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Abstract

Agents that exist and pursue individual goals in shared environments can indirectly affect

one another in unanticipated ways, such that the actions of others in the environment can

interfere with the ability to achieve goals. Despite this, the impact that these unintended

interactions and interference can have on agents is not currently well understood. This is

problematic as these goal-oriented agents are increasingly situated in complex sociotechnical

systems, that are composed of many actors that are heterogeneous in nature.

The primary aim of this thesis is to explore the effect that indirect interference from oth-

ers has on evolution and goal-achieving behaviour in agent-based systems. More specifically,

this is investigated in the context of agents that do not possess the ability to perceive or

learn about others within the environment, as information about others may not be readily

available at runtime, or there may be a distinct lack of capacity to obtain such information.

By conducting three experimental studies, it is established that evolutionary volatility is a

consequence of indirect interactions between goal-oriented agents in a shared environment,

and that these consequences can be mitigated by designing more socially-sensitive agents.

Specifically, agents that employ social action are demonstrated to reduce the evolutionary

volatility experienced by goal-oriented agents, without affecting the fitness received. Addi-

tionally, behavioural plasticity achieved via neuromodulation is shown to allow coexisting

agents to achieve their goals more often with less evolutionary volatility in highly variable

environments. While sufficient approaches to mitigate interference include learning about

or modelling others, or for agents to be explicitly designed to identify interference to miti-

gate its consequences, this thesis demonstrates that these are not necessary. Instead, more

socially-sensitive agents are shown to be capable of achieving their goals and mitigating in-

terference without this knowledge of others, simply by shifting the focus from goal-oriented

actions to more socially-oriented behaviour.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

As computer systems become more pervasive in our every day lives with the continual ad-

vancement of technology, there are evermore opportunities for these systems to interact

with not only humans, but with other systems, components of said systems, and the en-

vironments they are situated in as well. These sociotechnical systems can be considered

as agent-based, as both human and technical agents make decisions to achieve goals whilst

coexisting with other agents that are heterogeneous in their nature. The assumption that

modern day computer systems and the components they are comprised will exist in isolation

is no longer true. Actors within a shared space exist in an inherently social environment,

and can thus interact or interfere with one another [51]; mitigating the consequences of

such interference therefore emerges as one of the challenges that must be addressed when

designing these socially situated systems.

One contributing factor to the ability of a complex system to function well – specifi-

cally sociotechnical systems that are composed of many interacting parts, both human and

technical – is said to be resilience to environmental changes [186]. As these systems indeed

grow larger, interactions between parts of the system – intended or otherwise, known or

not – would increase [101]; it should therefore be possible for these systems to be resilient to,

or overcome, such environmental changes brought about by unintended interactions from

others. This is especially important because neither humans nor artificial agents possess

the information or resources necessary to envisage the consequences of their actions in the

far future [171]; if perceiving and reasoning about the consequences of one’s own actions is

difficult due to resource constraints, then this will also be problematic for understanding
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the consequences of the actions of unknown others in the environment. If these systems are

not endowed with the ability to respond appropriately to the unknown, there may be catas-

trophic consequences for integral systems to the safety and functioning of society, such as

the emergency services, and traffic management systems [46]. However, since it is infeasible

to have complete knowledge of all parts of a system because of the sheer processing power

required [112] – and that system complexity rises in cases where interference or interdepen-

dence is rife amongst such interacting parts [191] – there is a need to move towards systems

capable of also overcoming environmental changes as a result of interference when they lack

knowledge of its source or consequences.

Possessing the ability to achieve goals when located in a shared, or social environment

is said to be a core attribute of ‘social intelligence’ [88]; the characteristic of ‘intelligence’

itself is described as a social phenomenon, such that intelligent systems have inherently

social qualities that arise from interaction and interference with other systems or parts of

systems [51]. Complex behavioural dynamics such as cooperation can therefore emerge

from the intentional interaction between different actors within an environment, as well as

unintentional, and often unpredictable emergent phenomena that can arise from indirect,

and unintended interference from the actions of other actors through the environment it-

self. Further, in the context of intelligent systems, perceiving and reasoning about models

of social concepts, such as the existence of other actors within an environment and the

effects that such actors may have on oneself, is described by Bellman et al. [28] as ‘social

awareness’ – an essential component in the endeavour for socially-sensitive sociotechnical

systems that can make appropriate decisions to achieve their goals, given that they do not

exist in isolation. The ability to learn from and utilise learnt knowledge and experience has

been said to be an important component of ‘intelligent behaviour’ in artificial systems [231].

Designing ‘intelligent’ systems that are able to tackle new situations – and thus operate in

dynamic and uncertain environments with as close-to-optimal performance as possible – is

becoming more important as the complexity of the systems and the environments they are

situated in increases.

One obvious approach to mitigate this interference might be to extensively model other

actors within the environment, such that their actions, interactions, and existence can be

reasoned about. However, if no or limited knowledge regarding other actors is available at

runtime, this could lead to actors producing inaccurate or incomplete models that result in

C. M. Barnes, PhD Thesis, Aston University 2021 20



CHAPTER 1. INTRODUCTION

potentially misinformed or catastrophic decisions being made [205]. As an alternative to this

approach, this thesis instead aims to convey an understanding of how agents can be affected

by unintended interactions and interference from other actors, as well as how the conse-

quences of these can be mitigated without such information or modelling. Consequently,

this thesis investigates how these complex, heterogeneous real-world systems may begin

to overcome the negative effects of interference as a result of existing in an environment

shared with many other, potentially unknown actors, as a step towards intelligent, socially-

sensitive systems. Agent-based models (ABMs) can be used as a means of understanding

the complexities that can emerge in sociotechnical systems, by simplifying or abstracting

a real-world problem to study it in detail. This is just one of the uses of ABMs, but they

can also be used to identify and resolve potential trade-offs in real-world scenarios, or to

spark discussion about certain assumptions in a given domain, for example [145]. Emergent

phenomena can be captured in ABMs, which arise from the interactions of actors within

a shared environment [34] – much like the sociotechnical systems described thus far. This

makes ABMs an appropriate paradigm to study the consequences of interference in order to

gain an understanding of, and potentially predict, such consequences in real-world systems.

In later chapters, individual agents are evolved in a simulated environment so that they can

develop behaviours necessary to achieve their personal goals; the interactions and resulting

interference between these agents can therefore be studied.

It is critical that actors within a shared environment – human, machine, artificial agent

in a simulated environment, or components of a sociotechnical system – are able to make

appropriate decisions, and be resilient to environmental changes despite uncertainty and

external changes that can arise from interference from others [210]. Resilience in a system

would likely lead to goals being achieved more consistently, due to the system’s ability

to mitigate the consequences of events beyond its control. In order to understand the

consequences of interference within the experimental studies conducted as part of this thesis,

the ability of a system to perform consistently needs to also be assessed; this is defined

here as the volatility of a system, in terms of how much the performance (specifically, the

fitness) changes over time. Less volatility would generally indicate a steady performance,

and a resilience to any external changes that the system may be experiencing; this would

be a desired quality in the socially intelligent systems discussed by Bellman et al. [28] and

Castelfranchi [51]. If systems can be endowed with the ability to make socially-oriented
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decisions without access to social information, it could mean they are able to tackle the

effects of interference whether they are aware of other actors that may be present in the

environment or not. By not limiting a system’s capabilities to the information it possesses,

one would hope that this could lead to better resilience to unknown events caused by others.

1.1 Research Questions

To begin to understand the consequences that interference can have in these complex,

heterogeneous real-world systems, a series of experimental studies are presented within this

thesis that explore these issues in an abstract agent-based model. In doing this, the way

that agents evolve to achieve their goals, when their actions and learning can be influenced

by the actions of others, can be studied in detail. Before these systems can express social

intelligence, the implications of existing within a shared environment where other actors

have the potential to influence or interfere with others needs to be explored; this is so that

these systems can be designed with the ability to mitigate any negative consequences that

may arise from simply existing in an environment where others also exist. Specifically, this

thesis investigates the consequences of interference on agents that possess no ability to gain

information about other actors within the environment, or the implications or intentions

of their actions; this information may not be immediately available to systems in the real-

world. To explore the issues surrounding interference discussed in this chapter thus far,

there are three primary questions that this thesis aims to address:

1. How does interference from the actions of others within the environment affect the

evolution and goal-achievement of agents, without possessing the ability to perceive

or learn of others in their environment?

2. How can the magnitude of the effect that interference has on these agents be measured?

Specifically, can this effect be quantified in order to examine how agents experience

or mitigate interference?

3. How might agents be designed to mitigate the effects of interference without a reliance

on knowledge of others?

To study the effects of interference for Question 1, a simple agent-based model is used

to evolve at most one or two agents within an environment to demonstrate the effects
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of pursuing goals in isolation (no interference) or in a shared environment (interference).

Question 2 is explored by drawing on theory from volatility forecasting in finance, in order

to quantify how agents are affected by interference. Finally, social action theory and neu-

romodulation are operationalised to explore Question 3; taking inspiration from sociology

and neuroscience research for the design of agents means that the effectiveness of these

two socially-inspired approaches can be explored, in terms of their ability to help agents

overcome the effects of interference. The observations and results arising from these experi-

ments can then be compared to establish the effect that interference can have on the ability

of agents to achieve their goals, and whether the negative consequences of such interference

can be mitigated.

1.2 Contributions of this Thesis

The intention behind the work presented within this thesis is to gain an understanding into

how components of real-world sociotechnical systems, as well as artificial systems like ABMs,

can be affected by interference – and what the resulting implications are for these systems.

As mentioned above, a series of experimental studies have been conducted to explore these

questions, using a novel testbed that has been designed for this specific reason. The main

contributions of this thesis are therefore as follows:

• A new, gamified, and extensible testbed, the River Crossing Dilemma, that places

itself within an established family of testbeds. This is designed to explore how one

or many artificial agents evolve to achieve their individual goals in an environment

where they may experience interference from the actions of other agents.

• Three metrics – SDoT, CACoT, and CCoT – that can be used to quantify the mag-

nitude of changes in fitness that agents experience during evolution – defined as the

volatility of evolution. These metrics can be used to analyse the evolution of agents

that experience interference in multi-agent environments, as well as those that exist

in single-agent environments; the effect of interference can thus be compared in agents

that exist alone or are colocated.

• A novel sociologically-inspired approach to determining how agents act within their

environment to reach their goals; current systems usually opt to take self-interested
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goal-oriented actions, whereas this approach explores how acting in a social manner

within a shared environment can affect how agents achieve their goals.

• A novel approach to agent design inspired by theory from the fields of neuroscience and

biology, designed to investigate whether temporary, reversible changes in behaviour

can be an effective way to mitigate the unpredictable effects of interference within a

shared environment.

• Three comprehensive experimental studies and accompanying analyses, designed to

investigate the effects of interference, that establish:

– That agents are able to evolve to achieve their goals when alone in an environ-

ment, in line with previous work that explores how agents evolve in isolation.

These results act as a baseline for future comparisons;

– That simply existing in an environment with one other agent whilst pursuing

individual goals can affect evolution and goal-achievement, which can introduce

volatility that is unpredictable;

– That changing from a single-agent to a multi-agent environment can affect how

agents evolve because of the interference that is introduced, meaning that agents

may consequently be unable to achieve their goals because the environment

changes in an unanticipated way;

– That the complexity of the task that agents must complete in order to achieve

their goals may affect the level of interference that agents experience, with the

effects of interference becoming greater with the complexity of the task;

– That the predictability of another agent’s actions and the resulting interference

in a shared environment can influence evolution and goal-achievement; highly

variable environments are shown to foster unintentional cooperative behaviour,

whereas exploitation is more prevalent in less variable environments.

1.3 Structure of this Thesis

The remainder of this thesis is organised into six chapters with the following structure.

The problem of interference in both natural and artificial systems is defined in Chapter 2; a
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variety of agent-based models and testbeds designed to explore how many agents exist within

a shared environment are identified and evaluated for their appropriateness to investigate

the research questions stated above. Additionally, a discussion of how an agent-based model

to explore interference can be implemented is presented. Volatility and its implications for

artificial systems that share an environment with other actors is also discussed. Three

metrics to measure such volatility are introduced in Chapter 3, which are used in each of

the experimental studies to analyse the volatility that agents experience during evolution.

This chapter introduces a gamified testbed designed specifically to study the effects of

interference in artificial agents – one of the major contributions of this thesis. Further,

details of the agent design and the evolutionary algorithm used to evolve agents in the

experimental studies are also given, as well as an outline of the analytical design for the

experimental studies. Chapter 4 introduces the first of the three studies presented within

this thesis that explores how interference affects the evolution of artificial agents. Inspired

by the way that humans have evolved to act socially in their inherently social environment

in order to mitigate interference, social action is operationalised and investigated as a means

of mitigating interference in computer systems. The second experimental study is presented

in Chapter 5; here, an approach to agent design inspired by theory from neuroscience and

biology is utilised as a way to mitigate interference. This study explores how equipping

agents with the ability to temporarily and reversibly change their behaviour – known as

behavioural plasticity – compares with the widely-adopted goal-oriented approach to agent

design in terms of enabling agents to mitigate interference. Additionally, an investigation is

conducted into whether the interference that agents experience is affected by the complexity

of the task that agents are faced with. The final experimental study is then presented

in Chapter 6, which explores the extent to which agent evolution and goal-achievement

is affected by the predictability, or variability, of the actions of other agents within the

environment. Further, the effect that the variability of the environment – in terms of the

changes caused by the actions of other agents – has on the level of interference experienced

by agents is also studied, and how this in turn affects how agents are able to evolve to achieve

their goals. Chapter 7 then brings this thesis to a close by drawing conclusions from the

results of the three experimental studies conducted in Chapters 4, 5 and 6. The research

questions and contributions defined above are revisited, concluding with a discussion of the

implications of these findings and future avenues of research arising from this thesis.
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Chapter 2

Issues of Interference in Natural

and Sociotechnical Systems
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[18] C. M. Barnes, A. Ekárt, and P. R. Lewis. Beyond Goal-Rationality: Traditional Action Can

Reduce Volatility in Socially Situated Agents. Future Generation Computer Systems, 113:579–596,

2020. doi: https://doi.org/10.1016/j.future.2020.07.033.
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CHAPTER 2. ISSUES OF INTERFERENCE

“Since intelligence is mainly a social phenomenon and is due to the necessity

of social life, there is the need to construct socially intelligent systems to un-

derstand it, and we have to build social entities to have intelligent systems.” –

Castelfranchi [51]

Sociotechnical systems are comprised of many interacting components – be those human,

technical system, systems of systems, or a system’s constituent parts – where decisions

are being increasingly delegated from humans to so-called ‘intelligent’ machines. These

machines typically act in reference to a given goal, such as an objective function, utility or

goal-state – which may often conflict with other actors in the system [132]. Yet, humans have

evolved both social intelligence and social self-awareness to express more complex behaviour

than purely goal-rational action in order to succeed in highly social environments, driven

by factors such as values, emotions and traditions [94, 67, 227, 3]. Despite the fact that

components in a sociotechnical system are inherently socially situated, they are typically

limited to performing goal-rational actions and thus only very rudimentary social action.

Specifically, they do not perceive or reason about the effect other systems can have on their

own ability to learn and evolve, or the capabilities of others around them; the actions that

they direct towards others are also not driven by any broader social meaning – unlike in

humans [28, 81]. These systems are also unaware of their own impact on the world around

them, which can have a catastrophic and unpredictable effect. In 2010 for example, a

$1 trillion stock market crash occurred in just 36 minutes, caused at least in part by the

unforeseen interactions of several automated trading agents [217].

Sociotechnical systems such as vehicular networks [84], smart energy grids [160], and

trading agents [56] are increasingly being designed to operate in dynamic, uncertain and

social environments, where interactions are potentially unanticipated or unknown. Explicit

and anticipated interactions can be designed for when integrating systems, however, ne-

glecting to consider potentially unintended interactions with others that are colocated can

lead to worse performance [225]. Hähner et al. [101] argue that as the complexity of these

inherently social systems of systems increases, the number of implicit and unintended in-

teractions between the systems will also increase as a consequence; further, it is not only

the interactions with other systems that makes the task of runtime integration challenging,

but also as Nelson [159] points out – both the intended and unintended interactions with

humans as well. The field of self-improving system integration aims to design systems that
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overcome these issues – without full knowledge, control or authority over the other systems

in which they coexist and interact with [29]. The actions of one system can have an un-

intended effect on the others surrounding it [30]; a transition to more socially intelligent

systems that are able to learn about others in their environment is therefore necessary to not

only enable systems to self-integrate with others around them at runtime, but to maintain

learnt knowledge and goal-achieving behaviour despite interference from others.

The remainder of this chapter is organised as follows: the sociality of both natural

and artificial systems is discussed in Sections 2.1 and 2.2 respectively, giving an overview

of how these types of systems can overcome the challenges associated with coexisting with

others; Section 2.3 discusses what ‘interference’ is in the context of actors that exist in shared

environments, as well as the implications that this coexistence can have; various approaches

to developing testbeds and agent-based models are outlined in Section 2.4, along with an

overview of notable agent-based models that are used to explore how multiple agents exist in

shared environments; Section 2.5 then discusses the River Crossing family of environments

in detail, which is one family of testbeds that can be used for exploring how agents evolve

to achieve goals; further, Section 2.6 explores the importance of measuring the volatility of

agent evolution, and what this means for comparing how agents are affected by interference;

finally, Section 2.7 concludes the chapter by discussing the implications of interference in

shared environments, motivating the need to study this phenomenon in detail.

2.1 Evolution of Sociality in Natural Systems

We as humans have evolved the ability to navigate and utilise our social environments to

our advantage. Social learning can be seen in both humans and the animal world alike,

enabling us to learn and do more complex things than we would be able to individually

[219]; it has also been shown to be favoured over individual learning when environmental

change is slow, or when individual learning or non-social and environmental cues are not

useful [149, 167]. Our innate capacity for cooperation over competition and thus our ability

to learn from others has been attributed to our success as a species, and to what distinguishes

the complexity of our cognitive abilities from that of primates [91, 153, 105].

The cultural intelligence and cultural brain hypotheses posit that species that have

evolved to favour social learning consequently evolve improved asocial learning and individ-
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ual problem-solving skills, and flexibility, adaptability and innovation in learning compared

to non-social species; this results in a more intelligent population overall [219, 206, 156,

41, 22, 89]. The social brain hypothesis supports this, postulating that social abilities were

favoured and acted as a driving force during evolution; this is said to have led to an increase

in brain size to support cognitive ability and intelligence, where neocortex size correlates

with group size in humans and primates [75, 3, 117, 47].

Kamhi et al. [118] provide supporting evidence for this hypothesis by showing a positive

correlation between the size of the mushroom bodies of ants (a higher brain centre like

the neocortex in mammalian brains) and colony size. Sociality in ants and other eusocial

insects1 however differs to that of primates; the neural mechanisms driving insect sociality

remain relatively unknown [135, 118], but recent efforts explore how this can be addressed

in the future [198].

2.2 The Social Nature of Artificial Systems

The success of social learning and behaviour in humans and animals alike has inspired

many Computer Science researchers. These observations and theories from nature have

been widely used to create optimisation algorithms and to design systems with emergent

collective intelligence. For example, self-organisation and cooperation in ants and bees have

inspired the development of many optimisation algorithms [71, 119, 53]. Swarm robotics is

inspired by the cooperation in groups of social animals to achieve goals or complete tasks,

where robots cooperate to solve more complex tasks collectively [43, 154]; this has also been

used for societally important tasks such as search and rescue [13]. Social learning strategies

have also been widely explored [167, 116], taking inspiration from processes such as mimicry,

imitation and learning from others [188, 176, 162].

Individuals in collective systems are inherently socially situated – their actions affect

others around them either directly, or indirectly through the environment. Pursuing self-

interested action in a social setting can lead to collective irrationality [121]; however, so-

ciality through self-organising institutions can enable groups of self-interested individuals to

govern themselves, supporting sustainable management of common pool resources [169]. So-

cial dynamics have been widely explored in areas such as game theory, sociology, economics

1Eusociality can be seen in nature in the likes of ants and bees, referring to species that show collective
intelligence and where labour is divided amongst groups of sterile workers [118].
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and evolutionary computation [218, 212, 121, 131].

Agents may pursue common or individual goals when sharing an environment. Ar-

gumentation, negotiation and persuasion [207, 174], goal-aware team affiliation [80], norms

and obligations [68], social plans and joint intentions [175, 112], and mutual influence detec-

tion [183] all promote cooperative behaviour in multi-agent systems, attempting to mitigate

interference between goal-pursuing agents. The BDI (beliefs-desires-intentions) agent ar-

chitecture for example enables agents to reason about norms and obligations that they are

explicitly aware of to promote cooperative behaviour [68]. Other research explores delib-

erative normative agents, which require explicit knowledge of others, as well as the norms

that exist in order to deliberately adhere to or violate them [52].

Sociality is described as the cooperation and organisation of two or more agents in

a shared world [51], where agents are goal-oriented, and are social because their actions

positively or negatively interfere with one another in terms of achieving goals. Systems

that intentionally cooperate, coordinate, or act socially, require social awareness [28], and

are capable of perceiving and reasoning about others. The evolution of cooperation has

been explored extensively, with social dilemmas such as the Prisoner’s Dilemma or the

Snowdrift Game used to explore social dynamics and strategies [40, 10, 121, 70]. Although

the questions that this thesis aims to address surround how agents evolve in environments

where cooperation may emerge, promoting cooperation is not the focus. Instead, the impact

of coexistence and interference on how agents achieve individual goals is explored when they

are unable to learn of the existence, goals or intentions of others; knowledge of all others in a

system would enable perfect coordination, but is infeasible in dynamic environments due to

the infinite power needed for processing and reasoning [112]. Not only this, but information

about other systems or actors in dynamic or uncertain environments may not be available

at design-time, including their goals, capabilities and how to integrate with them.

2.3 Interference in Sociotechnical Systems

2.3.1 Defining Interference

The term interference has been used to describe the interaction between actors in a shared

environment, arising from the competition for shared resources [187]. Interference is an

inherent characteristic of a shared world; it can arise from actors directly interacting with
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each other, or indirectly by interacting with the environment which acts as a passive en-

tity [74, 51]. Existing within a shared environment simply means that any action taken by

an agent or actor will affect others [77, 82] – intentionally or not – with the potential to

affect agents within a local area, or even globally [107]. The pursuit of goals in a shared

world is said to be a core component of sociality [51]; social dynamics such as cooperation

and competition are the result of interference from actors that help (positive interference)

or hinder (negative interference) others with respect to their goals. Other research however

states that interference is purely the negative effect on an actor’s goal-driven behaviour

[144]; here, the term implicit cooperation is analogous to positive interference. In this work,

the broader definition of interference is adopted, which encompasses both the positive and

negative effects discussed above.

Castelfranchi [51] describes dependence as a special case of interference, where interfer-

ence is so strong that actors become dependent on the actions of others to achieve their goals,

and thus cannot achieve their goals through their own actions alone. Other researchers have

explored the concept of interference with different terminology. Jennings [112] describes this

as an interdependence of actions that arises when the actions of actors are related, or have

an impact on others. Duffy [74] states that co-existing robots will have social interactions

that can be indirect, as their actions will influence and affect others around them. Rudolph

et al. [183] explore how to detect mutual influences that arise in smart camera networks,

and the resulting dependencies. Thangarajah et al. [211] explore interference within a sin-

gle agent ; internal interference can arise from conflicting actions necessary to fulfil parallel

conflicting goals (e.g. an action is a step towards achieving one goal, but a step away from

achieving another, conflicting goal).

These methods require agents to be aware of others in the environment, and potentially

their goals or intentions. In unpredictable and dynamic environments, this is not always

possible; the environment and the agents within it may change over time, so this information

may not always be available or predictable at design-time. Tomforde et al. [215] identify

that subsystems can influence one another either directly or indirectly, whether they are

intended to interact together or not; consequently, the ‘interwoven’ nature of these sys-

tems where uncertainty, heterogeneity of actors and interference between said actors prevail

means that traditional methods of integration become impractical [27]. Thus, agents in dy-

namic or uncertain environments, where the presence of others is potentially unknown, need
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the ability to develop and maintain these models on-the-fly. Endowing systems with the

ability to learn from their inherently social environment, as human societies have evolved

to do, could therefore enable them to learn and evolve potentially more complex individual

behaviours, problem-solving competencies, and goal-achieving abilities.

2.3.2 Implications of Interference

The technical systems of today are growing in size and complexity, and thus both inter-

actions and interference between components and through the environment are evermore

prevalent [101]. Aldelaimi et al. [5] highlight that as the number of devices in complex

systems such as smart cities increases – as well as the heterogeneity of such devices – per-

ceiving, learning about, and interacting with other devices is challenging without human

intervention. Burger et al. [46] go further to note that it is increasingly important for the

devices involved in emergency response services, waste water treatment, traffic management

and even Wi-Fi – all critical for the functioning and safety of smart cities – to be resilient,

in order to prevent and avoid high work loads or catastrophic loss. As the complexity of

these large, heterogeneous systems increases, unknown or unforeseen situations due to in-

terference caused by the actions of others will be encountered more often. This must be

dealt with appropriately for the safety and functionality of both the systems as a whole and

the environments in which they operate. Since information about others, or the ability to

learn of others, within the environment may not be immediately available – or at all – in a

dynamic or complex environment [112], an investigation into how interference affects actors

in an environment without this knowledge needs to be conducted.

2.4 Studying Interference using Agent-Based Models

Various toolkits and approaches to developing agent-based models and simulations exist,

each with their own application domains, benefits and drawbacks. The research questions

detailed in Chapter 1 fundamentally aim to observe how agents may evolve to achieve their

goals when their capabilities (in terms of perceiving and reasoning about others, and their

abilities, goals and intentions) are limited, and how the presence of other agents may affect

this. In this section, a brief overview of some common agent toolkits and approaches to

agent design is given, to motivate the approach adopted when developing the experimental
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studies in later chapters of this thesis. Further, existing agent-based models that are used

to investigate how multiple agents exist within an environment are discussed, to assess their

suitability for exploring the consequences of interference.

2.4.1 Agent Toolkits, Frameworks and Design Approaches

The ‘Multi-Agent Simulator Of Neighborhoods’ (MASON) agent toolkit [137, 138, 139] is a

platform-independent, extensible simulation library; this was developed to help researchers

create and visualise simulation experiments that potentially comprise large numbers of

agents and interactions. MASON has been used in various applications, including those

relating to the modelling of complex societal issues, for example: to explore the evolution of

cooperation when the population size can vary [193]; in collaborative foraging tasks [108];

to simulate the effectiveness of different disaster response mechanisms, positioning of aid

centres, and the impact of socio-cultural information surrounding relief efforts [60]; and has

been extended for example to the MASON RebeLand model, in order to explore political

and societal issues in relation to governmental performance [55]. Despite the adoption

of MASON in a number of domains, according to Kravari and Bassiliades [126] however,

MASON has a complicated interface which requires developers to overcome a learning curve

before using. Since the research questions outlined in Chapter 1 concern only a few agents,

MASON is not considered appropriate for the experimental studies in this thesis.

Whilst the MASON toolkit is proven to be extensible and applicable to a wide range

of research domains, Kubera et al. [128] highlight that there is a high probability that

developers would introduce errors when utilising the toolkit, as there are no guidelines or

constraints regarding the design of agents, or their behaviour or interactions. To address

this issue, Kubera et al. [128] outline the ‘Interaction-Oriented Design of Agent simulations’

(IODA) approach, which includes a methodology and model for agent design, and the ‘Java

Environment for the Design of agent Interaction’ simulation framework (JEDI) to create the

simulations. Being designed around the principle that interactions are composed of actions

that involve one agent, and either another agent or the environment, the IODA approach

would facilitate the exploration of the research questions defined in Chapter 1: how the

consequences of inter/actions with the environment may interfere with or affect other agents.

However, the authors state that this approach is not intended to be used for simulations

where complexity does not arise from the number of interactions between the agents in

C. M. Barnes, PhD Thesis, Aston University 2021 33



CHAPTER 2. ISSUES OF INTERFERENCE

the simulation; for exploring the effect of interference where agent interactions cannot be

intentional or direct, this approach is therefore unsuitable for designing experiments to

explore the research questions stated in Chapter 1.

JADE, which stands for ‘Java Agent DEvelopment Framework’, is a FIPA-compliant2,

open-source agent platform and development framework implemented in Java, designed

for the development of multi-agent systems [26]. Whilst JADE is a popular choice for

researchers in both academia and industry [126] – which can be partially attributed to

its learnability – one concern about its suitability for the intentions laid out in Chapter 1

regards agent communication. For example, an extension of this framework, Jadex (JADE

eXtension) [6], incorporates the BDI architecture (Belief-Desire-Intention, see Section 2.2)

for the design of goal-oriented, rational agents with the capacity to communicate with one

another. The intention of this work however is to explore how agents are able to pursue

their own goals, without knowing of, or being capable of communicating with, other agents;

as such, this is unsuitable for exploring the questions posed in this thesis.

One of the most popular ways to implement multi-agent environments or to model

complex phenomena is with NetLogo, an integrated modelling environment that is written

in Java and designed for use in both research and teaching [233, 213]. NetLogo can even

run in the browser, with numerous sample models and code examples available to run in

the areas of art, biology, computer science, mathematics, and more3; this makes it simple to

start experimenting with pre-set models while learning how to navigate the user interface

to customise the models themselves. NetLogo itself is also a programming language used

to set up the experiments or simulations in the modelling environment, so there is some

learning involved. The developers have also worked to increase the extensibility of NetLogo,

allowing users to extend, replace or add components in Java using APIs. Despite this, similar

concerns to those that have been voiced about the other approaches discussed above apply;

care would need to be taken when extending NetLogo to run custom simulations, and a

good understanding of how to use the APIs themselves to do such a thing is crucial.

2The Foundation of Intelligent Physical Agents (FIPA) is an IEEE Computer Society standards organi-
sation: http://www.fipa.org/.

3NetLogo Web is available at: http://www.netlogoweb.org/launch#NewModel.
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2.4.2 Exploring Interference with Agent-Based Models

Agent-based models (ABMs) have been used to simulate and explore complex real-world

problems in a number of research areas, where a real-world scenario or natural phenomenon

is simplified in order to study it in closer detail. This indeed is one of the aims of the Artificial

Life research area – to understand or gain insight into the living world and the complex

phenomena that emerge [25, 4, 96]. ABMs have consequently been used to explore real-world

issues such as the management of water resources in sociotechnical water systems [31], to

analyse social patterns that emerge from collections of individuals [166], and to investigate

cooperative path planning strategies in autonomous guided vehicles [140], to name just

a few examples. Since interference is a complex phenomenon that can emerge from the

indirect interactions between actors and the environment, an ABM can be used to explore

the consequences of interference in fine detail by using a scenario with reduced complexity.

The research questions defined in Chapter 1 however are formulated around understanding

both the consequences of interference, and how this can be mitigated by actors (either

agents in a simulation, components of a system, or an entire system itself) that may not

have the required knowledge about others – or ability to acquire this knowledge – to make

appropriate decisions whilst experiencing interference. With this in mind, an appropriate

model or testbed needs to be selected in order to investigate these issues that arise in

agent-based systems.

Many testbeds already exist that have the capacity to explore how multiple agents

act within an environment, such as: the MICE testbed (Michigan Intelligent Coordina-

tion Experiment) [76], designed to explore coordination and interactions between agents

in a 2D world; MAGES (Multi AGEnt System) [38], designed to observe different inter-

actions between heterogeneous agents; and Dedale [104], designed to study the learning

and decision-making processes of agents that may coordinate to solve a task; Evosphere,

which is used to study the evolution of populations of 3D creatures with natural selection

that inhabit a ‘micro-planet’ [151]; Polyworld, designed to explore foraging behaviour in

agents controlled by neural networks that exist in a 2D world [235]. Whilst interference

is not the focus of the experiments conducted using these testbeds, they can all simulate

multiple agents existing within a shared environment – so interference can emerge from the

actions of each agent. Other studies explore interference when agents possess an explicit
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knowledge of others; this knowledge is then used by the agent to make informed decisions

regarding the interference, and their goals and action choices. Rudolph et al. [183] for ex-

ample simulate a smart camera network with multiple cameras, in order to explore how

‘mutual influences’ (i.e. interference, see Section 2.3.1) can be detected, and thus mitigated

using knowledge of others. Godoy et al. [97] propose a distributed coordination approach

for agents where the actions or motions of others around them can negatively affect path

planning and goal-achievement; this decentralised approach to mitigate the interference

that agents experience utilises knowledge of others within a certain range, and one-way

communication between agents in order to avoid collisions. Michael et al. [150] on the other

hand, simulate heterogeneous multi-robot systems in order to validate the observations in

real-world robots; there is a disparity between simulation and reality when the actions and

interactions of each robot may interfere with others, which is mitigated by endowing the

robots with the ability to sense and communicate with others. Malakuti [141] explicitly aim

to detect unexpected and undesirable emergent interference when integrating multiple self-

adaptive systems together; however, the authors state that this detection requires extensive

knowledge of each individual in the system and the consequences of the interference. This

would quickly become infeasible as the scale of the system increases, due to the number of

interacting components [112, 107, 101].

Interference can arise in any scenario in which there is more than one actor within an

environment, and as such, interference is not a new concept when talking about ABMs

with more than one agent – as discussed in Section 2.3.1. However, whilst interference

is an emergent property in ABMs with multiple agents, the focus of the studies that use

these multi-agent ABMs is usually on: mitigating or detecting the interference that arises

when agents have knowledge of others [141, 183]; or developing strategies to facilitate the

emergence of social dynamics such as cooperation, competition, or coordination for example,

where interference is an implicit property of the simulation due to its multi-agent nature but

is not explored [97, 104]. The effect of interference can potentially increase in severity like a

ripple effect, initially having a local effect but can continue to affect the system globally [107]

when there are many agents within an environment. The actions of one agent can thus have

a knock-on effect on other agents, which in turn affect other agents, and so on. In each

of the examples discussed above, the studies conducted observe the aggregate behaviour of

many agents. In order to understand the consequences of interference at a fundamental level
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however, there is a need for a simple testbed that can be used to observe and analyse the

differences between existing alone (i.e. no interference) and existing with one other agent.

By reducing the complexity of the environment from including many agents to simply one

or two, the potential magnitude of the interference experienced by agents is also reduced as

a result. None of the testbeds or ABMs above are therefore adequate to observe the effects

of interference in close detail, as each of the examples discussed are made complex by the

sheer numbers of agents in the environment.

2.5 The River Crossing Family of Environments

Following the discussion in the previous section about existing testbeds to explore inter-

ference, this section introduces a family of environments typically used to study how one

agent evolves in an environment to solve tasks. Since a suitable testbed that can be used

to study the effects of interference in close detail has not yet been identified, modifying an

established testbed could facilitate this investigation instead.

2.5.1 The River Crossing Task

The River Crossing Task (RC Task, or RCT) was developed by Robinson et al. [178], in order

to explore how agents can evolve to solve tasks in dynamic environments. They introduce

a novel, two-tiered neural network architecture that enables artificial agents to express

both deliberative and reactive behaviours, giving them the ability to navigate dynamic

environments without the need for a priori knowledge of the task or environment; these

behaviours are acquired over the course of evolution, where a population of individual

agents is maintained. The goal of agents is simple: they must collect the Resource object

to receive a reward of a highly positive fitness, which is located on the opposite side of

a river that spans the length of the environment. The RCT testbed itself is a simple 2D

grid, containing objects such as Traps, Stones, and a river consisting of Water objects.

The difficulty of the task arises from the fact that agents must learn ‘sub-goals’ to retrieve

their reward object (the Resource), such as building a bridge in the river with Stones;

this is challenging as falling into the river gives the agent a highly negative fitness, so

learning the goal-achieving behaviour of building a bridge is initially risky. The complexity

and dynamicity of the environment varies within the study; agents are evaluated on three
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consecutive environments of increasing difficulty at each generation, with the width of the

river increasing from a width of one (firstly where bridges already exist, and secondly where

no bridges exist) to two cells. Further, Robinson et al. [178] concretely demonstrate that

agents are able to react immediately to environmental changes by evaluating agents in

environments where walls of Traps move locations, for example.

2.5.2 The RC Family

The simplicity and ease of extensibility of the RCT inspired the creation of other testbeds,

thus leading to the development of what is termed here a ‘family’ of River Crossing (RC)

environments; these all have a common learning challenge – agents must learn to build a

bridge in order to achieve their goal. Borg et al. [37] for example introduce a more complex

version of the RC task called the RC+ task; this is used to demonstrate that learning

by imitation through transcription errors and cultural transmission can enable agents to

achieve goals where incremental evolution cannot. The RC+ task is therefore specifically

designed such that agents are evaluated on five consecutive environments at each generation,

where the final environment cannot be solved by incremental evolution on its own. In this

study, the width of the river increases with every evaluation from zero to four, whilst the

number of Stones available to build bridges reduces to zero; consequently, the task in the

final environment can only be solved by placing a new, unseen object into the river. Agents

that use a teacher-learner strategy with transcription errors are shown to be capable of

solving this final, complex environment; agents that are ‘non-learners’ on the other hand

are unable to solve this problem, even with the addition of transcription errors or a higher

mutation rate.

A further adaptation of the original RC task is presented by Stanton and Channon [203],

termed the 3D River Crossing task (3D RC), which is later extended into the Physical 3D

RC task (P3D RC) [204]. The 3D RC is used to explore how 3D quadruped agents are

able to evolve reactive and deliberative behaviours, whilst navigating a world that requires

attention to the locomotion of the agent’s limbs in order to achieve the goal. The P3D RC

develops this further by also requiring the 3D agents to manipulate objects directly within

the environment using physical motor control, instead of the abstract interaction which is

seen in the 3D RC.

A more recent addition to this family of environments is the Minimal River Crossing task
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(RC–), presented by Ghouri et al.4 [96]. The intention of this version of the testbed is not

to observe how agents are able to express reactive or deliberative behaviours, but instead to

explain and understand agent why the core learning challenge in the River Crossing family

of environments – building a bridge – is in fact challenging. The original RC task [178]

is reduced from a 20 × 20 grid to a 1 × 5 grid, such that this core learning challenge can

be isolated and observed in fine detail; one of the main contributions of this study is that

the RC– can be used to predict and explain agent behaviour that generalises back to the

original problem.

2.5.3 Studies Conducted in the RC Family

In addition to the studies that first introduced these instances that make up the River

Crossing family of environments, both the testbeds themselves and the agent architecture

used to evolve these agents have been further modified in other work to explore a broader

range of concepts. For example, the 3D virtual creatures designed by Stanton and Channon

[203] extend the two-tiered learning architecture first introduced by Robinson et al. [178], to

observe how 3D agents may navigate the 3D RC environment; the addition of new physical

and pattern generator networks to the initial two-tiered architecture facilitates the evolution

of locomotion, turning and avoidance behaviour in 3D agents.

The RC+ task [37] on the other hand has been used by Jolley et al. [116] to investigate

the effect that the choice of ‘teacher’ in different teacher-learner social learning strategies

can have on goal-achievement and evolution; this develops upon the study presented by Borg

et al. [37], which exclusively assigns the winner of the last tournament to be the teacher,

and the aforementioned agent’s most recent offspring to be the learner (known as the ‘best

parent’ strategy). Jolley et al. [116] show that the choice of social learning strategy has no

significant effect on fitness when comparing a teacher that is the best parent, the fittest,

the oldest, the youngest, or a random agent; each strategy is effective for enabling agents

to solve tasks using behaviours which are inaccessible to incremental evolution alone.

In other work, Jolley and Channon [114] use the RC task to demonstrate an alternative to

the two-tiered architecture proposed by Robinson et al. [178]. The second of these two tiers

is a topologically-organised neural network responsible for reactive behaviours and motion

4The author of this thesis co-supervised the first author of this publication [96], who studied the explain-
ability of agents for her BSc dissertation project, by introducing the Minimal River Crossing Task testbed
(RC–).
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planning, however this is replaced by a HyperNEAT [201] implementation to compare the

effectiveness of the approach to the original. Introducing a modified fitness function is

shown to improve the general performance of agents using this adapted agent architecture;

agents are evaluated on multiple RC instances to simulate learning in a ‘large’ environment,

and as such appear to learn more generalised behaviour. Despite this, the new HyperNEAT

implementation of the RC agent architecture is not shown to improve agent performance

compared to agents operating in the original RCT. In later work [115], the second tier in the

RC agent architecture is instead replaced with a single-layer convolutional neural network

(ConvNet) [129]; this is shown to significantly improve agent performance in the RC task

compared to the HyperNEAT implementation.

The use of the agent architecture introduced by Robinson et al. [178] is not exclusively

used in agents that operate in instances of the River Crossing family of environments.

Borg and Channon [35] demonstrate that this agent architecture is effective for evolving

agents in the EnVar environment; agents must forage for resources or ‘plants’, aiming

to consume those that give positive rather than negative energy values. The focus of this

study is to observe whether social information affects the evolution and adaptivity of agents,

concluding that a benefit is indeed seen consistently when the difficulty of the task is low.

Task difficulty here is in terms of the ratio of positive to negative food resources available

in the environment, where difficulty increases with the number of negative food resources.

Social information about an agent that is being perceived however can be simply regarding

its presence, the action it is currently performing, its health or energy level, its age – or

alternatively where no social information is perceivable; agents have no control over the

social information that others can obtain from them, as this transfer is dependent on the

type of information that an agent can perceive. This is emphasised in later work [36],

where these simple forms of social information are observed to promote interaction between

agents, where movement towards other agents to obtain more social information can lead

to improved performance.

2.5.4 The Bigger Picture of Crossing Rivers

In general terms, learning to cross a river in a simulated environment is not an important

task, nor is it an immediately useful exercise. What is important and useful however, is

what can be learnt from how agents may interact with, and evolve within this simplified en-
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vironment. Observing how simple agents may respond to different environmental conditions

in abstract terms therefore has the potential to lead to conclusions that can influence and

benefit how future technical systems should be designed, when facing similar conditions.

The River Crossing family of environments and the studies which utilise them are firmly

placed in the realm of Artificial Life research – an aim of which is to use simplified models

to study and understand complex natural phenomena [96, 4, 25].

The act of learning the behaviours necessary to cross a river seems simple, but complet-

ing such a task has been proven to be difficult using this well-established family of testbeds.

In the River Crossing task, agents must learn two implicit, and conflicting concepts about

the environment: the first is that the river should be avoided at all costs due to the risk

of drowning; secondly, interacting with the river is not only safe to do under the condition

that a Stone is being carried, but is in fact necessary in order to achieve the goal. The

River Crossing task is thus an abstraction of some of the complex challenges that technical

systems may face in the real world; designing systems to achieve individual goals in dy-

namic environments is challenging, and will be increasingly so as the size and complexity

of these systems, and their resulting interactions, also increases [101]. Observing how arti-

ficial agents develop the ability to perform sub-tasks to achieve goals in the RC family can

therefore aid understanding of these issues in simplified terms.

An attractive characteristic that is common throughout the River Crossing family of

testbeds is the ease of tuning the difficulty of the task within the environment, depending

on the focus of the study. Further, these testbeds have been used to explore a diverse

range of concepts, such as the effects of social learning and social information, the ability

to evolve robust behaviour in dynamic environments, and even the impact that the type

of agent learning architecture itself can have on deliberation and goal-achievement. As

discussed above, previous studies conducted using the River Crossing family of environ-

ments have explored how agents evolve in dynamic environments. This dynamicity arises

from novel and unseen environmental configurations or moving objects, meaning that it is

impossible to follow a predetermined or planned route to achieve the goal. However, it is

becoming commonplace that the environments that real-world systems operate in can also

change, or become dynamic, due to the actions of other systems or actors [191, 101, 210] –

be those human, or artificial (as is the nature of sociotechnical systems in general). An

environment inhabited by more than one individual is inherently social, with the actions of
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others directly or indirectly interfering with how individuals perceive and interact with their

environment [51]. Bellman et al. [28] state that systems operating in shared environments

should express social awareness in order to perceive and learn about the existence of others

in their surroundings, as well as their capabilities, goals, and even intentions. However, the

ability to perceive other systems, as well as how to interact with them, may not be im-

mediately accessible [112] – an issue that is only worsening as the heterogeneity of today’s

sociotechnical systems increases. The questions posed in this thesis are therefore designed

to provide some understanding of these issues, and how they may be overcome.

2.6 Volatility and its Implications in Sociotechnical Systems

The performance of evolutionary algorithms is often analysed by ascertaining the expected

time taken to find an optimal solution in terms of received fitness; this can then be used to

compare the ability of an algorithm to perform with varying parameters or conditions, or

to compare the performance of the algorithm to alternative algorithms. Jansen and Zarges

[111] note that optimisation algorithms that operate in static environments are intended to

find solutions as quickly as possible, however this changes in dynamic environments as the

optimal solution may change over time due to varying environmental conditions.

It is important to clarify terminology when discussing algorithms that operate in dy-

namic or shared environments, as to not conflate different areas of research. Evolutionary

dynamic optimisation problems – that is, optimising evolutionary algorithms in dynamic

environments [92, 161, 113] – are characterised by optimising solutions when the optimum

may change over time [92]. One common way to analyse the performance of optimisation

algorithms is to measure the best-in-generation fitness, either averaged over all generations,

or for each generation over multiple runs; comparing the performances of different algo-

rithms with these measures can however be difficult if they are not normalised [161]. A

separate, but related, concept to the dynamic optimisation problems described above is

coevolution, where multiple individuals or species are evolved to solve optimisation prob-

lems [165, 239, 243]. In coevolutionary algorithms, an individual’s fitness is dependent on

the fitness of others from either the same population, or a different one [243, 72]; the fit-

nesses of individuals therefore interact or are coupled, which distinguishes coevolutionary

from evolutionary algorithms [85, 182]. Coevolution can be competitive, cooperative, or
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even both [243], where an individual’s fitness is either negatively or positively affected by

the success of another respectively. The studies presented within this thesis concern how

one agent evolves to achieve an individual goal when it may share an environment with,

and be affected by unknown others; as such, analysis is conducted from the perspective of

an individual agent, rather than the dynamics observed in all individuals. While beyond

the scope of this thesis, analyses in a coevolutionary or other sense may be conducted in the

future, in order to understand the evolutionary dynamics that emerge in these experimental

studies further.

2.6.1 Analysing Volatility

The experimental studies introduced in later chapters may evolve populations of agents in

either static or dynamic environments (where dynamicity is caused by the actions of oth-

ers within the environment, rather than from the environment changing of its own accord

or by the goal itself changing over time), in order to explore how interference from other,

unknown actors within the environment may affect evolution and learnt behaviour. Ex-

periencing dynamicity presents a challenge when analysing the performance of algorithms,

because an optimal solution may become sub-optimal if conditions change. Simply cap-

turing the number of generations (i.e. the time taken) for an evolutionary algorithm to

find a successful solution is therefore inadequate to assess the algorithm’s suitability to the

environment, since the ability to mitigate interference may fluctuate during evolution de-

pending on environmental stimuli. As an alternative to this approach, the algorithms used

in the experimental studies are instead analysed over the entirety of evolution; to assess the

extent to which the populations of agents in the later studies are affected by interference

(and thus dynamicity within the environment), the fitness received by agents is tracked over

evolution. One would expect that the more the fitness changes during evolution, the more

the algorithm is susceptible to the negative (or positive) effects of interference. A fitness

that changes often from one generation to the next would consequently indicate that it is

hard for the agents in the population to maintain a constant fitness.

