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A B S T R A C T   

The aquaporins (AQPs) form a family of integral membrane proteins that facilitate the movement of water across 
biological membrane by osmosis, as well as facilitating the diffusion of small polar solutes. AQPs have been 
recognised as drug targets for a variety of disorders associated with disrupted water or solute transport, including 
brain oedema following stroke or trauma, epilepsy, cancer cell migration and tumour angiogenesis, metabolic 
disorders, and inflammation. Despite this, drug discovery for AQPs has made little progress due to a lack of 
reproducible high-throughput assays and difficulties with the druggability of AQP proteins. However, recent 
studies have suggested that targetting the trafficking of AQP proteins to the plasma membrane is a viable 
alternative drug target to direct inhibition of the water-conducting pore. Here we review the literature on the 
trafficking of mammalian AQPs with a view to highlighting potential new drug targets for a variety of conditions 
associated with disrupted water and solute homeostasis.   

1. Introduction 

The human body is approximately 60% water. The water content of 
its different compartments is tightly and dynamically regulated, from 
the approximately five litres of blood down to the picolitre volumes of 
single cells. Aquaporins (AQPs) form a family of small integral mem
brane proteins that facilitate the passive transport of water across all 
biological membranes down osmotic or hydrostatic pressure gradients. 
A subset of AQPs (known as aquaglyceroporins) can also facilitate the 
passive transport of small uncharged solutes (such as glycerol, urea, 
ammonia, and hydrogen peroxide). Although AQPs increase the water 
permeability of the membranes in which they reside, most membranes 
have some level of intrinsic, AQP-independent water permeability. For 
some AQP-transported solutes there are also AQP-independent path
ways (for example UT-A and UT-B transporters provide an AQP- 
independent pathway for transmembrane urea diffusion [1]). In 

humans, there are 13 family members, at least one of which is expressed 
in almost all tissues. AQPs support a variety of physiological processes, 
including whole-body water homeostasis via the kidneys [2], cerebro
spinal fluid (CSF) homeostasis [3], glymphatic system function [4], and 
cycling of triglyceride-derived glycerol between fat and the liver [5]. 
The pathophysiological consequences of AQP dysregulation include 
brain and spinal cord swelling following traumatic injury [6,7] or stroke 
[8], cancer cell migration [9], and nephrogenic diabetes insipidus [10], 
and they are also implicated in neurodegenerative diseases [11] and 
epilepsy [12,13]. 

The structural biology of the AQP family is well-established. AQPs 
are multipass transmembrane proteins, consisting of approximately 300 
amino acid residues with predicted molecular weights for the human 
proteins ranging from 27 to 37 kDa. They have six transmembrane (TM) 
domains that are linked by five loops. Two loops consist of short half- 
helix membrane-embedded segments that enter and exit from the 
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same side of the membrane, and contain the family's conserved signa
ture Asn-Pro-Ala (NPA) motifs that form hydrogen bonds with water 
molecules in the pore. AQPs are homotetrameric, but each monomer 
functions independently as a water pore [14]. Water molecules traverse 
the AQP pore in single file [15]. The structure of the termini, which are 
cytoplasmic, is less well-understood as they are usually not resolved in 
crystallographicl studies due to disorder or truncation during construct 
design. 

There are several ways in which mammalian AQPs could be regu
lated to support dynamic fluid homeostasis. Changes in the rate of 
transcription of AQP genes can lead to changes in protein levels and 
therefore changes in membrane permeability. This is relatively slow 
(hours) as the gene must be transcribed, and the protein translated and 
trafficked from the endoplasmic reticulum membrane, through the 
Golgi, and to the plasma membrane. Changes in subcellular localisation 
of existing protein can be much faster. This can be mediated by changes 
in the rates of internalisation by endocytosis and return through recy
cling endosomes, or by exocytosis of dedicated “storage” vesicles (as for 
the well-characterised trafficking of the glucose transporter GLUT4 in 
response to insulin [16]). Membrane trafficking can lead to changes in 
the amount of AQP protein in the plasma membrane and therefore 
changes in membrane water permeability. Finally, changes in the single 
channel permeability as a result of post-translational modification (e.g. 
protein phosphorylation), or protein-protein interaction can lead to 
changes in overall membrane permeability (known as “gating”). Whilst 
AQP gating is well-established for plant AQPs [17], and the structural 
biology is well-characterised [18], in mammals, regulation of AQPs by 
changes in subcellular localisation is more common (Fig. 1). In this re
view, we focus on the rapid changes in mammalian AQP function 
mediated by subcellular relocalisation. 

1.1. AQP0 

AQP0, also known as major intrinsic protein (MIP), is expressed in the 
fibre cells of the ocular lens. Unlike other mammalian aquaporins for 
which regulation by gating remain controversial, direct gating of the water 
channel has been described for AQP0. The single-channel water perme
ability of AQP0 expressed in Xenopus laevis oocytes increased approxi
mately two-fold in response to decreased pH. Pre-treatment with diethyl 
pyrocarbonate (DEPC), which covalently modifies histidine residues 
leaving them non-protonatable, or mutation of the external His40 residue 
abolished the pH response, suggesting that direct protonation of His40 
mediates this increased water permeability. Removal of extracellular 
calcium increased water permeability of AQP0 approximately four-fold. 
This Ca2+ sensitivity was demonstrated to be dependent on calmodulin 
(CaM) with CaM inhibitors (trifluoperazine, calmidazolium, and N-(6- 
aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7)) restoring water 
permeability [19]. Nuclear magnetic resonance (NMR) spectroscopy 
was used to show that CaM binds the C-terminus of AQP0 in a calcium 
ion-dependent manner [20]. Further structural biology and molecular 
simulation studies [21] suggested a model whereby Ca2+-bound CaM 
binds AQP0 with a 1:2 stoichiometry (i.e. 2 CaM molecules per AQP0 
tetramer) allosterically inhibiting water permeability. Mutagenesis of 
the AQP0 C-terminus confirmed that the AQP0-CaM interaction inhibi
ted AQP0 function [22]. Phosphorylation of an AQP0 C-terminal peptide 
abolished CaM binding in vitro, suggesting that phosphorylation may 
regulate water channel activity by altering CaM affinity. Specifically, 
phosphorylation of Ser235, a consensus site for PKA has been shown to 
relieve this inhibition by altering the CaM-AQP0 interaction surfaces 
[23]. Moreover, the PKA-anchoring protein AKAP2 increased phos
phorylation efficiency, binding AQP0 at residues 238–246 [24]. 

