94.44%.

This best-performing layer of 16 neurons receives input from the Image and Leap Motion

classification networks and is connected to a final SoftMax output. Given the nature of

backpropagation, the learning process enables the two input networks to perform as they

were prior (that is, to extract features and classify data) but a new task is also then possible;

to extract features and useful information from either data format which may compliment

the other, for example, for correction of common errors, or for contributing to confidence

behind a decision.

6.4.2.4 Comparison and Analysis of Models

Table 6.7 shows a comparison of the final three tuned model performances for recognition of

British Sign Language through the classification of photographic images (RGB) and bone

data (Leap Motion) compared to the multi-modality approach that fuses the two networks

together. The maximum classification accuracy of the CV model achieved 88.14%, the

Leap Motion model achieved 72.73% but the fusion of the two allowed for a large increase
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Table 6.8: Comparison of other statistical models and the approaches presented in this work.

Model Input Sensor(s) Sign Language Recognition Ability

MM(DNN, CNN) LMC, Camera 94.44%
CNN Camera 88.14%
RF LMC 87.07%
SMO SVM LMC 86.78%
QDA LMC 85.46%
LDA LMC 81.31%
LR LMC 80.97%
Bayesian Net LMC 73.48%
DNN LMC 72.73%
Gaussian NB LMC 34.91%

Table 6.9: The top ten features by relative entropy gathered from the Leap Motion Controller.

Leap Motion Feature
Information Gain
(Relative Entropy)

right hand roll 0.8809
right index metacarpal end x 0.8034
right thumb metacarpal end x 0.8034
right pinky metacarpal end x 0.8034
left palm position x 0.8033
right index proximal start x 0.8028
left index proximal start x 0.8024
right middle proximal start x 0.8024
left middle proximal start x 0.8023
right ring proximal start x 0.8021

towards 94.44% accuracy. A further comparison to other statistical approaches can be

observed in Table 6.8 within which shows different algorithms applied to the same dataset

and directly compared; although the DNN approach is relatively weak compared to all

statistical models except for Gaussian Naive Bayes, it contributes to the Multi-modality

approach by extracting features complimentary to the CNN prior to late fusion as well as

the task of classification - this, in turn, leads to the multi-modality approach attaining the

best overall result. The best statistical model, the Random Forest, was outperformed by

the CNN by 1.07% and the Multi-modality approach by 7.37%. Performance aside, it must

be noted that the statistical approaches are far less computationally complex than deep

learning approaches; should the host machine for the task not have access to a GPU with

CUDA abilities, a single-modality statistical approach is likely the most realistic candidate.

Should the host machine, on the other hand, have access to a physical or cloud-based GPU

or TPU, then it would be possible to enable the most superior model which was the deep

learning multi-modality approach.

Table 6.9 shows the ten highest scoring features gathered from the Leap Motion Con-
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Figure 6.25: Confusion matrix for the best model (multi-modality, 76.5%) on the set of unseen data (not
present during training).

Table 6.10: Results of the three trained models applied to unseen data.

Approach Correct/Incorrect Classification Accuracy

RGB 1250/1800 69.44%
Leap Motion 752/1800 41.78%
Multi-modality 1377/1800 76.5%

troller by measure of their information gain or relative entropy. Right handed features are

seemingly the most useful, which is possibly due to the most common dominant hand being

the right. Though all the features shown have relatively high values, it can be noted that

the roll of the right hand is the most useful when it comes to classification of the dataset.

Table 6.10 shows the final comparison of all three models when tasked with predicting

the class labels of unseen data objects, 100 per class (18 classes). The error matrix for

the best model, which was the multi-modality approach at 76.5% accuracy can be observed

in Figure 6.25. Interestingly, most classes were classified with high confidence except for

three main outliers; ‘thanks’ was misclassified as ‘bus’ in almost all cases, ‘restaurant’

was misclassified as a multitude of other classes, and ‘food’ was often mistaken for ‘drink’
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Table 6.11: Results for the models when trained via leave-one-subject-out validation. Each subject column
shows the classification accuracy of that subject when the model is trained on the other four.

Model
Subject Left Out Accuracy (%)

Mean Std.
1 2 3 4 5

RGB 81.12 68.24 93.82 89.82 94.15 85.43 9.79
Leap Motion 89.21 88.85 86.97 89.27 88.54 88.57 0.84
Multi-modality 85.52 96.7 87.51 93.82 97.1 92.12 4.76

Table 6.12: Results of pre-training and classification abilities of ASL models, with and without weight
transfer from the BSL models.

Model
Non-transfer from BSL Transfer from BSL

Epoch 0 Final Ability Epoch 0 Final Ability

RGB 2.98 80.68 13.28 81.82
Leap Motion 5.12 67.82 7.77 70.95
Multi-modality 5.12 65.4 21.31 82.55

although this did not occur vice-versa. Outside of the anomalous classes which must be

improved in the future with more training examples, the multi-modality model was able

to confidently classify the majority of all other phrases. Though it would require further

experiments to pinpoint, it is likely that the poor performance of the leap motion suggests

that such data is difficult to generalise outside of the learning process. Though, on the

other hand, useful knowledge is still retained given the high accuracy of the multi-modality

model which considers it as input alongside a synchronised image.

6.4.2.5 Leave One Subject Out Validation

Table 6.11 shows the training metrics for each model with a leave-one-subject-out approach.

That is, training on all subjects but one, and then validation upon the left-out subject. All

models performed relatively well, with the interesting exception of the RGB camera when

classifying subject 2, which scored only 68.24%. On average, the best approach remained

the multi-modality model which scored 92.12% accuracy (+6.69% over RGB, +3.55% over

Leap Motion). This finding is similar to the outcomes of the other experiments, where the

multi-modality model always outperformed the singular sensor approach.

6.4.2.6 Transfer Learning from BSL to ASL

Table 6.12 shows the results for transfer learning from BSL to ASL. Interestingly, on the

medium-sized ASL dataset and no transfer learning, the Multi-modality approach is worse
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than both the Computer Vision and Leap Motion models singularly. This, and considering

that the best model overall for ASL classification was the Multi-modality model with weight

transfer from the BSL model, suggests that data scarcity poses an issue for multi-modality

models for this problem.

The results show that transfer learning improves the abilities of the Leap Motion and

Multi-modality classification approaches to sign language recognition. With this in mind,

availability of trained weights may be useful to improve the classification of other datasets

regardless of whether or not they are in the same sign language. Overall, the best model

for ASL classification was the multi-modality model when weights are transferred from the

BSL model. This approach scored 82.55% classification ability on the ASL dataset. The

results suggest that useful knowledge can be transferred between sign languages for image

classification, Leap Motion classification, and late fusion of the two towards multi-modality

classification.

Though future work is needed to further explore the transfer learning hypotheses, the

results in these initial experiments suggest the possibility of success when transferring knowl-

edge between models and ultimately improving their recognition performances.

6.5 Summary and Conclusion

This Chapter focused on the exploration of abilities for the HRI framework, focusing on

multimodal learning. Firstly, Section 6.2 presented three models for scene recognition. A

vision model through fine-tuned VGG16 weights for classification of images of environments,

and a deep neural network for classification of audio of environments. Following these,

the two models were then concatenated in synchronicity towards a multi-modal approach,

which outperformed the two original approaches through the gained ability of detection of

anomalous data through consideration of the outputs of both models. The tertiary neural

network for late fusion was compared and found to be superior to Naive Bayes, Random

Forest, and Support Vector Machine classifiers. Since audio classification is a relatively

easy task, it should be implemented where available to improve environmental recognition

tasks. Future work is suggested in order to take this successful preliminary experiment and

improve it further. These experiments focused on the context of autonomous machines,

and thus consumer hardware capability was taken into account through temporal awareness
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implemented within the feature extraction process rather than within the learning process

itself to save on resources during this stage. In the future, better results could be gained

from attempting to enable a neural network to learn temporal awareness in recurrence. This

could then be compared to the results found within this work. Since the model was found

to be effective on the complex problem posed through the dataset, future experiments could

concern other publicly available datasets to give a comparison with other state-of-the-art

methods. With the available hardware, evolutionary selection of network topology was

only possible with the audio classifier, in the future, given more resources, this algorithm

could be applied to both the vision and interpretation models to achieve a better set of

hyperparameters beyond the tuning performed in this study. Applications of the model

due to success should also be tested in real-world applications, for example, recent research

has show that autonomous environment recognition is useful in the automatic application

of scene settings for hearing aids [440]. Future works could also consider the optimisation

of the frame segmentation process itself as well as exploration of the possibility of multiple

image inputs per task. Additionally, since late fusion is promising due to the results found in

Section 6.2, applications to video classification tasks could be considered through a similar

multi-modal feature extraction and classification process; a more complex task would also

likely lead to a larger number of failure cases for the approach and thus provide clear errors

which would aid in further optimisation to overcome them and as such improve the model.

In addition to multimodal input, another improvement on scene recognition for the

framework was also explored in the context of transferring knowledge from a virtual en-

vironment to real data. The experiments and results presented in Section 6.3 showed the

success of transfer learning from virtual environments to another task taking place in reality.

From the results observed in this study, there are two main areas of future work which are

important to follow. Firstly, it is proposed to further improve the artificial learning pipeline.

Models were trained for 50 epochs for each of the interpretation layers to be benchmarked.

In future, the possibility of deeper networks with more than one hidden interpretation layer

and other combinations of the hyperparameters could be explored. The training time of the

random weight networks was relatively limited at 50 epochs and even further limited for

transfer learning at 10 epochs, although this was by design and due to the computational

resources available. Future work could concern deeper interpretation networks as well as

increased training time. In this study, hyperparameters such as the activation and learning
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rate optimisation algorithm were arbitrarily chosen, therefore, in the future, these could

be explored in a further combinatorial optimisation experiment. Secondly, simulation to

real transfer learning could also be attempted in various fields in order to benchmark the

ability of this method for other real-world applications. For example, autonomous cars

and drones training in a virtual environment for real-world applications. The next step for

benchmarking could be to compare the ability of this method to state-of-the-art methods on

publicly available datasets, should more computational resources be available, similarly to

the related works featured in the literature review [215, 216, 201]. A noticeable set of high

abilities were encountered for the sole classification of virtual data, as expected, due to the

optimisation processes of recycling objects and repeating textures found within videogame

environments. Of the 12 networks trained with and without transfer learning, a pattern of

knowledge transfer was observed; with all starting accuracies being substantially higher than

a random weight distribution, and, most importantly, a best classification ability of 89.16%

was achieved when knowledge was initially transferred from the virtual environments. These

results provide a strong argument for the application of both fine-tune and transfer learning

for autonomous scene recognition. The former was achieved through the tuning of VGG16

Convolutional Neural Networks, and the latter was achieved by transferring weights from a

network trained on simulation data from videogames and applied to a real-world situation.

Transfer learning leads to both the reduction of resource requirements for said problems,

and the achievement of a higher classification ability overall when pre-training has been

performed on simulated data. As future directions, further improvement of the learning

pipeline benchmarked in Section 6.3 together with exploration on other complex real-world

problems faced by autonomous machines are suggested.

