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Abstract

Agents that exist and pursue individual goals in shared environments can indirectly affect
one another in unanticipated ways, such that the actions of others in the environment can
interfere with the ability to achieve goals. Despite this, the impact that these unintended
interactions and interference can have on agents is not currently well understood. This is
problematic as these goal-oriented agents are increasingly situated in complex sociotechnical
systems, that are composed of many actors that are heterogeneous in nature.

The primary aim of this thesis is to explore the effect that indirect interference from oth-
ers has on evolution and goal-achieving behaviour in agent-based systems. More specifically,
this is investigated in the context of agents that do not possess the ability to perceive or
learn about others within the environment, as information about others may not be readily
available at runtime, or there may be a distinct lack of capacity to obtain such information.
By conducting three experimental studies, it is established that evolutionary volatility is a
consequence of indirect interactions between goal-oriented agents in a shared environment,
and that these consequences can be mitigated by designing more socially-sensitive agents.
Specifically, agents that employ social action are demonstrated to reduce the evolutionary
volatility experienced by goal-oriented agents, without affecting the fitness received. Addi-
tionally, behavioural plasticity achieved via neuromodulation is shown to allow coexisting
agents to achieve their goals more often with less evolutionary volatility in highly variable
environments. While sufficient approaches to mitigate interference include learning about
or modelling others, or for agents to be explicitly designed to identify interference to miti-
gate its consequences, this thesis demonstrates that these are not necessary. Instead, more
socially-sensitive agents are shown to be capable of achieving their goals and mitigating in-
terference without this knowledge of others, simply by shifting the focus from goal-oriented

actions to more socially-oriented behaviour.
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Chapter 1

Introduction

As computer systems become more pervasive in our every day lives with the continual ad-
vancement of technology, there are evermore opportunities for these systems to interact
with not only humans, but with other systems, components of said systems, and the en-
vironments they are situated in as well. These sociotechnical systems can be considered
as agent-based, as both human and technical agents make decisions to achieve goals whilst
coexisting with other agents that are heterogeneous in their nature. The assumption that
modern day computer systems and the components they are comprised will exist in isolation
is no longer true. Actors within a shared space exist in an inherently social environment,
and can thus interact or interfere with one another [51]; mitigating the consequences of
such interference therefore emerges as one of the challenges that must be addressed when

designing these socially situated systems.

One contributing factor to the ability of a complex system to function well — specifi-
cally sociotechnical systems that are composed of many interacting parts, both human and
technical — is said to be resilience to environmental changes [186]. As these systems indeed
grow larger, interactions between parts of the system — intended or otherwise, known or
not — would increase [101]; it should therefore be possible for these systems to be resilient to,
or overcome, such environmental changes brought about by unintended interactions from
others. This is especially important because neither humans nor artificial agents possess
the information or resources necessary to envisage the consequences of their actions in the
far future [171]; if perceiving and reasoning about the consequences of one’s own actions is

difficult due to resource constraints, then this will also be problematic for understanding
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the consequences of the actions of unknown others in the environment. If these systems are
not endowed with the ability to respond appropriately to the unknown, there may be catas-
trophic consequences for integral systems to the safety and functioning of society, such as
the emergency services, and traffic management systems [46]. However, since it is infeasible
to have complete knowledge of all parts of a system because of the sheer processing power
required [112] — and that system complexity rises in cases where interference or interdepen-
dence is rife amongst such interacting parts [191] — there is a need to move towards systems
capable of also overcoming environmental changes as a result of interference when they lack
knowledge of its source or consequences.

Possessing the ability to achieve goals when located in a shared, or social environment
is said to be a core attribute of ‘social intelligence’ [88]; the characteristic of ‘intelligence’
itself is described as a social phenomenon, such that intelligent systems have inherently
social qualities that arise from interaction and interference with other systems or parts of
systems [51]. Complex behavioural dynamics such as cooperation can therefore emerge
from the intentional interaction between different actors within an environment, as well as
unintentional, and often unpredictable emergent phenomena that can arise from indirect,
and unintended interference from the actions of other actors through the environment it-
self. Further, in the context of intelligent systems, perceiving and reasoning about models
of social concepts, such as the existence of other actors within an environment and the
effects that such actors may have on oneself, is described by Bellman et al. [28] as ‘social
awareness’ — an essential component in the endeavour for socially-sensitive sociotechnical
systems that can make appropriate decisions to achieve their goals, given that they do not
exist in isolation. The ability to learn from and utilise learnt knowledge and experience has
been said to be an important component of ‘intelligent behaviour’ in artificial systems [231].
Designing ‘intelligent’ systems that are able to tackle new situations — and thus operate in
dynamic and uncertain environments with as close-to-optimal performance as possible — is
becoming more important as the complexity of the systems and the environments they are

situated in increases.

One obvious approach to mitigate this interference might be to extensively model other
actors within the environment, such that their actions, interactions, and existence can be
reasoned about. However, if no or limited knowledge regarding other actors is available at

runtime, this could lead to actors producing inaccurate or incomplete models that result in
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potentially misinformed or catastrophic decisions being made [205]. As an alternative to this
approach, this thesis instead aims to convey an understanding of how agents can be affected
by unintended interactions and interference from other actors, as well as how the conse-
quences of these can be mitigated without such information or modelling. Consequently,
this thesis investigates how these complex, heterogeneous real-world systems may begin
to overcome the negative effects of interference as a result of existing in an environment
shared with many other, potentially unknown actors, as a step towards intelligent, socially-
sensitive systems. Agent-based models (ABMs) can be used as a means of understanding
the complexities that can emerge in sociotechnical systems, by simplifying or abstracting
a real-world problem to study it in detail. This is just one of the uses of ABMs, but they
can also be used to identify and resolve potential trade-offs in real-world scenarios, or to
spark discussion about certain assumptions in a given domain, for example [145]. Emergent
phenomena can be captured in ABMs, which arise from the interactions of actors within
a shared environment [34] — much like the sociotechnical systems described thus far. This
makes ABMs an appropriate paradigm to study the consequences of interference in order to
gain an understanding of, and potentially predict, such consequences in real-world systems.
In later chapters, individual agents are evolved in a simulated environment so that they can
develop behaviours necessary to achieve their personal goals; the interactions and resulting
interference between these agents can therefore be studied.

It is critical that actors within a shared environment — human, machine, artificial agent
in a simulated environment, or components of a sociotechnical system — are able to make
appropriate decisions, and be resilient to environmental changes despite uncertainty and
external changes that can arise from interference from others [210]. Resilience in a system
would likely lead to goals being achieved more consistently, due to the system’s ability
to mitigate the consequences of events beyond its control. In order to understand the
consequences of interference within the experimental studies conducted as part of this thesis,
the ability of a system to perform consistently needs to also be assessed; this is defined
here as the volatility of a system, in terms of how much the performance (specifically, the
fitness) changes over time. Less volatility would generally indicate a steady performance,
and a resilience to any external changes that the system may be experiencing; this would
be a desired quality in the socially intelligent systems discussed by Bellman et al. [28] and

Castelfranchi [51]. If systems can be endowed with the ability to make socially-oriented
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decisions without access to social information, it could mean they are able to tackle the
effects of interference whether they are aware of other actors that may be present in the
environment or not. By not limiting a system’s capabilities to the information it possesses,

one would hope that this could lead to better resilience to unknown events caused by others.

1.1 Research Questions

To begin to understand the consequences that interference can have in these complex,
heterogeneous real-world systems, a series of experimental studies are presented within this
thesis that explore these issues in an abstract agent-based model. In doing this, the way
that agents evolve to achieve their goals, when their actions and learning can be influenced
by the actions of others, can be studied in detail. Before these systems can express social
intelligence, the implications of existing within a shared environment where other actors
have the potential to influence or interfere with others needs to be explored; this is so that
these systems can be designed with the ability to mitigate any negative consequences that
may arise from simply existing in an environment where others also exist. Specifically, this
thesis investigates the consequences of interference on agents that possess no ability to gain
information about other actors within the environment, or the implications or intentions
of their actions; this information may not be immediately available to systems in the real-
world. To explore the issues surrounding interference discussed in this chapter thus far,

there are three primary questions that this thesis aims to address:

1. How does interference from the actions of others within the environment affect the
evolution and goal-achievement of agents, without possessing the ability to perceive

or learn of others in their environment?

2. How can the magnitude of the effect that interference has on these agents be measured?
Specifically, can this effect be quantified in order to examine how agents experience

or mitigate interference?

3. How might agents be designed to mitigate the effects of interference without a reliance

on knowledge of others?

To study the effects of interference for Question 1, a simple agent-based model is used

to evolve at most one or two agents within an environment to demonstrate the effects

C. M. Barnes, PhD Thesis, Aston University 2021 22



CHAPTER 1. INTRODUCTION

of pursuing goals in isolation (no interference) or in a shared environment (interference).
Question 2 is explored by drawing on theory from volatility forecasting in finance, in order
to quantify how agents are affected by interference. Finally, social action theory and neu-
romodulation are operationalised to explore Question 3; taking inspiration from sociology
and neuroscience research for the design of agents means that the effectiveness of these
two socially-inspired approaches can be explored, in terms of their ability to help agents
overcome the effects of interference. The observations and results arising from these experi-
ments can then be compared to establish the effect that interference can have on the ability
of agents to achieve their goals, and whether the negative consequences of such interference

can be mitigated.

1.2 Contributions of this Thesis

The intention behind the work presented within this thesis is to gain an understanding into
how components of real-world sociotechnical systems, as well as artificial systems like ABMs,
can be affected by interference — and what the resulting implications are for these systems.
As mentioned above, a series of experimental studies have been conducted to explore these
questions, using a novel testbed that has been designed for this specific reason. The main

contributions of this thesis are therefore as follows:

e A new, gamified, and extensible testbed, the River Crossing Dilemma, that places
itself within an established family of testbeds. This is designed to explore how one
or many artificial agents evolve to achieve their individual goals in an environment

where they may experience interference from the actions of other agents.

e Three metrics — SDoT, CACoT, and CCoT — that can be used to quantify the mag-
nitude of changes in fitness that agents experience during evolution — defined as the
volatility of evolution. These metrics can be used to analyse the evolution of agents
that experience interference in multi-agent environments, as well as those that exist
in single-agent environments; the effect of interference can thus be compared in agents

that exist alone or are colocated.

e A novel sociologically-inspired approach to determining how agents act within their

environment to reach their goals; current systems usually opt to take self-interested
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goal-oriented actions, whereas this approach explores how acting in a social manner

within a shared environment can affect how agents achieve their goals.

e A novel approach to agent design inspired by theory from the fields of neuroscience and
biology, designed to investigate whether temporary, reversible changes in behaviour
can be an effective way to mitigate the unpredictable effects of interference within a

shared environment.

e Three comprehensive experimental studies and accompanying analyses, designed to

investigate the effects of interference, that establish:

— That agents are able to evolve to achieve their goals when alone in an environ-
ment, in line with previous work that explores how agents evolve in isolation.

These results act as a baseline for future comparisons;

— That simply existing in an environment with one other agent whilst pursuing
individual goals can affect evolution and goal-achievement, which can introduce

volatility that is unpredictable;

— That changing from a single-agent to a multi-agent environment can affect how
agents evolve because of the interference that is introduced, meaning that agents
may consequently be unable to achieve their goals because the environment

changes in an unanticipated way;

— That the complexity of the task that agents must complete in order to achieve
their goals may affect the level of interference that agents experience, with the

effects of interference becoming greater with the complexity of the task;

— That the predictability of another agent’s actions and the resulting interference
in a shared environment can influence evolution and goal-achievement; highly
variable environments are shown to foster unintentional cooperative behaviour,

whereas exploitation is more prevalent in less variable environments.

1.3 Structure of this Thesis

The remainder of this thesis is organised into six chapters with the following structure.

The problem of interference in both natural and artificial systems is defined in Chapter 2; a
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variety of agent-based models and testbeds designed to explore how many agents exist within
a shared environment are identified and evaluated for their appropriateness to investigate
the research questions stated above. Additionally, a discussion of how an agent-based model
to explore interference can be implemented is presented. Volatility and its implications for
artificial systems that share an environment with other actors is also discussed. Three
metrics to measure such volatility are introduced in Chapter 3, which are used in each of
the experimental studies to analyse the volatility that agents experience during evolution.
This chapter introduces a gamified testbed designed specifically to study the effects of
interference in artificial agents — one of the major contributions of this thesis. Further,
details of the agent design and the evolutionary algorithm used to evolve agents in the
experimental studies are also given, as well as an outline of the analytical design for the
experimental studies. Chapter 4 introduces the first of the three studies presented within
this thesis that explores how interference affects the evolution of artificial agents. Inspired
by the way that humans have evolved to act socially in their inherently social environment
in order to mitigate interference, social action is operationalised and investigated as a means
of mitigating interference in computer systems. The second experimental study is presented
in Chapter 5; here, an approach to agent design inspired by theory from neuroscience and
biology is utilised as a way to mitigate interference. This study explores how equipping
agents with the ability to temporarily and reversibly change their behaviour — known as
behavioural plasticity — compares with the widely-adopted goal-oriented approach to agent
design in terms of enabling agents to mitigate interference. Additionally, an investigation is
conducted into whether the interference that agents experience is affected by the complexity
of the task that agents are faced with. The final experimental study is then presented
in Chapter 6, which explores the extent to which agent evolution and goal-achievement
is affected by the predictability, or variability, of the actions of other agents within the
environment. Further, the effect that the variability of the environment — in terms of the
changes caused by the actions of other agents — has on the level of interference experienced
by agents is also studied, and how this in turn affects how agents are able to evolve to achieve
their goals. Chapter 7 then brings this thesis to a close by drawing conclusions from the
results of the three experimental studies conducted in Chapters 4, 5 and 6. The research
questions and contributions defined above are revisited, concluding with a discussion of the

implications of these findings and future avenues of research arising from this thesis.
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Chapter 2

Issues of Interference in Natural

and Sociotechnical Systems

The work presented in this chapter has been adapted from the following publications:

[15] C. M. Barnes, A. Ekért, and P. R. Lewis. Social Action in Socially Situated Agents. In
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[17] C. M. Barnes, A. Ekéart, K. O. Ellefsen, K. Glette, P. R. Lewis, and J. Tgrresen. Coevolution-
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CHAPTER 2. ISSUES OF INTERFERENCE

“Since intelligence is mainly a social phenomenon and is due to the necessity
of social life, there is the need to construct socially intelligent systems to un-
derstand it, and we have to build social entities to have intelligent systems.” —

Castelfranchi [51]

Sociotechnical systems are comprised of many interacting components — be those human,
technical system, systems of systems, or a system’s constituent parts — where decisions
are being increasingly delegated from humans to so-called ‘intelligent’ machines. These
machines typically act in reference to a given goal, such as an objective function, utility or
goal-state — which may often conflict with other actors in the system [132]. Yet, humans have
evolved both social intelligence and social self-awareness to express more complex behaviour
than purely goal-rational action in order to succeed in highly social environments, driven
by factors such as values, emotions and traditions [94, 67, 227, 3]. Despite the fact that
components in a sociotechnical system are inherently socially situated, they are typically
limited to performing goal-rational actions and thus only very rudimentary social action.
Specifically, they do not perceive or reason about the effect other systems can have on their
own ability to learn and evolve, or the capabilities of others around them; the actions that
they direct towards others are also not driven by any broader social meaning — unlike in
humans [28, 81]. These systems are also unaware of their own impact on the world around
them, which can have a catastrophic and unpredictable effect. In 2010 for example, a
$1 trillion stock market crash occurred in just 36 minutes, caused at least in part by the
unforeseen interactions of several automated trading agents [217].

