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Abstract— Posturalcontrol is a complex feedback system
that relies on vast array of sensory inputs in order to main-
tain a stable upright stance. The brain cortex plays a crucial
role in the processing of this information and in the elabora-
tion of a successfuladaptive strategy to external stimulation
preventing loss of balance and falls. In the present work, the
participants postural control system was challenged by dis-
rupting the upright stance via a mechanical skeletal muscle
vibration applied to the calves. The EEG source connectivity
method was used to investigate the cortical response to
the external stimulation and highlight the brain network
primarily involved in high-level coordination of the postural
control system. The cortical network reconfiguration was
assessed during two experimental conditions of eyes open
and eyes closed and the network flexibility (i.e. its dynamic
reconfiguration over time) was correlated with the sample
entropy of the stabilogram sway. The results highlight two
different cortical strategies in the alpha band: the predomi-
nance of frontal lobe connections during open eyes and the
strengthening of temporal-parietal network connections in
the absence of visual cues. Furthermore, a high correlation
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emerges between the flexibility in the regions surrounding
the right temporo-parietal junction and the sample entropy
of the CoP sway, suggesting their centrality in the postural
control system. These results open the possibility to employ
network-based flexibility metrics as markers of a healthy
postural control system, with implications in the diagnosis
and treatment of postural impairing diseases.

Index Terms— Brain network connectivity, EEG, postural
control.

I. INTRODUCTION

EMERGING evidence has shown that the human brain
is a network whose functions depend on the complex

and dynamic interaction of highly specialized and spatially
segregated regions [1]. Network neuroscience is a fairly new
research field that employs graph theory techniques to assess
brain functionalities and quantify the reconfiguration of neural
pathways in response to tasks, stimuli, drugs administration,
and treatments. The overwhelming complexity of the brain,
which consists (on the micro-scale) of about 1012 neurons con-
nected through 1015 synapsis [2], is abstracted (at the macro-
scale) into a graph where nodes represent brain regions and
edges represent their interconnections. In doing so, network
neuroscience provides a powerful set of tools to quantify and
investigate the intricate interactions that govern every brain
function. Indeed, the insights it provides into the dynamic
reconfiguration of connections between cortical regions is
fundamental in understanding the deeply integrative functions
of the brain, overcoming the limited view of a ‘functional
localization’, where each segregated region attends to a spe-
cific function. Postural control is a primary example of a
complex system, in which the Central Nervous System (CNS)
coordinates and elaborates a vast array of signals, from visual
cues to spatial orientation information from the vestibular
system, to proprioceptive and somatosensory feedback from
muscles and sensory organs [3]. Furthermore, the body of
literature has shown how postural control is deeply related to
structural and functional characteristics of the brain [4]. The
relationship between postural control and cognitive functions
has been extensively documented, highlighting in particular
the effect of aging on brain plasticity and the consequent
change in high-level strategies of postural control [5], [6]. The
complexity of the cortical interactions that govern this process
makes network neuroscience methodologies valuable tools,
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Fig. 1. Experimental set-up. Schematic representation of the experimental set-up. 11 volunteers made up the analyzed cohort, the single experimental
session comprised two trials: eyes open (OE) and eyes closed (CE). The participant was asked to stand on a force platform in a quiet, upright stance.
After 30 s of resting state (Baseline), a proprioceptive vibratory stimulation sequence was delivered through vibrators applied to the gastrocnemius
muscles of the calves. The duration of the pseudo-random binary sequence was 10 min (Task), comprising k vibratory stimulation of variable length
uniformly distributed between 1 - 6 s. The acquired EEG data, as well as the stabilogram signal (Anterior-Posterior and Medial-Lateral), were
synchronized with triggers at the onset of each vibration. These triggers allowed for the definition of 1 second epochs (highlighted in the figure) from
which, after the source reconstruction, network connectivity matrices were extracted.

although yet relatively unexplored, to investigate the role of
the brain in postural control. Functional connectivity has been
previously employed in literature to infer the organization of
the cortex and most of the previous studies based their analysis
on MRI data or scalp-level EEG [7]. In this work, on the other
hand, we reconstruct brain networks combining non-invasive
scalp EEG data with source reconstruction techniques. The
approach adopted in the present study allows to evaluate brain
networks based on the reconstructed cortical sources, exploit-
ing the high time-resolution of the electroencephalographic
signal while overcoming the well-established limitations of
scalp-level networks. The purpose of this investigation is to
show how scalp-EEG can be used to reconstruct the cortical
network mechanisms that come into play during a postural
control task in which the participant’s quiet stance is disrupted
by mechanical skeletal muscle vibrations. The effects of
mechanical vibrations on muscle spindles are well documented
in postural control literature [8], [9] and previous studies have
employed them to provoke kinematic imbalances in order to
assess the subjects postural responses [10]–[12], [13]. The
analysis presented in this work includes the evaluation of
static properties of the brain network as well as an assess-
ment of its dynamic reconfiguration. Most importantly, this
work highlights the relationship between network dynamics
and stabilogram characteristics by correlating the dynamic
flexibility of the network with the complexity of postural
fluctuations. Previous studies showed how variations in the
sample entropy of the sway signal, used as a complexity
metric, were associated to varying levels of proficiency in
the execution of postural task [14]. It is also well assessed

how cortical plasticity (reflected in the flexibility of the brain
network) is related to an enhanced ability of reaction to
external stimuli [15]. In this work, we want to investigate
whether a correlation between these two metrics exist and
which cortical areas are involved. This study therefore set out
to assess the potential for network-based analysis to be bene-
ficial in the development of neurofeedback strategies, targeted
at specific nodes (brain regions) of the cortical network and
aimed at improving postural performance in subjects with age-
or disease-related impairments.