It is important to define terminology – especially when conducting inter-disciplinary

work – not only to avoid ambiguity and aid understanding, but because terms may have

different meanings depending on both the context or field of study in which they are used. In

plain English, one could describe the extent to which the fitness of a population is maintained
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during evolution – as discussed in the previous paragraph – as its ‘stability’. However, this

is a widely used term that is usually associated with the exploration of ‘evolutionarily stable

strategies’ [194] or ‘evolutionary stable states’ [195] in the fields of game theory [194, 86, 134],

economics [24], and biology [194, 39]. In these areas, ‘stability’ refers to the stability of the

strategies that are employed by the population, such that the population itself exists in

a state of equilibrium and is thus robust to the intrusion of mutant strategies. Similarly,

‘stability’ has also been used to describe learning dynamics in multi-agent reinforcement

learning scenarios, referring to agents that converge to an equilibrium or stable policy, such

as a Nash equilibrium [44]. Since this term already has a specific meaning in a number of

different fields of study, it would be illogical to introduce an alternative meaning in this thesis

to describe the fitness received by agents during evolution. Instead, an already established

term that has a similar meaning is ‘volatility’, which is used in the area of finance to model

or forecast the volatility of financial markets [170]. A higher volatility means that there is

a higher variability and dispersion of the values [234] – volatility increases in line with the

number of fluctuations detected in the financial model. This can be easily translated to the

domain of evolutionary agent-based models, since capturing the fitness received by agents

over the course of evolution is similar to tracking the fluctuations present in a financial

model. One of the simplest, and most common, ways to quantify volatility in finance is

to calculate the sample standard deviation over time [170]. It must be noted that the use

of the term ‘volatility’ here is unlike that of Vega-Redondo [221], which uses the phrase

‘equilibrium volatility’ in the context of evolutionary game theory to describe the dynamics

of equilibria during evolution – without quantifying such volatility. Taking inspiration from

this method, volatility can hence be used to quantify and describe the fluctuations in fitness

during the evolution of agent-based models; this approach is grounded in theory that can be

applied in the context of evolutionary algorithms, without introducing ambiguity – which

would be a consequence of adopting a term such as ‘stability’.

Koren and Tenreyro [124] highlight that GDP growth is more volatile in poorer countries

compared to rich countries, caused in part by weaker financial infrastructure that struggles

to deal with economic shocks or political instability appropriately, for example. Without

the means to combat such unpredictable events, growth rates in these countries fluctuate

more often, and by larger amounts. This is analogous to simulated agents that are unable

to respond appropriately to environmental stimuli during the course of evolution. Agents
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that evolve in dynamic environments, that have not yet evolved behaviour that is robust

to unpredictable or unknown events, will receive a fitness that often fluctuates; this would

result in agents that experience volatile evolution. Section 3.6.1 introduces three metrics

which have been devised to quantify the amount of volatility that agents experience during

evolution, by observing how the fitness changes over time. By using these metrics to analyse

the performance of evolutionary agents, or indeed sociotechnical systems situated in the

real world, one would expect that a lower volatility would imply that the system or agent

is better equipped to deal with unforeseen circumstances, and is able to maintain a more

constant fitness or level of performance compared to more volatile actors. This being said,

low or near-zero volatility may also be an artefact of a system that is unable to achieve its

goals, and consequently maintains a constant level of sub-optimal performance. As such,

the volatility metrics described in Section 3.6.1 should therefore be used in combination

with an analysis of the actual performance in order to avoid any incorrect conclusions being

drawn (in this case, an analysis of the fitness received by the agents in the experimental

studies in later chapters is used in conjunction with an analysis using the three volatility

metrics defined). Once an analysis of volatility has been conducted, the evolution of different

populations of agents can consequently be directly compared. This comparison can then be

used to indicate whether one approach to agent design is preferable over another (in terms

of the amount of evolutionary volatility experienced, and thus the ability of an agent to

maintain a constant fitness), or to demonstrate the effect of various environmental stimuli

on evolution – such as the effect of interference as a result of sharing an environment with

another agent, compared to existing in an environment alone.

2.7 Conclusion

The research questions that this thesis aims to address surround understanding how systems

may affect one another when coexisting with others in a shared space, and consequently

how systems may evolve to achieve their goals despite possessing no ability to perceive or

learn of others. The investigation of whether, and how, simulated agents may achieve their

individual goals under these conditions is considered here to be an important prerequisite to

the ‘social awareness’ that is discussed by Bellman et al. [28]. One of the aims of this thesis

is therefore to investigate whether a system is able to mitigate the effects of interference
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before any information can be learnt about others, since this information or the ability to

acquire it may not be immediately obtainable in the real-world.

The versatility of the River Crossing family of environments has been demonstrated

through numerous studies and extensions of the original testbed itself, thus demonstrating

the viability of the River Crossing task for exploring complex problems in abstract terms.

A limitation of this family of environments however is that there is a lack of capacity for

exploring the effects of interference in shared environments. Each of the studies conducted

to date concern how artificial agents evolve when they are the sole inhabitant of the environ-

ment; therefore, an addition to this family of environments that facilitates the exploration

of interference and its consequences is needed, to understand how agents may evolve to

pursue their individual goals when resources in the environment are shared with others.

The design of this new testbed, intended to facilitate the exploration of interference and

volatility, is presented and discussed in detail in Chapter 3.

In this chapter, it is established that interference can arise in environments shared with

multiple actors – be those human, machine, or a combination of the two. Current approaches

to mitigating interference require information about others in order to make decisions, but

this might not always be possible – especially since the size and complexity of real-world

computer systems is increasing. Consequently, the effect that this interference can have on

actors in a shared environment needs to be understood, which can be achieved by observ-

ing how actors (specifically artificial agents) evolve in a shared environment without such

knowledge. By exploring the consequences of interference, one may begin to think of how

systems could be designed to mitigate interference without having to rely on complete or ac-

curate knowledge of others. This will be increasingly important to consider when designing

real-world sociotechnical systems, since the interactions between parts of the system, and

therefore the effects of interference, will scale with the system size. Agent-based models are

widely used to understand complex real-world phenomena in a simplified manner, meaning

that this is also appropriate for exploring the implications of interference. An appropriate

testbed is required to conduct such an investigation, as well as a means of measuring the

effect that interference has on agents during evolution. The insight gained from observ-

ing how artificial agents evolve in shared environments when experiencing interference can

consequently be used to make informed decisions when designing real-world sociotechnical

systems that experience interference on a larger scale.
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Chapter 3

A Testbed to Explore Interference

in Agent-Based Systems

The work presented in this chapter has been adapted from the following publications:
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3.1 Motivation

As discussed in the previous chapter, agent-based models are widely used as a way to

simplify a real-world scenario in order to study it in detail; consequently, a simple testbed

can be used to study the implications that interference can have in sociotechnical systems,

by reducing the complexity of the scenario and studying the fundamental issues that arise

for artificial agents in a shared environment. In Section 2.5, the River Crossing (RC) task

is identified as a well-established testbed for exploring how agents evolve to solve tasks in

complex, and dynamic environments; the integral learning challenge incorporated into this

testbed (the act of building a bridge to achieve a goal) has inspired a variety of extensions

to the original RC task to explore different phenomena in both 2D and 3D simulated agents.

The RC environment itself is simple, lending itself well to extension and further development

for use in different domains; consequently, a testbed designed to observe how multiple agents

may achieve their goals in this environment seems both fitting, and a valuable addition to

this family that has been growing in popularity in recent years.

The purpose of this chapter is to introduce the River Crossing Dilemma (RCD); this is

an agent-based model designed to explore how artificial agents evolve and behave in shared

environments. Specifically, the testbed builds upon the original River Crossing task testbed

proposed by Robinson et al. [178], in order to investigate the effect that interference arising

from the actions of others can have on the evolution and fitness of agents. The importance

of understanding interference and the way it can impact a system’s performance or ability

to achieve goals is becoming increasingly important, due to the increasing size, complexity,

and heterogeneity of today’s sociotechnical systems. This testbed can be used to both

understand and explore the implications of this interference by observing how artificial

agents react to, and potentially mitigate, interference from others; as such, the RCD can

be used to study what the implications of interference are for agent-based systems in the

real-world. To simulate the changing and uncertain conditions that sociotechnical systems

increasingly face, the agents operating in the testbed discussed in this chapter (as well as

the studies in later chapters that use this testbed) do not possess the ability to learn of or

perceive others within the environment. Information about others may not be immediately

available in the real-world; exploring how systems can be designed to be resilient to the

effects of interference without being aware of its cause or existence is therefore hypothesised
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to become more critical as the number of interactions between systems increases [101].

The remainder of this chapter is organised as follows: the River Crossing Dilemma

testbed is introduced and discussed in depth in Section 3.2, while Section 3.3 discusses

agent design; Section 3.4 details the evolutionary algorithm used to evolve agents in the

testbed; the adopted approach to implementing a testbed is discussed in Section 3.5; Section

3.6 outlines the approach for analysis used in each experimental study, with Section 3.6.1

specifically introducing three metrics that can be used to measure evolutionary volatility;

Section 3.7 finally concludes by outlining the contributions of this chapter.

3.2 The River Crossing Dilemma Testbed

One of the contributions of this thesis is the River Crossing Dilemma (RCD) testbed1, a

gamified testbed designed to explore how agents evolve to achieve individual goals in shared

worlds. This is an extension of the original River Crossing task proposed by Robinson et al.

[178], where the gamification of the RCD environment introduces the opportunity to study

how multiple agents act in inherently social situations. These may be tractable social

dilemmas, such as those introduced in the studies in later chapters, but in general are

not constrained in their complexity since RCD instances may be designed to be arbitrarily

complex. Agents have no prior knowledge of the task or environment, and must learn what

their goal is and how to achieve it without this information. Agents pursue their own,

individual goals, and do not require knowledge of others to do so in shared environments,

as they have the potential to perform the actions necessary to achieve their goal solely

relying on their own behaviour.

The RCD is a 19 × 19 grid-world environment with a two-cell deep river of Water in

the centre (Figure 3.1). There are four Stones on each river bank, and all empty cells

are Grass. As this testbed is designed to study how interference affects evolution and goal-

achievement in agents, the RCD reduces the variety of objects in the environment compared

to the original River Crossing (RC) task introduced by Robinson et al. [178]; objects such as

Traps, which are seen in the RC task, increase the complexity of the task at hand without

contributing to the study of interference. Agents therefore only encounter the objects that

are sufficient to achieve their goals.

1The River Crossing Dilemma testbed was first published in Barnes et al. [15].
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Figure 3.1: The River Crossing Dilemma testbed, which is a 2D grid-world environment. The grey agent
(top left) is allocated the two Resources in grey, and the black agent (bottom right) is allocated the two
Resources in black; agents cannot interact with Resources that are not allocated to them. Both agents can
interact with all other objects. For single-agent environments, the black agent is removed.

The final type of object in the RCD environment is the Resource. An agent’s individual

goal is to collect both of its two allocated Resources, which are placed one on each side of the

river; achieving the goal will reward the agent with a highly positive fitness. Conversely,

stepping into the river causes the agent to ‘drown’, giving it a highly negative fitness.

However, for an agent to individually achieve its goal, it must evolve to perform sub-

tasks; a bridge must be built so agents can cross the river safely using Stones, in order to

collect their second Resource and thus achieve the goal. To successfully build a bridge, two

Stones must be placed in the same Water cell since the river is two cells deep. The aim of

the agent is therefore to achieve its goal (i.e. collect both Resources) using the minimum

number of Stones; an agent which collects both Resources but places three Stones in the

river would thus be less favourable than one which places only two Stones. This bridge-

building behaviour is essential if the agent is to succeed; however, developing this behaviour

is a complex process as agents must firstly associate the river with a negative fitness, and

then that a positive fitness can become accessible only if Stones are placed in the river. The

challenge of associating specific knowledge or behaviour with specific conditions makes the

task difficult for agents to learn to solve, as strong associations must be altered over time;

this can potentially lead to the temporary loss of ‘safe’ behaviour when bridge-building
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behaviour is learnt, and therefore can negatively affect the fitness that agents receive while

both conditions are learnt.

The RCD testbed is developed in Java, with the configuration of the environment pre-

sented in Figure 3.1. Time is measured in ‘time-steps’, where an agent must move a distance

of exactly one cell per time-step in any of the eight cells surrounding the agent’s current

location. The environment is designed such that multiple agents can exist in the environ-

ment, however Figure 3.1 depicts an RCD instance containing two agents; in this case, the

agent that starts in the top left of the environment moves first, followed by the agent that

starts in the bottom right. In order to explore the effect of interference on agent evolution,

one must also observe and compare how agents evolve in an environment alone; in this case,

only the agent on the left-hand side of the river exists. Agents are able to interact with all

objects within the environment, except from Resource objects which are not allocated to

them; non-allocated Resources appear in the environment as obstacles.

Robinson et al. [178] explore how agents evolve to operate in dynamic instances of

the original River Crossing task. The focus of this thesis however is on exploring the

effect that interference can have on agent evolution and volatility, rather than the ability

of agents to navigate dynamic environments; as this has already been demonstrated by

Robinson et al. [178], the experimental studies presented in Chapters 4, 5 and 6 instead use

a static configuration of the RCD testbed depicted in Figure 3.1. This is not to say that

future developments of, or studies using the RCD would be required to also have a static

environmental configuration; for the purposes of the studies in the later chapters though,

the RCD only uses the characteristics of other instances in the River Crossing family of

environments that are necessary for, and directly contribute to, the study of interference.

3.2.1 Gamification of the RCD

The inclusion of two Resources for each agent in the RCD – one immediately accessible,

and one initially inaccessible because it is separated by the river – further distinguishes

this testbed from others in the River Crossing family. Robinson et al. [178] state that

agents in the original River Crossing task are evaluated on three consecutive environments

at every generation, where each increases in difficulty; without first showing the agents an

environment where a safe passage to achieve the goal already exists, agents were not able to

associate the Resource object with a high fitness and evolution resembled random search.
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Following this line of thinking, the RCD instead locates one Resource on the side of the river

that an agent starts on, in addition to another Resource on the opposite side of the river;

if only one Resource was present that was on the opposite side of the river to the agent,

there would be no incentive for agents to explore or develop bridge-building behaviour due

to the risk of falling into the river.

Furthermore, the RCD environment is designed such that two Stones are required for a

bridge to be built; in other River Crossing environments, this is achievable with only one

Stone [178, 37, 203]. By increasing the number of Stones to build a bridge to two, the task

in the RCD can be gamified such that agents incur an increasing cost for each Stone placed

in the river; this cost acts as an incentive for agents to exert the least effort to achieve

their goal. However, this also increases the complexity of the task, because agents may

accidentally fall into the river when initially experimenting with bridge-building behaviour;

agents may consequently endure a period of low fitness while developing the ability to place

Stones in the river, making it harder to sustain this behaviour if they do not receive the

benefit from collecting the second Resource.

It would be trivial to imagine an environment where there is no cost for placing Stones in

the river in the RCD; without this, actions from others within the environment would have

little to no impact on agent evolution. Indeed, Robinson et al. [178] show that evolution

is able to find solutions in the original River Crossing task much quicker when agents

are situated in environments with a one-cell wide river, or where a bridge already exists;

solving the task when there is a two-cell wide river however is more difficult. Even with

this increased difficulty, if more than one agent existed within the environment, both agents

would be able to achieve their goal independently – the actions of others would not influence

agent behaviour, evolution, or the fitness they receive. In general, interference from others

within the environment is problematic when the fitness agents receive depends on shared

environmental features. As the intention behind the RCD is to explore how agents evolve

when they may experience interference from others, the cost for placing Stones in the river

means that the actions of other agents within the environment do in fact affect agent fitness,

and the resulting behaviours in which they evolve or maintain. The social dilemma that

consequently arises when agents share an RCD environment with another agent means that

the actions of other agents within the environment – particularly interacting with Stones

and thus potentially changing the state of the environment – can affect the fitness that
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agents receive. These agents may either complete their task individually and be subjected

to the full cost of bridge-building, cooperate to share the cost, or exploit the behaviour of

other agents to avoid a cost at all.

Gamification and Agent Fitness

The introduction of an increasing, personal cost for placing Stones into the river to build a

bridge creates a Snowdrift Game [152] (also known as the Chicken Game [121, 131, 218, 9]

or the Hawk-Dove Game [189, 9]), which is a two-person social dilemma with a cost for

cooperation. This means that there is less incentive for agents to cooperate due to the cost

of bridge-building, but severe consequences for defection if the agent isn’t able to achieve

its goal. Gamification adds a subtle complexity to the task incorporated into the RCD

environment compared to other testbeds in the River Crossing family of environments, as

agents must learn to endure a small cost for a large gain. The fitness, or payoff p for agent

i is based on its own individual actions, and is calculated with Equation 3.1, where agents

are evaluated on n environments:

pi =

n∑
j=1

(
ri,j
Nj

−
[

Cj × si,j
2

(
1 + si,j

) ]
− fi,j

)
(3.1)

ri,j is the number of Resources collected by agent i in environment j; Nj is the number

of Resources allocated to each agent in environment j; Cj is the cost of placing a Stone

in the river in environment j; si,j is the number of Stones placed in the river by agent i

in environment j; fi,j = 1 if agent i falls in the river in environment j, and is otherwise

0. C and N are constants, with C = 0.1 and N = 2. Equation 3.1 evaluates each agent’s

fitness individually – independent of others; this also allows an agent to evolve alone or in a

shared environment, as an agent’s fitness is calculated solely on its own behaviour. Further,

this equation also means that agents can be evaluated on the outcome of one environment

(n = 1), or multiple (n > 1): an agent’s fitness is the sum of the fitness achieved in each

environment in the evaluation. Chapters 4 and 5 for example explore how agents evolve

when evaluated on one environment, whereas Chapter 6 explores the consequences that

evolving in many environments can have on evolution and fitness.

Table 3.1 shows a simplified payoff matrix using Equation 3.1, containing commonly

observed fitnesses in the RCD. The cost for each Stone placed in the river using this equation
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Sy = 0 Sy = 1 Sy = 2

Sx = 0 0.5 0.5 1.0
Sx = 1 0.4 0.9 0.9
Sx = 2 0.7 0.7 0.7

Table 3.1: Payoff Matrix using Equation 3.1 to show the fitness achieved by agent x in the River Crossing
Dilemma testbed, assuming that: agent x has retrieved its Resource object from its own side of the river;
agent x will retrieve its second Resource if a bridge has been built; another agent y exists in the environment.
Sx and Sy are the number of Stones placed by each agent. Sy = 0 also demonstrates the fitnesses that agent
x could achieve if it exists in an environment alone.

increases by C = 0.1; the total cost of placing one Stone is 0.1, two Stones is 0.3, three

Stones is 0.6, etc. The highest payoff when an agent exists in an RCD environment alone

is pi = 0.7, as the agent must incur the cost of placing two Stones in the river in order

to achieve its goal. In shared environments, agents can receive a payoff of pi = 1.0 by

exploiting the other, who receives pi = 0.7 from incurring the total cost of building the

bridge on its own. The overall optimal payoff is pi = 0.9 when agents cooperate by sharing

the cost of building a bridge. Any fitness below 0.7 indicates the goal is not achieved.

Social Dynamics and the Awareness of Others in the RCD

Cooperation in social dilemmas is influenced by knowing of the existence of a dilemma in the

first place [64], and can be negatively influenced if the dilemma’s characteristics are unknown

or dynamic [218]. Dynamicity however, is an inherent characteristic of coexistence, as the

actions of others can change the state of the environment; this makes it difficult to maintain

cooperative behaviour as this may become unreliable if the state of the environment (or the

behaviour of others) changes. It must be noted that the focus of the studies within this thesis

is not on the evolution of social dynamics such as cooperation or competition, but rather

how agents can mitigate the effect of interference when socially situated; cooperation or

competition can emerge, however this type of behaviour cannot be intended nor understood

by the agents, as they are unaware of other agents around them.

3.3 Agent Design

Existing approaches to agent design for the original RCT use a two-tiered neural network

architecture, where agents are capable of reacting to dynamic environments (such as a

change in environment size or configuration) without needing a priori knowledge [178, 35].
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As both the state of the agent and environment have the potential to change at each time-

step, this two-tiered architecture therefore enables the agent to change its behaviour quickly;

this removes the need for planning ahead, as the agent can switch its behaviour as soon

as internal or external change is experienced. The agent architecture comprises two neural

network tiers, where the first is termed the deliberative network and the second the reactive

network ; the combination of these two networks allows agents to make decisions based on

their current state, and react immediately to the current state of the environment in line

with their current ‘decisions’ or goals2.

To keep in line with the design of agents in other studies using the River Crossing

family of environments, the studies presented in Chapters 4, 5 and 6 use ‘neuroevolution’

to evolve the weights of a two-tiered neural network architecture employed by the agents;

the agent design in the rest of this section is heavily inspired by the work of Robinson

et al. [178] and Borg et al. [37] in particular, which are studies using earlier instances of

the River Crossing family of testbeds. Neuroevolution is the process of evolving neural

networks using genetic or evolutionary algorithms; this is an alternative to other neural

network training techniques such as back-propagation, and is useful for training networks

in environments where there is a lack of examples for the network to train from [180, 98].

With neuroevolution, the networks ‘train’ or ‘learn’ through the parameters of the network

being evolved over time in accordance to some fitness function [202]; the parameters that

can be evolved may be purely the weights of the network which are represented as strings of

chromosomes [180, 98, 178, 78], or more complex approaches may evolve both the weights

and topologies of the networks [240, 200].

It must be noted that neuroevolution using this two-tiered neural network architecture

is just one way that agents can ‘learn’ to solve the task in the RCD testbed; reinforcement

learning, learning classifier systems, or even binary strings are just some examples of agent

representations that could potentially be explored in the future. Ghouri et al.3 [96] for ex-

ample present a minimal version of the River Crossing task environment, where the agent

representation is a pair of numbers that dictate how many moves the agent will take and in

which direction (right or left), rather than the neural network representation used here. Fur-

2Note that in other studies using River Crossing testbeds, the entire two-tiered architecture is termed
the Shunting Model, and the two aforementioned neural networks are the Decision Network and Shunting
Network respectively [178, 37]; the terminology for referring to each tier has been simplified in this thesis to
correspond to the behaviours that each layer facilitates (i.e. deliberative or reactive, respectively).

3See Footnote 4 in Chapter 2.
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thermore, Stanton and Channon [203] expand upon the two-tiered architecture used here,

with both a physical and pattern generator network to evolve 3D virtual creatures. Whilst

there is not one, single approach to agent design that can be used in the River Crossing fam-

ily of environments (including the RCD), the research questions that this thesis intends to

address are more concerned with how agents are able to achieve their goals despite varying

environmental factors, rather than focusing on engineering agents to solve this particular

problem. As such, this two-tiered neural network architecture is considered sufficient for

studying how agents may evolve in the RCD testbed when experiencing interference from

other agents. Employing this architecture will also enable the agents to express reactive

and deliberative behaviours [178] – a characteristic in which agents designed to operate in

most instances of the River Crossing family of testbeds exhibit [178, 37, 203] (the exception

to this being the RC- testbed [96], which is a minimal version of the River Crossing task

and thus agents have a minimal design to reflect this).

3.3.1 The Deliberative Network

The first tier in this neural network architecture, the deliberative network, generates high-

level sub-goals at each time-step based on the current inputs to the network; these inputs

correspond to the current state of the agent and the environment. This network is therefore

responsible for the decision-making processes of agents; depending on the inputs and the

weights of the network, the outputs indicate what the agent decides to do next in terms of

sub-goals – attraction to, neutral to, or repulsion from certain objects in the environment.

The weights of the network represent the genes or chromosomes of the agent, and dictate

the relationship between the state of the agent and environment, and the behaviours in

which the agent exhibits. The weights of this neural network are evolved over time with

neuroevolution; this process is described in more detail in Section 3.4.

This feed-forward neural network has an input layer with six neurons, a number of

hidden layers, and an output layer with three neurons; each neuron in each layer of neurons

in the network is connected to each of the neurons in the next layer. Figure 3.2 depicts the

deliberative network structure used in Chapter 4, where the number of hidden neurons is

inspired by the agent design in the original River Crossing task study [178]. The number

of hidden layers and hidden neurons are specified in each study. The weighted sum of the

incoming activation to the hidden neurons passes through a hyperbolic tangent activation
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function to produce the output. If the incoming signal to the neuron is: within the range

[0.35:0.65], the output is 0; less than 0.35, the output is -1; greater than 0.65, the output

is 1. Robinson et al. [178], Borg et al. [37] and Stanton and Channon [203] study other

instances in the River Crossing family of testbeds, instead using thresholds of -0.3 and 0.3;

however, initial experimentation with the River Crossing Dilemma testbed showed that

these thresholds inhibited the evolution of agents. If many objects in the environment were

‘attractive’ at one time, agents had difficulty in navigating towards their sub-goals at each

time-step, thus wandering about and being pulled in different directions. By narrowing the

range of the thresholds in the RCD compared to previous work, the intention is that agents

will have more clearly defined sub-goals at each time-step, depending on their current state

and the state of the environment.

The deliberative network’s inputs correspond to whether the agent is on Grass, a Re-

source, Water or a Stone, if it is currently carrying a Stone, and if a bridge has been built

partially in the environment (i.e. one Stone in the river out of two). The ‘partial bridge’

input informs agents anywhere in the environment that a Stone has been placed somewhere

in the river; this helps navigation efforts by indicating that some parts of the river are

‘shallower’ than others, and only require one more Stone to build a bridge. For each of

these inputs, the value is 1 if true, or 0 for false. The network then generates sub-goals

from these inputs, meaning that the agent can ‘deliberate’ about what objects it will head

towards in the environment based on its state.

The output values of the deliberative network correspond to the sub-goals of the agent,

i.e. the resulting behaviour and what the agent will do in the current time-step. The network

has three output neurons, each of which correspond to Resource, Stone and Water objects

in the environment. After the weighted sum of inputs to the output neurons passes through

the hyperbolic tangent function, each of the output neurons will either output a signal of

1, 0 or −1; these values indicate that the agent will be attracted to, neutral to, or repulsed

from these objects within the environment.

3.3.2 The Reactive Network

The second tier, termed the reactive network, generates a dynamic activity landscape at

each time-step; this activity landscape changes at each time-step depending on the sub-

goals generated by the deliberative network, and thus does not evolve like the deliberative
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Figure 3.2: The deliberative network is a feed-forward neural network that generates high-level sub-goals.
Inputs are 1 or 0, corresponding to the agent’s current state: Grass (G), Resource (R), Water (W), Stone
(S), Carrying Status (C), if a Bridge partially exists (B). Outputs are 1 for attraction, 0 for neutral or −1
for avoidance for each sub-goal: Resource (R), Stone (S), Water (W).

network. The reactive network is a topologically-organised lattice of neurons with the same

dimensions as the environment (in the case of the RCD, this is 19× 19), where each neuron

is connected to the surrounding eight neurons. Agents can therefore hill-climb towards the

goals generated in the previous tier by moving to the cell in its Moore neighbourhood (the

surrounding eight cells) with the highest activity at each time-step. Agents must make

one move per time-step and cannot remain stationary. Agents also cannot move into a cell

occupied by another agent. If more than one of the surrounding cells shares the highest

activation, one of these is randomly selected; agent movement therefore has an element of

stochasticity, meaning that agents can potentially take different paths when navigating the

same environment twice.

Another implementation detail is that an agent will pick up a Stone automatically if it

moves onto a cell with a Stone; an agent will also put a Stone in the river automatically

if the cell adjacent to it is Water, under the condition that it is carrying a Stone. This is

simplified from the process that Robinson et al. [178] employs for example, which uses an

additional output neuron in the deliberative network to determine whether the agent will

pick up or put down an object. The River Crossing Dilemma testbed however is designed

to explore the evolution and behaviour of colocated agents; the additional task of evolving

this behaviour of picking up or putting down objects does not contribute to the exploration

of the interference that agents experience, and has thus been simplified to focus the studies

presented in Chapters 4, 5 and 6.

The sub-goals generated by the deliberative network are used to generate the dynamic

activity landscapes in the reactive network. Activity propagates through the reactive neural

network using the shunting equation proposed by Yang and Meng [238, 237], which is
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characterised by a biologically-inspired equation [100]; this approach was originally used by

Robinson et al. [178] to enable agents to express both reactive and deliberative behaviours

in dynamic environments. The shunting equation (Equation 3.2) calculates the activity of

each neuron in the reactive network at each time-step based on its own activity and the

activity of the neurons surrounding it:

dxi
dt

= −Axi + Ii +

k∑
j=1

wij [xj ]
+ (3.2)

Alpha A is the passive decay rate, set as A = 0.2, which allows the activity of each

neuron to decay towards a value of 0; xi is the current neuron; wij is the weight of the

connection between neurons xi and xj , where xj is one of the surrounding cells in xi’s

Moore neighbourhood (indicated by k = 8, as each neuron is connected to the surrounding

eight neurons); [xj ]
+ is calculated by max(0, xj) – meaning that negative activity cannot

propagate through the network. The value of Iota I is dependent on the sub-goals from

the deliberative network, and is a large value. For each object in the environment that

corresponds to a sub-goal, if the value of the sub-goal is: 1, I = 15; −1, I = −15; and I = 0

otherwise. This creates large hills and valleys in the activity landscape, as inspired by the

design of the original RCT testbed [178]. As the reactive network has the same dimensions

as the physical environment, the cells in the reactive network which correspond to objects

that are deemed to be ‘attractive’ by the deliberative network are assigned large positive

values by this equation, thus creating ‘hills’; activity from these peaks then propagates

throughout the network, decaying as distance increases from the source of the activation.

Similarly, ‘repulsive’ objects are assigned large negative values to create valleys; activation

does not propagate from these, so they will always be avoided. An example of an activation

landscape that is generated by the reactive network, using Equation 3.2, is presented in

Figure 3.3. This figure shows how agents may ‘hill-climb’ towards their goals at each time-

step, by following a path of highest-activation until they reach their desired goal-object,

and avoiding objects which are deemed ‘repulsive’ by the deliberative network. Note that

Equation 3.2 is used exclusively in the reactive network, not the deliberative network.

3.4 Evolutionary Algorithm

Robinson et al. [178] show that agents are able to solve tasks in dynamic configurations of the
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Figure 3.3: The reactive network generates dynamic activity landscapes with Equation 3.2, based on the
current sub-goals generated by the deliberative network (Figure 3.2); here, the sub-goals are [−1, 1,−1],
meaning the agent is attracted to Stones, and avoids Resources and Water. The activity landscape maps to
the physical landscape (Figure 3.1), so agents can hill-climb towards their sub-goals whilst avoiding repulsive
objects, by traversing the activity landscape and moving to the adjacent cell with the highest value.

original RCT environment, by expressing both reactive and deliberative behaviours. The

agent architecture defined in Section 3.3 is used in the experimental studies in Chapters 4,

5 and 6, and is inspired by that of Robinson et al. [178]; as such, the agents in these studies

would be expected to also be capable of solving dynamic configurations of the River Crossing

family of environments – the RCD, in particular – as well.

The studies presented in Chapters 4, 5 and 6 evolve agents in the RCD testbed using a

Steady State Genetic Algorithm [208], inspired by Robinson et al. [178] and Borg et al. [37];

this means that the population evolves slowly, as one agent is replaced at each generation

with the offspring of two parents, rather than replacing large proportions of the population

at once. The following common parameters are used in each of the studies in the later

chapters. The algorithm evolves a population of 25 randomly initialised agents over a

number of generations. At each generation, three agents from the population are randomly

selected to compete in a tournament, where they are each given 500 time-steps to achieve

their goal in an RCD environment. The evaluation at each generation stops once all agents

in the environment reach one of the termination conditions: the agent reaches its maximum

amount of time-steps, achieves the goal, or dies by stepping into the river. If an agent

achieves its goal, or dies, it makes no further moves until the evaluation terminates.
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The worst-performing agent in the tournament at each generation is replaced by an

offspring created from the two winners. For each chromosome (layer of weights in the

deliberative neural network), this offspring has a probability of Pone = 0.95 to inherit

the chromosome from a random parent (winners of the tournament), otherwise single-point

crossover is used. Each connection weight w in the offspring’s resulting deliberative network

is then mutated by a random value from a Gaussian distribution with µ = w and σ = 0.01.

Using this algorithm, agents ‘learn’ on an evolutionary basis, as the genotypes of agents

in the population change over time through the recombination and mutation operators

defined previously; agents do not learn during their lifetime as their genotype remains

unchanged during each generation. However, as there is an element of stochasticity to

agent movement (as described in Section 3.3), one genotype can express multiple phenotypes

within a generation; that is, if an agent is evaluated on multiple RCD instances at each

generation, the behaviour expressed by an agent may not be the same in each – even

though the genotype is unchanged. In multi-agent environments, only the evolution and

goal-achievement of the agent that begins in the top-left corner are analysed; this makes

the results from single- and multi-agent environments comparable. The other agent still

evolves as described here, however its evolution is not analysed unless otherwise specified.

As the River Crossing Dilemma testbed, the agent design, and the evolutionary algo-

rithms used to evolve said agents in the following chapters are inspired by the original RCT

and its extensions, agents are thus evolved for 500,000 generations unless otherwise speci-

fied. This is inspired by the experimental setup of the original River Crossing task study

by Robinson et al. [178]; 80% of agents evolved to achieve their goal in the more complex

environments in approximately 100,000 generations on average, or roughly 450,000 in the

worst-case scenario (the simulation was terminated only after 80% of agents achieved their

goal). The RC+ task on the other hand, introduced by Borg et al. [37], evolved agents for

a maximum of 5,000,000 generations; all agents were able to achieve their goal by building

a bridge in a one cell wide river in approximately 500,000 generations on average, whereas

in the worst-case scenario the task was completed in around 2,000,000 generations. In both

studies, the average number of generations required for the majority of the population to

evolve successful solutions increases in line with the difficulty of the environment. In terms

of the RCD, 500,000 generations is considered a sufficient length of time for evolution to

find goal-achieving solutions, however it would be expected that only a subset of agents
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across all runs of an experiment would achieve their goal in this time. This is an adequate

length of evolution as the focus of the studies in this thesis is not to find ‘the best solution’,

or to design agents that are excellent at solving this one specific problem; instead, the focus

is on analysing and understanding how agents evolve under certain conditions, such that

this knowledge can be used in the future to understand and design technical systems that

operate in shared environments.

In the remainder of this thesis, the phrase ‘agent evolution’ is used to describe the

process that evolves a population of agents. When referencing an individual agent and

its evolutionary process, e.g. the evolution of ‘Agent A’, this in fact describes how the

population is evolved during evolution, since the population evolves rather than a single

agent. This is so that the evolution of two distinct populations of agents can be compared

in a more straightforward manner, such as the evolution of ‘Agent A’ and ‘Agent B’.

3.5 Implementing a Testbed to Explore Interference

The approaches listed in Section 2.4.1 are intended to facilitate the development of agent-

based systems of varying sizes, through outlining design principles or providing libraries for

the creation of custom simulation models. One of the primary aims of the experimental

studies in the later chapters of this thesis however, is to study the evolution and behaviour

of a small number of agents (i.e. one to study evolution alone, or two to study the effects of

interference) in detail, rather than the behaviour and interactions between large numbers

of agents. Whilst the latter is still important, it is beyond the scope of this thesis; there

is room however to extend the experimental studies to consider large numbers of agents in

the future, to observe the effects of interference on a large scale. To address the concerns

raised in Section 2.4.1, the experiments are conducted using bespoke testbed and agent

implementations – which are one of the contributions of this thesis; this facilitates fine-

grained control over the parameters and execution of the experiments, and additionally

allows for detailed observation of agent evolution. By designing and creating a bespoke

implementation for the experimental studies rather than adopting alternative agent toolkits

or design methodologies, any assumptions made by the developers that may potentially

affect the design, execution, or results of the simulations, as well as any time required to

become familiar with APIs in order to extend existing code, are avoided. The testbed
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and the agents created for the experimental studies in this thesis have been developed

from scratch using the Java programming language, which is object-oriented and platform-

independent. Java was also the programming language of choice for MASON, JADE, and

NetLogo for example, because the object-oriented nature of the language is suitable for

modelling social phenomena [137] – as is also the case here. This is another reason for

using Java to develop the RCD rather than using a predefined approach, framework or

toolkit, as these may have limitations or hidden assumptions. Not only this, but all aspects

of the testbed and agent design can consequently be controlled, and hence observed when

gathering results in greater detail than with any of the approaches discussed previously.

3.6 Analytical Design for Studying Agent Evolution

For each study presented in Chapters 4, 5 and 6, an in-depth analysis is conducted to

understand how evolution, goal-achievement, and volatility may be affected by an agent’s

capabilities or environment. The analytical methods used are described below. The statis-

tical analysis is conducted in each study using the R programming language [173], which is

powerful both for statistical analysis and creating visualisations of data. Details about the

packages and functions used to conduct this analysis can be found in Appendix A.

3.6.1 Volatility Metrics

Three metrics have been devised to analyse the evolutionary volatility that agents experi-

ence, in terms of the fitness of the highest-performing agent in the population over time.

Each metric captures different knowledge, and therefore complements the others. The value

for each metric is calculated by taking the best-in-population fitness of agents across all runs

of an experiment, to capture how much the fitness is prone to change during the course of

evolution. These metrics can thus be used to analyse whether a particular approach to

agent design, or the effects that evolving in a certain type of environment (such as if the

agent exists alone or with another), will cause agent fitness to fluctuate; the more times

an agent’s fitness fluctuates over time (i.e. higher volatility), the less the agent is able to

consistently perform in the environment. This may be because the agent moves between

being able to achieve its goals to being unable to achieve its goals, which is not ideal. In this

way, low evolutionary volatility would be preferred, as this indicates that agent behaviour –
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and consequently the fitness received – is more predictable during evolution. These three

metrics are described below.

Standard Deviation over Time (SDoT)

Historical volatility is a common metric used in financial modelling and volatility forecasting

that captures the dispersion of values over time, calculated most commonly by the sample

standard deviation over a defined time period [170]. This is useful to determine the expected

volatility in fitness over time over agents in all runs of an experiment, and as such the SDoT

is calculated in the same way: for each run of an experiment, the standard deviation is

calculated from the best-in-population fitness at each generation over the course of evolution.

Cumulative Absolute Change over Time (CACoT)

To quantify how an agent’s fitness changes over the course of evolution – and by how much

– the CACoT metric is introduced to capture the magnitude of the changes that the best-

in-population fitness of an agent endures over time. Here, the count is incremented by

the absolute change in fitness between generation gi−1 and gi. A high CACoT therefore

indicates that fitness fluctuates by large amounts; often, this will indicate that an agent

tends to alternate between receiving high fitnesses when achieving its goal, and low fitnesses

where it either cannot achieve its goal or fails the task (in terms of the RCD, this would be

by the agent ‘drowning’ by stepping into Water).

Count of Change over Time (CCoT)

Complementing the CACoT metric, the number of times that the best-in-population fitness

over evolution can be captured with the CCoT metric; here, the metric increments by one

only if the fitness in generation gi is not equal to gi−1. The CCoT metric therefore captures

purely the number of times the fitness of an agent fluctuates during evolution, rather than

the magnitude of those changes. A high CCoT indicates that the agent experiences many

fluctuations in fitness during evolution, implying that the agent cannot maintain its fitness.

3.6.2 Statistical Analysis

In addition to the volatility metrics described above, statistical analysis is conducted for

the results of each experiment to understand the evolution of agents in each experiment
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further. This analysis is conducted for the fitness agents receive during evolution, as well

as the volatility agents experience, using the metrics defined in the previous section.

Statistical Moments

In statistics, the shape of a distribution of a variable can be described using four moments:

mean, variance, skewness, and kurtosis [87]. These moments are calculated across all runs

of an experiment using the R package moments [123], to quantify the distribution of the

values of either the fitnesses achieved by agents in each run, or the volatility captured by

each of the three metrics defined in the previous section. The moments of the distributions

of two experiments (for example, when an agent evolves alone compared to when it evolves

in a shared environment) can thus be used to compare the results of each experiment, and

to indicate whether one approach may be preferable over another.

The mean captures the expected value of a distribution, whereas the variance describes

the dispersion of values around the mean. Skewness and kurtosis are used to describe the

shape of the distribution further, giving an indication of how much the distribution varies

from the normal distribution [87].

Positive skewness (or right-skew) indicates that the peak of the distribution is towards

the lower end of the scale, with a longer tail towards the higher end of the scale. Negative

skewness (or left-skew) indicates the opposite, where the majority of values are towards the

higher end of the scale, with a tail extending towards the lower end of the scale.

Kurtosis however is a measure of the tailedness of a distribution, and therefore how likely

outliers are. A normal distribution has a kurtosis of 3 [65]; the kurtosis of other distribu-

tions is described in comparison to the kurtosis of a normal distribution. A ‘mesokurtic’

distribution has a kurtosis of 3, so the kurtosis is the same as that of a normal distribu-

tion. ‘Leptokurtic’ distributions have positive kurtosis, meaning that the value of kurtosis

is greater than 3. ‘Platykurtic’ distributions have negative kurtosis, as the distribution

has lower kurtosis than a normal distribution, and thus kurtosis is less than 3. Positive

kurtosis indicates that the distribution would have more outliers and extreme values than

distributions with negative kurtosis.

In addition to these four statistical moments, the median of each distribution is captured

as this is useful to compare the central values of the distributions in conjunction with the

mean. Further, observing both the mean and median can often indicate that a distribution
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is skewed; a higher mean than median can indicate positive skewness, whilst the opposite

indicates negative skewness.

Statistical Tests

Whilst the statistical moments described in the previous section can be used to describe the

distributions of the fitness and volatility metrics in each experiment, statistical tests can be

used in addition in order to make concrete statements when comparing one distribution to

another. The statistical tests outlined below are conducted using the appropriate functions

supplied by the stats package, which is part of the core R distribution [173].

Many statistical tests exist which compare different characteristics of the distribution,

or make different assumptions about the distribution. To determine which statistical test to

use, a Shapiro-Wilk test for normality is first conducted for each experiment; this is powerful

for a wide range of distributions [241], including those that are symmetric or asymmetric, or

with high or low kurtosis. For this reason, this test is deemed suitable over other normality

and goodness-of-fit tests such as the Cramr-von-Mises and chi-squared tests, as these are

less powerful for such a diverse range of distributions. For the Shapiro-Wilk normality

test, the null hypothesis is that the data is normally distributed; if the result of the test is

p < 0.05, there is evidence to reject the null hypothesis that the distribution is normal.

After considering whether the distribution is normal or non-normal, an appropriate

statistical test can be chosen. In Chapters 4, 5 and 6, Wilcoxon Signed Rank statistical tests

are conducted, as these non-parametric tests do not assume that the data is normal [232, 87].

This test compares the medians of two distributions, where the data is ‘paired’; this means

that the distributions of related samples can be compared. Specifically in this thesis, agents

evolve with a ‘standard’ evolutionary approach, or with a sociologically- or biologically-

inspired approach; these different approaches can thus be compared directly, as the same

populations of agents evolve with different approaches. For each experiment, one two-tailed

and two one-tailed Wilcoxon Signed Rank tests are conducted; the null hypotheses for these

tests are that the distribution medians are equal, and that there is no directional difference

in the distribution medians respectively. These null hypotheses can be rejected if the p-

value obtained from the test is below 0.05, which indicates that the result is statistically

significant. If the data were found to be normal when conducting a Shapiro-Wilk test,

a parametric alternative such as the Student’s t-test would instead be considered, which
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compares the mean of two distributions.

Effect Size Estimates

Statistical tests can be used to ascertain whether two approaches are distinct from one

another, but these tests do not shed light on how different the approaches are to one another.

Effect size estimates can thus be used in addition to both the statistical moments and tests

described above, in order to quantify the relationship between two variables, and therefore

the magnitude of the effect between the two approaches. The correlation coefficient r [214]

can be used to estimate such a magnitude between two variables; this effect size r can be

estimated using the following formula, as defined by Rosenthal [181]:

r =
Z√
N

(3.3)

where Z is the z-score (also known as the standard score, or z statistic), and N is ‘the

number of subjects or other sampling units’ [181] (for example, if an experiment is repeated

100 times, then N = 100). This particular method for estimating the effect size is chosen

because it is suitable to use in conjunction with the non-parametric Wilcoxon Signed Rank

statistical test. The wilcoxonZ function provided by the R package rcompanion [142] is

used to calculate the z-score for a Wilcoxon Signed Rank statistical test, which can then be

used in Equation 3.3 to calculate the effect size. Other effect size estimates such as Cohen’s

d [58] exist, however Rosenthal [181] notes that r is more versatile in its usage.

Cohen [58] suggested three different categories that can be used to describe the strength

of the relationship between two variables, captured by the effect size estimate r (Equa-

tion 3.3): r ≥ 0.1 is small, r ≥ 0.3 is medium, and r ≥ 0.5 is large. The effect size r ranges

between −1.0 and 1.0, where −r indicates a negative relationship between the two variables,

and +r indicates a positive relationship. For example, if the effect that agent design B has

on fitness is compared to the ‘standard’ agent design A, an effect size of r = −0.5 indi-

cates that agent design B has a large effect on agent fitness; as r is negative, agent design

B increases fitness. The effect size estimates between different experiments can thus be

compared, as the strength of the relationship between the two variables in each experiment

can be contrasted when the agents in the studies are subjected to different environmental

conditions.
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3.7 Conclusion

The River Crossing Dilemma (RCD) testbed presented in this chapter has been designed

to address the shortcomings of the River Crossing family of environments, in that the RCD

contributes the ability to explore how multiple agents evolve to achieve their individual

goals. By incorporating a social dilemma into the RCD, the actions that agents take within

the environment can have an impact on the other agents, as the state of the environment

changes. Consequently, the effect that interference can have on agents can be studied in close

detail, and the evolutionary volatility that agents experience as a result of this interference

can also be quantified.

The contributions of this chapter are:

• A gamified testbed – the River Crossing Dilemma – specifically designed to observe

how interference affects agent evolution and goal-achievement, where cooperation and

exploitation can emerge but cannot be intended.

• An in-depth description of the testbed, agent and evolutionary algorithm design.

• A comprehensive approach to analysing the results obtained from the experiments

conducted in the River Crossing Dilemma testbed.

• Three metrics that measure the evolutionary volatility that agents experience, based

on how frequently or how much an agent’s fitness fluctuates during evolution.