Sociotechnical systems such as vehicular networks [84], smart energy grids [160], and
trading agents [56] are increasingly being designed to operate in dynamic, uncertain and
social environments, where interactions are potentially unanticipated or unknown. Explicit
and anticipated interactions can be designed for when integrating systems, however, ne-
glecting to consider potentially unintended interactions with others that are colocated can
lead to worse performance [225]. Hahner et al. [101] argue that as the complexity of these
inherently social systems of systems increases, the number of implicit and unintended in-
teractions between the systems will also increase as a consequence; further, it is not only
the interactions with other systems that makes the task of runtime integration challenging,
but also as Nelson [159] points out — both the intended and unintended interactions with

humans as well. The field of self-improving system integration aims to design systems that
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overcome these issues — without full knowledge, control or authority over the other systems
in which they coexist and interact with [29]. The actions of one system can have an un-
intended effect on the others surrounding it [30]; a transition to more socially intelligent
systems that are able to learn about others in their environment is therefore necessary to not
only enable systems to self-integrate with others around them at runtime, but to maintain
learnt knowledge and goal-achieving behaviour despite interference from others.

The remainder of this chapter is organised as follows: the sociality of both natural
and artificial systems is discussed in Sections 2.1 and 2.2 respectively, giving an overview
of how these types of systems can overcome the challenges associated with coexisting with
others; Section 2.3 discusses what ‘interference’ is in the context of actors that exist in shared
environments, as well as the implications that this coexistence can have; various approaches
to developing testbeds and agent-based models are outlined in Section 2.4, along with an
overview of notable agent-based models that are used to explore how multiple agents exist in
shared environments; Section 2.5 then discusses the River Crossing family of environments
in detail, which is one family of testbeds that can be used for exploring how agents evolve
to achieve goals; further, Section 2.6 explores the importance of measuring the volatility of
agent evolution, and what this means for comparing how agents are affected by interference;
finally, Section 2.7 concludes the chapter by discussing the implications of interference in

shared environments, motivating the need to study this phenomenon in detail.

2.1 Evolution of Sociality in Natural Systems

We as humans have evolved the ability to navigate and utilise our social environments to
our advantage. Social learning can be seen in both humans and the animal world alike,
enabling us to learn and do more complex things than we would be able to individually
[219]; it has also been shown to be favoured over individual learning when environmental
change is slow, or when individual learning or non-social and environmental cues are not
useful [149, 167]. Our innate capacity for cooperation over competition and thus our ability
to learn from others has been attributed to our success as a species, and to what distinguishes
the complexity of our cognitive abilities from that of primates [91, 153, 105].

The cultural intelligence and cultural brain hypotheses posit that species that have

evolved to favour social learning consequently evolve improved asocial learning and individ-
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ual problem-solving skills, and flexibility, adaptability and innovation in learning compared
to non-social species; this results in a more intelligent population overall [219, 206, 156,
41, 22, 89]. The social brain hypothesis supports this, postulating that social abilities were
favoured and acted as a driving force during evolution; this is said to have led to an increase
in brain size to support cognitive ability and intelligence, where neocortex size correlates
with group size in humans and primates [75, 3, 117, 47].

Kambhi et al. [118] provide supporting evidence for this hypothesis by showing a positive
correlation between the size of the mushroom bodies of ants (a higher brain centre like
the neocortex in mammalian brains) and colony size. Sociality in ants and other eusocial
insects! however differs to that of primates; the neural mechanisms driving insect sociality
remain relatively unknown [135, 118], but recent efforts explore how this can be addressed

in the future [198].

2.2 The Social Nature of Artificial Systems

The success of social learning and behaviour in humans and animals alike has inspired
many Computer Science researchers. These observations and theories from nature have
been widely used to create optimisation algorithms and to design systems with emergent
collective intelligence. For example, self-organisation and cooperation in ants and bees have
inspired the development of many optimisation algorithms [71, 119, 53]. Swarm robotics is
inspired by the cooperation in groups of social animals to achieve goals or complete tasks,
where robots cooperate to solve more complex tasks collectively [43, 154]; this has also been
used for societally important tasks such as search and rescue [13]. Social learning strategies
have also been widely explored [167, 116], taking inspiration from processes such as mimicry,
imitation and learning from others [188, 176, 162].

Individuals in collective systems are inherently socially situated — their actions affect
others around them either directly, or indirectly through the environment. Pursuing self-
interested action in a social setting can lead to collective irrationality [121]; however, so-
ciality through self-organising institutions can enable groups of self-interested individuals to
govern themselves, supporting sustainable management of common pool resources [169]. So-

cial dynamics have been widely explored in areas such as game theory, sociology, economics

!Eusociality can be seen in nature in the likes of ants and bees, referring to species that show collective
intelligence and where labour is divided amongst groups of sterile workers [118].
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and evolutionary computation [218, 212, 121, 131].

Agents may pursue common or individual goals when sharing an environment. Ar-
gumentation, negotiation and persuasion [207, 174], goal-aware team affiliation [80], norms
and obligations [68], social plans and joint intentions [175, 112], and mutual influence detec-
tion [183] all promote cooperative behaviour in multi-agent systems, attempting to mitigate
interference between goal-pursuing agents. The BDI (beliefs-desires-intentions) agent ar-
chitecture for example enables agents to reason about norms and obligations that they are
explicitly aware of to promote cooperative behaviour [68]. Other research explores delib-
erative normative agents, which require explicit knowledge of others, as well as the norms
that exist in order to deliberately adhere to or violate them [52].

Sociality is described as the cooperation and organisation of two or more agents in
a shared world [51], where agents are goal-oriented, and are social because their actions
positively or negatively interfere with one another in terms of achieving goals. Systems
that intentionally cooperate, coordinate, or act socially, require social awareness [28], and
are capable of perceiving and reasoning about others. The evolution of cooperation has
been explored extensively, with social dilemmas such as the Prisoner’s Dilemma or the
Snowdrift Game used to explore social dynamics and strategies [40, 10, 121, 70]. Although
the questions that this thesis aims to address surround how agents evolve in environments
where cooperation may emerge, promoting cooperation is not the focus. Instead, the impact
of coexistence and interference on how agents achieve individual goals is explored when they
are unable to learn of the existence, goals or intentions of others; knowledge of all others in a
system would enable perfect coordination, but is infeasible in dynamic environments due to
the infinite power needed for processing and reasoning [112]. Not only this, but information
about other systems or actors in dynamic or uncertain environments may not be available

at design-time, including their goals, capabilities and how to integrate with them.

2.3 Interference in Sociotechnical Systems

2.3.1 Defining Interference

The term interference has been used to describe the interaction between actors in a shared
environment, arising from the competition for shared resources [187]. Interference is an

inherent characteristic of a shared world; it can arise from actors directly interacting with
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each other, or indirectly by interacting with the environment which acts as a passive en-
tity [74, 51]. Existing within a shared environment simply means that any action taken by
an agent or actor will affect others [77, 82] — intentionally or not — with the potential to
affect agents within a local area, or even globally [107]. The pursuit of goals in a shared
world is said to be a core component of sociality [51]; social dynamics such as cooperation
and competition are the result of interference from actors that help (positive interference)
or hinder (negative interference) others with respect to their goals. Other research however
states that interference is purely the negative effect on an actor’s goal-driven behaviour
[144]; here, the term implicit cooperation is analogous to positive interference. In this work,
the broader definition of interference is adopted, which encompasses both the positive and
negative effects discussed above.

Castelfranchi [51] describes dependence as a special case of interference, where interfer-
ence is so strong that actors become dependent on the actions of others to achieve their goals,
and thus cannot achieve their goals through their own actions alone. Other researchers have
explored the concept of interference with different terminology. Jennings [112] describes this
as an interdependence of actions that arises when the actions of actors are related, or have
an impact on others. Duffy [74] states that co-existing robots will have social interactions
that can be indirect, as their actions will influence and affect others around them. Rudolph
et al. [183] explore how to detect mutual influences that arise in smart camera networks,
and the resulting dependencies. Thangarajah et al. [211] explore interference within a sin-
gle agent; internal interference can arise from conflicting actions necessary to fulfil parallel
conflicting goals (e.g. an action is a step towards achieving one goal, but a step away from
achieving another, conflicting goal).

These methods require agents to be aware of others in the environment, and potentially
their goals or intentions. In unpredictable and dynamic environments, this is not always
possible; the environment and the agents within it may change over time, so this information
may not always be available or predictable at design-time. Tomforde et al. [215] identify
that subsystems can influence one another either directly or indirectly, whether they are
intended to interact together or not; consequently, the ‘interwoven’ nature of these sys-
tems where uncertainty, heterogeneity of actors and interference between said actors prevail
means that traditional methods of integration become impractical [27]. Thus, agents in dy-

namic or uncertain environments, where the presence of others is potentially unknown, need
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the ability to develop and maintain these models on-the-fly. Endowing systems with the
ability to learn from their inherently social environment, as human societies have evolved
to do, could therefore enable them to learn and evolve potentially more complex individual

behaviours, problem-solving competencies, and goal-achieving abilities.

2.3.2 Implications of Interference

The technical systems of today are growing in size and complexity, and thus both inter-
actions and interference between components and through the environment are evermore
prevalent [101]. Aldelaimi et al. [5] highlight that as the number of devices in complex
systems such as smart cities increases — as well as the heterogeneity of such devices — per-
ceiving, learning about, and interacting with other devices is challenging without human
intervention. Burger et al. [46] go further to note that it is increasingly important for the
devices involved in emergency response services, waste water treatment, traffic management
and even Wi-Fi — all critical for the functioning and safety of smart cities — to be resilient,
in order to prevent and avoid high work loads or catastrophic loss. As the complexity of
these large, heterogeneous systems increases, unknown or unforeseen situations due to in-
terference caused by the actions of others will be encountered more often. This must be
dealt with appropriately for the safety and functionality of both the systems as a whole and
the environments in which they operate. Since information about others, or the ability to
learn of others, within the environment may not be immediately available — or at all —in a
dynamic or complex environment [112], an investigation into how interference affects actors

in an environment without this knowledge needs to be conducted.

2.4 Studying Interference using Agent-Based Models

Various toolkits and approaches to developing agent-based models and simulations exist,
each with their own application domains, benefits and drawbacks. The research questions
detailed in Chapter 1 fundamentally aim to observe how agents may evolve to achieve their
goals when their capabilities (in terms of perceiving and reasoning about others, and their
abilities, goals and intentions) are limited, and how the presence of other agents may affect
this. In this section, a brief overview of some common agent toolkits and approaches to

agent design is given, to motivate the approach adopted when developing the experimental
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studies in later chapters of this thesis. Further, existing agent-based models that are used
to investigate how multiple agents exist within an environment are discussed, to assess their

suitability for exploring the consequences of interference.

2.4.1 Agent Toolkits, Frameworks and Design Approaches

The ‘Multi-Agent Simulator Of Neighborhoods’ (MASON) agent toolkit [137, 138, 139] is a
platform-independent, extensible simulation library; this was developed to help researchers
create and visualise simulation experiments that potentially comprise large numbers of
agents and interactions. MASON has been used in various applications, including those
relating to the modelling of complex societal issues, for example: to explore the evolution of
cooperation when the population size can vary [193]; in collaborative foraging tasks [108];
to simulate the effectiveness of different disaster response mechanisms, positioning of aid
centres, and the impact of socio-cultural information surrounding relief efforts [60]; and has
been extended for example to the MASON RebeLand model, in order to explore political
and societal issues in relation to governmental performance [55]. Despite the adoption
of MASON in a number of domains, according to Kravari and Bassiliades [126] however,
MASON has a complicated interface which requires developers to overcome a learning curve
before using. Since the research questions outlined in Chapter 1 concern only a few agents,
MASON is not considered appropriate for the experimental studies in this thesis.

Whilst the MASON toolkit is proven to be extensible and applicable to a wide range
of research domains, Kubera et al. [128] highlight that there is a high probability that
developers would introduce errors when utilising the toolkit, as there are no guidelines or
constraints regarding the design of agents, or their behaviour or interactions. To address
this issue, Kubera et al. [128] outline the ‘Interaction-Oriented Design of Agent simulations’
(IODA) approach, which includes a methodology and model for agent design, and the ‘Java
Environment for the Design of agent Interaction’ simulation framework (JEDI) to create the
simulations. Being designed around the principle that interactions are composed of actions
that involve one agent, and either another agent or the environment, the IODA approach
would facilitate the exploration of the research questions defined in Chapter 1: how the
consequences of inter/actions with the environment may interfere with or affect other agents.
However, the authors state that this approach is not intended to be used for simulations

where complexity does not arise from the number of interactions between the agents in

C. M. Barnes, PhD Thesis, Aston University 2021 33



CHAPTER 2. ISSUES OF INTERFERENCE

the simulation; for exploring the effect of interference where agent interactions cannot be
intentional or direct, this approach is therefore unsuitable for designing experiments to
explore the research questions stated in Chapter 1.

JADE, which stands for ‘Java Agent DEvelopment Framework’, is a FIPA-compliant?,
open-source agent platform and development framework implemented in Java, designed
for the development of multi-agent systems [26]. Whilst JADE is a popular choice for
researchers in both academia and industry [126] — which can be partially attributed to
its learnability — one concern about its suitability for the intentions laid out in Chapter 1
regards agent communication. For example, an extension of this framework, Jadex (JADE
eXtension) [6], incorporates the BDI architecture (Belief-Desire-Intention, see Section 2.2)
for the design of goal-oriented, rational agents with the capacity to communicate with one
another. The intention of this work however is to explore how agents are able to pursue
their own goals, without knowing of, or being capable of communicating with, other agents;
as such, this is unsuitable for exploring the questions posed in this thesis.

One of the most popular ways to implement multi-agent environments or to model
complex phenomena is with NetLogo, an integrated modelling environment that is written
in Java and designed for use in both research and teaching [233, 213]. NetLogo can even
run in the browser, with numerous sample models and code examples available to run in
the areas of art, biology, computer science, mathematics, and more?; this makes it simple to
start experimenting with pre-set models while learning how to navigate the user interface
to customise the models themselves. NetLogo itself is also a programming language used
to set up the experiments or simulations in the modelling environment, so there is some
learning involved. The developers have also worked to increase the extensibility of NetLogo,
allowing users to extend, replace or add components in Java using APIs. Despite this, similar
concerns to those that have been voiced about the other approaches discussed above apply;
care would need to be taken when extending NetLogo to run custom simulations, and a

good understanding of how to use the APIs themselves to do such a thing is crucial.