II. MATERIALS AND METHODS

Data were collected at Aston University’s ALIVE research
facility, following approval by the University Research Ethics
Committee (ref: #1432). The recruitment of healthy adult
volunteers (>18 years old) took place among the campus
population. Exclusion criteria included the presence of any
neuromuscular or balance disorders, physical limitations pre-
venting a natural upright stance, ongoing medications and
consumption of alcohol during the 24 hours prior to the
experiment. 11 participants volunteered to take part in the
study (age = 24.4±5.8, 5 males and 6 females, all indicating
their right leg as the dominant one). The experiment was
carried out in one single seating of about 1.5h, including the
participant’s preparation. A schematic of the experimental set-
up is depicted in Figure 1. Participants were asked to stand
still on a force platform, maintaining a natural upright posture
and fixing their gaze on a marker on the wall in front of
them, at about 2m distance. After 30 s of baseline recording,
a randomized sequence of mechanical vibratory stimuli was
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applied to the participants gastrocnemius muscles of both legs
in order to disrupt their stance. The stimulation sequence had a
duration of 10 min and consisted of a randomized pulse wave
in which both pulse width and inter-stimulus intervals were
uniformly distributed between 1 and 6 seconds. The vibration
was delivered at 85 Hz, via two small eccentric rotating
mass DC motors (ERM) encased in a plastic cylinder and
attached to the participants’ calves (diameter: 30mm, length:
62mm). This set-up was based on previous works reported
in [10], [16]. The session (30 s baseline followed by 10 min
stimulation) was repeated twice, with eyes open (OE) and
closed (CE), in randomized order. The EEG signals were
recorded using a 64-channel wet electrodes cap with a standard
10-20 system montage (AntNeuro, Enschede - Netherlands).
The recording sampling frequency was fS = 1000Hz. Partici-
pants were instructed to keep their facial muscles as relaxed as
possible, avoiding teeth grinding and jaw clenching, in order
to minimize muscle artifacts in the recorded signal.

Participants stood on an AMTI OR-6-7 force platform
(part of a motion capture system by Vicon Motion Systems
Ltd, Kidlington - UK) that measured their center of pressure
trajectory (CoP) over the course of the experiment, in its
anterior-posterior (AP) and medial-lateral (ML) components,
at a sampling frequency of fS = 1000Hz. A customized
wearable electronic box was developed and built in order to
generate the randomized pulse wave that regulated the calf
stimulation and to simultaneously send a series of 5V TTL
trigger signals to the EEG amplifier and to the force platform
system. The 5V trigger signals were generated at the onset and
offset of every vibration and allowed for the synchronization of
EEG and CoP data, as well as their segmentation into epochs.
The 3D printed box case was secured on a belt so that the
participants could wear it around their waist. The device was
powered with two rechargeable 9V batteries, while an internal
voltage regulator made sure to deliver the appropriate voltage
(12.4V) for the two connected ERM motors to deliver a 85 Hz
vibration (corresponding to a rotational speed of the internal
eccentric mass of 5100 RPM).

III. DATA ANALYSIS

A. Preprocessing

The steps followed for the preprocessing of the EEG signal
were adapted from a semi-automated pipeline presented in
the software Cartool [17] and implemented with custom-
made Matlab scripts. The EEG signal was filtered between
1 - 45 Hz with a zero-phase band-pass FIR filter; the DC
offset was subsequently removed from the whole signal before
segmenting it into epochs. Epochs were defined as 1 second
long signal segments after each onset trigger, corresponding
to the 1 second of electric brain signal after the start of
each vibration of the sequence. The epoch length of 1 second
was chosen in that it is the maximum length that allows to
avoid overlapping with the following vibration/rest cycle of
the sequence.

Three frontal electrodes (Fp1, FpZ, Fp2) were used to per-
form an Electrooculography (EOG) regression on the remain-
ing 60-channel data, in order to remove eye blink artifacts [18].

Channels with poor signal quality were identified within every
segmented epoch and replaced with an interpolation of the
neighboring channels signals. The classification of ‘bad chan-
nels’ was performed with a supervised automated approach,
based on the standard deviation (std) of the signal. The ith

channel was classified as ‘bad’ if its stdi exceeded the average
std (computed among all the channels) times a certain constant
threshold value T.

i f std i > T ∗ std ⇒ Inter polate channel i

The outcome of this preprocessing step was visually
inspected to evaluate the effectiveness of different T values.
The value T = 1.7 was finally chosen, as it proved to be
consistent with the choices that would have been made with
a purely visually inspected manual rejection. The interpolated
channels were filtered between 1-45 Hz again to smooth them
out. Epochs where more than 15% of the total channels were
interpolated (≥9 channels) were discarded. Finally, the EEG
signal was re-referenced to the common average. Table I,
in the Appendix section, provides an overview of the total
number of vibratory stimulations applied to each participant,
and the final amount of accepted epochs following the pre-
processing of the data. The AP and ML components of the CoP
trajectory were detrended and filtered between 0.2 - 20Hz with
a bi-directional bandpass Butterworth filter [19]. The signal
was then normalized to unit variance by dividing it for its
standard deviation [20].