Regulation of AQP0 by subcellular relocalisation has not been 

Fig. 1. Schematic overview of aquaporin regulation. Some plant AQPs are regulated by gating such as (a) SoPIP2;1 where low pH causes protonation of His193 
leading to conformational changes and pore occlusion on the intracellular side (open structure at pH 8 PDB ID: 2B5F, closed at pH 6 PDB ID: 4IA4). However, gating 
has only been reported for (b) mammalian AQP0 through calmodulin binding (PDB 3J41), which occludes the pore. The main regulatory mechanism for mammalian 
AQPs (represented by AQP4, PDB ID: 3GD8) is (c) via trafficking to and from the plasma membrane. After protein biosynthesis, AQPs are inserted into intracellular 
vesicles which transfer them to the plasma membrane. A population of intracellular vesicular pools also remains in the cytoplasm, which can be triggered to increase 
AQP membrane abundance, typically via calmodulin- and phosphorylation-dependent mechanisms. Triggers can be hormonal (e.g. vasopressin-induced localisation 
of AQP2 to the apical membrane of kidney collecting duct cells, V2R PDB ID: 7KH0) or environmental (e.g. hypoxia-induced localisation of AQP4 to the astrocyte 
plasma membrane). Internalisation through clathrin-dependent and clathrin-independent (such as caveolae) pathways reduce cell surface abundance via incom
pletely understood pathways. In addition, some AQPs are released into the extra-cellular space in extracellular vesicles. 
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described. This is likely due to the unique cell biology of the lens fibre 
cells whereby they progressively lose their organelles as they mature 
[25]. However, treatment of rat lens epithelial explants with the PKC 
inhibitor Go6979 prevented exit of AQP0 from the Golgi, and Ser235Ala 
mutation prevented Golgi exit of mouse AQP0 overexpressed in the 
rabbit kidney cell line RK13 [26], suggesting that phosphorylation of 
AQP0 is required for correct trafficking to the plasma membrane 
immediately following biosynthesis. 

Overall, AQP0 is regulated by pH-, phosphorylation- and 
calmodulin-dependent gating. There is no evidence yet to suggest that 
AQP0 is regulated by subcellular relocalization (Table 1). 

1.2. AQP1 

AQP1 is predominantly expressed in the brain, kidney, eye, lung, 
muscle, and erythrocytes [27,28]. AQP1 was the first water channel to 
be isolated, in 1992 [29], although earlier work by Benga et al. had 
demonstrated the presence of this water channel protein in erythrocyte 
membranes [30]. 

As well as water transport, AQP1 has been suggested to act as a 
cGMP-gated ion channel that transports Cs+, Na+ and K+ [28]. The 
intracellular loop D was proposed to interact directly with cGMP [31] 
and further investigation suggested that the phosphorylation of Tyr253 
in the C-terminus regulates the ion channel of AQP1 and its response to 
cGMP [32]. More recently, mutagenesis of the intracellular loop D 
suggested that this region was crucial for the binding of cGMP [33]. Our 
own recent work showed that interactions in this loop are crucial for the 
stability of the AQP1 tetramer [34]. 

Protein kinase C (PKC) has been implicated in the regulation of 
AQP1. In Xenopus oocytes, AQP1-dependent water permeability was 
markedly increased following PKC activation, whereas mutants lacking 
threonine 157 (Thr157Ala), threonine 239 (Thr239Ala) or both, had a 
reduced response or did not respond at all to PKC activation, respec
tively [35]. However, this study did not quantify the plasma membrane 
localisation of AQP1, and so could not distinguish between AQP1 
relocalisation and changes in single channel permeability. In HEK293 
cells, AQP1 translocated from cytoplasmic vesicles to the plasma 
membrane in response to extracellular hypotonicity and vice versa when 

returned to isotonic conditions. Microtubule depolymerisation with 
demecolcine blocked AQP1 relocalisation, whereas actin depolymer
isation by cytochalasin D did not [36]. This translocation was blocked by 
inhibition of transient receptor potential (TRP) channels, removal of 
extracellular calcium and inhibition of CaM, as well as by either inhib
iting PKC or mutating the putative phosphorylation sites Thr157 and 
Thr239 [37]. 

AQP1 localisation may also be regulated by PKA. Purified PKA was 
shown to phosphorylate immunoprecipitated AQP1 in vitro, and acti
vation of PKA by cAMP analogues and forskolin increased the AQP1 
abundance at the plasma membrane of Xenopus oocytes [38]. In primary 
rat cholangiocytes, stimulation with the peptide hormone secretin 
(which signals via cAMP in cholangiocytes [39]) led to increased 
endogenous AQP1 in the plasma membrane fraction following subcel
lular membrane fractionation by sucrose density gradient centrifuga
tion, as well as increased plasma membrane water permeability [40]. In 
mouse cholangiocytes, transfected rat AQP1-GFP relocalised to the 
apical membrane in response to secretin or dibutyryl-cAMP [41]. 
However, PKA inhibition did not inhibit the hypotonicity-induced 
relocalisation of human AQP1-GFP in HEK293 cells [36], suggesting 
that PKA regulation of AQP1 localization may vary between cell types 
and species. 

CaM inhibition by W-7 or removal of extracellular calcium prevented 
AQP1-GFP relocalisation in HEK293 cells [37], and W-7 inhibited 
changes in GFP-AQP1-mediated water permeability in transfected 
human umbilical vein endothelial cells (HUVECs) [42], although the 
mechanism by which CaM might modulate AQP1 remains to be 
explored. 

Overall, the subcellular localization of AQP1 is controlled by phos
phorylation via at least two different protein kinases (PKC and PKA); this 
regulation may be cell-type specific. AQP1 is further indirectly regulated 
via activation of TRP channels, and may be controlled by CaM via an as- 
yet-undetermined mechanism. 