Section 6.4 presented multiple experiments for the singular sensor and multi-modality

approaches to British and American Sign Language. The results from the experiments

suggest that a multi-modality approach outperforms the two singular sensors during both

training and for classification of unseen data. Section 6.4 also presented a preliminary

Transfer Learning experiment from the large BSL dataset to a medium-sized ASL dataset,

where the best model for classification of ASL was found to be the multi-modality model

when weights are transferred from the BSL model. All network topologies in this section

that were trained, compared, and ultimately fused together towards multi-modality were

benchmarked and studied for the first time. Accurate classification of Sign Language,
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especially unseen data, enables the ability to perform the task autonomously and thus

provide a digital method to the interpretation of non-spoken language within a situation

where interpretation is required but unavailable. To fully realise this possibility, future work

is needed. The hypotheses in the experiments were argued through a set of 18 common

gestures in both British and American Sign Languages. In future, additional classes are

required to allow for interpretation of conversations rather than the symbolic communication

enabled by this study. In addition, since multi-modality classification proved effective,

further tuning of hyperparameters could enable better results, and other methods of data

fusion could be explored in addition to the late fusion approach that was selected. Transfer

learning could be explored with other forms of non-spoken language such as, for example,

Indo-Pakistani SL which has an ethnologue of 1.5 million people and Brazilian SL with

an ethnologue of 200,000 people. The aim of Section 6.4 was to explore the viability and

ability of multi-modality in Sign Language Recognition by comparing Leap Motion and

RGB classification with their late-fusion counterparts. In addition, the 0.2s data collection

frame poses a limitation to these studies, and as such, further work could be performed to

derive the best window length for data collection. A cause for concern that was noted in

Section 6.4 was the reduction of ability when unseen data is considered, which is often the

case in machine learning exercises. Such experiments and metrics (ability on unseen dataset,

per-class abilities) are rarely performed and noted in the State of the Art works within sign

language recognition. Since the main goal of autonomous sign language recognition is to

provide a users with a system which can aid those who otherwise may not have access

to a method of translation and communication, it is important to consider how such a

system would perform when using trained models to classify data that were not present in

the training set. That is, real-time classification of data during usage of the system and

subsequently the trained classification models. Section 6.4 found high training results for

both modalities and multi-modality, deriving abilities that are competitive when indirectly

compared to the state of the art works in the field. When the best performing 94.44%

classification ability model (multi-modality) was applied to unseen data, it achieved 76.5%

accuracy mainly due to confusion within the ‘thanks’ and ‘restaurant’ classes. Likewise,

the RGB model reduced from 88.14% to 69.44% and the Leap Motion model reduced from

72.73% to 41.78% when comparing training accuracy and unseen data classification ability.

Future work is needed to enable the models a better ability to generalise towards real-time

J. J. Bird, PhD Thesis, Aston University 2021 242



CHAPTER 6. MULTIMODALITY INTERACTION

classification abilities that closely resemble their abilities observed during training.

In this chapter, three new multimodality capabilities were experimented with and bench-

marked for the Human-Robot Interaction framework. To conclude, these were: the improve-

ment of scene recognition through sound and images (Section 6.2) as well as transferring

useful knowledge from simulated environments to real environments (Section 6.3). Then,

finally, experiments that argued towards multimodality being more robust than individual

classification based on the inputs of a Leap Motion sensor and images (Section 6.4). With

the goals of this thesis in mind, the first set of scene recognition experiments and the sign

language experiments provide two abilities for the system which are again improved by

the multimodality approach as shown by the comparisons in each. The second set of scene

recognition experiments showed that scene recognition ability could be improved by transfer

learning from virtual, simulated environments, and thus, it can improve the robot’s ability

to perform this task.
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Chapter 7

Integration into a Human-Robot

Interaction Framework

7.1 Introduction

Following on the scientific contributions across the various fields presented in Chapters 4,

5, and 6, the main focus of the thesis is the unification of these technologies into a HRI

framework.

Firstly, the possibility of encapsulating these technologies within an abstract wrapper

of social interaction is explored. Then, an integrated HRI framework is presented to unify

the contributions of a singular system. Finally, the use cases of the framework are explored

where selected technologies from the framework are used in unison to achieve a certain

specific goal, through chatbot-like command recognition of activities such as classification

of brain activity, sentiment analysis of a given text, sign language recognition, and scene

recognition.

7.2 Chatbot Interface: Human Data Augmentation with T5

and Transformer Ensemble

In this section of the thesis, the Chatbot Interaction with Artificial Intelligence (CI-AI)

pipeline is presented as an approach to the training of deep learning chatbots for task

recognition. The intelligent system augments human-sourced data via artificial paraphras-
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Figure 7.1: A general overview of the proposed approach.

ing to generate a large set of training data for further classical, attention, and language

transformation-based learning approaches for Natural Language Processing. The pipeline

that is produced by this section forms the input method for the overall HRI framework in

Section 7.3, since this pipeline allows for a more natural and casual approach to interac-

tion with machines. This is due to data recognition focusing more on how humans may be

expected to socially interact with one another through speech and text.

Attention-based and transformer language models are a rapidly growing field of study

within machine learning and artificial intelligence and for applications beyond. The field

of Natural Language Processing has especially been advanced through transformers due to

their approach to reading being more akin to human behaviour than classical sequential

techniques. With many industries turning to Artificially Intelligent solutions by the day,

models have a growing requirement for robustness, explainability, and accessibility since AI

solutions are becoming increasingly popular for those without specific technical background

in the field. Explainability is furthered with such an approach, since, similarly to CNN

heatmaps, an attention-mask is directly related to the input vector of the text and can thus

be overlayed. Once the text is highlighted with the attention map, and a prediction is noted,

it becomes clear which of the parts of the text led the model to make such a prediction.

Human data recognition, such as for the commands in this section, poses the issue of

data scarcity, since it is difficult to collect a large dataset of human interaction. Collecting

masses of data in itself also poses another issue, privacy. For example, smart home devices

such as Google Home and Amazon Alexa are improved via harvesting user data. A suggested

solution to this is data augmentation, where new data objects are artificially created from

the full set.
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This study brings together the concepts of task recognition, language transformers, and

data augmentation to form a pipeline of Chatbot Interaction with Artificial Intelligence (CI-

AI). A general overview of the approach can be observed in Figure 7.1. As an alternative to

writing code and managing data, complex machine learning tasks such as conversational AI,

sentiment analysis, scene recognition, brainwave classification and sign language recognition

among others are given accessibility through an interface of natural, social interaction via

both verbal and non-verbal communication. That is, for example, a spoken command

of “can we have a conversation?” or a sign language command of “can-we-talk” would

command the system to launch a conversational AI program.

Since these experiments are performed in English, and there are many English speakers

across the world, the system thus needs to be accessible by many people with differing

backgrounds, and therefore must have the ability to generalise by being exposed to a large

amount of training data. Last, but by no means least, the system needs to be explainable;

for example, if a human were to utter the phrase, “Feeling sad today. Can you cheer me

up with a joke?”, which features within that phrase lead to a correct classification and

command to the chatbot to tell a joke? Where does the model focus within the given text

to correctly predict and fulfil the human’s request?

The scientific contributions of the work in this Section are as follows:

1. The collection of a 7-class command-to-task (with relation to the HRI framework’s

abilities implemented within the previous chapters) dataset from multiple human be-

ings from around the world, which produced a total of 483 examples.

2. Augmentation of the human data with a transformer-based paraphrasing model which

results in a final training dataset of 13,090 labelled data objects.

3. Benchmarking of 7 State-of-the-Art transformer-based classification approaches for

text-to-task commands. Each model is trained on the real training data and validation

data. Each model is also trained on the real training data plus the paraphrased

augmented data and validation data. It is observed that all 7 models are improved

significantly through data augmentation.

4. Analysis of the models in terms of the features within data which were given the most

attention, that is, which words or phrases were given specific focus. This is performed

for the errors in order to discern and discuss why the confusion occurred.
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5. It is observed that attention given to specific parts of sentences bare some general

similarities to human reading comprehension. This is found when the system considers

human phrases that were not present during training or validation through the analysis

of the most important features (words and phrases).

7.2.1 Method

The work in this section focuses on exploring a method to improve intent recognition.

As discussed during literature review, Google’s DialogFlow matches a user input (text,

speech-to-text, etc.) to an intent and then performs a task based on this intent. Given that

examples of intents would require data of a social nature from human beings to be collected,

and such tasks are often hampered by data scarcity, what can be done to alleviate this open

issue in the field? The solution explored here is a data augmentation method to use a general

knowledge of the English language to rephrase intents, forming them in alternative ways

to provide synthetic data which can be used during the training of a chatbot model. The

main aim of this section is to enable accessibility to previous studies, and in particular the

machine learning models derived throughout them. Accessibility is presented in the form of

social interaction, where a user requests to use a system in particular via natural language

and the task is derived and performed. The seven commands are mainly based on prior

work within this thesis, “have a conversation” and “tell me a joke” tasks are introduced for

further complexity since they both bare similarity in the sense of more casual interaction:

• Scene Recognition (Section 6.2) - The participant requests a scene recognition algo-

rithm to be instantiated, a camera and microphone are activated for multi-modality

classification.

• EEG Classification (Section 5.3) - The participant requests an EEG classification

algorithm to be instantiated and begins streaming data from a MUSE EEG headband,

there are two algorithms1:

– EEG Mental State Classification - Classification of whether the participant is

concentrating, relaxed, or neutral.

– EEG Emotional State Classification - Classification of emotional valence, posi-

tive, negative, or neutral.
1Note that the two EEG tasks are similar, and discerning between the two provides a difficult problem
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• Sentiment Analysis of Text (Section 4.7) - The participant requests the instantiation

of a sentiment analysis classification algorithm for a given text.

• Sign Language Recognition (Section 6.4) - The participant requests to converse via

sign language, a camera and Leap Motion are activated for multi-modality classifi-

cation. Sign language is now accepted as input to the task-classification layer of the

chatbot.

• General Chatbot/Conversational AI - The participant requests to have a conversation,

a chatbot program is executed.

• Joke Generator [441, 442] - The participant requests to hear a joke, a joke-generator

algorithm is executed and output is printed2.

Each of the given commands are requested in the form of natural social interaction (either

by keyboard input, speech converted to text, or sign language converted to text), and

through accurate recognition, the correct algorithm is executed based on the classification

of the human input. Tasks such as sentiment analysis of text and emotional recognition of

EEG brainwaves, and mental state recognition compared to emotional state recognition, are

requested in similar ways and as such constitute a difficult classification problem. For these

problems, minute lingual details must be recognised to overcome ambiguity within informal

communication. For example, the EEG emotion classification command of “What is the

valence of my brainwaves?” was presented to the model and this was incorrectly classified as

EEG mental state recognition. Although the presence of the term ‘valence’ bore a similarity

to the training examples of the correct class, the top feature ‘of my brainwaves’ held a strong

resemblance to the training examples for EEG mental state recognition.

Figure 7.2 shows the overall view of the system. Keyboard input text, or speech and

sign language converted to text provide an input of natural social interaction. The chatbot,

trained on the tasks, classifies which task has been requested and executes said task for

the human participant. Sign language, due to its need for an active camera and hand

tracking, is requested and activated via keyboard input or speech and itself constitutes a

task. The training processes followed in order to achieve the highlighted Chatbot module

are illustrated in figure 7.3. Human data is gathered via questionnaires which gives a

2Note that the sign language, conversational AI, and joke generation tasks also bare some similarities,
therefore also increasing the difficulty of discerning between all tasks.
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process guided by human input, through natural social interaction due to the language transformer approach.
The chatbot itself is trained via the process in Figure 7.3.
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Figure 7.3: Data collection and model training process. In this example, the T5 paraphrasing model is
used to augment and enhance the training dataset. Models are compared when they are augmented and
when they are not on the same validation set, in order to discern what affect augmentation has.
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Table 7.1: A selection of example statements presented to the users during data collection.

Example Statement Class

“Would you like to talk?” CHAT
“Tell me a joke” JOKE
“Can you tell what mood I’m in from my brainwaves?” EEG-EMOTIONS
“Am I concentrating? Or am I relaxed? EEG-MENTAL-STATE
“Look around and tell me where you are.” SCENE-CLASSIFICATION
“Is this message being sarcastic or are they genuine?” SENTIMENT-ANALYSIS
“I cannot hear the audio, please sign instead.” SIGN-LANGUAGE

relatively small dataset (even though many responses were gathered, the nature of NLP

tends to require a large amount of mined data), split into training and testing instances.

The first experiment is built upon this data, and State-of-the-Art transformer classification

models are benchmarked. In the second set of more complex experiments, the T5 [443]

paraphrasing model augments the training data and generates a large dataset, which is then

also benchmarked with the same models and validation data to provide a direct comparison

of the effects of augmentation.

