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Abstract—With the development of information technology
and sensors, the large industrial system has become a data-
rich environment, which leads to the rapid development and
application of deep learning for the remaining useful life pre-
diction, especially for the turbofan engine. Currently, the deep
architecture of CNN, LSTM have been used to address the RUL
estimation of a turbofan engine. However, they are mainly focused
on simulation degradation data. The new realistic run-to-failure
turbofan engine degradation dataset has been published in 2021,
which presents a significant difference from the simulation one.
The main challenge is that the flight duration of each cycle is
different, which will result in the current deep method hardly
used for predicting the RUL for the practical degradation data.
To tackle this challenge, we propose a novel Transformer-based
model using guiding features to deal with the unfixed-length
data. Besides, our G-Transformer model makes use of multi-
head attention to access the global features from various repre-
sentation subspaces. We conduct experiments on turbofan engine
degradation data with variable-length input under practical flight
conditions. Empirical results and feature visualization via t-SNE
indicate the effectiveness of the G-Transformer model for RUL
estimation of turbofan engines.

Index Terms—Remaining useful life, Turbofan engine, Deep
learning, Attention mechanism, Transformer.

I. INTRODUCTION

As the critical technique of prognostic and health man-
agement(PHM), remaining useful life(RUL) estimation plays
an important role in the predictive maintenance of large
equipment, which aims at estimating the performance of
machinery across its lifetime period, and providing a suitable
maintenance plan to avoid serious accidents occurring. With
the development of the Internet of Things(IoT) and industrial
digitalization, the current industrial systems have been gradu-
ally turned to become a data-rich environment. These changes
have created an unprecedented opportunity to research and
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develop the advanced RUL method and application by the
powerful deep learning technique [1].

A turbofan engine is the most critical power unit for the
aircraft, and it is obvious that the safety and stable working
of them are very important. However, the turbofan engine
generally works in an extremely complex and harsh environ-
ment, which makes the need for predicting the RUL lifetime
of them extremely urgent. Recently, there are many studies
of predicting the RUL lifetime of turbofan engine based on
powerful deep learning [2]–[7]. However, they are focus on
the degradation simulation data of turbofan engine carried out
using C-MAPSS [8]. There are significant differences between
the simulation degradation data and the real-world degradation
data because the practical engine data collect from the complex
working condition, e.g., the flight duration of each cycle task is
different, which has been presented in the new turbofan engine
degradation dataset [9]. The current RUL method based on
deep learning cannot deal with the realistic dataset of run-to-
failure trajectories for the aircraft engines under realistic flight
conditions because the duration of each flight task is not equal.
We try to tackle this challenge with inspiration from sequence
modeling, and a novel remaining useful life estimation method
based on the transformer-based deep architecture has been
proposed for the new degradation dataset of a turbofan engine.

II. RELATED WORKS

RUL estimation for turbofan engines is a very hot topic
because its research and application are of great significance
and value. However, many researchers have studied the ad-
vanced method and mainly testified on the simulation dataset
since almost all the practical data of the turbofan engine are
very precious and even confidential. Heimes et al. [2] first
apply RNN to the degradation simulation data of turbofan
engine. Xia et al. [3] proposed the hybrid deep RNN for
predicting the remaining lifetime. Meanwhile, Li et al. [4] and
Li et al. [5] proposed to use the deep CNN to address this



Fig. 1. The framework of G-Transformer model.

problem. Then, many studies combine the advantage of CNN
and LSTM [10], [11], while others try to prediction the RUL
from the sequence learning perspective [6] and attention-based
deep learning approach [7]. These data-based methods have
been performed very well on the simulation data scenarios.

Turbofan Engine Degradation Data Set-2(N-CMAPSS) [9]
was published by the Prognostics CoE at NASA Ames in
collaboration with ETH Zurich and PARC in 2021. Compared
with the former Turbofan Engine Degradation Simulation Data
Set(2008) [8], N-CMAPSS provides run-to-failure trajectories
for a small fleet of aircraft engines under realistic flight
conditions. Each unit consists of a various number of flight
cycles of unfixed length.