1.3. AQP2 

AQP2 is a water-selective AQP predominantly expressed in the kid
ney collecting duct. Relocalisation of AQP2 to the apical membrane of 
kidney collecting duct cells in response to the anti-diuretic hormone, 
arginine vasopression, was the first discovered example of an AQP 
regulated by subcellular relocalisation [43,44], and remains the most 
well characterised. AQP2 relocalisation has been extensively reviewed 
elsewhere [45–47], so we intend to give the reader only a brief 
overview. 

Phosphorylation of AQP2 at Ser256 by PKA appears to be the major 
determinant of AQP2 localization and is a requirement for vasopressin- 
stimulated relocalisation of AQP2 from storage vesicles to the apical 
membrane. Following vasopressin stimulation of rat renal tissue, AQP2 
phosphorylation was increased at Ser256, measured by 32P labelling and 
immunoblotting with a phosphor-Ser256-specific antibody [48]. Anal
ysis of the stoichiometry of phospho-Ser256 AQP2 in Xenopus oocytes 
using phosphomimetic (Ser256Asp) and non-phosphorylatable 
(Ser256Ala) mutants suggested a requirement of at least three phos
phorylated monomers per tetramer for apical membrane localization 
[49]. This PKA-dependent Ser256 phosphorylation has also been 
implicated in a direct increase in single-channel water permeability. 
Both cAMP stimulation of AQP2-expressing Xenopus oocytes and in vitro 
phosphorylation of recombinant AQP2 reconstitued into proteliposomes 
enhanced water permeability [50,51]. Although the effect in oocytes 
may be partially explained by relocalization of AQP2 to oocyte mem
brane, the proteoliposome experiments suggest a direct effect. Despite 
the important role of Ser256 phosphorylation, there are several other 
phosphorylation sites in the AQP2 C-terminus that may fine-tune the 
AQP2 membrane abundance, with subsequent phosphorylation at 
Ser269 enhancing apical membrane retention [52,53]. AQP2 phos
phorylation at Ser261 and Ser264 were also decreased [54] and 

Table 1 
Summary of the regulation of mammalian aquaporins. PKA – protein kinase A, 
PKC – protein kinase C, PKG – proten kinase G, ERK – extracellular signal- 
regulated kinase, MAPK – mitogen-activated protein kinase, PI3K – phosphati
dylinositol 3-kinase, TRP – transient receptor potential.  

AQP Regulation Trigger(s) Mechanism(s) 

AQP0 Gating pH PKA, PKC, calmodulin, Ca2+

AQP1 
Trafficking, 
gating 

secretin, hypotonicity, 
hypertonicity 

PKA, PKC, cGMP, cAMP, 
Ca2+, calmodulin, actin, 
microtubules, TRP channels 

AQP2 Trafficking 
vasopressin, 
hypertonicity 

PKA, AKAPs, actin, TM5b, 
Arp2/3 

AQP3 Trafficking 
adrenaline, 
hypotonicity, 
hypertonicity 

PKA, PKC, RalA, PI3K/Akt/ 
mTOR 

AQP4 Trafficking 
vasopressin, histamine, 
glutamate, 
hypotonicity, hypoxia 

PKA, PKC, PKG, ERK, p38- 
MAPK, actin, TRP channels, 
Ca2+, calmodulin 

AQP5 Trafficking 
adrenaline, 
acetylcholine, 
hypotonicity 

PKA, PKG, cAMP, Ca2+, 
actin, microtubules, TRP 
channels 

AQP6 Gating pH – 
AQP7 Trafficking lipolytic stimuli PKA, PLIN1 

AQP8 Trafficking glucagon cAMP, PKA, PI3K, 
microtubules 

AQP9 Trafficking unknown PKA, PKC 

AQP10 Trafficking 
lipogenic stimuli, 
lipolytic stimuli unknown 

AQP11 Trafficking unknown unknown 
AQP12 Trafficking unknown unknown  
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increased [55], respectively, by vasopression stimulation of Brattleboro 
(vasopressin-null) rats. Their roles in AQP2 relocalisation are less well 
understood but phosphorylation of Ser261 has been associated with 
localisation in storage vesicles [54,56,57] while Ser264 has been pro
posed to play a role in exosome excretion [55,58]. 

Anchoring of PKA by A-kinase-anchoring proteins (AKAPs) to AQP2- 
containing vesicles has been suggested as a further regulatory mecha
nism. AKAP220 bound to AQP2 in a yeast two-hybrid screen, and 
overexpression of AKAP220 in the African green monkey COS-7 cell line 
increased forskolin-induced phosphorylation of AQP2 [59]. AKAP18δ 
was present on immunoprecipitated AQP2-containing vesicles from rat 
kidney tissue, as well as relocalising to the plasma membrane of cultured 
primary rat inner medullary collecting duct cells in response to vaso
pressin [60]. Broad spectrum AKAP inhibitors increased AQP2 phos
phorylation and membrane localization independently of vasopressin in 
the mouse collecting duct cell line mpkCCDc14 [61]. 

During the trafficking process, AQP2 interacts with a number of 
cellular proteins in a phosphorylation-dependent manner including the 
actin filaments [62]. AQP2 bound to G-actin in in vitro pulldown ex
periments, and in live transfected Madin-Darby canine kidney (MDCK) 
cells measured by fluorescence cross-correlation spectroscopy. The af
finity of this interaction, measured by surface plasmon resonance, was 
decreased by AQP2 phosphorylation. Phosphorylated AQP2 bound to 
the actin filament-stabilising protein tropomysin-5b (TM5b) in similar 
experiments, and in an in vitro actin filament stability assay, addition of 
phosphorylated AQP2 prevented the stabilising effect of TM5b on actin 
filaments, suggesting that phosphorylation of AQP2 indirectly affects 
actin depolymerisation by sequestering TM5b [63]. Together, these data 
suggest that phosphorlyation of AQP2 alters local actin dynamics by 
altering the concentrations of G-actin and TM5b, in order to locally 
disrupt the cortical actin network and provide a path to the membrane 
for AQP2-bearing vesicles. Recently it has been suggested that the Arp2/ 
3 complex, which generates nucleation sites for actin filament branch
ing, is required for AQP2 exit from the trans-Golgi network [64,65], but 
the mechanism is not yet understood. 