B. Reconstruction of Functional Brain Networks

Functional brain dynamics were reconstructed using the
‘EEG source connectivity’ method [21], [22]. This method was
proposed with the aim to overcome the volume conduction
and field spread limitations that affect scalp-level networks
by performing functional connectivity network analysis at the
cortical level. First, this approach requires to reconstruct the
cortical sources by solving the inverse problem [23]. Given an
equivalent current dipole model, the scalp EEG signal recorded
on M channels can be expressed as the linear combination of
P time-varying current dipole sources [24]:

X (t) = G ∗ S(t) + N(t)

where G is the lead-field matrix of size [M, P], that weighs
the contribution of each source towards the recorded signal,
S(t) is the matrix containing the sources time series [P,
Timepoints] and N(t) is the noise covariance matrix. Solving
the inverse problem consists in finding an estimate Ŝ(t) of
the source matrix. For this study, a three-layer BME model
(brain, skull, scalp) was adopted to define the inverse problem
domain. The model’s morphology was based on a standard
head model template provided by BrainStorm [25]. To solve
the inverse problem, we used the weighted Minimum Norm
Estimate (wMNE) algorithm [26], [27]. The output consists
of 1500 estimated source time series, localized at the cortical
boundary. For the purposes of network analysis, the brain is
rendered through a graph in which nodes represent cortical
regions. In the present work the Desikan-Kiliany anatomi-
cal atlas was employed to parse the cortex into 68 regions
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of interest (ROIs) [28]. By averaging the estimated source
time series within each regional boundary, the regional time
series matrix is obtained (with dimension [68, Timepoints]).
Functional connectivity (FC) was computed based on the
Phase Locking Value (PLV), a measure of statistical coupling
between the cortex-level regional time series. The advantages
and limitations of different connectivity metrics have been
extensively reviewed in literature [29] and previous research
on simulated data showed that the combination of wMNE and
PLV has the highest accuracy in terms of similarity with the
reference network [30].

Functional connectivity values between each pair of the
68 brain regions were computed for every 1-second epoch
in three frequency bands: Alpha (α, [8-13] Hz); Beta
(β, [13-30] Hz); and Gamma (γ , [30-45] Hz).

C. Nodewise and Edgewise Static Analysis

The focus of static network analysis is to investigate the
global characteristics of the brain network during the execution
of the postural control task, without taking into account its
dynamic evolution. Therefore, connectivity matrices within
each trial (OE and CE) were averaged to obtain a single
task-related connectivity matrix for every subject and fre-
quency band. This averaged matrix was then thresholded in
order to keep only the top 10% strongest connections, while
removing weaker, spurious connections [30], [31]. Many net-
work measures are available to characterize different aspects
of the brain connectivity, providing insights on local and
global properties of the network structure. First, we analyzed
local parameters of single nodes of the network, i.e. cortical
regions, to characterize their properties and map how their
role in the network changes in different experimental con-
ditions (nodewise analysis). Then, we used Network-Based
Statistics (NBS), to give a global representation of the network
reconfiguration in the two conditions, by focusing on the inter-
region connections themselves (edgewise analysis) [32]. The
degree of a node is one of the easiest and most common local
network measures; it consists in the number of connections
(edges) associated to that specific node. A generalization of
this measure is a node’s strength, which comes into play
when weighted networks are considered and consists in the
sum of the weights of the edges related to the node. Degree
and Strength are considered measures of hubness, as they
describe how central a node is in the network by providing
information on the number of connections it is involved in
and their weight. These measures help to determine whether
the node is a highly interconnected one (hub) or if it is a
marginal, isolated node in the network. The strength parameter
was computed for each of the 68 brain regions, in α, β and γ

frequency bands and a statistical analysis was carried out to
investigate the presence of a significant difference between the
two experimental conditions of open eyes and closed eyes.
The non-parametric Wilkoxon signed rank test was chosen
given the limited sample size (11 repetitions) and the lack
of assumption on the normal distribution of the data. The
resulting p-values were subsequently corrected for multiple
comparisons using the False Discovery Rate (FDR) method.

The same analysis was performed on the baseline connectivity
matrices obtained from the initial 30 s resting-state epochs,
during both conditions (OE and CE). This allowed to verify
the presence of differences in nodes strength solely related to
the visual input (or lack of thereof), in the absence of vibratory
simulation. Then, for an edgewise analysis of the network,
differences in the connectome were investigated using the NBS
method. The method was implemented in Matlab using the
NBS toolbox [32]. NBS works on the connectivity matrices
representing the network in the two testing conditions, orga-
nized according to a statistical model specified in terms of
the general linear model (GLM). It provides as an output the
set of connections comprising the network that is found to
show a significant difference in the two conditions, with an
associated p-value. The significance level was set at 0.05 (with
correction for multiple comparisons using permutation test)
and the number of iterations at 5000. The network analysis was
performed both on task (during the stimulation) and baseline
connectivity matrices.

D. Dynamic Analysis–Flexibility/Complexity Correlation

The network dynamic was assessed by computing the flex-
ibility index of each node over the execution of the postural
control task. First, the connectivity matrix that identifies the
functional network is computed for every 1s epoch following
each onset of the binary vibratory sequence throughout the
duration of the experiment. Every network of this sequence
is decomposed into its dynamic modules, using the com-
munity Louvain algorithm [33]. Modules represent sets of
highly intra-connected regions that are weakly connected with
others [34]. The flexibility of each node of the network is
then computed based on the number of times the affiliation
of the node shifts among different modules. Subsequently,
a posturographic analysis was performed on the force platform
data to extract the sample entropy (SEN) from the anterior-
posterior (AP) and medial-lateral (ML) components of the
center of pressure (CoP) trajectory. This allowed us to quantify
the complexity of the postural signal for each participant
during the execution of the task. Finally, Pearson’s linear
correlation coefficient was computed in both experimental
conditions (OE and CE) between the flexibility values of each
of the 68 nodes and both the SEN values of the AP and ML
sway respectively (number of repetitions corresponding to the
number of participants). A p-value was also provided together
with the Pearson’s coefficient by running a Student’s t-test for
each comparison, testing the null hypothesis of no correlation.