A questionnaire was published online for users to provide human data in the form of

examples of commands that would lead to a given task classification. Five examples were

given for each, and Table 7.1 shows some examples that were presented. The questionnaire

instructions were introduced with “For each of these questions, please write how you would

state the text differently to how the example is given. That is, paraphrase it. Please give

only one answer for each. You can be as creative as you want!”. Two examples were given

that were not part of any gathered classes, “If the question was: ‘How are you getting

to the cinema?’ You could answer: ‘Are we driving to the cinema or are we getting the

bus?’ ” and “If the question was: ‘What time is it?’ You could answer: ‘Oh no, I slept

in too late... Is it the morning or afternoon? What’s the time?’”. These examples were

designed to show the users that creativity and diversion from the given example was not

just acceptable but also encouraged, so long as the general meaning and instruction of and

within the message was retained (the instructions ended with “The example you give must

still make sense, leading to the same outcome.”). Extra instructions were given as and when

requested, and participants did not submit any example phrases nor were any duplicates

submitted. There were also no false responses collected. A total of 483 individual responses

were recorded following a Google Forms link posted to various forms of social media3.

3Data available at:
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Table 7.2: An overview of models benchmarked and their topologies.

Model Topology

BERT [445] 12-layer, 768-hidden, 12-heads, 110M parameters.
DistilBERT [446] 6-layer, 768-hidden, 2-heads, 66M parameters
RoBERTa [447] 12-layer, 768-hidden, 12-heads, 125M parameters
DistilRoBERTa [447, 448] 6-layer, 768-hidden, 12-heads, 82M parameters
XLM [449] 12-layer, 2048-hidden, 16-heads, 342M parameters

XLM-RoBERTa [450]
12-layer, 768-hidden, 3072 feed-forward,
8-heads, 125M parameters

XLNet [451]
12-layer, 768-hidden,
12-heads, 110M parameters

The answers gathered were split 70/30 on a per-class basis to provide two class-balanced

datasets, firstly for training (and augmentation), and secondly for validation. All models

then are directly comparable, since they are all validated on the same set of data.

The T5 paraphrasing model which was trained on the Quora question pairs dataset [444]

is executed a maximum of 50 times for each statement within the training set, where the

model will stop generating paraphrases if the limit of possibilities or 50 total are reached.

Once each statement had been paraphrased, it was observed that the least common class

was sign language recognition with 1870 examples, and so a random subsample of 1870

examples were taken from each other class in order to balance the dataset. This dataset

thus constitutes the training set for the second experiment, to compare the effects of data

augmentation for the problem presented.

Table 7.2 shows the models that are trained and benchmarked on the two training sets

(Human, Human+T5), and validated on the same validation dataset. It can be observed

that the models are complex, and training requires a relatively high amount of computa-

tional resources. Due to this, the pre-trained weights for each model are fine-tuned for two

epochs on each of the training datasets.

In the final experiment, the classification techniques of the strongest models are com-

bined through stacked generalisation (stacking), as can be observed in Figure 7.4. Due

to the computational complexity of training a transformer, the individually trained models

produce datasets of their predictions on the training and validation sets which are treated as

attributes. The reasoning behind a statistical ensemble through stacking is that it enables

possible improvements to a decision system’s robustness and accuracy [452]. Given that

nuanced differences between the transformers may lead to ‘personal’ improvements in some

https://www.kaggle.com/birdy654/human-robot-interaction-via-t5-data-augmentation
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Figure 7.4: A stacking ensemble strategy where statistical machine learning models trained on the pre-
dictions of the transformers then classify the text based on the test data predictions of the transformer
classification models.

situations and negative impacts in others, for example when certain phrases appear within

commands, a more democratic approach may allow the pros of some models outweigh the

cons of others. Employing a statistical model to learn these patterns by classifying the class

based on the outputs of the previous models would thus allow said ML model to learn these

nuanced differences between the transformers.

The experiments were executed on an NVidia Tesla K80 GPU which has 4992 CUDA

cores and 24 GB of GDDR5 memory via the Google Colab platform. The Transformers

were implemented via the KTrain library [453], which is a back-end for TensorFlow [438]

Keras [329]. The pretrained weights for the Transformers prior to fine-tuning were from

the HuggingFace NLP Library [448]. HuggingFace is chosen since it is a library that keeps

up to date with the state-of-the-art in Transformer technologies, as well as being heavily

maintained. The pretrained T5 paraphrasing model weights were from [454]. The model

was implemented with the HuggingFace NLP Library [448] via PyTorch [455] and was

trained for two epochs (∼20 hours) on the p2.xlarge AWS ec2. The classical models for

the stacking ensemble were implemented in Python via the Scikit-learn toolkit [439] and

executed on an Intel Core i7 Processor (3.7GHz).
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Table 7.3: Classification results of each model on the same validation set, both with and without augmented
paraphrased data within the training dataset. Bold highlighting shows best model per run, underline high-
lighting shows the best model overall.

Model
With T5 Paraphrasing Without T5 Paraphrasing

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

BERT 98.55 0.99 0.99 0.99 90.25 0.93 0.9 0.9
DistilBERT 98.34 0.98 0.98 0.98 97.3 0.97 0.97 0.97
DistilRoBERTa 98.55 0.99 0.99 0.99 95.44 0.96 0.95 0.95
RoBERTa 98.96 0.99 0.99 0.99 97.93 0.98 0.98 0.98
XLM 14.81 0.15 0.15 0.15 13.69 0.02 0.14 0.03
XLM-RoBERTa 98.76 0.99 0.99 0.99 87.97 0.9 0.88 0.88
XLNet 35.68 0.36 0.35 0.36 32.99 0.33 0.24 0.24

Average 77.66 0.78 0.78 0.78 73.65 0.73 0.72 0.71

Table 7.4: Observed improvements in training metrics for each model due to data augmentation via
paraphrasing the training dataset.

Model
Increase of Metrics

Acc. Prec. Rec. F1

BERT 8.3 0.06 0.09 0.09
DistilBERT 1.04 0.01 0.01 0.01
DistilRoBERTa 3.11 0.03 0.04 0.04
RoBERTa 1.03 0.01 0.01 0.01
XLM 1.12 0.13 0.01 0.12
XLM-RoBERTa 10.79 0.09 0.11 0.11
XLNet 2.69 0.03 0.11 0.12

Average 4.01 0.05 0.05 0.07

7.2.2 Results

Table 7.3 shows the overall results for all experiments. Every single model, even the weakest

XLNet for this particular problem, was improved when training on human data alongside

the augmented data, which can be seen from the increase in metrics in Table 7.4. This was

more computationally expensive due to training on a larger dataset, although the specific

time increase was immeasurable given the shared nature of Google Colab’s cloud GPUs.

T5 paraphrasing for data augmentation led to an average accuracy increase of 4.01 points,

and the precision, recall, and F1 scores were also improved at an average of 0.05, 0.05, and

0.07, respectively.

The best performing model was RoBERTa when training on the human training set

as well as the augmented data. This model achieved 98.96% accuracy with 0.99 precision,

recall, and F1 score. The alternative to training only on the human data achieved 97.93%

accuracy with stable precision, recall, and F1 scores of 0.98. The second best performing
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Figure 7.5: Comparison of each model’s classification ability and number of million trainable parameters
within them.

models were both the distilled version of RoBERTa and BERT, which achieved 98.55% and

likewise 0.98 for the other three metrics. Interestingly, some models saw a drastic increase

in classification ability when data augmentation was implemented; the BERT model rose

from 90.25% classification accuracy with 0.93 precision, 0.9 recall, and 0.9 F1 score with

a +8.3% increase and then more stable metrics of 0.99 each as described previously. In

the remainder of this section, the 98.96% performing RoBERTa model when trained upon

human and T5 data is explored further. This includes exploration of errors made overall and

per specific examples, as well as an exploration of top features within successful predictions

made.

Figure 7.5 shows each model performance and its number of trainable parameters. Note

that the most complex model scored the least in terms of classification ability. The best

performing model was the third most complex model of all. The least complex model,

DistilBERT, achieved a relatively high accuracy of 98.34%. If further learning is to be per-

formed, and given consideration to hosting hardware such as a computer or physical robot,

the DistilBERT model may provide a better solution dependent on hardware availability.

This study focuses on which methods achieve the best scores regardless of computational

complexity.

Table 7.5 shows the classification metrics for each individual class by the RoBERTa

model. The error matrix for the validation data can be seen in Figure 7.6. The tasks of

EEG mental state classification, scene recognition, and sentiment analysis were classified

perfectly. Of the imperfect classes, the task of conversational AI (‘CHAT’) was sometimes
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Table 7.5: Per-class precision, recall, and F1 score metrics for the best model.

Class Prec. Rec. F1

CHAT 1.00 0.99 0.99
EEG-EMOTIONS 0.99 0.97 0.98
EEG-MENTAL-STATE 0.99 1.00 0.99
JOKE 0.98 0.98 0.98
SCENE-CLASSIFICATION 1.00 1.00 1.00
SENTIMENT-ANALYSIS 0.97 0.99 0.98
SIGN-LANGUAGE 1.00 1.00 1.00
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Figure 7.6: Normalised confusion matrix for the best command classification model, RoBERTa trained on
human data and augmented T5 paraphrased data.
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misclassified as a request for a joke, which is likely due to the social nature of the two

activities. EEG emotional state classification was rarely mistakenly classified as the mental

state recognition and sentiment analysis tasks, firstly due to the closely related EEG tasks

and secondly as sentiment analysis since the data often involved terms synonymous with

valence or emotion. Similarly, the joke class was also rarely misclassified as sentiment

analysis, for example, “tell me something funny” and “can you read this email and tell me if

they are being funny with me?” (‘funny’ in the second context being a British slang term for

sarcasm). The final class with misclassified instances was sentiment analysis as emotional

state recognition, for the same reason previously described when the error occurred vice

versa.

7.2.2.1 Mistakes and probabilities

This section explores the biggest errors made when classifying the validation set by consid-

ering their losses.

Table 7.64 shows the most confusing data objects within the training set and Figure

7.7 explores which parts of the phrase the model focused on to derive these erroneous

classifications. Overall, only five misclassified sentences had a loss above 1; the worst losses

were in the range of 1.05 to 6.24. The first phrase, “what is your favourite one liner?”,

may likely have caused confusion due to the term “one liner” which was not present within

the training set. Likewise, the term “valence” in “What is the valence of my brainwaves?”

was also not present within the training set, and the term “brainwaves” was most common

when referring to mental state recognition rather than emotional state recognition.

An interesting error occurred from the command “Run emotion classification”, where

the classification was incorrectly given as EEG emotional state recognition rather than

Sentiment Analysis. The command collected from a human subject was ambiguous, and

as such the two most likely classes were the incorrect EEG Emotions at a probability of

0.672 and the correct Sentiment Analysis at a probability of 0.32. This raises an issue to

be explored in future works, given the nature of natural social interaction, it is likely that

ambiguity will be present during conversation. Within this erroneous classification, the two

classes were far more likely than all the other classes present, and thus a choice between

4Key - C1: CHAT, C2: EEG-EMOTIONS, C3: EEG-MENTAL-STATE, C4: JOKE, C5: SCENE-
RECOGNITION, C6: SENTIMENT-ANALYSIS, C7: SIGN-LANGUAGE.
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Table 7.6: The most confusing sentences according to the model (all of those with a loss >1) and the
probabilities as to which class they were predicted to belong to.

Text “What is your favourite one liner?”

Actual C4
Predicted C6
Loss 6.24

Prediction Probabilities
C1 C2 C3 C4 C5 C6 C7
0.0163 0.001 0 0.002 0.001 0.977 0.002

Text “What is your favourite movie?”

Actual C1
Predicted C4
Loss 2.75

Prediction Probabilities
C1 C2 C3 C4 C5 C6 C7
0.064 0.0368 0.007 0.513 0.338 0.022 0.02

Text “How do I feel right now?”

Actual C1
Predicted C4
Loss 2.75

Prediction Probabilities
C1 C2 C3 C4 C5 C6 C7
0.007 0.01 0.352 0.434 0.016 0.176 0.005

Text “Run emotion classification”

Actual C6
Predicted C2
Loss 1.71

Prediction Probabilities
C1 C2 C3 C4 C5 C6 C7
0 0.672 0.001 0.002 0.004 0.32 0

Text “What is the valence of my brainwaves?”

Actual C2
Predicted C3
Loss 1.05

Prediction Probabilities
C1 C2 C3 C4 C5 C6 C7
0.001 0.349 0.647 0.001 0.001 0.002 0
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the two in the form of a question akin to human deduction of ambiguous language would

likely solve such problems and increase accuracy. Additionally, this would rarely incur the

requirement of further effort from the user.