2The Foundation of Intelligent Physical Agents (FIPA) is an IEEE Computer Society standards organi-
sation: http://www.fipa.org/.
3NetLogo Web is available at: http://www.netlogoweb.org/launch#NewModel.
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2.4.2 Exploring Interference with Agent-Based Models

Agent-based models (ABMs) have been used to simulate and explore complex real-world
problems in a number of research areas, where a real-world scenario or natural phenomenon
is simplified in order to study it in closer detail. This indeed is one of the aims of the Artificial
Life research area — to understand or gain insight into the living world and the complex
phenomena that emerge [25, 4, 96]. ABMs have consequently been used to explore real-world
issues such as the management of water resources in sociotechnical water systems [31], to
analyse social patterns that emerge from collections of individuals [166], and to investigate
cooperative path planning strategies in autonomous guided vehicles [140], to name just
a few examples. Since interference is a complex phenomenon that can emerge from the
indirect interactions between actors and the environment, an ABM can be used to explore
the consequences of interference in fine detail by using a scenario with reduced complexity.
The research questions defined in Chapter 1 however are formulated around understanding
both the consequences of interference, and how this can be mitigated by actors (either
agents in a simulation, components of a system, or an entire system itself) that may not
have the required knowledge about others — or ability to acquire this knowledge — to make
appropriate decisions whilst experiencing interference. With this in mind, an appropriate
model or testbed needs to be selected in order to investigate these issues that arise in

agent-based systems.

Many testbeds already exist that have the capacity to explore how multiple agents
act within an environment, such as: the MICE testbed (Michigan Intelligent Coordina-
tion Experiment) [76], designed to explore coordination and interactions between agents
in a 2D world; MAGES (Multi AGEnt System) [38], designed to observe different inter-
actions between heterogeneous agents; and Dedale [104], designed to study the learning
and decision-making processes of agents that may coordinate to solve a task; Evosphere,
which is used to study the evolution of populations of 3D creatures with natural selection
that inhabit a ‘micro-planet’ [151]; Polyworld, designed to explore foraging behaviour in
agents controlled by neural networks that exist in a 2D world [235]. Whilst interference
is not the focus of the experiments conducted using these testbeds, they can all simulate
multiple agents existing within a shared environment — so interference can emerge from the

actions of each agent. Other studies explore interference when agents possess an explicit
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knowledge of others; this knowledge is then used by the agent to make informed decisions
regarding the interference, and their goals and action choices. Rudolph et al. [183] for ex-
ample simulate a smart camera network with multiple cameras, in order to explore how
‘mutual influences’ (i.e. interference, see Section 2.3.1) can be detected, and thus mitigated
using knowledge of others. Godoy et al. [97] propose a distributed coordination approach
for agents where the actions or motions of others around them can negatively affect path
planning and goal-achievement; this decentralised approach to mitigate the interference
that agents experience utilises knowledge of others within a certain range, and one-way
communication between agents in order to avoid collisions. Michael et al. [150] on the other
hand, simulate heterogeneous multi-robot systems in order to validate the observations in
real-world robots; there is a disparity between simulation and reality when the actions and
interactions of each robot may interfere with others, which is mitigated by endowing the
robots with the ability to sense and communicate with others. Malakuti [141] explicitly aim
to detect unexpected and undesirable emergent interference when integrating multiple self-
adaptive systems together; however, the authors state that this detection requires extensive
knowledge of each individual in the system and the consequences of the interference. This
would quickly become infeasible as the scale of the system increases, due to the number of

interacting components [112, 107, 101].

Interference can arise in any scenario in which there is more than one actor within an
environment, and as such, interference is not a new concept when talking about ABMs
with more than one agent — as discussed in Section 2.3.1. However, whilst interference
is an emergent property in ABMs with multiple agents, the focus of the studies that use
these multi-agent ABMs is usually on: mitigating or detecting the interference that arises
when agents have knowledge of others [141, 183]; or developing strategies to facilitate the
emergence of social dynamics such as cooperation, competition, or coordination for example,
where interference is an implicit property of the simulation due to its multi-agent nature but
is not explored [97, 104]. The effect of interference can potentially increase in severity like a
ripple effect, initially having a local effect but can continue to affect the system globally [107]
when there are many agents within an environment. The actions of one agent can thus have
a knock-on effect on other agents, which in turn affect other agents, and so on. In each
of the examples discussed above, the studies conducted observe the aggregate behaviour of

many agents. In order to understand the consequences of interference at a fundamental level
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however, there is a need for a simple testbed that can be used to observe and analyse the
differences between existing alone (i.e. no interference) and existing with one other agent.
By reducing the complexity of the environment from including many agents to simply one
or two, the potential magnitude of the interference experienced by agents is also reduced as
a result. None of the testbeds or ABMs above are therefore adequate to observe the effects
of interference in close detail, as each of the examples discussed are made complex by the

sheer numbers of agents in the environment.

2.5 The River Crossing Family of Environments

Following the discussion in the previous section about existing testbeds to explore inter-
ference, this section introduces a family of environments typically used to study how one
agent evolves in an environment to solve tasks. Since a suitable testbed that can be used
to study the effects of interference in close detail has not yet been identified, modifying an

established testbed could facilitate this investigation instead.

2.5.1 The River Crossing Task

The River Crossing Task (RC Task, or RCT) was developed by Robinson et al. [178], in order
to explore how agents can evolve to solve tasks in dynamic environments. They introduce
a novel, two-tiered neural network architecture that enables artificial agents to express
both deliberative and reactive behaviours, giving them the ability to navigate dynamic
environments without the need for a priori knowledge of the task or environment; these
behaviours are acquired over the course of evolution, where a population of individual
agents is maintained. The goal of agents is simple: they must collect the Resource object
to receive a reward of a highly positive fitness, which is located on the opposite side of
a river that spans the length of the environment. The RCT testbed itself is a simple 2D
grid, containing objects such as Traps, Stones, and a river consisting of Water objects.
The difficulty of the task arises from the fact that agents must learn ‘sub-goals’ to retrieve
their reward object (the Resource), such as building a bridge in the river with Stones;
this is challenging as falling into the river gives the agent a highly negative fitness, so
learning the goal-achieving behaviour of building a bridge is initially risky. The complexity

and dynamicity of the environment varies within the study; agents are evaluated on three
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consecutive environments of increasing difficulty at each generation, with the width of the
river increasing from a width of one (firstly where bridges already exist, and secondly where
no bridges exist) to two cells. Further, Robinson et al. [178] concretely demonstrate that
agents are able to react immediately to environmental changes by evaluating agents in

environments where walls of Traps move locations, for example.

2.5.2 The RC Family

The simplicity and ease of extensibility of the RCT inspired the creation of other testbeds,
thus leading to the development of what is termed here a ‘family’ of River Crossing (RC)
environments; these all have a common learning challenge — agents must learn to build a
bridge in order to achieve their goal. Borg et al. [37] for example introduce a more complex
version of the RC task called the RC+ task; this is used to demonstrate that learning
by imitation through transcription errors and cultural transmission can enable agents to
achieve goals where incremental evolution cannot. The RC+ task is therefore specifically
designed such that agents are evaluated on five consecutive environments at each generation,
where the final environment cannot be solved by incremental evolution on its own. In this
study, the width of the river increases with every evaluation from zero to four, whilst the
number of Stones available to build bridges reduces to zero; consequently, the task in the
final environment can only be solved by placing a new, unseen object into the river. Agents
that use a teacher-learner strategy with transcription errors are shown to be capable of
solving this final, complex environment; agents that are ‘non-learners’ on the other hand
are unable to solve this problem, even with the addition of transcription errors or a higher
mutation rate.

A further adaptation of the original RC task is presented by Stanton and Channon [203],
termed the 3D River Crossing task (3D RC), which is later extended into the Physical 3D
RC task (P3D RC) [204]. The 3D RC is used to explore how 3D quadruped agents are
able to evolve reactive and deliberative behaviours, whilst navigating a world that requires
attention to the locomotion of the agent’s limbs in order to achieve the goal. The P3D RC
develops this further by also requiring the 3D agents to manipulate objects directly within
the environment using physical motor control, instead of the abstract interaction which is
seen in the 3D RC.

A more recent addition to this family of environments is the Minimal River Crossing task
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(RC-), presented by Ghouri et al.* [96]. The intention of this version of the testbed is not
to observe how agents are able to express reactive or deliberative behaviours, but instead to
explain and understand agent why the core learning challenge in the River Crossing family
of environments — building a bridge — is in fact challenging. The original RC task [178]
is reduced from a 20 x 20 grid to a 1 x 5 grid, such that this core learning challenge can
be isolated and observed in fine detail; one of the main contributions of this study is that
the RC— can be used to predict and explain agent behaviour that generalises back to the

original problem.

2.5.3 Studies Conducted in the RC Family

In addition to the studies that first introduced these instances that make up the River
Crossing family of environments, both the testbeds themselves and the agent architecture
used to evolve these agents have been further modified in other work to explore a broader
range of concepts. For example, the 3D virtual creatures designed by Stanton and Channon
[203] extend the two-tiered learning architecture first introduced by Robinson et al. [178], to
observe how 3D agents may navigate the 3D RC environment; the addition of new physical
and pattern generator networks to the initial two-tiered architecture facilitates the evolution
of locomotion, turning and avoidance behaviour in 3D agents.

The RC+ task [37] on the other hand has been used by Jolley et al. [116] to investigate
the effect that the choice of ‘teacher’ in different teacher-learner social learning strategies
can have on goal-achievement and evolution; this develops upon the study presented by Borg
et al. [37], which exclusively assigns the winner of the last tournament to be the teacher,
and the aforementioned agent’s most recent offspring to be the learner (known as the ‘best
parent’ strategy). Jolley et al. [116] show that the choice of social learning strategy has no
significant effect on fitness when comparing a teacher that is the best parent, the fittest,
the oldest, the youngest, or a random agent; each strategy is effective for enabling agents
to solve tasks using behaviours which are inaccessible to incremental evolution alone.

In other work, Jolley and Channon [114] use the RC task to demonstrate an alternative to
the two-tiered architecture proposed by Robinson et al. [178]. The second of these two tiers

is a topologically-organised neural network responsible for reactive behaviours and motion

4The author of this thesis co-supervised the first author of this publication [96], who studied the explain-
ability of agents for her BSc dissertation project, by introducing the Minimal River Crossing Task testbed
(RCH).
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planning, however this is replaced by a HyperNEAT [201] implementation to compare the
effectiveness of the approach to the original. Introducing a modified fitness function is
shown to improve the general performance of agents using this adapted agent architecture;
agents are evaluated on multiple RC instances to simulate learning in a ‘large’ environment,
and as such appear to learn more generalised behaviour. Despite this, the new HyperNEAT
implementation of the RC agent architecture is not shown to improve agent performance
compared to agents operating in the original RCT. In later work [115], the second tier in the
RC agent architecture is instead replaced with a single-layer convolutional neural network
(ConvNet) [129]; this is shown to significantly improve agent performance in the RC task
compared to the HyperNEAT implementation.

The use of the agent architecture introduced by Robinson et al. [178] is not exclusively
used in agents that operate in instances of the River Crossing family of environments.
Borg and Channon [35] demonstrate that this agent architecture is effective for evolving
agents in the EnVar environment; agents must forage for resources or ‘plants’, aiming
to consume those that give positive rather than negative energy values. The focus of this
study is to observe whether social information affects the evolution and adaptivity of agents,
concluding that a benefit is indeed seen consistently when the difficulty of the task is low.
Task difficulty here is in terms of the ratio of positive to negative food resources available
in the environment, where difficulty increases with the number of negative food resources.
Social information about an agent that is being perceived however can be simply regarding
its presence, the action it is currently performing, its health or energy level, its age — or
alternatively where no social information is perceivable; agents have no control over the
social information that others can obtain from them, as this transfer is dependent on the
type of information that an agent can perceive. This is emphasised in later work [36],
where these simple forms of social information are observed to promote interaction between
agents, where movement towards other agents to obtain more social information can lead

to improved performance.

2.5.4 The Bigger Picture of Crossing Rivers

In general terms, learning to cross a river in a simulated environment is not an important
task, nor is it an immediately useful exercise. What is important and useful however, is

what can be learnt from how agents may interact with, and evolve within this simplified en-
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vironment. Observing how simple agents may respond to different environmental conditions
in abstract terms therefore has the potential to lead to conclusions that can influence and
benefit how future technical systems should be designed, when facing similar conditions.
The River Crossing family of environments and the studies which utilise them are firmly
placed in the realm of Artificial Life research — an aim of which is to use simplified models
to study and understand complex natural phenomena [96, 4, 25].

The act of learning the behaviours necessary to cross a river seems simple, but complet-
ing such a task has been proven to be difficult using this well-established family of testbeds.
In the River Crossing task, agents must learn two implicit, and conflicting concepts about
the environment: the first is that the river should be avoided at all costs due to the risk
of drowning; secondly, interacting with the river is not only safe to do under the condition
that a Stone is being carried, but is in fact necessary in order to achieve the goal. The
River Crossing task is thus an abstraction of some of the complex challenges that technical
systems may face in the real world; designing systems to achieve individual goals in dy-
namic environments is challenging, and will be increasingly so as the size and complexity
of these systems, and their resulting interactions, also increases [101]. Observing how arti-
ficial agents develop the ability to perform sub-tasks to achieve goals in the RC family can

therefore aid understanding of these issues in simplified terms.

An attractive characteristic that is common throughout the River Crossing family of
testbeds is the ease of tuning the difficulty of the task within the environment, depending
on the focus of the study. Further, these testbeds have been used to explore a diverse
range of concepts, such as the effects of social learning and social information, the ability
to evolve robust behaviour in dynamic environments, and even the impact that the type
of agent learning architecture itself can have on deliberation and goal-achievement. As
discussed above, previous studies conducted using the River Crossing family of environ-
ments have explored how agents evolve in dynamic environments. This dynamicity arises
from novel and unseen environmental configurations or moving objects, meaning that it is
impossible to follow a predetermined or planned route to achieve the goal. However, it is
becoming commonplace that the environments that real-world systems operate in can also
change, or become dynamic, due to the actions of other systems or actors [191, 101, 210] —
be those human, or artificial (as is the nature of sociotechnical systems in general). An

environment inhabited by more than one individual is inherently social, with the actions of
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others directly or indirectly interfering with how individuals perceive and interact with their
environment [51]. Bellman et al. [28] state that systems operating in shared environments
should express social awareness in order to perceive and learn about the existence of others
in their surroundings, as well as their capabilities, goals, and even intentions. However, the
ability to perceive other systems, as well as how to interact with them, may not be im-
mediately accessible [112] — an issue that is only worsening as the heterogeneity of today’s
sociotechnical systems increases. The questions posed in this thesis are therefore designed

to provide some understanding of these issues, and how they may be overcome.

2.6 Volatility and its Implications in Sociotechnical Systems

The performance of evolutionary algorithms is often analysed by ascertaining the expected
time taken to find an optimal solution in terms of received fitness; this can then be used to
compare the ability of an algorithm to perform with varying parameters or conditions, or
to compare the performance of the algorithm to alternative algorithms. Jansen and Zarges
[111] note that optimisation algorithms that operate in static environments are intended to
find solutions as quickly as possible, however this changes in dynamic environments as the
optimal solution may change over time due to varying environmental conditions.