IV. RESULTS

This chapter illustrates the outcome of the functional con-
nectivity analysis. The results of the static analysis are reported
in sections A and B , which summarize, respectively, the node-
wise and edgewise comparisons of the global brain networks
during OE and CE tasks. Paragraph C, instead, focuses on
the dynamic analysis and reports the results of the correlation
analysis performed between the flexibility index of each node
and the complexity of the CoP sway. The following results
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Fig. 2. Nodewise static analysis results. Percentage variation in each region’s strength during the postural task in the two conditions of open (OE)
and closed eyes (CE), in the alpha band. The anatomical representation displays the nodes of the network as the corresponding 68 cortical regions,
parcellated according to the Desikan-Killiany atlas. The brain is shown from the top as well as in the medial and lateral view of each hemisphere.
Regions highlighted in red displayed higher strength values during OE, regions highlighted in blue showed higher strength values in CE. The
saturation of the color denotes the amount of percentage increase, as shown by the color bar. Only regions with a statistically significant difference
in strength are reported (FDR-corrected p-value smaller than 0.05).

refer to the analysis in alpha, as statistically significant results
only emerged in this frequency band.

A. Static Analysis – Nodewise

Significant differences in nodes strength values between OE
and CE tasks emerged from the nodewise static analysis. The
outcome of the strength analysis is displayed in Figure 2. The
results highlight two main contiguous areas with a different
characterization, the frontal regions with higher strength values
during OE and the right parieto-temporal regions where higher
strength values can be observed during CE.

An increased strength can be observed during the OE task
in the network nodes corresponding to the frontal areas of
the cortex (Orbitofrontal: left medial, p = 0.033; left lateral,
p = 0.036; right medial, p = 0.015; right lateral, p = 0.015.
Superior-frontal: left, p = 0.036; right, p = 0.015) as well as
the anterior cingulate (left caudal, p = 0.033; right rostral, p =
0.015). These results present a distinct symmetry between the
two hemispheres and a marked percentage increase in strength
(>50% increase over the CE task) can be noted especially in
the orbitofrontal regions (left lateral, p = 0.036; left medial,
p = 0.033; right lateral, p = 0.015; right medial, p = 0.015)
as well as in the left pars-orbitalis (p = 0.024).

On the other hand, network nodes whose strength increased
during the CE task, are not symmetrically distributed across
the hemisphere but involve predominantly the right one.

The corresponding cortical regions in the right hemisphere
are focused in the central (post-, p = 0.031; para-, p =
0.036), parietal (superior, p = 0.015; inferior, p = 0.033)
and temporal (superior, p = 0.036; inferior, p = 0.015) areas.
An increase in the supramarginal region can also be observed
in both hemispheres (left, p = 0.033; right, p = 0.033).
Overall, it must be noticed that the percentage increase in
strength during CE in these regions is not as pronounced,
the maximum value is a 25% increase over the OE task. The
baseline analysis, in which strength values extracted from the
connectivity matrices related to the quiet stance epochs, in OE
and CE conditions, were tested, didn’t provide any significant
differences. The lack of significant variation in node strength
values between OE and CE during the baseline epochs suggest
that the significant results emerged from the task analysis in
the two experimental conditions are actually related to the
proprioceptive vibratory stimulation. Table II, in the appendix
section, provides a complete overview of the results for each
cortical region, including the mean strength values computed
over the participants, their standard deviation, the strength
percentage increase values and the associated corrected
p-values.

B. Static Analysis –Edgewise

The results of the edgewise static analysis are depicted in
Figure 4 in the appendix section. The network reconfiguration
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Fig. 3. Results of the correlation analysis between network flexibility during OE task and sample entropy of the AP component of the postural
sway. The highlighted regions correspond to the nodes of the network whose flexibility correlated with the corresponding SEN of the posturographic
signal in a statistically significant way (p < 0.05). Each of these regions is represented with a node whose size is proportional to the associated
Pearson’s correlation coefficient (ρ). The figure also shows the correlation scatter plots (including regression lines) related to the two regions with
highest Pearson coefficients; flexibility values are in the x-axis while the sample entropy index is in the y-axis.

in the alpha band between OE and CE tasks, as evaluated by
the change in connectivity values, involves 116 edges of the
network, all of which showed increased connectivity during
the CE task. The resulting network is spatially localized in the
posterior areas of the brain, presenting connections across
the hemispheres, as well as intra-hemisphere connections on
the right side. The significant connections are predominantly
temporo-parieto-central, involving mainly the parietal (supe-
rior and inferior), the central (post and para) and the temporal
(inferior and middle) brain regions. These results, in terms
of cortical regions involved and predominance of the right
hemisphere, are in accordance with the nodewise analysis
results reported for the CE task in the previous section.
The analysis on the baseline network reconfiguration in the
two experimental conditions highlighted 160 significant edges,
whose connectivity values increased during CE. The resulting
network partly overlaps with the task-related one, especially
in the parietal and temporal regions; at the same time, though,
it also differentiates itself with regards to its edges distribution.
Specifically, it doesn’t present a strong right lateralization
of intra-hemispheric connections while it displays a higher
connection density in the frontal lobe, which was previously
unobserved. Nevertheless, the statistical test (NBS) didn’t
highlight any statistically significant difference between the
task-related and baseline-related networks. A complete list
of the cortical regions involved in both networks, with the
corresponding degree value, is available in Table III of the
appendix section.