A core characteristic of the River Crossing family of environments – and indeed the

River Crossing Dilemma – is that the testbeds are extensible, and may be made arbitrarily

complex. As a result, the RCD is versatile in the sense that agents can be observed in both

single- and multi-agent environments, such that the effect of evolving in either a shared or

individual environment can be contrasted. As agents have no capacity to perceive or learn

of one another, the RCD simulates the conditions in which components of sociotechnical

systems in the real-world experience when sharing environments with potentially unknown

other systems. Experimentation within the RCD testbed should aid understanding of the

implications of interference, and the consequences that it can have on goal-achievement

and performance. Consequently, how systems, and the artificial agents that simulate them,

may combat this interference can be investigated; the experimental studies presented in
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Chapters 4, 5 and 6 therefore use the RCD testbed to observe the impact that sharing an

environment can have on individuals, as well as exploring how nature-inspired approaches

to agent design may affect agent fitness or performance, and the resulting evolutionary

volatility experienced.
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Chapter 4

Traditional Action and

Evolutionary Volatility

The work presented in this chapter has been adapted from the following publications:

[15] C. M. Barnes, A. Ekárt, and P. R. Lewis. Social Action in Socially Situated Agents. In

Proceedings of the IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems

(SASO), pages 97–106. IEEE, 2019. doi: https://doi.org/10.1109/SASO.2019.00021.

[18] C. M. Barnes, A. Ekárt, and P. R. Lewis. Beyond Goal-Rationality: Traditional Action Can

Reduce Volatility in Socially Situated Agents. Future Generation Computer Systems, 113:579–596,

2020. doi: https://doi.org/10.1016/j.future.2020.07.033.

4.1 Motivation

As society delegates more decisions to intelligent machines, and interactions between such

machines that exist in shared environments becomes more prevalent, capturing elements of

evolved human social behaviour will be increasingly important. Bellman et al. [28] state

that systems require social awareness to intentionally cooperate, coordinate, or act socially,

and perceive and reason about others; however, social action and social self-awareness are

two essential aspects that so far remain largely unexplored. Human societies have no global

knowledge or central point of control; how, then, do humans interact effectively? Or-

ganic Computing approaches this by observing and controlling a group of interacting, self-

organising entities [155]; in this chapter however, a microsociological approach is explored

as a step towards socially intelligent systems capable of social awareness at the individual
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level. Humans have evolved the ability to achieve goals in complex social systems by con-

sidering others and acting socially; inspired by this, the experimental study conducted in

this chapter operationalises social action theory [227] in socially situated agents that pursue

individual goals in shared environments. To concentrate the scope of this study, two types

of social action are operationalised: ‘traditional action’, which is acting similarly to the

rest of the population; and ‘goal-rational action’, which is seen in current systems where

the most effective action to achieve a goal is taken. Complementing this, ‘random action’

is introduced, which adds randomness into the behaviour of agents by way of Random

Immigrants [57]. The aim here is to distinguish the differences between goal-rational and

traditional action, and additionally investigate whether these approaches are quantitatively

different to introducing Random Immigrants into the population [57] – a well-established

mechanism widely used in dynamic optimisation problems and in dynamic environments to

add diversity to populations in genetic algorithms [190, 236, 244, 130, 93]. The need to act

in a socially-sensitive way challenges the assumption that goal-rationality is necessary for

agents to achieve goals in shared environments with less than complete knowledge.

The experiments are conducted using the River Crossing Dilemma testbed (Chapter 3),

which was designed to explore arbitrarily complex problems in shared environments. Firstly,

the effect that interference can have on agents that are able to achieve individual goals alone

is explored, to assess how learnt knowledge is maintained. These results are then generalised

over many experiments for agents that begin evolution with no prior knowledge. Conclusions

are finally drawn to compare the volatility of evolution with each type of social action, and

whether goal-achieving behaviour can be learnt and maintained despite interference.

The remainder of this chapter is organised as follows: Section 4.2 explores the theory

of social action, and contextualises this in terms of computational systems; the design of

the experimental study is then presented in Section 4.3, which details how social action

theory is operationalised in agents that evolve in the RCD; the results of said study are

presented in Section 4.4, exploring how coexistence can affect evolution, and the impact

that social action can have on these socially situated agents; analysis into how agents in the

study evolve is conducted in Section 4.5, which also delves into whether a trade-off between

fitness and volatility exists between the various types of social action employed in the

study; finally, Section 4.7 concludes the chapter by discussing the findings and summarises

the contributions.
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4.2 Acting Socially in Shared Environments

Following on from the discussion in Chapter 2, interference means that actions can have

unintended or unanticipated consequences on both the actor and others in shared, com-

plex and dynamic environments [147], making shared and individual goals more difficult to

achieve. Humans overcome these issues by acting socially and not purely individualistically

in social environments. Many computer science researchers have therefore been inspired by

theories of psychology, sociology and cognitive science, such as in organic computing [155],

self-awareness [133, 125], and social dilemmas, social learning, altruism and agent soci-

eties [109, 116, 226, 164]. It thus seems logical to draw parallels between the exploration of

human social phenomena in sociology and socially situated agents; taking inspiration from

how humans act in society may provide a similar benefit to artificial agents that operate in

shared, and thus dynamic, environments.

If an agent cannot perceive or learn about potentially unknown others, or the effect that

their actions can have on itself, interference can affect how goals are achieved in ways that

cannot be understood; without a mechanism to overcome interference and unanticipated

events beyond their control, agents will be unable to make appropriate decisions at runtime

in accordance with their goals. It is therefore necessary, in broader terms, to move towards

socially situated technical systems with the capacity for social awareness [28], by equipping

them first with the ability to maintain goal-achieving behaviour despite unanticipated in-

terference from other systems. As humans have evolved to both exist and thrive in diverse

environments shared with many others through acting socially, this study operationalises

the theory of social action, proposed by Weber [227], to understand how agents may also

benefit by acting socially when coexisting with others. As highlighted by Bellman et al.

[28] and Castelfranchi [51], designing systems that are capable of acting in a socially intelli-

gent manner is becoming increasingly necessary as modern computer systems are evermore

situated in shared environments. Operationalising social action theory is therefore one way

to explore how artificial systems may operate in a human- or socially-inspired manner, in

order to mitigate the effects of interference from others. Endowing systems with the ability

to act in a more socially-oriented way, regardless of whether they exist in isolation or not,

may help them to perform consistently without requiring extensive knowledge of others.
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4.2.1 Defining Situatedness

To explore how artificial agents may behave in shared environments, one must first adopt

and define relevant terminology to describe the concepts that arise as a result of coexistence.

Rao et al. [175] define ‘situated agents’ as those that are resource-bound, operate within and

continuously interact with dynamic environments, and balance reactivity with deliberation.

Lindblom and Ziemke [136] use the term ‘social situatedness’ to refer to the concept that the

behavioural and cognitive processes of agents are affected by both the social and cultural

aspects of the environment in which they are situated; further, an agent that is ‘situated’

is said to be coupled with its environment, in that the agent can affect the environment in

some way and vice versa. This is influenced by the theories of Vygotsky [224], such that the

social aspects of environments that agents are situated in affect the individual intelligence of

the agents. Leading on from this, Dautenhahn et al. [63] describe ‘socially situated agents’

to be those that not only gather information from their physical environment, but from the

social component of it as well.

The intention behind the study presented in this chapter is to investigate the impact

that evolving in a shared environment, as opposed to an environment that is inhabited by a

single agent, has on the ability to evolve, and how agents are able to pursue individual goals.

As agents may potentially share an environment with another, the term socially situated is

adopted to describe said agents that evolve and coexist with another, unknown agent within

the environment. Due to their operation in a dynamic and shared environment, an agent’s

behaviour can interfere [51] with the actions and goals of others, where the knowledge

acquired is influenced by the physical and social environment – whether the agents are

aware of it or not. If an agent cannot perceive the cause of environmental changes to be

the result of the actions of another agent, then the changes will be perceived as uncertainty

arising from the environment itself; agents in this situation will still be ‘socially situated’, as

the way they evolve will be influenced by the consequences of the actions of others regardless

of whether they are aware of the existence of others.

4.2.2 Defining Social Action

By establishing the concept of ‘socially situated agents’ and understanding that coexisting

agents may interfere with one another, it becomes easier to see similarities between how
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artificial agents may evolve in shared environments and how humans have evolved to behave

in society. Weber [227] theorised that humans are capable of social action, which are actions

oriented towards, and that consider the behaviour of, others (this is described in more detail

in Section 4.2.3); these actions hold a ‘subjectively understandable’ meaning. ‘Meaning’

in this context refers to the motivations of the actor, such that the motivations can be

understood from the actor’s perspective: why an actor acts in a particular way, given its

own perspective and circumstances. By extension, artificial agents could also be capable of

social action following this definition, if sharing an environment with another agent.

Weber [227] goes further to define what does and does not constitute a ‘social action’:

actions with inanimate objects do not involve other actors, and are thus not social; actions

that have no meaning, i.e. those without motivation or deliberation, are not actions, but

merely behaviours. To further distinguish between these concepts, Sztompka [209] proposes

a hierarchy of social action, a subset of which is outlined below:

• Behaviour is automatic, reactive and reflexive.

• Action is intentional and purposive, with meaning to the actor.

• Social Behaviour holds no meaning to the actor. It is reactive, therefore no delibera-

tion occurs. A behaviour becomes social when directed or oriented towards another.

• Social Action holds meaning to the actor, and is intentional. A rational decision is

made to act in a certain way, taking into account different factors such as the actor’s

emotional state and the current situation. An action becomes social when directed

or oriented towards another.

• Social Interaction requires a response to a social action from another actor.

In this chapter, the experimental study defined in Section 4.3 considers how agents that

have no capacity to perceive or learn of other agents in their environment may evolve to pur-

sue individual goals, using the River Crossing Dilemma as a testbed. Using this terminology

as outlined by Sztompka [209], these agents would not be capable of social interaction, as

it is assumed that a response from one actor to another would require awareness of the

other – as well as the action itself. The distinction made between behaviours and actions is

the intent ; behaviours are reactive whereas actions are deliberative or ‘hold meaning’. The

C. M. Barnes, PhD Thesis, Aston University 2021 74



CHAPTER 4. TRADITIONAL ACTION AND VOLATILITY

other way these concepts are categorised in this hierarchy is with orientation: an action or

behaviour becomes ‘social’ if it is directed, or oriented towards another. The agents in this

chapter would therefore be capable of social action if an action is intended, and is oriented

towards another; Section 4.3 elaborates on how social action is specifically operationalised.

4.2.3 Ideal Types of Social Action

By the definitions proposed by Sztompka [209], a ‘social action’ is one that is intended or

deliberate, and is oriented towards another. Preceding this, Weber [227] outlined his theory

of social action, which defines four ‘idealtypus’ of social action; these ideal types describe the

motivations behind social actions in a simplified model, to aid analysis of complex human

actions. The word ‘ideal’ in this context is not synonymous with ‘perfection’, but an ‘idea’,

in order to conceptualise the different types of social action [227]. An ‘ideal type’ does not

exist in isolation in practice, and is a simplification of a real-world concept so it can be

theorised about. Weber’s four ideal types of social action are described below.

Instrumental-Rational Actions are chosen for their effectiveness in achieving a goal,

and are justifiable from the perspective of the actor; consequently, these are often termed

goal-rational actions. Other goals, the range of possible actions, and the consequences of

performing the action are considered to decide the most appropriate action; the meaning is

tied to the end result, as the action is chosen with the goal in mind. Most artificial agents,

especially in machine learning, are instrumental-rational by this definition.

Value-Rational Actions are determined by the values or beliefs held by an actor,

such that performing the action itself carries meaning instead of the outcome. Actions are

rationalised in terms of ethical or religious beliefs, or to any cause valued by the actor.

Rationality is a justifiable, conscious decision of how to act, and is understandable when

considering the motivations of the actor; actions may seem irrational to outside observers

if the motivation is not immediately clear. Pure value-rational action is where the value

outweighs the consequence of the action, such as a soldier sacrificing themselves for another.

Affective Actions are reactive and impulsive actions in response to an emotional state

or exceptional stimulus. Affective action appears inherently irrational, as the consequences

of the action may not be considered and thus may be difficult to justify. An example is

striking someone out of rage.
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Traditional Actions are habitual, or those in reference to a cultural custom; it can

therefore be seen as acting in the same way as others. These can be described as mindless,

automatic, or ritualistic actions; there is no obligation to act in this way, rather the ratio-

nalisation for performing the action is that ‘it has always been done this way’. An example

is using specific eating utensils; deliberation reduces over time as the action becomes second

nature. Traditional actions therefore might not necessarily be optimal or most appropriate

in terms of achieving a goal, but can be adequate means to satisfy the end.

4.2.4 Social Action in Computational Systems

Whilst not explicitly used to define current approaches, the theory of social action [227] can

be applied to computational systems with actions that are determined by error-function-

based learning or objective-function-based search for example; these would be considered

‘goal-rational’, as they are engineered to maximise their ability to achieve a particular

goal. However, as this chapter will demonstrate through an experimental study, there are

unintended consequences associated with the actions of goal-rational agents that coexist in

a shared world; this can manifest as volatility in evolution and a loss of ability to achieve

one’s own goals. Human evolution has favoured social behaviour to deal with issues arising

from living in the presence of others [192]; without this, humans struggle to adapt or survive

[62]. Weber’s social action theory [227] has thus been adopted in this chapter to describe

how agents evolve in shared environments; consequently, this goal-rationality seen in current

systems can be compared to other, less commonly observed types of social action, to explore

how computational systems may begin to overcome these issues in a human-inspired way.

Social action can be operationalised in different ways. Value-rational action would

become especially critical when systems make decisions on behalf of humans, and would

differ between systems depending on the values of the environment it is situated in; this poses

the question of how one can trust that the decisions made align with human values. Affective

action could be taken when one does not know how to proceed in an unknown situation;

as such, all actions may appear to be irrational unless abstracting previous knowledge to

justify the decision of performing the action. Traditional action could simply be copying or

imitating what most others are doing, forming traditions over time.

This chapter explores the notion of traditional social action and its effect on goal-

achievement in socially situated agents, inspired by Weber [227]. It is operationalised as an
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action derived from a representative state of the population at specific points in time. To

align with the definition of ‘social action’ above, a social action here is oriented towards the

others in the population in terms of the evolutionary process, and not the other agents that

may exist within the environment. As agents in this study cannot perceive the presence,

actions or intentions of other agents, traditional action intentionally oriented towards others

in the environment would be a topic of future explanation in agents that are able to perceive

and reason about others. This chapter provides an in-depth analysis of how goal-rational

and traditional action can affect agent evolution; value-rational and affective action are thus

beyond the scope of this chapter. However, Bellman et al. [28] note that capturing human

values in computational systems without degrading the value itself is a challenge that needs

to be addressed to design socially aware systems, making the concept of value-rational

action both an exciting and important area to study outside the scope of this thesis.

In addition to traditional and goal-rational action, ‘random social action’ is also intro-

duced, which adds Random Immigrants to the population [57]; adding Random Immigrants

is an established approach to increase population diversity in evolutionary algorithms. To

this end, a comparison can be made between how diversity affects agent evolution, and

whether social action within the evolutionary process can mitigate the effect of interference

without an explicit awareness of what is causing it (i.e. other agents in the environment),

as a step towards socially aware agents.

4.3 Experimental Study

The experimental study in this chapter is designed to explore how agents evolve in envi-

ronments either on their own, or shared with another, unknown agent. This is to ascertain

the extent to which interference from the actions of other agents affects how agents evolve,

and the resulting evolutionary volatility experienced by agents. Agents are evolved using

the evolutionary algorithm detailed in Section 3.4 in the River Crossing Dilemma (RCD)

testbed as described in Chapter 3. To challenge the goal-rationality that is seen in most

current systems, traditional action is operationalised to observe whether social action has

any benefit on agent evolution or volatility. Further, random action is used to compare the

two types of social action – goal-rational, and traditional action – to an established method

to increase diversity in evolutionary algorithms.
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4.3.1 Agent Design

The agents in this study are designed using the two-tiered neural network architecture

described in Section 3.3. Specifically for this study, the deliberative network has one hidden

layer of four neurons that connects the six-neuron input layer and the three-neuron output

layer; this can be seen in Figure 3.2. All other details are as previously specified.

4.3.2 Operationalising Social Action in the Evolutionary Algorithm

The notion of social action is operationalised within the evolutionary algorithm, where a

social action is oriented towards others in the population in terms of evolution, rather than

other agents that may exist in the environment. Specifically, the offspring produced at each

generation is dependent on the type of action used.

In this sense, the evolutionary algorithm defined in Section 3.4 is goal-rational ; by creat-

ing an offspring from the winners of a tournament, the offspring is likely to contain genetic

material that enables it to achieve a high fitness like its parents, thus maximising the algo-

rithm’s potential to evolve goal-achieving individuals. This description of ‘goal-rationality’

can indeed be extended to evolutionary algorithms in the general sense: they evolve popula-

tions of individuals towards better areas of the search space over time, using recombination,

mutation and selection operators, where higher-fitness individuals are usually given more

opportunity to reproduce than lower-fitness individuals [12].

To ascertain whether other types of social action may be more beneficial to agents

that experience interference, traditional action is further operationalised as follows; at each

generation, there is a 90% chance for the worst-performer of each tournament to be replaced

by the current goal-rational offspring of the best two parents (as outlined in Section 3.4),

and a 10% chance for it to be replaced with an offspring that is a representative state of the

population. The genetic material for this traditional offspring is captured by calculating

the median for each weight in the deliberative network across all agents in the population.

Since the agents use a two-tiered neural network architecture to make decisions about how

to move in the RCD environment, two agents each with different weights in their deliberative

network may act in the same way; in other words, many genotypes can produce the same or

similar phenotypes. Whilst there are many potential ways to operationalise tradition, this

particular method was chosen as a simple means of establishing traditions of phenotypic
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behaviour across multiple genotypes, that can potentially change during evolution. This

‘traditional action’ is thus a blend of both traditional and goal-rational action.

Random action, which is introduced to compare both traditional and goal-rational ac-

tion to an established method of increasing population diversity (Section 4.2.4), is opera-

tionalised similarly to traditional action. At each generation, there is a 10% chance for the

worst-performer of the tournament to be replaced with an agent with a randomly-initialised

set of weights, and a 90% chance for it to be replaced with the standard goal-rational off-

spring as defined in Section 3.4. This small chance of replacing the worst agent with a

random solution would increase population diversity, where this random solution is for-

mally known in the literature as a ‘random immigrant’ [57]; this would allow the algorithm

to escape local optima, and to traverse unexplored regions of the search space. This ‘random

action’ is a blend of both random and goal-rational action.

Preliminary investigation of varying replacement probabilities showed that little effect

or benefit was seen with a replacement probability lower than 10%; forming and maintaining

traditions with traditional action is more difficult with lower replacement probabilities, as

solutions have little time to influence the population. Further, higher probabilities such

as 20% or 30% showed that the population became saturated and diversity was reduced,

meaning that it was increasingly difficult for evolution to explore the fitness landscape.

A 10% replacement probability was also deemed suitable because in the case of random

action, higher probabilities of replacement start to resemble random search, rather than

evolutionary search.

4.3.3 Experimental Design

Agents are evolved using the Steady State Genetic Algorithm specified in Section 3.4, for

either 500,000 generations when alone, or 1,500,000 generations when sharing an environ-

ment. As outlined in Section 3.4, the average number of generations it takes for evolution

to find goal-achieving solutions in other River Crossing studies [178, 37] increases with the

difficulty of the environment. As it is hypothesised that evolving in a shared environment

would be more difficult than when alone because of interference, the length of evolution is

thus increased. Further, the effects of interference can be observed over a longer period of

time as a consequence, which will shed light on how agents evolve when their behaviour

and evolution is influenced by the actions of others in which they evolve alongside. Where
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agents are evolved in a shared environment, two separate populations (one for each agent

in the shared environment) are evolved alongside one another.

The study presented in this chapter is split into two parts: firstly, individual agents are

observed in the RCD to understand how interference may affect evolution in detail; secondly,

a broader approach is taken to understand how interference affects agents in general, by

analysing the way many agents evolve, and how the type of social action implemented can

affect evolution. A summary of the experiments is presented in Table 4.1.

Part One: Exploring the Effect of Interference

The first set of experiments, presented in Section 4.4.1, explore whether ten randomly-

initialised agents are able to achieve individual goals with goal-rational action; these evolved

alone for 500,000 generations.

The effect of interference is then explored in a further two sets of experiments, which

observe whether agents are able to continue to achieve goals either with or without con-

tinued evolution in a shared environment. Firstly in Section 4.4.2, the ten evolved agents

from the first set of experiments are randomly arranged into ten pairs to observe the ef-

fects of interference in a shared environment; these agents initially evolve alone for 500,000

generations (Section 4.4.1), and then continue to act in a shared environment for a further

500,000 without further evolution. As agent movement is stochastic, these agents have the

potential to act differently in each generation despite their genotype remaining the same; it

would therefore be expected that agent fitness over these 500,000 generations would not be

static, but would in fact often fluctuate since agents may act differently in each generation.

Secondly, Section 4.4.3 then arranges the same ten agents from the first set of experiments

into 30 random pairs; these pairs are evolved together in shared environments for 1,500,000

generations after their initial period of evolving alone, to observe whether goal-achieving

behaviour can be maintained despite interference. These experiments are thus labelled

‘continued evolution’.

Section 4.4.5 then compares goal-rational action (Section 4.4.3) with the introduction

of traditional action in the same 30 pairs of agents; this is to ascertain whether traditional

action may help to preserve goal-achieving behaviour when agents that are able to achieve

their goals when alone experience interference for the first time. These agents are evolved

for 1,500,000 generations after their initial period of evolving alone.
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Section Action Type Evolution Type Agents Generations Runs

Part 1

4.4.1 Goal-Rational Evolving Alone 1 500,000 10
4.4.2 Goal-Rational No Evolution 2 500,000 10
4.4.3 Goal-Rational Continued Evolution 2 1,500,000 30
4.4.5 Goal-Rational & Traditional Continued Evolution 2 1,500,000 30

Part 2

4.5.1 Goal-Rational Evolving Alone 1 (1G) 500,000 100
4.5.1 Goal-Rational Evolving Together 2 (2G) 1,500,000 100
4.5.1 Goal-Rational & Traditional Evolving Alone 1 (1GT) 500,000 100
4.5.1 Goal-Rational & Traditional Evolving Together 2 (2GT) 1,500,000 100
4.5.2 Goal-Rational & Random Evolving Alone 1 (1GR) 500,000 100
4.5.2 Goal-Rational & Random Evolving Together 2 (2GR) 1,500,000 100

Table 4.1: Experiment breakdown, outlining the section number the experiments are presented in, the type
of action used, the type of evolution, the number of agents in the environment, the number of generations,
and the number of times the experiment is repeated.

Part Two: Exploring Social Action

The second part of the study is a more coarse-grained investigation of how agents evolve with

social action, and how interference affects agent evolution in general; this is compared to

the more fine-grained approach in the first part of the study, which looks at how individuals

evolve, rather than the general characteristics that arise in the evolution of many agents.

The effect that traditional action has on agent evolution is explored on a broader scale

in Section 4.5.1; 100 goal-rational agents, initialised with random weights, are evolved with

and without traditional action in both individual and social environments. To ensure the

results in shared environments are not biased against a particular agent, agents are assigned

a randomly-generated partner. The agents are evolved for 500,000 generations if they are

alone, and 1,500,000 generations if socially situated.

Section 4.5.2 finally ascertains whether traditional action is quantitatively different to

the introduction of Random Immigrants [57]. The same 100 agents as in the previous

set of experiments are evolved with random action instead, in both individual and social

environments. Finally, an analysis is conducted to ascertain whether a trade-off between

fitness and volatility exists for the three types of social action.

4.4 Results

4.4.1 Evolving Alone with Goal-Rationality

Agents do not experience interference when they are in an environment alone. As such, they

can achieve individual goals with independent asocial learning with goal-rational action.
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Figure 4.1: Agent F can achieve its goals when alone in an environment; it initially learns to collect one
Resource to get a fitness of 0.5, then to build a bridge to achieve its goal around generation 50,000, giving
it a fitness of 0.7.

Figure 4.1 depicts the fitness of a single agent during evolution; this agent evolves goal-

achieving behaviour at around generation 50,000, which is then maintained throughout the

rest of evolution. This agent has thus evolved to build a bridge in the river with two Stones,

which enables it to cross the river and fully achieve its goal. Using Equation 3.1, the best-

in-population fitness of 0.5 at the beginning of evolution indicates that the agent retrieves

one Resource from its own side of the river, and does not endure any cost from placing

Stones in the river. Once goal-achieving behaviour is evolved, the fitness increases to 0.7,

which indicates that agents retrieve both Resources in the environment, giving a fitness of

(2× 0.5) = 1.0, while the cost of building the bridge is deducted.

Following this, the evolution of ten goal-achieving agents is explored, where the average

population fitness of these ten agents is presented in Figure 4.2. Whilst not impossible

to achieve, this task initially appears difficult to solve simply because the fitness function

does not ‘lead’ agents towards their goals with incremental rewards; agents encounter a

very large, neutral network landscape during evolution as a result. In each experiment,

goal-achieving behaviours were maintained once learnt, and in all ten agents, the goal was

achieved and maintained by generation 50,000; this can be seen by the increase in mean

fitness in Figure 4.2, which rises and then is maintained at this point during evolution.

Random mutations during the breeding process periodically create agents with lower fit-

nesses than the best agent in the population. These lower-fitness offspring may fall in the

river for example, thus reducing the fitness average; however, these solutions are replaced
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Figure 4.2: The mean population fitness of ten agents evolving alone. All ten agents that evolved alone
sustained the behaviours necessary to achieve their goal by generation 50,000.

quickly, leaving the beneficial behaviours to remain. These ten, individually evolved agents

are henceforth labelled Agents A through J. These experiments demonstrate that agents

are able to evolve and maintain goal-achieving behaviour when they evolve alone with goal-

rational action; these results can therefore be compared to agents that evolve in shared

environments, to observe the effect of interference on evolution.

4.4.2 Coexistence without Continued Evolution

The ten agents in the previous section are then arranged into pairs, to observe how goal-

rational action affects agents in shared environments both without (Section 4.4.2) and with

(Section 4.4.3) continued evolution. Table 3.1 shows common fitnesses and their associated

behaviours: cooperation (0.9), exploitation (1.0), and achieving the goal individually (0.7).

In this set of experiments, agents that evolved for 500,000 generations alone in the pre-

vious section are then placed into shared environments without further evolution; simply,

the genetic code of each agent remains unchanged, such that the effect of interference can

be explored in agents that have already evolved the ability to achieve their goals. Three

emergent dynamics are observed in these non-evolutionary experiments: one agent exploits

the other for a higher payoff (Figure 4.3a); both agents co-exist and achieve their goals

similarly to when they are alone (Figure 4.3b); or one or both agents cannot achieve their

goals (Figure 4.3c). In the latter case, the interference experienced, arising from the actions

of the other agent in the environment, may cause agents to continue putting more Stones

in the river which accrues a larger cost; it may even alarmingly make them walk into the
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Figure 4.3: The moving average fitness of Agent B and Agents (a) H, (b) G and (c) F, without ongoing
evolution, after an initial period of evolving alone. When socially situated with different pairs, Agent B (a)
exploits Agent H to receive a higher average fitness from not exerting as much effort, (b) is more unpredictable
than when alone, and is often unable to achieve its goal, and (c) cannot achieve its goal. In each experiment,
Agent B’s partner performs similarly to when it is alone.
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river in an attempt to deal with the interference – simply because the agents are unable

to respond appropriately to their environment changing in unknown ways. This coopera-

tive and exploitative behaviour is emergent because agents do not possess the capacity to

perceive others, their actions, or their intentions, so these behaviours cannot be intended.

The observed fitnesses in this shared environment differ to when the agents alone, as

evolved behaviour is affected by the actions of the other agent. Interference from the actions

of others has the potential to cause learnt knowledge and evolved behaviour to become un-

reliable; this results in goal-rational agents behaving differently, despite having the required

knowledge to achieve their goals encoded within their genotype. As the results are depen-

dent on the interactions with a specific partner, graphing an average of all ten experiments

would mask the specific interactions. A representative sample of three experiments showing

average population fitnesses are therefore shown in Figures 4.3a to 4.3c.

The fitnesses fluctuate based on the actions of both individuals at every generation, and

as such appear very volatile. Emergent exploitation has no long-term implication here as

agents do not evolve, so their genotype does not change; agents would continue to achieve

their goals as before if they were again alone in an environment. The critical observation

here is that merely sharing an environment is enough to change one’s behaviour and ability

to achieve goals; this is because interference can cause the agents’ world view to change in

unanticipated ways, thus affecting their ability to achieve goals.

4.4.3 Coexistence with Continued Evolution

Here, Agents A through J are arranged into 30 random pairs, to explore how interference

affects coevolution in a shared environment. These 30 experiments evolve agents in a shared

environment for 1,500,000 generations. Figures 4.4 to 4.8 depict the best fitness in each

population for the named agents. Interference is observed to have the potential to affect

evolved and reliable behaviour, and thus an agent’s ability to solve tasks independently –

even when agents do not explicitly interact with one another, or when they are not aware

of each other. The most commonly observed emergent dynamic when agents continue to

evolve together is exploitation: one agent exploits the other to receive a higher payoff

at the other’s expense. No pair of agents are observed to both maintain their ability to

achieve goals alone – at least one agent is observed to change its evolved behaviour when

experiencing interference.
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Figure 4.4: Agents B and F continuing to evolve together with goal-rational, and traditional action after a
period of evolving alone. With goal-rational action, Agent B exploits Agent F and cannot achieve its goals
alone; evolution is volatile as agents evolve to be codependent. Cooperation gives 0.9 fitness. If fitness < 0.7,
agents do not achieve their goals. With traditional action, the agents endure a smaller period of low fitness,
and get a better fitness of 0.9 by cooperating.

Figure 4.4 shows the most extreme case of interference observed; agents evolved to

be codependent, as what agents learn depends on the actions of the other. There are four

distinct ‘phases’ in evolution that can be observed in this graph. Firstly, between generations

0 and 500,000, Agent B loses its ability to achieve its goal, whilst Agent F is able to achieve

a fitness of 0.7 or higher for the majority of the time. Secondly, between generations 500,000

and 900,000, Agent F mostly achieves a fitness of 0.9 or higher, whereas Agent B fluctuates

between fitnesses of 0.4 (placing one Stone but only collecting one Resource), 0.7 (achieving

the goal individually by placing two Stones) and 0.9 (cooperating with the other agent by

only placing one Stone); sometimes Agent B cannot rely on the actions of Agent F in order

to obtain a fitness of 0.9, so resorts to achieving its goal individually for the most-part. The

third phase sees Agents B and F cooperating with each other to share the cost of building

a bridge. In the fourth and final phase however, this cooperation diverges into exploitation,

as Agent B begins to lose its ability to put Stones in the river and thus cooperate; reacting

to this, Agent F evolves to achieve its goal individually, which Agent B exploits to achieve

a higher fitness. While both agents endure periods of being unable to achieve their goal

(depicted by a fitness below 0.7), Agent B is more negatively affected than Agent F; because

of this volatility in evolution caused by interference, Agent B eventually evolves to exploit
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Figure 4.5: Agents D and F continuing to evolve together with goal-rational, and traditional action. With
goal-rational action, both agents initially lose their ability to achieve goals, with a fitness of 0.5; Agent F then
evolves to exploit Agent D. With traditional action, the agents endure less knowledge loss with traditional
action and maintain their exploitative relationship in less time.

the other agent, and loses its ability to achieve its goal independently altogether. One can

thus postulate that the effect of interference can be great, complex and uncertain as the

world changes in unanticipated ways.

Other dynamics that can be observed to a lesser extent are periodic dips in fitness that

can lead to exploitation (Figure 4.5). Early on in evolution, both Agents D and F are prone

to exploiting the actions of the other; this exploitation is short-lived, as neither agent’s

actions are reliable enough for the other to consistently achieve their goals, which leads to a

mutual loss of fitness and inability to achieve goals. Once Agent D becomes the first agent

to re-evolve the goal-achieving behaviour of building a bridge individually, Agent F is then

able to capitalise on this and an exploitative relationship emerges. The spikes observed in

Agent D’s fitness indicate that occasionally Agent F will cooperate, but is unreliable and

predictably self-interested. As a result, Agent D sustains its independent behaviour, whilst

Agent F evolves to capitalise on this to achieve a higher fitness.

Figure 4.6 shows a similar scenario between Agents D and G; there is a brief period

of around 150,000 generations at the beginning of evolution where both agents are able

to cooperate. However, Agent G tends to fluctuate between cooperative and exploitative

behaviour, whereas Agent D consequently fluctuates between cooperation and achieving

the goal individually. This is because the actions of Agent G are not predictable enough
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Figure 4.6: Agents D and G continuing to evolve together with goal-rational, and traditional action. With
goal-rational action, Agent G cannot always rely on Agent D to exploit it, so it sometimes cooperates; Agent
D cannot rely on G to cooperate, so evolves to achieve its goals alone.

to make cooperation beneficial for Agent D; eventually Agent D evolves to achieve its goals

alone, whereas Agent G loses its ability to achieve its goals and exploits the other agent.

Figures 4.7 and 4.8 show exploitative relationships; the remainder of the 30 experiments

are similar. As with Figure 4.5, peaks in the exploited agent’s fitness indicate that the

exploitative agent occasionally helps to build a bridge; it however evolves to be indepen-

dent as the other agent is not predictable enough to rely on. This, again, evidences that

interference affects how and what behaviours are evolved and maintained during evolution.

4.4.4 Implications of Coexistence

Evolved goal-achieving behaviour can potentially become unreliable when agents pursue

individual goals with goal-rational action in shared environments. Interference from the

actions of others changes each agent’s perception of the world, and often leads to volatile

evolution and knowledge loss; if agents cannot perceive the cause of the environmental

changes, they will attempt to adapt and often lose learnt knowledge as a result. Exploitative

agents for example depend on the other to achieve their goals, and thus ‘forget’ how to

interact with Stones over time; this would be detrimental if they became suddenly alone in

an environment, as they have evolved to be codependent rather than independent.

Further, the unanticipated and imperceptible actions of the other agent changes the

C. M. Barnes, PhD Thesis, Aston University 2021 88



CHAPTER 4. TRADITIONAL ACTION AND VOLATILITY

Traditional Action

Goal−Rational Action

0 5 10 15

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

Generations (105)

F
itn

es
s

Agent J
Agent C

Figure 4.7: Agents J and C continuing to evolve together with goal-rational, and traditional action. With
goal-rational action, Agent C exploits Agent J, which evolves to achieve goals alone. With traditional action,
the agents endure low fitness temporarily with traditional action, but overcome this before maintaining an
exploitative relationship.
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Figure 4.8: Agents E and F continuing to evolve together with goal-rational, and traditional action. With
goal-rational action, Agent F exploits Agent E, which evolves to achieve goals alone. With traditional action,
Agent F still evolves to exploit Agent E.
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state of the environment, and can cause agents to alter their knowledge and behaviour

in an attempt to adapt to the change in circumstances. This can lead to a change in the

mapping of inputs to sub-goals in the deliberative network, and may result in drastic changes

of behaviour. Specific examples could be an agent suddenly falling into the river due to an

inability to respond to the environmental changes appropriately, or an agent that simply

places many Stones into the river as its sub-goals have been altered to be repulsed from

Resources. Interference can therefore impair an agent’s ability to achieve its goals, even

though it once possessed the behaviours required to be successful. An inability to overcome

unexpected situations and unanticipated changes means agents are susceptible to knowledge

loss and changes in behaviour. To combat this, traditional action is operationalised in an

attempt to mitigate the effect of interference in socially situated agents.

4.4.5 Evolving with Traditional Action

Since goal-rational agents experience interference in shared environments, traditional action

is hence compared to goal-rational action to explore how coexistence and interference may

be affected by a different type of social action.

Figure 4.4 depicts the same pair of goal-rational agents with pure goal-rational action,

and a blend of goal-rational and traditional action respectively. The volatility seen in the

agents evolving with pure goal-rational action is drastically reduced with traditional action,

as the fitness of each agent fluctuates less often. Further, the period of knowledge loss

endured by Agent B as it learns about its new environment is much shorter with traditional

action; additionally, both agents that use traditional action receive a mutual benefit from the

presence of the other such that they evolve and maintain emergent cooperative behaviours.

This enables both agents to achieve their goals with the best overall payoff.

Figure 4.5 presents a different pair of agents. With goal-rational action, both agents

endure a period of low fitness at the beginning of evolution, as they are unable to respond

appropriately to the interference they now face. In contrast, traditional action significantly

reduces this initial period that agents are unable to achieve their goals; instead of a dip

in fitness, agents briefly cooperate instead. Other than this, traditional action sees both

agents evolve into the same exploitative relationship seen with just goal-rational action – in

fewer generations. Traditional action is therefore observed to be beneficial overall for these

agents.
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Figure 4.6 demonstrates that cooperation can exist with exploitation when using tra-

ditional action. Fluctuations between fitnesses of 0.9 and 1.0 in Agent G indicate that it

cannot rely completely on the actions of the other agent in order to exploit it, and therefore

must still maintain knowledge of how to build a bridge. Agent D however is more indepen-

dent, and fluctuates between a fitness of 0.7 and 0.9; Agent D cannot always rely on Agent

G to cooperate, so maintains its ability to achieve its goal alone. Cooperation is maintained

for longer with traditional action, so agents are therefore generally better off.

Figure 4.7 shows exploitative behaviour evolving in agents. However, employing tra-

ditional action causes a period of around 100,000 generations where both agents lose the

ability to build bridges; this means that agents can only collect one Resource each, which

gives a payoff of 0.5. As Agent C evolves to exploit Agent J, when Agent J’s behaviour

changes such that it cannot achieve its goal, neither can Agent C. This anomalous evolution-

ary event causes a temporary dip in fitness that is not observed without traditional action.

However, traditional action enables the agents to overcome this dip in fitness, indicating

that agents can potentially learn how to cope with unexpected events.

Further to the results discussed above, Figure 4.8 shows that traditional action can also

have a minimal effect on evolution. In the remaining experiments, if pure goal-rational

agents evolve to be exploitative, traditional agents will as well. Exploitative agents es-

sentially ‘forget’ previously dependable knowledge that was encoded in their deliberative

neural network, relying instead on the actions of the other agent to achieve their goal; this

change in behaviour is simply caused by the interference that arises from coexistence.

4.4.6 Implications of Evolving with Traditional Action

Traditional action is seen in these results to have the potential to reduce the effect that

interference can have on agent evolution and goal-achievement. Whilst intentional cooper-

ation requires an explicit awareness of others [51], unintentional, emergent cooperation is

observed in some experiments when agents receive a mutual benefit from the actions of the

other; this enables the agents to pursue their own goals and achieve a better fitness overall.

Additionally, coexisting agents are observed to evolve behaviours that can be maintained

faster with traditional action, allowing them to recover from the unforeseen events or states

caused by interference in shared environments.
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4.5 Analysing the Effect of Social Action on Agent Evolution

Thus far, the effect of interference has been explored at the individual level, by examin-

ing how specific agents evolve in shared environments. As outlined in Section 4.3.3, the

experiments in this section extend this investigation by observing how agents evolve more

generally. Here, 100 agent populations are initialised with random weights and placed in

either an environment in which they exist alone or with another agent, using three different

types of social action: goal-rational, traditional, and random action.

4.5.1 Analysing the Effect of Traditional Action on Volatility

In these experiments, agents are evolved with goal-rational or traditional action, in order

to observe the effect that the type of social action can have on evolutionary volatility in

individual and social environments.

Analysing Fitness

The mean best-in-population fitness across all 100 agents in each experiment can be seen

in Figure 4.9. The evolution of agents evolving with goal-rational or traditional action is

the focus here, whereas evolving with random action is discussed in Section 4.5.2. One

of the most noticeable differences between agents that evolve alone and those in shared

environments is the increase in fitness that agents receive throughout evolution, when they

are able to capitalise on the actions of others. When agents evolve alone, goal-rational action

appears to enable agents to receive a marginally higher fitness than those that use traditional

action; when agents share an environment, the opposite is true. In socially situated agents,

traditional action can help agents receive a higher fitness faster; as evolution progresses,

agents that use either goal-rational and traditional action begin to receive similar fitnesses.

This indicates that traditional action is beneficial by helping agents to achieve goals early

on in evolution, but the long-term effect is similar to goal-rational action.

Looking further into how the type of social action affects agent evolution, Table 4.2

presents a breakdown of the common goal-achieving behaviours that agents receive in each

experiment after evolution. Over double the number of agents are able to achieve their goal

when socially situated, compared to when they are alone; this is observed in agents that

use goal-rational, and traditional action. Whilst fewer agents using traditional action are
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Figure 4.9: The mean best-in-population fitnesses of agents that evolve in an environment alone, and those
that evolve in a shared environment with goal-rational (G), traditional (GT), or random (GR) action. Note:
the x-axes are not comparable because agents are evolved for 500,000 generations when alone, and 1,500,000
generations when together.

able to achieve their goal than goal-rational agents both when socially situated and alone,

some interesting observations can be made. Firstly, the same number of goal-rational agents

achieve their goal individually in both single- and multi-agent environments; however, more

agents that use traditional action are able to achieve their goal individually when sharing an

environment. This is one indication that traditional action can help agents to overcome the

negative effects of interference. Other than this, both goal-rational and traditional agents

are able to exploit the actions of the other agent in the environment when socially situated,

to receive a higher fitness. Unintentional, emergent cooperative behaviour is sometimes

observed, but this is rare. These results would indicate that cooperation is a risky strategy

when the agents do not possess the ability to perceive or reason about the existence of other

agents, or the consequences of their actions. This would explain why agents seemingly prefer

to either exploit the other agent or achieve their goal individually: because the actions of

the other agent are unpredictable and therefore may not always be reliable, agents tend to

resort to one strategy or the other, with cooperation observed infrequently.

Analysing Volatility

Over each of the 100 runs of this experiment, agents using traditional action are observed to

have the same or a lower median SDoT, CACoT and CCoT than their purely goal-rational
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Experiment Action
Fitness (% of Agents)

0.7 0.9 1.0 < 0.7 ≥ 0.7

Alone
Goal-Rational 23 0 0 77 23
Traditional 17 0 0 83 17
Random 100 0 0 0 100

Together
Goal-Rational 23 5 22 50 50
Traditional 20 1 25 54 46
Random 42 4 54 0 100

Table 4.2: The percentage of agents that receive common fitnesses in each experiment, after 500,000
generations of evolving in an environment alone, or 1,500,000 generations of evolving in a shared environment,
with goal-rational, traditional, or random action. 0.7 is a goal-achieving fitness after a bridge is built with
two Stones; 0.9 is sharing the cost of bridge-building; 1.0 is exploitation; < 0.7 does not achieve the goal;
≥ 0.7 is a goal-achieving fitness.

counterparts, which can be seen in Table 4.3. In other words, agents using traditional

action typically have a lower volatility in evolution than purely goal-rational agents, where

the fitness fluctuates less often and by smaller amounts during the course of evolution. The

difference in volatility measured by the three metrics is much larger in socially situated

agents than agents that are alone in an environment.

Agents using traditional action typically have an SDoT with less variability than those

that do not (Table 4.3); this is more evident when agents exist alone, than when they are

socially situated. Combined with a lower expected SDoT, and higher skew and excess pos-

itive kurtosis (kexcess = k− 3), agents using traditional action are expected to have a lower

and more predictable SDoT. Kurtosis is used to analyse the tailedness and probability of

outliers. These findings therefore indicate that traditional action enables agents to experi-

ence a lower, and more predictable standard deviation in fitness over time, with occasional

outliers or extreme values; in other words, the fitness fluctuates less often in traditional

agents during evolution, than in goal-rational agents. The shapes of these distributions can

be seen in the kernel density estimation plots presented in Figure 4.10; each of the volatility

distributions for agents evolving with either goal-rational or traditional action are skewed

to the right, indicating positive skewness.

When alone, agents that use traditional action have a CACoT and CCoT with a higher

variability and kurtosis than those that do not (Table 4.3). This changes when agents are

socially situated, with traditional action reducing the variability and kurtosis in CACoT and

CCoT. A lower mean CACoT and CCoT is observed in agents that use traditional action,

than those that use goal-rational action, in both individual and shared environments. This
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Figure 4.10: Kernel density estimation of the (a) SDoT, (b) CACoT and (c) CCoT of agents using goal-
rational (G), traditional (GT), or random action (GR), evolved alone or together. Note: the axes are not
comparable due to the disparity in the densities of each distribution.
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Metric Exp Action
Moment

Median
Mean Variance Skewness Kurtosis

SDoT

Alone
G 0.0155 0.001 08 1.84 4.56 0
GT 0.0125 0.000 887 2.17 5.95 0
GR 0.0422 0.000 394 0.171 2.74 0.0419

Together
G 0.0589 0.006 21 1.29 3.35 0.0102
GT 0.0424 0.004 74 1.75 5.04 0.003 32
GR 0.0387 0.000 330 0.330 3.64 0.0406

CACoT

Alone
G 1.37 9.47 5.43 34.4 0.500
GT 1.33 12.8 7.39 62.9 0.500
GR 2.28 2.37 1.43 5.65 1.90

Together
G 38.3 10 800 5.07 32.9 4.60
GT 27.2 7420 5.19 31.6 2.70
GR 1000 1 690 000 1.07 2.82 85.1

CCoT

Alone
G 5.37 237 5.43 34.4 1.00
GT 5.15 321 7.39 62.9 1.00
GR 9.88 59.1 1.43 5.65 8.00

Together
G 150 215 000 6.22 48.3 10.0
GT 64.4 33 000 4.63 26.2 7.50
GR 4560 37 500 000 1.11 2.85 188

Table 4.3: Statistical moments and median (to 3 S.F.) of the SDoT, CACoT and CCoT of the best-
in-population agents in each experiment (Exp) after 500,000 generations of evolving alone, or 1,500,000
generations together. Agents evolve with goal-rational (G), traditional (GT), or random (GR) action.

shows that traditional action can reduce volatility in evolution when agents experience

interference. Agents that use traditional action typically have a lower CACoT than those

that do not, indicated by a greater skewness; this is the same for the CCoT in agents that

use traditional action when alone. The mean CCoT and skewness of the CCoT are lower in

socially situated agents that use traditional action than those that do not; this means that

traditional action typically reduces the fluctuations in fitness that agents experience during

evolution, compared to goal-rational agents.

Statistical Tests

According to Yap and Sim [241], the Shapiro-Wilk normality test is powerful for distribu-

tions that are suspected to be asymmetric, as well as those that are symmetric with both

high and low kurtosis values. As such, a Shapiro-Wilk normality test was conducted for

each of the SDoT, CACoT and CCoT distributions for each experiment; the results of these

tests can be found in Table B.1 in Appendix B.1. Results were significant for each with a

p-value below 0.05, indicating that the distributions are non-normal. Wilcoxon Signed Rank

tests were therefore used to compare the effect each action type had on evolution. These
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are non-parametric tests used to compare the medians of two paired distributions; the null

hypothesis for two-tailed tests is that the medians are identical, whereas one-tailed tests

compare the directional difference in the distribution medians. One two-sided (G 6= GT )

and two one-sided tests (G > GT , and G < GT ) were conducted to compare the volatility

experienced by agents that use either goal-rational or traditional action; the results of these

statistical tests are presented in Table 4.4.