7.2.2.2 Top features within unseen data

Following the training of the model, this section explores the behaviour of the model in the

case of unseen phrases or commands. As such, this serves as more representative of real

scenarios.

Figure 7.8 shows an example correct prediction of each class from previously unseen

data. Interestingly, the model shows behaviour reminiscent of human reading [456, 457]

due to transformers not being limited to considering a temporal sequence in chronological

order of appearance. In the first example, the most useful features were ‘time to speak’

followed by ‘got’, ‘to’ and ’me’. The least useful features were ‘right now’, which alone

would be classified as ‘SCENE-CLASSIFICATION’ with a probability of 0.781 due to many

provided training examples for the class containing questions such as ‘where are you right

now? Can you run scene recognition and tell me?’. The second example also had a strong

negative impact from the word ‘read’ which alone would be classified as ‘SENTIMENT-

ANALYSIS’ with a probability of 0.991 due to phrases such as ‘please read this message

and tell me if they are angry with me’ being popular within the gathered human responses

and as such the augmented data. In this example, the correct classification was found

due to the terms ‘emotions’ and ‘mind’ primarily, followed by ‘feeling’. Following these

two first examples, the remaining five examples were strongly classified. In the mental

state recognition task, even though the term ‘mental state’ was specifically uttered, the

term ‘concentrating’ was the strongest feature within the statement given the goal of the

algorithm to classify concentrating and relaxed states of mind. As could be expected, the

‘JOKE’ task was best classified by the term ‘joke’ itself being present, but, interestingly,

the confidence of classification was increased with the phrases ‘Feeling sad today.’ and

‘cheer me up’. The scene classification task was confidently predicted with a probability

of 1 mainly due to the terms ‘look around’ and ‘where you are’. The red highlight for the

word ‘if’ alone would be classified as ‘SENTIMENT-ANALYSIS’ with a probability of 0.518

given the popularity of phrases along the lines of ‘if they are emotion or emotion’. The

sentiment analysis task was then, again, confidently classified correctly with a probability
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Highlighted in text 
(sum) 

-0.722 <BIAS> 

 

Read my mind and tell me what emotions 
I am feeling. 

‘EEG-MENTAL-STATE’  

(probability 1, score 9.605)  

Contribution Feature 

10.483 
Highlighted in text  
(sum) 

-0.878 <BIAS> 

 

Run EEG mental state recognition so I can 
see if I am concentrating? 

 

‘JOKE’  

(probability 1, score 10.705)  

Contribution Feature 

11.17 
Highlighted in text 
(sum) 

-0.465 <BIAS> 

 

Feeling sad today. Can you cheer me up 
with a joke? 

 

‘SCENE-CLASSIFICATION’ 

(probability 1, score 10.948)  

Contribution Feature 

11.791 
Highlighted in text 
(sum) 

-0.844 <BIAS> 

 

look around and see if you can tell me where
 you are. 

 

‘SENTIMENT-ANALYSIS’  

(probability 1, score 10.378)  

Contribution Feature 

11.031 
Highlighted in text 
(sum) 

-0.653 <BIAS> 

 

I just received this email. Can you tell me
 if it sounds sarcastic to you please? 

 
‘SIGN-LANGUAGE’  

(probability 1, score 10.186)  

Contribution Feature 

10.889 
Highlighted in text 
(sum) 

-0.703 <BIAS> 

 

Rather than speaking with my voice, can we 
sign instead please? 

Figure 7.8: Exploration of the best performing model by presenting unseen sentences and explaining
predictions. Green denotes useful features and red denotes features useful for another class (detrimental to
probability).
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Table 7.7: Information Gain ranking of each predictor model by 10 fold cross validation on the training
set.

Predictor Model
(Transformer)

Average Ranking Information Gain of Predictions

BERT 1 (± 0) 2.717 (± 0.002)
DistilBERT 2 (± 0) 2.707 (± 0.002)
DistilRoBERTa 3.1 (± 0.3) 2.681 (± 0.001)
RoBERTa 3.9 (± 0.3) 2.676 (± 0.003)
XLM-RoBERTa 5 (± 0) 2.653 (± 0.002)

of 1. This was due to the terms ‘received this email’, ‘if’, and ‘sarcastic’ being present.

Finally, the sign language task was also classified with a probability of 1 mainly due to the

features ‘voice’ and ‘sign’. The red features highlighted, ‘speaking with please’ would alone

be classified as ‘CHAT’ with a probability of 0.956, since they are strongly reminiscent to

commands such as, ‘can we speak about something please?’.

An interesting behaviour to note from these examples is the previously described nature

of reading. Transformer models are advancing the field of NLP in part thanks due to their

lack of temporal restriction, ergo limitations existent within models such as Recurrent or

Long Short Term Memory Neural Networks. This allows for behaviours more similar to a

human being, such as when someone may focus on certain key words first before glancing

backwards for more context. Such behaviours are not possible with sequence-based text

classification techniques.

7.2.2.3 Stacking Ensemble Results

Following the results on the individual transformers, the two main findings were that 1)

all models were improved by T5 augmentation and 2) XLM and XLNet were weak solu-

tions to the problem and scored relatively low classification scores. Following these, an

extension to the study through an ensemble method is devised which combines the five

strong models when trained on paraphrased data, which can be observed in Figure 7.4.

The training and testing datasets are firstly distilled into a numerical vector of five pre-

dictions made by the five transformer models. Then statistical machine learning models

(Logistic Regression, Random Forests, Linear Discriminant Analyses, XGBoosts, Support

Vector Classifiers, Bayesian Networks, Multinomial and Bernoulli Näıve Bayes) are trained

on the training set and validated on the test set in order to discern whether combining the

transformers together via stacking ultimately improves the ability of the chatbot.
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Table 7.8: Results for the ensemble learning of Transformer predictions compared to the best single model
(RoBERTa).

Ensemble Method Accuracy Precision Recall F1
Difference over
RoBERTa

Logistic
Regression

99.59 0.996 0.996 0.996 +0.63

Random
Forest

99.59 0.996 0.996 0.996 +0.63

Multinomial
Näıve Bayes

99.38 0.994 0.994 0.994 +0.42

Bernoulli
Näıve Bayes

99.38 0.994 0.994 0.994 +0.42

Linear
Discriminant
Analysis

99.38 0.994 0.994 0.994 +0.42

XGBoost 99.38 0.994 0.994 0.994 +0.42
Support
Vector Classifier

99.38 0.994 0.994 0.994 +0.42

Bayesian
Network

99.38 0.994 0.994 0.994 +0.42

Gaussian
Näıve Bayes

98.55 0.986 0.985 0.986 -0.41

Following the previous findings, the five strongest models which were BERT (98.55%),

DistilBERT (98.34%), RoBERTa (98.96%), Distil-RoBERTa (98.55%), and XLM-RoBERTa

(98.76%) are combined into a preliminary ensemble strategy as previously described. XLM

(14.81%) and XLNet (35.68%) are omitted due to their low classification abilities. As noted,

it was observed previously that the best score by a single model was RoBERTa which scored

98.96% classification accuracy, and thus the main goal of the statistical ensemble classifier is

to learn patterns that could possibly account for making up some of the 1.04% of errors and

correct for them. Initially, Table 7.7 shows the information gain rankings of each predictor

by 10 fold cross validation on the training set alone, interestingly BERT is ranked the

highest with an information gain of 2.717 (± 0.002). Following this, Table 7.8 shows the

results for multiple statistical methods of combining the predictions of the five Transformer

models; all of the models except for Gaussian Näıve Bayes could outperform the best single

Transformer model by an accuracy increase of at least +0.42 points. The two best models

which achieved the same score were Logistic Regression and Random Forests, which when

combining the predictions of the five transformers, could increase the accuracy by +0.63

points over RoBERTa and achieve an accuracy of 99.59%.

Finally, Figure 7.9 shows the confusion matrix for both the Logistic Regression and

Random Forest methods of ensembling Transformer predictions since the errors made by
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Figure 7.9: Normalised confusion matrix for the best ensemble methods of Logistic Regression and Random
Forest (errors made by the two were identical).

both models were identical. Many of the errors have been mitigated through ensembling

the transformer models, with minor confusion occuring between the ‘CHAT’ and ‘JOKE’

classes and the ‘SENTIMENT ANALYSIS’ and ‘EEG-EMOTIONS’ classes.

7.3 An Integrated HRI Framework

In this section, the work presented by this thesis are compiled into a Human-Robot Inter-

action architecture and the execution of tasks as well as the possible methods of artificial

learning are discussed.

A diagram of the Human-Robot Interaction framework is given in Figure 7.10. The

process has two modes. Firstly, interaction with robots wherein sensors collect information

for the input to the transformer based chatbot which derives the task to be performed.

Then, the task at hand as well as information from the sensors are passed to the Feature

Extraction module which accesses the stored Feature Extraction algorithms and the feature

vectors are passed to the action. Deliberation then occurs when an appropriate model

is selected; if the robot or machine has relatively weak machine learning ability such as
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Figure 7.10: Overview of the HRI framework that unifies the individual studies performed within the prior
sections of this thesis. Following task selection via transformer-based classification of the input medium, the
task is then performed by the device such as a robot or computer terminal. In learning mode, the data is
also collected and algorithm improvement is performed through searching methods of possible improvement
and then updating models.
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operation on a CPU, then a statistical model is selected. If the robot or machine has access

to cloud resources or a GPU, then a stronger but more complex model is chosen. Prediction

is then performed and the output is stored in the short term memory, which is passed to the

robot or machine’s actuators. Finally, actuation of the prediction occurs - if in the command

line, then a prediction is simply output with information which is dependent on the model,

e.g., classes and their probabilities, or the most probable class. To give an example for the

robot, a stored set of commands can be executed, such as the Pepper Robot reacting to

the output of sentiment analysis to speak “the message is positive!” and perform a physical

gesture such as nodding or giving a thumbs up while its LED eyes flash green or produce a

happy expression.

Note that in this instance, the model is static, which is where the secondary learning

mode may be used (top right of the diagram). If the learning mode is enabled, i.e., in a

situation where the machine is allowed to collect data from the user, then the goal of model

improvement is set out as a secondary task. These arrows from the tasks to “long term

memory” and “select appropriate model” occur concurrently, that is, due to the computa-

tional overhead the framework does not learn and then predict, and rather performs this

learning for future interactions. While prediction and actuation occurs, the collected data

is stored within a preliminary additional dataset and methods of possible improvement such

as through data augmentation, transfer learning, or fine tuning are considered (based on

pre-emptive model knowledge). If an approach is possible and has a positive effect, then the

models are updated and stored in the long term memory for future use. In some instances

data collection may not be required from the sensors for further improvement. Take the

task of scene recognition for example, where the work in Section 6.3 discovered that it was

possible to improve Scene Recognition by transfer learning from simulated data from virtual

environments in the Unity Game Engine. This thus gives multiple types of learning modes

that are possible:

1. Access to sensors and computational resources, where new data is used to attempt to

improve the models for future use. For example, if a user performs a sign language

gesture that is ineffectively classified, then, in future, the data collected by the camera

and leap motion device may be used to improve the model.

2. Access to computational resources, where further learning from other data sources
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such as synthetic data occurs in the background. For example, if an EEG state

was classified with ineffective accuracy, then GPT-2 may be used to produce more

synthetic data to further learn from and improve the model.

(a) Tuning of models may also be possible also through using the same data that

is at hand but searching for better sets of learning hyperparameters through

evolutionary searches of neural network topologies or grid searches of different

model-specific options.

3. A hybrid of the above two approaches, where both data collected from the sensors and

non-sensor activities are used in unison to attempt to further improve the model. For

example in scene recognition, more synthetic data from Unity could be used alongside

the data collected by the cameras in order to further improve the model.

Indeed, as per the nature of machine learning, models cannot be improved with new real or

synthetic data with absolute certainty. Sometimes improvement simply may not be possible

with the data at hand at that time. Thus, the effects of the model are observed during

training to see if improvement actually occurs. If it does not, then data may be discarded

or stored for possible future use dependent on the level of storage that can be accessed.