It is important to clarify terminology when discussing algorithms that operate in dy-
namic or shared environments, as to not conflate different areas of research. Evolutionary
dynamic optimisation problems — that is, optimising evolutionary algorithms in dynamic
environments [92, 161, 113] — are characterised by optimising solutions when the optimum
may change over time [92]. One common way to analyse the performance of optimisation
algorithms is to measure the best-in-generation fitness, either averaged over all generations,
or for each generation over multiple runs; comparing the performances of different algo-
rithms with these measures can however be difficult if they are not normalised [161]. A
separate, but related, concept to the dynamic optimisation problems described above is
coevolution, where multiple individuals or species are evolved to solve optimisation prob-
lems [165, 239, 243]. In coevolutionary algorithms, an individual’s fitness is dependent on
the fitness of others from either the same population, or a different one [243, 72]; the fit-
nesses of individuals therefore interact or are coupled, which distinguishes coevolutionary

from evolutionary algorithms [85, 182]. Coevolution can be competitive, cooperative, or
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even both [243], where an individual’s fitness is either negatively or positively affected by
the success of another respectively. The studies presented within this thesis concern how
one agent evolves to achieve an individual goal when it may share an environment with,
and be affected by unknown others; as such, analysis is conducted from the perspective of
an individual agent, rather than the dynamics observed in all individuals. While beyond
the scope of this thesis, analyses in a coevolutionary or other sense may be conducted in the
future, in order to understand the evolutionary dynamics that emerge in these experimental

studies further.

2.6.1 Analysing Volatility

The experimental studies introduced in later chapters may evolve populations of agents in
either static or dynamic environments (where dynamicity is caused by the actions of oth-
ers within the environment, rather than from the environment changing of its own accord
or by the goal itself changing over time), in order to explore how interference from other,
unknown actors within the environment may affect evolution and learnt behaviour. Ex-
periencing dynamicity presents a challenge when analysing the performance of algorithms,
because an optimal solution may become sub-optimal if conditions change. Simply cap-
turing the number of generations (i.e. the time taken) for an evolutionary algorithm to
find a successful solution is therefore inadequate to assess the algorithm’s suitability to the
environment, since the ability to mitigate interference may fluctuate during evolution de-
pending on environmental stimuli. As an alternative to this approach, the algorithms used
in the experimental studies are instead analysed over the entirety of evolution; to assess the
extent to which the populations of agents in the later studies are affected by interference
(and thus dynamicity within the environment), the fitness received by agents is tracked over
evolution. One would expect that the more the fitness changes during evolution, the more
the algorithm is susceptible to the negative (or positive) effects of interference. A fitness
that changes often from one generation to the next would consequently indicate that it is
hard for the agents in the population to maintain a constant fitness.

It is important to define terminology — especially when conducting inter-disciplinary
work — not only to avoid ambiguity and aid understanding, but because terms may have
different meanings depending on both the context or field of study in which they are used. In

plain English, one could describe the extent to which the fitness of a population is maintained
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during evolution — as discussed in the previous paragraph — as its ‘stability’. However, this
is a widely used term that is usually associated with the exploration of ‘evolutionarily stable
strategies’ [194] or ‘evolutionary stable states’ [195] in the fields of game theory [194, 86, 134],
economics [24], and biology [194, 39]. In these areas, ‘stability’ refers to the stability of the
strategies that are employed by the population, such that the population itself exists in
a state of equilibrium and is thus robust to the intrusion of mutant strategies. Similarly,
‘stability’ has also been used to describe learning dynamics in multi-agent reinforcement
learning scenarios, referring to agents that converge to an equilibrium or stable policy, such
as a Nash equilibrium [44]. Since this term already has a specific meaning in a number of
different fields of study, it would be illogical to introduce an alternative meaning in this thesis
to describe the fitness received by agents during evolution. Instead, an already established
term that has a similar meaning is ‘volatility’, which is used in the area of finance to model
or forecast the volatility of financial markets [170]. A higher volatility means that there is
a higher variability and dispersion of the values [234] — volatility increases in line with the
number of fluctuations detected in the financial model. This can be easily translated to the
domain of evolutionary agent-based models, since capturing the fitness received by agents
over the course of evolution is similar to tracking the fluctuations present in a financial
model. One of the simplest, and most common, ways to quantify volatility in finance is
to calculate the sample standard deviation over time [170]. It must be noted that the use
of the term ‘volatility’ here is unlike that of Vega-Redondo [221], which uses the phrase
‘equilibrium volatility” in the context of evolutionary game theory to describe the dynamics
of equilibria during evolution — without quantifying such volatility. Taking inspiration from
this method, volatility can hence be used to quantify and describe the fluctuations in fitness
during the evolution of agent-based models; this approach is grounded in theory that can be
applied in the context of evolutionary algorithms, without introducing ambiguity — which

would be a consequence of adopting a term such as ‘stability’.

Koren and Tenreyro [124] highlight that GDP growth is more volatile in poorer countries
compared to rich countries, caused in part by weaker financial infrastructure that struggles
to deal with economic shocks or political instability appropriately, for example. Without
the means to combat such unpredictable events, growth rates in these countries fluctuate
more often, and by larger amounts. This is analogous to simulated agents that are unable

to respond appropriately to environmental stimuli during the course of evolution. Agents
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that evolve in dynamic environments, that have not yet evolved behaviour that is robust
to unpredictable or unknown events, will receive a fitness that often fluctuates; this would
result in agents that experience volatile evolution. Section 3.6.1 introduces three metrics
which have been devised to quantify the amount of volatility that agents experience during
evolution, by observing how the fitness changes over time. By using these metrics to analyse
the performance of evolutionary agents, or indeed sociotechnical systems situated in the
real world, one would expect that a lower volatility would imply that the system or agent
is better equipped to deal with unforeseen circumstances, and is able to maintain a more
constant fitness or level of performance compared to more volatile actors. This being said,
low or near-zero volatility may also be an artefact of a system that is unable to achieve its
goals, and consequently maintains a constant level of sub-optimal performance. As such,
the volatility metrics described in Section 3.6.1 should therefore be used in combination
with an analysis of the actual performance in order to avoid any incorrect conclusions being
drawn (in this case, an analysis of the fitness received by the agents in the experimental
studies in later chapters is used in conjunction with an analysis using the three volatility
metrics defined). Once an analysis of volatility has been conducted, the evolution of different
populations of agents can consequently be directly compared. This comparison can then be
used to indicate whether one approach to agent design is preferable over another (in terms
of the amount of evolutionary volatility experienced, and thus the ability of an agent to
maintain a constant fitness), or to demonstrate the effect of various environmental stimuli
on evolution — such as the effect of interference as a result of sharing an environment with

another agent, compared to existing in an environment alone.

2.7 Conclusion

The research questions that this thesis aims to address surround understanding how systems
may affect one another when coexisting with others in a shared space, and consequently
how systems may evolve to achieve their goals despite possessing no ability to perceive or
learn of others. The investigation of whether, and how, simulated agents may achieve their
individual goals under these conditions is considered here to be an important prerequisite to
the ‘social awareness’ that is discussed by Bellman et al. [28]. One of the aims of this thesis

is therefore to investigate whether a system is able to mitigate the effects of interference
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before any information can be learnt about others, since this information or the ability to
acquire it may not be immediately obtainable in the real-world.

The versatility of the River Crossing family of environments has been demonstrated
through numerous studies and extensions of the original testbed itself, thus demonstrating
the viability of the River Crossing task for exploring complex problems in abstract terms.
A limitation of this family of environments however is that there is a lack of capacity for
exploring the effects of interference in shared environments. Each of the studies conducted
to date concern how artificial agents evolve when they are the sole inhabitant of the environ-
ment; therefore, an addition to this family of environments that facilitates the exploration
of interference and its consequences is needed, to understand how agents may evolve to
pursue their individual goals when resources in the environment are shared with others.
The design of this new testbed, intended to facilitate the exploration of interference and

volatility, is presented and discussed in detail in Chapter 3.

In this chapter, it is established that interference can arise in environments shared with
multiple actors — be those human, machine, or a combination of the two. Current approaches
to mitigating interference require information about others in order to make decisions, but
this might not always be possible — especially since the size and complexity of real-world
computer systems is increasing. Consequently, the effect that this interference can have on
actors in a shared environment needs to be understood, which can be achieved by observ-
ing how actors (specifically artificial agents) evolve in a shared environment without such
knowledge. By exploring the consequences of interference, one may begin to think of how
systems could be designed to mitigate interference without having to rely on complete or ac-
curate knowledge of others. This will be increasingly important to consider when designing
real-world sociotechnical systems, since the interactions between parts of the system, and
therefore the effects of interference, will scale with the system size. Agent-based models are
widely used to understand complex real-world phenomena in a simplified manner, meaning
that this is also appropriate for exploring the implications of interference. An appropriate
testbed is required to conduct such an investigation, as well as a means of measuring the
effect that interference has on agents during evolution. The insight gained from observ-
ing how artificial agents evolve in shared environments when experiencing interference can
consequently be used to make informed decisions when designing real-world sociotechnical

systems that experience interference on a larger scale.
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Chapter 3

A Testbed to Explore Interference
in Agent-Based Systems

The work presented in this chapter has been adapted from the following publications:
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CHAPTER 3. A TESTBED TO EXPLORE INTERFERENCE

3.1 Motivation

As discussed in the previous chapter, agent-based models are widely used as a way to
simplify a real-world scenario in order to study it in detail; consequently, a simple testbed
can be used to study the implications that interference can have in sociotechnical systems,
by reducing the complexity of the scenario and studying the fundamental issues that arise
for artificial agents in a shared environment. In Section 2.5, the River Crossing (RC) task
is identified as a well-established testbed for exploring how agents evolve to solve tasks in
complex, and dynamic environments; the integral learning challenge incorporated into this
testbed (the act of building a bridge to achieve a goal) has inspired a variety of extensions
to the original RC task to explore different phenomena in both 2D and 3D simulated agents.
The RC environment itself is simple, lending itself well to extension and further development
for use in different domains; consequently, a testbed designed to observe how multiple agents
may achieve their goals in this environment seems both fitting, and a valuable addition to
this family that has been growing in popularity in recent years.

The purpose of this chapter is to introduce the River Crossing Dilemma (RCD); this is
an agent-based model designed to explore how artificial agents evolve and behave in shared
environments. Specifically, the testbed builds upon the original River Crossing task testbed
proposed by Robinson et al. [178], in order to investigate the effect that interference arising
from the actions of others can have on the evolution and fitness of agents. The importance
of understanding interference and the way it can impact a system’s performance or ability
to achieve goals is becoming increasingly important, due to the increasing size, complexity,
and heterogeneity of today’s sociotechnical systems. This testbed can be used to both
understand and explore the implications of this interference by observing how artificial
agents react to, and potentially mitigate, interference from others; as such, the RCD can
be used to study what the implications of interference are for agent-based systems in the
real-world. To simulate the changing and uncertain conditions that sociotechnical systems
increasingly face, the agents operating in the testbed discussed in this chapter (as well as
the studies in later chapters that use this testbed) do not possess the ability to learn of or
perceive others within the environment. Information about others may not be immediately
available in the real-world; exploring how systems can be designed to be resilient to the

effects of interference without being aware of its cause or existence is therefore hypothesised
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to become more critical as the number of interactions between systems increases [101].
The remainder of this chapter is organised as follows: the River Crossing Dilemma
testbed is introduced and discussed in depth in Section 3.2, while Section 3.3 discusses
agent design; Section 3.4 details the evolutionary algorithm used to evolve agents in the
testbed; the adopted approach to implementing a testbed is discussed in Section 3.5; Section
3.6 outlines the approach for analysis used in each experimental study, with Section 3.6.1
specifically introducing three metrics that can be used to measure evolutionary volatility;

Section 3.7 finally concludes by outlining the contributions of this chapter.

3.2 The River Crossing Dilemma Testbed

One of the contributions of this thesis is the River Crossing Dilemma (RCD) testbed!, a
gamified testbed designed to explore how agents evolve to achieve individual goals in shared
worlds. This is an extension of the original River Crossing task proposed by Robinson et al.
[178], where the gamification of the RCD environment introduces the opportunity to study
how multiple agents act in inherently social situations. These may be tractable social
dilemmas, such as those introduced in the studies in later chapters, but in general are
not constrained in their complexity since RCD instances may be designed to be arbitrarily
complex. Agents have no prior knowledge of the task or environment, and must learn what
their goal is and how to achieve it without this information. Agents pursue their own,
individual goals, and do not require knowledge of others to do so in shared environments,
as they have the potential to perform the actions necessary to achieve their goal solely
relying on their own behaviour.

The RCD is a 19 x 19 grid-world environment with a two-cell deep river of Water in
the centre (Figure 3.1). There are four Stones on each river bank, and all empty cells
are Grass. As this testbed is designed to study how interference affects evolution and goal-
achievement in agents, the RCD reduces the variety of objects in the environment compared
to the original River Crossing (RC) task introduced by Robinson et al. [178]; objects such as
Traps, which are seen in the RC task, increase the complexity of the task at hand without
contributing to the study of interference. Agents therefore only encounter the objects that

are sufficient to achieve their goals.

!The River Crossing Dilemma, testbed was first published in Barnes et al. [15].
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Figure 3.1: The River Crossing Dilemma testbed, which is a 2D grid-world environment. The grey agent
(top left) is allocated the two Resources in grey, and the black agent (bottom right) is allocated the two
Resources in black; agents cannot interact with Resources that are not allocated to them. Both agents can
interact with all other objects. For single-agent environments, the black agent is removed.

The final type of object in the RCD environment is the Resource. An agent’s individual
goal is to collect both of its two allocated Resources, which are placed one on each side of the
river; achieving the goal will reward the agent with a highly positive fitness. Conversely,
stepping into the river causes the agent to ‘drown’, giving it a highly negative fitness.
However, for an agent to individually achieve its goal, it must evolve to perform sub-
tasks; a bridge must be built so agents can cross the river safely using Stones, in order to
collect their second Resource and thus achieve the goal. To successfully build a bridge, two
Stones must be placed in the same Water cell since the river is two cells deep. The aim of
the agent is therefore to achieve its goal (i.e. collect both Resources) using the minimum
number of Stones; an agent which collects both Resources but places three Stones in the
river would thus be less favourable than one which places only two Stones. This bridge-
building behaviour is essential if the agent is to succeed; however, developing this behaviour
is a complex process as agents must firstly associate the river with a negative fitness, and
then that a positive fitness can become accessible only if Stones are placed in the river. The
challenge of associating specific knowledge or behaviour with specific conditions makes the
task difficult for agents to learn to solve, as strong associations must be altered over time;

this can potentially lead to the temporary loss of ‘safe’ behaviour when bridge-building
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behaviour is learnt, and therefore can negatively affect the fitness that agents receive while

both conditions are learnt.

The RCD testbed is developed in Java, with the configuration of the environment pre-
sented in Figure 3.1. Time is measured in ‘time-steps’, where an agent must move a distance
of exactly one cell per time-step in any of the eight cells surrounding the agent’s current
location. The environment is designed such that multiple agents can exist in the environ-
ment, however Figure 3.1 depicts an RCD instance containing two agents; in this case, the
agent that starts in the top left of the environment moves first, followed by the agent that
starts in the bottom right. In order to explore the effect of interference on agent evolution,
one must also observe and compare how agents evolve in an environment alone; in this case,
only the agent on the left-hand side of the river exists. Agents are able to interact with all
objects within the environment, except from Resource objects which are not allocated to
them; non-allocated Resources appear in the environment as obstacles.