For each metric, no significant difference was found between the volatility of agents that

evolve alone with goal-rational action, and those that evolve with traditional action. This

is not surprising, as the agents do not experience interference and thus the environment is

more predictable – resulting in similar levels of evolutionary volatility being observed despite

the type of action employed. However, when agents are socially situated and experience

interference, goal-rational agents have a significantly higher SDoT and CCoT (G > GT ,

p < 0.05, Table 4.4); traditional action in socially situated agents therefore reduces volatility

in evolution compared to goal-rational action alone.

There is a very weak relationship between agents that evolve alone with goal-rational

action, and those that evolve with traditional action. Whilst no significant difference be-

tween the volatility of agents employing these two types of action was found, the effect size

estimate r for each pairing is positive, which indicates that goal-rational agents experience

more volatility than agents using traditional action (Table 4.4). These effect sizes are very

small according to the boundaries outlined by Cohen [58] (r = 0.1 is said to be a ‘small’

effect), but is observable nonetheless. When agents are in a shared environment however, a

‘small’, positive effect size is observed; this indicates that traditional action has a stronger

effect on socially situated agents, in terms of the amount of volatility experienced during

evolution, than those in isolation.

4.5.2 Random Action: High Expected Fitness, High Volatility

As outlined in Section 4.3.3, random action is also introduced to ascertain whether tra-

ditional action is quantitatively different to adding Random Immigrants into the popu-

lation. Here, the difference between random and traditional action when combined with

goal-rational action is compared.
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Metric Experiment
Statistical Test Alternative Hypothesis

z r
G 6= GT G < GT G > GT

SDoT
Alone 4.282×10−1 7.885×10−1 2.141×10−1 0.7970 0.079 70
Together 4.565×10−2 ∗ 9.774×10−1 2.283×10−2 ∗ 2.000 0.2000 (S)

CACoT
Alone 7.669×10−1 6.200×10−1 3.835×10−1 0.3010 0.030 10
Together 1.920×10−1 9.046×10−1 9.601×10−2 1.310 0.1310 (S)

CCoT
Alone 7.426×10−1 6.322×10−1 3.713×10−1 0.3330 0.033 30
Together 9.780×10−2 9.515×10−1 4.890×10−2 ∗ 1.660 0.1660 (S)

Table 4.4: Wilcoxon Signed Rank statistical tests comparing the volatility metrics (Section 5.5.3) of agents
evolving alone or together, with goal-rational (G) or traditional (GT) action. p-values (to 4 S.F.) are marked
with an asterisk (*) if significant (p < 0.05). Effect sizes (r, to 4 S.F.) are presented with the z-score they
are calculated from (Equation 3.3, N = 100), and are classed as small (S, r ≥ 0.1), medium (M, r ≥ 0.3), or
large (L, r ≥ 0.5) [58].

Analysing Fitness

Referring back to Figure 4.9, the effect of random action on evolution compared to either

goal-rational or traditional action is immediately obvious: agents using random action are

able to receive higher fitnesses during evolution than those that use the other two types

of action. This effect is so pronounced, that 100% of agents are able to achieve their goal

with random action in both single- and multi-agent environments in the RCD (Table 4.2).

Similarly to the discussion of individual, cooperative and exploitative goal-achieving be-

haviour in Section 4.5.1, agents that use random action in shared environments tend to

either achieve their goal individually, or exploit the other agent. Whilst this shows that

random action is beneficial for agents in terms of the fitness received during evolution,

Figure 4.9 shows noticeably more fluctuations in fitness over time in agents that evolve in

shared environments. This volatility will consequently be analysed in closer detail.

Analysing Volatility

Goal-rational agents that use random action have a higher mean SDoT, CACoT and CCoT

than those that use the other two types of action. The exception to this is that the expected

SDoT is lower when agents experience interference with random action, despite the median

still being larger than the other types of action (Table 4.3); a lower mean SDoT but higher

mean CACoT and CCoT indicates that agents using random action in shared environments

will predictably experience high levels of volatility and fluctuations in fitness during evolu-

tion. Additionally, agents that use random action have an SDoT with lower variability, and

those that act alone have a CACoT and CCoT with lower variability than those that use
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goal-rational or traditional action. Therefore, when agents do not experience interference,

using random action means the SDoT, CACoT and CCoT will be predictably high due to

low dispersion around the mean. This changes drastically when agents are socially situated

(Table 4.3), as interference can cause fitness in agents using random action to fluctuate

often, indicated by the variance in the CACoT and CCoT being orders of magnitude higher

than in agents that use either goal-rational, or traditional and goal-rational action.

In all experiments, the SDoT, CACoT and CCoT are positively skewed, with random

action being the least skewed; this means that the CACoT and CCoT are typically higher in

agents that use random action compared to the other types of action, as the values are more

symmetrical around the higher means (Table 4.3). It can therefore be said that evolution

with random action is more volatile than goal-rational or traditional action.

The SDoT, CACoT and CCoT in both goal-rational and traditional action are highly

leptokurtic, meaning there is positive excess kurtosis; in other words, these distributions

have ‘fat’ tails, which indicates that extreme outliers will be common (Table 4.3). The

SDoT, CACoT and CCoT are expected to be less extreme in agents using random action as

the kurtosis is lower than in agents using the other two types of action; saying this, whilst

outliers will be less common and less extreme in agents that use random action, the SDoT,

CACoT and CCoT are generally higher overall.

Statistical Tests

A Shapiro-Wilk normality test was also conducted for the volatility distributions of agents

using random action, when they in environments either alone or with another; the results

of these tests are presented in Table B.1 in Appendix B.1. The results of these tests were

significant at p < 0.05, indicating that the CACoT and CCoT distributions for these agents

are non-normal; however, the SDoT of agents evolving with random action cannot be said

to be non-normal, as the p-value is greater than 0.05. This is caused by the high number

of agents that achieve their goal, therefore reducing the variability in fitness.

Consequently, Wilcoxon Signed Rank statistical tests were used to ascertain whether

there is any observable difference between the volatility experienced by agents that use

random action, and those that either use goal-rational action (G compared with GR),

or traditional action (GT compared with GR). Wilcoxon Signed Rank tests can still be

used for the SDoT distributions as this type of test does not assume anything about the
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Metric Experiment
Statistical Test Alternative Hypothesis

z r
G 6= GR G < GR G > GR

SDoT
Alone 1.415×10−8 ∗ 7.077×10−9 ∗ 1.000 −5.670 −0.5670 (L)
Together 4.993×10−1 7.515×10−1 2.496×10−1 0.6770 0.067 70

CACoT
Alone 6.814×10−9 ∗ 3.407×10−9 ∗ 1.000 −5.800 −0.5800 (L)
Together 6.350×10−12∗ 3.177×10−12∗ 1.000 −6.870 −0.6870 (L)

CCoT
Alone 6.146×10−9 ∗ 3.073×10−8 ∗ 1.000 −5.810 −0.5810 (L)
Together 5.557×10−11∗ 2.778×10−11∗ 1.000 −6.560 −0.6560 (L)

Table 4.5: Wilcoxon Signed Rank statistical tests comparing the volatility metrics (Section 5.5.3) of agents
evolving alone or together, with goal-rational (G) or random (GR) action. p-values (to 4 S.F.) are marked
with an asterisk (*) if significant (p < 0.05). Effect sizes (r, to 4 S.F.) are presented with the z-score they
are calculated from (Equation 3.3, N = 100), and are classed as small (S, r ≥ 0.1), medium (M, r ≥ 0.3), or
large (L, r ≥ 0.5) [58].

distribution (such as normality). The results of these statistical tests are presented in

Tables 4.5 and 4.6. Agents that use random action have a significantly higher mean CACoT

and CCoT than those that use the other two types of action, as well as a significantly higher

mean SDoT when agents are alone (p < 0.05). This indicates that the evolution of agents

using random action is significantly different to the other types of action, and agents are

affected significantly more by interference. The exception to these observations of statistical

significance, is that the SDoT of socially situated agents evolving with random action is not

found to be different to that of agents evolving with either goal-rational or traditional action.

Upon looking at the data regarding volatility presented in Tables 4.3, 4.5 and 4.6, it would

seem that the magnitude and frequency of the fluctuations in fitness over time (captured

with the CACoT and CCoT metrics respectively) for socially situated agents using random

action are significantly higher than in those that use the other two types of action; however,

the SDoT remains low (without a statistically significant difference to agents using the other

two types of action), which indicates that these agents are predictably, and highly volatile

when sharing an environment with another agent.

To demonstrate this further, a ‘large’, negative effect size [58] is observed in each pairing,

which indicates that random action has a strong effect on the amount of volatility that

agents experience compared to goal-rational agents. Aligning with the exception discussed

above, random action has a negligible effect on the SDoT of agents that evolve together

compared to goal-rational action (Table 4.5); in fact, as the effect size estimate r is positive,

this indicates that goal-rational agents experience more volatility than agents using random

action here, which might be caused by the latter agents receiving predictably high fitnesses
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Metric Experiment
Statistical Test Alternative Hypothesis

z r
GT 6= GR GT < GR GT > GR

SDoT
Alone 2.643×10−11∗ 1.322×10−11∗ 1.000 −6.670 −0.6670 (L)
Together 1.816×10−1 9.081×10−2 9.098×10−1 −1.340 −0.1340 (S)

CACoT
Alone 9.769×10−11∗ 4.884×10−11∗ 1.000 −6.470 −0.6470 (L)
Together 1.797×10−15∗ 8.986×10−16∗ 1.000 −7.960 −0.7960 (L)

CCoT
Alone 9.594×10−11∗ 4.797×10−11∗ 1.000 −6.480 −0.6480 (L)
Together 1.473×10−14∗ 7.363×10−15∗ 1.000 −7.690 −0.7690 (L)

Table 4.6: Wilcoxon Signed Rank statistical tests comparing the volatility metrics (Section 5.5.3) of agents
evolving alone or together, with traditional (GT) or random (GR) action. p-values (to 4 S.F.) are marked
with an asterisk (*) if significant (p < 0.05). Effect sizes (r, to 4 S.F.) are presented with the z-score they
are calculated from (Equation 3.3, N = 100), and are classed as small (S, r ≥ 0.1), medium (M, r ≥ 0.3), or
large (L, r ≥ 0.5) [58].

with predictably high volatility. Additionally, a ‘small’, negative effect size [58] is observed

between the SDoT of traditional agents and those that use random action, which indicates

that again, random action increases the volatility that agents experience.

To summarise, agents that use random action typically have a significantly higher SDoT,

CACoT and CCoT during evolution than those that use traditional or pure goal-rational

action; this is due to a higher mean and median, combined with less skewness and kurtosis.

When agents exist alone, the SDoT, CACoT and CCoT have less variability, but in social

environments, the variance is extremely large. This indicates that evolution is more volatile

when agents experience interference, than when they are situated in an environment alone.

The shapes of these distributions can be seen in Figure 4.10, which are kernel density

estimation plots for each distribution. For agents using random action, each of the volatility

distributions are skewed to the right as there is positive skew; there is noticeably more

variability in the volatility experienced by agents using random action than those using

the other two types of action however, as the data is more dispersed. It can therefore be

concluded that evolution with random action is extremely volatile compared to the other

types of actions implemented, especially in shared environments.

4.5.3 Balancing the Fitness and Volatility Trade-Off

In this section, the fitness of agents, as well as the evolutionary volatility they experience is

considered for each of the three types of action operationalised in this study: goal-rational,

traditional, and random action. Firstly, Table 4.7 presents the statistical moments for the

best-in-population fitness that agents across all experiments in this study receive. Secondly,
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Experiment Action
Moment

Median
Mean Variance Skewness Kurtosis

Alone
Goal-Rational 0.546 0.007 16 1.28 2.65 0.500
Traditional 0.534 0.005 70 1.76 4.09 0.500
Random 0.700 0 NaN NaN 0.700

Together
Goal-Rational 0.676 0.0416 0.636 1.78 0.600
Traditional 0.669 0.0440 0.725 1.83 0.500
Random 0.870 0.0215 −0.282 1.11 1.00

Table 4.7: Statistical moments and median (to 3 S.F.) of the best-in-population fitness after 500,000
generations of evolving alone, or 1,500,000 generations evolving together, with goal-rational, traditional, or
random action.

a Shapiro-Wilk test for normality was conducted for the fitness distributions for agents using

each type of action, in both single- and multi-agent experiments; the results for these tests

can be found in Table B.2 in Appendix B.1. These results were significant at p < 0.05,

which indicates that the fitness distributions for each experiment are non-normal. The

exception to this is observed in agents that evolve alone with random action because 100%

of the agents receive a fitness of 0.7; as such, the Shapiro-Wilk test cannot be conducted for

this set of results as all the values are identical. After conducting the Shapiro-Wilk tests

for normality, Wilcoxon Signed Rank statistical tests were then conducted to compare each

type of action; the results of these tests are presented in Table 4.8.

In each experiment, agents that use random action receive a significantly higher fitness

than agents using either goal-rational or traditional action (G < GR and GT < GR,

p < 0.05, Table 4.8). The shapes of these distributions can be seen in the kernel density

estimation plots presented in Figure 4.11; the fitness distributions for agents evolving with

either goal-rational or traditional action are positively skewed, whereas the distribution for

socially situated agents evolving with random action is negatively skewed. The effect of

random action is so great that all 100 agents that use random action are able to achieve

their goal while existing in an environment alone (Table 4.2); this is visible in Figure 4.11,

as the peak of the distribution is at a fitness of 0.7 – which is achieved by all agents in

the experiment. As a result, there is no skew or kurtosis for this distribution (Table 4.7),

as all values in the distribution are identical. In shared environments however, random

action allows all 100 agents to achieve their goal (Table 4.2), but a median fitness of 1.0

indicates that these agents are expected to evolve exploitative behaviour. Whilst this is

beneficial fitness-wise, the agents would most likely lose the ability to achieve their goals
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Action Experiment
Statistical Test Alternative Hypothesis

z r
(x-y) x 6= y x < y x > y

G-GT
Alone 3.217×10−1 8.435×10−1 1.608×10−1 1.000 0.1000 (S)
Together 8.379×10−1 5.836×10−1 4.190×10−1 0.2080 0.020 80

G-GR
Alone 2.200×10−16∗ 2.200×10−16∗ 1.000 −8.770 −0.8770 (L)
Together 2.453×10−9 ∗ 1.226×10−9 ∗ 1.000 −5.970 −0.5970 (L)

GT -GR
Alone 2.200×10−16∗ 2.200×10−16∗ 1.000 −9.110 −0.9110 (L)
Together 4.243×10−9 ∗ 2.122×10−9 ∗ 1.000 −5.880 −0.5880 (L)

Table 4.8: Wilcoxon Signed Rank statistical tests comparing the fitness of agents that use goal-rational
(G), traditional (GT), or random (GR) action, where agents evolve alone or together with another. p-values
(to 4 S.F.) are marked with an asterisk (*) if significant (p < 0.05). Effect sizes (r, to 4 S.F.) are presented
with the z-score they are calculated from (Equation 3.3, N = 100), and are classed as small (S, r ≥ 0.1),
medium (M, r ≥ 0.3), or large (L, r ≥ 0.5) [58].

independently (or not evolve this ability to begin with), and not maintain bridge-building

behaviours either. This would be problematic if these agents were to find themselves in

an environment alone, as they would have to evolve this goal-achieving behaviour from

scratch. Although this higher expected fitness is desirable, dependency on others would

not be desirable if the existence of others is unpredictable, or the environment is extremely

dynamic; this is because there may be long periods where the agent is unable to achieve its

goals.

Table 4.8 also shows that a ‘large’, negative effect size estimate r [58] is recorded when

comparing random action to both goal-rational and traditional action; this shows that

random action has a large effect on the fitness that agents receive, and that agents using

random action receive higher fitnesses than those that use the other two types of action.

In comparison, only a ‘small’ effect size is observed when comparing goal-rational and

traditional action in agents that evolve alone, and a marginal effect is observed in those that

evolve together. This means that goal-rational action has a small benefit over traditional

action when agents evolve alone (in terms of the fitness received), but this is marginal when

agents exist in a shared environment. These results show that there is little disadvantage

for using traditional action over goal-rational action, because agents will receive similar

fitnesses regardless of the type of action they use.

While the data presented in Table 4.7 shows that agents using pure goal-rational action

receive a mean fitness marginally higher than those that use traditional action, no statis-

tically significant difference is found between the two (Table 4.8); this indicates that the

fitness agents receive is similar when using either goal-rational or traditional action.
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Figure 4.11: Kernel density estimation of the fitness of agents using goal-rational (G), traditional (GT),
or random (GR) action, evolved alone or together. Note: the y-axes are not comparable due to the disparity
in the densities of each distribution.

4.5.4 Analysing Goal-Achievement over Evolution

In addition to analysing the fitness that agents receive with each type of action at the end

of evolution, analysing how often these agents achieve their goals during evolution can also

provide useful insight into how beneficial each type of action is for agents more generally.

Figure 4.12 presents a box plot of the number of generations that agents receive a

goal-achieving fitness (≥ 0.7) with each type of action, when they evolve alone for 500,000

generations or for 1,500,000 generations when socially situated. It is clear from this figure

that random action enables agents to achieve their goals for more generations throughout

evolution than either goal-rational or traditional action – in both individual and shared

environments. This corroborates the analysis presented above, which concludes that random

action enables agents to achieve their goals more often than the other two types of action,

but at the cost of evolutionary volatility.

Goal-rational and traditional agents acting in an environment alone appear to be sim-

ilarly successful (in terms of the number of generations in which goals are achieved) when

looking at Figure 4.12. Despite this, these agents will predictably only achieve their goals

for a small portion of evolution, as evidenced by the first and third quartiles of the box

plots being in narrow range of each other. The range of successful generations however is
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Figure 4.12: Box plot depicting the number of generations agents receive a goal-achieving fitness (≥ 0.7)
during 500,000 generations of evolving alone, or 1,500,000 generations of evolving together, with either
goal-rational (G), traditional (GT), or random (GR) action.

much greater in agents that evolve in shared environments compared to those that evolve in

isolation; this demonstrates that existing in a shared environment allows agents to be more

successful and achieve their goals more often compared to when agents exist alone – despite

the fact that the agents in these experiments are unaware of the presence of others or the

impact of their actions.

In order to study this in more detail, Table 4.9 presents the statistics for the box plots

depicted in Figure 4.12, along with the mean number of generations that agents in each

experiment achieve their goals. The data shows that goal-rational action enables agents to

achieve their goals more often during evolution than traditional action, and that random

action improves this further; this difference is more prominent when agents evolve alone

than together. Figure 4.9 shows that the mean best-in-population fitness is higher for goal-

rational agents throughout evolution compared to traditional agents when they act alone,

however the reverse is true when agents are socially situated; further, traditional action

enables agents to discover goal-achieving behaviour earlier in the evolutionary process than

goal-rational action in shared environments. This explains why there is less of a difference

between the number of generations that agents are successful when evolving together, and

is further evidence that traditional action can be beneficial for socially situated agents.

To ascertain the extent to which the type of action influences the number of generations
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Experiment Action Min Q1 Median Mean Q3 Max

Alone
Goal-Rational 1 1 1 84 378 258 499 959
Traditional 1 1 1 49 326 30 499 939
Random 333 599 458 627 476 986 469 216 489 607 499 880

Together
Goal-Rational 1 17 20 035 562 381 1 230 485 1 499 981
Traditional 1 15 801 550 338 1 297 230 1 499 949
Random 1 430 421 1 483 553 1 493 578 1 488 840 1 497 800 1 499 987

Table 4.9: The minimum and maximum number of generations that agents achieve their goal in each
experiment, along with the first, second and third quartiles (Q1, median, and Q3 respectively), and the
mean. Agents evolve with either goal-rational, traditional, or random action, in an environment alone or
together with another. Values are rounded to the nearest whole number.

that agents are able to achieve their goals throughout evolution, statistical tests need to

be conducted as well. Shapiro-Wilk tests for normality indicated that each distribution

was non-normal; the results of these tests can be found in Table B.3 in Appendix B.1.

Consequently, Wilcoxon Signed Rank statistical tests were chosen as a suitable test for

this purpose, and the results of which are presented in Table 4.10. Random action was

found to be significantly different to both goal-rational and traditional action (p < 0.05).

Further, a significant directional difference between the medians of random action, and

goal-rational and traditional action, indicates that random action enables agents to achieve

their goals more often during evolution than the other two types of actions (p < 0.5,

x < y). Table 4.10 also shows that random action has a ‘large’ effect [58] on the number

of generations that agents successfully achieve their goals, compared to the other two types

of action. Comparatively, no significant difference was found between goal-rational and

traditional agents, in terms of the number of generations in which they achieve their goals

during evolution. This means that despite goal-rational action appearing at first to be

more beneficial to agents than traditional action when analysing the first, second and third

quartiles of the distributions (Table 4.9), there is no discernible difference between the two

types of action in terms of goal-achievement during evolution. Goal-rational action has a

‘small’ effect [58] on the number of generations that agents evolving in isolation achieve

their goals (Table 4.10); however, only a marginal effect is observed when agents exist in an

environment with another. This shows that there is little difference between the number of

generations that traditional agents and goal-rational agents are successful during evolution –

with socially situated agents being more similar than those in isolation. Combined with

the analysis in earlier sections, traditional action can therefore be said to enable agents

to perform similarly to goal-rational action in terms of the number of generations agents
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Action Experiment
Statistical Test Alternative Hypothesis

z r
(x-y) x 6= y x < y x > y

G-GT
Alone 1.453×10−1 9.286×10−1 7.265×10−2 1.460 0.1460 (S)
Together 9.403×10−1 5.313×10−1 4.701×10−1 0.076 70 0.007 670

G-GR
Alone 2.220×10−16∗ 2.220×10−16∗ 1.000 −8.560 −0.8560 (L)
Together 2.220×10−16∗ 2.220×10−16∗ 1.000 −8.620 −0.8620 (L)

GT -GR
Alone 2.220×10−16∗ 2.220×10−16∗ 1.000 −8.660 −0.8660 (L)
Together 2.220×10−16∗ 2.220×10−16∗ 1.000 −8.290 −0.8290 (L)

Table 4.10: Wilcoxon Signed Rank statistical tests comparing the number of generations that the best-in-
population agents receive a goal-achieving fitness (≥ 0.7) in each experiment, where agents use goal-rational
(G), traditional (GT), or random (GR) action, and evolve alone or together with another. p-values (to 4
S.F.) are marked with an asterisk (*) if significant (p < 0.05). Effect sizes (r, to 4 S.F.) are presented with
the z-score they are calculated from (Equation 3.3, N = 100), and are classed as small (S, r ≥ 0.1), medium
(M, r ≥ 0.3), or large (L, r ≥ 0.5) [58].

achieve their goals during evolution, as well as the number of agents that achieve their goals

at the end of evolution. Furthermore, whilst there is no difference observed between agents

that use goal-rational and traditional action in terms of the fitness received, the volatility

these agents experience during evolution is significantly reduced with traditional action.

Drawing on the analysis conducted in this chapter, there appears to be a trade-off be-

tween the expected fitness and the evolutionary volatility of socially situated agents. Whilst

random action may seem like the obvious choice for agents in shared environments because

of this increase in fitness, an inability to achieve goals individually may be detrimental to

the overall evolution of the agent if the actions of another agent cannot always be depended

upon. A median fitness of 1.0 in socially situated agents that use random action implies that

over half of the agents are able to exploit the other agent in the environment to achieve the

goal without incurring a cost for bridge-building; this also means that in over half of these

experiments, the partner agent has evolved the ability to build a bridge independently. In

environments where the other agent is not always dependable, or is prone to change, agents

using random action would experience high levels of volatility, and often periods of being

unable to achieve their goal. Random action therefore significantly increases the fitness of

agents, but at the cost of evolutionary volatility: this high fitness fluctuates often, and by

large amounts, during the course of evolution.

In contrast, agents using goal-rational and traditional action experience significantly

less volatility overall than agents using random action – at the cost of receiving a lower

fitness overall. When comparing goal-rational to traditional action however, the addition
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of traditional action significantly reduces the volatility in evolution in otherwise purely

goal-rational agents, without sacrificing fitness. It can therefore be said that incorporating

traditional action into otherwise goal-rational agents is a logical way to reduce evolutionary

volatility in agents when they experience interference from the actions of other agents in

the environment.

4.6 Discussion and Implications

As real-world sociotechnical systems grow in size, the components that these large, complex

systems are composed of will be more likely to interact with one another – intentionally or

not [101]. As a result, it is important to design these systems with the ability to achieve

their goals, despite the social nature of their environments. Moreover, since it is not possible

for a system component to know of all other components or actors within the environment

(especially with the increasing size of said systems) [112], it might not always be possible to

make decisions with an explicit awareness of other actors that have the potential to interfere

with one’s own ability to operate and pursue goals.

The results presented within this chapter demonstrate the effect that sharing an en-

vironment with other, unknown actors can have on the evolution of artificial agents, and

their ability to achieve individual goals. Existing in a shared environment can be beneficial

to agents, as cooperative or exploitative behaviour can lead to a higher fitness than is ac-

cessible when alone. However, whilst this may be useful when the presence and behaviour

of the unknown other agent is reliable, if the environment suddenly becomes solitary, then

the agent may have evolved to be dependent on the actions of the other agent in order to

achieve its goals. In the real world, the implications of one system or component depending

on the actions of another in order to achieve its goals could prove to be catastrophic; in

the case that the exploited system is taken offline, or changes its behaviour, the exploita-

tive system may no longer be able to function correctly. Further, a lack of knowledge of

the existence of the exploited system, and consequently that its actions are enabling the

exploitative system to succeed in the first place, would mean that the exploitative system

would have to relearn how to achieve its goals on its own. It may not be possible for these

systems to obtain information about others in their environment that can potentially affect

them, which calls for exploration into how systems can be designed to operate in shared
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environments to mitigate interference from others without such knowledge.

By acting in a more socially-oriented manner, agents in this study are shown to expe-

rience less evolutionary volatility while receiving a similar fitness to agents that act in a

goal-oriented manner. This small change of adding traditional action to the evolutionary

process enables agents to behave in a more predictable manner (i.e. their fitness changes less

frequently over time); crucially, this benefit is observed in agents that have no knowledge

of whether they are in a shared or isolated environment. As a result, acting in a more

socially-oriented way in general – regardless of whether other agents exist in the environ-

ment that are known or otherwise – can help agents to mitigate the effects of interference

without explicitly being aware of it. This would be desirable in the socially intelligent

systems discussed by Bellman et al. [28] and Castelfranchi [51], which would be capable

of integrating themselves into shared environments with heterogeneous actors, as well as

operating predictably in order to achieve their goals. In contrast, agents in this study that

use random action in this study employ a ‘high risk, high reward’ strategy, allowing them

to achieve their goals more often than both goal-rational and traditional agents – but at the

cost of evolutionary volatility. This could be useful in real-world scenarios where the best

solution is valued despite the cost, however reliability and predictability in performance will

likely be preferred. This is especially true in the case of systems that are critical to the

functioning of society, such as traffic and waste water management systems [46]. Traditional

action is therefore demonstrated to be one way in which systems can mitigate the effects

of interference, without having to sacrifice performance (in this case, fitness) or reliability

(in this case, volatility), and without requiring extensive knowledge about others in order

to overcome the effects of interference from others within the environment.

4.7 Conclusion

The experimental study presented in this chapter explores the effect that interference can

have on agent evolution and volatility, by evolving agents that either exist alone, or share

an environment with another agent in the River Crossing Dilemma testbed. Humans have

evolved to succeed in social environments by orienting their actions towards others; goal-

rational, traditional and random social action are therefore operationalised to ascertain

whether agents in shared environments may benefit from using alternative types of action,
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in comparison to the goal-rational approaches most current systems use.

The contributions of the work in this chapter are therefore:

• The River Crossing Dilemma testbed is shown to be effective for analysing evolution

and volatility when agents experience interference in shared environments; this is a

valuable contribution as other testbeds in the River Crossing family only observe one

agent in each environment. This testbed facilitates the exploration of the first research

question outlined in Chapter 1.

• Evolving in an environment with an unknown, and unknowable other agent can po-

tentially have a profound effect on evolution and the fitness received by agents over

time; often, agents may lose their ability to achieve their goals individually. This

finding relates to the first research question outlined in Chapter 1.

• Consequently, agents that share an environment with another agent experience more

evolutionary volatility than when they exist alone, due to the interference arising from

the actions of the other, unknown agent. This finding relates to the first research

question outlined in Chapter 1, and the use of the three volatility metrics (SDoT,

CACoT and CCoT) relates to the second question.

• Endowing goal-rational agents with traditional action reduces the volatility in the

evolutionary process caused by interference, without affecting the fitness received.

This relates to the third research question outlined in Chapter 1.

• Introducing Random Immigrants, operationalised as ‘random action’, is found to be

quantitatively different to traditional action; this emphasises the novelty of the work

in this chapter, and that it is distinct from an established way to increase diversity

of populations in evolutionary algorithms. This also relates to the third research

question outlined in Chapter 1.

• Further, a trade-off is observed between fitness and volatility in this study: agents that

use random action experience an increase in fitness at the cost of higher evolutionary

volatility, however traditional action reduces volatility without sacrificing fitness. This

relates to all three questions outlined in Chapter 1.

In shared environments, the agents in these experiments experience their world changing

in unanticipated and unknowable ways; they do not have the capacity to learn about or
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understand the existence of others, or how their actions affect the world around them. As a

consequence, this often means that agents lose their ability to achieve their goal individually,

because they are unable to respond appropriately to the environmental changes caused by

other agents. The focus of this study is therefore novel in comparison to other work on

interference, in which knowledge of the existence of others, their goals, intentions or abilities,

for example, are utilised. These results demonstrate that the type and orientation of the

actions that agents take in shared environments can impact both evolutionary volatility, the

fitness received, and the ability to achieve goals. Traditional action is shown to reduce the

volatility experienced by goal-rational agents when they experience interference. Pursuing

goal-rational action by always creating an offspring from the highest-fitness agents in a

tournament (in terms of the evolutionary process) is challenged here; adding a chance for

an offspring to instead be a representative state of the population (thus introducing the

potential to form traditions over time) is shown to be a more effective way at reducing

evolutionary volatility, and enabling agents to overcome the negative effects of interference.

As socio-technical systems grow in size and complexity, it is inevitable they will indi-

rectly interfere with one another by interacting with the environment. Related work that

studies interference utilises knowledge regarding others in the environment; in reality, such

knowledge might not always be available, or may come at a high computational cost. As

the field of integration science flourishes, attention is being drawn to the inherently social

nature of today’s systems, and both the explicit and – more importantly in this work – the

implicit interactions in which they participate. Consequently, it is becoming increasingly

necessary to enable systems to self-integrate with others, despite the challenges presented

by an incomplete knowledge of others and the environment, uncertainty, and the task of

interacting in a multitude of ways with other systems that are heterogeneous in nature.

A precursor to learning about others in one’s environment and how to interact with them

effectively is to learn about unanticipated changes and how to manage them; this work is

therefore novel by exploring how agents can mitigate interference without explicitly being

aware of it.

Hähner et al. [101] argue that, as the complexity of a system increases, the number of

implicit and unintended interactions will rise as a result; it would be expected then that it

will become more challenging for agents to remain resilient to interference as the number of

other entities in which they may potentially interact with increases. The results presented
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in this chapter show the impact that social situatedness can have on an agent’s ability to

achieve goals in the most minimal sense – i.e. there is only one other agent to interact

with. However, whilst these results provide an indication of the effect that interference can

have on evolution, this may change drastically depending on the environment, task, and

the number of agents within the environment; this will be a topic of future investigation.

These results suggest that endowing future systems with social self-awareness (enabling

them to intentionally coordinate with others [28] – of which the agents in this chapter are

not capable) will mean systems with many colocated components would be more capable

of dealing with unanticipated and unknown interactions, due to their ability to detect

and reason about others and the impact their actions can have on themselves. Further,

traditional action has proven to be a beneficial step towards realising socially self-aware

systems that can manage the impact of the actions of others on themselves in a socially

acceptable way. While goal-rationality has been shown to be sufficient for achieving goals in

a social environment, traditional action significantly reduces volatility in the evolutionary

process without sacrificing fitness. Future work will explore different ways to operationalise

traditional action, as well as other combinations of social action in order to observe their

effects on the evolution and volatility of socially situated agents.
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Chapter 5

Neuromodulation and

Evolutionary Volatility

The work presented in this chapter has been adapted from the following publications:

[17] C. M. Barnes, A. Ekárt, K. O. Ellefsen, K. Glette, P. R. Lewis, and J. Tørresen. Coevolution-

ary Learning of Neuromodulated Controllers for Multi-Stage and Gamified Tasks. In Proceedings

of the IEEE 1st International Conference on Autonomic Computing and Self-Organizing Systems

(ACSOS), pages 129–138. IEEE, 2020. doi: https://doi.org/10.1109/ACSOS49614.2020.00034.

[19] C. M. Barnes, A. Ekárt, K. O. Ellefsen, K. Glette, P. R. Lewis, and J. Tørresen. Behavioural

Plasticity Can Help Evolving Agents in Dynamic Environments But at the Cost of Volatility. ACM

Transactions on Autonomous Adaptive Systems, 2021. In Press.

5.1 Motivation

In the previous chapter, the type of social action used by agents is shown to affect the

evolutionary volatility the agents experience, and thus the ability of the agents to achieve

their goals consistently over time. Specifically, traditional action (as in, acting similarly to

others, where this action is oriented towards other agents in the evolutionary process) is

shown to decrease volatility while not affecting the fitness that agents receive. The actions

of other agents are shown to have the potential to have a dramatic effect on the ability

of agents to maintain goal-achieving behaviour. However, dynamicity and the existence

of interference are often characteristics observed in the natural world – in addition to the

environments that artificial agents and systems are increasingly being situated in [101].
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These natural and artificial environments are often complex, unpredictable and dynamic,

making surviving a challenge for animals and artificial agents alike [148, 172, 242]. In order

to survive in these challenging conditions, many organisms such as nematodes [223] and

fish [163] show behavioural plasticity; this ability to express different behaviours – and

reverse them depending on varying environmental stimuli – allows rapid adaptation to novel

situations [185, 196]. This problem is not just specific to natural beings, as artificial agents

and systems are often tasked with learning in dynamic and unpredictable environments too.

Thus far, agents designed to operate in the RCD environment ‘learn’ with neuroevolution,

where the behaviour that agents develop over time stems from the knowledge encoded within

the weights of their deliberative neural network. However, evolving connection weights over

time to encode new information can result in a degradation of performance and ‘catastrophic

forgetting’ when learning new tasks or experiencing novel environmental contexts [146, 45,

78, 222]; learnt knowledge must be changed in order to learn new things and express new

behaviours, often leading to knowledge loss [78]. Learning complex, sequential or multi-

stage tasks is also difficult as complete information about the environment – including the

available actions, their cues and their consequences – is not usually accessible [66, 172].

These challenges are observed in Chapter 4, since agents must learn sub-tasks to achieve

their goal in the RCD, and interference from others changes the environment.

In nature, behavioural plasticity can allow organisms to adapt to novel contexts, through

immediate and temporary behavioural changes depending on the stimuli experienced. One

way to achieve this is with neuromodulation – a biological process whereby chemical signals

are gated, or regulated, in the brain depending on environmental stimuli [1]. Ducatez et al.

[73] demonstrate the importance of this mechanism for survival in novel environments, as

species of bird capable of plastic and innovative behaviour are shown to be at a lower risk

of extinction than those that cannot respond to environmental changes as effectively. As

the benefit of plasticity has been widely observed in nature, researchers have taken steps

to use neuromodulation to aid neural controllers with learning new or sequential tasks,

and learning in dynamic environments [78, 220, 61]. Consequently, exhibiting plastic, or

changeable, behaviour may help agents to mitigate interference when they are situated in

shared environments, since the actions of others can make the environment appear dynamic

and unpredictable.

The experimental study presented in this chapter is designed to abstract these concepts
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to explore how agents evolve to solve tasks of varying complexity, when they have no

knowledge of the task, environment, or others within the environment. Specifically, the

notion of single- and multi-stage tasks is explored, since real-world systems may often face

tasks of different complexities [48]. In this chapter, a multi-stage task is defined as one

that an agent must learn and perform different behaviours in different contexts in order to

achieve their goal; this definition is inspired by Dezfouli and Balleine [66]. A single-stage

task is thus one that requires a singular task to be learnt. Plastic and non-plastic agents

are evolved in the River Crossing Dilemma (RCD) testbed, introduced in Chapter 3, as

well as an adaptation of this called the Protected River Crossing Dilemma (PRCD). Agents

evolving in the RCD first associate the river with a negative fitness unless carrying a Stone,

so multiple behaviours must be learnt depending on the agent’s state; this is termed a ‘multi-

stage’ task. The PRCD however eliminates this association between the river and negative

fitness, reducing the complexity of the task to a ‘single-stage’ task. By investigating how

agents evolve to solve different complexities of task, the effect that behavioural plasticity

has on the evolution of goal-achieving behaviour in agents can be established when agents

evolve in different contexts; further, the ability to temporarily change behaviour can be

assessed in its suitability for mitigating interference in multi-agent environments.

Reversible and immediate behavioural changes as a result of neuromodulation are ex-

pected to enable agents to overcome the challenges associated with solving tasks and achiev-

ing goals in unpredictable and dynamic environments with greater effect than those not

capable of behavioural plasticity. Neuromodulation is operationalised in this chapter by

gating activation within a single neural network, allowing agents to regulate their behaviour

without affecting encoded knowledge; this distinguishes the approach from others, which

either use a separate modulatory network/neurons, or regulate learning as well as, or in-

stead of, behaviour [220, 61, 23]. By doing this, fewer resources are required for plastic

behaviour – which becomes more critical as the size or complexity of the network increases.

This study is designed to investigate the extent to which behavioural plasticity can help

agents to mitigate interference in single- and multi-agent environments when others are

unknown; further, how agents achieve their goals when the task and environment may vary

in complexity is studied. Additionally, an analysis of the fitnesses that agents receive during

and after evolution is performed, as well as the level of volatility that agents experience

during evolution; these factors are important to consider when designing systems – especially
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those that are in highly variable or dynamic environments – as a trade-off between fitness

and predictability may need to be considered.

The remainder of this chapter is organised as follows: Section 5.2 explores the concept

of behavioural plasticity in both natural and artificial environments; the design of the

experimental study is explained in Section 5.3, where the PRCD testbed is introduced, and

neuromodulation is operationalised; the results of the study are presented in Section 5.4 and

analysed further in Section 5.5; a discussion of the results and their implications is presented

in Section 5.6; finally, Section 5.7 summarises the findings and states the contributions made.

5.2 Behavioural Plasticity Arising from Neuromodulation

5.2.1 Behavioural Plasticity and Neuromodulation

One way to design adaptive systems is by utilising behavioural plasticity, which can be

seen as the ability to change or adapt behaviour based on changes in environmental stim-

uli [148]. This is important for navigating uncertain, novel or dynamic environments and can

be classed into two different types: developmental and activational [196]. Developmental

behavioural plasticity can be seen as learning from experience and external stimuli. Acti-

vational behavioural plasticity on the other hand enables immediate behavioural changes;

individuals can respond to new or dynamic environments during their lifetime by changing

their phenotype. These behavioural changes are reversible, as the genotype remains un-

changed. Activational plasticity is also termed ‘innate’ [148] or ‘contextual’ [199] plasticity.

These behavioural changes can be achieved with neuromodulation, which is a biological

process found in animal brains [102]; chemical signals modify, gate or regulate synaptic

plasticity based on the modulatory signal combined with the pre- and post-synaptic activi-

ties, and environmental stimuli [1, 197, 78], resulting in plastic behaviour. In neuroscience,

synaptic plasticity is the modification of synapses between neurons through strengthening

or weakening them [2]. In ANNs, synaptic plasticity is achieved by modulating neural net-

work weights; short-term modifications result in immediate phenotypic changes (behaviour,

appearance, etc.), and long-term changes result in learning and adaptation based on expe-

rience. Developmental plasticity is achieved by regulating learning in the long-term, where

modulatory signals alter synaptic strengths; activational plasticity is achieved by regulating

behaviour or synaptic activity in the short-term, without affecting learning and without
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long-lasting changes to synaptic strengths.

5.2.2 Achieving Developmental Plasticity with Neuromodulation

Similarly to ANNs being inspired by the connectionist architectures found in brains, neuro-

modulation has been widely applied to artificial models to regulate synaptic plasticity and

the learning rate of neural connections. Neural networks have been evolved with modula-

tory neurons to regulate learning and mitigate the catastrophic forgetting associated with

performing tasks in uncertain environments [197]; this method has been found to improve

learning in T-maze problems, where agents must navigate an uncertain foraging environ-

ment (either moving left or right, in a maze with a ‘T’-shape) in which the location of the

reward can change. Ellefsen et al. [78] however, have found that promoting the evolution of

modular neural networks by introducing a cost for neural connections can mitigate catas-

trophic forgetting and improve learning; here, learning is regulated with neuromodulation.

Neuromodulation has also been used to develop conflict learning in neural networks [99],

and associative learning in robots [110]; these two approaches employ neuromodulation, but

do not use neuroevolution as a learning mechanism.

The approaches outlined in this section modulate learning in the long-term by regulating

the local learning rate of neurons in the network, which results in developmental plasticity;

they do not however demonstrate how behaviour can be regulated in a short-term, reversible

way without affecting learning, in order to facilitate immediate behavioural changes to

changing environmental stimuli. Further, these approaches only use neuromodulation in

neural networks or robots that exist in isolation. One of the aims of this chapter however

is to explore how immediate behavioural plasticity can be achieved with neuromodulation

in agents without regulating learning, in single- and also multi-agent environments; this

may help agents to react immediately to changes within the environment as a result of

interference, without necessarily changing learnt behaviour.

5.2.3 Achieving Activational Plasticity with Neuromodulation

Neurobiological mechanisms have been explored using a computational framework based on

neuromodulatory systems such as the dopaminergic and serotonergic systems, by regulating

synaptic activity [127]. Whilst this is proposed to aid autonomous agents in exploratory

and exploitative decision-making, activational plasticity is not applied as a tool to improve
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neuroevolution, but rather to explore biological systems computationally. The effects of

modulating neuroreceptors and synaptic plasticity have been studied with spiking neural

networks to model EEG data [79]; an aim of that work is to produce a tool to explore and di-

agnose neurological disorders such as dementia – and not to use neuromodulation as a tool to

aid artificial agents in achieving goals. Supervised learning methods and ‘context-dependent

plasticity’ (termed as ‘activational plasticity’ [196] in this chapter) have been shown to be

beneficial for maintaining high accuracy for large numbers of sequential classification tasks,

based on the MNIST and ImageNet datasets [143]; this was achieved by gating activations

randomly in the network for each task. In other work, ‘context-dependent selective acti-

vation’ is achieved by learning parameters of a separate neuromodulatory network, which

gates activity for a prediction network [23]; this two-layered neural network approach is used

for learning sequential tasks by indirectly modulating learning, as the amount of activity in

the predictive network after modulation is reflected in the back-propagation process.

Plasticity has also been explored in the context of multi-agent systems, to help agents

change behaviour without changing genetic code – similar to the activational plasticity

discussed in this section. Nallur and Clarke [157] introduce the concept of ‘clonal plasticity’,

inspired by the way that plants can produce clones that are identical in terms of genetics,

but can vary in phenotype depending on environmental stimuli. The authors demonstrate

that clonal plasticity can lead to the emergence of diversification in agent populations in the

‘Minority Game’; agents have to choose one of two options, and will receive a reward if their

selection is in the minority choice selected by the population. Pitonakova et al. [168] on

the other hand explore plasticity in robotic swarms, where robots are able to communicate

with one another in order to forage for resources within an environment. Whilst these

are interesting applications of plasticity in the domain of multi-agent systems, the focus of

this chapter is instead on the modulation of neural networks to observe how agents may

achieve individual goals when others may or may not exist within the environment. In this

chapter, one agent’s fitness is calculated according to its own actions; however in the work

of both Nallur and Clarke [157] and Pitonakova et al. [168] (neither of which employ neural

controllers), an individual’s fitness is dependent on the collective actions of the population.
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5.2.4 Learning Multi-Stage Tasks in Multi-Agent Environments

Both humans and animals find learning in environments that change state or context with-

out explicit cues challenging – this however is a characteristic of most realistic environ-

ments [172]; these changes need to be detected in order to adapt behaviour accordingly, as

it is rare for this information to be explicitly available. This has also been identified as being

a difficulty of learning multi-stage tasks, as the full state-space of tasks is not usually avail-

able when learning [66]; despite this, agents and real-world systems often have to perform

multiple tasks simultaneously [48]. These challenges are also present when neural networks

learn to achieve new or many tasks, or navigate dynamic or uncertain environments; en-

coded knowledge must be adapted in order to learn new things, because changes in state

or stimuli also change the context in which behaviours are learnt [78]. A similar problem

is discussed in Chapter 4, which provides evidence for, and discusses the implications of,

learning in multi-agent environments without knowledge of the existence of others; environ-

mental stimuli change unpredictably as a result of the actions of others in the environment,

which can in turn affect evolution and goal-achievement.

Regulating synaptic plasticity with neuromodulation has been shown to facilitate adap-

tation and learning when there are changes in environmental stimuli or the task at hand,

thus helping agents to overcome these issues [61, 78, 197, 222]. Whilst neuromodulation has

also been used in multi-agent contexts, this is typically to explore the effect on cooperative

or competitive strategies in social dilemmas [9] or in competitive environments [242], where

agents are explicitly aware of others and thus employ strategies intentionally. Agents acting

in novel environments may not have full or even partial information about others in the

environment, and thus cannot cooperate or compete intentionally. In Chapter 4, the results

of the experimental study demonstrate that learning in multi-agent environments without

knowledge of the existence of others is problematic due to interference. Social action is

shown to improve learning in agents situated in multi-agent environments, however agents

do not exhibit behavioural plasticity or use neuromodulation; furthermore, the study is

limited to exploring multi-stage tasks.

The focus of this chapter is to explore the effect that behavioural plasticity arising from

the regulation of activity-propagating signals has on agent evolution in varying contexts. As

seen in the natural world [223], agents that are capable of expressing behavioural plasticity
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would be expected to adapt better to changing, dynamic and uncertain environments, than

those that are not. In artificial systems, it is common for long-term learning and activity to

be regulated by a separate group of modulatory neurons or an entire network [23, 220, 61].

The study presented in this chapter has a number of distinguishing characteristics and nov-

elties compared to other, similar work: the regulation of activity-propagating signals within

a single neural network would promote immediate behavioural changes rather than the reg-

ulation of learning; plastic and non-plastic agent evolution is observed when agents evolve to

solve either a single- or multi-stage task, in order to compare the effect of plasticity; agents

are also evolved in either a single- or multi-agent environment, where other work tends to

focus on single-agent evolution; additionally, neuroevolution is used in this study to evolve

which neurons in a single neural network are modulatory, resulting in a more structured

way of operationalising neuromodulation than in Masse et al. [143] for example, where neu-

ronal activity is gated randomly. By not explicitly regulating learning, behaviour is instead

regulated to provoke immediate phenotypic changes based on environmental stimuli. If

agents are capable of changing their behaviour temporarily, they may be able to mitigate

the consequences of interference with less risk of losing goal-achieving behaviour.