C. Dynamic Analysis – Flexibility/Complexity Correlation

In the dynamic analysis we tested the correlation, in the
alpha frequency band, between node flexibility and SEN values

of the CoP sway (in the OE and CE experimental conditions
and in the AP and ML sway components). Significant Pear-
son’s correlation ρ values emerged between the flexibility of
nodes in OE condition and the corresponding AP stabilogram
sway.

In this case, significant correlation values were found in
the postcentral, supramarginal and inferior parietal areas as
well as in the temporal-occipital regions and the cingulate
cortex of the right hemisphere (see figure 3). Specifically, high
Pearson coefficients (ρ > 0.70) could be observed in areas of
the cingulate cortex (isthmus cingulate ρ = 0.80, p = 0.003
and posterior cingulate ρ = 0.69, p = 0.019) as well as in
the temporal-occipital cortex (middle temporal gyrus ρ = 0.81
p = 0.002 and cuneus ρ = 0.7 p = 0.018).

Table IV of the appendix section reports the Pearson coef-
ficient and corresponding p-value for each significant region.
Average SEN values of the AP and ML sway, together with
their SD, are provided for baseline and task, in OE and
CE, in Table V of the appendix. The table also reports
the p-values resulting from the Wilcoxon signed-rank tests
performed within and between conditions (baseline vs. task,
and OE vs. CE respectively).

V. DISCUSSION

Postural control is the phrase used to indicate the complex
regulatory system whose aim is to maintain a stable upright
stance. The complexity of this task lies in its reliance from a
wide range of sensory inputs gathered predominantly through
the visual, somatosensory, proprioceptive and vestibular sys-
tems. While early research on the topic associated postural
control with a reflex response enacted at the level of the brain-
stem and spinal cord [35], extensive recent evidence pointed
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Fig. 4. Edgewise static analysis results. Graphical representation of the network reconfiguration occurring in the alpha frequency band. Cortical
regions are represented as nodes of the network, while edges represent the connections between the regions. The size of each node is proportional
to its degree, i.e. the number of connections in which it takes part. The figure highlights the differences between the brain network structures in the
two experimental conditions (OE and CE), after the respective connectivity matrices were compared and tested to identify edges which underwent a
significant change in connectivity value. Figure A depicts the 116 edges that showed a statistically significant difference in connectivity (significance
level of NBS set to 0.05) during the task execution, i.e. average of 1s epochs following the onset of each vibratory stimulation. All of them are
associated with higher connectivity values during the CE task. In the same way, Figure B shows the 180 edges associated with significantly different
level of connectivity during the baseline epoch, i.e. no vibratory stimulation. In this case too, all of the edges are associated with higher connectivity
values in the CE condition.

out the crucial role of the cortex as a hub for the processing
of sensory information and the subsequent development of an
effective postural control strategy [36].

Balance perturbations techniques have been extensively
used to challenge the upright stance in order to investigate the
elicited postural response. In the present work the disruption
of the participants quiet upright stance was induced by skeletal
muscle vibration of the lower limbs, in which a randomized
binary vibratory sequence was applied to the gastrocnemius
muscles of the calves.

The characteristics of the cortical network structure in
the two experimental conditions of open and closed eyes,
as well as the dynamic reconfiguration of the network in
relationship with the posturographic data, were investigated
using 68 regional time-series obtained from reconstructed

cortical sources, averaged according to an anatomical atlas
as presented in the methodology section of this work. To our
knowledge, the use of EEG source connectivity to characterize
functional networks involved in postural control has been
scarcely used in previous works, since most of the previous
studies on the topic relied on scalp-level EEG data [37].
The scalp-level approach, though, presents limitations (most
notably distortions introduced by the volume conduction
effect) that have been extensively highlighted and discussed
in literature [38]. The results which emerged from this inves-
tigation, consistently highlighted the presence of statistically
significant cortical network structures in the alpha band
(α: [8-13] Hz). This is in line with results from previous
literature which showed the role of alpha band connectivity in
cortical processes related to postural control tasks [37], [39].
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Cortical effects were also previously reported in beta band
during balance tasks [39], [40]. It is worth noting, though,
that the majority of previous literature focuses on cortical
activation in terms of spectral and power-based analyses,
while the novel methodology proposed in this work involves
functional connectivity which relies on phase metrics (PLV)
and therefore focuses on the cortical signals’ phase synchrony
rather than their amplitude.

A. Discussion of Nodewise OE Results

The results of the nodewise analysis, in which we compared
the node strength in the two experimental conditions, display
two clear and well-defined clusters of regions. The OE con-
dition is marked by an increased node strength in the orbito-
frontal, superior-frontal and anterior cingulate regions of the
cortex, which characterizes them as central hubs of this brain
network. Previous research has shown how the frontal lobe
plays a role in the allocation of attentional resources during
motor performances [41]. In particular, the caudal and middle-
frontal regions comprise the Frontal Eye Field (FEF), which is
related to visual field perception and awareness and the main-
tenance of attention to peripheral locations [42]. FEF is also
part of the Dorsal attention Network, which has been shown
to be a center of top-down control of visual attention [43].
Moreover, besides being involved in spatial attention, it has
been suggested that offline motor planning is one of the core
function of this network, i.e. the representation of abstract
kinematic movement, which would indicate the evolution of
this network from a role of pure motor control to a much
wider range of cognitive functions [44]. This motor attention
frontal area interplays with the orbitofrontal cortex (lateral-
and medial-orbitofrontal regions) which is a heterogeneous
region acting as a center for sensory integration [45] as well
as with the anterior cingulate cortex (caudal- and rostral-
anterior cingulate regions), which has been traditionally related
to decision-making and has been shown to play a role in
the recognition of unstable posture [46], [47]. These findings
suggest that the reaction to a challenged upright stance, during
the OE condition, engages an attention-related network in
the alpha band located predominantly in the frontal lobe,
with the visual information playing a predominant role in the
integration of the postural control feedback system. They also
highlight the reliance on visual cues in the detection of postural
instability and the subsequent development of a corrective
strategy. These results also accord with and corroborates the
observations of previous studies which showed how certain
cognitive functions, namely attention, interact with motor
function and postural control [41], [48], [49].