Robinson et al. [178] explore how agents evolve to operate in dynamic instances of
the original River Crossing task. The focus of this thesis however is on exploring the
effect that interference can have on agent evolution and volatility, rather than the ability
of agents to navigate dynamic environments; as this has already been demonstrated by
Robinson et al. [178], the experimental studies presented in Chapters 4, 5 and 6 instead use
a static configuration of the RCD testbed depicted in Figure 3.1. This is not to say that
future developments of, or studies using the RCD would be required to also have a static
environmental configuration; for the purposes of the studies in the later chapters though,
the RCD only uses the characteristics of other instances in the River Crossing family of

environments that are necessary for, and directly contribute to, the study of interference.

3.2.1 Gamification of the RCD

The inclusion of two Resources for each agent in the RCD — one immediately accessible,
and one initially inaccessible because it is separated by the river — further distinguishes
this testbed from others in the River Crossing family. Robinson et al. [178] state that
agents in the original River Crossing task are evaluated on three consecutive environments
at every generation, where each increases in difficulty; without first showing the agents an
environment where a safe passage to achieve the goal already exists, agents were not able to

associate the Resource object with a high fitness and evolution resembled random search.
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Following this line of thinking, the RCD instead locates one Resource on the side of the river
that an agent starts on, in addition to another Resource on the opposite side of the river;
if only one Resource was present that was on the opposite side of the river to the agent,
there would be no incentive for agents to explore or develop bridge-building behaviour due

to the risk of falling into the river.

Furthermore, the RCD environment is designed such that two Stones are required for a
bridge to be built; in other River Crossing environments, this is achievable with only one
Stone [178, 37, 203]. By increasing the number of Stones to build a bridge to two, the task
in the RCD can be gamified such that agents incur an increasing cost for each Stone placed
in the river; this cost acts as an incentive for agents to exert the least effort to achieve
their goal. However, this also increases the complexity of the task, because agents may
accidentally fall into the river when initially experimenting with bridge-building behaviour;
agents may consequently endure a period of low fitness while developing the ability to place
Stones in the river, making it harder to sustain this behaviour if they do not receive the
benefit from collecting the second Resource.

It would be trivial to imagine an environment where there is no cost for placing Stones in
the river in the RCD; without this, actions from others within the environment would have
little to no impact on agent evolution. Indeed, Robinson et al. [178] show that evolution
is able to find solutions in the original River Crossing task much quicker when agents
are situated in environments with a one-cell wide river, or where a bridge already exists;
solving the task when there is a two-cell wide river however is more difficult. Even with
this increased difficulty, if more than one agent existed within the environment, both agents
would be able to achieve their goal independently — the actions of others would not influence
agent behaviour, evolution, or the fitness they receive. In general, interference from others
within the environment is problematic when the fitness agents receive depends on shared
environmental features. As the intention behind the RCD is to explore how agents evolve
when they may experience interference from others, the cost for placing Stones in the river
means that the actions of other agents within the environment do in fact affect agent fitness,
and the resulting behaviours in which they evolve or maintain. The social dilemma that
consequently arises when agents share an RCD environment with another agent means that
the actions of other agents within the environment — particularly interacting with Stones

and thus potentially changing the state of the environment — can affect the fitness that
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agents receive. These agents may either complete their task individually and be subjected
to the full cost of bridge-building, cooperate to share the cost, or exploit the behaviour of

other agents to avoid a cost at all.

Gamification and Agent Fitness

The introduction of an increasing, personal cost for placing Stones into the river to build a
bridge creates a Snowdrift Game [152] (also known as the Chicken Game [121, 131, 218, 9]
or the Hawk-Dove Game [189, 9]), which is a two-person social dilemma with a cost for
cooperation. This means that there is less incentive for agents to cooperate due to the cost
of bridge-building, but severe consequences for defection if the agent isn’t able to achieve
its goal. Gamification adds a subtle complexity to the task incorporated into the RCD
environment compared to other testbeds in the River Crossing family of environments, as
agents must learn to endure a small cost for a large gain. The fitness, or payoff p for agent
i is based on its own individual actions, and is calculated with Equation 3.1, where agents

are evaluated on n environments:

n rij Cj X s
S (Nj _ [J2]<1+3m> }-fm) (3.1)

j=1

r;,j is the number of Resources collected by agent ¢ in environment j; N; is the number
of Resources allocated to each agent in environment j; C; is the cost of placing a Stone
in the river in environment j; s;; is the number of Stones placed in the river by agent i
in environment j; f; ; = 1 if agent 4 falls in the river in environment j, and is otherwise
0. C' and N are constants, with C = 0.1 and N = 2. Equation 3.1 evaluates each agent’s
fitness individually — independent of others; this also allows an agent to evolve alone or in a
shared environment, as an agent’s fitness is calculated solely on its own behaviour. Further,
this equation also means that agents can be evaluated on the outcome of one environment
(n = 1), or multiple (n > 1): an agent’s fitness is the sum of the fitness achieved in each
environment in the evaluation. Chapters 4 and 5 for example explore how agents evolve
when evaluated on one environment, whereas Chapter 6 explores the consequences that
evolving in many environments can have on evolution and fitness.

Table 3.1 shows a simplified payoff matrix using Equation 3.1, containing commonly

observed fitnesses in the RCD. The cost for each Stone placed in the river using this equation
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S =0 0.5 0.5 1.0
Sz =1 0.4 0.9 0.9
Sz =2 0.7 0.7 0.7

Table 3.1: Payoff Matrix using Equation 3.1 to show the fitness achieved by agent z in the River Crossing
Dilemma testbed, assuming that: agent = has retrieved its Resource object from its own side of the river;
agent x will retrieve its second Resource if a bridge has been built; another agent y exists in the environment.
Sz and Sy are the number of Stones placed by each agent. S, = 0 also demonstrates the fitnesses that agent
x could achieve if it exists in an environment alone.

increases by C' = 0.1; the total cost of placing one Stone is 0.1, two Stones is 0.3, three
Stones is 0.6, etc. The highest payoff when an agent exists in an RCD environment alone
is p; = 0.7, as the agent must incur the cost of placing two Stones in the river in order
to achieve its goal. In shared environments, agents can receive a payoff of p; = 1.0 by
exploiting the other, who receives p; = 0.7 from incurring the total cost of building the
bridge on its own. The overall optimal payoff is p; = 0.9 when agents cooperate by sharing

the cost of building a bridge. Any fitness below 0.7 indicates the goal is not achieved.

Social Dynamics and the Awareness of Others in the RCD

Cooperation in social dilemmas is influenced by knowing of the existence of a dilemma in the
first place [64], and can be negatively influenced if the dilemma’s characteristics are unknown
or dynamic [218]. Dynamicity however, is an inherent characteristic of coexistence, as the
actions of others can change the state of the environment; this makes it difficult to maintain
cooperative behaviour as this may become unreliable if the state of the environment (or the
behaviour of others) changes. It must be noted that the focus of the studies within this thesis
is not on the evolution of social dynamics such as cooperation or competition, but rather
how agents can mitigate the effect of interference when socially situated; cooperation or
competition can emerge, however this type of behaviour cannot be intended nor understood

by the agents, as they are unaware of other agents around them.

3.3 Agent Design

Existing approaches to agent design for the original RCT use a two-tiered neural network
architecture, where agents are capable of reacting to dynamic environments (such as a

change in environment size or configuration) without needing a priori knowledge [178, 35].
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As both the state of the agent and environment have the potential to change at each time-
step, this two-tiered architecture therefore enables the agent to change its behaviour quickly;
this removes the need for planning ahead, as the agent can switch its behaviour as soon
as internal or external change is experienced. The agent architecture comprises two neural
network tiers, where the first is termed the deliberative network and the second the reactive
network; the combination of these two networks allows agents to make decisions based on
their current state, and react immediately to the current state of the environment in line
with their current ‘decisions’ or goals?.

To keep in line with the design of agents in other studies using the River Crossing
family of environments, the studies presented in Chapters 4, 5 and 6 use ‘neuroevolution’
to evolve the weights of a two-tiered neural network architecture employed by the agents;
the agent design in the rest of this section is heavily inspired by the work of Robinson
et al. [178] and Borg et al. [37] in particular, which are studies using earlier instances of
the River Crossing family of testbeds. Neuroevolution is the process of evolving neural
networks using genetic or evolutionary algorithms; this is an alternative to other neural
network training techniques such as back-propagation, and is useful for training networks
in environments where there is a lack of examples for the network to train from [180, 98].
With neuroevolution, the networks ‘train’ or ‘learn’ through the parameters of the network
being evolved over time in accordance to some fitness function [202]; the parameters that
can be evolved may be purely the weights of the network which are represented as strings of
chromosomes [180, 98, 178, 78], or more complex approaches may evolve both the weights

and topologies of the networks [240, 200].

It must be noted that neuroevolution using this two-tiered neural network architecture
is just one way that agents can ‘learn’ to solve the task in the RCD testbed; reinforcement
learning, learning classifier systems, or even binary strings are just some examples of agent
representations that could potentially be explored in the future. Ghouri et al.? [96] for ex-
ample present a minimal version of the River Crossing task environment, where the agent
representation is a pair of numbers that dictate how many moves the agent will take and in

which direction (right or left), rather than the neural network representation used here. Fur-

2Note that in other studies using River Crossing testbeds, the entire two-tiered architecture is termed
the Shunting Model, and the two aforementioned neural networks are the Decision Network and Shunting
Network respectively [178, 37]; the terminology for referring to each tier has been simplified in this thesis to
correspond to the behaviours that each layer facilitates (i.e. deliberative or reactive, respectively).

3See Footnote 4 in Chapter 2.
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thermore, Stanton and Channon [203] expand upon the two-tiered architecture used here,
with both a physical and pattern generator network to evolve 3D virtual creatures. Whilst
there is not one, single approach to agent design that can be used in the River Crossing fam-
ily of environments (including the RCD), the research questions that this thesis intends to
address are more concerned with how agents are able to achieve their goals despite varying
environmental factors, rather than focusing on engineering agents to solve this particular
problem. As such, this two-tiered neural network architecture is considered sufficient for
studying how agents may evolve in the RCD testbed when experiencing interference from
other agents. Employing this architecture will also enable the agents to express reactive
and deliberative behaviours [178] — a characteristic in which agents designed to operate in
most instances of the River Crossing family of testbeds exhibit [178, 37, 203] (the exception
to this being the RC- testbed [96], which is a minimal version of the River Crossing task

and thus agents have a minimal design to reflect this).

3.3.1 The Deliberative Network

The first tier in this neural network architecture, the deliberative network, generates high-
level sub-goals at each time-step based on the current inputs to the network; these inputs
correspond to the current state of the agent and the environment. This network is therefore
responsible for the decision-making processes of agents; depending on the inputs and the
weights of the network, the outputs indicate what the agent decides to do next in terms of
sub-goals — attraction to, neutral to, or repulsion from certain objects in the environment.
The weights of the network represent the genes or chromosomes of the agent, and dictate
the relationship between the state of the agent and environment, and the behaviours in
which the agent exhibits. The weights of this neural network are evolved over time with
neuroevolution; this process is described in more detail in Section 3.4.

This feed-forward neural network has an input layer with six neurons, a number of
hidden layers, and an output layer with three neurons; each neuron in each layer of neurons
in the network is connected to each of the neurons in the next layer. Figure 3.2 depicts the
deliberative network structure used in Chapter 4, where the number of hidden neurons is
inspired by the agent design in the original River Crossing task study [178]. The number
of hidden layers and hidden neurons are specified in each study. The weighted sum of the

incoming activation to the hidden neurons passes through a hyperbolic tangent activation
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function to produce the output. If the incoming signal to the neuron is: within the range
[0.35:0.65], the output is 0; less than 0.35, the output is -1; greater than 0.65, the output
is 1. Robinson et al. [178], Borg et al. [37] and Stanton and Channon [203] study other
instances in the River Crossing family of testbeds, instead using thresholds of -0.3 and 0.3;
however, initial experimentation with the River Crossing Dilemma testbed showed that
these thresholds inhibited the evolution of agents. If many objects in the environment were
‘attractive’ at one time, agents had difficulty in navigating towards their sub-goals at each
time-step, thus wandering about and being pulled in different directions. By narrowing the
range of the thresholds in the RCD compared to previous work, the intention is that agents
will have more clearly defined sub-goals at each time-step, depending on their current state
and the state of the environment.

The deliberative network’s inputs correspond to whether the agent is on Grass, a Re-
source, Water or a Stone, if it is currently carrying a Stone, and if a bridge has been built
partially in the environment (i.e. one Stone in the river out of two). The ‘partial bridge’
input informs agents anywhere in the environment that a Stone has been placed somewhere
in the river; this helps navigation efforts by indicating that some parts of the river are
‘shallower’ than others, and only require one more Stone to build a bridge. For each of
these inputs, the value is 1 if true, or 0 for false. The network then generates sub-goals
from these inputs, meaning that the agent can ‘deliberate’ about what objects it will head
towards in the environment based on its state.

The output values of the deliberative network correspond to the sub-goals of the agent,
i.e. the resulting behaviour and what the agent will do in the current time-step. The network
has three output neurons, each of which correspond to Resource, Stone and Water objects
in the environment. After the weighted sum of inputs to the output neurons passes through
the hyperbolic tangent function, each of the output neurons will either output a signal of
1, 0 or —1; these values indicate that the agent will be attracted to, neutral to, or repulsed

from these objects within the environment.

3.3.2 The Reactive Network

The second tier, termed the reactive network, generates a dynamic activity landscape at
each time-step; this activity landscape changes at each time-step depending on the sub-

goals generated by the deliberative network, and thus does not evolve like the deliberative
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Figure 3.2: The deliberative network is a feed-forward neural network that generates high-level sub-goals.
Inputs are 1 or 0, corresponding to the agent’s current state: Grass (G), Resource (R), Water (W), Stone
(S), Carrying Status (C), if a Bridge partially exists (B). Outputs are 1 for attraction, 0 for neutral or —1
for avoidance for each sub-goal: Resource (R), Stone (S), Water (W).

network. The reactive network is a topologically-organised lattice of neurons with the same
dimensions as the environment (in the case of the RCD, this is 19 x 19), where each neuron
is connected to the surrounding eight neurons. Agents can therefore hill-climb towards the
goals generated in the previous tier by moving to the cell in its Moore neighbourhood (the
surrounding eight cells) with the highest activity at each time-step. Agents must make
one move per time-step and cannot remain stationary. Agents also cannot move into a cell
occupied by another agent. If more than one of the surrounding cells shares the highest
activation, one of these is randomly selected; agent movement therefore has an element of
stochasticity, meaning that agents can potentially take different paths when navigating the
same environment twice.

Another implementation detail is that an agent will pick up a Stone automatically if it
moves onto a cell with a Stone; an agent will also put a Stone in the river automatically
if the cell adjacent to it is Water, under the condition that it is carrying a Stone. This is
simplified from the process that Robinson et al. [178] employs for example, which uses an
additional output neuron in the deliberative network to determine whether the agent will
pick up or put down an object. The River Crossing Dilemma testbed however is designed
to explore the evolution and behaviour of colocated agents; the additional task of evolving
this behaviour of picking up or putting down objects does not contribute to the exploration
of the interference that agents experience, and has thus been simplified to focus the studies
presented in Chapters 4, 5 and 6.