To summarise, the vasopressin-induced relocalisation of AQP2 to the 
collecting duct apical membrane is dependent on phosphorylation at 
Ser256 by PKA, which is likely tethered to AQP2-containing vesicles by 
AKAPs, and requires local modulation of cortical actin dynamics. 

1.4. AQP3 

AQP3 is expressed in the kidney, digestive tract, erythrocytes, lym
phocytes, macrophages, dendritic cells, and the skin [66,67]. When 
expressed in polarized epithelia, AQP3 is primarily localised to the 
basolateral membrane. In the canine kidney epithelial cell line MDCK, 
this is mediated by a tyrosine-based and dileucine sorting motif (Tyr- 
Arg-Leu-Leu, YRLL) [68]. Although both AQP3 and AQP4 are localised 
to the basolateral membrane, they appear to be delivered to the plasma 
membrane by mutually-exclusive post-Golgi vesicle pools [69]. 

Forskolin treatment of the prostate cancer cell line PC-3 led to 
internalisation of AQP3, whereas overexpression of E-cadherin or 
knockdown of the Ras superfamily small GTPase RalA led to trans
location of AQP3 to the plasma membrane [70], although whether the 
effect of forskolin was via RalA or direct PKA phosphorylation of either 
AQP3 itself or proteins involved in its trafficking is not clear. 

In the human colorectal cancer cell line Caco-2, AQP3 was relo
calised to the plasma membrane in response to adrenaline. This was 
blocked by inhibitors of protein kinase C (PKC) and phospholipase C 
(PLC), and reproduced by the PKC activator PMA, suggesting a Gq/PLC/ 
PKC signal transduction pathway [71]. Whether AQP3 itself was the 
direct target of PKC was not investigated. 

In the mouse 3 T3-L1 cell line differentiated into adipocytes, AQP3 
was relocalised to the plasma membrane in response to the β-adrenergic 
agonist isoproterenol with no effect on AQP3 gene expression. This 
relocalisation was prevented by inhibition of phosphatidylinositol 3- 

kinase (PI3K) inhibition with wortmannin or mammalian target of 
rapamycin (mTOR) inhibition with rapamycin [72]. 

Overall, the subcellular localisation of AQP3 appears to be under the 
control of several signalling pathways including PKA, PKC, and PI3K/ 
Akt/mTOR, but the molecular details are yet to be investigated. 

1.5. AQP4 

AQP4 is expressed in astrocytes in the central nervous system (CNS), 
the kidney, skeletal muscle, and in the digestive tract. AQP4 has a 
distinct basolateral localisation in many types of epithelial cell, 
including in the renal proximal tubule, the trachea, and in parietal cells 
of the stomach [73,74]. AQP4 membrane expression in astrocytes is 
polarized to the endfeet (astrocyte processes in contact with the endo
thelial or pericyte basement membrane at the blood-brain barrier; BBB) 
and to a subset of astrocyte processes (that form tripartite synapses 
[75]). In the endfoot membrane, AQP4 can aggregate into large supra
molecular arrays, known as orthogonal arrays of particles (OAPs) [76]. 
The two major AQP4 isoforms (M1 and M23, named from the position of 
the initiating methionine residue) differ in their OAP-forming ability, 
with two palmitoylated cysteine residues in the N-terminus of M1 ste
rically hindering OAP formation [77]. 

The regulation of AQP4 has been well-studied. In Xenopus oocytes 
transfected with rat AQP4, the AQP4-dependent water permeability was 
decreased by PKC activators, and 32P labelling of mouse brain lysate in 
the presence of PKC activators suggested that AQP4 was phosphorylated 
downstream of PKC activation (although this experiment was not 
designed to distinguish between direct or indirect phosphorylation by 
PKC). This study did not investigate the subcellular localisation of AQP4 
[78]. Vasopressin stimulation of Xenopus oocytes co-transfected with rat 
AQP4-M23 and the human V1a vasopressin receptor (V1aR) led to 
internalisation of AQP4, which was recapitulated with the PKC activator 
phorbol 12-myristate 13-acetate (PMA). Mutation of the putative PKC 
site Ser180 to alanine only partially reduced this response [79], sug
gesting the involvement of either other PKC sites on AQP4, or other PKC 
target proteins. In the porcine kidney epithelial cell line LLC-PK1, both 
dopamine and the PKC activator PDBu slightly reduced plasma mem
brane water permeability following transfection of mouse GFP-AQP4- 
M23. This effect was abolished after Ser180Ala mutation, suggesting a 
role for phosphorylation of Ser180 by PKC in this effect, although 
quantification of AQP4 plasma membrane localisation was not shown in 
this study [80]. Molecular dynamics simulation of rat AQP4 did not find 
any differences in water permeability between p-Ser180 and non- 
phosphorylated AQP4 [81], although this study relied on an in silico 
prediction of the structure of the 69aa C-terminal tail of AQP4 with no 
experimental validation. 

In HGT-1 human gastric cancer cells, histamine stimulation induced 
internalisation of transfected rat VSV-AQP1-M1, which was followed by 
PKA-mediated phosphorylation of AQP4. This phosphorylation 
appeared to prime AQP4 for return to the membrane upon washout of 
histamine [82]. In AQP4-transfected MDCK cell lysates, recombinant 
casein kinase (CK)II could phosphorylate AQP4, and the phosphomi
metic Ser276Asp mutation increased the rate of protein degradation, but 
not internalisation, with the Ser276Asp protein targeted to the lysosome 
[83]. 