7.4 Use Cases

In this section, use cases of the HRI framework are presented and detailed at each step when

being used by subjects. A variety of hosts are featured, a computer terminal, a Pepper

Robot, a NAO Robot, and a Romeo Robot in order to describe the output possibilities

when differing actuators are available.

To explore use cases for more work contained in this thesis, the method for the chat-

bot experiments in Section 7.2 is followed again with new data collected. 90 extra hu-

man responses are collected, 30 each for the “Gesture Recognition”, “Accent Recognition”,

“Phoneme Recognition” classes in order to enable the extra abilities that are noted in Figure

7.10 and were not originally included in the study. The stacking ensemble of transform-

ers was noted as being computationally complex, and given the hardware capabilities of

the robots involved, only the best transformer was used. As previously noted, this model

was the RoBERTa model with T5 generated paraphrasing training data from the human
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Table 7.9: Comparison of performances of the RoBERTa-based chatbot when trained either with or without
T5 paraphrased data.

Acc. (%) Prec. Rec. F1

With T5 Paraphrasing 99.09 0.99 0.99 0.99
Without T5 Paraphrasing 97.28 0.97 0.97 0.97
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Figure 7.11: Normalised confusion matrix of the extended classes dataset for the use cases of the HRI
framework.

training data.

A comparison of training data augmentation is given in Table 7.9. Note that, as was

observed before, an increase in ability is shown when augmenting the training data us-

ing transformer-based paraphrasing. The confusion matrix for the best performing model

(RoBERTa + T5) is given in Figure 7.11 wherein it is noted that most classes are classified

perfectly in the holdout testing data, with minor exceptions belonging to the Joke, Scene

Recognition, Sentiment Analysis, and Sign Language classes.

Following these tests in order to slightly extend Section 7.2 towards further classes for

the HRI framework, the RoBERTa model trained on real human and T5 augmented data is

thus used to provide examples of the framework in use during the remainder of this section.
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EEG-MENTAL-STATE 

Contribution Feature 

10.808 Highlighted in text (sum) 

-0.606 <BIAS> 

 

Based on EEG data, am I concentrating? Or am I relaxed? 

 

 

Contribution Feature 

8.919 Highlighted in text (sum) 

-0.523 <BIAS> 

 

Is this text good or bad in terms of sentiment? 

 

 

Contribution Feature 

11.414 Highlighted in text (sum) 

-0.821 <BIAS> 

 

Rather than speaking, can we use sign language instead? 

 

 

Contribution Feature 

8.995 Highlighted in text (sum) 

-0.095 <BIAS> 

 

Take a look around and run multimodal scene recognition. 

 

Figure 7.12: Top features within the phrase for EEG concentration level classification.

Some use cases include examples of social behaviours run on robot devices such as

Romeo, Pepper, and Nao [458] via the framework. Note that as can be seen in the screen-

shots, where appropriate, the experiments are run in a controlled and virtual environment.

With the exception of acrobatic-type actions that are not possible to replicate in the real

world due to the physics engine, the Choreographe software’s virtual environment allows

for an almost perfect replication of how the robot would act in reality [459]. That is, if

something (non-acrobatic) works in the simulation, it will work in the real world.

7.4.1 Use Case 1: Am I concentrating?

The subject presented the information, “Based on EEG data, am I concentrating? Or

am I relaxed?”. The expected output was a classification of “EEG-MENTAL-STATE”,

which was correctly predicted with a maximum probability of 0.98. The second most likely

classification was “EEG-EMOTIONS” given the similar logical natures of the requests,

although the probability value of this class was 0.0008 and so was considered far less likely.

As can be seen in Figure 7.12, the model focused on paying attention mainly to the features

“concentrating” and “relaxed” alongside the term “EEG”.

Since the preliminary RoBERTa model in Section 7.2 showed that confusion sometimes

occurred between the two EEG tasks, although the tuned RoBERTa in this section did not

seem to have the same problem, a choice is given to the user in order to remedy a potential

future issue. The subject is presented with the decision between the two EEG classification

algorithms (concentration, emotions) and chooses the concentration classification. The

EEG headband is activated and data is recorded for 10 seconds prior to feature extraction.

Observations showed the subject relaxed, and subsequently the algorithm was correct in this

classification since the first data object was classified as neutral, and the following 9 were

all classified as relaxed. The string “Relaxed” is printed to the screen. To provide another

example of output, a behaviour for the Romeo robot can be found in Figure 7.13. The
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Figure 7.13: An example activity wherein a Romeo robot performs and subsequently reacts to EEG
classification (relaxed, neutral, concentrating).

EEG-MENTAL-STATE 

Contribution Feature 

10.808 Highlighted in text (sum) 

-0.606 <BIAS> 

 

Based on EEG data, am I concentrating? Or am I relaxed? 

 

 

Contribution Feature 

8.919 Highlighted in text (sum) 

-0.523 <BIAS> 

 

Is this text good or bad in terms of sentiment? 

 

 

Contribution Feature 

11.414 Highlighted in text (sum) 

-0.821 <BIAS> 

 

Rather than speaking, can we use sign language instead? 

 

 

Contribution Feature 

8.995 Highlighted in text (sum) 

-0.095 <BIAS> 

 

Take a look around and run multimodal scene recognition. 

 

Figure 7.14: Top features within the phrase for multi-level sentiment analysis of a text.

robot initially says “Running EEG classification now...”. Once both the speech and EEG

classification processes are complete (detected by the counter), the string representation of

the class is then passed to the Switch Case module, which directs three different reactions

(all of which are accompanied by a physical animation of the robot nodding their head).

In this instance, alongside nodding his head, Romeo says “You seem quite relaxed to me!”.

The software is also compatible with the Nao and Pepper robots (and most likely future

iterations of new robots from Aldebaran).

7.4.2 Use Case 2: Is this review good or bad?

The presented question, “Is this text good or bad in terms of sentiment?” was correctly

classified as belonging to the sentiment analysis class with a probability of 0.997. The second

most likely class was EEG emotional state classification with a probability of 0.0006, likely
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Figure 7.15: An example activity leading to Pepper’s reaction and physical animation due to sentiment
analysis of a given text.

due to the similarity between requesting to analyse the sentiment of a text and requesting

an emotional analysis of brain activity. Figure 7.14 shows the important features within

the request, where the key term “text” has been noted as the strongest feature followed by

the term “sentiment”. The text presented is “I’m grateful to have access to virtual robots,

the pandemic can’t stop me from doing what I love!”. It would be sensible to assume that

this sentiment is either sentiment 4 or 5 (where 1 is the most negative sentiment and 5 is

the most positive). Following feature extraction, the sentiment analysis model is retrieved.

According to the model, the classification of the text was given as 5, i.e., the most positive

sentiment. The sentiment analysis result is printed to the screen. To provide a second

example of output processing, Figure 7.15 shows a simplified version of the activity for a

Pepper robot. Initially, the robot says “Let me think...” while the string is passed to the

sentiment analysis module. Note that a counter is used to confirm that both the sentiment

analysis and speech activity are complete. The switch case then links the five classes to

voice lines and animations. Since the sentiment was detected as being 5, Pepper says

“This message is very positive! Five out of five!” before dancing. This behaviour is also

compatible with the Nao and Romeo robots (and most likely future iterations of new robots

from Aldebaran).
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Figure 7.16: Top features within the text for the classification of a request to use sign language.

7.4.3 Use Case 3: Can you help me learn Sign Language?

The user presented the request to the chatbot with “Rather than speaking, can we use sign

language instead?”. The sign language class was correctly classified with a probability of

0.998, the second most likely class was interestingly “joke” albeit with a negligible probabil-

ity of 0.0003. This may be due to the statistical similarity between requesting “rather than

speaking” and “can you tell me a joke?”, though, as aforementioned, this probability is

negligibly close to 0, and only just less-so than the other classes. As can be expected from

Figure 7.16, the most important features to pay attention to within the request were “sign

language”. Since there are three different algorithms available (Leap Motion, camera, mul-

timodality), a choice is given to the user. The user selects the multimodal option and so the

LMC and camera are activated and data collection begins as the user waves at the camera.

In two seconds, 10 data objects are collected and presented to the algorithm. 9 data objects

are correctly classified (90%) as “Hello”. The first data object was incorrectly classified

as “Thanks” since the subject began data collection by raising their hand to their face in

such a way that bore the most similarity to thanking someone in BSL (the hand starts with

fingertips on the chin, moves downwards and away from the face). The output based on the

predictions was correctly classified as the gesture for greeting another. “Hello” is printed

to a computer terminal (since the one-hot class is linked with a string representation of the

gesture). Saved actions for the Nao robot for this gesture causes the robot to raise its hand,

wave, and say “hello, how are you?”. Data collection then began again, 10 data objects

were collected as the user gave a thumbs up gesture. All 10 (100%) of the data objects

were classified as “Good” which was subsequently printed to the terminal screen (again,

since the one-hot class is linked to a string representation). Based on the Nao robot’s saved

animations, the robot dances and says “Great! I’m good too!”. A simplified version of the

skill for the Nao Robot can be seen in Figure 7.17 wherein the “Hello” is initially detected

and then a “Good” or “Bad” response is detected, and is reacted to as described. Although
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Figure 7.17: An example behaviour for Nao, where the robot has a brief conversation via British Sign
Language Recognition as input, outputting speech audio accompanied by on-screen text. None of the
Alebaran Robots are capable of performing signs due to their limited hand joints.
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 Figure 7.18: Top features within the text for the classification of a scene recognition task.

the initial Python script and if statement is used to detect whether the user has greeted

the robot, replacing the if statement with a switch case (as seen in the second part of the

example) would allow for reactions and conversations to be expanded based on predictions

made by the model. This behaviour is also compatible with the Pepper and Romeo robots

(and most likely future iterations of new robots from Aldebaran).

7.4.4 Use Case 4: Where are you?

In the final example of use, the user makes the following request: “Take a look around

and run multimodal scene recognition.” in order to execute scene recognition which was

successfully classified as the correct class with a probability of 0.998. As was observed with

the other examples, the second most likely class had a negligible probability of 0.0006 which
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Actual:	Forest
Predicted:	Forest
Prediction	2:	Forest

Actual:	Forest
Predicted:	Forest
Prediction	2:	Forest

Actual:	Forest
Predicted:	Forest
Prediction	2:	Forest

Actual:	Forest
Predicted:	Jungle
Prediction	2:	Forest

Additional Data Collected for Further Fine-tuning ("Prediction 2")

Figure 7.19: Predictions for real-time environmental recognition. In the first instance, three of the four
images are classified correctly. Following fine-tuning from the addition of additional data objects, all four of
the images are classified correctly.

was the sign language class. when figure 7.18 is observed, this was evidently caused by the

term “multimodal” which has a stronger relationship within the training data to the mul-

timodality sign language recognition approach. The terms “scene” and “look around” were

considered of utmost importance when it came to the correct prediction. Note that “recog-

nition” is considered the least-most useful of the features since recognition and classification

are terms currently related to all of the robot’s skills. In the future, when locomotion and

regression tasks are implemented, specificity of recognition or classification will then likely

hold stronger prediction ability towards that specific group of tasks. Note that due to the

obvious logistical concerns surrounding transporting scientific equipment (namely robots)

to an outdoors environment, the collection of data is simulated by manual data collection

at the Cannock Chase Forest (Rugeley, West Midlands, United Kingdom) and presented

to the algorithm as if it were being collected in real-time. Since there are three algorithms

(audio, image, and multimodality classification), a decision is requested. Since the data

contains human speech at a higher volume than the natural sounds, image classification

was chosen. The images and predictions can be observed in Figure 7.19. Note that during

the first round of classification based on the base model, three of the four images (75%) are
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correctly classified as ‘forest’. One of the images was incorrectly classified as the ‘jungle’ en-

vironment, possibly due to the auto-focus of the camera lowering the exposure and making

the image darker (giving the impression that the natural environment is more overgrown

than it actually is). The output of the process, thus, is the correct classification, the model

has recognised the forest environment. Since an error was made, further data was collected

and added to the dataset for slight further fine-tuning of the image recognition model for

1 epoch and the data was presented to this new model, where the model achieved 100% by

correctly classifying all images.