The sub-goals generated by the deliberative network are used to generate the dynamic
activity landscapes in the reactive network. Activity propagates through the reactive neural

network using the shunting equation proposed by Yang and Meng [238, 237], which is

C. M. Barnes, PhD Thesis, Aston University 2021 58



CHAPTER 3. A TESTBED TO EXPLORE INTERFERENCE

characterised by a biologically-inspired equation [100]; this approach was originally used by
Robinson et al. [178] to enable agents to express both reactive and deliberative behaviours
in dynamic environments. The shunting equation (Equation 3.2) calculates the activity of
each neuron in the reactive network at each time-step based on its own activity and the

activity of the neurons surrounding it:

k
=1

d.%i
dt

Alpha A is the passive decay rate, set as A = 0.2, which allows the activity of each
neuron to decay towards a value of 0; x; is the current neuron; w;; is the weight of the
connection between neurons x; and z;, where z; is one of the surrounding cells in x;’s
Moore neighbourhood (indicated by k = 8, as each neuron is connected to the surrounding
eight neurons); [x;]T is calculated by maz(0,z;) — meaning that negative activity cannot
propagate through the network. The value of Iota I is dependent on the sub-goals from
the deliberative network, and is a large value. For each object in the environment that
corresponds to a sub-goal, if the value of the sub-goal is: 1, I = 15; =1, I = —15;and [ =0
otherwise. This creates large hills and valleys in the activity landscape, as inspired by the
design of the original RCT testbed [178]. As the reactive network has the same dimensions
as the physical environment, the cells in the reactive network which correspond to objects
that are deemed to be ‘attractive’ by the deliberative network are assigned large positive
values by this equation, thus creating ‘hills’; activity from these peaks then propagates
throughout the network, decaying as distance increases from the source of the activation.
Similarly, ‘repulsive’ objects are assigned large negative values to create valleys; activation
does not propagate from these, so they will always be avoided. An example of an activation
landscape that is generated by the reactive network, using Equation 3.2, is presented in
Figure 3.3. This figure shows how agents may ‘hill-climb’ towards their goals at each time-
step, by following a path of highest-activation until they reach their desired goal-object,
and avoiding objects which are deemed ‘repulsive’ by the deliberative network. Note that

Equation 3.2 is used exclusively in the reactive network, not the deliberative network.

3.4 Evolutionary Algorithm

Robinson et al. [178] show that agents are able to solve tasks in dynamic configurations of the
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Figure 3.3: The reactive network generates dynamic activity landscapes with Equation 3.2, based on the
current sub-goals generated by the deliberative network (Figure 3.2); here, the sub-goals are [—1,1, —1],
meaning the agent is attracted to Stones, and avoids Resources and Water. The activity landscape maps to
the physical landscape (Figure 3.1), so agents can hill-climb towards their sub-goals whilst avoiding repulsive
objects, by traversing the activity landscape and moving to the adjacent cell with the highest value.

original RCT environment, by expressing both reactive and deliberative behaviours. The
agent architecture defined in Section 3.3 is used in the experimental studies in Chapters 4,
5 and 6, and is inspired by that of Robinson et al. [178]; as such, the agents in these studies
would be expected to also be capable of solving dynamic configurations of the River Crossing
family of environments — the RCD, in particular — as well.

The studies presented in Chapters 4, 5 and 6 evolve agents in the RCD testbed using a
Steady State Genetic Algorithm [208], inspired by Robinson et al. [178] and Borg et al. [37];
this means that the population evolves slowly, as one agent is replaced at each generation
with the offspring of two parents, rather than replacing large proportions of the population
at once. The following common parameters are used in each of the studies in the later
chapters. The algorithm evolves a population of 25 randomly initialised agents over a
number of generations. At each generation, three agents from the population are randomly
selected to compete in a tournament, where they are each given 500 time-steps to achieve
their goal in an RCD environment. The evaluation at each generation stops once all agents
in the environment reach one of the termination conditions: the agent reaches its maximum
amount of time-steps, achieves the goal, or dies by stepping into the river. If an agent

achieves its goal, or dies, it makes no further moves until the evaluation terminates.
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The worst-performing agent in the tournament at each generation is replaced by an
offspring created from the two winners. For each chromosome (layer of weights in the
deliberative neural network), this offspring has a probability of P,,. = 0.95 to inherit
the chromosome from a random parent (winners of the tournament), otherwise single-point
crossover is used. Each connection weight w in the offspring’s resulting deliberative network
is then mutated by a random value from a Gaussian distribution with 4 = w and ¢ = 0.01.
Using this algorithm, agents ‘learn’ on an evolutionary basis, as the genotypes of agents
in the population change over time through the recombination and mutation operators
defined previously; agents do not learn during their lifetime as their genotype remains
unchanged during each generation. However, as there is an element of stochasticity to
agent movement (as described in Section 3.3), one genotype can express multiple phenotypes
within a generation; that is, if an agent is evaluated on multiple RCD instances at each
generation, the behaviour expressed by an agent may not be the same in each — even
though the genotype is unchanged. In multi-agent environments, only the evolution and
goal-achievement of the agent that begins in the top-left corner are analysed; this makes
the results from single- and multi-agent environments comparable. The other agent still

evolves as described here, however its evolution is not analysed unless otherwise specified.

As the River Crossing Dilemma testbed, the agent design, and the evolutionary algo-
rithms used to evolve said agents in the following chapters are inspired by the original RCT
and its extensions, agents are thus evolved for 500,000 generations unless otherwise speci-
fied. This is inspired by the experimental setup of the original River Crossing task study
by Robinson et al. [178]; 80% of agents evolved to achieve their goal in the more complex
environments in approximately 100,000 generations on average, or roughly 450,000 in the
worst-case scenario (the simulation was terminated only after 80% of agents achieved their
goal). The RC+ task on the other hand, introduced by Borg et al. [37], evolved agents for
a maximum of 5,000,000 generations; all agents were able to achieve their goal by building
a bridge in a one cell wide river in approximately 500,000 generations on average, whereas
in the worst-case scenario the task was completed in around 2,000,000 generations. In both
studies, the average number of generations required for the majority of the population to
evolve successful solutions increases in line with the difficulty of the environment. In terms
of the RCD, 500,000 generations is considered a sufficient length of time for evolution to

find goal-achieving solutions, however it would be expected that only a subset of agents
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across all runs of an experiment would achieve their goal in this time. This is an adequate
length of evolution as the focus of the studies in this thesis is not to find ‘the best solution’,
or to design agents that are excellent at solving this one specific problem; instead, the focus
is on analysing and understanding how agents evolve under certain conditions, such that
this knowledge can be used in the future to understand and design technical systems that
operate in shared environments.

In the remainder of this thesis, the phrase ‘agent evolution’ is used to describe the
process that evolves a population of agents. When referencing an individual agent and
its evolutionary process, e.g. the evolution of ‘Agent A’, this in fact describes how the
population is evolved during evolution, since the population evolves rather than a single
agent. This is so that the evolution of two distinct populations of agents can be compared

in a more straightforward manner, such as the evolution of ‘Agent A’ and ‘Agent B’.

3.5 Implementing a Testbed to Explore Interference

The approaches listed in Section 2.4.1 are intended to facilitate the development of agent-
based systems of varying sizes, through outlining design principles or providing libraries for
the creation of custom simulation models. One of the primary aims of the experimental
studies in the later chapters of this thesis however, is to study the evolution and behaviour
of a small number of agents (i.e. one to study evolution alone, or two to study the effects of
interference) in detail, rather than the behaviour and interactions between large numbers
of agents. Whilst the latter is still important, it is beyond the scope of this thesis; there
is room however to extend the experimental studies to consider large numbers of agents in
the future, to observe the effects of interference on a large scale. To address the concerns
raised in Section 2.4.1, the experiments are conducted using bespoke testbed and agent
implementations — which are one of the contributions of this thesis; this facilitates fine-
grained control over the parameters and execution of the experiments, and additionally
allows for detailed observation of agent evolution. By designing and creating a bespoke
implementation for the experimental studies rather than adopting alternative agent toolkits
or design methodologies, any assumptions made by the developers that may potentially
affect the design, execution, or results of the simulations, as well as any time required to

become familiar with APIs in order to extend existing code, are avoided. The testbed
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and the agents created for the experimental studies in this thesis have been developed
from scratch using the Java programming language, which is object-oriented and platform-
independent. Java was also the programming language of choice for MASON, JADE, and
NetLogo for example, because the object-oriented nature of the language is suitable for
modelling social phenomena [137] — as is also the case here. This is another reason for
using Java to develop the RCD rather than using a predefined approach, framework or
toolkit, as these may have limitations or hidden assumptions. Not only this, but all aspects
of the testbed and agent design can consequently be controlled, and hence observed when

gathering results in greater detail than with any of the approaches discussed previously.

3.6 Analytical Design for Studying Agent Evolution

For each study presented in Chapters 4, 5 and 6, an in-depth analysis is conducted to
understand how evolution, goal-achievement, and volatility may be affected by an agent’s
capabilities or environment. The analytical methods used are described below. The statis-
tical analysis is conducted in each study using the R programming language [173], which is
powerful both for statistical analysis and creating visualisations of data. Details about the

packages and functions used to conduct this analysis can be found in Appendix A.

3.6.1 Volatility Metrics

Three metrics have been devised to analyse the evolutionary volatility that agents experi-
ence, in terms of the fitness of the highest-performing agent in the population over time.
Each metric captures different knowledge, and therefore complements the others. The value
for each metric is calculated by taking the best-in-population fitness of agents across all runs
of an experiment, to capture how much the fitness is prone to change during the course of
evolution. These metrics can thus be used to analyse whether a particular approach to
agent design, or the effects that evolving in a certain type of environment (such as if the
agent exists alone or with another), will cause agent fitness to fluctuate; the more times
an agent’s fitness fluctuates over time (i.e. higher volatility), the less the agent is able to
consistently perform in the environment. This may be because the agent moves between
being able to achieve its goals to being unable to achieve its goals, which is not ideal. In this

way, low evolutionary volatility would be preferred, as this indicates that agent behaviour —
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and consequently the fitness received — is more predictable during evolution. These three

metrics are described below.

Standard Deviation over Time (SDoT)

Historical volatility is a common metric used in financial modelling and volatility forecasting
that captures the dispersion of values over time, calculated most commonly by the sample
standard deviation over a defined time period [170]. This is useful to determine the expected
volatility in fitness over time over agents in all runs of an experiment, and as such the SDoT
is calculated in the same way: for each run of an experiment, the standard deviation is

calculated from the best-in-population fitness at each generation over the course of evolution.

Cumulative Absolute Change over Time (CACoT)

To quantify how an agent’s fitness changes over the course of evolution — and by how much
— the CACoT metric is introduced to capture the magnitude of the changes that the best-
in-population fitness of an agent endures over time. Here, the count is incremented by
the absolute change in fitness between generation g;_1 and g;. A high CACoT therefore
indicates that fitness fluctuates by large amounts; often, this will indicate that an agent
tends to alternate between receiving high fitnesses when achieving its goal, and low fitnesses
where it either cannot achieve its goal or fails the task (in terms of the RCD, this would be

by the agent ‘drowning’ by stepping into Water).

Count of Change over Time (CCoT)

Complementing the CACoT metric, the number of times that the best-in-population fitness
over evolution can be captured with the CCoT metric; here, the metric increments by one
only if the fitness in generation g; is not equal to g;—1. The CCoT metric therefore captures
purely the number of times the fitness of an agent fluctuates during evolution, rather than
the magnitude of those changes. A high CCoT indicates that the agent experiences many

fluctuations in fitness during evolution, implying that the agent cannot maintain its fitness.

3.6.2 Statistical Analysis

In addition to the volatility metrics described above, statistical analysis is conducted for

the results of each experiment to understand the evolution of agents in each experiment
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further. This analysis is conducted for the fitness agents receive during evolution, as well

as the volatility agents experience, using the metrics defined in the previous section.

Statistical Moments

In statistics, the shape of a distribution of a variable can be described using four moments:
mean, variance, skewness, and kurtosis [87]. These moments are calculated across all runs
of an experiment using the R package moments [123], to quantify the distribution of the
values of either the fitnesses achieved by agents in each run, or the volatility captured by
each of the three metrics defined in the previous section. The moments of the distributions
of two experiments (for example, when an agent evolves alone compared to when it evolves
in a shared environment) can thus be used to compare the results of each experiment, and
to indicate whether one approach may be preferable over another.

The mean captures the expected value of a distribution, whereas the variance describes
the dispersion of values around the mean. Skewness and kurtosis are used to describe the
shape of the distribution further, giving an indication of how much the distribution varies
from the normal distribution [87].

Positive skewness (or right-skew) indicates that the peak of the distribution is towards
the lower end of the scale, with a longer tail towards the higher end of the scale. Negative
skewness (or left-skew) indicates the opposite, where the majority of values are towards the
higher end of the scale, with a tail extending towards the lower end of the scale.

Kurtosis however is a measure of the tailedness of a distribution, and therefore how likely
outliers are. A normal distribution has a kurtosis of 3 [65]; the kurtosis of other distribu-
tions is described in comparison to the kurtosis of a normal distribution. A ‘mesokurtic’
distribution has a kurtosis of 3, so the kurtosis is the same as that of a normal distribu-
tion. ‘Leptokurtic’ distributions have positive kurtosis, meaning that the value of kurtosis
is greater than 3. ‘Platykurtic’ distributions have negative kurtosis, as the distribution
has lower kurtosis than a normal distribution, and thus kurtosis is less than 3. Positive
kurtosis indicates that the distribution would have more outliers and extreme values than
distributions with negative kurtosis.

In addition to these four statistical moments, the median of each distribution is captured
as this is useful to compare the central values of the distributions in conjunction with the

mean. Further, observing both the mean and median can often indicate that a distribution
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is skewed; a higher mean than median can indicate positive skewness, whilst the opposite

indicates negative skewness.

Statistical Tests

Whilst the statistical moments described in the previous section can be used to describe the
distributions of the fitness and volatility metrics in each experiment, statistical tests can be
used in addition in order to make concrete statements when comparing one distribution to
another. The statistical tests outlined below are conducted using the appropriate functions
supplied by the stats package, which is part of the core R distribution [173].

Many statistical tests exist which compare different characteristics of the distribution,
or make different assumptions about the distribution. To determine which statistical test to
use, a Shapiro-Wilk test for normality is first conducted for each experiment; this is powerful
for a wide range of distributions [241], including those that are symmetric or asymmetric, or
with high or low kurtosis. For this reason, this test is deemed suitable over other normality
and goodness-of-fit tests such as the Cramr-von-Mises and chi-squared tests, as these are
less powerful for such a diverse range of distributions. For the Shapiro-Wilk normality
test, the null hypothesis is that the data is normally distributed; if the result of the test is
p < 0.05, there is evidence to reject the null hypothesis that the distribution is normal.

After considering whether the distribution is normal or non-normal, an appropriate
statistical test can be chosen. In Chapters 4, 5 and 6, Wilcoxon Signed Rank statistical tests
are conducted, as these non-parametric tests do not assume that the data is normal [232, 87].
This test compares the medians of two distributions, where the data is ‘paired’; this means
that the distributions of related samples can be compared. Specifically in this thesis, agents
evolve with a ‘standard’ evolutionary approach, or with a sociologically- or biologically-
inspired approach; these different approaches can thus be compared directly, as the same
populations of agents evolve with different approaches. For each experiment, one two-tailed
and two one-tailed Wilcoxon Signed Rank tests are conducted; the null hypotheses for these
tests are that the distribution medians are equal, and that there is no directional difference
in the distribution medians respectively. These null hypotheses can be rejected if the p-
value obtained from the test is below 0.05, which indicates that the result is statistically
significant. If the data were found to be normal when conducting a Shapiro-Wilk test,

a parametric alternative such as the Student’s t-test would instead be considered, which
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compares the mean of two distributions.