The membrane water permeability of an SV40-immortalised rat 
astrocyte cell line transfected with mouse GFP-AQP4-M23 was increased 
in response to treatment with lead in a manner dependent on Ca2+/CaM- 
dependent protein kinase (CaMK) II, which the authors proposed as an 
explanation for brain edema following acute lead intoxication [84]. The 
same group later demonstrated that glutamate treatment of primary rat 
astrocytes, rat hippocampal slices, or immortalised astrocytes trans
fected with mouse GFP-AQP4-M23, increased membrane water perme
ability by 40%. Mutation of Ser111 to alanine abolished the response to 
glutamate, although the basal level of water permeability was consid
erably increased for the Ser111Ala mutant. PKG but not CaMKII was 
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able to phosphorylate a 28-residue mouse AQP4 peptide centred on 
Ser111, which was abolished by Ser111Ala mutation, suggesting a 
CaMKII-PKG signalling pathway [85]. AQP4 plasma membrane local
isation was not quantified in these studies, and molecular dynamics 
simulation of human AQP4 found no permeability differences between 
phosphoSer111 and non-phosphorylated AQP4 [86], suggesting that 
changes in AQP4 localisation could explain these data. Treatment of rat 
astrocytes with manganese increased the plasma membrane abundance 
of AQP4 without affecting AQP4 mRNA or protein levels in a manner 
dependent on extracellular signal-regulated kinase (ERK)1/2 and p38- 
MAPK activation [87]. A minor reduction in extracellular pH from 7.5 
to 7.1 by either lactic acid, hydrochloric acid, or acetic acid increased 
the plasma membrane abundance of endogenous AQP4 in primary rat 
astrocytes by 3-fold after 12 h [88]. This highlights the need for careful 
cell culture, as such pH changes can easily happen in cell culture ex
periments if medium is not replenished promptly (medium pH will 
decrease over time as a result of cell metabolism) or care is not taken 
with vehicle controls for drugs dissolved in strong acid/base. 

AQP4 contains a consensus PDZ-binding motif (SerSerVal) at the C- 
terminus, and knockout of the PDZ-containing adaptor protein α-syn
trophin reduced the BBB polarization of AQP4 in mouse brain [89], as 
did knockout of dystrophins [90], and the specific dystrophin isoform 
Dp71 [91]. Dystrophins and syntrophins are key components of the 
dystrophin-associated protein complex (DAPC), a multi-component 
membrane scaffolding complex that is crucial for anchoring mem
brane proteins to the extracellular matrix (ECM) at the BBB [92]. Several 
extracellular proteins reduced the rate of internalisation of endogenous 
AQP4 in cultured rodent astrocytes, including agrin [93], and laminin. 
In the case of laminin, this may be due to induction of preferential 
binding of the DAPC to inactive dynamin, locally reducing the rate of 
clathrin-mediated endocytosis [94]. 

We recently found that plasma membrane localisation of AQP4 in 
astrocytes was increased by cell swelling induced by either extracellular 
hypotonicity or hypoxia, and that this was dependent on TRP channel 
activation, PKA phosphorylation of AQP4 at Ser276 and direct binding 
of CaM to an amphipathic helix in the AQP4 C-terminal tail, in both 
primary human astrocytes and HEK293 cells [6], and independent of 
total AQP4 expression [6,95]. Interestingly, several other AQPs appear 
to be trafficked in a calcium-dependent manner but by unknown mo
lecular mechanisms (see section above on AQP1 and below on AQP5), 
and both AQP0 [20] and AQP6 [96] have been shown to bind CaM 
directly (leading to channel gating in the case of AQP0), suggesting a 
possible role for CaM in the regulation of other AQPs. There is also clear 
cell-type (and possibly species) differences in AQP4 membrane local
isation, as it has previously been shown that in MDCK cells, phosphor
ylation at Ser276 had no effect on AQP4 plasma membrane abundance, 
and targeted the protein to the lysosome [83]. 

Overall, AQP4 subcellular localization can be modulated by several 
protein kinases (PKC, PKA, PKG, ERK, p38-MAPK), by activation of TRP 
channels, by indirect interaction with the ECM, and by direct binding of 
CaM. Some studies have suggested that phosphorylation can alter the 
single-channel permeability of AQP4, but molecular dynamics simula
tions do not support this hypothesis. 

1.6. AQP5 

AQP5 is primarily expressed in the sweat, lacrimal, and salivary 
glands, and in the lungs. Loss of AQP5 expression or membrane local
isation is associated with dry mouth and dry eye, especially in the 
autoimmune condition Sjögren's syndrome [97]. 

Acetylcholine treatment of rat parotid (salivary gland) tissue was 
reported to cause a transient increase in AQP5 apical membrane local
isation, signalling through the M3 muscarinic receptor, and depending 
on calcium release from intracellular stores [98]. Similarly, adrenaline 
caused a transient increase in AQP5 apical membrane localisation in rat 
parotid tissue, signalling through the α1 acetylcholine receptor [99]. In 

human salivary gland cells transfected with rat AQP5, increased AQP5 
membrane localisation was reported following elevation of intracellular 
calcium with the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor 
thapsigargin, or the calcium ionophore A-23187. This relocalisation was 
blocked by the microtubule polymerisation inhibitors colchicine and 
vinblastine [100]. 

AQP5 was reported to co-localize with the caveolae-associated pro
tein flotillin-2 in rat parotid gland tissue, with flotillin-2 also relocalising 
to the plasma membrane in response to an α1 receptor agonist [101]. In 
parotid cells isolated from caveolin-1 knockout mice, AQP5 was unable 
to relocalise in response to α1 receptor agonist, attributed to a loss of 
interaction between TRPC1, the calcium-sensor STIM1, and the calcium 
release-activated calcium channel ORAI1. It is not yet clear exactly how 
elevated intracellular calcium ion levels lead to membrane trafficking of 
AQP5. Interestingly, we found a role for the calcium ion-sensor protein 
CaM in the hypotonicity-induced relocalisation of AQP1 [37] and AQP4 
[102], and recently showed that CaM binds directly to the AQP4 C- 
terminus [6]. Both AQP0 [20] and AQP6 [96] can bind CaM directly, so 
this may be an unexplored mechanism by which AQP5 is targeted to the 
plasma membrane. 