B. Discussion of Nodewise and Edgewise CE Results

Observing the results of the nodewise analysis for the CE
condition, on the other hand, it clearly emerges a predomi-
nance of the parietal and temporal lobes. Another noticeable
feature of these results is the asymmetry of the network nodes
involved, which are primarily localized in the right hemi-
sphere. The increased hubness of these nodes in the network
organization associated with a postural response in the absence

of visual cues is also supported by a qualitative inspection
of the task edgewise analysis, which however didn’t provide
statistically significant differences when compared the baseline
network. The analysis conducted on the network connections
in the two experimental conditions, highlights the strengthen-
ing of inter-hemisphere connections among parietal and tem-
poral regions as well as a dense network of intra-hemisphere
connections in the right side of the brain, during the CE con-
dition. These results are backed by a strict network-based sta-
tistical analysis that confirms the significance of the displayed
connections. The emerging network clearly highlights the
involvement of the parietal lobe. The Anterior parietal cortex
(APC) is the main recipient of proprioceptive signals. While
commonly identified as a whole with the primary somatosen-
sory cortex, APC actually comprises of four areas distinctively
defined by their cytoarchitecture. It has been shown how two
of these areas in particular (Brodmann’s 3a and 2) are the
primary target for proprioceptive information regarding muscle
fibers lengthening, joints position, etc. [50]. The Posterior
parietal cortex (PPC) is a hub of multisensory integration,
being responsive to visual, auditory and vestibular solicitations
which is also involved in motor planning functions. The
superior and inferior parietal lobules are in fact centers of
interpretation of sensory information involving body image
and spatial perception. Previous studies reported how parietal
lesions are linked to disturbances in motor behavior resulting
from the failure to gather contralesional space information
by limb movement [51]. The network connections between
parietal cortex and temporal regions (in particular superior
temporal) suggests an involvement of what has been identified
as the vestibular cortex. In order to properly identify the
nature of a perceived motion, distinguishing between motion
of the surrounding environment from self-motion, and resolve
discrepancies in the visual signal, the brain relies on the inte-
gration of vestibular signals from the inner ear’s sensors. The
broad range of interactions that the vestibular system has with
other sensory systems is reflected in its distributed cortical
network. The exact localization of this network has been amply
investigated and discussed in literature, both in human and
non-human primates [52]. The network that emerges from
the edgewise results, with a significant strengthening of the
superior-temporal region and of the areas surrounding the
posterior end of the lateral sulcus (Sylvian fissure) reflects
what is commonly defined as the parieto-insular vestibular
cortex (PIVC). This area has been hypothesized to be involved
in a vestibular cortical pathway that spreads from the temporal
parietal junction (TPJ) to the retro-insular cortex (RI) and is
active in the integration of visual and vestibular information for
a self-referential processing that informs about self-location
in space [52]. More recent literature further investigated the
anatomical and functional characteristics of this area, identify-
ing two main components to the vestibular cortex: PIVC and
Posterior-insular cortex (PIC) [53]. Both areas are involved in
the processing of vestibular cues, but they differ in the way
they respond to visual stimulation. It has been shown that
PIC processes visual clues related to self-motion while PIVC’s
activity is inhibited in the presence of visual signals, to avoid
visual-vestibular conflict. Despite the limits of the adopted
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brain parcellation that doesn’t allow to discriminate between
these two subregions, this functional dynamic suggests that,
giving the lack of visual cues during the CE task, the presented
results reflect the activation of PIVC.

Overall, these findings characterize a cortical network that
operates in alpha band and manifests itself in the coordination
of a reaction to a mechanical postural challenge in the absence
of visual information. The network reconfiguration in the two
experimental conditions, in the wake of the postural challenge,
was evident in the characteristics of single nodes, namely in
their different characterizations as central hubs of the network,
as pointed out by the comparison with the baseline nodewise
results. These results highlight how in order to counterbalance
the disruption of the upright stance and prevent falling, the
postural control system heavily relies on the elaboration of
proprioceptive and vestibular information. The asymmetry
of the network further suggests the significant involvement
of the vestibular cortex, which is characterized by a right
hemispheric dominance in right -handed people (the entirety
of the analyzed cohort) [54]. Moreover, the highly demanding
postural task characterized by the lack of visual cues and the
consequent challenge presented by the necessity to rely solely
on proprioceptive and vestibular information, might explain
the predominance of strongly interconnected regions in the
right-hemisphere, i.e. the contralateral somatosensory areas to
the non-dominant leg (all the participants have in fact identi-
fied the right leg as their dominant one). This interpretation is
in accord with previous research which linked postural fatigue
and absence of visual information with enhanced reliance on
somatosensory information from foot and ankle for the control
of upright stance [55]. A qualitative inspection of the network
resulting from the task edgewise analysis seems to confirm
this interpretation, showing significant connections among the
same network hubs emerging from the nodewise analysis in
the parieto-temporal, vestibular cortex. Nevertheless, at the
wider level of network structure, the brain reconfiguration in
OE and CE, following the proprioceptive stimulation, was not
statistically different from the resting state network before
the stimulation. This is a limitation of the current work,
which will benefit from a more in-depth further analysis,
and is possibly due to the limited sample size, the design
of the experimental paradigm or the necessity to identify
more suitable network comparison metrics. Another aspect
worth of consideration in following studies is the lack of
significant differences in node strength in resting state between
the two conditions, which suggests the need to explore other
local network properties other than hubness (e.g. modularity,
clustering, centrality, etc.). However, the baseline edgewise
analysis, which provides a more global picture of the network
topology reconfiguration, indeed showed significant changes in
the two resting state conditions. This baseline analysis indi-
cates that the observed differences are most likely related to the
presence of visual cues (or lack of thereof). This observation,
which requires further investigation, suggests the predomi-
nance in the network of those cortical pathways related to the
processing of visual information which seem to ‘overshadows’
the effects on the network reconfiguration of vestibular and

proprioceptive related strategies to counteract the postural
disruption.