To process variable-length input, models based on Trans-
former architecture are introduced in sequence modelling.
The Transformer model is proposed by Google in 2017 [12].
Instead of commonly-used CNN and RNN, Transformer only
makes use of multi-head attention to extract features. From
then on, variants of the Transformer have gained substantial
progress in Natural Language Processing(NLP) tasks and other
domains. As one of the typical representatives, Bidirectional
Encoder Representations from Transformers(BERT) is a pre-
trained NLP model, which was also proposed by Google [13].
Benefit from two pretained tasks, BERT surpasses state-of-
the-art models on eleven natural language processing tasks.
Models in the GPT [14] family are structured based on the en-
coder of the well-known Transformer model. In 2021, the third
version of the Generative Pre-Training(GPT 3) model [15] has
shown its incredible capability of handling numerous tasks
within and outside the domain of NLP, such as question and

answering, calculation, article writing, and translation.
In this paper, we propose a novel remaining useful life

estimation model for turbofan engines based on the trans-
former framework. Multihead-attention is adopted to extract
features from variable-length input. Moreover, we enhance the
model by introducing guiding features to segment modalities
for better sampling.

III. METHODOLOGY

The G-Transformer model is mainly inspired by the encoder
of the Transformer model in natural language processing. Fig-
ure 1 shows the whole framework of the G-transformer model.
The model is composed of three parts, that are sampling,
feature extraction, and prediction. Turbofan Engine Degrada-
tion Data Set-2 provides run-to-failure trajectories of different
units. Scenario descriptors are used as the guiding features
for modality segmentation. The embedding layer processes the
high-dimensional input data and transmits the embedded data
to the feature extraction blocks to acquire high-level semantic
features. Data of different modalities are concatenated to form
the input of feature extraction. The feature extraction blocks
share similar architecture with the encoder of the Transformer
model, which is mainly made up of multi-head attention
layers, normalization layers, feed-forward layers, and residual
connections. After repeating T attention blocks, the high-level
features are extracted for further prediction. The remaining
useful life prediction of a turbofan engine is regarded as a
regression task. The features are sent to fully connected layers
and Sigmoid function. As a result, the G-Transformer model



predicts a number between 0 and 1 to show the remaining
useful life.

A. Sampling

Turbofan Engine Degradation Data Set-2 consists of data
of several units. Compared with the former dataset in 2008,
this new N-CMAPSS dataset is organized with units of cycles.
More specifically, the dataset provides units. Within each unit,
the flight data has flight cycles with various flight lengths.
Table I shows three flight classes in DASHlink—Flight Data
For Tail 687. The maximum altitude within a single flight
cycle is over 10000 feet. The flight length ranges from 1 hour
to more than 5 hours. Among all the flights, more than half
covers a long-length flight of more than 5 hours, while only
about 5% of the total flights belong to class no.1. Take unit
14 as an example, the length of the cycle could be far away
from three hours.

TABLE I
FLIGHT DATA IN DASHLINK—FLIGHT DATA FOR TAIL 687

Flight class Flight Length range(hours) Number of Flights
Class no. 1 1 to 3 18
Class no. 2 3 to 5 149
Class no. 3 more than 5 185

For each unit, data is organized based on flight cycles.
As shown in Figure 2, each cycle covers the process of
climbing, cruising, and descending. During distinct phases,
The input includes the raw data from model health parameters,
measurements, and virtual sensors. In order to segment data
properly, scenario descriptors are used as the guiding features
to decide the modality division. In further studies, the modality
division could be modified according to the knowledge of
experts.

Fig. 2. A overview of the envolope curves of altitude and fligth Mach number
for Turbofan Engine Degradation Data Set-2. Different colors refer to different
flight classes based on flight length range.

To be more precise, scenario descriptors give a brief de-
scription of the flight conditions, which consist of the altitude,
flight Mach number, Throttle-resolve angle, and the total
temperature at the fan inlet. Figure 3 gives an example of
these four curves of a single flight cycle. Although the total

length of each cycle varies on a large scale, curves of the
scenario descriptors change in a similar pattern. It indicates
that the input data could be divided into the same number of
modalities according to flight conditions.

Fig. 3. Altitude, flight Mach number (XM), throttle–resolver angle (TRA)
and total temperature at the fan inlet (T2) in a single flight cycle for Unit 5
in DS02.

B. Attention blocks

The Transformer model was first introduced in machine
translation, a traditional Natural Language Processing task.
Instead of using Convolutional Neural Networks or Recurrent
Neural Networks, it only uses multi-head attention to access
the features both in encoder and decoder based on the sequence
to sequence model. The input sequence is processed with word
embedding along with positional embedding, which introduces
the positional relationship between elements. Self-attention
captures the dependencies between all the elements simul-
taneously and globally. Consequently, parallel computation
becomes possible during the training phase.