5.3 Experimental Study

The experiments in this study aim to investigate the effect that behavioural plasticity

through activity-gating neuromodulation has on agent evolution when the environment is

prone to change; the study, outlined below, is designed to explore the extent to which the

ability to rapidly and reversibly change phenotypic behaviour helps agents to solve tasks

in varying environmental conditions. By investigating how agents evolve to solve both

learn single- and multi-stage tasks, in both single- and multi-agent environments, different

combinations of environmental changes and variations are explored, and the results can be

compared. Specifically, the term ‘multi-stage task’ is used in a similar context to Dezfouli

and Balleine [66], where agents must learn multiple stages of a task in order to achieve a

goal. To extend the exploration of how agents evolve in uncertain environments, the final

experiments observe how agents react to a change in environmental context; to do this,

agents are first evolved in an environment alone for a period of time, and then are placed

within a multi-agent environment to continue evolving. Activational plasticity is hypothe-

C. M. Barnes, PhD Thesis, Aston University 2021 120



CHAPTER 5. NEUROMODULATION AND EVOLUTIONARY VOLATILITY

sised to help agents to achieve their tasks in these environments, by facilitating immediate

behavioural changes in response to different environmental contexts or conditions.

These concepts are important to explore since the agents in the RCD have no capacity

to perceive or learn of other agents; if the environment is dynamic and uncertain due to

the actions of others, the ability to immediately and reversibly change behaviour may be

beneficial in an attempt to avoid failure in the face of uncertainty. In Chapter 4, traditional

social action is shown to reduce evolutionary volatility compared to ‘standard’ goal-rational

agents, without affecting fitness; at the end of the chapter, the volatility of plastic and

non-plastic agents is analysed to ascertain whether a similar effect is observed.

5.3.1 Testbed Design

The River Crossing Dilemma (RCD) testbed, described in Section 3.2, is used in this study

as it supports both single- and multi-agent versions of the task. It is often the case that

natural and artificial agents must perform a number of actions before reaching a state

capable of reaching their goals; Dezfouli and Balleine [66] use the term ‘multi-stage task’ to

describe a task in which an agent has to perform appropriate actions in response to different

environmental states in order to achieve a goal. In their study, they explore the changes in

the decision-making processes of rats when they are faced with solving multi-stage tasks;

this addresses an issue in other studies where subjects were given information about the

task or action to perform ahead of time, as information relating to the task or state-space

was not available to the rats. Here, describing the RCD task as ‘multi-stage’ is therefore

appropriate, as agents must evolve to perform different actions depending on their own and

the environment’s state in order to achieve their goal; specifically, agents must learn that

Water is dangerous unless they are carrying a Stone, and that they cannot achieve their

goal unless they are able to cross the river safely – by building a bridge with Stones. In

line with the study performed by Dezfouli and Balleine [66], agents in the RCD testbed

have no a priori knowledge of the task or the environment, and must learn the appropriate

behaviours to respond to different states and environmental stimuli.

The Protected River Crossing Dilemma

In addition to the RCD which incorporates a multi-stage task, here, the Protected River

Crossing Dilemma (PRCD) is introduced; this is an adaptation of the RCD specifically
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designed to explore how agents evolve to solve single-stage tasks, since actors in both natural

and artificial environments may face tasks of different complexities [48].

The environment is constructed identically to the RCD as described in Section 3.2

(including gamification of the testbed, and the fitness function used), with the sole difference

that the river acts as an impassable – and most importantly, a non-lethal – obstacle; this

means that agents cannot move into the river and consequently drown, and can only interact

with Water by placing a Stone to build a bridge. This simple change removes the need for

agents to learn the different states in which they can interact with the river, i.e. that it

is not safe unless the agent is carrying a Stone. As the PRCD river is impassable, agents

must still perform sub-tasks such as bridge-building to achieve their goal of collecting their

reward object from the opposite river bank; removing the river entirely would remove the

multi-stage task but also make the task trivial. This single-stage version of the RCD

thus reduces the variability in the task and environment, making it less complex; as the

degree of plasticity is said to increase with environmental variability [122], the effect of

neuromodulation is expected to be less apparent in single-agent environments of both the

RCD and PRCD, than in multi-agent versions of the tasks.

5.3.2 Agent Design

The agents in both the RCD and the PRCD environments use the two-tiered neural network

architecture described in Section 3.3. Specifically, the deliberative network, which can be

seen in Figure 5.1, has three hidden layers with eight, six and four neurons respectively; all

other details of the agent design are as previously specified. The version of the deliberative

neural network used in this chapter has an increased number of neurons compared to the

network used in Chapter 4 (Figure 3.2); this is intended to simulate a larger brain size

than the previous study. Snell-Rood [196] posits that activational behavioural plasticity –

the focus of this chapter – increases with brain size, in terms of the number of neurons;

Herczeg et al. [103] observe this effect in guppies, where brain size can indicate the degree of

behavioural plasticity and an individual’s ability to adapt to novel environments. Increasing

the number of neurons in the deliberative neural network in this study compared to the

previous study is therefore intended to give agents the chance to express a higher degree of

plastic behaviour than would be expected if a smaller network was used.

C. M. Barnes, PhD Thesis, Aston University 2021 122



CHAPTER 5. NEUROMODULATION AND EVOLUTIONARY VOLATILITY

G R W

R S W

S C B

Figure 5.1: The deliberative network is a feed-forward neural network that generates high-level sub-goals –
here, with three hidden layers. Inputs are 1 or 0, corresponding to the agent’s current state: Grass (G),
Resource (R), Water (W), Stone (S), Carrying Status (C), if a Bridge partially exists (B). Outputs are 1 for
attraction, 0 for neutral or −1 for avoidance for each sub-goal: Resource (R), Stone (S), Water (W).

5.3.3 Operationalising Activity-Gating Neuromodulation

In this study, neuromodulation is operationalised as follows. Modulatory agents (also re-

ferred to as ‘plastic’) regulate their behaviour by gating and temporarily suppressing activity

within the deliberative network (Figure 5.1), without permanently changing the weights of

the network; this distinguishes the approach proposed in this chapter from others, which ei-

ther use a separate modulatory network/neurons, or regulate learning as well as, or instead

of, behaviour [220, 61, 23]. As behavioural plasticity is said to increase survival in novel

and dynamic environments (Section 5.2), it would be expected that this type of immediate,

temporary and reversible plasticity, achievable with activity-gating neuromodulation, would

enable agents to achieve their goals with a higher chance of success in the RCD. Further, it

would be expected that plasticity would also be beneficial to agents in shared environments,

as agents have no ability to perceive others, and therefore perceive the actions of others as

dynamicity in the environment itself.

Figure 5.2 shows an example of this activity-gating modulation. In this approach,

there are two different types of neuron in the deliberative neural network – a standard,

non-modulatory neuron, and a modulatory neuron; the hidden neurons in the deliberative

neural network may evolve to be non-modulatory or modulatory (explained further in Sec-

tion 5.3.4). The output of a ‘standard’ non-modulatory neuron is calculated in the same

way as defined in Section 3.3, by summing each input signal multiplied by the weight of

the connection, and passing this through an activation function (tanh in this case); the

output activation is then passed along the outgoing connections. Modulatory neurons also

propagate activity in the same way if the incoming signal (sum of inputs) is positive. If the
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Figure 5.2: In activity-gating neuromodulation, modulatory neurons propagate activity the same as non-
modulatory neurons when the incoming signal is ≥ 0; here, if the incoming activity signal to x2 is positive,
the outgoing activity signals of x2 propagate as usual and are passed on to the next layer of neurons (in
this case, y1 and y2). If, however, the incoming activity signal to x5 is negative, the modulatory neuron
fires and the outgoing activity is gated; specifically, this means that the neuron x5 will output signals of 0
along each of its outgoing connections (in this case to y3 and y4), so the outgoing signal is effectively gated
or ‘turned off’ when the signal is multiplied by the weight of the connection. This means agents can exhibit
behavioural plasticity, as the weights of the neural network are not changed, but temporarily suppressed;
this leads to the network producing different outputs and therefore different behaviours, without modifying
the network weights in a permanent way. It is important to note that modulatory neurons only affect their
own outgoing connections, so the connections from x4 and x6 to y3 and y4 are not affected when x5 fires.

incoming signal to a modulatory neuron is negative, the neuron will regulate the agent’s

behaviour by outputting a signal of 0 on each of its outgoing connections. This means that

weights on the connections will effectively be ‘turned-off’, or gated, as the signal is blocked

locally. Immediate, and more importantly reversible behavioural changes can therefore be

achieved depending on the stimuli experienced; the weights of the connections are therefore

not modified in a permanent way, which would instead regulate learning in the long-term

rather than behaviour in the short-term.

This gating or modulation of activity-propagating signals results in behavioural plastic-

ity; an agent’s genotype, represented by the evolved weights of the neural network and the

types of the neurons in the deliberative network, is therefore able to express multiple phe-

notypes depending on state and environmental stimuli – without changing, or potentially

destroying, the knowledge encoded in the weights of the network. In other words, a mod-

ulatory agent can temporarily change behaviour depending on the stimuli and inputs; this

is because modulatory neurons that are ‘switched off’ do not propagate any activity signals

to the next layer of neurons, thus changing the output of the network and the resulting

behaviour of the agent.

5.3.4 Neuromodulation in the Evolutionary Algorithm

The agents in this study are evolved using the Steady State Genetic Algorithm specified

in Section 3.4. For modulatory agents, the neurons in the hidden layers of the delibera-

C. M. Barnes, PhD Thesis, Aston University 2021 124



CHAPTER 5. NEUROMODULATION AND EVOLUTIONARY VOLATILITY

tive network are evolved in addition to the weights (input and output neurons cannot be

modulatory); neurons may evolve to be standard non-modulatory neurons, or modulatory

neurons that regulate network activity. The deliberative network of each agent is initialised

with only non-modulatory neurons, then the neuron types are evolved with neuroevolution

like the weights of the network. Agents that do not use neuromodulation have a static

network of non-modulatory neurons that do not evolve.

At each generation, the new offspring inherits the neuronal structure from a randomly

chosen parent, where the parents are the two agents with the best fitnesses in the tourna-

ment; all other details of the Steady State Genetic Algorithm, including how the weights of

the network are mutated, are as specified in Section 3.4. There is an additional probability

of Pmut = 0.15 that one randomly chosen hidden neuron in the deliberative network (Figure

5.1) will be mutated, from non-modulatory to modulatory or vice versa. This mutation rate

is inspired by the mutation operators and probabilities used by Ellefsen et al. [78], where

neuromodulation is used to regulate learning when evolving modular neural networks to

reduce catastrophic forgetting; the aim of this work has similarities to that of this study,

as neuromodulation here is used to help agents learn multiple sub-tasks simultaneously in

dynamic environments.

5.3.5 Experimental Design

All experiments are repeated 100 times using the same 100 seeds, both with and without neu-

romodulation. The first four sets of experiments evolve agents for 500,000 generations from

a randomly-initialised state; the final two sets of experiments evolve agents for 1,000,000

generations in total by first evolving agents in an environment alone, and then continuing

to evolve them in a shared environment together with another agent.

The first set of experiments explore how agents evolve to solve a single-stage task in the

PRCD, when they exist alone in the environment. This environment has the least inherent

variability, which will provide a baseline to compare the effects of neuromodulation in the

later experiments. Variability increases if there is more than one agent in the environment,

since the actions of each agent can change the environment unpredictably.

The second set of experiments introduces another agent into the PRCD environment;

this creates a social dilemma, so agents may evolve to cooperate or exploit the other un-

intentionally. As agents cannot perceive or reason about the actions or existence of other
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agents, their environment appears unpredictable and is harder to evolve in than when ex-

isting alone. These experiments evolve two separate, randomly-initialised populations of

agents that start on opposite corners of the environment.

The third set of experiments explores environmental variability further, by evolving

agents alone for an initial period of 500,000 generations, and observing how they are able

to achieve their goals when they continue to evolve in a shared PRCD environment with

another agent for a further 500,000 generations. Agents therefore evolve for a total of

1,000,000 generations, with the initial period of evolving alone being identical to the first set

of experiments in this study. These experiments are thus termed as ‘continued evolution’

(CE), as agents continue to evolve with another after evolving in isolation. Here, the

extent to which activity-gating neuromodulation affects how agents achieve goals when the

environment explicitly changes context from a single- to a multi-agent environment.

The fourth, fifth, and sixth sets of experiments are repetitions of the first three sets,

however these are conducted in the RCD environment. This multi-stage version of the task

requires agents to learn more behaviours than in the PRCD, since agents are able to interact

with or drown in the river; as such, it would be expected that this task is harder for agents

to learn due to the risk associated with the river.

5.4 Results

5.4.1 Learning Single-Stage Tasks When Alone

Firstly, agents are observed when evolving to solve the simplest task in the least variable

environment in the study – the single-stage task in the PRCD; the effect of neuromodulation

on agent evolution can be ascertained by comparing the evolution of both plastic and non-

plastic agents in these experiments. Figure 5.3a shows the mean best-in-population fitness

over time when agents evolve alone in the PRCD, both with and without neuromodulation.

The benefit of neuromodulation is seen from the beginning of, and is sustained throughout,

evolution. 85% of modulatory agents were able to solve the single-stage task, compared to

only 40% of agents that did not use neuromodulation (Table 5.1).
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(a) Single-Stage Task – Alone
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(c) Multi-Stage Task – Alone
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(d) Multi-Stage Task – Together
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(e) Single-Stage Task – Continued Evolution
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(f) Multi-Stage Task – Continued Evolution

Figure 5.3: The mean best-in-population fitnesses of agents evolving to solve (a) a single-stage alone or
(b) together, (c) a multi-stage task alone or (d) together, and (e) a single-stage or (f) a multi-stage task
with continued evolution, with and without neuromodulation (NM). Single-stage and multi-stage tasks take
place in the PRCD and RCD respectively. A fitness of: 0.7 indicates the goal is achieved individually; 0.9
indicates the cost of bridge-building is shared; 1.0 indicates exploitation; 0.7 or above indicates the goal is
achieved; below 0.7 indicates the task is failed (Equation 3.1).
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5.4.2 Learning Single-Stage Tasks When Together

By introducing two agents into the single-stage task PRCD environment, the variability of

the environment increases, and the task becomes gamified. To achieve their goal, agents

may evolve to achieve their goal alone, cooperate unintentionally, or exploit the actions of

the other agent; agents therefore have the potential to achieve a higher fitness, but at the

risk of becoming dependent on the actions of another to achieve their goal. Agents are

unable to perceive others or their actions, so the environment becomes unpredictable when

it is shared with another agent; the resulting uncertainty is perceived to be a characteristic

of the environment, rather than arising from another agent.

Figure 5.3b shows the mean best-in-population fitness of agents evolving together in a

shared PRCD environment. Similarly to when agents evolve to solve a single-stage task

alone (Figure 5.3a), neuromodulation is beneficial from the start of evolution. In Fig-

ure 5.3b, modulatory agents evolve to achieve a higher fitness more often, and by the end of

evolution, 97% of modulatory agents achieve their goal compared to 61% of non-modulatory

agents (Table 5.1). The effect of neuromodulation is more prominent when agents evolve

together compared to when they evolve alone, as agents can achieve a higher fitness. This

finding is not interesting in itself, however the fact that fewer agents evolve to achieve their

goals individually in shared environments compared to those in isolation (Table 5.1) demon-

strates the impact that interference can have on the evolution of goal-achieving behaviour.

Relying on other agents to achieve goals can be detrimental if those agents change their

behaviour or leave the environment. Further, the spike in fitness at the beginning of evolu-

tion is caused by both agents reacting to and evolving based on the changes in the other’s

behaviour; once each agent’s behaviour becomes more predictable, this spike drops. This is

also observed in Figure 5.4.5.

5.4.3 Learning Single-Stage Tasks with Continued Evolution

When another agent is introduced into the PRCD environment after an agent has evolved

in isolation for a period of time, the perceived variability of the environment increases; an

environment that was once predictable then becomes unpredictable, due to the actions of

the new agent. By continuing to evolve in this new, shared environment, behaviour that

was reliable in isolation may no longer be reliable if the environment changes in unknown
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Experiment Task NM
Fitness (% of Agents)

(S/M) 0.7 0.9 1.0 < 0.7 ≥ 0.7

Alone
S

No 40 0 0 60 40
Yes 85 0 0 15 85

M
No 37 0 0 63 37
Yes 77 0 0 23 77

Together
S

No 29 5 27 39 61
Yes 49 2 46 3 97

M
No 27 5 36 32 68
Yes 44 0 50 6 94

Continued Evolution
S

No 34 10 34 22 78
Yes 46 11 43 0 100

M
No 40 1 32 27 73
Yes 47 2 50 1 99

Table 5.1: The percentage of agents that receive common fitnesses in each experiment, after 500,000
generations of solving a single- (S) or multi- (M) stage task, with or without neuromodulation (NM). 0.7 is
a goal-achieving fitness after a bridge is built with two Stones; 0.9 is sharing the cost of bridge-building; 1.0
is exploitation; < 0.7 does not achieve the goal; ≥ 0.7 is a goal-achieving fitness.

ways. Not only this, but the opportunity to receive a higher fitness becomes accessible when

there is another agent introduced into the environment, as one agent may cooperate with

or exploit the other.

The mean best-in-population fitness of agents evolving with continued evolution in the

PRCD is shown in Figure 5.3e. There is a dramatic increase in fitness in the final 500,000

generations when the agents continue to evolve with another agent in the environment.

Modulatory agents appear to benefit more from this change in variability as 100% of mod-

ulatory agents achieve their goal after continued evolution, compared to only 78% of non-

modulatory agents (Table 5.1).

5.4.4 Learning Multi-Stage Tasks When Alone

Evolving to solve the multi-stage task present in the RCD is a more challenging – and more

perilous – task when the possibility of falling in the river exists, compared to the single-

stage task in the PRCD; agents must evolve to match correct behaviours with different

environmental stimuli under different conditions in order to succeed. When agents evolve

alone in the RCD environment, they can only achieve their goal once they have built a

bridge on their own. The maximum fitness an agent can achieve is therefore 0.7, after the

bridge-building cost is deducted from the fitness (Equation 3.1).
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The mean best-in-population fitness increases over time as more agents evolve successful

solutions; after 500,000 generations, 37% of agents evolved the necessary behaviours to

achieve their goal without neuromodulation, compared to 77% that achieved their goal

with neuromodulation (Table 5.1). Figure 5.3c shows that the mean best-in-population

fitness is higher when agents use neuromodulation, indicating that agents are more likely

to evolve successful solutions, and that they are able to do this in fewer generations than

agents that do not use neuromodulation.

5.4.5 Learning Multi-Stage Tasks When Together

The fitness function presented in Equation 3.1 evaluates each agent individually. When

agents share an environment, they can still achieve their goal alone by building a bridge

completely by themselves and enduring the associated cost; they can also exploit the other

to avoid the cost, or cooperate to share the cost of bridge-building. The maximum fitness

accessible to each agent therefore increases to 1.0 instead of 0.7, as agents may achieve

their goal without building a bridge. In each case, agents have no capacity to perceive

the existence or actions of the other, so cannot cooperate or exploit intentionally. The

multi-stage task in the RCD adds yet another layer of complexity onto the task and the

environment; a multi-agent environment introduces an element of unpredictability as agents

cannot perceive others, and a multi-stage task means that the agent must discover multiple

states and the corresponding consequences in the environment in order to achieve the goal.

Figure 5.3d shows that modulatory agents evolve to achieve their goal more often, and in

fewer generations, than non-modulatory agents. After 500,000 generations, 94% of modula-

tory agents achieve their goal, compared to only 68% of non-modulatory agents (Table 5.1).

This shows that behavioural plasticity is beneficial for agents to respond to changes in envi-

ronmental stimuli caused by the actions of others. Agents in multi-agent environments are

affected by the actions of the other agent in one way or another; this is seen when agents

solve single- and multi-stage tasks. Table 5.1 shows that fewer agents achieve their goals

individually (by building a bridge on their own, to receive a fitness of 0.7) when evolv-

ing together, than when evolving alone; overall, more agents achieve their goals in shared

environments because some exploit or cooperate with the other agent, but this may be

detrimental in the long run if agents are unable to learn bridge-building behaviour them-

selves. Additionally, agents that learn a multi-stage task achieve their goals individually less
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often than those learning a single-stage task, when comparing each experiment presented

in Table 5.1. This gives evidence that learning a multi-stage task can be more difficult for

agents to learn than a single-stage task, and that evolving goal-achieving behaviour is thus

more challenging when the complexity of the task is increased. This observation is less

prominent in multi-agent environments, since agents may simply learn to exploit others to

achieve their goal, instead of evolving the behaviours to achieve it individually.

5.4.6 Learning Multi-Stage Tasks with Continued Evolution

The maximum fitness agents can achieve in the RCD rises from 0.7 to 1.0 when agents change

from being in isolation to a shared environment. In the following experiments, agents evolve

alone in the multi-stage RCD environment for 500,000 generations, then continue to evolve

with another for a further 500,000 generations. Agents must adapt their behaviour to cope

with environmental changes, and the unanticipated actions of others, since the context in

which the agents have evolved in is completely changed.

Figure 5.3f shows the mean best-in-population fitness of agents that continue to evolve

together. The change in context from a single-agent to a multi-agent environment has an

instantaneous effect on the evolution of agents, which can be seen in the spike in fitness at

generation 500,000. This is because both plastic and non-plastic agents can immediately

capitalise on the changes in environmental stimuli caused by the imperceptible actions of

the other agent in the environment. This spike in fitness then falls slightly while agents

adjust to the new change in context. Agents are evolving in tandem and changing their

behaviour in response to the other agent’s changes in behaviour; the fitness falls slightly

after the change in context occurs as agents learn that other agents might not always be

reliable, and thus evolve to achieve lower fitness by achieving goals alone. This is also

seen in Figure 5.3e. Neuromodulation is observed to help agents to adapt to their new,

shared environment when the context of the task is changed; 99% of modulatory agents

achieve their goal, compared to only 73% of non-modulatory agents. Similarly to the other

experiments, modulatory agents achieve a higher fitness earlier in evolution than their non-

modulatory counterparts, which indicates that behavioural plasticity can increase the speed

in which goal-achieving solutions are found, and consequently maintained during evolution.

Generally, fewer agents are able to achieve their goal individually with continued evo-

lution in these experiments, compared to when they are alone. More agents are able to
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individually achieve their goal in the multi-stage task environment than the single-stage

task, although fewer agents achieve their goal overall. The effect that changing the context

in which an agent evolves affects evolution is studied in more detail in Chapter 6.

5.5 Analysing the Effect of Plasticity on Agent Evolution

Activity-gating neuromodulation increases both the likelihood and the speed that agents

evolve successful solutions – both when they exist alone, and when they exist together (Fig-

ure 5.3). This section analyses agent evolution in each experiment further, and aims to

ascertain whether behavioural plasticity affects agents in terms of the fitness they receive

both at the end of and during evolution. Additionally, the extent to which neuromodula-

tion affects the volatility that agents experience in terms of fluctuations in fitness during

evolution is explored.

5.5.1 Analysing Fitness

Analysing the Fitness Distributions

The statistical moments and median for the best-in-population fitness of each experiment

were calculated at the end of evolution, presented in Table 5.2. This analysis shows that

modulatory agents have the same or higher mean and median fitness across all experi-

ments. Combined with the results presented in Table 5.1, modulatory agents therefore not

only have a higher mean and median fitness, but they achieve their goal more often than

non-modulatory agents in each experiment. The variance in the best-in-population fitness

after evolution is also less in modulatory agents, which further illustrates the benefits of be-

havioural plasticity; agents will predictably receive higher fitnesses with neuromodulation.

The distribution of fitnesses after evolution for modulatory agents is negatively skewed,

where the amount of skewness tends to decrease from being highly skewed to more sym-

metrical as environmental variability increases. An increase in environmental variability

here refers to the way the environment changes unpredictably due to the actions of other

agents; environments where agents exist alone thus have less variability. This can be seen

in Figure 5.4, as the peaks in the kernel density estimation plots are towards the higher end

of the x-axis. This is supported by the fact that the median fitness tends to be higher than

the mean fitness for modulatory agents, meaning that agents would be likely to achieve a
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Exp Task NM
Moment

Median
Mean Variance Skewness Kurtosis

Alone
S

No 0.580 0.009 70 0.408 ∗ 1.17∗ 0.500
Yes 0.670∗ 0.005 15∗ −1.96 4.84 0.700∗

M
No 0.574 0.009 42 0.539 ∗ 1.29∗ 0.500
Yes 0.654∗ 0.007 16∗ −1.28 2.65 0.700∗

Together
S

No 0.713 0.0422 0.345 1.55 0.700
Yes 0.836∗ 0.0252 ∗ −0.0856∗ 1.42∗ 0.700

M
No 0.754 0.0447 0.0245∗ 1.36∗ 0.700
Yes 0.838∗ 0.0286 ∗ −0.282 1.60 0.850∗

Continued Evolution
S

No 0.778 0.0377 −0.137 1.56 0.700
Yes 0.851∗ 0.0205 ∗ −0.0513∗ 1.10∗ 0.900∗

M
No 0.744 0.0384 0.195 1.61 0.700
Yes 0.852∗ 0.0233 ∗ −0.132 ∗ 1.21∗ 0.950∗

Table 5.2: Statistical moments and median (to 3 S.F.) of the best-in-population fitness after 500,000
generations of evolving alone or together, or after 1,000,000 generations of continued evolution. Agents
evolve to solve a single- (S) or multi- (M) stage task. The highest mean and median, and lowest variance,
skewness, and kurtosis for agents with or without neuromodulation (NM) are indicated with an asterisk (*).

higher-than-average fitness. The opposite is generally true in non-modulatory agents, as

the fitness distributions are positively skewed; as with the modulatory agents, the amount

of skew tends to decrease as environmental variability increases. In each experiment, the

mean fitness for non-modulatory agents is higher than the median; this indicates that the

distributions are positively skewed and that agents would be likely to achieve a fitness less

than the average. A contributing factor to this is that non-modulatory agents are less likely

to evolve a goal-achieving fitness at the end of evolution than modulatory agents; this can

be seen in Figure 5.4, as the distribution is skewed to the right. The exception to this is

when non-modulatory agents evolve to solve a single-stage task with continued evolution, as

the distribution is negatively skewed; this is influenced by a large number of agents achiev-

ing high fitnesses at the end of evolution in this experiment (78%, Table 5.1) compared to

non-modulatory agents in the other experiments.

The kurtosis in the fitness distributions tends to increase in non-modulatory agents

as environmental variability increases, but decrease in modulatory agents; this suggests

that more outliers can be expected in the fitness distributions of non-modulatory agents as

environmental variability increases, and the opposite in modulatory agents. Saying this, all

fitness distributions are platykurtic (where excess kurtosis is negative (kurtexcess = kurt−3),

or kurt < 3), meaning that outliers and extreme values are not common overall.
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Figure 5.4: Kernel density estimations of the fitness of agents that evolve alone, together, or with continued
evolution (CE), and with or without neuromodulation (NM), to solve a single- (S) or multi- (M) stage task.
Note: graph scales are not comparable due to the disparity in the densities of each distribution.

Statistical Tests – Comparing Non-Modulatory and Modulatory Agents

To analyse the effect that activity-gating neuromodulation has on evolution further, statis-

tical tests were performed to compare the best-in-population fitnesses of modulatory and

non-modulatory agents in each experiment. Firstly, a Shapiro-Wilk test is described by

Yap and Sim [241] as being a powerful test for normality for a range of distributions that

are skewed, symmetric, and those with high or low kurtosis; as such, this is appropriate to

test the distributions described by the statistical moments and median in Table 5.2. Each

distribution was found to be non-normal, with the p-value for each Shapiro-Wilk test being

below 0.05; the results of these tests can be found in Table B.4 in Appendix B.2.

As the distributions are non-normal, Wilcoxon Signed Rank statistical tests were then

conducted to analyse the effects of behavioural plasticity on fitness and evolution; here,

the non-modulatory (mn) and modulatory (mm) approaches are compared, and the results

are presented in Table 5.3. The two-tailed tests show that there is a significant difference

in median fitness between non-modulatory and modulatory agents, for each experiment

in the study (p < 0.05, mn 6= mm); the null hypothesis that the medians of the two

distributions are equal, can thus be rejected as p < 0.05. Further, the median fitness of

non-modulatory agents (mn) is found to be significantly lower than in modulatory agents
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Exp Task
Statistical Test Alternative Hypothesis

z r
(S/M) mn 6= mm mn < mm mn > mm

Alone S 2.588×10−9 ∗ 1.294×10−9 ∗ 1 −5.960 −0.5960 (L)
Together S 2.362×10−4 ∗ 1.181×10−4 ∗ 9.999×10−1 −3.679 −0.3679 (M)
CE S 1.003×10−2 ∗ 5.014×10−3 ∗ 9.951×10−1 −2.580 −0.2580 (S)
Alone M 2.994×10−8 ∗ 1.497×10−8 ∗ 1 −5.547 −0.5547 (L)
Together M 1.594×10−2 ∗ 7.970×10−3 ∗ 9.922×10−1 −2.413 −0.2413 (S)
CE M 2.593×10−4 ∗ 1.296×10−4 ∗ 9.999×10−1 −3.656 −0.3656 (M)

Table 5.3: Wilcoxon Signed Rank statistical tests comparing the best-in-population fitness at the end of
evolution of the non-modulatory (mn) and modulatory (mm) agents in each experiment: evolving in an
environment alone, together, or with continued evolution (CE), with a single- (S) or multi- (M) stage task.
p-values (to 4 S.F.) are marked with an asterisk (*) if significant (p < 0.05). Effect sizes (r, to 4 S.F.) are
presented with the z-score they are calculated from (Equation 3.3, N = 100), and are classed as small (S,
r ≥ 0.1), medium (M, r ≥ 0.3), or large (L, r ≥ 0.5) [58].

(mm) for each experiment conducted (p < 0.05, mn < mm). These results demonstrate

that neuromodulation is beneficial to agents by increasing the observed fitness in all areas

of the study, however, the strength of this benefit is as of yet unexplored.

An effect size estimate r can be used to ascertain the strength of a relationship between

two variables; here, the best-in-population fitnesses after evolution of non-modulatory and

modulatory agents in each experiment are analysed. A negative effect size estimate r in each

of these experiments, seen in Table 5.3, indicates that modulatory agents receive a higher

fitness than non-modulatory agents. Further, it appears as though behavioural plasticity

via neuromodulation has a stronger effect on agents that are situated in an environment

alone, compared to those that act in a shared environment; one contributing factor to this

could be that agents can access a higher fitness when in a shared environment by exploiting

the actions of another agent – thus increasing the similarity between the fitnesses that non-

modulatory and modulatory agents receive overall. One thing to note here is that although

an agent can achieve higher fitnesses by cooperating with or exploiting another (thus in-

creasing the similarity between modulatory and non-modulatory agents as stated above),

this does not necessarily mean that the agent will have evolved the necessary behaviours

to achieve its goal alone; whilst achieving a high fitness by any means is desirable, it is

important for agents to be capable of achieving the goal if they find themselves unable to

depend on the other. Additionally, behavioural plasticity has a ‘medium’ effect [58] on the

fitness agents receive when they evolve alone for an initial period of time, and then continue

to evolve in a shared environment (‘continued evolution’). Whilst effect size is not linear,

neuromodulation has a stronger effect on the fitness of agents evolving with continued evo-
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Figure 5.5: Box plot depicting the number of generations agents receive a goal-achieving fitness (≥ 0.7)
during 500,000 generations of evolving to solve a single- (S) or multi- (M) stage task; agents evolve alone,
together, or with continued evolution (CE, excluding the initial period of evolving alone), and with or
without neuromodulation.

lution than on those that evolve together to solve a multi-stage task, but a weaker effect

than on those that evolve alone; this is an unsurprising observation as ‘continued evolution’

here encompasses evolution in both single- and multi-agent environments.

5.5.2 Analysing Goal-Achievement over Evolution

Thus far, the fitness that agents receive at the end of evolution has been assessed; modu-

latory agents are observed to have a higher mean fitness than non-modulatory agents, and

are also more likely to achieve their goals. However, while it is desirable to evolve agents

that can receive a goal-achieving fitness at the end of evolution, another benefit would be

for agents to consistently achieve their goals throughout evolution as well.

Figure 5.5 shows a box plot of the number of generations that agents in each experiment

receive a goal-achieving fitness (≥ 0.7) during 500,000 generations of evolution; the detailed

statistics can be found in Table 5.4. In each experiment, the first, second and third quartiles

are the same or higher in modulatory agents than in non-modulatory agents; this shows that

modulatory agents achieve their goal for more generations overall than their non-modulatory

counterparts. Not only is the data more heavily skewed to the left in modulatory agents, but

the spread of values is generally smaller than in non-modulatory agents; this indicates that
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Experiment Task NM Min Q1 Median Mean Q3 Max

Alone
S

No 0 26 217 151 588 378 222 500 000
Yes 0 155 103 412 986 316 252 488 567 500 000

M
No 0 1 170 139 129 353 437 500 000
Yes 0 99 206 412 955 310 455 487 648 500 000

Together
S

No 46 653 318 043 251 308 499 397 499 968
Yes 1394 412 690 486 264 423 809 499 654 499 980

M
No 16 852 258 916 244 726 452 762 499 992
Yes 399 320 212 436 195 385 511 486 331 499 977

Continued Evolution
S

No 0 185 382 500 000 354 842 500 000 500 000
Yes 145 809 500 000 500 000 493 500 500 000 500 000

M
No 0 2383 500 000 336 102 500 000 500 000
Yes 615 500 000 500 000 483 722 500 000 500 000

Table 5.4: The minimum and maximum number of generations that agents achieve their goal, along with
the first, second and third quartiles (Q1, median, and Q3 respectively), and the mean. Agents evolve for
500,000 generations to solve a single- (S) or multi- (M) stage task, when alone, together, or with continued
evolution (excluding the initial period of evolving alone), and with or without neuromodulation (NM). Values
are rounded to the nearest whole number.

modulatory agents are more predictable, and are likely to spend more generations receiving

a goal-achieving fitness than other agents. Agents using neuromodulation thus spend more

of evolution able to achieve their goals than agents not capable of behavioural plasticity.

To evidence this claim further, Wilcoxon Signed Rank statistical tests were conducted

to compare the number of successful generations between non-modulatory and modulatory

agents, where a ‘successful’ generation is one that an agent receives a goal-achieving fitness of

≥ 0.7 (Table 5.5). In line with Section 5.5.1, a Shapiro-Wilk normality test first indicated

each distribution was non-normal (p < 0.05); the results can be found in Table B.5 in

Appendix B.2. This justifies the use of a Wilcoxon Signed Rank statistical test. In each

experiment, the median number of successful generations is found to be significantly different

between non-modulatory and modulatory agents (p < 0.05, mn 6= mm). Further, there is a

significant directional difference between the two medians; the median number of generations

that non-modulatory agents successfully achieve their goals is less than in modulatory agents

(p < 0.05, mn < mm). The analysis thus far shows that behavioural plasticity is beneficial

to agents solving a variety of tasks under different environmental conditions, as modulatory

agents are more likely to receive a higher fitness at the end of evolution, achieve their

goals, and be more successful throughout evolution than non-modulatory agents. Further

evidence to support this conclusion is that a negative effect size estimate r, seen in Table 5.5,

is observed in each experiment; this indicates that modulatory agents are successful for more
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Experiment Task
Statistical Test Alternative Hypothesis

z r
(S/M) mn 6= mm mn < mm mn > mm

Alone S 2.128×10−7 ∗ 1.064×10−7 ∗ 1 −5.190 −0.5190 (L)
Together S 1.846×10−7 ∗ 9.230×10−8 ∗ 1 −5.216 −0.5216 (L)
Continued Evolution S 6.973×10−9 ∗ 3.487×10−9 ∗ 1 −5.800 −0.5800 (L)
Alone M 3.031×10−7 ∗ 1.515×10−7 ∗ 1 −5.123 −0.5123 (L)
Together M 2.177×10−6 ∗ 1.088×10−6 ∗ 1 −4.738 −0.4738 (M)
Continued Evolution M 2.484×10−8 ∗ 1.242×10−8 ∗ 1 −5.578 −0.5578 (L)

Table 5.5: Wilcoxon Signed Rank statistical tests comparing the number of generations that the best-in-
population non-modulatory (mn) and modulatory (mm) agents receive a goal-achieving fitness (≥ 0.7) in
each experiment: evolving alone, together, or with continued evolution, with a single- (S) or multi- (M)
stage task. p-values (to 4 S.F.) are marked with an asterisk (*) if significant (p < 0.05). Effect sizes (r, to
4 S.F.) are presented with the z-score they are calculated from (Equation 3.3, N = 100), and are classed as
small (S, r ≥ 0.1), medium (M, r ≥ 0.3), or large (L, r ≥ 0.5) [58].

generations during evolution than non-modulatory agents, regardless of whether the agents

evolve to solve a single- or multi-stage task, in a single- or multi-agent environment.

5.5.3 Analysing the Effect of Behavioural Plasticity on Volatility

The results of the experimental study show that behavioural plasticity arising through neu-

romodulation has a positive impact on the fitness agents achieve after evolution, as well as

the ability of agents to achieve their goals in both single- and multi-agent environments.

In this section, the impact that behavioural plasticity has on the evolutionary volatility

of agents – and thus their evolved fitness over time – is investigated. The three volatility

metrics outlined in Section 3.6.1 are used as a means of analysing the evolutionary volatility

that agents experience in each experiment; these metrics can be used to describe the evo-

lutionary process of agents, and whether the received fitness is prone to change frequently

during evolution. For all 100 runs of each experiment, a value for each of the three met-

rics was calculated using the best-in-population fitness at each generation across 500,000

generations of evolution, or all 1,000,000 generations for agents evolving with Continued

Evolution. Statistical moments and medians are presented for each metric in Table 5.6, and

kernel density estimation plots for the SDoT, CACoT and CCoT distributions are presented

in Figures 5.6, 5.7 and 5.8 respectively.

Analysing Volatility

In all experiments, non-modulatory agents are observed to have a lower mean and median

SDoT, CACoT and CCoT (Table 5.6) than their modulatory counterparts; this indicates
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Figure 5.6: Kernel density estimations of the SDoT of agents that evolve alone, together, or with continued
evolution (CE), and with or without neuromodulation (NM), to solve a single- (S) or multi- (M) stage task.
Note: graph scales are not comparable due to the disparity in the densities of each distribution.

that evolution is more volatile for modulatory agents and that the received fitness tends to

fluctuate often in agents that use neuromodulation. Further to this, agents have a lower

mean and median CACoT and CCoT when evolving to solve a multi-stage task than a single-

stage task, both with and without neuromodulation. The results therefore suggest that the

best-in-population fitness fluctuates less often and by lower amounts during the course of

evolution in agents that are tasked with solving a multi-stage task than those that solve

a single-stage task. The exceptions to this are that: the mean CCoT of non-modulatory

agents evolving together is higher for the multi-stage task than the single-stage task; the

mean CACoT of non-modulatory agents evolving with continued evolution is higher for

the multi-stage task than the single-stage task; and the CCoT of all agents evolving with

continued evolution is higher for the multi-stage task than the single-stage task. A similar

trend can be seen in Table 5.1, as more agents tend to solve the single-stage version of

the task in each experiment than the multi-stage version; this would contribute to more

fluctuations in fitness being observed during evolution, and more volatility as a result.

Non-modulatory agents have lower variability in CACoT and CCoT than their modu-

latory counterparts, however agents that use neuromodulation generally have a lower vari-

ability in SDoT than those that do not. These findings, combined with a lower mean and

median in each metric, indicate that non-modulatory agents will be expected to have fewer
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Metric Exp Task NM
Moment

Median
Mean Variance Skewness Kurtosis

SDoT

Alone
S

N 0.0251∗ 0.001 34 1.09 2.40 0.003 06∗

Y 0.0443 0.001 31∗ 0.254∗ 1.56∗ 0.0374

M
N 0.0188∗ 0.001 01∗ 1.55 3.73 0.002 85∗

Y 0.0419 0.001 39 0.292∗ 1.49∗ 0.0382

Together
S

N 0.0489∗ 0.003 71 1.65 4.94 0.0157 ∗

Y 0.0665 0.003 15∗ 1.19 ∗ 3.89∗ 0.0537

M
N 0.0802∗ 0.007 35 0.763 2.07∗ 0.0310 ∗

Y 0.0981 0.005 94∗ 0.636∗ 2.16 0.0804

CE
S

N 0.118 ∗ 0.009 65 0.236 1.47∗ 0.0956 ∗

Y 0.127 0.006 29∗ 0.164∗ 1.70 0.111

M
N 0.102 ∗ 0.0104 0.507 1.56∗ 0.0616 ∗

Y 0.129 0.006 90∗ 0.159∗ 1.59 0.133

CACoT

Alone
S

N 4.28 ∗ 72.2 ∗ 5.95 45.3 1.70 ∗

Y 8.13 174 5.70 ∗ 44.4 ∗ 4.70

M
N 2.79 ∗ 18.0 ∗ 3.25 14.7 1.10 ∗

Y 4.37 29.5 2.57 ∗ 9.59∗ 2.30

Together
S

N 41.3 ∗ 1730 ∗ 1.55 ∗ 5.18∗ 22.7 ∗

Y 206 69 600 2.69 13.4 116

M
N 40.8 ∗ 6560 ∗ 5.15 37.2 13.3 ∗

Y 97.1 16 400 3.38 ∗ 19.0 ∗ 46.1

CE
S

N 40.8 ∗ 5480 ∗ 3.04 13.9 40.8 ∗

Y 317 250 000 2.68 ∗ 11.1 ∗ 317

M
N 60.6 ∗ 25 800 ∗ 5.97 45.5 8.65 ∗

Y 231 149 000 2.68 ∗ 11.8 ∗ 47

CCoT

Alone
S

N 19.9 ∗ 1810 ∗ 5.94 45.3 7 ∗

Y 39.1 4340 5.70 ∗ 44.4 ∗ 22

M
N 12.5 ∗ 449 ∗ 3.25 14.7 4 ∗

Y 20.3 738 2.58 ∗ 9.61∗ 10

Together
S

N 155 ∗ 39 600 ∗ 2.52 ∗ 11.6 ∗ 75.5 ∗

Y 854 1 610 000 2.85 14.1 356

M
N 174 ∗ 129 000 ∗ 3.38 ∗ 15.2 ∗ 35 ∗

Y 373 360 000 4.00 24.2 134

CE
S

N 204 ∗ 159 000 ∗ 2.89 11.8 39.5 ∗

Y 618 5 910 000 2.54 ∗ 10.5 ∗ 1620

M
N 321 ∗ 1 530 000 ∗ 8.05 73.3 32.5 ∗

Y 1130 3 470 000 2.58 ∗ 10.9 ∗ 228

Table 5.6: Statistical moments and median of the SDoT, CACoT and CCoT of the best-in-population
agents after 500,000 generations of evolving alone or together, or after 1,000,000 generations with continued
evolution (CE). Agents evolve to solve a single- (S) or multi- (M) stage task. The lowest values for agents
with (Y) or without (N) neuromodulation (NM) are indicated with an asterisk (*).
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Figure 5.7: Kernel density estimations of the CACoT of agents that evolve alone, together, or with
continued evolution (CE), and with or without neuromodulation (NM), to solve a single- (S) or multi- (M)
stage task. Note: graph scales are not comparable due to the disparity in the densities of each distribution.

and more predictable fluctuations in fitness with less magnitude, and a higher and less

predictable SDoT than those that use neuromodulation. Additionally, the mean, median

and variance for each metric tend to increase as environmental variability increases. The

results therefore suggest that agents experience more volatility as environmental variability

increases, where volatility is likely to: be lowest in agents that evolve alone; increase when

agents evolve together; and be highest when agents evolve with continued evolution.

Each metric for each experiment has positive skewness, showing that the data is right-

skewed; this is supported by the median for each metric in each experiment generally being

less than the mean. This skewness and the shapes of the distributions can be seen in

the kernel density estimation plots for each metric, presented in Figures 5.6, 5.7 and 5.8.

The distribution of values for the CACoT and CCoT of each experiment is highly skewed,

whereas the SDoT is generally less skewed. Positive skewness indicates that agents would

likely have an SDoT, CACoT or CCoT lower than the average, as the distribution is skewed

by higher values; agents would therefore be expected to have a lower CACoT and CCoT

than the observed mean and median. Further, the skewness and kurtosis of each metric is

generally lower in modulatory agents than in non-modulatory agents; the values for each

metric would be less likely to be extreme and more likely to be symmetrical around the mean,

with outlier values being less likely in modulatory agents than non-modulatory agents.

C. M. Barnes, PhD Thesis, Aston University 2021 141



CHAPTER 5. NEUROMODULATION AND EVOLUTIONARY VOLATILITY

CE S CE M CE NM S CE NM M

Together S Together M Together NM S Together NM M

Alone S Alone M Alone NM S Alone NM M

0 50
0

10
00

15
00

20
00 0

30
00

60
00

90
00

12
00

0

0

50
00

10
00

0

0

25
00

50
00

75
00

10
00

0

0 50
0

10
00 0 50
0

10
00

15
00

20
00 0

20
00

40
00

60
00

80
00 0

10
00

20
00

30
00

40
00

0 10
0

20
0

30
0 0 30 60 90 12
0 0 20
0

40
0

60
0 0 50 10
0

0.00
0.01
0.02
0.03
0.04

0.0000
0.0005
0.0010
0.0015
0.0020

0.0000
0.0002
0.0004
0.0006

0.000
0.005
0.010
0.015

0.0000
0.0002
0.0004
0.0006
0.0008

0.0000
0.0001
0.0002
0.0003
0.0004

0.00
0.02
0.04
0.06

0.0000
0.0025
0.0050
0.0075
0.0100

0.000
0.001
0.002
0.003
0.004
0.005

0.00
0.01
0.02
0.03
0.04

0.000
0.001
0.002
0.003
0.004
0.005

0.000

0.002

0.004

CCoT

D
en

si
ty

CCoT Volatility Kernel Density

Figure 5.8: Kernel density estimations of the CCoT of agents that evolve alone, together, or with continued
evolution (CE), and with or without neuromodulation (NM), to solve a single- (S) or multi- (M) stage task.
Note: graph scales are not comparable due to the disparity in the densities of each distribution.

Statistical Tests – Comparing Non-Modulatory and Modulatory Agents

In addition to the analysis of fitness in Section 5.5.1, a Shapiro-Wilk test was conducted to

detect normality in the SDoT, CACoT and CCoT distributions for each experiment; these

results are presented in Table B.6 in Appendix B.2. The resulting p-value for each test was

below 0.05, indicating that the distributions for each experiment are non-normal. As such,

and in-line with the analysis performed in Section 5.5.1, Wilcox Signed Rank statistical

tests (one two-tailed (mn 6= mm), and two one-tailed tests (mn < mm, mn > mm)) were

then performed for each metric in each experiment; the results of these tests are presented

in Table 5.7. The SDoT, CACoT and CCoT were each found to be significantly different

between non-modulatory and modulatory agents (p < 0.05, mn 6= mm) in all experiments.