C. Flexibility - Complexity Correlation

The flexibility of a node is determined by how often its
modular affiliation changes over the course of the experiment.
Since modules are clusters of highly interconnected nodes
often associated with specialized functions, the flexibility of
a given node points at the ability of the corresponding brain
region to be involved into multiple functions [56]. Prominently
among other brain network properties, flexibility has been
widely used in literature as a biomarker to capture neuroplas-
ticity differences across individuals and its correlation with
cognitive performance has been documented during memory
and attention training as well as motor tasks [57]–[60].

Previous literature has also highlighted how healthy phys-
iological processes such as postural control are characterized
by a complex dynamic and complexity in the fluctuations of
the CoP signal has been commonly used to investigate the
effectiveness of the postural control system [61]–[63]. At the
same time, it has been shown how age- or disease-related
impairments, associated with worsening postural performance
translate into a loss of complexity of the posturographic signal.
Thus, if on the one hand, highly flexible networks are asso-
ciated with greater brain plasticity and the ability to develop
adaptive strategies to counteract external disruptive stimuli,
on the other hand, more complex CoP fluctuations (character-
ized by higher SEN values) reflect an enhanced automaticity
of the postural control system [20]. The correlation between
cognitive decline and balance, especially in relationship with
the incidence of falls has been extensively discussed in lit-
erature [6], [36], [64]–[66]. This highlights the necessity of
developing targeted therapies to mitigate fall risk as well as the
opportunity for the design of neurofeedback strategies aimed
at improving postural performances in ageing population or
cognitively impaired subjects. In order to do this, it is first
necessary to identify the specific cortical regions to target
and markers that can be correlated with postural performance.
Observing the results, it can be noticed that the regions that
displayed a significant correlation with the complexity of the
anterior-posterior CoP fluctuation encompass predominantly
parts of the cingulate, parietal and temporal cortices. The
results once again highlight the role of cortical centers of
proprioceptive and vestibular processing, with the involvement
of APC/PPC and the regions surrounding the lateral sulcus
(PIVC). The inferior parietal cortex, whose role in spatial
perception and body image neural representation has been pre-
viously discussed, appears involved as well. Of particular inter-
est though, is the high correlation that emerged in the cingulate
cortex and in the middle temporal and cuneus areas. The poste-
rior cingulate cortex (PCC) has been associated with the main
function of visuospatial orientation, and of integrating neural
representation of self-location and body ownership acting as
a mediator in the interplay between different cortical areas
in the parietal and medial temporal regions [67]. Moreover,
previous research has shown the PCC’s centrality as a node
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within the default mode network (DMN) and highlighted its
high metabolic activity and dense structural connectivity with
widespread brain regions which characterize it as a central
cortical hub [68]. Furthermore, it has been suggested that PCC
plays an active role in cognition, as indicated by its reduced
metabolism in Alzheimer’s disease and ageing patients. While
the functions of this cortical regions are still being investigated,
there is clear evidence of its involvement in cognition control
through signaling of environmental changes [69]. It appears
clear then, how the flexibility of such a deeply interconnected
processing hub of the cortex is necessary in order to effectively
react to environmental challenges, such as a motor perturbation
of equilibrium represents. The results also offer an indication
of the likely involvement of certain visual pathways, especially
considering the correlation observed between the posturo-
graphic signal complexity and the flexibility of cuneus and
middle temporal regions. Cuneus is a region of the occipital
lobe which is most known for its involvement in basic visual
processing and for its role as a mediator in the exchange of
visual information between the primary visual cortex (V1)
and extrastriate cortices such as the middle temporal visual
area (MT/V5) [70]. The involvement of the middle temporal
gyrus further points towards a possible role of the MT/V5,
a functional area of the extrastriate visual cortex located
at the boundary with the occipital lobe [71]. This area is
part of the visual cortex and in particular it is involved in
the dorsal visuospatial pathway, also referred to as ‘motion’
pathway [72]. MT is in fact a motion-sensitive cortical region
involved in a range of functions including directing attention in
the visual environment, integration of local motion signals and
kinematic recognition. Its critical role in motion perception has
been extensively documented, showing how lesion to MT/V5
adversely affects motion perception [73], [74]. Both cuneus
and middle temporal regions play a complex role of mediators
in visual processing pathways and project to a number of
satellite cortical areas in charge of complementary cogni-
tive functions especially related to motion detection. These
characteristics might explain why a more flexible dynamic
behavior in these regions, i.e. their ability to shift affiliation
between different network modules, is reflected in an overall
more successful postural strategy, as highlighted by the high
correlation values with the SEN of the CoP trajectory.