Effect Size Estimates

Statistical tests can be used to ascertain whether two approaches are distinct from one
another, but these tests do not shed light on how different the approaches are to one another.
Effect size estimates can thus be used in addition to both the statistical moments and tests
described above, in order to quantify the relationship between two variables, and therefore
the magnitude of the effect between the two approaches. The correlation coefficient r [214]
can be used to estimate such a magnitude between two variables; this effect size r can be
estimated using the following formula, as defined by Rosenthal [181]:
VA

r= \/—N (3.3)

where Z is the z-score (also known as the standard score, or z statistic), and N is ‘the
number of subjects or other sampling units’ [181] (for example, if an experiment is repeated
100 times, then N = 100). This particular method for estimating the effect size is chosen
because it is suitable to use in conjunction with the non-parametric Wilcoxon Signed Rank
statistical test. The wilcoxonZ function provided by the R package rcompanion [142] is
used to calculate the z-score for a Wilcoxon Signed Rank statistical test, which can then be
used in Equation 3.3 to calculate the effect size. Other effect size estimates such as Cohen’s
d [58] exist, however Rosenthal [181] notes that r is more versatile in its usage.

Cohen [58] suggested three different categories that can be used to describe the strength
of the relationship between two variables, captured by the effect size estimate r (Equa-
tion 3.3): r > 0.1 is small, 7 > 0.3 is medium, and r > 0.5 is large. The effect size r ranges
between —1.0 and 1.0, where —r indicates a negative relationship between the two variables,
and +r indicates a positive relationship. For example, if the effect that agent design B has
on fitness is compared to the ‘standard’ agent design A, an effect size of r = —0.5 indi-
cates that agent design B has a large effect on agent fitness; as r is negative, agent design
B increases fitness. The effect size estimates between different experiments can thus be
compared, as the strength of the relationship between the two variables in each experiment
can be contrasted when the agents in the studies are subjected to different environmental

conditions.
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3.7 Conclusion

The River Crossing Dilemma (RCD) testbed presented in this chapter has been designed
to address the shortcomings of the River Crossing family of environments, in that the RCD
contributes the ability to explore how multiple agents evolve to achieve their individual
goals. By incorporating a social dilemma into the RCD, the actions that agents take within
the environment can have an impact on the other agents, as the state of the environment
changes. Consequently, the effect that interference can have on agents can be studied in close
detail, and the evolutionary volatility that agents experience as a result of this interference
can also be quantified.

The contributions of this chapter are:

A gamified testbed — the River Crossing Dilemma — specifically designed to observe
how interference affects agent evolution and goal-achievement, where cooperation and

exploitation can emerge but cannot be intended.
e An in-depth description of the testbed, agent and evolutionary algorithm design.

e A comprehensive approach to analysing the results obtained from the experiments

conducted in the River Crossing Dilemma testbed.

e Three metrics that measure the evolutionary volatility that agents experience, based

on how frequently or how much an agent’s fitness fluctuates during evolution.

A core characteristic of the River Crossing family of environments — and indeed the
River Crossing Dilemma — is that the testbeds are extensible, and may be made arbitrarily
complex. As a result, the RCD is versatile in the sense that agents can be observed in both
single- and multi-agent environments, such that the effect of evolving in either a shared or
individual environment can be contrasted. As agents have no capacity to perceive or learn
of one another, the RCD simulates the conditions in which components of sociotechnical
systems in the real-world experience when sharing environments with potentially unknown
other systems. Experimentation within the RCD testbed should aid understanding of the
implications of interference, and the consequences that it can have on goal-achievement
and performance. Consequently, how systems, and the artificial agents that simulate them,

may combat this interference can be investigated; the experimental studies presented in
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Chapters 4, 5 and 6 therefore use the RCD testbed to observe the impact that sharing an
environment can have on individuals, as well as exploring how nature-inspired approaches
to agent design may affect agent fitness or performance, and the resulting evolutionary

volatility experienced.
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Chapter 4

Traditional Action and

Evolutionary Volatility

The work presented in this chapter has been adapted from the following publications:

[15] C. M. Barnes, A. Ekért, and P. R. Lewis. Social Action in Socially Situated Agents. In
Proceedings of the IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems
(SASO), pages 97-106. IEEE, 2019. doi: https://doi.org/10.1109/SAS0.2019.00021.

[18] C. M. Barnes, A. Ekért, and P. R. Lewis. Beyond Goal-Rationality: Traditional Action Can
Reduce Volatility in Socially Situated Agents. Future Generation Computer Systems, 113:579-596,
2020. doi: https://doi.org/10.1016/j.future.2020.07.033.

4.1 Motivation

As society delegates more decisions to intelligent machines, and interactions between such
machines that exist in shared environments becomes more prevalent, capturing elements of
evolved human social behaviour will be increasingly important. Bellman et al. [28] state
that systems require social awareness to intentionally cooperate, coordinate, or act socially,
and perceive and reason about others; however, social action and social self-awareness are
two essential aspects that so far remain largely unexplored. Human societies have no global
knowledge or central point of control; how, then, do humans interact effectively? Or-
ganic Computing approaches this by observing and controlling a group of interacting, self-
organising entities [155]; in this chapter however, a microsociological approach is explored

as a step towards socially intelligent systems capable of social awareness at the individual
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level. Humans have evolved the ability to achieve goals in complex social systems by con-
sidering others and acting socially; inspired by this, the experimental study conducted in
this chapter operationalises social action theory [227] in socially situated agents that pursue
individual goals in shared environments. To concentrate the scope of this study, two types
of social action are operationalised: ‘traditional action’, which is acting similarly to the
rest of the population; and ‘goal-rational action’, which is seen in current systems where
the most effective action to achieve a goal is taken. Complementing this, ‘random action’
is introduced, which adds randomness into the behaviour of agents by way of Random
Immigrants [57]. The aim here is to distinguish the differences between goal-rational and
traditional action, and additionally investigate whether these approaches are quantitatively
different to introducing Random Immigrants into the population [57] — a well-established
mechanism widely used in dynamic optimisation problems and in dynamic environments to
add diversity to populations in genetic algorithms [190, 236, 244, 130, 93]. The need to act
in a socially-sensitive way challenges the assumption that goal-rationality is necessary for

agents to achieve goals in shared environments with less than complete knowledge.

The experiments are conducted using the River Crossing Dilemma testbed (Chapter 3),
which was designed to explore arbitrarily complex problems in shared environments. Firstly,
the effect that interference can have on agents that are able to achieve individual goals alone
is explored, to assess how learnt knowledge is maintained. These results are then generalised
over many experiments for agents that begin evolution with no prior knowledge. Conclusions
are finally drawn to compare the volatility of evolution with each type of social action, and
whether goal-achieving behaviour can be learnt and maintained despite interference.

The remainder of this chapter is organised as follows: Section 4.2 explores the theory
of social action, and contextualises this in terms of computational systems; the design of
the experimental study is then presented in Section 4.3, which details how social action
theory is operationalised in agents that evolve in the RCD; the results of said study are
presented in Section 4.4, exploring how coexistence can affect evolution, and the impact
that social action can have on these socially situated agents; analysis into how agents in the
study evolve is conducted in Section 4.5, which also delves into whether a trade-off between
fitness and volatility exists between the various types of social action employed in the
study; finally, Section 4.7 concludes the chapter by discussing the findings and summarises

the contributions.
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4.2 Acting Socially in Shared Environments

Following on from the discussion in Chapter 2, interference means that actions can have
unintended or unanticipated consequences on both the actor and others in shared, com-
plex and dynamic environments [147], making shared and individual goals more difficult to
achieve. Humans overcome these issues by acting socially and not purely individualistically
in social environments. Many computer science researchers have therefore been inspired by
theories of psychology, sociology and cognitive science, such as in organic computing [155],
self-awareness [133, 125], and social dilemmas, social learning, altruism and agent soci-
eties [109, 116, 226, 164]. It thus seems logical to draw parallels between the exploration of
human social phenomena in sociology and socially situated agents; taking inspiration from
how humans act in society may provide a similar benefit to artificial agents that operate in
shared, and thus dynamic, environments.

If an agent cannot perceive or learn about potentially unknown others, or the effect that
their actions can have on itself, interference can affect how goals are achieved in ways that
cannot be understood; without a mechanism to overcome interference and unanticipated
events beyond their control, agents will be unable to make appropriate decisions at runtime
in accordance with their goals. It is therefore necessary, in broader terms, to move towards
socially situated technical systems with the capacity for social awareness [28], by equipping
them first with the ability to maintain goal-achieving behaviour despite unanticipated in-
terference from other systems. As humans have evolved to both exist and thrive in diverse
environments shared with many others through acting socially, this study operationalises
the theory of social action, proposed by Weber [227], to understand how agents may also
benefit by acting socially when coexisting with others. As highlighted by Bellman et al.
[28] and Castelfranchi [51], designing systems that are capable of acting in a socially intelli-
gent manner is becoming increasingly necessary as modern computer systems are evermore
situated in shared environments. Operationalising social action theory is therefore one way
to explore how artificial systems may operate in a human- or socially-inspired manner, in
order to mitigate the effects of interference from others. Endowing systems with the ability
to act in a more socially-oriented way, regardless of whether they exist in isolation or not,

may help them to perform consistently without requiring extensive knowledge of others.
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4.2.1 Defining Situatedness

To explore how artificial agents may behave in shared environments, one must first adopt
and define relevant terminology to describe the concepts that arise as a result of coexistence.
Rao et al. [175] define ‘situated agents’ as those that are resource-bound, operate within and
continuously interact with dynamic environments, and balance reactivity with deliberation.
Lindblom and Ziemke [136] use the term ‘social situatedness’ to refer to the concept that the
behavioural and cognitive processes of agents are affected by both the social and cultural
aspects of the environment in which they are situated; further, an agent that is ‘situated’
is said to be coupled with its environment, in that the agent can affect the environment in
some way and vice versa. This is influenced by the theories of Vygotsky [224], such that the
social aspects of environments that agents are situated in affect the individual intelligence of
the agents. Leading on from this, Dautenhahn et al. [63] describe ‘socially situated agents’
to be those that not only gather information from their physical environment, but from the
social component of it as well.

The intention behind the study presented in this chapter is to investigate the impact
that evolving in a shared environment, as opposed to an environment that is inhabited by a
single agent, has on the ability to evolve, and how agents are able to pursue individual goals.
As agents may potentially share an environment with another, the term socially situated is
adopted to describe said agents that evolve and coexist with another, unknown agent within
the environment. Due to their operation in a dynamic and shared environment, an agent’s
behaviour can interfere [51] with the actions and goals of others, where the knowledge
acquired is influenced by the physical and social environment — whether the agents are
aware of it or not. If an agent cannot perceive the cause of environmental changes to be
the result of the actions of another agent, then the changes will be perceived as uncertainty
arising from the environment itself; agents in this situation will still be ‘socially situated’, as
the way they evolve will be influenced by the consequences of the actions of others regardless

of whether they are aware of the existence of others.

4.2.2 Defining Social Action

By establishing the concept of ‘socially situated agents’ and understanding that coexisting

agents may interfere with one another, it becomes easier to see similarities between how
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artificial agents may evolve in shared environments and how humans have evolved to behave
in society. Weber [227] theorised that humans are capable of social action, which are actions
oriented towards, and that consider the behaviour of, others (this is described in more detail
in Section 4.2.3); these actions hold a ‘subjectively understandable’ meaning. ‘Meaning’
in this context refers to the motivations of the actor, such that the motivations can be
understood from the actor’s perspective: why an actor acts in a particular way, given its
own perspective and circumstances. By extension, artificial agents could also be capable of
social action following this definition, if sharing an environment with another agent.
Weber [227] goes further to define what does and does not constitute a ‘social action’:
actions with inanimate objects do not involve other actors, and are thus not social; actions
that have no meaning, i.e. those without motivation or deliberation, are not actions, but
merely behaviours. To further distinguish between these concepts, Sztompka [209] proposes

a hierarchy of social action, a subset of which is outlined below:

e Behaviour is automatic, reactive and reflexive.
e Action is intentional and purposive, with meaning to the actor.

e Social Behaviour holds no meaning to the actor. It is reactive, therefore no delibera-

tion occurs. A behaviour becomes social when directed or oriented towards another.

e Social Action holds meaning to the actor, and is intentional. A rational decision is
made to act in a certain way, taking into account different factors such as the actor’s
emotional state and the current situation. An action becomes social when directed

or oriented towards another.

Social Interaction requires a response to a social action from another actor.

In this chapter, the experimental study defined in Section 4.3 considers how agents that
have no capacity to perceive or learn of other agents in their environment may evolve to pur-
sue individual goals, using the River Crossing Dilemma as a testbed. Using this terminology
as outlined by Sztompka [209], these agents would not be capable of social interaction, as
it is assumed that a response from one actor to another would require awareness of the
other — as well as the action itself. The distinction made between behaviours and actions is

the intent; behaviours are reactive whereas actions are deliberative or ‘hold meaning’. The
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other way these concepts are categorised in this hierarchy is with orientation: an action or
behaviour becomes ‘social’ if it is directed, or oriented towards another. The agents in this
chapter would therefore be capable of social action if an action is intended, and is oriented

towards another; Section 4.3 elaborates on how social action is specifically operationalised.

4.2.3 Ideal Types of Social Action

By the definitions proposed by Sztompka [209], a ‘social action’ is one that is intended or
deliberate, and is oriented towards another. Preceding this, Weber [227] outlined his theory
of social action, which defines four “dealtypus’ of social action; these ideal types describe the
motivations behind social actions in a simplified model, to aid analysis of complex human
actions. The word ‘ideal’ in this context is not synonymous with ‘perfection’, but an ‘idea’,
in order to conceptualise the different types of social action [227]. An ‘ideal type’ does not
exist in isolation in practice, and is a simplification of a real-world concept so it can be

theorised about. Weber’s four ideal types of social action are described below.

Instrumental-Rational Actions are chosen for their effectiveness in achieving a goal,
and are justifiable from the perspective of the actor; consequently, these are often termed
goal-rational actions. Other goals, the range of possible actions, and the consequences of
performing the action are considered to decide the most appropriate action; the meaning is
tied to the end result, as the action is chosen with the goal in mind. Most artificial agents,

especially in machine learning, are instrumental-rational by this definition.

Value-Rational Actions are determined by the values or beliefs held by an actor,
such that performing the action itself carries meaning instead of the outcome. Actions are
rationalised in terms of ethical or religious beliefs, or to any cause valued by the actor.
Rationality is a justifiable, conscious decision of how to act, and is understandable when
considering the motivations of the actor; actions may seem irrational to outside observers
if the motivation is not immediately clear. Pure value-rational action is where the value

outweighs the consequence of the action, such as a soldier sacrificing themselves for another.

Affective Actions are reactive and impulsive actions in response to an emotional state
or exceptional stimulus. Affective action appears inherently irrational, as the consequences
of the action may not be considered and thus may be difficult to justify. An example is

striking someone out of rage.
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Traditional Actions are habitual, or those in reference to a cultural custom; it can
therefore be seen as acting in the same way as others. These can be described as mindless,
automatic, or ritualistic actions; there is no obligation to act in this way, rather the ratio-
nalisation for performing the action is that ‘it has always been done this way’. An example
is using specific eating utensils; deliberation reduces over time as the action becomes second
nature. Traditional actions therefore might not necessarily be optimal or most appropriate

in terms of achieving a goal, but can be adequate means to satisfy the end.