There are however two exceptions to this. The first is that the SDoT of agents evolving

with continued evolution to solve a single-stage task is not significantly different between

modulatory and non-modulatory agents (p = 0.376); this might be due to similar numbers of

agents successfully achieving their goal both with and without neuromodulation (Table 5.1),

meaning that there is less difference between the recorded SDoT in each experiment (fewer

agents do not achieve their goal than in other experiments, so there are fewer agents that

receive a very small SDoT). Secondly, the SDoT of agents evolving together to solve a
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Metric Exp Task
Statistical Test Alternative Hypothesis

z r
(S/M) mn 6= mm mn < mm mn > mm

SDoT

Alone S 1.297×10−4 ∗ 6.484×10−5 ∗ 9.999×10−1 −3.829 −0.3829 (M)
Together S 4.535×10−3 ∗ 2.267×10−3 ∗ 9.978×10−1 −2.840 −0.2840 (S)
CE S 3.760×10−1 1.880×10−1 8.129×10−1 −0.8870 −0.088 70
Alone M 2.052×10−7 ∗ 1.026×10−7 ∗ 1 −5.196 −0.5196 (L)
Together M 6.919×10−2 3.460×10−2 ∗ 9.657×10−1 −1.819 −0.1819 (S)
CE M 2.315×10−2 ∗ 1.157×10−2 ∗ 9.885×10−1 −2.273 −0.2273 (S)

CACoT

Alone S 5.881×10−5 ∗ 2.941×10−5 ∗ 1 −4.019 −0.4019 (M)
Together S 3.459×10−10∗ 1.730×10−10∗ 1 −6.278 −0.6278 (L)
CE S 5.787×10−9 ∗ 2.893×10−9 ∗ 1 −5.820 −0.5820 (L)
Alone M 3.982×10−4 ∗ 1.991×10−4 ∗ 9.998×10−1 −3.543 −0.3543 (M)
Together M 1.371×10−6 ∗ 6.856×10−7 ∗ 1 −4.831 −0.4831 (M)
CE M 1.213×10−5 ∗ 6.064×10−6 ∗ 1 −4.377 −0.4377 (M)

CCoT

Alone S 5.699×10−5 ∗ 2.849×10−5 ∗ 1 −4.027 −0.4027 (M)
Together S 3.520×10−8 ∗ 1.760×10−8 ∗ 1 −5.515 −0.5515 (L)
CE S 1.222×10−9 ∗ 6.112×10−10∗ 1 −6.080 −0.6080 (L)
Alone M 4.028×10−4 ∗ 2.014×10−4 ∗ 9.998×10−1 −3.540 −0.3540 (M)
Together M 3.152×10−5 ∗ 1.576×10−5 ∗ 1 4.164 −0.4164 (M)
CE M 1.982×10−6 ∗ 9.908×10−7 ∗ 1 −4.757 −0.4757 (M)

Table 5.7: Wilcoxon Signed Rank statistical tests comparing the volatility metrics for the non-modulatory
(mn) and modulatory (mm) agents in each experiment (Exp): evolving in an environment alone, together,
or with continued evolution (CE), with a single- (S) or multi- (M) stage task. p-values (to 4 S.F.) are marked
with an asterisk (*) if significant (p < 0.05). Effect sizes (r, to 4 S.F.) are presented with the z-score they
are calculated from (Equation 3.3, N = 100), and are classed as small (S, r ≥ 0.1), medium (M, r ≥ 0.3), or
large (L, r ≥ 0.5) [58].

multi-stage task is also not statistically different between modulatory and non-modulatory

agents (p = 0.06919); however, the SDoT was indeed found to be smaller in non-modulatory

agents than modulatory agents (p = 0.03460, mn < mm). Overall, behavioural plasticity

is found to only have a ‘small’, weak effect (r = −0.1819) on the SDoT of agents in the

latter case. In all other tests, the SDoT, CACoT and CCoT for non-modulatory agents are

found to be significantly lower than in modulatory agents (p < 0.05, mn < mm). This is

supported by a negative effect size estimate r in each experiment.

Behavioural plasticity appears to have a stronger effect on the SDoT of agents that evolve

alone compared to those that evolve together; the distributions of the non-modulatory and

modulatory approaches diverge from each other more in single-agent environments than in

multi-agent environments. This effect can be seen in Table 5.6, as the median SDoT for

agents that evolve alone is more disparate between non-modulatory and modulatory agents,

then when they evolve together. As the SDoT metric captures the standard deviation in

fitness over time, this finding would indicate that more volatility is experienced during

evolution when agents are situated in a shared environment than when alone; the actions
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of others introduces more environmental uncertainty and unpredictability, which in turn

decreases the strength of the effect of plasticity.

For the CACoT and CCoT, the effect that behavioural plasticity has on each of these

metrics appears to be stronger in the multi-agent versions of each experiment compared to

when agents evolve alone; additionally, the effect that plastic behaviour has on the volatility

agents experience appears to be stronger when agents evolve to solve a single-stage task

than a multi-stage task. This could be because fewer agents are generally able to achieve

their goal when evolving to solve a multi-stage task than a single-stage task (Table 5.1).

Overall, this analysis shows that modulatory agents experience higher evolutionary

volatility, where fitness fluctuates more often compared to their non-modulatory counter-

parts. This evolutionary volatility as captured by the SDoT, CACoT and CCoT metrics

also tends to increase as environmental variability increases; in other words, as the environ-

ment gets more unpredictable and uncertain due to the unknowable actions of others, the

received fitness over time for modulatory agents also tends to fluctuate more as a result.

There does however seem to be a trade-off between fitness and volatility; despite this higher

level of evolutionary volatility, modulatory agents are observed to have a higher mean fitness

than non-modulatory agents (Tables 5.3 and 5.7), and achieve their goals more often.

5.5.4 Analysing the Modulatory Neurons in the Neural Networks

To understand the effect that behavioural plasticity can have on agents further, the arrange-

ment of modulatory neurons that evolve in the agents across the study were examined to see

whether any patterns emerge. For each of the 100 runs of each experiment, the deliberative

network for the single best-in-population agent after evolution was recorded for comparison.

Table 5.8 presents the most common configuration of modulatory neurons evolved in

the deliberative networks in each experiment, broken down into agents that do and do not

achieve the goal. There is no single common configuration of neurons for the experiments

where agents do not achieve their goal while evolving together or with continued evolution;

this is because fewer agents do not achieve their goal than those that do. It is worth noting

that the frequency of these common configurations is low compared to the total number of

agents that do and do not achieve their goal (e.g. six agents had a common configuration

out of 85 that achieved their goal when evolving alone to solve a single-stage task). As such,

no configuration is common in all agents that achieve their goal across all experiments, and
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Experiment Task Goal L1 L2 L3 LT Freq Total

Alone
S

Yes 4 3 3 10 6 85
No 3 3 3 9 2 15

M
Yes 3 2 2 7 5 77
No 3 2 3 8 2 23

Together
S

Yes 4 4 2 10 6 97
No - - - - - 3

M
Yes 4 3 3 10 6 94
No - - - - - 6

Continued Evolution
S

Yes 4 2 1 7 7 100
No - - - - - 0

M
Yes 5 4 2 11 8 99
No - - - - - 1

Table 5.8: The most common number of modulatory neurons evolved in each of the three layers of the
deliberative neural networks (L1, L2, L3), and in total (LT). Results are presented for agents evolving to
solve a single- (S) or multi- (M) stage task, and those that achieve their goal and those that do not. The
frequency that the configuration occurs is shown, as well as the total number of agents overall. A dash (-)
indicates that no configuration occurred more than once.

similarly no configuration commonly leads to agents not achieving their goal.

It is therefore apparent that agents can achieve their goal in many different ways, with

different numbers of modulatory neurons in each layer and in different arrangements. It is

not clear whether all modulatory neurons in these configurations are used or beneficial –

some may be redundant if the surrounding weights are near zero values. Saying this, no

agent was observed to evolve a neural network with either zero modulatory neurons or the

maximum out of a possible 18 – each agent evolved a deliberative neural network with at

least three modulatory neurons. This suggests that there is no obvious link between the

number or configuration of modulatory neurons and: the success of an agent; the behaviours

that the agent switches between; the stimuli that affects when modulation occurs; the type

of environment it evolves in; or the task in which it has to solve. Because modulatory neu-

rons can regulate neural network activity locally, this can potentially make goal-achieving

behaviours (such as moving towards Water when a Stone is being carried) become accessible

early on in evolution – without the agent needing to encode that exact knowledge directly

in the network. This could be an explanation of why the mean best-in-population increases

faster in agents that use neuromodulation than in non-modulatory agents in Figure 5.3.

Further, agents did not converge to one single ‘successful’ or ‘unsuccessful’ configuration of

modulatory neurons. Modulatory neurons can be arranged in a number of different ways

to have a positive effect on agent evolution and fitness.
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5.6 Discussion and Implications

Evolving to solve tasks in dynamic and uncertain environments can be a difficult process for

neural networks, as learning or altering behaviours in response to changes in environmental

stimuli means that knowledge encoded in the network will be changed. If this happens,

behaviours that previously led to the achievement of goals may be lost, and fitness may

therefore degrade as a consequence [78]. This becomes especially important to consider

when designing real-world systems, as they can often be faced with solving tasks of different

complexity, and with multiple stages [48]. In Chapter 4, the implications of evolving in

a shared environment to achieve individual goals is demonstrated when evolving neural

networks as agent controllers. When two agents – each unaware of the other – act within

a shared environment, the consequences of these actions can interfere with the other’s

evolution and ability to achieve their own goals, making evolution more volatile. Unintended

interactions can therefore have an unexpected impact on how well suited an agent or system

is for the environment it is located in. These issues are becoming evermore important to

consider when designing technical systems, as they are increasingly being composed of many

components or sub-systems; as a result, it becomes increasingly likely that these systems

will interact in unintended and unpredictable ways [101], which can lead to the state of

the environment changing without warning through the actions of others. The ability

for a system to behave appropriately regardless of unexpected interactions or changes in

environmental states therefore becomes crucial.

In nature, behavioural plasticity is one mechanism that helps animals and humans to

temporarily change their behaviour in an attempt to survive or overcome environmental

changes. In this study, this concept is abstracted by exploring how simulated agents evolve

in both single- and multi-agent environments, when agents evolve to solve either a single- or

multi-stage task. Here, the variability of each experiment differs in terms of whether there

is another agent that can affect the state of the environment with its actions. In all cases,

agents have no knowledge of other agents in their environment and therefore cannot intend

to interact with others – nor can they evolve to understand that a perceived environmental

change is caused by the actions of another agent.

Behavioural plasticity in the form of evolving with neuromodulation is shown to have

a positive effect on the fitness that agents receive throughout and at the end of evolution.
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However, what may not be so intuitive is the observation that behavioural plasticity also

increases the volatility of agent evolution: whilst agent fitness is higher in modulatory

agents than non-modulatory agents overall, the fitness over evolution fluctuates more. One

might expect that dynamic behaviour would – in addition to improving the chance of

success – actually decrease the amount of volatility within the system, by counteracting any

dynamics or volatility present within the environment. The three metrics used to measure

the amount of evolutionary volatility (SDoT, CACoT, and CCoT, Table 5.6) show this is

not the case, as the mean and median for each metric tends to increase as the variability

in the environment increases. Even when an agent evolves alone – and therefore doesn’t

experience interference – agents that are capable of behavioural plasticity experience more

evolutionary volatility than agents that are not.

Agents that evolve alone to solve either a single- or multi-stage task experience less

evolutionary volatility than agents that share an environment with another agent. These

results corroborate the findings presented in Chapter 4, which demonstrates that the ac-

tions of another, unknown agent within the environment can make the environment appear

unpredictable and variable; this in turn increases the evolutionary volatility of agents in

shared environments, since agents may attempt to change their behaviour when experienc-

ing changing environmental stimuli. Whilst the overall number of successful agents increases

when agents are in shared environments compared to when they are alone, the number of

agents able to achieve their goal individually in fact decreases; this shows that it is harder

to evolve individual behaviour when the environment is prone to change due to the actions

of others. More agents overall are able to achieve their goal in a shared environment than

an individual environment, as exploitative behaviour can emerge; these exploitative agents

evolve to rely on the actions of their unknown partner agent in order to achieve their goal.

From an agent’s perspective, the environment becomes predictable because agents are un-

able to perceive others or their actions, and thus there is no incentive to evolve individual

goal-achieving behaviours as this comes at a personal cost. To demonstrate this further,

when an agent first evolves alone and then continues to evolve in a shared environment,

the change in context and increase in variability also affects the individual goal-achieving

behaviours evolved when alone; when modulatory agents continue to evolve with another

agent, some agents lose their individual goal-achieving behaviour in favour of exploiting the

other agent to receive a higher fitness. Whilst this is beneficial for the agent in terms of the
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fitness received, agents are reliant on events beyond their control in order to achieve their

goal. If an agent was to suddenly find itself in an environment alone again, it is likely it

would have to rediscover the goal-achieving behaviours it once possessed.

The findings and analyses presented in this chapter show that consequences can exist

for systems that are unable to act appropriately in environments that are prone to change,

or when there is the potential to be affected by the actions of an unknown other system

in the same environment. In reality, as systems and the components they are comprised

grow larger, the opportunities for unintended interactions with others and unexpected en-

vironmental changes also increase. Behavioural plasticity is one route to equipping systems

with the ability to overcome environmental uncertainty, although this is shown to lead to

a higher level of evolutionary volatility. However, higher volatility in this case is the cost

of an increase in fitness and ability to achieve goals; agents spend more of their lifetime

or evolution able to achieve their goals than those that are not capable of behavioural

plasticity, which provides further evidence of the benefit of plasticity. A trade-off between

fitness and volatility therefore exists in plastic agents, where the benefits of plasticity are

demonstrated in both single- and multi-agent environments, where agents evolve to solve

different complexities of task. This study demonstrates that designers of systems have a

choice between predictability in terms of the fitness achieved over time, or an increase in

fitness that may come as a result of exploitative behaviour. Behavioural plasticity may

therefore not be entirely suitable in environments where an agent relying on the actions of

another to achieve goals is not desirable; the following chapter will examine the effects of

plasticity and increasing variability on agent evolution in closer detail.

5.7 Conclusion

In this chapter, the River Crossing Dilemma testbed is used to explore the effect that

activity-gating neuromodulation has on an agent’s ability to evolve in environments when

experiencing interference. Additionally, the Protected River Crossing Dilemma testbed is

introduced, which incorporates a less complex, single-stage task compared to the multi-

stage task seen in the RCD; this is so that agent evolution can be analysed when agents

evolve to solve different complexities of task. An important element of this study is that

agents do not have the capacity to know of or learn about the actions or existence of other
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agents; in this way, they cannot intend to cooperate or exploit one another.

The main findings and contributions of this chapter are:

• Behavioural plasticity benefits agents that evolve to solve different complexities of

task in environments that vary to different extents, as plastic agents achieve their

goals more often and achieve higher fitnesses as a result. This relates to the third

research question outlined in Chapter 1.

• Variability arising from the actions of other, unknown agents in an environment can be

overcome by using behavioural plasticity. This relates to the first and third questions

outlined in Chapter 1.

• Behavioural plasticity increases fitness as well as the evolutionary volatility experi-

enced by agents in tasks of varying complexity. This relates to the second and third

questions outlined in Chapter 1.

• Evolving individual goal-achieving behaviour is harder in multi-agent environments,

however agents may evolve to exploit the actions of others by sacrificing their ability to

achieve their goal individually. This relates to the first question outlined in Chapter 1.

• Modulatory agents are shown to achieve their goals in many different ways – there

is no single arrangement of modulatory neurons that influences an agent’s ability to

achieve goals in any of the experiments conducted. This relates to the third research

question outlined in Chapter 1.

These results demonstrate that behavioural plasticity as a result of activity-gating neu-

romodulation has an observable effect on the expected fitness of evolved agents in different

environments; this behavioural plasticity is beneficial to create adaptive agent controllers

that can temporarily and reversibly change behaviour in novel situations. Specifically, plas-

ticity is beneficial to agents that exist in individual or shared environments, as well as those

that solve simpler single-stage, or more complex multi-stage tasks. Additionally, when the

context of an agent’s environment changes from being individual to shared, neuromodula-

tion helps agents to adapt and succeed to the new context and change in environmental

stimuli.

Using three metrics to analyse evolutionary volatility, agents exhibiting behavioural

plasticity as a result of neuromodulation are shown to experience more fluctuations in fitness
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during evolution than those that do not showcase plastic behaviour; this higher volatility is

a result of modulatory neurons regulating activity in the neural networks, as a response to

changing environmental stimuli. While experiencing a higher level of evolutionary volatility

is a consequence of the ability to temporarily and reversibly demonstrate different behaviour

by using neuromodulation, agents are more likely to achieve their goals, spend more of their

lifetime or evolution being able to achieve their goals, and receive a higher fitness than non-

modulatory agents. Behavioural plasticity arising from neuromodulation therefore creates a

trade-off, as a significantly higher expected fitness and chance of goal-achievement comes at

the cost of higher evolutionary volatility. This may indeed be desirable for agents that exist

in highly unpredictable and unknown environments, by equipping them with the ability to

respond quickly and appropriately to environmental change in a way that preserves or even

improves fitness or performance.

This study has explored the impact of behavioural plasticity on evolutionary volatility

and agent fitness, by comparing how agents evolve in single- and multi-agent environments

to solve single- and multi-stage tasks. The most variable environment in this study evolved

agents alone for an initial period of time, before continuing to evolve with another agent;

the study presented in Chapter 6 will investigate the extent to which behavioural plasticity

enables agents to maintain their goal-achieving behaviours when the presence of other agents

in the environment is unpredictable and uncertain. This would create more uncertain

conditions for agents to evolve in than those observed in this chapter.

As systems are increasingly located in unpredictable and variable environments, pos-

sessing the ability to overcome the unknown and to behave appropriately in unseen scenar-

ios is evermore important. This study demonstrates that activity-gating neuromodulation

allows agents to temporarily and reversibly change behaviour in response to changing en-

vironmental stimuli without affecting knowledge encoded in their neural networks. Whilst

behavioural plasticity is shown to improve fitness during agent evolution and the ability to

achieve goals, a trade-off is also shown to exist as agents experience more volatility during

evolution as a result.
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Chapter 6

Environmental Variability and

Evolutionary Volatility

The work presented in this chapter has been adapted from the following publication:

[20] C. M. Barnes, A. Ekárt, K. O. Ellefsen, K. Glette, P. R. Lewis, and J. Tørresen. Evolving

Neuromodulated Controllers in Variable Environments. In Proceedings of the IEEE 2nd International

Conference on Autonomic Computing and Self-Organizing Systems (ACSOS). IEEE, 2021. In Press.

6.1 Motivation

In the natural world, both humans and animals alike are often situated in environments

that are dynamic, uncertain, and prone to changes in context over time. One way that or-

ganic creatures have adapted to survive in their variable environments is through exhibiting

plasticity; this ability to temporarily and immediately alter phenotypic traits like behaviour

depending on the environmental stimuli helps to overcome the unknown [196, 122, 59]. As

discussed in Chapter 5, behavioural plasticity can be achieved through neuromodulation, a

biological process found within the brain whereby synaptic activity is regulated in response

to novel or changing stimuli [1], resulting in short- or long-term changes in behaviour. The

decision-making processes that we, as humans, and animals make must therefore be adapt-

able over time in order to behave appropriately in response to environmental changes, to

achieve goals and ultimately to survive [120, 177].

The experimental study presented in this chapter extends that of Chapter 5, with the

intention of exploring how behavioural plasticity may affect goal-achievement when artifi-
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cial agents repeatedly find themselves in new situations. This is henceforth termed ‘envi-

ronmental variability’, referring specifically in this study to the changes in environmental

conditions that evolutionary agents face either during or between generations. As estab-

lished in Chapter 4, the actions of other agents in the environment can cause interference,

leading to changes in the way that agents evolve; if the effects of such interference are not

understood, agents will perceive the environment to be changing of its own accord, thus

creating new and unpredictable situations for them to deal with. Further, how agents may

evolve to express ‘intelligent behaviour’ [231] when encountering these unforeseen conditions

in environments that are highly variable is explored, as they experience a range of scenarios

and utilising this knowledge to succeed in the face of the unknown. By evolving agents

in increasingly variable environments, agents can potentially experience a diverse range of

environmental conditions; one would imagine that the more knowledge that an agent gath-

ers about past experiences, the more resilient it would be to new contexts, situations, or

changes in environmental stimuli. One of the aims of this chapter is to therefore understand

how agents may mitigate interference from other agents in highly variable environments.

Komers [122] states that the degree of plasticity would increase with variability in the

natural world. The focus of this chapter is to therefore explore whether a relationship

between variability and plasticity is also observed in artificial agents. Specifically, this focus

is on observing how agents with no capacity to perceive others evolve in environments with

different levels of variability, to analyse the effect that neuromodulation has on agents in

these increasingly uncertain environments. In Chapter 5, behavioural plasticity is shown to

be a useful mechanism for survival when agents are faced with this kind of environmental

uncertainty – at the cost of evolutionary volatility; as such, the effect that neuromodulation

has on agent evolution and goal-achievement is also explored, to ascertain the extent to

which temporary, reversible changes in behaviour enables agents to achieve their goals in

increasingly variable environments. Further, the evolutionary volatility of these agents is

measured to ascertain whether a trade-off between fitness and volatility exists when agents

evolve to achieve individual goals in dynamic environments.

The remainder of this chapter is organised as follows: Section 6.2 discusses how envi-

ronmental variability has been explored within the literature; Section 6.3 details how the

experimental study that this chapter is based upon is designed, using the River Crossing

Dilemma testbed introduced in Chapter 3; Section 6.4 then presents the results of the study,
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which is analysed further in Section 6.5; finally, Section 6.6 discusses the findings and their

implications, with Section 6.7 closing the chapter by stating the contributions made.

6.2 Exploring Plasticity and Variability

The study in this chapter extends that which is presented in Chapter 5, where the effect

of behavioural plasticity is explored in agents that evolve in increasingly variable environ-

ments. To elaborate on discussion of related literature in Section 5.2, this section firstly

reiterates the general notion of behavioural plasticity; the literature surrounding environ-

mental variability and dynamicity is then explored, to provide a solid grounding for the

environmental study detailed in Section 6.3.

6.2.1 Behavioural Plasticity via Neuromodulation

Behavioural plasticity is observed in the natural world in animals such as the orb spider,

Eustala illicita [106], the Namibian rock agama, Agama planiceps [49], and the African

striped mouse Rhabdomys pumilio [185]; these organisms can change their behaviour in

response to changing environmental stimuli, and novel or variable environments [199, 196].

Behavioural plasticity is thought to increase the chances of survival of organisms that exist

in novel, dynamic or uncertain environments [196], enabling rapid reactions to unknown

stimuli. If an organism experiences a change in environmental stimuli, or if the environment

is in a constant state of flux, ‘activational plasticity’ [196] can allow the organism to alter

its behavioural responses in a short-term, immediate, and reversible way [122, 90, 69].

These behavioural changes can be achieved with neuromodulation, which strengthens or

weakens the synapses between neurons; this results in the regulation of synaptic plasticity

based on the chemical modulatory signals, the pre- and post-synaptic activities, and the

environmental stimuli [1, 2]. Neuromodulation can either result in learning in the long-term

if synaptic strengths are changed over time, or immediate, temporary behavioural changes

if a modulatory signal temporarily changes the synaptic activity – the latter of which is the

focus of this chapter and that which precedes it.
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6.2.2 Variable Environments and Plasticity in the Natural World

Komers [122] states that although learning is one type of behavioural plasticity, it is not a

prerequisite for plastic behaviour; instead, ‘innate’ changes to behaviour, described above

as ‘activational plasticity’ [196] are sufficient. Further, Komers expects that the degree

of behavioural plasticity would increase with environmental variability, implying that or-

ganisms capable of temporary behavioural changes are better suited to, and change their

behaviour more often when situated in variable environments. In one study that looks at

how environmental variability affects the behaviour and rehabilitation of hatchery reared

cod, Braithwaite and Salvanes [42] found that the development of ‘flexible’ or plastic be-

haviour is promoted when the fish are placed in environments prone to change; this was

found to increase the chances of survival and successful rehabilitation in the wild, whereas

fish in the least variable conditions performed poorly from a lack of adaptability. Even the

nematode C. elegans is found to exhibit plasticity by altering future behaviour if environ-

mental stimuli is perceived to have changed. C. elegans contains only 302 neurons, which

pales in comparison to the 86 billion neurons that the brain of an adult human male contains

on average [11]; the nematode is thus a well-suited candidate for studying neural mecha-

nisms, such as those that underpin plasticity, in close detail [42]. These findings support

the expectations of Komers [122], in that plastic behaviour is both prevalent in organisms

in highly variable environments, and less prevalent in more predictable environments.

Further to the studies of the effect of variability in the natural world described above,

human behaviour has also been studied in the context of usage of common-pool resources,

however this is moreso in terms of social dynamics rather than plasticity. Anderies et al.

[7] show that in an ‘irrigation game’, which involves physical infrastructure to manage a

common-pool resource and managing an asymmetrical common-pool resource dilemma for

access to the resource (where water is the resource in this case), participant cooperation

drops in variable environments compared to a low-variability environment. Additionally,

when an environment shifts upwards in the level of variability, understanding of the struc-

ture of the system is said to play a part in the performance of the participants and their

ability to adapt to variable environments [7]; this can be thought of in the context of plas-

ticity, in that a better understanding of variability in the environment and its consequences

can lead to more plastic and successful behaviour. On the other hand, Fehl et al. [83] found
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that cooperative behaviour is more prevalent in dynamic networks (i.e. those where part-

ners can change) of anonymous human participants playing iterated Prisoner’s Dilemma

games, compared to static networks of fixed partners. An interesting question to explore

in the experimental study presented in this chapter would therefore be whether the level

of environmental variability would have an impact on the social dynamics that emerge in

the environments – especially as agents have no knowledge of others, or their intentions,

actions, or capabilities.

In this chapter, as well as the preceding study presented in Chapter 5, the concept of

regulating behaviour rather than learning is explored; as such, this chapter explores the effect

of activational plasticity – the immediate and reversible changes to behaviour, facilitated

by neuromodulation – when agents evolve in environments that vary to different extents,

both within and between generations. It would therefore be expected that any observed

benefit of behavioural plasticity is sustained as environmental variability increases, as plastic

organisms in nature are observed to have an increased degree of plasticity in more variable

environments [11, 42, 122].

6.2.3 Variability in Artificial Environments

In the context of agent-based systems, when an agent encounters a new context, situation,

or environment, past experience or knowledge may not be either useful or beneficial when

the environment has elements of dynamicity or uncertainty [216]. Cheng et al. [54] discuss

the challenges faced by technical systems operating in real-world environments shared with

other systems (in this instance, robots); namely, these include interacting or behaving ap-

propriately despite the heterogeneity of other systems or obstacles within the environment,

as well as the assumed perfect knowledge of the capabilities or actions of others. In reality,

such wealth of knowledge is an expensive and often unrealistic luxury. In nature, if full

information about the environment, the consequences of the actions of others, or even the

presence of others is not known, evolution can be negatively affected [122]. This however

is becoming increasingly commonplace in heterogeneous technical systems, as components

within the system may not initially have the ability to perceive, learn about or interact with

others [5].

The way in which agents learn or evolve in variable environments has been explored in

the domains of reinforcement learning [184, 158], social learning [158, 116] and robotics [50,
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54], to name a few. Carvalho and Nolfi [50] define the ‘behaviour’ of agents in variable

environments as the process arising from agent or environmental interactions; specifically,

the authors show that robots with neural controllers can evolve behavioural plasticity over

time, enabling them to achieve their goal in a room-cleaning task more efficiently when

presented with changing environments. Carvalho and Nolfi [50] also express the importance

of behavioural plasticity as a mechanism that can be used to overcome variability in both

the internal and external environment, stating that:

“...all environments are variable, from the perspective of an organism that is

situated and performs actions in an environment, independently of whether they

appear variable or not from the perspective of an external observer.” [50]

Ndousse et al. [158] also explore how agents evolve in variable environments, however

the effect of social learning in this context is explored instead of plasticity; variability in

that study arises from being situated in either a single- or multi-agent environment, and

the changes in effects that the presence of a partner can have within the environment itself.

The authors found that the opportunity to gain experience through social learning actually

improves agent performance in solitary environments, compared to agents that only have

the chance to learn alone. Learning from a broad range of experiences and contexts in

a multi-agent environment appears to be beneficial when the context of the environment

changes such that an agent finds itself alone.

Drawing the focus back to how this discussion of variability relates the study in this

chapter, the original River Crossing Task [178], which inspired the design of the RCD

testbed (Chapter 3), could also be said to incorporate elements of variability within the

environment. Not only does the environmental configuration change for agents at every

generation, but agents are also evaluated on three consecutive environments of increasing

difficulty, in terms of the width of the river and consequently the number of Stones re-

quired to build a bridge. Developing on from this, Borg et al. [37] increase the difficulty

of the environment further in the RC+ task, where the availability of Stones within the

environment decreases as river width increases, such that the fifth and final environment

cannot be solved by building a bridge. As a result, in both of these studies, agents must

evolve behaviours that are robust to the variability encountered within the environment in

terms of the physical attributes of the environment, and the behaviours required in order
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to complete the task itself. Whilst variability has been incorporated into other instances

of the River Crossing family of testbeds, such as the aforementioned RCT and RC+, the

consequences of variability in multi-agent environments has not yet been explored, nor in

the context of behavioural plasticity.

The intention of this chapter is to explore how evolutionary agents without the ability to

learn of or perceive others within the environment are able to evolve to achieve their goals

in varying environments. Variability can arise from the state of the environment itself,

the actions of others within the environment, or even the existence of others; therefore, if

the presence of another agent or the consistency of its actions changes, variability would

increase. The effect of behavioural plasticity in the presence of variability is thus observed,

to ascertain how it may help these agents to achieve their goals in environments in which

another agent may or may not exist. Specifically, the study is intended to investigate

how behavioural plasticity via neuromodulation can affect agent evolution in increasingly

variable environments. In terms of the River Crossing Dilemma testbed in which the study

in this chapter is executed, agents will perceive the environment to increase in variability if

the actions of another agent change the state of the environment; as such, the availability of

Stones and the subsequent construction of bridges – where the former are necessary objects

for the latter – can vary from environment to environment due to interference.

6.3 Experimental Study

The experimental study presented in this chapter is designed to explore how activity-gating

neuromodulation affects the evolution of agents that are situated in variable environments,

and how the level of variability that an agent experiences can in turn affect evolution and

goal-achievement. In Chapter 5, behavioural plasticity is shown to increase the likelihood

that agents will achieve their goal when evolving to solve a single- or multi-stage task, but

this benefit comes at the cost of evolutionary volatility; here, the evolutionary volatility of

agents evolving in variable environments is analysed to ascertain whether a similar trade-off

exists when the environment is prone to change.
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6.3.1 Testbed Design

This experimental study uses the RCD testbed, described in Section 3.2 and Figure 3.1, to

explore how agents evolve to achieve their own goals when their environment is unpredictable

and prone to change. One of the limitations of the study presented in Chapter 5 is that

agents evolve in a single environment, and exist either alone, with another, or first alone

and then with another; this means that an agent could potentially evolve to depend on the

actions of another agent in order to achieve its goal, since the environment becomes almost

dependable over time. What isn’t however addressed is how agents evolve when agents are

faced with having to achieve goals in contexts where another agent may or may not exist.

The experiments detailed in this section are designed to study how environmental variability

affects agent evolution, where variability is affected by: (1) the number of environments that

agents are evaluated on at each generation, (2) whether an agent exists alone or if another

exists within the environment, and (3) the dynamicity of other agents, which impacts the

reliability of one’s actions within the environment. The degree of plastic behaviour is

said to increase in line with environmental variability [122]; as such, it would be expected

that plastic agents would be capable of expressing a range of behaviours in response to

changing environmental stimuli, thus increasing chances of survival and goal-achievement

in comparison to non-plastic agents. The specific details of the experimental design are

discussed in Section 6.3.3.

Number of environments: The first way in which the level of environmental variability

differs between experiments arises from the number of environments that agents are evalu-

ated on at each generation. In previous chapters, agents are evaluated on one environment

at each generation to observe how agents evolve either alone or in a shared environment;

other studies that use instances of the River Crossing family of testbeds for example evaluate

agents on a series of environments that increase in difficulty. Robinson et al. [178] evalu-

ate agents on three consecutive environments of increasing difficulty in the original River

Crossing task; Borg et al. [37] however increase the difficulty further by evaluating agents

instead on five environments in the RC+ task, such that the final environment cannot be

solved by building a bridge. A question arising from the design of these studies is thus how

does the number of environments that agents are evaluated on affect agent evolution? This

study is designed to explore this question by evaluating agents on a different number of en-
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vironments in each experiment; this alters the difficulty of the experiments, but further, the

differences between each consecutive environment that agents are evaluated on contribute

to the notion of ‘environmental variability’ discussed in this chapter. In other words, agents

would face more variability as the number of environments they are evaluated on increases.

Presence of another agent: In previous chapters, agents are situated in an environment

in which they exist alone, share with an unknown other agent, or evolve alone for an initial

period of time before continuing to evolve in a shared environment (termed ‘continued evo-

lution’). Thus far, the evolution of agents in shared environments with no ability to perceive

or reason about other agents is shown to be affected by the indirect actions of other agents

through the environment. A question arising from these experiments is are agents able to

retain goal-achieving behaviour if the presence of another agent varies? Ndousse et al. [158]

investigated a similar concept, finding that social learning is beneficial when reinforcement

learning agents are trained in both single- and multi-agent environments; social learning is

specifically shown to improve an agent’s performance when existing alone in an environ-

ment, compared to those that are only trained alone. Behavioural plasticity is the focus

of this study instead of social learning, however it would be interesting to see if similar re-

sults would be observed when agents are evolved in the RCD in both single- and multi-agent

environments; further, agents in this study have no ability to learn of others, so cannot con-

sequently learn from others. The second way in which the level of environmental variability

changes between experiments thus emerges from evaluating agents in environments where

another agent may or may not exist. In varying the presence of another agent, indirectly

depending on the actions of others (in terms of exploitative behaviour) is a risk because the

agent may not always exist in a shared environment; because agents cannot perceive other

agents within the environment or reason about their actions, the unpredictable presence of

another agent would appear as variability arising from the environment itself.

Dynamicity of partners: Sharing an environment with another agent unlocks the po-

tential for emergent cooperation or exploitation; in this study, the behaviour leading to these

social dynamics however cannot be intentional as the agents have no ability to perceive or

learn of other agents within the environment. Further, the actions of another agent can alter

the environment in an unknowable way, which can change the reliability of an agent’s own
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actions within the environment – the effect of which has been demonstrated in earlier chap-

ters. A final question arising here is how does the dynamicity of partner agents affect agent

evolution, and the emergent social dynamics that may arise? If the actions of other agents in

a shared environment are prone to change, environmental variability would increase; agents

would be incapable of understanding or perceiving that environmental changes are the direct

result of the actions of other agents – they would instead perceive the environment itself to

be changing unpredictably. In the domain of human behaviour and cooperation, Fehl et al.

[83] found that cooperative behaviour is more prevalent in dynamic networks (i.e. those

where partner can change) of anonymous human participants playing iterated Prisoner’s

Dilemma games, compared to static networks of fixed partners. The third method of al-

tering variability in the experiments therefore arises from the perceived dynamicity of the

actions of another agent; when an agent shares an environment with a partner agent, that

partner will either coevolve1, or will be random at each generation. Sharing an environment

with random partners throughout evolution would increase the perceived variability of the

environment compared to a coevolved partner, because previously successful behaviour of

an agent (where ‘success’ is in terms of achieving the goal) may become unsuccessful or

unreliable; each random partner has the potential to affect the environment in a previously

unseen way. It would be interesting to see whether unintentional cooperative or exploitative

behaviour is favoured during evolution in these experiments in line with the findings of Fehl

et al. [83], or whether the ability to perceive or learn that partners may be coevolved or

random would be needed for these behaviours to emerge.

6.3.2 Agent Design

Aligning with the experimental study designed to explore behavioural plasticity via neu-

romodulation in Chapter 5, the agents in this study employ the same two-tiered neural

network architecture that was introduced in Section 5.3.2, which can also be seen in Fig-

ure 5.1. Further, agents capable of behavioural plasticity operationalise neuromodulation

as described in Sections 5.3.3 and 5.3.4, to remain consistent with the previous study.

1Note that ‘coevolve’ here is used to describe two agents with distinct genetic material from two separate
populations, that evolve in a shared environment. This is different to the ‘coevolutionary optimisation’ as
discussed in Section 2.6, which refers to individuals whose fitnesses are closely coupled and dependent on
one another; whilst the fitnesses of agents in these experiments can be influenced by the actions of others
as a result of interference, both agents are independent and can achieve their goals in isolation or in shared
environments.
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6.3.3 Experimental Design

Each experiment is repeated 100 times using 100 seeds; agents are evolved either with or

without neuromodulation for 500,000 generations in the RCD testbed, and are randomly

initialised. As with the studies in previous chapters, agents in these experiments do not

‘learn’ within their lifetime; if an agent is evaluated on multiple environments at each gen-

eration, its genetic code (i.e. the weights and configuration of neurons in the deliberative

neural network) remains unchanged. ‘Learning’ therefore only occurs in the breeding pro-

cess between generations, through mutations – not during the evaluation process at each

generation. These experiments are summarised in Table 6.1.

Evolving with another agent: The first set of experiments explores how agents evolve

in a shared environment; agents are evaluated on one environment at each generation. The

environment is more variable and unpredictable when agents evolve with random partners

than a coevolved partner; each random partner will act differently within the environment,

therefore allowing the agent to learn from and generalise to more scenarios compared to

evolving with a single, coevolved partner.

Evolving when alone or with another: An issue with only evolving in a shared envi-

ronment is that agents may evolve to depend on other agents in order to achieve their goal.

Specifically in the case of the RCD, if an agent evolves to exploit another agent and doesn’t

learn to build a bridge (the necessary behaviour to cross the river and collect its allocated

Resource, therefore achieving the goal individually), then it may be unable to achieve its

goal if it then finds itself alone. The second set of experiments is designed to bridge this

gap by evaluating agents on two consecutive environments at every generation. Firstly,

agents are evaluated in an environment where they exist alone; once the first evaluation is

terminated (either by completing or failing the task, or reaching the maximum amount of

moves without success or failure), the environment is reset. Agents are then evaluated in

a shared environment, with either a coevolved partner or random partners. By evolving

agents in both a single-agent and a multi-agent environment at each generation, they have

the opportunity to evolve appropriate behaviours that are successful whenever they are

alone or with a partner.
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Section Partner Type Number of Environments Description

6.4.1 Coevolved
1 Shared

6.4.2 Random

6.4.3 Coevolved
2 Alone, Shared

6.4.4 Random

6.4.5 Coevolved
4 Alone, Shared, Alone, Shared

6.4.6 Random

Table 6.1: Breakdown of the experimental study presented in Chapter 6.

Evolving in highly variable environments: The final set of experiments extends this

notion by evaluating agents on four consecutive environments at each generation. Agents

exist alone in the first and third environments, whereas the second and fourth environments

are shared with coevolved or random partners. Regardless of the dynamicity of the partner

agent, the partners in the second and fourth environments are different to each other; agents

will either coevolve with two separate partners in the second and fourth environments, or

two different random partners, depending on the dynamicity of the experiment. It may

seem as though evaluating an agent for the second time where it is alone is redundant,

however as agents are able to act differently in each environment (i.e. they do not follow a

predetermined plan of actions or path, because their next move is dictated by their current

state at each timestep and an element of stochasticity), designing the experiments this way

means that agents can learn from more experiences. Agents are thus able to draw on more

experiences through being evaluated on four environments at each generation, as opposed

to three (e.g. one single-agent, and two multi-agent environments).

The overall generational fitness for an agent is the sum of the fitnesses achieved in each

individual environment it is evaluated on, as calculated with Equation 3.1; this means that

the maximum fitness for agents evolving in one, two and four environments is 1.0, 2.0 and

4.0 respectively. In reality, the maximum fitness an agent can achieve when alone is 0.7 as

it must endure the total cost of building a bridge in order to achieve its goal, so the actual

maximum fitnesses for each experiment in this study are 1.0, 1.7 and 3.4 respectively. It

is also worth noting that when an agent has a random partner at each generation, for all

100 repetitions of the experiment agents are paired with the same generational partners

to ensure consistency and comparability in the results. However, when an agent coevolves

with another, these partners differ for each of the 100 repetitions so the results are not

biased towards one specific partner agent.
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Partner NM
Fitness (% of Runs) Goals Achieved

0.7 0.9 1.0 ≥ 0.7
0 1 x̄

(Indep) (Coop) (Exploit) (GAF)

Coevolved
No 27 5 36 68 32 68 0.68
Yes 44 0 50 94 6 94 0.94

Random
No 2 29 29 60 40 60 0.60
Yes 3 59 24 86 14 86 0.86

Table 6.2: The percentage of modulatory and non-modulatory agents across 100 runs that achieved their
goal with common fitnesses after evolution. Agents are evaluated on one environment with coevolved or
random partners. A fitness of 0.7 is achieving the goal independently by building a bridge with two Stones
(Indep); 0.9 is cooperation (Coop) by sharing the cost of bridge-building; 1.0 is exploitation (Exploit); ≥ 0.7
is a goal-achieving fitness (GAF).

6.4 Results

6.4.1 Evolving with a Coevolved Partner

To begin the study, the impact that sharing an environment with another agent can have

on the way an agent evolves to achieve its own individual goals is explored; here, agents are

coevolved with a single partner agent. As these both of these agents evolve in tandem, they

would face the least amount of uncertainty and environmental change during evolution and

would consequently gain little experience or exposure to different environmental conditions.

These results are directly comparable to those in Section 5.4.5, as agents evolve in an

environment with one partner to learn a multi-stage task in the RCD.

Figure 6.1a shows the mean best-in-population fitness over time for agents evolving both

with and without neuromodulation. Agents that display behavioural plasticity by evolving

with neuromodulation are observed to have a higher mean best-in-population fitness than

those that do not – an effect that is sustained throughout evolution. Further, 68% of non-

modulatory agents receive a goal-achieving fitness at the end of evolution compared to 94%

of modulatory agents, when they are evaluated on one environment at each generation with

a coevolved partner (Table 6.2). This indicates that more agents are able to achieve their

goal with neuromodulation than without.

6.4.2 Evolving with Random Partners

These experiments explore how evolving in an environment where the other agent changes

at each generation can affect agent evolution and the ability to achieve goals. Unlike the

experiments discussed in Section 6.4.1, each random partner has the potential to act within,
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(f) Four Environments with Random Partners

Figure 6.1: The mean best-in-population fitnesses of agents in the RCD evolving for 500,000 generations,
with and without neuromodulation (NM). At each generation, agents are evaluated on: one ((a) and (b)),
two ((c) and (d), or four ((e) and (f)) environments, with coevolved ((a), (c) and (e)) or random ((b), (d) and
(f)) partners. For (a) and (b), agents share one environment so the maximum fitness is 1.0. For (c) and (d),
agents evolve alone, then in a shared environment; the maximum fitness is 1.7. For (e) and (f), agents evolve
in an environment: alone, shared, alone, then shared; the maximum fitness is 3.4. A fitness of: 0.7 indicates
the goal is achieved individually; 0.9 is cooperation; 1.0 is exploitation; ≥ 0.7 is a goal-achieving fitness
(Equation 3.1). Note: y-axis scales between Figures 6.1a and 6.1b, 6.1c and 6.1d, and 6.1e and 6.1f are
comparable, but are not comparable otherwise as agents are evaluated on different numbers of environments
and thus have different maximum fitnesses. Also note the data for (b), (d) and (f) are downsampled by a
factor of 10.
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and affect the environment in an unpredictable way, resulting in the agent experiencing more

diverse environmental conditions. The environment the agents evolve in is likely to have a

higher level of uncertainty and change as a result, compared to an environment in which

two agents coevolve with one another.

The mean best-in-population fitness over time of agents evolving with random partners,

both with and without neuromodulation, is presented in Figure 6.1b. Only 60% of non-

modulatory agents are able to achieve their goal after evolving with different partners at

each generation, compared to 86% of modulatory agents (Table 6.2). Behavioural plasticity

is therefore observed to be beneficial to agents that learn from and navigate an environment

inhabited by changing, unpredictable partners.

When comparing Figures 6.1a and 6.1b, it appears that the predictability of another

agent’s actions within the environment can dramatically affect the evolution of, and the

fitness received by, agents. The actions of random partners create high levels of variability,

and as such, the fluctuations in fitness in each individual run cause the overall mean fitness

to fluctuate by large amounts too. This is because each random partner can potentially

change the environment in a different way, meaning agents may not necessarily know how

to achieve their goals at each generation; previously successful behaviour may not be suc-

cessful in the future due to the actions of other agents. This can be seen in Figure 6.1b,

which is in fact a line graph, but is erratic since the mean changes by large amounts between

generations. It does however seem that the magnitude of these fluctuations decreases over

time, which indicates experiencing more variability helps agents to respond appropriately

to environmental changes to achieve their goals. This observation can also be seen more ob-

viously in modulatory agents than non-modulatory agents, demonstrating that behavioural

plasticity can help agents to succeed in uncertain and environments. Despite the large num-

ber of fluctuations in fitness during evolution when agents evolve with random partners,

the mean best-in-population fitness is higher earlier on in evolution than when agents coe-

volve. Interestingly, this is not a result of more agents achieving their goal when evolving

with random partners compared to coevolved partners – in fact, the opposite is true when

looking at the breakdown of goal-achieving agents presented in Table 6.2. There is however

a shift from agents that tend to exploit the other or achieve their goals independently when

coevolving, to those that are more inclined to cooperate with random partners.
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Agents may evolve to rely on an agent it coevolves with to achieve its goals, thus

exploiting an environment that has become predictable in its nature. As agents do not

possess the capacity to perceive, learn or reason about other agents that may or may

not exist within the environment, exploitation or ‘relying’ on the actions of others can

not be intentional, nor can it be understood; from the agent’s perspective, the actions of

the other agent within the environment just appear as environmental changes that – if

predictable enough – may be taken advantage of without any understanding of the cause,

or of the implications of such an exploitation. Exploitative behaviour however carries a

higher risk when partners are random, as not all partners may perform behaviour that can

be exploited; this would leave the agent unable to achieve its goal. Evolving with random

partners seems to incentivise agents to evolve goal-achieving behaviour that involves the

other agent in the environment somehow – either through cooperation or exploitation. This

is an interesting observation, as the agents have no capacity to learn of or perceive others

within the environment.

6.4.3 Evolving in Two Environments with a Coevolved Partner

The following sets of experiments in this study explore how agent evolution and goal-

achievement can be affected when another agent may or may not exist in the environment –

the environment can therefore vary in each evaluation. Here, agents are evaluated on two

independent RCD instances at each generation – the first in which the agent exists alone,

and coevolves with a partner agent in the second. The ability of an agent to achieve goals

when faced with different environmental conditions is therefore tested, as behaviour that

is successful in one environment or context may not be as successful in another. Agents

thus experience a higher level of environmental variability than previous experiments due

to evolving in both single- and multi-agent environments.