Nevertheless, a note of caution is due in this interpretation,
especially concerning the role of the MT/V5 area, as it may be
somewhat limited by the anatomical atlas used. In fact, recent
tractography-based parcellation of the middle temporal gyrus
identified four distinct subregions based on anatomical con-
nectivity, each one being associated with unique functions in a
wide range that includes sound recognition, semantic retrieval,
language processing and decoding gaze direction [75]. The
aspect of auditory influence on postural control, in particular,
has been discussed in previous works and its effects at a
cortical network level requires a more in depth investiga-
tion [76], [77]. Therefore, the 68-region cortical anatomical
atlas employed in this study does not provide the required
detail of parcellation that would allow us to positively identify,
within the broader middle temporal gyrus region, the specific
area involved as the MT/V5 and thus infer with certainty on its

TABLE I
NUMBER OF VIBRATORY STIMULI (k) ACROSS SUBJECTS DURING THE

10 MIN TASK TRIAL IN BOTH EXPERIMENTAL CONDITIONS AND

NUMBER OF 1 s EPOCHS FOLLOWING THE ONSET OF EACH

VIBRATION THAT WERE ACCEPTED IN THE PREPROCESSING

PHASE BECAUSE FREE FROM SIGNAL CORRUPTION

direct involvement in the postural control system. Furthermore,
it is worth noting that significant flexibility/SEN correlation
emerged only during the OE task. This aspect requires further
investigation and possibly an improved experimental protocol.
Overall, future developments of this research will benefit from
the involvement of a larger cohort and further analysis to
validate the observations presented here, as well as testing the
flexibility and complexity metrics in a control study against
ageing and impaired subjects.

VI. CONCLUSION

The goal of this work was to use the tools provided by
network neuroscience to identify and shed light on the inter-
play between cortical regions that are predominantly involved
in the high-level coordination of the postural control system,
following a mechanical challenge to the participant’s upright
stance. Indeed, network neuroscience provides a valuable set
of analysis tools that can complement the body of postural con-
trol literature, providing further insight into the mechanisms
that govern brain functions.

The results show differences in the properties of cortical
networks, both in individual regions and in the overall con-
nectome structure during the postural task execution, between
the experimental conditions of open and closed eyes. While
differences in individual nodes strength are backed by sta-
tistical significance, differences in the network connections
only provide a qualitative support to the results and require
further investigation on a larger cohort. Overall, the results
highlight the proprioceptive, vestibular and visual pathways
of cortical response that we would expect as a result of
the mechanical skeletal muscle perturbation that was applied.
In particular, they revealed the different cortical strategies
put in place during open and closed eyes task, with a
reliance on visual frontal pathways in the former case and
vestibular and proprioceptive temporal-parietal pathways in the
latter. Moreover, the assessment of the flexibility of cortical
regions provides valuable insights on the subject’s ability to
dynamically reconfigure the modular structure of their cortical
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TABLE II
NODEWISE STATIC ANALYSIS RESULTS. LIST OF CORTICAL REGIONS

WHICH SHOWED A SIGNIFICANT STRENGTH INCREASE IN OPEN EYES

(A) AND CLOSED EYES (B), COMPARED TO THE OPPOSITE

CONDITION. ALSO REPORTED ARE THE AVERAGE STRENGTH

VALUE ACROSS SUBJECTS AND ASSOCIATED STANDARD

DEVIATION, AS WELL AS THE PERCENTAGE INCREASE OVER

THE OPPOSITE CONDITION AND RELATIVE p-VALUE

network over time, in response to external stimuli or tasks.
At the same time, complexity of the posturographic signal has
been recognized as a hallmark of a healthy postural control
system’s ability to respond and adapt to external perturbations
and cognitive stressors, reflecting the presence of a “highly
adaptable network of neuro-muscular connections” [62], [78].

Overall, the fact that high flexibility emerges in the reported
regions of the temporal, parietal and cingulate cortex is
coherent with their involvement in highly integrative functions
characterized by complex interconnections of visual, proprio-
ceptive and vestibular processes. It is interesting to observe
how clearly the flexibility index of these regions correlates
with a well-established index of postural performance, easily
obtainable through posturographic analysis of the body sway.
This suggests the possibility of employing the flexibility of
those network nodes as a marker to denote a healthy and
effective postural control system. Furthermore, in addition
to being a neurological diagnostic tool to detect early signs

TABLE III
EDGEWISE STATIC ANALYSIS RESULTS. LIST OF CORTICAL REGIONS

THAT ARE PART OF THE NETWORK AND CORRESPONDING DEGREE

TABLE IV
FLEXIBILITY/ COMPLEXITY CORRELATION RESULTS. LIST OF

CORTICAL REGIONS ASSOCIATED WITH A SIGNIFICANT

PEARSON’S CORRELATION COEFFICIENT

of postural functions decline, it could be of interest in the
development of neurofeedback strategies aimed at improving
postural performances by enhancing the flexibility of those
cortical areas via targeted cognitive training or local stimula-
tion techniques.
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TABLE V
SEN VALUES (MEAN ± SD) DURING BASELINE AND TASK, IN THE TWO EXPERIMENTAL CONDITIONS OE AND CE, FOR AP AND ML SWAY

(TABLE A AND B RESPECTIVELY). THE LAST COLUMN OF EACH TABLE REPORTS THE p-VALUES RESULTING FROM A WILCOXON

SIGNED-RANK TEST PERFORMED IN BASELINE AND TASK BETWEEN CONDITIONS (OE VS. CE). THE LAST ROW REPORTS

THE p-VALUES RESULTING FROM A WILCOXON SIGNED-RANK TEST PERFORMED BETWEEN BASELINE AND TASK,
FOR BOTH CONDITIONS. ASTERISKS HIGHLIGHT SIGNIFICANT p-VALUES (p < 0.05)

APPENDIX

See Tables I–V.
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