7.5 Summary and Conclusion

To summarise, the studies in Section 7.2 show primarily that data augmentation through

transformer-based paraphrasing via the T5 model improve many state-of-the-art language

transformer-based classification models. BERT and DistilBERT, RoBERTa and Disil-

RoBERTa, XLM, XLM-RoBERTa, and XLNet all showed increases in learning performance

when learning with augmented data from the training set when compared to learning only

on the original data pre-augmentation. The best single model found was RoBERTa, which

could classify human commands to an artificially intelligent system at a rate of 98.96%

accuracy, where errors were often due to ambiguity within human language. A statistical

ensemble of the five best transformer models then led to an increased accuracy of 99.59%

when using either Logistic Regression or a Random Forest to process the output predic-

tions of each transformer, utilising small differences between the models when trained on

the dataset. Although XLM did not perform well, the promising performance of XLM-

RoBERTa showed that models trained on a task do not necessarily underperform on an-

other different task given the general ability of lingual understanding. With this in mind,

and given that the models are too complex to train simultaneously, it may be useful in

the future to consider the predictions of all trained models and form an ensemble through

meta-classifiers through statistical, deep learning, or further transformer approaches. A

small vector input of predictions would allow for deeper decision making given the singular

outputs of each transformer. Alternatively, a vector of inputs in addition to the original

text may allow for deeper understanding behind why errors are made and allow for learned

exceptions to overcome them. A preliminary ensemble of the five models that did not have

J. J. Bird, PhD Thesis, Aston University 2021 274



CHAPTER 7. HUMAN-ROBOT INTERACTION FRAMEWORK

weak scores showed that classification accuracy could be further increased by treating the

outputs of each transformer model as attributes in themselves for rules to be learnt from.

The experiments in this part of the thesis were limited in that attribute selection was based

solely on removing the two underperforming models; in the future, exploration could be

performed on attribute selection to fine-tune the number of models used as input. Addi-

tionally, only a predicted label in the form of nominal attributes were used as input, whereas

additional attributes such as probabilities of each output class could be utilised to provide

more information for the statistical ensemble classifier.

To conclude this part of the thesis, this chapter has initially presented a transformer-

based chatbot framework to provide socially-interactive accessibility to the individual abil-

ities that the robot possesses. All of the work performed in this thesis was then integrated

into the overall framework, and several examples were given on its operation.

The primary and final aim of this thesis, an integration into a framework allowing

emergence of behaviours more than a sum of their parts, has been presented in this chapter.

Individual machine learning tasks are now enabled through natural conversation with a

machine, and four different platforms including three physical robots (Personal Computer,

Romeo, Pepper, Nao) have shown success when running the framework in real-time by

being requested to, and interpreting their surroundings through a variation of sensors and

algorithms.
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Chapter 8

Discussion and Conclusion

8.1 Revisiting Open Issues

As was discussed previously during literature review, prominent works in the field have

generally suggested for guidelines to be followed in order to remedy open issues in the field of

HRI. Here, those guidelines are repeated prior to a discussion concerning this work. Fischer

et al.[28] and Drury et al.[32] presented guidelines that HRI frameworks should aim to follow.

These suggestions were based on the observation of open issues that currently impede the

field of HRI, and as such the framework in this thesis set out to remedy them. This section

reiterates said guidelines and discusses the ways in which the framework presented by this

thesis either implements them directly or allows for support of their implementation. The

discussion in this chapter centres around research question 3, “Which current open issues

in Human-Robot Interaction can be alleviated by the framework presented in this thesis?

And to what extent?”.

8.1.1 Adaptability and ease of use

Adaption to related problems and robotic devices should be easy to implement. Cross-

dependency should be minimal in order to enable substitution.

As was previously shown, robotic devices are easy to implement, since the framework can

act as an API-like software which outputs learning information (i.e. prediction, accuracy and

classification metrics) and this can be used independently between devices. As was shown

in the case studies, a terminal can output the predictions based on a user’s request, whereas
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the robots can provide more output through speech and physical movement via the libraries

provided by Softbank. In most cases (except for image recognition), several different models

are available to use based on the computational capabilities of the hosting computer or robot.

Thus, dependencies on hardware are mitigated since a model is autonomously chosen from

a memory containing several deep learning and classical machine learning approaches. This

is also the case with model improvement, for example, a Nao Robot’s Intel Atom Z530

(1 core, 1.6GHz) CPU is unable to run a GPT-2 training and generation instance and

thus this data augmentation should not be chosen as the method for model improvement.

Ease of use is further implemented through the transformer-based chatbot, which allows for

natural interaction in place of programming. As was observed during case studies, the users

naturally requested a routine through a spoken manner of their choice, and the model was

confident as to what their requests actually were, thus classifying it accurately. As such,

the design of the framework and integrated technologies allow for both adaptability and

ease of use.

8.1.2 Provision of overall framework

The provided framework should work as-is and as such provide useful routines and goals.

The framework that was presented following supporting research project indeed pos-

sesses several useful routines and goals for the users to interact with and use. These abilities

embedded feature extraction and included routines such as accent and phoneme recognition

from speech audio; interaction with the Muse headband for the classification of emotional

and concentration states via EEG signals; similar gesture recognition via the Myo EMG

signal sensors; single and multimodal scene recognition based on input from cameras and

microphones; single and multimodal gesture recognition of sign language gestures via either

a camera, Leap Motion Controller, or a late fusion of the two; and sentiment analysis of a

written text. Embedded behind these skills were the routines to improve models over time,

for example, through data augmentation via generative models and further learning from

new data. To refer back to the guideline set out, the framework works as is and provides

useful HRI routines and goals.
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8.1.3 Extendibility

Integration of new technologies should be easy to implement with the introduction of new

modules. Software must be designed to expect and support new modules.

As is observed from the timeline of published works arising from this thesis, given

that several of the modules were designed prior to the prototyping and the final design

of the framework as well as some during and afterwards, extendibility was kept in mind

throughout. The extension of a framework to a new robot is performed with ease, a module

is simply designed for said robot using the appropriate libraries and implemented since

framework output is standard. This was shown during the case studies where Nao, Pepper,

and Romeo interpreted the outputs of the framework. Models and methods for model

improvement are also extended with ease, since they are stored within a long term memory

which is accessible by the tasks. This is also routine for the introduction of new skills for

robots. The only point of extendibility that requires some amount of work, which was seen at

the start of Section 7.4, is that the chatbot must be retrained if new skills are implemented.

Additionally, further exploration is also required into the automation of model improvement

in order to select methods (which are currently based on the best observations from the

data available).

8.1.4 Shared and centralised knowledge representation

Each module of the system should have access to the same sources of data and knowledge.

As can be seen from the diagram of the framework, shared knowledge and sensors are

given where appropriate. For example, the sign language and scene recognition models

are both given access to the same camera (either a webcam or robot-integrated camera).

Feature extraction algorithms are also shared where appropriate, for example, the pre-

dimensionality reduction feature sets are extracted for both EEG and EMG towards the

three skills that currently encompass them. Thus, access to data sources and knowledge

are communal where appropriate for a given set of skills.

8.1.5 Open software

Code should be open source and available to researchers.

For each of the sections that set out robot skills, code was provided for both feature ex-
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traction and learning via several methods; detailed descriptions, flow diagrams, algorithms,

and Python code where appropriate. Extra information requested during peer review was

also provided. In addition, all data collected and used has been made publicly accessible

online following permission and ethical approval. Each section gives enough information

for replicability of all experiments. The only two exceptions to this are firstly within the

sign language recognition experiments where subjects gave permission for the release of

their Leap Motion Controller data but not the photographs collected. The second excep-

tion was in the phoneme-based speech synthesis experiments, given that the author’s voice

was realistically replicated and as such could carry negative consequences for said author -

and so, model weights were not released for public use. Although these minor exceptions

occur, researchers are given enough information at each step to replicate the experiments

performed.

8.1.6 Enhancement of awareness

This guideline, as previously noted, focuses moreso on physical robotic behaviours. An

enhancement of awareness, as described in the aforementioned paper, deals with providing a

map of where the robot has been and provides more environmental information to the robot

for the benefit of operator awareness.

Though this framework does not deal with locomotion, awareness is enabled in a social

sense. The robot uses a transformer-based chatbot to enhance awareness of a user’s request

in the form of natural social interaction. Each skill also gives the robot an enhanced aware-

ness of the data at hand, i.e., an awareness of concentration state given EEG recognition.

In addition, enhancement of awareness was explored and achieved throughout several of

the studies in this thesis, where algorithm improvement led to better performances. In

these cases, it was discovered that hyperheuristic optimisation, transfer learning, and data

augmentation could improve robotic awareness for a given ability.

8.1.7 Lowering of cognitive load

The operator should not need to mentally fuse modes of data, rather, the framework itself

should provide fused information.

The ease of use of the framework enables a lowering of the cognitive load for the operator,

i.e., the person interacting with the robot. In addition to this, the guideline specifically
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states “the framework itself should provide fused information”; as can be observed through

the multimodal models available, fusion is tuned within the experiments and autonomously

performed by the robot. To give a more framework-specific example, if the operator were

to request multimodal sign language recognition, cognitive load is lowered by autonomous

late fusion of the camera and Leap Motion Controller and a unified prediction of the two

inputs are produced. The operator, thus, does not need to decide between which sensor to

trust, rather, a single prediction is generated by fusing both types of data within the model

itself.

8.1.8 Increase of efficiency

Provide an interface that supports multiple robots within a single window, and to minimise

the use of multiple windows where feasible.

This guideline, similarly to “enhancement of awareness”, is seemingly more focused

towards autonomous locomotion and swarm behaviour, i.e., a drone swarm performing a

certain task must provide an interface to manage that whole swarm as one unit. In this

framework, multiple robots are indeed supported as was shown previously in the use cases

and towards the beginning of this section. Efficiency is enabled within the chatbot, fea-

ture extraction, skills, and algorithm improvement by the experiments performed providing

useful knowledge and rules of thumb for performing certain tasks. To give a more specific

example, an operator having the robot perform EEG-based concentration recognition would

not need to specify which features are important, since dimensionality reduction has been

tuned within the supporting works in order to enable the robot to autonomously choose

which features are of importance for the task at hand. In the latter part of the guideline,

use of a single window is often feasible unless data is to be visualised, and so normal use of

the framework does not require multiple interfaces or windows.

8.1.9 Provide help

The user of the framework should be aided in the selection of robotic autonomy and modality.

The main implementation of help in this framework is coupled with ease of use, that is,

a transformer-based chatbot-like system allows for the operator to request certain abilities

and behaviours based on natural social interaction of a somewhat creative manner (since

the chatbot is trained on natural interaction as well as T5 paraphrasing). Since the two
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EEG tasks are often requested in similar ways and contain several common key phrases,

the user is prompted to specify which task they would like to perform even if the chatbot

seems to be confident as to which they have requested. In addition, rather than the chatbot

aiming to classify between single sensor and multimodality models, an overall prediction is

made to the general task and then the user makes a choice as to which they want the robot

to perform.

8.2 Research Questions Revisited

During this thesis, multiple works have been presented prior to coming together and forming

more than a sum of their parts. In Chapters 4, 5 and 6, verbal, non-verbal and multi-

modality findings were researched and presented, respectively. The sections within these

chapters each presented their own individual contributions alone that would then contribute

to the HRI framework presented in Chapter 7 through integration of technologies. This

thesis has thus presented these singular contributions, but, more importantly, these then

form more than a sum of all of their parts through the improved HRI framework that

they produce. Towards this final point, this section discusses how the framework that the

individual parts have produced can provide work towards improving these problems as well

as research limitations and possible future works.

In the following subsections, each of the research questions that were originally presented

in Chapter 1 are revisited in order for discussion of the findings that were then presented

throughout the rest of this thesis. Discussions of individual experimental results, sections,

and chapters were given where appropriate, whereas this section provides a higher-level

discussion with the whole thesis in mind as well as the unification of work into a Human-

Robot Interaction framework.

8.2.1 Research Question 1

How can one endow a robot with affective perception and reasoning for social awareness in

verbal and non-verbal communication?