We reported that hypotonicity, phosphomimetic mutation of Ser156 
(Ser156Glu) and PKA inhibition with H-89 all increased plasma mem
brane localisation of human AQP5-GFP in HEK293 cells independently 
of one another, suggesting that there are at least three distinct pathways 
controlling AQP5 membrane localisation in HEK293 cells [103]. In 
agreement with our study, PKA inhibition by H-89 in MDCK cells 
transfected with rat GFP-AQP5 caused increased apical membrane 
localisation [104]. Interestingly, an almost identical study, again using 
rat GFP-AQP5 transfected into MDCK cells, found an opposite effect – 
that activation of PKA with dibutyryl-cAMP caused no short-term 
change in AQP5 membrane abundance, but a long-term (18–24 h) 
increased membrane abundance of AQP5, that could be inhibited with 
H-89 [105]. The latter study used subconfluent MDCK cells cultured on 
glass (which would not be expected to develop apicobasal polarity), 
whereas the former study used confluent MDCK cells on polycarbonate 
filters (MDCK cells develop apicobasal polarity under these conditions) 
and specifically measured apical membrane localisation. In agreement 
with this long-term increase, AQP5 membrane abundance in cultured 
mouse and human airway epithelial cells was increased at 8 and 24 h 
after 8-(4-chlorophenylthio)-cAMP (pCPT-cAMP) stimulation, but 
decreased after 30 min [106,107]. This latter finding agrees with the 
aforementioned studies that found increased AQP5 membrane abun
dance following PKA inhibition. 

Experiments using rat parotid gland tissue slices found that hypo
tonicity and the α1-adrenergic agonist phenylephrine increased AQP5 
apical membrane abundance independently of one another, with only 
the hypotonicity-induced increase (and not the α1-adrenergic pathway) 
abolished by the TRP channel blocker ruthenium red [108], suggesting a 
requirement for TRP channel activity in the hypotonicity-induced 
relocalisation of AQP5, similarly to AQP1 in HEK293 cells [37] and 
AQP4 in primary human astrocytes [6]. 

Overall, AQP5 subcellular localization can be modulated by PKA, by 
activation of TRP channels, and by intracellular calcium signalling. 

1.7. AQP6 

AQP6 is expressed in renal epithelia and localizes to intracellular 
membranes [109]. Unlike other aquaporins, AQP6 is an anion trans
porter (transporting NO3

− , I− , Br− , and Cl− [110]), that can be con
verted into a water conducting pore by a single amino acid substitution 
[111], and the permeability to both water and anions of mouse AQP6 
were increased by low pH [112]. However, it is still unclear whether the 
main function of AQP6 is transport of water, anions or both. Although 
the molecular mechanisms of AQP6 intracellular retention are not 
completely understood, addition of GFP or HA tags to the N-terminus of 
rat AQP6 caused plasma membrane localisation in confluent MDCK 

A. Markou et al.                                                                                                                                                                                                                                



BBA - Biomembranes 1864 (2022) 183853

6

cells, whereas C-terminally tagged and untagged AQP6 were retained in 
intracellular membranes. A chimera protein containing the N-terminus 
of AQP1 fused to the transmembrane and C-terminal domains of AQP6 
localised to the plasma membrane, and the inverse chimera containing 
the N-terminus of AQP6 fused to AQP1 was retained intracellularly 
whereas wild-type AQP1 was localised to the plasma membrane [113]. 
Together this data suggests the presence of an intracellular retention 
signal in the AQP6 N-terminus. In Xenopus oocytes, rat AQP6 is localised 
to the plasma membrane [114], suggesting cell- or species-specific dif
ferences in intracellular retention. 

Overall, although it is established that AQP6 can transport anions 
and localize to intracellular membranes, the physiology and molecular 
biology of this remains almost completely unexplored. 

1.8. AQP7 

AQP7 is an aquaglyceroporin, permeable to water, glycerol and urea 
[115]. AQP7 is expressed in various organs including liver, kidney, male 
reproductive system, and cardiac muscle [116]. Additionally, it was 
shown to be expressed in murine and human white and brown adipose 
tissues, where it was revealed to play a significant role in glycerol efflux 
[117]. 

Knockout of AQP7 in mice has been shown to result in adipocyte 
hypertrophy leading to adult-onset obesity [118], likely due to increased 
glycerol and triglyceride accumulation [116]. This effect is not seen in 
humans with AQP7 loss-of-function mutation [119], probably due to the 
ability of adipocyte AQP10 to compensate for the loss of AQP7 (Aqp10 is 
a pseudogene in mouse) [120]. In mouse adipose tissue, norepinephrine 
stimulation as well as forskolin were reported to cause internalisation of 
AQP7 [121], and live cell imaging of 3 T3-L1 adipocytes transfected 
with AQP7-EGFP supported this conclusion. Interestingly, this study 
found considerable differences in AQP7 subcellular localization when 
tissue was fixed with trichloroacetic acid compared to formaldehyde. 
Fixation methods are rarely compared in studies of AQP localization; 
these data indicate that this is a key experimental detail to consider. In 
contrast, short-term treatment of primary human adipocytes with 
isoproterenol was reported to cause translocation of AQP7 to the plasma 
membrane without changes in expression, whereas long-term stimula
tion also reduced protein expression [72]. In agreement with this 
finding, AQP7 was reported to translocate to the plasma membrane after 
3 h isoproterenol treatment in 3 T3-L1 adipocytes, measured by 
immunocytochemistry [122]. 

AQP7 has been shown to bind perilipin 1 (PLIN1), a lipid droplet 
surface protein that has been shown to protects droplets from lipase 
activity [123]. Recombinant human AQP7 expressed in Pichia pastoris 
was able to pull down PLIN1 from human adipose tissue lysate, and in 
dot blots, purified AQP7 was able to bind PLIN1 from PLIN-1 expressing 
E.coli cell lysate in a manner dependent on both the N- and C-termini of 
AQP7. Recombinant PKA was able to phosphorylate recombinant AQP7, 
with the S10A/T11A double mutation abolishing phosphorylation, and 
phosphorylated AQP7 bound less PLIN1 in dot blots. AQP7 and PLIN1 
were colocalised in primary human astrocytes as shown by proximity 
ligation assay, with the extent of colocalization reduced following 
lipolytic (isoprenaline) stimulation [124]. This suggests a model of 
AQP7 regulation whereby phosphorylation of AQP7 in the N-terminus 
by PKA releases AQP7 from PLIN1-mediated tethering to the lipid 
droplets, allowing translocation to the plasma membrane. 