1) Multi-head attention: When extracting the high-level
features from the segmented data, multi-head attention is uti-
lized to acquire the dependencies between different modalities.
Multi-head attention provides several heads of self-attention.
Each head of the attention module establishes a mapping from
the key-value pairs to the output conditioned on the query.
What worth mentioning is that the self-attention mechanism
is used here. In other words, both the key-value pairs and the
queries are computed from the input f , using the following
three equations:

Kj = fW k
j (1)

Vj = fW v
j (2)

Qj = fW q
j (3)

where W k
j , W v

j , and W q
j are trainable weight matrices.



TABLE II
DESCRIPTION OF TURBOFAN ENGINE DEGRADATION DATA SET-2

Type of descriptors Number of descriptors Examples of descriptors
Scenario descriptors 4 Altitude, Flight Mach number, TRA, T2

Measurements 14 Fuel flow, Physical fan speed, T24, T30, T48
Virtual sensors 14 T40, P30, SmFan, Ratio of fuel flow to Ps30

Model health parameters 10 Fan efficiency modifier, Fan flow modifier
Auxiliary data 4 Unit number, Flight cycle number, Flight class, Health state

The output of each module is the weighted sum of the
values. And the weights α evaluate the relevence between the
keys and the query. They are computed from the keys and the
query using the following equation.

yjatt = fatt(Kj , Qj , Vj) = softmax(
QjK

T
j√

dk
)Vj (4)

fatt() denotes the self-attention function. A scaled factor dk is
introduced to the dot products. Each head of self-attention is
calculated seperately, providing a representation. Let h denote
the number of heads. Then h results of self-attention are
concatenated to form the input of the normaliazation layer,

yma = Concat(y1att, y
2
att, · · · , yhatt)W o (5)

where W o is also a parameter matric.
2) Feed forward layer: Before transmitting the features to

feed forward layers, residual connection is applied to improve
the convergence. The normalized output LN(x) is added
with the input of the attention block. The features are then
processed by two linear transformation along with a ReLU
activation,

FFN(x) = ReLU(xW1 + b1) ·W2 + b2 (6)

where W1, W2, b1 and b2 are trainable weights of the model.

C. Prediction

The output of the attention blocks is sent to the regres-
sion layers for prediction. The high-dimensional features are
mapped to another feature space by fully connection. And
then a nonliner function Sigmoid is adopted as the activation
function. Consequently, the output of the model is limited to
a range between 0 and 1.

yfc = yattW3 + b3 (7)

ypred = Sigmoid(yfc) (8)

The model uses mean square error as the loss function. The
equation is as follows:

LossMSE =

∑N
i=1(r̂i − ri)2

N
(9)

where ri denotes the ground-truth label, while r̂i denotes the
predicted RUL of the model.

IV. EXPERIMENT

A. Data Preparation

Turbofan Engine Degradation Data Set-2 presents realistic
run-to-failure data organized in units, and about one hundred
flight cycles are included in each unit. The total useful life
is set to 100 percent. And the label for each flight cycle is
calculated with the index of the current cycle divided by the
total number of cycles of the unit. In this way, the label is a
positive decimal between 0 and 1. The larger the number is,
the more numbers of cycles the engine could support.

The data of measurements, virtual sensors, and model health
parameters are defined as the input of the model. Due to the
variety of flight conditions and the inequality of the flight
length during each flight cycle, the data for several certain
modalities can be absent. During the training phase, the data
set is split in the following way. Seventy percent of the data is
used for training, twenty percent for testing, and the rest ten
percent for validation.

B. Experimental Setup

The experiments are conducted on a Linux system with 2
Nvidia GTX 1080Ti GPUs. The models are trained for 1000
epochs. For this run-to-failure dataset, the RUL labels are
normalized to [0, 1]. The details of the network architecture
can be found in Table III. The number of attention blocks is
set to 6. In each attention block, the number of self-attention
heads is set to 16. The hidden dropout ratio is set to 0.1.

TABLE III
DETAILS OF G-TRANSFORMER ARCHITECTURE

Components Layer type Parameter Value

Attention blocks

Multi-head attention
number of heads 16
number of blocks 6

input size 512
Layer normalizaton 1 input size 512

Feed forward number of hidden neuron 512
Layer normalizaton 2 input size 512

Prediction Fully connection number of hidden neuron 128
Sigmoid input size 128

Four evaluation metrics, mean absolute error(MAE), root
mean square error (RMSE) [16], R2, and scoring func-
tion(SF) [17], are utilized to evaluate the performance of G-
Transformer model. These four metrics are calculated using
the following equations.