Figure 6.1c presents the mean best-in-population fitness over time for both modulatory

and non-modulatory agents. Similarly to the results presented in Section 6.4.1, neuromod-

ulation appears to be beneficial to agents both immediately and throughout evolution, as

the mean best-in-population fitness is higher in modulatory agents than in non-modulatory

agents. Further, 37% of agents are able to achieve their goal in both environments without

neuromodulation, which increases to 66% in modulatory agents (Table 6.3). This benefit is

also seen when looking at the number of successful agents in each of the two environments
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Partner NM Env
Fitness (% of Runs) Goals Achieved

0.7 0.9 1.0 ≥ 0.7
0 1 2 x̄

(Indep) (Coop) (Exploit) (GAF)

Coevolved
No

1 37 0 0 37
35 28 37 1.02

2 37 2 26 65

Yes
1 66 0 0 66

4 30 66 1.62
2 66 0 30 96

Random
No

1 33 0 0 33
65 7 28 0.63

2 5 25 0 30

Yes
1 77 0 0 77

23 10 67 1.44
2 10 57 0 67

Table 6.3: The percentage of modulatory and non-modulatory agents across 100 runs that achieved their
goal with common fitnesses in each environment (Env) after evolution. Agents are evaluated alone, then
with coevolved or random partners. A fitness of 0.7 is achieving the goal independently by building a bridge
with two Stones (Indep); 0.9 is cooperation (Coop) by sharing the cost of bridge-building; 1.0 is exploitation
(Exploit); ≥ 0.7 is a goal-achieving fitness (GAF).

individually. For the first environment, 37% of non-modulatory agents achieve their goal

compared to 66% of modulatory agents, whereas in the second this rises to 65% and 96%

respectively. Both modulatory and non-modulatory agents have a higher success rate when

there is another agent in the environment, as agents who cannot achieve the goal when

alone can capitalise on the actions of the other agent to receive a higher fitness. Ultimately,

behavioural plasticity is shown to have a positive effect on the success rate of agents that

both exist alone, and coevolve with another.

6.4.4 Evolving in Two Environments with Random Partners

In this part of the study, agents are first evaluated on an environment in which they exist

alone, and are then evaluated on an environment shared with random partners. Agents

encounter a higher level of uncertainty and environmental change than in previous experi-

ments, as they are tasked with evolving successful behaviour in both single- and multi-agent

environments where the partner agents have the potential to affect the environment in dif-

ferent ways at each generation.

The mean best-in-population fitness over time for both modulatory and non-modulatory

agents is presented in Figure 6.1d. Like with the results discussed in Section 6.4.2, the

mean best-in-population fitness fluctuates often throughout evolution, with the fluctuations

reducing over time; this indicates that evolving behaviour that is successful both when the

agents are alone, and when with random partners is a difficult task, but becomes easier
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as agents experience more variety of environmental conditions. This effect is seen to be

greater in modulatory agents, as the mean best-in-population fitness is greater at the end

of evolution compared to non-modulatory agents. To evidence this further, only 28% of

non-modulatory agents are able to achieve their goal in both environments after evolution,

compared to 67% of modulatory agents (Table 6.3). In the first environment where agents

exist alone, 33% of non-modulatory agents were successful compared to 77% of modulatory

agents. In the second environment that is shared with random partners, only 30% of non-

modulatory agents were successful compared to 67% of modulatory agents. For each of

the two individual environments, more modulatory agents were successful after evolution

than non-modulatory agents; additionally, more agents overall were successful in the first

environment than the second environment, which provides further evidence that evolving

successful behaviour that generalises across multiple environments and multiple partners is

a difficult task.

Similarly to the results observed in the first two sets of experiments, agents that evolve

with random partners when evaluated on two environments at each generation achieve

a higher mean best-in-population fitness than those that coevolve; evolution is however

much more volatile as a result of the agents attempting to achieve their goals in unforeseen

environmental conditions (Figures 6.1c and 6.1d). Extending on from the observations dis-

cussed in Section 6.4.2, Table 6.3 shows a distinct divergence in evolved behaviour between

agents that evolve with either random or coevolved partners. When the environment has

an element of predictability arising from coevolving with a single partner, agents almost ex-

clusively evolve to achieve their goals either independently, or by exploiting the other agent

within the environment; the same percentage of agents evolve to achieve their goals inde-

pendently in both environments in this case. This demonstrates that exploitative behaviour

may be beneficial when the presence of another agent can be relied on (or more specifically,

the environmental changes in which that agent creates, as agents cannot perceive or reason

about one another or the results of their actions), but is not helpful when agents find them-

selves in a situation in which they must fend for themselves. In contrast, agents that have

experienced a wide range of environmental conditions from evolving with random partners

are more likely to cooperate with their partner agents than to independently achieve their

goal – with none opting to exploit their partner. Consequently, these agents that evolve with

random partners appear to be capable of altering the way in which they interact with the
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environment to achieve their goals; they can take actions to increase their fitness without

then negatively affecting their ability to achieve their goals when existing in an environment

alone.

6.4.5 Evolving in Four Environments with Coevolved Partners

The results thus far show that the variability experienced during evolution, and therefore

the range of environmental conditions encountered as a result of the actions of others, can

affect an agent’s ability to achieve its goals. In these final two sets of experiments, the

number of environments that agents are evaluated on at each generation is increased to

four, thus exploring how experiencing a high levels of variability affects evolution and goal-

achievement; agents are evaluated in an environment alone, with a partner agent A, alone

for a second time, and finally with a partner agent B. As there is more variability across all

four environments at each generation than with one or two environments, it is hypothesised

that evolving successful solutions in these experiments will therefore be more difficult.

Figure 6.1e shows the mean best-in-population fitness over time of agents that are eval-

uated on four environments at each generation, with coevolved partners, both with and

without neuromodulation. In line with the results discussed in Sections 6.4.1 and 6.4.3,

modulatory agents appear to receive an immediate and sustained benefit compared to non-

modulatory agents, and outperform their non-modulatory counterparts throughout evolu-

tion. 75% of non-modulatory agents were successful in at least one environment, however

only 26% were able to achieve their goal in each of the four environments at the end of

evolution (Table 6.4). In comparison, 98% of modulatory agents were successful in at

least one environment, but only 66% were successful in all four. This is an indication

that evolving goal-achieving behaviour that generalises across four different environments

is a difficult task, but behavioural plasticity can help agents to overcome this difficulty.

To break this down further, 26% of non-modulatory agents were successful in each of the

single-agent environments, and 62% and 57% were successful in the second and fourth envi-

ronments respectively; in comparison, 66% of modulatory agents were successful in both of

the single-agent environments, and 92% and 96% were successful in second and fourth envi-

ronments respectively. Neuromodulation therefore clearly provides a benefit to agents that

are tasked with achieving goals in many environments that vary from one to another, and

where another agent may or may not exist within said environments. Modulatory agents
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Partners NM Env
Fitness (% of Runs) Goals Achieved

0.7 0.9 1.0 ≥ 0.7
0 1 2 3 4 x̄

(Indep) (Coop) (Exploit) (GAF)

Coevolved

No

1 26 0 0 26

25 31 18 0 26 1.71
2 26 3 33 62
3 26 0 0 26
4 26 3 28 57

Yes

1 66 0 0 66

2 8 24 0 66 3.2
2 65 1 26 92
3 66 0 0 66
4 66 0 30 96

Random

No

1 31 0 0 31

64 2 3 4 27 1.28
2 7 24 0 31
3 32 0 0 32
4 21 13 0 34

Yes

1 86 0 0 86

13 1 1 6 79 3.37
2 12 68 0 80
3 85 0 0 85
4 63 23 0 86

Table 6.4: The percentage of modulatory and non-modulatory agents across 100 runs that achieved their
goal with common fitnesses in each environment (Env) after evolution. Agents are evaluated alone, with a
partner, alone, then with a partner. Partners are coevolved or random. A fitness of 0.7 is achieving the goal
independently by building a bridge with two Stones (Indep); 0.9 is cooperation (Coop) by sharing the cost
of bridge-building; 1.0 is exploitation (Exploit); ≥ 0.7 is a goal-achieving fitness (GAF).

can therefore be expected to achieve their goal in more environments than non-modulatory

agents, and are also more likely to succeed in all four environments.

6.4.6 Evolving in Four Environments with Random Partners

In these last experiments, agents are evaluated on four environments at each generation with

random partners. The variability of these environments therefore increases in comparison

to previous experiments, as agents are exposed to many different situations and scenarios

in which they can learn from, due to the actions of unknown, unpredictable partners within

the environment itself.

The mean best-in-population fitness over time of both non-modulatory and modulatory

agents evaluated on four environments at each generation, with random partners, is shown

in Figure 6.1f. Similarly to the results discussed in Sections 6.4.2 and 6.4.4, the uncertainty

that arises as a result of the unpredictable actions of other agents within the environment

appears to increase the fluctuations in the mean best-in-population fitness throughout evolu-

tion for all agents. As evolution progresses, these fluctuations reduce – however this is more

obvious in modulatory agents than non-modulatory agents. This shows that behavioural
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plasticity can positively affect evolution and the ability to achieve goals in highly variable

and uncertain environments.

At the end of evolution, only 36% of non-modulatory agents were successful in at least

one environment, and 27% were successful in all four environments. This is compared to

87% of modulatory agents that were successful in at least one environment, and 79% in all

four (Table 6.4). Modulatory agents are also more successful than their non-modulatory

counterparts in each individual environment: 31%, 31%, 32% and 34% of non-modulatory

agents were successful in environments one, two, three and four respectively, compared to

86%, 80%, 85% and 86% of modulatory agents in the same environments. Not only are

modulatory agents more likely to achieve their goal in each individual environment, but

they are also more likely to have evolved behaviour that enables them to achieve their goal

in all four environments. Neuromodulation is therefore observed to have a positive effect

on agents when they evolve in environments with high levels of uncertainty and variability,

enabling them to achieve success more often than those that do not use neuromodulation.

A similar trend is observed in agents that are evaluated on four environments at each

generation, compared to just one or two environments; the fitness that agents receive during

evolution fluctuates more when there is more environmental uncertainty, but agents are able

to achieve a higher mean best-in-population fitness more quickly than those that experi-

ence more certainty within the environment (Figures 6.1e and 6.1f). Whilst fewer agents are

able to achieve their goal in at least one environment when evolving with random partners

compared to those that coevolve, more agents are actually able to achieve their goals in all

four environments when faced with higher levels of environmental uncertainty (Table 6.4).

The qualitative shift in goal-achieving behaviour described throughout this chapter is more

pronounced in these experiments, due to the increased difficulty and variability involved in

completing the task. Specifically, exploitative behaviour is more prevalent when the actions

of unknown, coevolved partners cause the environment to become more predictable; this

exploitative behaviour is not useful when agents exist alone, showing that no beneficial

behaviour is evolved. However, when environmental uncertainty arises through evolving

with random partners, cooperative behaviour is favoured. Agents are shown to possess the

capacity to achieve their goals individually as they can achieve their goals when existing

alone in an environment; they are also shown to have evolved the ability to take actions

to increase their fitness whenever possible, through cooperating with other agents uninten-
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tionally. This shows that agents who have experienced and learnt from a wide range of

environmental conditions – by both evolving alone, and attempting to achieve their goals

in an environment that can be changed in unpredictable ways by unknown partners – are

likely to evolve behaviour that enables them to make the most of the situation they find

themselves in, without that affecting their ability to succeed when environmental conditions

inevitably change.

6.5 Analysing the Effects of Plasticity and Variability on

Agent Evolution

Thus far, the mean best-in-population fitnesses of agents in each experiment are discussed; in

this section, a comprehensive analysis of agent evolution is presented, in order to understand

how the level of environmental uncertainty caused by either the actions or presence of others

can affect behaviour and the ability to achieve goals. Further, the effect that behavioural

plasticity can have on agents in these different environments is also analysed, to ascertain

the extent to which neuromodulation affects both an agent’s ability to achieve goals and

the evolutionary process itself.

6.5.1 Analysing Fitness

As the number of environments that agents are evaluated on at each generation differs

between each experiment in this study, the maximum achievable fitness at each generation

increases with the number of environmental evaluations. Agents evolving in one, two or

four environments have a theoretical maximum fitness of 1.0, 2.0, or 4.0 respectively; as

the minimum goal-achieving fitness is 0.7 and a maximum fitness of 1.0 may be achieved if

an agent exploits the actions of another, the actual range of goal-achieving fitnesses across

all environments in each experiment are 0.7− 1.0, 1.4− 1.7 or 2.8− 3.4 respectively2. The

term ‘fitness’ is used throughout this section to refer to the best-in-population agent fitness

across all 100 runs in an experiment at the end of evolution.
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Experiment Partner NM
Moment

Median
Mean Variance Skewness Kurtosis

1
Coevolved

No 0.754 0.0447 0.0245∗ 1.36∗ 0.700
Yes 0.838∗ 0.0286 ∗ −0.282 1.60 0.850∗

Random
No 0.765 0.0500 −0.270 ∗ 1.21∗ 0.900
Yes 0.862∗ 0.0248 ∗ −1.59 4.17 0.900

2
Coevolved

No 1.29 0.0459 −0.509 ∗ 1.42∗ 1.40
Yes 1.42 ∗ 0.009 64∗ −2.83 13.4 1.40

Random
No 1.31 0.0764 −0.163 ∗ 1.21∗ 1.40
Yes 1.50 ∗ 0.0546 ∗ −1.52 3.64 1.60 ∗

3
Coevolved

No 2.53 0.125 −0.402 ∗ 1.88∗ 2.50
Yes 2.82 ∗ 0.0313 ∗ −2.14 10.4 2.80 ∗

Random
No 2.71 0.0818 0.693 ∗ 1.67∗ 2.50
Yes 3.05 ∗ 0.0494 ∗ −1.68 4.72 3.10 ∗

Table 6.5: Statistical moments and median (to 3 S.F.) of the best-in-population fitness after 500,000
generations; agents are evaluated on (1) one, (2) two or (3) four environments in each experiment, with
either coevolved or random partners. The lowest mean, variance, skewness, kurtosis, and median for agents
with or without neuromodulation (NM) are indicated with an asterisk (*).

Analysing the Fitness Distributions

The statistical moments and the median of the fitness distributions of agents after evolving

in the RCD are presented in Table 6.5; further, the underlying distribution of fitnesses for

each experiment are visualised as kernel density estimation plots, presented in Figure 6.2.

At the end of evolution in all experiments, agents capable of behavioural plasticity have

a higher mean fitness, and either the same or higher median fitness than those that are

not, both when evolving with coevolved or random partners. Additionally, the variance

in fitness is lower in modulatory agents than non-modulatory agents, demonstrating that

neuromodulation enables agents to achieve higher fitnesses more consistently than non-

modulatory agents – and more often (Tables 6.2, 6.3 and 6.4).

Each fitness distribution for agents evolving with neuromodulation is negatively skewed,

indicating that modulatory agents are likely to achieve a higher-than-average fitness; this

can be seen in Figure 6.2, as the peaks in the kernel density estimation plots that visualise

the fitness distributions of modulatory agents are towards the higher-end of the x-axis.

The fitness distributions for non-modulatory agents in each experiment however vary from

positively to negatively skewed; saying this, in each experiment, the fitness distributions

2When agents are evaluated on either two or four environments, the actual maximum fitness is lower
than the theoretical maximum fitness as agents exist in some of the environments alone, and thus can only
achieve a maximum fitness of 0.7.
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Figure 6.2: Kernel density estimations of the best-in-population fitness of agents that are evaluated on (1)
one, (2) two or (3) four environments in each experiment, with either coevolved (C) or random (R) partners.
Experiments are repeated for non-modulatory and modulatory (NM) agents. Note: the graph scales are not
comparable due to the disparity in the densities between each distribution.

of non-modulatory agents are less skewed than those of modulatory agents. This indicates

that non-modulatory agents are more likely to achieve a fitness around the average whereas

modulatory agents are more likely to receive a higher-than-average fitness. In terms of the

shape of the distributions, the fitness distributions of modulatory agents are generally lep-

tokurtic, meaning that the kurtosis is greater than that of a normal distribution (which has

a kurtosis of 3) [65]; this also indicates more outliers are present at the tails of the distri-

butions. In comparison, all fitness distributions of non-modulatory agents are platykurtic,

as the kurtosis is less than 3 in each; the distributions are therefore flatter than that of

modulatory agents, and outliers are less frequent as tails are shorter. Overall, these find-

ings indicate that modulatory agents are more likely to achieve a higher fitness than their

non-modulatory counterparts, and therefore are more likely to achieve their goal. This is

seen in all experiments, regardless of how many environments that agents are evaluated on

at each generation.

Statistical Tests – Comparing Non-Modulatory and Modulatory Agents

Statistical tests were carried out to conclude whether there is any significant difference

between the best-in-population fitnesses achieved after evolution by modulatory and non-
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Exp Partner
Statistical Test Alternative Hypothesis

z r
mn 6= mm mn < mm mn > mm

1 Coevolved 1.594×10−2 ∗ 7.970×10−3 ∗ 9.922×10−1 −2.413 −0.2413 (S)
1 Random 1.871×10−3 ∗ 9.355×10−4 ∗ 9.991×10−1 −3.112 −0.3112 (M)
2 Coevolved 2.331×10−6 ∗ 1.165×10−6 ∗ 1 −4.725 −0.4725 (M)
2 Random 1.248×10−6 ∗ 6.239×10−7 ∗ 1 −4.851 −0.4851 (M)
3 Coevolved 4.243×10−9 ∗ 2.121×10−9 ∗ 1 −5.877 −0.5877 (L)
3 Random 1.951×10−11∗ 9.757×10−12∗ 1 −6.712 −0.6712 (L)

Table 6.6: Wilcoxon Signed Rank statistical tests comparing the best-in-population fitnesses of non-
modulatory (mn) and modulatory (mm) agents after 500,000 generations; agents are evaluated on: (1)
one, (2) two or (3) four environments in each experiment (Exp). p-values (to 4 S.F.) are marked with an
asterisk (*) if significant (p < 0.05). Effect sizes (r, to 4 S.F.) are presented with the z-score they are
calculated from (Equation 3.3, N = 100), and are classed as small (S, r ≥ 0.1), medium (M, r ≥ 0.3), or
large (L, r ≥ 0.5) [58].

modulatory agents in each experiment. Firstly, as the fitness distributions described in

Table 6.5 are skewed to some degree and have either high or low kurtosis, a Shapiro-Wilk

test for normality was conducted on the results of each experiment; this test was chosen

specifically because it is powerful for a range of distributions [241]. The results of these tests

were significant at the p < 0.05 level for each distribution, indicating that the distributions

are non-normal; these results can be found in Table B.7 in Appendix B.3. Consequently,

one two-tailed and two one-tailed Wilcoxon Signed Rank statistical tests were conducted for

each experiment to ascertain whether behavioural plasticity has any effect on the best-in-

population fitness of agents after evolution; the results of these tests are presented in Table

6.6. There is a significant difference in the median best-in-population agent fitness after

evolution when non-modulatory (mn) and modulatory (mm) agents in each experiment are

compared (p < 0.05, mn 6= mm); further, the median fitness of non-modulatory agents is

observed to be significantly lower than modulatory agents in each experiment (p < 0.05,

mn < mm). Behavioural plasticity is therefore observed to have a positive impact on the

fitness that agents receive at the end of evolution – even when they are evaluated on an

increasing number of environments at each generation.

To analyse the effect that behavioural plasticity has on agent fitness further, the effect

size estimate r can be used to measure the magnitude of such an effect (Section 3.3), pre-

sented in Table 6.6. As the effect size is negative for each experiment, the fitness received

by modulatory agents is higher than their non-modulatory counterparts; this effect is also

stronger when agents evolve with random partners, in addition to when the number of envi-

ronments agents are evaluated on at each generation is increased. While the statistical tests
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discussed previously indicate that modulatory agents achieve significantly higher fitnesses

than non-modulatory agents in each experiment (p < 0.05), behavioural plasticity is shown

to have a smaller effect on agents that evolve in less variable environments. Concretely,

the least variable environment by this definition is that which evaluates agents on one en-

vironment, and evolves them with a single, coevolved partner; in this case, r = −0.2413,

which is deemed a ‘small’ effect using the guidelines outlined by Cohen [58]. In comparison,

behavioural plasticity has a ‘large’ effect on fitness (r = −0.6712) in the most variable ex-

periment, which evaluates agents on four environments and with random partners. This is

evidence of a correlation between the benefit of behavioural plasticity and the variability of

the environment, where the benefit of neuromodulation increases with environmental vari-

ability. Upon closer inspection, this benefit is felt more strongly by agents that evolve with

random partners compared to those that evolve with coevolved partners, as the actions of

random partners increase environmental variability further.

As discussed in Section 6.2.1, behavioural plasticity can regulate behaviour by tem-

porarily changing synaptic activity locally, or learning if synaptic strengths are modulated

over time [196] – the former of which is explored in this chapter. Behavioural plasticity via

neuromodulation is beneficial to agents in variable environments, because agents are able

to change their phenotype (their behaviour) within their lifetime, without affecting their

genotype (deliberative network); any behavioural changes will be short-lived. This would

explain why plasticity is more beneficial as variability increases, as the ability to reversibly

and temporarily change behaviour depending on the environment would happen more often

when the environment differs at each generation.

Statistical Tests – Comparing Evolution with Coevolved and Random Partners

In addition to the analysis of the fitnesses that non-modulatory and modulatory agents

achieve after evolution, here the fitness that agents receive when evolving with either co-

evolved (pc) or random (pr) partners is also compared. This is to explore whether the

increase in environmental variability, caused by the unpredictable actions of random part-

ners, has an effect on agent fitness. As above, Wilcoxon Signed Rank statistical tests were

chosen as a suitable test, as each distribution was ascertained to be non-normal by a sig-

nificant Shapiro-Wilk test result (p < 0.05, Table B.7 in Appendix B.3). The results of the

Wilcoxon Signed Rank tests can be found in Table 6.7. No significant difference was found
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Exp NM
Statistical Test Alternative Hypothesis

z r
pc 6= pr pc < pr pc > pr

1 No 5.632×10−1 2.816×10−1 7.202×10−1 −0.5807 −0.058 07
1 Yes 3.469×10−2 ∗ 1.734×10−2 ∗ 9.828×10−1 −2.114 −0.2114 (S)
2 No 3.128×10−1 1.564×10−1 8.448×10−1 −1.012 −0.1012 (S)
2 Yes 1.938×10−3 ∗ 9.688×10−4 ∗ 9.990×10−1 −3.102 −0.3102 (M)
3 No 2.339×10−4 ∗ 1.169×10−4 ∗ 9.999×10−1 −3.682 −0.3682 (M)
3 Yes 1.146×10−11∗ 5.730×10−12∗ 1 −6.789 −0.6789 (L)

Table 6.7: Wilcoxon Signed Rank statistical tests comparing the best-in-population fitnesses of agents
evolving with coevolved (pc) or random (pr) partners after 500,000 generations, when they do and do not
use neuromodulation (NM); agents are evaluated on: (1) one, (2) two or (3) four environments in each
experiment (Exp). p-values (to 4 S.F.) are marked with an asterisk (*) if significant (p < 0.05). Effect sizes
(r, to 4 S.F.) are presented with the z-score they are calculated from (Equation 3.3, N = 100), and are
classed as small (S, r ≥ 0.1), medium (M, r ≥ 0.3), or large (L, r ≥ 0.5) [58].

between the median fitnesses after evolution of non-modulatory agents that evolve with

either coevolved or random partners, when they are evaluated on one or two environments

at each generation. However, the corresponding modulatory approaches are found to have

a lower median fitness when evolving with coevolved partners, than with random partners

in the same experiments (p < 0.05, Table 6.7). Further to this, when agents are evalu-

ated on four environments at each generation, agents that evolve with coevolved partners

receive a significantly lower fitness to those that evolve with random partners – regardless

of whether they exhibit behavioural plasticity or not (p < 0.05). Modulatory agents are

therefore observed to receive a higher fitness at the end of evolution when they evolve with

random partners than when the partner is coevolved – a finding which is corroborated with

the data presented in Table 6.5.

To analyse these statements more concretely, the effect size estimate r (introduced in

Section 3.6.2) can be considered, which captures the magnitude of how much the type of

partner (coevolved or random) affects an agent’s received fitness; in doing this, the type

of partner is shown to have a larger effect on agents that exhibit behavioural plasticity

than those that do not (Table 6.7). Specifically, as the effect size estimate r for each

experiment is negative, agents that evolve with random partners are observed to receive

a higher fitness than when they evolve with coevolved partners; this effect is stronger in

modulatory agents than non-modulatory agents, demonstrating that behavioural plasticity

via neuromodulation can help agents to overcome the environmental uncertainty caused by

the unpredictable actions of others. In other words, agents that experience a wide range of

environmental conditions as a consequence of evolving with random partners – especially
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when the agent can exhibit behavioural plasticity – are able to achieve higher fitnesses

than agents that evolve with more certainty within the environment from evolving with

a coevolved partner; this effect is stronger as the diversity of experiences and uncertainty

within the environment increase.

Further, the type of partner has a larger effect on the fitness received by agents as the

number of environments they are evaluated on at each generation increases. For exam-

ple, r = −0.05807 when non-modulatory agents are evaluated on one environment, but

r = −0.3682 when non-modulatory agents are evaluated on four environments; using the

guidelines outlined by Cohen [58], the type of partner (coevolved or random) has a negligible

(r < 0.1, which is less than the threshold that Cohen defines as a ‘small’ effect) or medium

effect on agent fitness respectively, with the fitness being higher when partners differ at each

generation. This is similarly observed in modulatory agents, however the effect size is larger

overall; the type of partner has a small effect (r = −0.2114) when agents are evaluated on

one environment, but a large effect (r = −0.6789) when evaluated on four environments.

The divergence in fitnesses received by agents that evolve with coevolved partners, and

those that evolve with random partners, therefore increases as the number of environments

that agents are evaluated on increases. This shows that evolving in an environment where

it is possible to experience a diverse range of scenarios can help agents to evolve diverse

behaviours, enabling them to achieve their goals when the environment is uncertain and

unpredictable; behavioural plasticity also provides an additional benefit by allowing agents

to temporarily alter their behaviour in response to changing environmental stimuli.

These results demonstrate that the predictability of the actions of others within the

environment can impact goal-achieving behaviour in agents during evolution, and the fitness

received as a consequence at the end of evolution. Evolving in an environment with random

partners is shown to increase the fitness agents receive at the end of evolution; this effect

is stronger both when agents exhibit behavioural plasticity, and when agents are evaluated

on more environments at each generation. This suggests that evolution is able to find

higher fitness goal-achieving solutions when agents are exposed to more diverse experiences;

consequently, agents that have encountered many different environmental conditions as a

result of evolving with random partners are observed to evolve goal-achieving behaviour

that is more reliable and likely to contribute to the achievement of the agent’s goals – even

when the presence and actions of others in the environment is uncertain.
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Figure 6.3: Box plots depicting the number of generations agents receive a goal-achieving fitness (≥ 0.7)
on all environments they are evaluated on at each generation, during 500,000 generations of evolution, both
with and without neuromodulation; agents are evaluated on: (1) one, (2) two or (3) four environments in
each experiment, with coevolved (C) or random (R) partners.

6.5.2 Analysing Goal-Achievement Over Evolution

Behavioural plasticity has been shown to increase the expected fitness of agents that evolve

in environments with either coevolved or random partners, when they are evaluated on an

increasing number of environments at each generation; neuromodulation is also shown to

increase the likelihood that an agent will achieve its goals compared to agents that are not

capable of behavioural plasticity.

In this section, the number of generations that agents receive a goal-achieving fitness

(≥ 0.7) in each environment they are evaluated on, over the course of 500,000 generations

of evolution, are compared to analyse how consistently agents are able to achieve goals

when they either do or do not use neuromodulation; this is shown in the form of box

plots in Figure 6.3, with the detailed statistics presented in Table 6.8. In each experiment,

the first, second and third quartiles are either the same or higher in modulatory agents

than non-modulatory agents, indicating that the number of generations that modulatory

agents achieve their goals is higher than in non-modulatory agents. Behavioural plasticity

is therefore observed to have a positive effect on how often agents are able to achieve their

goals throughout evolution; this stands true both when the agents evolve in environments

that are unpredictable as a result of the actions of random partners, as well as when the
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Experiment Partner NM Min Q1 Median Mean Q3 Max

1
Coevolved

No 16 852 258 916 244 726 452 762 499 992
Yes 399 320 212 436 195 385 511 486 331 499 977

Random
No 292 960 296 994 298 262 343 336 376 802 499 921
Yes 293 851 300 090 404 514 397 230 462 697 499 951

2
Coevolved

No 0 0 6 153 879 417 033 499 781
Yes 0 22 323 905 258 679 480 500 499 518

Random
No 0 0 2 126 750 280 481 498 001
Yes 0 55 278 371 087 289 040 460 377 497 546

3
Coevolved

No 0 0 0 106 781 118 640 499 536
Yes 0 8 311 899 254 337 462 123 499 491

Random
No 0 0 0 117 396 278 120 496 856
Yes 0 148 452 327 471 281 954 430 108 494 884

Table 6.8: The minimum, maximum number of generations that agents achieve their goal, along with the
first, second and third quartiles (Q1, median, and Q3 respectively), and the mean. Agents evolve for 500,000
generations and are evaluated on (1) one, (2) two, or (3) four environments, with or without neuromodulation
(NM). Values are rounded to the nearest whole number.

difficulty of the task – through the number of environments that agents are evaluated on –

increases.

Statistical tests were then conducted to analyse whether any significant difference exists

between the non-modulatory (mn) and modulatory (mm) approaches, in terms of the num-

ber of ‘successful’ generations during evolution; a ‘successful’ generation is one in which an

agent receives a goal-achieving fitness of ≥ 0.7 in each environment that it is evaluated on at

each generation. Firstly, Shapiro-Wilk tests concluded that the distribution for each exper-

iment was non-normal, as the results were significant at p < 0.05; these results can be found

in Table B.8 in Appendix B.3. Wilcoxon Signed Rank statistical tests were chosen as an ap-

propriate statistical test, in order to compare the medians of each distribution – the results

of which are presented in Table 6.9. The median number of generations non-modulatory

and modulatory agents are successful in each experiment were ascertained to be unequal

in each experiment (p < 0.05, mn 6= mm), with non-modulatory agents achieving their

goals for a smaller proportion of evolution when compared to modulatory agents (p < 0.05,

mn < mm). These results provide further evidence of the positive impact that behavioural

plasticity has on agent evolution when the environment is unpredictable or challenging; this

benefit of using neuromodulation is seen when agents are paired with either coevolved or

random partners, as well as in experiments where the agents are evaluated on more than

one environment at each generation. This shows that modulatory agents are able to achieve
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Experiment Partner
Statistical Test Alternative Hypothesis

z r
mn 6= mm mn < mm mn > mm

1 Coevolved 2.177×10−6 ∗ 1.088×10−6 ∗ 1 −4.738 −0.4738 (M)
1 Random 6.193×10−6 ∗ 3.097×10−6 ∗ 1 −4.521 −0.4521 (M)
2 Coevolved 2.331×10−6 ∗ 1.165×10−6 ∗ 1 −2.640 −0.2640 (S)
2 Random 1.248×10−6 ∗ 6.239×10−7 ∗ 1 −4.850 −0.4850 (M)
3 Coevolved 4.243×10−9 ∗ 2.121×10−9 ∗ 1 −4.624 −0.4624 (M)
3 Random 1.951×10−11∗ 9.757×10−12∗ 1 −5.450 −0.5450 (L)

Table 6.9: Wilcoxon Signed Rank statistical tests comparing the number of generations that the best-
in-population non-modulatory (mn) and modulatory (mm) agents receive a goal-achieving fitness (≥ 0.7)
in each experiment; agents are evaluated on: (1) one, (2) two or (3) four environments, with coevolved or
random partners. p-values (to 4 S.F.) are marked with an asterisk (*) if significant (p < 0.05). Effect sizes
(r, to 4 S.F.) are presented with the z-score they are calculated from (Equation 3.3, N = 100), and are
classed as small (S, r ≥ 0.1), medium (M, r ≥ 0.3), or large (L, r ≥ 0.5) [58].

their goals more often during evolution than non-modulatory agents.

Agents capable of behavioural plasticity are shown to achieve their goals for more gen-

erations than non-modulatory agents in each experiment, indicated by a negative effect size

estimate r (Table 6.9). This effect size tends to be stronger in agents that evolve with ran-

dom partners than those that evolve with coevolved partners; the exception to this is that

the effect size of behavioural plasticity on agents that are evaluated on one environment

is marginally smaller in agents that evolve with random partners to coevolved partners

(r = −0.4521 and r = −0.4738 respectively), with both still indicating that behavioural

plasticity has a ‘medium’ effect on the agent success rate [58]. For agents that evolve with

random partners, the effect size increases with the number of environments they are eval-

uated on at each generation, but such a trend is not as clear in agents that instead evolve

with coevolved partners. A note worth making is that while the r value for agents that are

evaluated on two environments with coevolved partners indicates that behavioural plasticity

has a small effect on the number of successful generations during evolution, it is however

noticeably lower than that of the other experiments. This difference could be explained

by the spread of the non-modulatory and modulatory distributions presented in Figure 6.3

(plot 2C), which are more similar than observed in the other experiments.

6.5.3 Analysing the Effect of Behavioural Plasticity on Volatility

Thus far, agents capable of behavioural plasticity are shown to receive higher fitnesses after

evolution, and more often during evolution, than those that are not. The analyses presented

in Chapter 5 ascertain that neuromodulation enables agents to receive higher fitnesses when
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evolving to solve single- and multi-stage tasks in single- and multi-agent environments – but

at the cost of evolutionary volatility. Here, further analysis is conducted to discover whether

this same trade-off is present when agents evolve in environments with increasing variability,

through either the predictability of the partner agent or the number of environments that

agents are evaluated on at each generation. The three volatility metrics (SDoT, CACoT and

CCoT) presented in Section 3.6.1 are therefore used to analyse and compare the evolutionary

volatility experienced by non-modulatory and modulatory agents in the experimental study.

The statistical moments and medians for each metric are presented in Table 6.10; for each

of the 100 runs of each experiment, a value for each metric was calculated using the best-

in-population fitness at each generation across 500,000 generations of evolution.

SDoT – Standard Deviation over Time

Modulatory agents evolving with random partners are generally found to have a lower mean

and median SDoT (except when agents are evaluated on four environments with random

partners, which could be due to a higher variance), with a higher variance than their non-

modulatory counterparts (Table 6.10). However, modulatory agents evolving with coevolved

partners experience the opposite, as they have a higher mean and median SDoT, and lower

variance than non-modulatory agents. Additionally, agents that evolve with a coevolved

partner compared to random partners have a lower mean and median SDoT and higher

variance in all experiments.

The SDoT distributions for agents using neuromodulation are less skewed, with generally

lower kurtosis, than those not using neuromodulation; the shapes of the distributions can

be seen in Figure 6.4, which visualise the kernel density estimation for each experiment.

Agents that evolve with coevolved partners generally have positive skewness, meaning SDoT

values are likely to be on the lower end of the distribution; agents evolving with random

partners however generally are negatively skewed, and have higher SDoT values as a result.

The SDoT distributions of non-modulatory agents that evolve with random partners are

leptokurtic in each experiment, as kurtosis is greater than 3 (Table 6.10); outliers are

therefore more likely. This is especially evident in the case of non-modulatory agents that

are evaluated on four environments at each generation, when they evolve with random

partners (Figure 6.4); the distribution has a large peak around 0.22, with very long tails

that indicate outliers. One possible explanation of why this distribution is disparate from
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Metric Exp P NM
Moment

Median
Mean Variance Skewness Kurtosis

SDoT

1
C

No 0.0802∗ 0.007 35 0.763 2.07∗ 0.0310∗

Yes 0.0981 0.005 94∗ 0.636 ∗ 2.16 0.0804

R
No 0.213 0.003 11∗ −1.71 4.64 0.245
Yes 0.176 ∗ 0.003 68 −0.433 ∗ 1.98∗ 0.189 ∗

2
C

No 0.0668∗ 0.006 92 0.975 2.27 0.0120∗

Yes 0.109 0.005 78∗ 0.190 ∗ 1.70∗ 0.107

R
No 0.207 0.004 62 −1.44 3.30 0.245
Yes 0.180 ∗ 0.004 61∗ −0.510 ∗ 1.81∗ 0.202 ∗

3
C

No 0.130 ∗ 0.0190 0.700 2.02 0.0301∗

Yes 0.203 0.0153 ∗ −0.001 68∗ 1.84∗ 0.206

R
No 0.227 ∗ 0.004 41∗ 0.545 4.02 0.219 ∗

Yes 0.280 0.008 48 −0.543 ∗ 2.14∗ 0.299

CACoT

1
C

No 40.8 ∗ 6560 ∗ 5.15 37.2 13.3 ∗

Yes 97.1 16 400 3.38 ∗ 19.0 ∗ 46.1

R
No 12 000 13 100 000 ∗ −1.26 3.04 14 200
Yes 9130 ∗ 14 900 000 0.148 ∗ 1.56∗ 8790 ∗

2
C

No 41.6 ∗ 7150 ∗ 6.90 59.4 18.1 ∗

Yes 201 48 500 1.52 ∗ 4.69∗ 97.5

R
No 11 400 17 900 000 −0.945 2.12 14 200
Yes 8220 ∗ 17 500 000 ∗ 0.484 ∗ 1.63∗ 6510 ∗

3
C

No 87.3 ∗ 36 600 ∗ 7.55 67.3 42.4 ∗

Yes 442 188 000 1.62 ∗ 6.26∗ 283

R
No 11 700 4 880 000 −1.13 2.57 13 000
Yes 9940 ∗ 3 730 000 ∗ 0.434 ∗ 1.89∗ 9420 ∗

CCoT

1
C

No 174 ∗ 129 000 ∗ 3.38 ∗ 15.2 ∗ 35 ∗

Yes 373 360 000 4.00 24.2 134

R
No 29 400 ∗ 1 370 000 ∗ 1.65 5.69 28 900 ∗

Yes 30 400 2 230 000 −0.384 ∗ 2.90∗ 30 600

2
C

No 167 ∗ 192 000 ∗ 6.68 54.2 46 ∗

Yes 892 1 220 000 1.76 ∗ 5.47∗ 400

R
No 29 300 ∗ 2 830 000 ∗ 1.48 6.31 28 800 ∗

Yes 30 900 3 060 000 −0.138 ∗ 1.65∗ 31 200

3
C

No 322 ∗ 897 000 ∗ 7.87 71.2 111 ∗

Yes 1850 3 610 000 1.05 ∗ 2.88∗ 998

R
No 32 300 ∗ 102 000 000 1.13 2.61 26 000 ∗

Yes 41 700 90 800 000 ∗ −0.345 ∗ 1.81∗ 43 200

Table 6.10: Statistical moments and median (to 3 S.F.) of the SDoT, CACoT and CCoT volatility metrics;
agents are evaluated on (1) one, (2) two or (3) four environments in each experiment (Exp), with either
coevolved (C) or random (R) partners. The highest mean and median, and lowest variance, skewness, and
kurtosis for agents with or without neuromodulation (NM) are indicated with an asterisk (*).
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Figure 6.4: Kernel density estimations of the SDoT of agents that are evaluated on (1) one, (2) two or (3)
four environments in each experiment, with either coevolved (C) or random (R) partners. Experiments are
repeated for non-modulatory and modulatory (NM) agents. Note: the graph scales are not comparable due
to the disparity in the densities between each distribution.

the others could be related to the low numbers of agents that are able to achieve their

goals in this experiment (Table 6.4); if an agent cannot retain goal-achieving behaviour

that generalises across a number of partners, the fitness will vary across evolution and

result in a high SDoT. When non-modulatory agents evolve with random partners, they

tend to receive a high SDoT (indicated by the negatively-skewed distributions); a very tall,

thin peak in the distribution representing the SDoT of non-modulatory agents evolving

with random partners in four environments (plot 3D) thus implies it is predictably difficult

for these agents to evolve and maintain goal-achieving behaviour. Whilst non-modulatory

agents are observed to have a predictably lower SDoT, modulatory agents may have more

variability in fitness during evolution but, they also achieve their goals more often.

When comparing agents that evolve with coevolved or random partners, both modula-

tory and non-modulatory agents are seen to experience less evolutionary volatility when

evolving with coevolved partners than random partners. Evolution appears to be less

volatile in modulatory agents that evolve with random partners than non-modulatory

agents – as they receive a lower SDoT – but more volatile when they evolve with coe-

volved partners; this is not necessarily expected because neuromodulation enables agents

to temporarily and reversibly change behaviour – and potentially fitness as a result – in
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Figure 6.5: Kernel density estimations of the CACoT of agents that are evaluated on (1) one, (2) two or
(3) four environments in each experiment, with either coevolved (C) or random (R) partners. Experiments
are repeated for non-modulatory and modulatory (NM) agents. Note: the graph scales are not comparable
due to the disparity in the densities between each distribution.

response to environmental changes.

CACoT – Cumulative Absolute Change over Time

When modulatory agents evolve with random partners, they are found to have a lower

mean and median CACoT than non-modulatory agents in each experiment (Table 6.10);

the opposite is found when modulatory agents evolve with coevolved partners. Further,

modulatory and non-modulatory agents that evolve with coevolved partners have a lower

mean and median CACoT, with a higher variance compared to when they evolve with ran-

dom partners. Agents evolving with neuromodulation and coevolved partners are observed

to have a higher variance in CACoT than non-modulatory agents, but no other obvious

trend regarding the variance was seen in the results. The CACoT distributions of modu-

latory agents have lower skewness and kurtosis compared to non-modulatory agents; this

is the same with agents evolving with random partners compared to coevolved partners.

The CACoT distributions of non-modulatory agents evolving with random partners have

negative skewness, indicating higher values are more likely. Additionally, the distributions

of all agents that evolve with coevolved partners are leptokurtic, as the kurtosis is greater

than 3 in each; this is more extreme in non-modulatory agents, indicating outliers are more
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likely. This is more evident when looking at the shapes of the kernel density estimation

plots in Figure 6.5, as the leptokurtic distributions have large peaks with long tails.

The best-in-population fitness of agents evolving with random partners is therefore

observed to fluctuate by larger amounts during evolution compared to those that evolve

with a coevolved partner; modulatory agents on the other hand fluctuate less (have a

lower CACoT) than non-modulatory agents when evolving with random partners, but the

opposite is true when evolving with coevolved partners.

CCoT – Count of Change over Time

When looking at the number of times that an agent’s fitness fluctuates during evolution,

modulatory agents are generally found to have a higher mean and median CCoT, lower skew-

ness and kurtosis (except when agents are evaluated on one environment with coevolved

partners), and a higher variance (except when agents are evaluated on four environments

with random partners) than their non-modulatory counterparts (Table 6.10). However,

when agents evolve with random partners, the mean, median, and variance in CCoT are

higher than when agents evolve with coevolved partners (either with or without neuromod-

ulation), with lower skewness and kurtosis. When looking at the kernel density estimation

plots presented in Figure 6.6, the extreme kurtosis and high positive skew (where kurtosis is

greater than 3, and skew is greater than 1) observed in non-modulatory agents that evolve

with coevolved partners can be seen more obviously due to large peaks and long tails to

the right of the plots; while the peaks of these distributions fall around lower CCoT values,

outliers that have high CCoT values are to be expected.

Modulatory agents therefore appear to have a best-in-population fitness that fluctuates

more often than in non-modulatory agents – the same is also true when comparing agents

that evolve with random partners compared to coevolved partners.

Statistical Tests

After analysing the distributions and the statistical moments for each volatility metric, a

Shapiro-Wilk test was conducted for each distribution to test for normality; as p < 0.05, each

was found to be non-normal. Following the rationale for choosing statistical tests discussed

in Section 6.5.1, one two-tailed (mn 6= mm) and two one-tailed (mn < mm, mn > mm)

Wilcoxon Signed Rank statistical tests were conducted to ascertain whether behavioural
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Figure 6.6: Kernel density estimations of the CCoT of agents that are evaluated on (1) one, (2) two or (3)
four environments in each experiment, with either coevolved (C) or random (R) partners. Experiments are
repeated for non-modulatory and modulatory (NM) agents. Note: the graph scales are not comparable due
to the disparity in the densities between each distribution.

plasticity has an impact on evolutionary volatility, by comparing non-modulatory (mn) and

modulatory (mm) agents. The results are presented in Table 6.11.

For each of the median SDoT, CACoT and CCoT for each experiment, the modula-

tory and non-modulatory approaches were found to be significantly different (p < 0.05,

mn 6= mm). An exception to this is when comparing the SDoT of agents that are evaluated

on one environment with coevolved partners, as p = 0.06919; objectively this result is not

significant, however the SDoT was found to be smaller in non-modulatory agents than their

modulatory counterparts (p = 0.03460, mn < mm). Here, a ‘small’ effect size estimate r

[58] indicates that behavioural plasticity has an observable – albeit weak – effect on the

SDoT.