One of the goals of this thesis was to provide a framework for affective robotic perception

as well as reasoning in terms of decision making through learnt model improvement routines

as well as making predictions on input data. As shown within this section and the previous,
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the framework has brought together individual research projects as more than a sum of their

parts, which allows for natural human interaction with said framework as well as endowing

a machine with the abilities of perception and reasoning that were not possible for the

individual modules to perform. To directly answer the question of how this is done, the

individual sections supporting each skill module or otherwise parts of the framework must

be observed, since endowing abilities differs depending on the nature of data. This also

applies to methods of improving learning methods through data augmentation and transfer

learning.

It was discovered throughout several of the experiments within this thesis that evolu-

tionary hyperheuristics, data augmentation, and transfer learning could aid in learning to

perceive inputs from various sensors. These improvements on learning lead to the machines

being able to be endowed with better abilities in terms of accuracy and generalisation to

unseen data as well as lesser-known situations and states. To endow the robots with better

abilities than before leads to their ability of affective perception to be improved, given that

the quality of perception is based on the quality of the learning model.

The following provides specific examples of where this was achieved within this thesis:

In terms of evolutionary hyperheuristics, it was found that network topology optimisa-

tion improved several abilities that the robot was endowed with. This was shown for speech

recognition in Section 4.4, biological signal recognition in Sections 5.3 and 5.7, environment

recognition in 6.2 and gesture recognition for sign language classification in Section 6.4.

Examples where the work in this thesis found learning improvement via Transfer Learn-

ing included; the transfer learning between EMG and EEG signals due to their related

bio-electrical natures in Section 5.7, the transfer of knowledge from images generated from

virtual environments to improve the classification accuracy of models on real environment

recognition data in Section 6.3, and finally also the transfer of knowledge between British

and American Sign Languages in Section 6.4. These experiments and the produced models

show that robot perception can be improved in many situations, ranging from the bio-

electrical to the visual.

Another important aspect of improvement to the models was through data augmenta-

tion; it was found that improvements could be made to several activities such as speaker

recognition in Section 4.3 by learning from additional training examples generated by

LSTMs and GPT-2 transformers, biological signal classification by generating synthetic
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biological signals via GPT-2 in Section 5.6, and creating and collecting new training exam-

ples for environment recognition in a game engine within the experiments in Section 6.3.

Finally, in Section 7.2, results showed that the chatbot-like interface, which enables natu-

ral interaction with the framework, was improved when the real human data collected was

learnt from as well as several thousand synthetic strings generated by a T5 paraphrasing

model.

Late fusion of data was also found to be of benefit in terms of endowing the robot with

improved perceptive abilities. Section 6.2 found that environment recognition was aided

when computer vision and sound recognition neural networks were trained on their respec-

tive data and later fused to both ‘look and listen’ - this led to either network complimenting

one another by correcting for the other’s mistakes in several instances. Another example

of late fusion via network concatenation can be found in Section 6.4, where Sign Language

recognition abilities were improved by fusing data collected by a camera and a Leap Motion

by concatenating the two trained neural networks together prior to a prediction output.

Observations of the errors made by individual networks found that these improvements

came from pattern recognition of the types of mistakes that could be made by the two net-

works, and how that the two fused networks could compliment one another by correcting

the output prediction and thus achieving a higher overall result.

8.2.2 Research Question 2

Can we create a Human-Robot Interaction framework to abstract machine learning and

artificial intelligence technologies which allows for accessibility of non-technical users?

Given its prominence in the works that suggest modern open issues in Human-Robot

Interaction, accessibility to the field is noted as a growing serious need in the modern day.

As previously discussed, and as also noted in the relevant literature [460, 461], the Fourth

Industrial Revolution and the Age of AI are indeed dawning upon us by the day. With

this new technological revolution, accessibility is of urgent need given that most everyday

members of the public will not be trained in machine learning or related fields and yet will

be soon using such tools in their everyday life.

Following the work noted to answer the first research question, modules were then uni-

fied by way of integration into a Human-Robot Interaction framework. The framework that

was engineered and presented in Chapter 7 created a layer of abstraction between man and
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machine, similar to the layers of abstraction that exist between two human beings who are

both performing complex mental activities to interact with one another regardless of the

simplicity of that interaction. That is, accessibility to the complex algorithms featured in

this work (and those in the future, given the criterion of extendibility being met) is provided

as-is by natural interaction with the robots rather than through code or formal commands.

More specifically, this was first seen in Section 7.2 where several chatbot architectures

were trained and benchmarked and it was discovered that transformer-based paraphrasing

for augmentation could lead to a better general recognition model, and, given more com-

putational resources, that a stacked generalisation approach of several transformer-based

classifiers provided the best overall score. The best single transformer, RoBERTa when

augmented training data was available, was chosen as the chatbot since the framework was

then to be presented in the use cases via a relatively powerful computer but also on the

much weaker computational hardware of the three physical robots. This research question

was further answered in Section 7.4, where tuning for specific robot abilities was performed

to produce a strong social interaction input layer prior to a high degree of success within

each of the individual use cases with regards to accessibility to the algorithms via natural

interaction.

8.2.3 Research Question 3

Which current open issues in Human-Robot Interaction can be alleviated by the framework

presented in this thesis? And to what extent?

The answers to this research question are provided within the earlier discussions within

this chapter. During the literature review and ultimately within the previous Chapter, a

set of guidelines informed by the open issues observed within the field of Human-Robot

Interaction were presented. These open issues acted as more general goals for the work

performed in this thesis in the form of experimental or design decisions. As previously

discussed, the work presented aimed to follow the said guidelines whilst seeking answers to

research questions one and two. When the open issues were revisited, the framework was

found to follow the guidelines with consideration to their relevance (i.e., the guideline that

dealt with locomotion was interpreted differently in this work). In addition, the extent of

alleviation that was observed is considered in order to discuss the research limitations and

suggest future work.
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8.3 Research Limitations and Future Work

During this thesis, especially in Chapters 4, 5, and 6, experimental limitations and future

work arising from them were given where appropriate in the conclusions of the individual

sections that encompassed a research project of related experiments. In this section, we

explore the limitations of the framework presented at the end of this thesis i.e. the primary

objective of this PhD study. With the limitations in mind, future work is suggested in order

to explore whether and how such limitations can be mitigated and to what extent.

As could be seen in the previous examples and use-cases, the further learning capabil-

ities of the models, though successful, could follow a more general rule of thumb in order

to further optimise them as well as increase their chances of success. For example, the

misclassification of environment that was then corrected for was performed by adding four

additional images and fine-tuning for 1 epoch. It is unknown whether there is a best rule of

thumb for these parameters, and if there is, it is unknown what those parameters are. That

is “how much extra training data should be collected?” and “how much extra fine-tuning

is required to overcome problems?”. The framework presented in this thesis enables this

future line of study and poses further scientific questions that would be answered through

a deeper exploration of lifelong learning within each capability and algorithm added to the

framework.

A limitation that was hinted towards in the previous section was the need to retrain

the chatbot once a new capability has been added to the robot’s long-term memory. In

terms of exploring the model’s ability, this was performed manually. From this, two further

experiments arise that must be performed to automate this process; firstly, the experiments

strongly suggested that training data augmentation via T5 paraphrasing did always seem

to improve the model, but further work must be performed to note whether there are

any exceptions to this rule or if indeed data augmentation through paraphrasing always

improves the chatbot’s classification approach. Secondly, the retraining with new data was

tuned for an epoch, a value chosen arbitrarily. In future work, this hyperparameter should

be tuned to derive a general best value. If these two future works are noted, they act

as steps towards total automation of training - that is, enabling the robot to learn over

time from the natural interactions with those around them. This would allow for models

to personalise to behaviours unique to certain people simply by interacting with them. In

J. J. Bird, PhD Thesis, Aston University 2021 285



CHAPTER 8. DISCUSSION AND CONCLUSION

addition, to enable continual learning, consideration must be given to the prevention of

catastrophic forgetting, presence and direction of transfer, bounding data sizes (prevention

of data explosion, overloading hardware), and the level of access to previous experiences [462,

463] which are likely candidates for issues arising in the experiments to tune how the chatbot

learns and how long it learns for.

In a more general sense, the framework supports the design guideline of extendibility

and this should be taken advantage of in future. In terms of skills, further abilities and

their relevant feature extraction processes could be implemented and tuned, respectively.

For example, facial recognition and human activity recognition could quite easily be in-

corporated into the framework and used in conjunction with other abilities. With some

exploration, these models could even be improved via the methods of model improvement

that the framework is capable of. Several new methods of model improvement could also be

explored, as was previously described in this section. In addition, further compatibility with

different robots could be implemented, also, given the API-like behaviour of the framework,

these are likely easily implemented depending on the robots’ operating system and libraries.

8.4 Conclusion

This thesis has sought to achieve two main goals which encompass scientific contributions

two-fold; firstly, the three research questions that this thesis set out to answer in a more

general sense, and secondly, the several scientific contributions presented within each indi-

vidual section i.e., contribution specific to the field that the work was performed within. The

first goal was to implement new behaviours and routines for robotics, which included ver-

bal, non-verbal, and multimodal classification activities as well as the exploration of several

methods to improve these routines over time. Each individual activity presented their own

specific scientific contributions. The second of the two main goals of this work was to unify

the scientific contributions of the individual modules towards a framework, where current

open issues in Human-Robot Interaction were considered as design guidelines. Through

unification of all works into a single framework, it allows for emergent behaviours, enabling

the modules to act as more than a sum of their parts when behaving together accordingly.

Emergent was the ability to interact with the robots’ abilities through natural social inter-

action, inspired by humans communicating with one another. This leads to the abstraction
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of complex algorithms and allows for ease of interaction with them, as shown through the

use cases wherein a chatbot-like method of input allows for creativity in interaction via

learning from human and paraphrased data, which, as described, leads to said skills that

were explored and implemented towards the beginning chapters of this thesis.

Ultimately, these goals have been achieved by this work and many scientific contributions

have been presented in multiple HRI-related fields of study. Following this, limitations have

been noted and thus plans for future work to further improve Human-Robot Interaction

have been planned. These future lines of study are focused around direct implementation

of new abilities, exploration of new continual learning methods for robots to attempt when

exposed to new stimuli from their environments, automation of parts of the framework that

are not already autonomous, and finally application of the HRI framework in a less general

sense i.e., with specific goals in mind such as the application of brain-machine and robotic

interaction in scenarios of special needs education.

To finally conclude, we have now explored several important lines of questioning. Firstly,

how one endow a robot with affective perception and reasoning for social awareness in verbal

and non-verbal communication. Then, how we can then unify these technologies into a HRI

framework to abstract machine learning and artificial intelligence technologies. This second

point also involved focus on the accessibility of non-technical users via natural interaction.

Moreover, and arguably most importantly, how these lines of research can be explored with

current open issues that have been noted in the field in mind to serve as rules and guidelines

for improved design and implementation.

8.5 Ethics Statement

Alongside this thesis, several signed documents were also required and submitted to the

Postgraduate Research Office (PGR) at Aston University at the time of thesis submission.

These were:

1. A declaration form certifying regulations for submission.

2. A research collaboration statement signed by all co-authors informing personal con-

tributions towards published works.

3. Thesis summary.
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Where required, appropriate consent was received from participants for data collection

and sharing. This was in the form of the following:

1. Approval via the the Aston University Research Ethics Committee procedures.

2. Aston Robotics, Vision, and Intelligent Systems Lab (ARVIS Lab) consent forms.
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[120] L. Quesada, G. López, and L. Guerrero, “Automatic recognition of the american sign language fin-
gerspelling alphabet to assist people living with speech or hearing impairments,” Journal of Ambient
Intelligence and Humanized Computing, vol. 8, no. 4, pp. 625–635, 2017.

[121] H.-D. Yang, “Sign language recognition with the kinect sensor based on conditional random fields,”
Sensors, vol. 15, no. 1, pp. 135–147, 2015.

[122] C. Dong, M. C. Leu, and Z. Yin, “American sign language alphabet recognition using microsoft kinect,”
in Proceedings of the IEEE conference on computer vision and pattern recognition workshops, vol. 1,
2015, pp. 44–52.

[123] A. Elons, M. Ahmed, H. Shedid, and M. Tolba, “Arabic sign language recognition using leap motion
sensor,” in 2014 9th International Conference on Computer Engineering & Systems (ICCES). IEEE,
2014, pp. 368–373.