MAE =
1

N

N∑
i=1

|r̂i − ri| (10)



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Curves of predicted results on Turbofan Engine Degradation Data Set-2. Eight subfigures represent the output of the G-Transformer model on units 2,
5, 10, 16, 18, 20, 11, and 15 successively. In each subfigure, the blue curve shows the predicted RULs, while the black dot and dash line displays the desired
labels.

TABLE IV
LOSS VALUES AND EVALUATION FUNCTIONS FOR EIGHT UNITS OF N-CMAPSS DATASET.

Unit 2 5 10 16 18 20 11 15
Loss 4.91e-3 5.50e-3 7.43e-3 2.45e-3 1.86e-3 6.79e-3 1.37e-3 2.06e-3

RMSE 7.22e-2 7.57e-2 8.53e-2 4.92e-2 4.94e-2 9.94e-2 3.68e-2 5.33e-2
SF 2.22e-1 3.07e-1 3.71e-1 1.35e-1 1.66e-1 2.90e-1 1.17e-1 1.67e-1

MAE 3.19e-2 3.88e-2 4.90e-2 2.33e-2 2.53e-2 4.83e-2 2.12e-2 2.71e-2
R2 9.39e-1 9.33e-1 9.15e-1 9.72e-1 9.72e-1 8.85e-1 9.84e-1 9.67e-1

RMSE =
1

N

N∑
i=1

(r̂i − ri)2 (11)

R2 = 1−
∑N

i=1(r̂i − ri)2∑N
i=1(r̂i − r̄)2

(12)

r̄ =
1

N

N∑
i=1

ri (13)

SF =

{
1
N

∑N
i=1(e−

r̂i−ri
13 − 1), if r̂i < ri

1
N

∑N
i=1(e

r̂i−ri
10 − 1), if r̂i ≥ ri

(14)

C. Result and Analysis

Figure 4 presents the predicted results on Turbofan Engine
Degradation Data Set-2. Each column gives the predictions
on one of the units. The blue curves represent the predicted
remaining useful lives, while the black dot and dash lines
represent the ground truth labels. Except for some certain flight
cycles, The predicted points are in slight fluctuant condition
within a narrow range, which demonstrates the effectiveness
of our G-Transformer.

To evaluate the performance quantitatively, four evaluation
metrics are implemented here. Mean absolute error, root mean
square error (RMSE) [16], R2, and scoring function(SF) [17]

lead to slightly different best models at distinct epochs. As
listed in Table IV, R2 values of all the units are very close
to 1, which indicates the high similarity of the predictions
and ground truth. As for MAE, RMSE, and SF, the smaller
these three metrics are, the better the regression performance
is. The values of MAE, RMSE, and SF are quite small numbers
close to 0, which indicates the high similarity between the
predictions and the labels. In contrast to those units with
longer flight lengths, units of short length cycles suffer from
larger prediction errors. According to the distinguishment of
the real flight scenarios, empirical results demonstrate that the
length of each cycle affects the modality segmentation directly.
Consequently, units with shorter cycles are in lack of adequate
information required for prediction, leading to severe sparsity.

To better show the regression performance, visualiza-
tion of the dimensional-reduced features is displayed. High-
dimensional features before the last fully connected layer
are extracted and processed by t-SNE [18]. After feature
reduction, each sample is represented by a two-dimensional
vector. Figure 5 shows the t-SNE results with the data of
unit 2 as input. Reduced features of samples are depicted in
different colors according to RUL labels. All the data points
are located in a contiguous area. Data points of a neighborhood
have little difference in RUL labels. And cycles of similar



RUL gain a short distance between each other in this two-
dimensional space. In addition, if the RUL varies significantly,
there is a large gap between the data points. All of these
characteristics contribute to the conclusion that the model has
a great ability to address the regression problem in turbofan
engine degradation.

(a) (b)

Fig. 5. Visualization of the features before fully connected layer via t-SNE
on data of unit 2. The left figure is the visualization of training data, while
the right figure shows the results of testing data. The colors of the data points
refer to different RUL labels.

V. CONCLUSION

Our G-Transformer model utilizes multi-head self-attention
mechanism to capture the features of each modality during
flight cycles under real flight conditions. Guiding attributes
give access to experts for better modality segmentation. The
model is capable of predicting the RUL of turbofan engine
degradation under actual flight conditions. Experimental re-
sults and analysis demonstrate the effectiveness and robustness
of the G-Transformer model with variable-length input. More-
over, the length of flight cycles affects the accuracy directly
because of the adequacy of the provided information.
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