Non-modulatory agents were observed to have a lower SDoT and CACoT than modula-

tory agents when evolving with coevolved partners in each experiment, and a higher SDoT

and CACoT when evolving with random partners; p < 0.05 in the one tailed tests with

alternative hypotheses mn < mm and mn > mm respectively. The effect size estimate r

corroborates these findings, as a negative r indicates the SDoT or CACoT is higher in modu-

latory agents than non-modulatory agents, whereas a positive r indicates the opposite. The

exception to these findings is that the SDoT of non-modulatory agents that are evaluated on
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Metric Exp Partner
Statistical Test Alternative Hypothesis

z r
mn 6= mm mn < mm mn > mm

SDoT

1 Coevolved 6.919×10−2 3.460×10−2 ∗ 9.657×10−1 −1.819 −0.1819 (S)
1 Random 1.997×10−5 ∗ 1 9.984×10−6 ∗ 4.267 0.4267 (M)
2 Coevolved 7.117×10−4 ∗ 3.559×10−4 ∗ 9.996×10−1 −3.387 −0.3387 (M)
2 Random 7.905×10−3 ∗ 9.961×10−1 3.952×10−3 ∗ 2.658 0.2658 (S)
3 Coevolved 7.482×10−4 ∗ 3.741×10−4 ∗ 9.996×10−1 −3.373 −0.3373 (M)
3 Random 3.250×10−5 ∗ 1.625×10−5 ∗ 1 −4.157 −0.4157 (M)

CACoT

1 Coevolved 1.371×10−6 ∗ 6.856×10−7 ∗ 1 −4.831 −0.4831 (M)
1 Random 3.370×10−6 ∗ 1 1.685×10−6 ∗ 4.649 0.4649 (M)
2 Coevolved 5.639×10−11∗ 2.819×10−11∗ 1 −6.555 −0.6555 (L)
2 Random 1.292×10−5 ∗ 1 6.458×10−6 ∗ 4.363 0.4363 (M)
3 Coevolved 4.072×10−13∗ 2.036×10−13∗ 1 −7.255 −0.7255 (L)
3 Random 1.714×10−7 ∗ 1 8.569×10−8 ∗ 5.230 0.5230 (L)

CCoT

1 Coevolved 3.152×10−5 ∗ 1.576×10−5 ∗ 1 −4.164 −0.4164 (M)
1 Random 3.130×10−5 ∗ 1.565×10−5 ∗ 1 −4.166 −0.4166 (M)
2 Coevolved 5.493×10−11∗ 2.746×10−11∗ 1 −6.559 −0.6559 (L)
2 Random 1.443×10−8 ∗ 7.214×10−9 ∗ 1 −5.670 −0.5670 (L)
3 Coevolved 1.360×10−12∗ 6.798×10−13∗ 1 −7.090 −0.7090 (L)
3 Random 2.423×10−8 ∗ 1.212×10−8 ∗ 1 −5.580 −0.5580 (L)

Table 6.11: Wilcoxon Signed Rank statistical tests comparing the volatility metrics of non-modulatory
(mn) and modulatory (mm) agents that are evaluated on: (1) one, (2) two or (3) four environments in each
experiment (Exp), with coevolved or random partners. p-values (to 4 S.F.) are marked with an asterisk (*)
if significant (p < 0.05). Effect sizes (r, to 4 S.F.) are presented with the z-score they are calculated from
(Equation 3.3, N = 100), and are classed as small (S, r ≥ 0.1), medium (M, r ≥ 0.3), or large (L, r ≥ 0.5)
[58].

four environments is lower than in modulatory agents, when evolving with random partners

(p = 0.00001625, mn < mm). This could be because fewer non-modulatory agents in these

experiments are able to achieve their goal in at least one of the four of the environments

they are evaluated on by the end of evolution, when compared with modulatory agents

(Table 6.4); the SDoT would therefore be quite low compared to modulatory agents that

achieve their goal more often, as fitness will fluctuate while goal-achieving behaviours are

discovered, established and propagated throughout the population. Further, behavioural

plasticity is shown to have a stronger effect on the CACoT of each experiment when agents

evolve with random partners compared to coevolved partners due to a larger value of r, and

tends to increase in line with the number of environments that agents evolving with either

coevolved or random partners are evaluated on.

Non-modulatory agents are shown to have a lower CCoT than modulatory agents in all

experiments (p < 0.05, mn 6= mm and mn < mm); this observation is also supported by a

negative effect size estimate r for each experiment. Further, behavioural plasticity generally

has a stronger effect on the CCoT when agents evolve with coevolved partners compared
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to random partners (the opposite is true in agents that evolve in one environment by a

margin of 0.0002, which is negligible in terms of r); this indicates that the CCoT of agents

that evolve with random partners is more similar than those that evolve with coevolved

partners, and can be confirmed by looking at the median CCoT values in Table 6.10.

The findings in this section indicate that the type of partner an agent has (coevolved

or random), as well as whether they are capable of behavioural plasticity, influence the

amount of evolutionary volatility an agent experiences. Non-modulatory agents experience

fewer fluctuations in fitness during evolution (CCoT) than modulatory agents, despite the

type of partner they may evolve with. Non-modulatory agents also have a lower standard

deviation in fitness over time, as well as a lower magnitude of fluctuations in fitness over

time (SDoT and CACoT respectively) than modulatory agents when they evolve with a

coevolved partner, however this reverses when the agents evolve with random partners.

Interestingly, this shows that behavioural plasticity reduces the standard deviation in fitness

during evolution, as well as the cumulative magnitude of changes in fitness when agents

experience more variability (i.e. by evolving with random partners rather than coevolved

partners). However, regardless of the type of partner an agent evolves with, non-modulatory

agents experience fewer fluctuations in fitness during evolution; this could be a result of a

lower percentage of non-modulatory agents being able to achieve their goal, and receiving

lower fitnesses than modulatory agents.

Discussion and Summary

All three volatility metrics are useful to get a picture of how agents evolve, and what

factors – such as behavioural plasticity, or the predictability of a partner’s behaviour –

affect the received fitness over time, to understand and predict how agents will behave

in different environments or conditions. As the CCoT captures the number of times that

an agent’s fitness fluctuates over evolution, this is complemented by the CACoT, which

captures the magnitude of those changes in fitness. The SDoT captures how much the

fitness varies over time, and lower values in each of these metrics indicate less volatility. A

low value in each volatility metric would indicate a low level of volatility, but this could also

be influenced by a large number of agents that do not achieve their goal and thus experience

little to no evolutionary volatility; it is therefore also useful to frame this volatility analysis

in terms of the fitness received by agents as well.
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There are two distinct conclusions about volatility to be made – one regarding the ef-

fect of behavioural plasticity on agents that learn in different environments, and the other

regarding how the consistency of a partner affects the ability to achieve goals. Firstly,

non-modulatory agents are found to have a lower CCoT than modulatory agents in each

experiment (Table 6.11), but also a lower best-in-population fitness (Table 6.6). This in-

dicates that behavioural plasticity increases the number of fluctuations in fitness during

evolution compared to non-modulatory agents. Secondly, non-modulatory agents have a

lower SDoT and CACoT than modulatory agents when evolving with coevolved partners,

but generally a higher SDoT and CACoT with random partners. As non-modulatory agents

have a higher SDoT and CACoT than modulatory agents, but lower CCoT when evolving

with random partners, this would indicate that non-modulatory agents have a fitness that

fluctuates less often but by larger magnitudes during evolution. Volatility therefore appears

to also be affected by environmental factors such as whether the partner is coevolved (and

thus has some element of predictability), or random. Additionally, evolutionary volatility,

as captured by each of the three metrics used in this section, tends to increase as the num-

ber of environments that an agent is evaluated on at each generation is increased: agents

that are evaluated on four environments experience the most volatility across each metric –

both with and without neuromodulation – whereas agents that are evaluated on just one

environment experience the least volatility.

These findings show that both behavioural plasticity and the predictability of the other

agent in the environment can affect the volatility that agents experience during evolution;

neuromodulation not only enables agents to achieve their goals more often, but can reduce

evolutionary volatility when the behaviour or presence of another agent in the environment

is unpredictable – even when the complexity of the task (through evaluating the agents on

more environments at each generation) increases.

6.5.4 Analysing the Modulatory Neurons in the Neural Networks

As neuromodulation is seen to help agents to achieve their goals more often and receive a

higher fitness, the question arises whether the configuration of modulatory neurons in the

deliberative neural networks of the agents has an influence on goal-achievement. The delib-

erative neural network of the best-in-population agent after 500,000 generations of evolution

is analysed for each of the 100 runs of all experiments. The most common configuration of
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Experiment Partner Goal L1 L2 L3 LT Freq Total

1
Coevolved

Yes 4 3 3 10 6 94
No - - - - - 6

Random
Yes 4 3 3 10 5 86
No 5 1 2 8 2 14

2 Coevolved

Yes

2 2 3 7

3 66

3 2 1 6
3 3 2 8
4 2 2 8
4 3 2 9
5 2 2 9
5 3 3 11

No

2 3 2 7

2 34

3 2 1 6
3 3 2 8
3 5 1 9
4 2 1 7
4 2 2 8
4 4 2 10

Random
Yes 3 3 2 8 4 67
No 5 3 3 11 4 33

3
Coevolved

Yes
4 2 2 8

3 66
4 4 3 11

No
3 2 1 6

2 343 2 2 7
4 3 3 10

Random
Yes 3 3 2 8 5 86
No - - - - - 14

Table 6.12: The most common number of modulatory neurons evolved in each of the three layers of the
deliberative neural networks (L1, L2, L3), and in total (LT), for agents evaluated on (1) one, (2) two or (3)
four environments, that achieve their goal and those that do not, and that evolve with coevolved or random
partners. The frequency that the configuration occurs is shown, as well as the total number of agents overall.
A dash (-) indicates that no configuration occurred more than once, whilst multiple rows show configurations
with the same frequency.

modulatory neurons in each of the neural network layers, and in total in the entire network,

for each of the experiments is presented in Table 6.12; these are broken down into agents

that achieve their goal in all environments they are evaluated on (either one, two or four),

and those that do not.

These results show that no one configuration of modulatory neurons influences whether

an agent is able to achieve its goal in the experiment or not. In fact, similarly to the findings

presented in Section 5.5.4, the frequency of common neuron configurations is low compared

to the total number of agents that do or do not achieve their goal. For some experiments,

there are many configurations that occur in the population the same number of times; this

shows that the same configuration can be evolved by agents that both achieve and do not
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achieve their goal. For example, in agents that are evaluated on two environments and

evolve with coevolved partners, two common configurations for all agents – regardless of

whether they achieve their goal – for Layers 1, 2 and 3 respectively, are {3, 2, 1} and {4, 2, 2};

these neurons are not necessarily arranged in the same order within the neural network.

This supports the conclusion that the arrangement and number of modulatory neurons do

not affect an agent’s ability to achieve goals, no matter the type of environment that it may

evolve in.

6.6 Discussion and Implications

In Chapter 5, the effect of behavioural plasticity on agent evolution is explored when agents

evolve to solve a single- or multi-stage task; neuromodulation is observed to help evolution

find higher-fitness solutions more often, with agents achieving their goals for a higher pro-

portion of evolution than non-modulatory agents – but at the price of higher evolutionary

volatility. In this chapter, the effect of behavioural plasticity on an agent’s ability to achieve

goals is further explored, by comparing how agents evolve to achieve their goals when expe-

riencing a series of increasingly variable environments. Specifically, agents are evaluated on

one, two or four environments at each generation, and may evolve with coevolved or random

partners. In the natural world, behavioural plasticity can increase an individual’s chance of

survival in novel, variable environments, through enabling a genotype to vary its phenotype

according to different environmental stimuli [196]. In this experimental study, behavioural

plasticity is shown to improve the likelihood that an agent will evolve to achieve its goal,

with modulatory agents evolving to achieve higher fitnesses – and more often – than their

non-modulatory counterparts.

Evolving successful solutions is shown to be more difficult when agents experience higher

levels of environmental variability; by evolving with a random partner at every generation,

the environment becomes uncertain and behaviour successful in one context may be un-

successful in another. However, whilst it is a challenge for evolution to find goal-achieving

solutions when agents evolve with partners that are unpredictable, agents are observed to

receive a higher fitness when they do in fact achieve their goal compared to when they learn

in environments with more certainty.

A contributing factor to this is that agents that coevolve with other agents have a
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tendency to evolve exploitative behaviour, whereas those that evolve with random partners

have a tendency to evolve cooperative behaviour. Exploitative behaviour enables agents to

receive the highest possible fitness as they do not endure any cost through bridge-building

behaviour, however agents may then rely on the actions of others to achieve their goals.

This can be seen clearly in Tables 6.2, 6.3 and 6.4, as more agents achieve their goals when

coevolving with another agent by exploiting the actions of the other agent, than in a single-

agent environment. Exploitative agents are unable to achieve any fitness when existing

alone, meaning they have evolved to depend on the actions of others to achieve their goal.

In comparison, when agents are exposed to more experiences through enduring high

levels of environmental variability, cooperative behaviour is more prevalent; a portion of

agents that are able to achieve their goal alone go forward to cooperate with their partner

agent, and thus receive a higher fitness than acting individually and incurring the entire

cost of building the bridge on their own. Learning how to behave in an environment with

a variety of random partners suggests that agents evolve the ability to consistently and re-

liably achieve a higher fitness through cooperation when situated in a shared environment,

without that impacting their ability to achieve goals when alone. When observing human

participants of an iterated Prisoner’s Dilemma game, Fehl et al. [83] also found cooper-

ation to be the favoured strategy when the anonymous partners in the game were prone

to change – what Fehl et al. call a ‘dynamic network’. In this chapter, the observation

that cooperative behaviour can emerge in environments where agents have random part-

ners – and also completely shift from the exploitative behaviour seen in environments with

coevolved partners – is not only striking to see in Tables 6.2, 6.3 and 6.4, but deserving of

more in-depth investigation in future work to explore the emergence of unintentional social

dynamics.

As discussed in Section 2.5.3, Jolley and Channon [114] demonstrate that averaging the

fitness that agents achieve when they are evaluated on many environments (in this case,

ten) at once can improve overall performance. Experiencing a wide range of environmental

scenarios can therefore be said to assist in the emergence of more generalised behaviour.

The results presented in this chapter concur with this finding in the sense that evolving

with random partners leads to a higher fitness being achieved than in agents that coevolve.

However, even though the agents presented in this study are evaluated on an increasing

number of environments in each experiment, this is not equivalent to the different numbers
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of environmental evaluations seen in Jolley and Channon [114]; this is because the envi-

ronments agents experience here differ to each other in terms of the perceived complexity

(arising from being situated with another, or alone), which is not seen when agents are

evaluated on multiple repetitions of the same environment.

The results of this experimental study and the consequent analyses show that evolving

goal-achieving behaviour that is successful in a range of contexts is a difficult problem. While

it appears to be harder to evolve successful solutions when partners are unpredictable,

higher fitnesses become accessible through building resilience to changing environmental

stimuli. Experiencing high levels of variability from changing environmental stimuli can

therefore be more beneficial than evolving in a less uncertain environment, in terms of the

fitness received and the behaviours evolved. Behavioural plasticity is seen to strengthen this

effect further, as temporary, reversible changes in behaviour facilitate adaptations to novel

environments and lead to higher fitness solutions being evolved. Interestingly, behavioural

plasticity can actually reduce the amount of volatility experienced when evolving with

random and therefore unpredictable partners; whilst the frequency of the fluctuations in

fitness captured by the CCoT metric remain high, the magnitude of those changes instead

reduces with behavioural plasticity. Therefore, even though fitness may change often when

experiencing environmental uncertainty as a result of the unpredictable actions of random

partners, behavioural plasticity is shown to have less of an effect on volatility as a whole.

6.7 Conclusion

In this chapter, the River Crossing Dilemma testbed is used to examine how evolving

agents achieve the same task when environmental conditions or contexts vary to different

extents, and how this environmental variability experienced can affect goal-achievement

and evolution. Further, behavioural plasticity is one example of a beneficial quality in the

natural world for surviving in novel environments [196]; as such, the effect that behavioural

plasticity via activity-gating neuromodulation has on evolution and goal-achievement in

dynamic environments is also explored.

The main findings and contributions of this chapter are:

• Environmental variability caused by the actions of others that constantly change is

shown to positively affect agent evolution and goal-achievement; unintentional coop-
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erative behaviour emerges in highly variable environments, shifting from exploitative

behaviour observed in less variable environments. This relates to the first research

question outlined in Chapter 1.

• Behavioural plasticity can enable agents to overcome variability, helping them to

achieve their goals more often than non-plastic agents. This relates to the third

research question outlined in Chapter 1.

• Evolutionary volatility is observed to decrease in plastic agents facing high levels of

variability, in terms of the magnitude of changes in fitness over time, where variability

is caused by the actions of random partners rather than coevolved partners. The three

volatility metrics (SDoT, CACoT and CCoT) are used to measure this volatility, which

relates to the second research question outlined in Chapter 1.

• There is a relationship between fitness and volatility for modulatory agents, where a

trade-off exists in environments with low variability, but disappears when variability

increases as volatility decreases. This relates to all three research questions outlined

in Chapter 1.

When agents evolve with random partners, the context in which they are behaving, and

attempting to achieve their goal in, continually changes from one generation to the next;

consequently, it is harder for agents to evolve goal-achieving behaviour than when agents co-

evolve with other agents. However, whilst evolving in highly variable environments is shown

to be a challenge, agents are shown to receive a higher fitness than those in less variable

environments as a result. Further, cooperative behaviour is found to be more prevalent in

agents that evolve with random partners, whereas exploitative behaviour is more common

in agents that coevolve with partners; this shows that variability over predictability is more

useful for evolving goal-achieving behaviour in the face of variability or uncertainty. These

findings are in line with those of Andras et al. [8], who demonstrate that environmental

uncertainty can have a positive effect on promoting cooperative behaviour in agents. This

shift in behaviour observed as a result of increasing the level of environmental variability

that agents are exposed to is an especially interesting result; agents are incapable of per-

ceiving or learning about others, or indeed their actions or the resulting consequences of

those actions, so therefore any social dynamics are emergent and cannot be intentional.

C. M. Barnes, PhD Thesis, Aston University 2021 195



CHAPTER 6. VARIABILITY AND VOLATILITY

Evolving in a more diverse environment is therefore shown to be more beneficial in terms

of the fitnesses achieved after evolution, as exploitative agents may receive higher fitnesses

when exploiting other agents, but cannot achieve their goals if they exist in an environment

alone. By experiencing how the environment is affected by actions from a wide range of

partners, agents are observed to receive higher fitnesses overall, and evolve more reliable

behaviour that generalises across environments in which a partner may or may not exist. In

fact, a relationship between variability and the benefit of plasticity is found, such that the

benefit of plasticity is observed to get stronger as environmental variability increases – even

when other agents in the environment are not known.

Extending on from this, behavioural plasticity is demonstrated to have a positive effect

on agents in all areas of the study; agents capable of temporarily and reversibly changing

their behaviour in response to changing environmental stimuli are more likely to achieve

their goals, receive a higher fitness, and are successful for longer during evolution than

those that are not. Furthermore, behavioural plasticity is shown to increase evolutionary

volatility in all agents, in terms of the number of fluctuations in fitness over time, however

the magnitude of those changes is actually shown to decrease when environments are highly

variable (i.e. when agents evolve with a different partner at each generation). Therefore,

activity-gating neuromodulation is shown to not only be beneficial in terms of agent fitness

and goal-achievement, but the magnitude of evolutionary volatility experienced by agents

reduces when environments are novel, uncertain, or variable. These results therefore provide

evidence that behavioural plasticity via activity-gating neuromodulation is both a viable

and useful mechanism that future systems could adopt in order to overcome this variability,

and the negative effects of interference caused by other agents within shared environments.

Unforeseen environmental conditions and unpredictable interactions are characteristics

of large, heterogeneous systems, with the frequency of unintended interactions increasing

with system complexity and size. This study abstracts this problem to demonstrate that

evolution in highly variable environments, caused by the unpredictable actions of others,

can negatively affect a system’s ability to achieve goals; goal-achieving behaviour must gen-

eralise across a wide range of environmental conditions and potential interactions with other

systems that are unknown. Further, behavioural plasticity via activity-gating neuromod-

ulation is shown to improve the prospect of goal-achievement in environments where the
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predictability of the presence of other systems – and the actions in which they take – is con-

stantly in flux. Finally, behavioural plasticity is observed to reduce evolutionary volatility in

these highly variable environments, while increasing the expected fitness and the likelihood

of goal-achievement.

This study demonstrates the importance of considering how systems may overcome un-

foreseen interactions or environmental conditions during the design process; modern tech-

nical systems are evermore situated in environments which are increasing in size and com-

plexity, and thus variability. Whilst the results in this study highlight important issues to

consider in system design, real-world technical systems comprise many interrelated com-

ponents; a limitation of this study is that the abstracted agent-based model studies how

only a maximum of two agents evolve and interact with one another. Future studies and

extensions of this work will therefore explore the impact that many components within a

system can have on evolution and goal-achievement in highly variable environments, and

how the consequences of the resulting increase in the number of unintended interactions

can be mitigated.
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Chapter 7

Conclusion

This thesis presents three, comprehensive experimental studies that are designed to investi-

gate the impact that interference can have on agents within a shared environment. As the

computer systems of today are often composed of many colocated components, the River

Crossing Dilemma testbed is introduced to explore issues of interference in a simplified

model; the intention behind these studies is to gain an insight into the emergent phenom-

ena that may arise in these complex, real-world systems, by studying how artificial agents

evolve to achieve their goals in a simulated environment. Specifically, agents are evolved

without a capacity to learn of other agents, meaning that they are unable to understand

how the actions of others may affect themselves. This is important to study since it is

infeasible for a system to obtain knowledge of all other actors within an environment, and

the influence that those actors may have on the system itself [112]. Consequently, this is one

novelty arising from this thesis, as other literature tends to focus on approaches to mitigate

interference when agents are endowed with information about others. Since actors that are

colocated are inherently socially situated and subject to interference from the actions of

others, one of the objectives of the work presented within this thesis is to understand such

interference at a fundamental level, as a prerequisite to the more complex social capabilities

required for social awareness and intelligence [51, 28]. The results of the experimental stud-

ies show that acting in a more socially-oriented way can help agents to achieve their goals

regardless of whether they exist in isolation, in a shared environment, or even when the

presence of another agent is unpredictable. This therefore demonstrates that it is possible

for agents to mitigate the consequences of interference and uncertainty arising from the
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actions of other actors, without the explicit need for changing the way they operate when

the context of the environment changes, for obtaining more information than is already

available, or for modelling others within the environment in order to behave appropriately.

Three primary questions are asked in Chapter 1, intended to explore these issues of

interference in detail. These surround: how agents can be affected by interference from

unknown others; whether the effect of interference can be measured and compared; and

finally, whether agents can mitigate the negative effects of interference despite being unable

to reason about others and their actions. Since humans and other animals have evolved

the ability to act socially in response to their shared environments, inspiration is taken

from the fields of sociology, neuroscience and biology to investigate whether interference

can be mitigated, and whether the goal-rationality seen in current systems is sufficient as

these complex, social real-world systems grow larger. Specifically, taking actions that are

socially-oriented and not necessarily goal-oriented is shown to be an effective way of reducing

the evolutionary volatility experienced by agents, whilst not affecting the fitness received;

plasticity as a result of neuromodulation is also shown to be beneficial in highly variable en-

vironments characterised by uncertainty and interference, improving both volatility and the

fitness received by agents. These approaches demonstrate that acting in a socially-inspired,

or socially-motivated manner can improve an agent’s ability to achieve goals in shared envi-

ronments – even without knowledge of others. The experimental studies therefore provide

insight into the consequences that simple coexistence can have on the ability for systems

to achieve goals, and examples of simple mechanisms that can be used to improve system

performance when information about others may not be readily available.

7.1 Contributions Revisited

To summarise, the major contributions of this thesis are as follows:

• The River Crossing Dilemma testbed, designed to explore social phenomena, the con-

sequences of interference, and how agents achieve goals in environments of arbitrary

complexity. Specifically, this testbed is used to explore how agents may evolve in

shared environments without any knowledge, or ability to acquire such knowledge, of

other agents and the effect that their actions may have on themselves. This testbed

is thus used to explore the first and third research questions detailed in Chapter 1.
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• Three volatility metrics – SDoT, CACoT, and CCoT – that can be used to quantify

the frequency and/or magnitude of changes in fitness during agent evolution, such that

the effects of interference can be measured and compared between agents in different

environments, or of different designs; these metrics can be used to explore the second

research question in Chapter 1.

• A study that concludes goal-rationality is sufficient for achieving goals in shared envi-

ronments when experiencing interference; however, the traditional social action pro-

posed can achieve similar results whilst reducing evolutionary volatility. This demon-

strates the viability of more socially-oriented behaviour when systems or agents exist

in shared environments, and highlights that a trade-off can be made between the abil-

ity to achieve goals and the volatility experienced. This study therefore explores all

three research questions presented in Chapter 1.

• Two studies which demonstrate that behavioural plasticity – the temporary, reversible

changes in behaviour achieved in this case with a novel approach to neuromodulation –

enables agents to achieve their goals more often when facing higher levels of interfer-

ence and uncertainty. Plasticity is also shown to reduce the evolutionary volatility

experienced by agents in highly variable environments, whilst improving the ability

to achieve goals compared to non-plastic agents. Further, unintentional cooperation

is shown to emerge in highly variable environments which is more prevalent in plastic

agents, whereas self-interested behaviour is more common in less variable environ-

ments. These studies explore all three research questions detailed in Chapter 1.

• Three experimental studies that explore the consequences of interference and how they

can be mitigated by observing: how agents evolve to achieve their goals in isolation,

compared to when they exist with one other; how evolving in an environment that

can change from solitary to shared can affect evolution and goal-achievement; how

the task complexity can affect evolution and the interference experienced in these

environments; and how the predictability of a partner agent’s actions, and the resulting

level of uncertainty or variability within the environment, can affect evolution and

goal-achievement. Overall, each study is designed to explore each of the three research

questions presented in Chapter 1, with each study focusing on investigating the effects

that interference can have on agents in different social situations.
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The three experimental studies presented in Chapters 4, 5 and 6 have been designed

to answer the three research questions detailed in Chapter 1. The first research question

is formulated around understanding how agents in shared environments are affected by

interference from the actions of others. The results obtained from these studies demonstrate

that interference can either be beneficial to agents by helping them to achieve a higher fitness

through cooperating with or exploiting the other, or it can cause goal-achieving behaviour to

become unreliable as the actions of the other agent changes the environment in ways that the

agent cannot understand. The second research question asks how the effect of this observed

interference can be quantified; as such, three volatility metrics are introduced, utilised in

each study to measure the effect that interference can have on the evolution of agents in

each experiment. These metrics are then used to answer the third research question, which

concerns how agents can be designed to mitigate the effects of interference – which can be

quantified and compared using these three metrics.

The studies conducted to investigate the research questions in this thesis demonstrate

that the effect of interference can be great and catastrophic in terms of developing or

sustaining the ability to achieve individual goals, but also that simple methods can be

employed to help agents mitigate the effect of interference without having to learn about

the existence of others. This is important because other work that explores interference

focuses on how to learn about others or the existence of interference itself, or alternatively

on mitigating interference when others are already known. Acquiring knowledge about

others in the environment is not always possible, either immediately or at all; this depends

on the agent’s ability to learn about or model others, or the processing power required to

obtain such information depending on the size of the system [112]. Consequently, this thesis

investigates the often overlooked scenario of how agents are affected by interference without

such knowledge of others, by observing agent behaviour in environments inhabited by either

one or two agents. This again is important because in the real-world, complex sociotechnical

systems with many parts exist in inherently social environments, where interference from

unintended interactions increases with system size and the number of components [101];

these systems should be capable of maintaining goal-achieving behaviour even in the face

of uncertainty, and in situations where others causing interference are not yet known or

modelled adequately enough to make appropriate decisions.

As highlighted by Bellman et al. [28], social awareness and the ability to make decisions
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informed by social information are required for future sociotechnical systems to act appro-

priately within their environments; however, these systems should still be able to perform

consistently whilst learning about these social concepts and the way that they can be in-

fluenced by others – or indeed when the existence of other systems is not yet known, or

knowable. This thesis shows that simple methods inspired by sociology, neuroscience and

biology can be used to realise this endeavour, by enabling systems to mitigate unknown

interference as a step towards the design of socially intelligent, and socially-sensitive ma-

chines. The studies conducted within this thesis, designed to investigate these problems in

social environments, therefore contribute to the wider understanding of the consequences

that interference can have on agents that simply pursue individual goals within a shared

environment. In doing this, the results of these experiments demonstrate the importance

of considering the implications of interference when designing systems that may operate

in shared and uncertain environments; this is because goal-achievement can be hindered if

neither interference nor the actions of others are understood, which can have potentially

catastrophic consequences in the real-world. As real-world systems become larger, they

will be more prone to interacting with many other artificial or human actors in the envi-

ronment – intentionally or not. These other human or machine actors may enter, leave or

behave in the environment unpredictably; if these systems can be endowed with the abil-

ity to mitigate the consequences of interference without explicitly requiring any additional

modelling, processing, or information, we may find ourselves closer to realising socially in-

telligent systems that are capable of acting appropriately in real-world environments that

are characterised by uncertainty and heterogeneity.

7.2 Limitations, Direction and Future Work

As the real-world sociotechnical systems that this thesis is motivated by are growing ev-

ermore complex, it is unrealistic that these systems or the components they comprise will

exist in isolation – or even colocated with only one other actor, for example. Although the

study of how at most one or two agents pursue individual goals in a shared environment

is important, and has given valuable insight into the effects of interference in the minimal

sense, observing only one or two agents is also a limitation of the experimental studies

conducted within this thesis. The number of interactions, and thus the severity of the
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consequences of interference, will increase in line with the number of components within a

system [101]. As highlighted by Heylighen [107], the actions of individuals can often cause

a ripple effect, meaning that the consequences of interference may initially be felt in local

regions of the environment, but may escalate and cause chain reactions that affect actors

on a global scale. As a result, one future research direction is to investigate the effects of

interference in environments inhabited by many actors (in this case, more than two); this is

because the consequences of the actions of one agent may be magnified in densely populated

environments, and this cannot be understood fully by observing only two actors.

The three metrics used for analysing the evolutionary volatility that agents experience

are shown to be useful for gathering an insight into how resilient agents are to varying

environmental stimuli, resulting from the actions of others. However, a limitation of these

metrics is that they capture all changes in fitness experienced by agents during evolution;

they don’t distinguish whether these changes are positive or negative, which would indicate

a benefit or detriment to goal-achieving behaviour respectively. An area for future investi-

gation would therefore be to also analyse how often an agent loses or gains the ability to

achieve its goal during evolution. This would be important as the current metrics capture

evolutionary changes be those positive or negative, however what might be more insightful

is to also capture the implications of these changes. Further, the three metrics must be

analysed in the context of the fitness received by agents in order to get a clear picture of

how agents evolve in these isolated or shared environments. A low value in each volatility

metric would for example indicate resilience and that the fitness does not change often dur-

ing evolution, but could also indicate that agents simply consistently do not achieve their

goals. Additional metrics that measure when the goal-achieving fitness threshold is passed

(either for benefit or detriment) could alleviate some of this ambiguity, whilst also providing

a deeper insight into the behaviour of these agents when experiencing interference.

Modern-day sociotechnical systems are characterised by heterogeneous components,

which may potentially have different goals, abilities, and knowledge. An interesting future

avenue of research would be to explore how a mixture of different types of actors within a

shared environment would interact and affect one another. This would strengthen the need

for social awareness [28], since some actors may possess the ability to model and reason

about others, whereas some may not; regardless, each component within such a system

would need the ability to act appropriately given their inherently social circumstances, to
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avoid catastrophes [46]. By studying this in a simplified agent-based model, the dynamics

that emerge in such rich and diverse environments can begin to be understood, which could

better inform the designers of these complex systems in the real-world.

A longer-term trajectory for this line of research would be to explore how artificial

agents or systems would interact in a shared environment with humans. Similarly to the

experiments discussed in this thesis, a simplified model could be used to explore the interac-

tions between human and machine, whilst also exploring how interference can be mitigated

between these actors on a larger scale compared to the work presented here. The primary

focus of this line of research, as with this thesis, would be on how actors within this model

are able to mitigate interference without necessarily knowing about others, the effects that

the actions of others can have, or the abilities of others – as a step towards social intelli-

gence. As this model would theoretically be more complex than the one used within this

thesis since there would be more than two actors (complexity can increase as a result of

the interactions and interference between actors [191]), more diverse and complex questions

could be explored than those presented in this thesis, for example: how might agents (or

even physical entities such as robots, rather than simulated agents) develop the ability to

perceive others that they have not encountered before? How may these actors mitigate

interference that originates from a variety of different sources, be that natural or artificial?

How might they do this without necessarily possessing knowledge of others, or the exis-

tence of the interference itself? How may the actions of human actors within the system

unintentionally affect the way that artificial components (or even other humans) operate

or achieve their goals? Is it possible for actors to model the capabilities of others, such

that this knowledge can inform future decisions about how to act most appropriately given

the social circumstances in which they exist? Further, would it be possible for an actor

to adapt or change their behaviour based on the capabilities of others, for example in the

extreme cases where another actor may not be able to model others at all, or may be better

equipped for the task at hand? This final question could influence the emergence of social

dynamics such as cooperation, competition, or coordination in order to achieve collective

goals. The studies conducted within this thesis explore the consequences of interference,

and how this manifests when agents share an environment when they have no knowledge of

others; this provides a foundation on which the questions above can be explored, which are

all viable avenues for future research into designing artificial systems that can operate in
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social environments – and ultimately how socially intelligent systems may be realised. This

thesis demonstrates the importance of studying the effects of interference at a fundamental

level before these complex questions can be asked, contributing valuable insights into the

implications that simply existing in a shared space can have for the goal-achievement and

evolution of artificial agents. If systems can be designed to mitigate interference without

requiring such information or knowledge about others, this could lead to the realisation of

socially intelligent systems capable of operating consistently in environments shared by a

variety of both human and artificial actors – enabling them to not only integrate into their

local environment, but into the fabric of society as well.
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Appendix A

Statistical Analysis Setup

Statistical analyses have been conducted in the experimental studies using the R program-

ming language [173], and RStudio. Below is a list of the packages and functions used.

R packages used for statistical analyses and visualisations of data:

• ggplot2 [229]: This package is used for creating graphics and visualising data, by

mapping variables to aesthetics.

• moments [123]: This package provides functions to calculate statistical moments of a

dataset (e.g. mean, variance, skewness and kurtosis).

• rcompanion [142]: This package provides core analysis functionality and datasets,

including the wilcoxonZ function described below.

• reshape2 [228]: This package is used to transform data into more suitable formats

for analysis and visualisation.

• tidyverse [230]: This package provides a variety of functionality, including reshaping

of data, as well as visualisation (ggplot2).

• viridis [95]: This package provides different colour palettes, and aims to improve

readability of visualisations for people with various forms of colour vision deficiency

and thus making data more accessible.

R functions used for statistical analysis:

• wilcox.test(x, y, paired = "true"): A two-tailed, paired Wilcoxon Signed Rank

statistical test can be used to ascertain whether there is any significant difference
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between the medians of two distributions. One-tailed tests can also be conducted by

including the parameter alternative = "less" or alternative = "greater", to

test the alternative hypotheses x < y and x > y respectively.

• shapiro.test(x): The Shapiro-Wilk test is used to test whether a distribution is

normal or non-normal.

• wilcoxonZ(x, y, paired = "true"): The z-statistic for a Wilcoxon paired test can

be used to calculate the effect size r, or relationship, between two variables (r = z/
√
N ,

where N is the number of samples).

• mean(x), median(x), var(x), skewness(x), kurtosis(x): The mean, median,

variance, skewness and kurtosis can be calculated to describe the shape of a distribu-

tion.

• summary(x): Summary statistics for a distribution, such as the minimum, maximum,

mean, and first, second and third quartiles can indicate the dispersion of values in the

distribution.
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Appendix B

Shapiro-Wilk Statistical Tests

Shapiro-Wilk tests indicate whether a distribution is normal or non-normal. The p-values

for each set of tests in each chapter are detailed below.

B.1 Normality Tests: Traditional Action and Evolutionary

Volatility

Below are the results for the Shapiro-Wilk tests conducted in the study presented in Chap-

ter 4. Table B.1 presents the results of the statistical tests conducted on the SDoT, CACoT

and CCoT distributions for agents using goal-rational, traditional and random action, evolv-

ing either alone or together. Table B.2 then presents the results for the fitness distributions

of the same agents, whilst Table B.3 presents the results for the distributions of the number

of generations that agents successfully achieve their goals during evolution.
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Metric Experiment Action Type p

SDoT

Alone
G 2.200×10−16∗

GT 2.200×10−16∗

GR 4.963×10−1

Together
G 7.961×10−12∗

GT 7.532×10−14∗

GR 9.603×10−2

CACoT

Alone
G 2.200×10−16∗

GT 2.200×10−16∗

GR 4.607×10−8 ∗

Together
G 2.200×10−16∗

GT 2.200×10−16∗

GR 1.069×10−10∗

CCoT

Alone
G 2.200×10−16∗

GT 2.200×10−16∗

GR 4.607×10−8 ∗

Together
G 2.200×10−16∗

GT 2.200×10−16∗

GR 2.226×10−11∗

Table B.1: Shapiro-Wilk statistical tests for normality, for the volatility of agents that evolve with goal-
rational, traditional, or random action, when alone or together. p-values (to 4 S.F.) are marked with an
asterisk (*) if significant (p < 0.05), indicating non-normality.

Experiment Action Type p

Alone
G 2.200×10−16∗

GT 2.200×10−16∗

GR -

Together
G 7.842×10−12∗

GT 1.007×10−12∗

GR 4.705×10−14∗

Table B.2: Shapiro-Wilk statistical tests for normality, for the fitness of agents that evolve with goal-
rational, traditional, or random action, when alone or together. p-values (to 4 S.F.) are marked with an
asterisk (*) if significant (p < 0.05), indicating non-normality.

Experiment Action Type p

Alone
G 6.618×10−16∗

GT 2.220×10−16∗

GR 1.132×10−9 ∗

Together
G 1.356×10−11∗

GT 3.284×10−12∗

GR 1.128×10−10∗

Table B.3: Shapiro-Wilk statistical tests for normality, for the number of generations that agents achieve
their goals during evolution when using goal-rational, traditional, or random action, when alone or together.
p-values (to 4 S.F.) are marked with an asterisk (*) if significant (p < 0.05), indicating non-normality.
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B.2 Normality Tests: Neuromodulation and Evolutionary

Volatility

Below are the results for the Shapiro-Wilk tests conducted in the study presented in Chap-

ter 5. Table B.4 presents the results of the statistical tests conducted on the fitness distribu-

tions for modulatory and non-modulatory agents that evolve to solve a single- or multi-stage

task, either alone or together with another agent. Table B.5 then presents the results for

the distributions of the number of generations that agents successfully achieve their goals

during evolution. Finally, Table B.3 presents the results for the volatility distributions of

agents.

Experiment Task Neuromodulation p

Alone
Single-Stage

No 1.133×10−14∗

Yes 2.200×10−16∗

Multi-Stage
No 7.104×10−15∗

Yes 2.200×10−16∗

Together
Single-Stage

No 1.044×10−10∗

Yes 9.758×10−13∗

Multi-Stage
No 9.848×10−11∗

Yes 2.335×10−12∗

Continued Evolution
Single-Stage

No 9.179×10−10∗

Yes 3.807×10−13∗

Multi-Stage
No 2.149×10−10∗

Yes 1.598×10−13∗

Table B.4: Shapiro-Wilk statistical tests for normality, for the fitness of non-modulatory or modulatory
agents that evolve to solve a single- or multi-stage task. Agents evolve alone, together or with continued
evolution. p-values (to 4 S.F.) are marked with an asterisk (*) if significant (p < 0.05), indicating non-
normality.
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Experiment Task Neuromodulation p

Alone
Single-Stage

No 5.960×10−13∗

Yes 2.496×10−10∗

Multi-Stage
No 4.333×10−14∗

Yes 1.255×10−10∗

Together
Single-Stage

No 1.478×10−11∗

Yes 4.183×10−14∗

Multi-Stage
No 1.875×10−9 ∗

Yes 1.019×10−10∗

Continued Evolution
Single-Stage

No 5.305×10−14∗

Yes 2.200×10−16∗

Multi-Stage
No 5.903×10−14∗

Yes 2.200×10−16∗

Table B.5: Shapiro-Wilk statistical tests for normality, for the number of generations that non-modulatory
or modulatory agents achieve their goals when evolving to solve a single- or multi-stage task. Agents evolve
alone, together or with continued evolution. p-values (to 4 S.F.) are marked with an asterisk (*) if significant
(p < 0.05), indicating non-normality.
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Metric Experiment Task Neuromodulation p

SDoT

Alone
Single-Stage

No 8.540×10−14∗

Yes 1.363×10−7 ∗

Multi-Stage
No 9.834×10−15∗

Yes 1.512×10−8 ∗

Together
Single-Stage

No 2.565×10−12∗

Yes 1.441×10−7 ∗

Multi-Stage
No 4.913×10−10∗

Yes 9.884×10−7 ∗

Continued Evolution
Single-Stage

No 8.748×10−9 ∗

Yes 1.841×10−5 ∗

Multi-Stage
No 1.538×10−10∗

Yes 1.595×10−6 ∗

CACoT

Alone
Single-Stage

No 2.200×10−16∗

Yes 2.200×10−16∗

Multi-Stage
No 1.106×10−15∗

Yes 4.854×10−14∗

Together
Single-Stage

No 4.357×10−10∗

Yes 1.561×10−12∗

Multi-Stage
No 2.200×10−16∗

Yes 5.105×10−14∗

Continued Evolution
Single-Stage

No 2.196×10−15∗

Yes 5.153×10−14∗

Multi-Stage
No 2.200×10−16∗

Yes 3.338×10−14∗

CCoT

Alone
Single-Stage

No 2.200×10−16∗

Yes 2.200×10−16∗

Multi-Stage
No 1.101×10−15∗

Yes 4.962×10−14∗

Together
Single-Stage

No 6.204×10−13∗

Yes 1.135×10−13∗

Multi-Stage
No 2.200×10−16∗

Yes 1.608×10−15∗

Continued Evolution
Single-Stage

No 6.923×10−16∗

Yes 2.029×10−13∗

Multi-Stage
No 2.200×10−16∗

Yes 4.883×10−14∗

Table B.6: Shapiro-Wilk statistical tests for normality, for the volatility of non-modulatory or modulatory
agents that evolve to solve a single- or multi-stage task. Agents evolve alone, together or with continued
evolution. p-values (to 4 S.F.) are marked with an asterisk (*) if significant (p < 0.05), indicating non-
normality.
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B.3 Normality Tests: Environmental Variability and Evolu-

tionary Volatility

Below are the results for the Shapiro-Wilk tests conducted in the study presented in Chap-

ter 6. Table B.7 presents the results of the statistical tests conducted on the fitness dis-

tributions for modulatory and non-modulatory agents that are evaluated on one, two, or

four environments at each generation, with coevolved or random partners. Table B.8 then

presents the results for the distributions of the number of generations that agents success-

fully achieve their goals during evolution, and Table B.9 presents the results for the volatility

distributions of agents.

Experiment Partner NM p

1
Coevolved

N 9.848×10−11∗

Y 2.335×10−12∗

Random
N 2.397×10−12∗

Y 3.968×10−14∗

2
Coevolved

N 1.607×10−12∗

Y 5.822×10−16∗

Random
N 1.650×10−11∗

Y 1.476×10−14∗

3
Coevolved

N 8.318×10−9 ∗

Y 1.441×10−13∗

Random
N 5.732×10−13∗

Y 6.035×10−13∗

Table B.7: Shapiro-Wilk tests for normality for the fitnesses of agents after evolving for 500,000 generations;
agents are evaluated on (1) one, (2) two or (3) four environments in each experiment, with either coevolved
or random partners. p-values significant at p < 0.05, indicating non-normality, are marked with an asterisk
(*).
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Experiment Partner NM p

1
Coevolved

N 1.875×10−9 ∗

Y 1.019×10−10∗

Random
N 5.749×10−13∗

Y 2.024×10−7 ∗

2
Coevolved

N 7.831×10−14∗

Y 7.093×10−11∗

Random
N 2.484×10−14∗

Y 3.984×10−10∗

3
Coevolved

N 1.242×10−15∗

Y 2.494×10−10∗

Random
N 2.385×10−14∗

Y 6.729×10−7 ∗

Table B.8: Shapiro-Wilk tests for normality for the number of generations that agents achieve their goals
during 500,000 generations of evolution; agents are evaluated on (1) one, (2) two or (3) four environments
in each experiment, with either coevolved or random partners. p-values significant at p < 0.05, indicating
non-normality, are marked with an asterisk (*).
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Metric Experiment Partner Type Neuromodulation p

SDoT

1
Coevolved

No 4.913×10−10∗

Yes 4.913×10−10∗

Random
No 2.880×10−14∗

Yes 2.594×10−6 ∗

2
Coevolved

No 2.102×10−12∗

Yes 1.545×10−5 ∗

Random
No 6.501×10−15∗

Yes 6.729×10−8 ∗

3
Coevolved

No 5.077×10−10∗

Yes 4.814×10−4 ∗

Random
No 1.535×10−10∗

Yes 4.929×10−6 ∗

CACoT

1
Coevolved

No 2.220×10−16∗

Yes 5.105×10−14∗

Random
No 5.187×10−13∗

Yes 4.214×10−7 ∗

2
Coevolved

No 2.220×10−16∗

Yes 2.418×10−10∗

Random
No 3.467×10−13∗

Yes 2.679×10−9 ∗

3
Coevolved

No 2.220×10−16

Yes 1.800×10−9

Random
No 2.380×10−13

Yes 5.899×10−6 ∗

CCoT

1
Coevolved

No 2.220×10−16∗

Yes 1.608×10−15∗

Random
No 3.977×10−10∗

Yes 7.555×10−4 ∗

2
Coevolved

No 2.220×10−16∗

Yes 1.133×10−11∗

Random
No 1.033×10−10∗

Yes 3.606×10−5 ∗

3
Coevolved

No 2.220×10−16∗

Yes 4.077×10−9 ∗

Random
No 2.162×10−13∗

Yes 1.111×10−5 ∗

Table B.9: Shapiro-Wilk tests for normality for the volatility of agents after evolving for 500,000 gener-
ations; agents are evaluated on (1) one, (2) two or (3) four environments in each experiment, with either
coevolved or random partners. p-values significant at p < 0.05, indicating non-normality, are marked with
an asterisk (*).
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[164] S. Ossowski and A. Garćıa-Serrano. Social Structure in Artificial Agent Societies: Implications for
Autonomous Problem-Solving Agents. In Proceedings of the 5th International Workshop on Agent
Theories, Architectures and Languages, pages 133–148, 1998. ISBN: 978-3-540-65713-2. doi: https:

//doi.org/10.1007/3-540-49057-4_9.

[165] L. Panait, R. P. Wiegand, and S. Luke. Improving Coevolutionary Search for Optimal Multiagent
Behaviors. In Proceedings of the 18th International Joint Conference on Artificial Intelligence, IJ-
CAI’03, pages 653—-658, San Francisco, CA, USA, 2003. Morgan Kaufmann Publishers Inc. doi:
https://doi.org/10.5555/1630659.1630755.

[166] J. Pavón, M. Arroyo, S. Hassan, and C. Sansores. Agent-Based Modelling and Simulation for the Anal-
ysis of Social Patterns. Pattern Recognition Letters, 29(8):1039–1048, 2008. ISSN: 0167-8655. doi:
https://doi.org/10.1016/j.patrec.2007.06.021. Pattern Recognition in Interdisciplinary Percep-
tion and Intelligence.

[167] C. Perreault, C. Moya, and R. Boyd. A Bayesian Approach to the Evolution of Social Learning.
Evolution and Human Behavior, 33(5):449–459, 9 2012. ISSN: 1090-5138. doi: https://doi.org/10.

1016/J.EVOLHUMBEHAV.2011.12.007.

[168] L. Pitonakova, R. Crowder, and S. Bullock. Information Flow Principles for Plasticity in For-
aging Robot Swarms. Swarm Intelligence, 10(1):33–63, 2016. doi: https://doi.org/10.1007/

s11721-016-0118-1.

[169] J. Pitt, J. Schaumeier, and A. Artikis. The Axiomatisation of Socio-Economic Principles for Self-
Organising Systems. In Proceedings of the 5th IEEE International Conference on Self-Adaptive and
Self-Organizing Systems, pages 138–147. IEEE, 10 2011. doi: https://doi.org/10.1109/SASO.2011.

25.

[170] S. H. Poon and C. W. Granger. Forecasting Volatility in Financial Markets: A Review. Journal of
Economic Literature, 41(2):478–539, 2003. doi: https://doi.org/10.1257/jel.41.2.478.
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