[124] P. Kumar, R. Saini, P. P. Roy, and D. P. Dogra, “A position and rotation invariant framework for
sign language recognition (slr) using kinect,” Multimedia Tools and Applications, vol. 77, no. 7, pp.
8823–8846, 2018.

J. J. Bird, PhD Thesis, Aston University 2021 295



LIST OF REFERENCES

[125] C. Chansri and J. Srinonchat, “Hand gesture recognition for thai sign language in complex background
using fusion of depth and color video,” Procedia Computer Science, vol. 86, pp. 257–260, 2016.

[126] A. Valdivia, M. V. Luzón, and F. Herrera, “Sentiment analysis in tripadvisor,” IEEE Intelligent
Systems, vol. 32, no. 4, pp. 72–77, 2017.

[127] J. Read, “Using emoticons to reduce dependency in machine learning techniques for sentiment clas-
sification,” in Proceedings of the ACL student research workshop. Association for Computational
Linguistics, 2005, pp. 43–48.

[128] E. Kouloumpis, T. Wilson, and J. D. Moore, “Twitter sentiment analysis: The good the bad and the
omg!” Icwsm, vol. 11, no. 538-541, p. 164, 2011.

[129] B. Lu, M. Ott, C. Cardie, and B. K. Tsou, “Multi-aspect sentiment analysis with topic models,” in
2011 11th IEEE International Conference on Data Mining Workshops. IEEE, 2011, pp. 81–88.

[130] D. Bollegala, D. Weir, and J. Carroll, “Using multiple sources to construct a sentiment sensitive
thesaurus for cross-domain sentiment classification,” in Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies-Volume 1. Association
for Computational Linguistics, 2011, pp. 132–141.

[131] K. Denecke, “Are sentiwordnet scores suited for multi-domain sentiment classification?” in Digital
Information Management, 2009. ICDIM 2009. Fourth International Conference on. IEEE, 2009, pp.
1–6.

[132] T. Y. Chai, S. S. Woo, M. Rizon, and C. S. Tan, “Classification of human emotions from eeg signals
using statistical features and neural network,” in International, vol. 1, no. 3. Penerbit UTHM, 2010,
pp. 1–6.

[133] H. Tanaka, M. Hayashi, and T. Hori, “Statistical features of hypnagogic eeg measured by a new scoring
system,” Sleep, vol. 19, no. 9, pp. 731–738, 1996.

[134] M. Li and B.-L. Lu, “Emotion classification based on gamma-band eeg,” in Engineering in medicine
and biology society, 2009. EMBC 2009. Annual international conference of the IEEE. IEEE, 2009,
pp. 1223–1226.

[135] W.-L. Zheng, J.-Y. Zhu, Y. Peng, and B.-L. Lu, “Eeg-based emotion classification using deep belief
networks,” in Multimedia and Expo (ICME), 2014 IEEE International Conference on. IEEE, 2014,
pp. 1–6.

[136] Y. Ren and Y. Wu, “Convolutional deep belief networks for feature extraction of eeg signal,” in 2014
International Joint Conference on Neural Networks (IJCNN). IEEE, 2014, pp. 2850–2853.

[137] K. Li, X. Li, Y. Zhang, and A. Zhang, “Affective state recognition from eeg with deep belief networks,”
in 2013 IEEE International Conference on Bioinformatics and Biomedicine. IEEE, 2013, pp. 305–310.

[138] D. O. Bos et al., “Eeg-based emotion recognition,” The Influence of Visual and Auditory Stimuli,
vol. 56, no. 3, pp. 1–17, 2006.

[139] Y.-P. Lin, C.-H. Wang, T.-P. Jung, T.-L. Wu, S.-K. Jeng, J.-R. Duann, and J.-H. Chen, “Eeg-based
emotion recognition in music listening,” IEEE Transactions on Biomedical Engineering, vol. 57, no. 7,
pp. 1798–1806, 2010.

[140] X.-W. Wang, D. Nie, and B.-L. Lu, “Emotional state classification from eeg data using machine
learning approach,” Neurocomputing, vol. 129, pp. 94–106, 2014.
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[220] G. Wallet, H. Sauzéon, P. A. Pala, F. Larrue, X. Zheng, and B. N’Kaoua, “Virtual/real transfer of
spatial knowledge: Benefit from visual fidelity provided in a virtual environment and impact of active
navigation,” Cyberpsychology, Behavior, and Social Networking, vol. 14, no. 7-8, pp. 417–423, 2011.

[221] C. M. Bishop, Pattern recognition and machine learning. springer, 2006.

[222] D. Michie, D. J. Spiegelhalter, C. Taylor et al., “Machine learning,” Neural and Statistical Classifica-
tion, vol. 13, 1994.

[223] M. Oliveira, L. Torgo, and V. S. Costa, “Evaluation procedures for forecasting with spatio-temporal
data,” in Joint european conference on machine learning and knowledge discovery in databases.
Springer, 2018, pp. 703–718.

[224] R. Kohavi, “A study of cross-validation and bootstrap for accuracy estimation and model selection,”
in International joint conference on artificial intelligence, 1995, 1995, pp. 1137–1143.

[225] T.-T. Wong, “Performance evaluation of classification algorithms by k-fold and leave-one-out cross
validation,” Pattern Recognition, vol. 48, no. 9, pp. 2839–2846, 2015.

[226] G. H. John, R. Kohavi, and K. Pfleger, “Irrelevant features and the subset selection problem,” in
Machine Learning Proceedings 1994. Elsevier, 1994, pp. 121–129.

[227] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p. 436, 2015.

[228] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of mathematical statistics,
vol. 22, no. 1, pp. 79–86, 1951.

[229] I. Gel’Fand and A. Yaglom, “Calculation of amount of information about a random function contained
in another such function,” Eleven Papers on Analysis, Probability and Topology, vol. 12, p. 199, 1959.

[230] M. Piao, Y. Piao, and J. Y. Lee, “Symmetrical uncertainty-based feature subset generation and en-
semble learning for electricity customer classification,” Symmetry, vol. 11, no. 4, p. 498, 2019.

[231] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

J. J. Bird, PhD Thesis, Aston University 2021 301



LIST OF REFERENCES

[232] H. Gjoreski, J. Bizjak, M. Gjoreski, and M. Gams, “Comparing deep and classical machine learning
methods for human activity recognition using wrist accelerometer,” in Proceedings of the IJCAI 2016
Workshop on Deep Learning for Artificial Intelligence, New York, NY, USA, vol. 10, 2016.

[233] X. Song, A. Mitnitski, J. Cox, and K. Rockwood, “Comparison of machine learning techniques with
classical statistical models in predicting health outcomes.” in Medinfo, 2004, pp. 736–740.

[234] J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd, “Quantum machine
learning,” Nature, vol. 549, no. 7671, pp. 195–202, 2017.

[235] W. A. Belson, “Matching and prediction on the principle of biological classification,” Journal of the
Royal Statistical Society: Series C (Applied Statistics), vol. 8, no. 2, pp. 65–75, 1959.

[236] M. Pal, “Random forest classifier for remote sensing classification,” International Journal of Remote
Sensing, vol. 26, no. 1, pp. 217–222, 2005.

[237] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3, pp. 273–297,
1995.

[238] J. Platt, “Sequential minimal optimization: A fast algorithm for training support vector machines,”
Microsoft Research, 1998.

[239] T. Bayes, “Lii. an essay towards solving a problem in the doctrine of chances. by the late rev. mr.
bayes, frs communicated by mr. price, in a letter to john canton, amfr s,” Philosophical transactions
of the Royal Society of London, vol. 1, no. 53, pp. 370–418, 1763.

[240] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian network classifiers,” Machine learning, vol. 29,
no. 2, pp. 131–163, 1997.

[241] P. A. Gagniuc, Markov Chains: From Theory to Implementation and Experimentation. John Wiley
& Sons, 2017.

[242] S. H. Walker and D. B. Duncan, “Estimation of the probability of an event as a function of several
independent variables,” Biometrika, vol. 54, no. 1-2, pp. 167–179, 1967.

[243] N. S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regression,” The Amer-
ican Statistician, vol. 46, no. 3, pp. 175–185, 1992.

[244] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals of eugenics, vol. 7,
no. 2, pp. 179–188, 1936.

[245] Y. Freund, R. E. Schapire et al., “Experiments with a new boosting algorithm,” in icml, vol. 96.
Citeseer, 1996, pp. 148–156.

[246] K. P. Murphy, Machine learning: a probabilistic perspective. MIT press, 2012.

[247] T. Chen, T. He, M. Benesty, V. Khotilovich, and Y. Tang, “Xgboost: extreme gradient boosting,” R
package version 0.4-2, pp. 1–4, 2015.

[248] I. Baldini, S. J. Fink, and E. Altman, “Predicting gpu performance from cpu runs using machine learn-
ing,” in 2014 IEEE 26th International Symposium on Computer Architecture and High Performance
Computing. IEEE, 2014, pp. 254–261.

[249] Y. E. Wang, G.-Y. Wei, and D. Brooks, “Benchmarking tpu, gpu, and cpu platforms for deep learning,”
arXiv preprint arXiv:1907.10701, 2019.

[250] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error
propagation,” California Univ San Diego La Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[251] Y. Bengio, I. J. Goodfellow, and A. Courville, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444,
2015.

J. J. Bird, PhD Thesis, Aston University 2021 302



LIST OF REFERENCES

[252] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural
networks,” in Advances in neural information processing systems, 2012, pp. 1097–1105.

[253] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural networks, vol. 61, pp.
85–117, 2015.

[254] K. Andrews and M. Fitzgerald, “The cutaneous withdrawal reflex in human neonates: sensitization,
receptive fields, and the effects of contralateral stimulation,” Pain, vol. 56, no. 1, pp. 95–101, 1994.

[255] D. Yoshor, W. H. Bosking, G. M. Ghose, and J. H. Maunsell, “Receptive fields in human visual cortex
mapped with surface electrodes,” Cerebral cortex, vol. 17, no. 10, pp. 2293–2302, 2007.

[256] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[257] A. Graves, N. Jaitly, and A.-r. Mohamed, “Hybrid speech recognition with deep bidirectional lstm,”
in Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE Workshop on. IEEE, 2013,
pp. 273–278.

[258] P. Davidson, R. Jones, and M. Peiris, “Detecting behavioral microsleeps using eeg and lstm recurrent
neural networks,” in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. IEEE,
2006, pp. 5754–5757.

[259] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin,
“Attention is all you need,” in Advances in neural information processing systems, 2017, pp. 5998–6008.

[260] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization and momentum
in deep learning,” in International conference on machine learning, 2013, pp. 1139–1147.

[261] T. G. Dietterich, “Ensemble methods in machine learning,” in International workshop on multiple
classifier systems. Springer, 2000, pp. 1–15.

[262] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning and an appli-
cation to boosting,” Journal of computer and system sciences, vol. 55, no. 1, pp. 119–139, 1997.

[263] R. Rojas, “Adaboost and the super bowl of classifiers a tutorial introduction to adaptive boosting,”
Freie University, Berlin, Tech. Rep, 2009.

[264] T. K. Ho, “Random decision forests,” in Document analysis and recognition, 1995., proceedings of the
third international conference on, vol. 1. IEEE, 1995, pp. 278–282.

[265] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2, pp. 241–259, 1992.

[266] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,” IEEE transactions
on evolutionary computation, vol. 1, no. 1, pp. 67–82, 1997.
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9. J. J. Bird, A. Ekárt, and D. R. Faria, “On the effects of pseudorandom and quantum-random number
generators in soft computing,” Soft Computing, vol. 24, no. 12, pp. 9243–9256, 2020.
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9. J. J. Bird, D. R. Faria, L. J. Manso, and A. Ekárt, “A bioinspired approach for mental emotional state
perception towards social awareness in robotics,” in UK-RAS19 Conference: “Embedded Intelligence:
Enabling & Supporting RAS Technologies” Proceedings, 2019, pp. 8–11.

10. J. J. Bird, L. J. Manso, E. P. Ribeiro, A. Ekart, and D. R. Faria, “A study on mental state classification
using EEG-based brain-machine interface,” in 2018 International Conference on Intelligent Systems
(IS). IEEE, 2018, pp. 795–800.
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