In summary, AQP7 subcellular localization in adipocytes is under the 
control of lipolytic stimuli via PKA, and facilitates the release of 
lipolysis-derived glycerol. 

1.9. AQP8 

AQP8 can be localised to both plasma and intracellular membranes, 
including the inner mitochondrial membrane [125]. It is expressed in 
kidney, liver, pancreas, colon, trachea and testis [126], and is permeable 

to water, ammonia, hydrogen peroxide, and possibly urea, although 
there may be species-specific differences in urea permeability due to 
differences in pore-lining residues [127]. 

AQP8 subcellular localisation has been studied most extensively in 
hepatocytes, where it may be important for bile formation. In isolated 
primary rat hepatocytes, approximately 25% of the total AQP8 pool was 
localised to the plasma membrane under basal (unstimulated) condi
tions, measured by immunofluorescence and membrane fractionation by 
density gradient centrifugation, approximately doubling to 60% 
following stimulation with dibutyryl-cAMP in one study [128], and 
increasing by approximately fourfold in another [129]. This effect was 
recapitulated by stimulation with glucagon, a known inducer of bile 
secretion, which also increased plasma membrane water permeability in 
proportion to the increased AQP8 plasma membrane localisation [130]. 
Relocalisation of AQP8 was prevented by inhibition of PKA with H-89 or 
myristoylated protein kinase inhibitor peptide (myr-PKI) [130], and by 
inhibition of phosphoinositide 3-kinase (PI3K) with wortmannin or 
LY294002 [131]. However, the exact mechanism remains unclear since 
AQP8 lacks a consensus PKA phosphorylation site [132]. 

To summarise, AQP8 localisation in the liver is under the control of 
PKA and PI3K signalling, but its subcellular localisation in other tissues 
remains largely unexplored. 

1.10. AQP9 

AQP9, an aquaglyceroporin, is expressed in hepatocytes, epididymal 
cells [133] and several types of immune cell such as neutrophils, mac
rophages and lymphocytes [67]. In the rodent CNS, AQP9 is expressed in 
astrocytes, catecholaminergic neurons and endothelial cells of pial 
vessels [134,135], although CNS expression may be more restricted in 
humans [136]. AQP9 is permeable to glycerol and lactic acid [137], and 
thus it has been hypothesized that it has a role in brain energy meta
bolism in addition to water homeostasis [138]. In murine primary he
patocyte culture, AQP9 knockout reduced the glucose output from the 
liver when using glycerol as a substrate, suggesting that AQP9 facilitates 
glycerol uptake for gluconeogenesis [139,140]. In perfused rat epidid
ymal tubules, AQP9-dependent glycerol-induced epididymal cell 
swelling was regulated by cAMP, although the role of AQP9 localization 
in this regulation was not explored [141]. 

In mouse neutrophils and the human HL60 acute promyleocytic 
leukaemia cell line, exposure to a chemotactic gradient caused human 
EGFP-AQP9 to translocate to the leading edge of the cell, and Ser11Ala 
mutation prevented this translocation [142]. AQP9 phosphorylation 
was induced by the PKC activator PMA, and recombinant PKC was able 
to phosphorylate EGFP-AQP9 in vitro, with a stronger 32P signal for 
wild-type AQP9 compared to the Ser11Ala mutant [143]. Altogether, 
this suggests that AQP9 translocation in neutrophils is mediated by 
direct PKC phosphorylation at Ser11. 

Overall, AQP9 localisation may be regulated by PKA and PKC, but 
the molecular details remain to be elucidated. 

1.11. AQP10 

AQP10 is an aquaglyceroporin, and is expressed in fat and the 
gastrointestinal tract. The molecular details of the regulation of lipolysis 
and glycerol flux are not well understood; however, AQP trafficking is 
suspected to play a key role [122,144]. In addition to the highly abun
dant AQP7 in human adipocytes, AQP10 has been shown as an alter
native pathway for glycerol efflux [122]. Interestingly, AQP10 is not 
expressed in mice where it is a pseudogene [145], which may explain the 
difference in phenotype between AQP7− /− mice and AQP7 loss of 
function mutations in humans [122]. Human AQP10 was reported to be 
glycerol-impermeable at pH 7.4, with glycerol permeability induced by 
intracellular acidification, mediated by protonation of an intracellular 
histidine residue (H80), based on experiments with human adipose 
tissue-derived membrane vesicles and recombinant human AQP10 
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reconstitued into PDMS-PMOXA polymersomes [146]. In contrast, other 
studies have reported robust glycerol permeability of AQP10 in human 
adipocyte-derived membrane vesicles at pH 7.4 [122], Xenopus oocytes 
overexpressing human AQP10 cultured at pH 7.4 [147], proteolipo
somes containing recombinant human AQP10 at pH 8.0 [148], and 
HEK293 cells overexpressing human AQP10-GFP cultured at pH 7.4 
[149]. Glycosylation has been shown to affect the thermostability of 
recombinant human AQP10 [148]. Whether glycosylation has any affect 
on the subcellular loclaisation of AQP10, or indeed any other AQP, re
mains to be investigated. Insulin treatment of cultured human adipo
cytes increased AQP10 (and also AQP7) localisation in the vicinity of 
lipid droplets, whereas isoproterenol (a β-adrenergic agonist) treatment 
increased the abundance of AQP10 in the plasma membrane [122]. This 
suggests a similar trafficking mechanism for AQP10 in adipocytes as 
previously demonstrated for AQP7 [72] with internalisation driven by 
lipogenic stimuli, and relocalisation to the plasma membrane driven by 
lipolytic stimuli. 

Some studies have suggested that AQP10 is integrated directly into 
the lipid droplet membrane. The physicochemical properties of the lipid 
droplet membrane are considerably different from the plasma mem
brane and most other intracellular membrane compartments. Whereas 
most membranes are composed of a phospholipid bilayer with a hy
drophilic environment either side, the lipid droplet membrane consists 
of a phospholipid monolayer with a hydrophilic environment on one 
side (cytosol) and a hydrophobic environment on the other side (lipid 
droplet interior). As polytopic transmembrane proteins, aquaporins 
have hydrophilic intracellular and extracellular domains (i.e. the N- and 
C-termini and intra- and extracellular loops). It is therefore difficult to 
imagine how such a protein could be stably inserted into the lipid 
droplet membrane. In our view it is more likely that AQP10 is localised 
to the membranes of vesicles in the vicinity of the lipid droplet. 
Immunofluorescence data support this view (see for example Fig. 4 in 
Miyauchi et al. [121]), although revisiting this question using new de
velopments in super-resolution or expansion microscopy could help to 
unequivocally resolve this. Exactly how localisation of an aqua
glyceroporin to peri-droplet vesicles would alter lipid droplet glycerol 
dynamics is unclear. One possibility is that by sequestering released 
glycerol into peri-droplet vesicles, the concentration gradient for glyc
erol diffusion out of the lipid droplet is maintained. Alternatively, it may 
simply be that peri-droplet localisation sequesters the AQP away from 
the plasma membrane and recycling pools. 

To summarise, AQP10 localisation in adipocytes is under the control 
of lipolytic and lipogenic stimuli, but the molecular details remain to be 
established, and the subcellular localisation of AQP10 in other tissues is 
not well understood. 

1.12. AQP11 

AQP11, along with AQP12 form a sub-family of ‘superaquaporins’ 
that display very low sequence homology to other aquaporins and are 
primarily localised to the membranes of intracellular organelles instead 
of the plasma membrane [150]. 

AQP11 is localised primarily to the endoplasmic reticulum (ER) 
membrane, although a small proportion of the AQP11 pool may reach 
the plasma membrane in some cell types [151,152]. It is hydrogen 
peroxide permeable [152,153], and may be water and glycerol perme
able [152], although different expression systems give conflicting results 
[154]. AQP11 is expressed in kidney, liver, testes, brain, and fat 
[152,154], and AQP11 knockout mice die 1 month after birth with 
polycystic kidneys, possibly caused by ER dysfunction [155]. AQP11 is 
localised to the plasma membrane when overexpressed in Xenopus oo
cytes [154], suggesting that the intracellular retention signal(s) may not 
be active in these cells. Little is known about the molecular basis of the 
intracellular retention or plasma membrane trafficking of AQP11. 

1.13. AQP12 

AQP12 is expressed in the intestine, pancreas, stomach, and tongue 
in human, mouse, rat and chicken as well as in the pancreas for all 
species except rat [156]. Under normal conditions AQP12 localizes to 
the basal side of the intracellular organelles of pancreatic acinar cells, 
mainly to the rough ER membrane, and to the zymogen granules near 
the ER. Following careluein-induced acute pancreatitis rat AQP12 was 
localised more to the apical side of the cells [157]. The trafficking, 
localization, function, and regulation of AQP12 remain largely unclear. 

2. Summary 

Regulation of AQP function by subcellular relocalisation is a ubiq
uitous regulatory mechanism across the mammalian AQP family. This 
phenomenon is relatively well-studied for AQP0–5, whereas there is 
comparatively little information available in the literature on subcellu
lar relocalisation of AQP6–12. Given that the study of AQP0–5 relocal
isation has led to identification of many components of the underlying 
molecular machinery and hence new drug targets, we encourage the 
field to further investigate the subcellular localisation of AQP6–12, 
which may lead to the identification of novel drug targets for pathol
ogies associated with these AQPs. 

Although many AQPs in a variety of cell types have been shown to 
either translocate to the plasma membrane or be internalised upon ki
nase activation, it is often not clear whether the AQP is the direct target 
of the kinase. We therefore propose that when AQP localisation exper
iments indicate the involvement of a kinase, they should be routinely 
supplemented with experiments using phospho-proteomic approaches, 
mutation of putative kinase sites on the AQP, in vitro phosphorylation 
assays with purified kinase, or phospho-specific antibodies. 

We also note that many studies of AQP subcellular localisation are 
done using an AQP cDNA from one species transfected into cells of 
another species (e.g. rat AQP4 transfected into human cells, or AQPs 
from a variety of species transfected into the canine MDCK cell line). 
There are species-specific differences in AQP sequences which may 
impact localisation and function. For example, phosphorylation of AQP4 
at Ser315 can be detected by mass spectrometry of rat [158] and mouse 
[159] brain samples, but this phosphorylation site is not conserved in 
human AQP4 (residue 315 is a glutamine). Therefore, studies in which 
rodent AQP4 is transfected into human cells is subject to potential ar
tefacts due to phosphorylation at Ser315 which is not possible for human 
APQ4. We strongly recommend that AQP localisation studies are done 
using cDNA clones from the same species as the expression system, and 
that where possible, key findings are replicated for the endogenous AQP 
in appropriate primary cells or tissue. 

Various AQPs have polarized distribution in vivo that can be difficult 
to accurately reproduce in culture. Recent advances in 3-dimensional 
cell culture, in particular organoid and organ-on-a-chip co-culture 
models, may go some way towards bridging the gap between simple 2- 
dimensional cell monocultures and the complex 3-dimensional organi
sation of real tissues [160,161]. How AQP function might be quantified 
in such models is a challenging problem that is yet to be addressed. 

We have recently shown that CaM binds AQP4, and CaM can also 
bind to both AQP0 and AQP6. Several other AQPs are also relocalised in 
a calcium and/or CaM-dependent manner (AQP1, AQP5), but by an 
unknown molecular mechanism, suggesting that CaM binding may be a 
mechanism by which AQP function can be coupled to calcium signalling 
across the AQP family more broadly. 

AQPs support a wide range of physiological and pathophysiological 
processes. Yet, there is no water-channel-blocking drugs for any AQP 
have been approved for use in humans [162,163]. Understanding their 
regulation is likely to lead to new drug targets for a variety of pathol
ogies [164,165], as well improving understanding of cellular, organ, and 
organism-level water and solute homeostasis. 
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