4.2.4 Social Action in Computational Systems

Whilst not explicitly used to define current approaches, the theory of social action [227] can
be applied to computational systems with actions that are determined by error-function-
based learning or objective-function-based search for example; these would be considered
‘goal-rational’, as they are engineered to maximise their ability to achieve a particular
goal. However, as this chapter will demonstrate through an experimental study, there are
unintended consequences associated with the actions of goal-rational agents that coexist in
a shared world; this can manifest as volatility in evolution and a loss of ability to achieve
one’s own goals. Human evolution has favoured social behaviour to deal with issues arising
from living in the presence of others [192]; without this, humans struggle to adapt or survive
[62]. Weber’s social action theory [227] has thus been adopted in this chapter to describe
how agents evolve in shared environments; consequently, this goal-rationality seen in current
systems can be compared to other, less commonly observed types of social action, to explore

how computational systems may begin to overcome these issues in a human-inspired way.

Social action can be operationalised in different ways. Value-rational action would
become especially critical when systems make decisions on behalf of humans, and would
differ between systems depending on the values of the environment it is situated in; this poses
the question of how one can trust that the decisions made align with human values. Affective
action could be taken when one does not know how to proceed in an unknown situation;
as such, all actions may appear to be irrational unless abstracting previous knowledge to
justify the decision of performing the action. Traditional action could simply be copying or
imitating what most others are doing, forming traditions over time.

This chapter explores the notion of traditional social action and its effect on goal-

achievement in socially situated agents, inspired by Weber [227]. It is operationalised as an
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action derived from a representative state of the population at specific points in time. To
align with the definition of ‘social action” above, a social action here is oriented towards the
others in the population in terms of the evolutionary process, and not the other agents that
may exist within the environment. As agents in this study cannot perceive the presence,
actions or intentions of other agents, traditional action intentionally oriented towards others
in the environment would be a topic of future explanation in agents that are able to perceive
and reason about others. This chapter provides an in-depth analysis of how goal-rational
and traditional action can affect agent evolution; value-rational and affective action are thus
beyond the scope of this chapter. However, Bellman et al. [28] note that capturing human
values in computational systems without degrading the value itself is a challenge that needs
to be addressed to design socially aware systems, making the concept of value-rational
action both an exciting and important area to study outside the scope of this thesis.

In addition to traditional and goal-rational action, ‘random social action’ is also intro-
duced, which adds Random Immigrants to the population [57]; adding Random Immigrants
is an established approach to increase population diversity in evolutionary algorithms. To
this end, a comparison can be made between how diversity affects agent evolution, and
whether social action within the evolutionary process can mitigate the effect of interference
without an explicit awareness of what is causing it (i.e. other agents in the environment),

as a step towards socially aware agents.

4.3 Experimental Study

The experimental study in this chapter is designed to explore how agents evolve in envi-
ronments either on their own, or shared with another, unknown agent. This is to ascertain
the extent to which interference from the actions of other agents affects how agents evolve,
and the resulting evolutionary volatility experienced by agents. Agents are evolved using
the evolutionary algorithm detailed in Section 3.4 in the River Crossing Dilemma (RCD)
testbed as described in Chapter 3. To challenge the goal-rationality that is seen in most
current systems, traditional action is operationalised to observe whether social action has
any benefit on agent evolution or volatility. Further, random action is used to compare the
two types of social action — goal-rational, and traditional action — to an established method

to increase diversity in evolutionary algorithms.
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4.3.1 Agent Design

The agents in this study are designed using the two-tiered neural network architecture
described in Section 3.3. Specifically for this study, the deliberative network has one hidden
layer of four neurons that connects the six-neuron input layer and the three-neuron output

layer; this can be seen in Figure 3.2. All other details are as previously specified.

4.3.2 Operationalising Social Action in the Evolutionary Algorithm

The notion of social action is operationalised within the evolutionary algorithm, where a
social action is oriented towards others in the population in terms of evolution, rather than
other agents that may exist in the environment. Specifically, the offspring produced at each
generation is dependent on the type of action used.

In this sense, the evolutionary algorithm defined in Section 3.4 is goal-rational; by creat-
ing an offspring from the winners of a tournament, the offspring is likely to contain genetic
material that enables it to achieve a high fitness like its parents, thus maximising the algo-
rithm’s potential to evolve goal-achieving individuals. This description of ‘goal-rationality’
can indeed be extended to evolutionary algorithms in the general sense: they evolve popula-
tions of individuals towards better areas of the search space over time, using recombination,
mutation and selection operators, where higher-fitness individuals are usually given more
opportunity to reproduce than lower-fitness individuals [12].

To ascertain whether other types of social action may be more beneficial to agents
that experience interference, traditional action is further operationalised as follows; at each
generation, there is a 90% chance for the worst-performer of each tournament to be replaced
by the current goal-rational offspring of the best two parents (as outlined in Section 3.4),
and a 10% chance for it to be replaced with an offspring that is a representative state of the
population. The genetic material for this traditional offspring is captured by calculating
the median for each weight in the deliberative network across all agents in the population.
Since the agents use a two-tiered neural network architecture to make decisions about how
to move in the RCD environment, two agents each with different weights in their deliberative
network may act in the same way; in other words, many genotypes can produce the same or
similar phenotypes. Whilst there are many potential ways to operationalise tradition, this

particular method was chosen as a simple means of establishing traditions of phenotypic
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behaviour across multiple genotypes, that can potentially change during evolution. This
‘traditional action’ is thus a blend of both traditional and goal-rational action.

Random action, which is introduced to compare both traditional and goal-rational ac-
tion to an established method of increasing population diversity (Section 4.2.4), is opera-
tionalised similarly to traditional action. At each generation, there is a 10% chance for the
worst-performer of the tournament to be replaced with an agent with a randomly-initialised
set of weights, and a 90% chance for it to be replaced with the standard goal-rational off-
spring as defined in Section 3.4. This small chance of replacing the worst agent with a
random solution would increase population diversity, where this random solution is for-
mally known in the literature as a ‘random immigrant’ [57]; this would allow the algorithm
to escape local optima, and to traverse unexplored regions of the search space. This ‘random

action’ is a blend of both random and goal-rational action.

Preliminary investigation of varying replacement probabilities showed that little effect
or benefit was seen with a replacement probability lower than 10%; forming and maintaining
traditions with traditional action is more difficult with lower replacement probabilities, as
solutions have little time to influence the population. Further, higher probabilities such
as 20% or 30% showed that the population became saturated and diversity was reduced,
meaning that it was increasingly difficult for evolution to explore the fitness landscape.
A 10% replacement probability was also deemed suitable because in the case of random
action, higher probabilities of replacement start to resemble random search, rather than

evolutionary search.

4.3.3 Experimental Design

Agents are evolved using the Steady State Genetic Algorithm specified in Section 3.4, for
either 500,000 generations when alone, or 1,500,000 generations when sharing an environ-
ment. As outlined in Section 3.4, the average number of generations it takes for evolution
to find goal-achieving solutions in other River Crossing studies [178, 37] increases with the
difficulty of the environment. As it is hypothesised that evolving in a shared environment
would be more difficult than when alone because of interference, the length of evolution is
thus increased. Further, the effects of interference can be observed over a longer period of
time as a consequence, which will shed light on how agents evolve when their behaviour

and evolution is influenced by the actions of others in which they evolve alongside. Where
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agents are evolved in a shared environment, two separate populations (one for each agent
in the shared environment) are evolved alongside one another.

The study presented in this chapter is split into two parts: firstly, individual agents are
observed in the RCD to understand how interference may affect evolution in detail; secondly,
a broader approach is taken to understand how interference affects agents in general, by
analysing the way many agents evolve, and how the type of social action implemented can

affect evolution. A summary of the experiments is presented in Table 4.1.

Part One: Exploring the Effect of Interference

The first set of experiments, presented in Section 4.4.1, explore whether ten randomly-
initialised agents are able to achieve individual goals with goal-rational action; these evolved
alone for 500,000 generations.

The effect of interference is then explored in a further two sets of experiments, which
observe whether agents are able to continue to achieve goals either with or without con-
tinued evolution in a shared environment. Firstly in Section 4.4.2, the ten evolved agents
from the first set of experiments are randomly arranged into ten pairs to observe the ef-
fects of interference in a shared environment; these agents initially evolve alone for 500,000
generations (Section 4.4.1), and then continue to act in a shared environment for a further
500,000 without further evolution. As agent movement is stochastic, these agents have the
potential to act differently in each generation despite their genotype remaining the same; it
would therefore be expected that agent fitness over these 500,000 generations would not be
static, but would in fact often fluctuate since agents may act differently in each generation.
Secondly, Section 4.4.3 then arranges the same ten agents from the first set of experiments
into 30 random pairs; these pairs are evolved together in shared environments for 1,500,000
generations after their initial period of evolving alone, to observe whether goal-achieving
behaviour can be maintained despite interference. These experiments are thus labelled
‘continued evolution’.

Section 4.4.5 then compares goal-rational action (Section 4.4.3) with the introduction
of traditional action in the same 30 pairs of agents; this is to ascertain whether traditional
action may help to preserve goal-achieving behaviour when agents that are able to achieve
their goals when alone experience interference for the first time. These agents are evolved

for 1,500,000 generations after their initial period of evolving alone.
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Section  Action Type Evolution Type Agents Generations  Runs
4.4.1 Goal-Rational Evolving Alone 1 500,000 10
Part 1 4.4.2 Goal-Rational No Evolution 2 500,000 10
4.4.3 Goal-Rational Continued Evolution 2 1,500,000 30
4.4.5 Goal-Rational & Traditional = Continued Evolution 2 1,500,000 30
4.5.1 Goal-Rational Evolving Alone 1(1G) 500,000 100
4.5.1 Goal-Rational Evolving Together 2 (2G) 1,500,000 100
Part 2 4.5.1 Goal-Rational & Traditional Evolving Alone 1 (1GT) 500,000 100
4.5.1 Goal-Rational & Traditional = Evolving Together 2 (2GT) 1,500,000 100
4.5.2 Goal-Rational & Random Evolving Alone 1 (1GR) 500,000 100
4.5.2 Goal-Rational & Random Evolving Together 2 (2GR) 1,500,000 100

Table 4.1: Experiment breakdown, outlining the section number the experiments are presented in, the type
of action used, the type of evolution, the number of agents in the environment, the number of generations,
and the number of times the experiment is repeated.

Part Two: Exploring Social Action

The second part of the study is a more coarse-grained investigation of how agents evolve with
social action, and how interference affects agent evolution in general; this is compared to
the more fine-grained approach in the first part of the study, which looks at how individuals
evolve, rather than the general characteristics that arise in the evolution of many agents.

The effect that traditional action has on agent evolution is explored on a broader scale
in Section 4.5.1; 100 goal-rational agents, initialised with random weights, are evolved with
and without traditional action in both individual and social environments. To ensure the
results in shared environments are not biased against a particular agent, agents are assigned
a randomly-generated partner. The agents are evolved for 500,000 generations if they are
alone, and 1,500,000 generations if socially situated.

Section 4.5.2 finally ascertains whether traditional action is quantitatively different to
the introduction of Random Immigrants [57]. The same 100 agents as in the previous
set of experiments are evolved with random action instead, in both individual and social
environments. Finally, an analysis is conducted to ascertain whether a trade-off between

fitness and volatility exists for the three types of social action.

4.4 Results

4.4.1 Evolving Alone with Goal-Rationality

Agents do not experience interference when they are in an environment alone. As such, they

can achieve individual goals with independent asocial learning with goal-rational action.
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Figure 4.1: Agent F can achieve its goals when alone in an environment; it initially learns to collect one
Resource to get a fitness of 0.5, then to build a bridge to achieve its goal around generation 50,000, giving
it a fitness of 0.7.

Figure 4.1 depicts the fitness of a single agent during evolution; this agent evolves goal-
achieving behaviour at around generation 50,000, which is then maintained throughout the
rest of evolution. This agent has thus evolved to build a bridge in the river with two Stones,
which enables it to cross the river and fully achieve its goal. Using Equation 3.1, the best-
in-population fitness of 0.5 at the beginning of evolution indicates that the agent retrieves
one Resource from its own side of the river, and does not endure any cost from placing
Stones in the river. Once goal-achieving behaviour is evolved, the fitness increases to 0.7,
which indicates that agents retrieve both Resources in the environment, giving a fitness of

(2 x 0.5) = 1.0, while the cost of building the bridge is deducted.

Following this, the evolution of ten goal-achieving agents is explored, where the average
population fitness of these ten agents is presented in Figure 4.2. Whilst not impossible
to achieve, this task initially appears difficult to solve simply because the fitness function
does not ‘lead’ agents towards their goals with incremental rewards; agents encounter a
very large, neutral network landscape during evolution as a result. In each experiment,
goal-achieving behaviours were maintained once learnt, and in all ten agents, the goal was
achieved and maintained by generation 50,000; this can be seen by the increase in mean
fitness in Figure 4.2, which rises and then is maintained at this point during evolution.
Random mutations during the breeding process periodically create agents with lower fit-
nesses than the best agent in the population. These lower-fitness offspring may fall in the

river for example, thus reducing the fitness average; however, these solutions are replaced
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Figure 4.2: The mean population fitness of ten agents evolving alone. All ten agents that evolved alone
sustained the behaviours necessary to achieve their goal by generation 50,000.

quickly, leaving the beneficial behaviours to remain. These ten, individually evolved agents
are henceforth labelled Agents A through J. These experiments demonstrate that agents
are able to evolve and maintain goal-achieving behaviour when they evolve alone with goal-
rational action; these results can therefore be compared to agents that evolve in shared

environments, to observe the effect of interference on evolution.

4.4.2 Coexistence without Continued Evolution

The ten agents in the previous section are then arranged into pairs, to observe how goal-
rational action affects agents in shared environments both without (Section 4.4.2) and with
(Section 4.4.3) continued evolution. Table 3.1 shows common fitnesses and their associated
behaviours: cooperation (0.9), exploitation (1.0), and achieving the goal individually (0.7).

In this set of experiments, agents that evolved for 500,000 generations alone in the pre-
vious section are then placed into shared environments without further evolution; simply,
the genetic code of each agent remains unchanged, such that the effect of interference can
be explored in agents that have already evolved the ability to achieve their goals. Three
emergent dynamics are observed in these non-evolutionary experiments: one agent exploits
the other for a higher payoff (Figure 4.3a); both agents co-exist and achieve their goals
similarly to when they are alone (Figure 4.3b); or one or both agents cannot achieve their
goals (Figure 4.3c). In the latter case, the interference experienced, arising from the actions
of the other agent in the environment, may cause agents to continue putting more Stones

in the river which accrues a larger cost; it may even alarmingly make them walk into the
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Figure 4.3: The moving average fitness of Agent B and Agents (a) H, (b) G and (c) F, without ongoing
evolution, after an initial period of evolving alone. When socially situated with different pairs, Agent B (a)
exploits Agent H to receive a higher average fitness from not exerting as much effort, (b) is more unpredictable
than when alone, and is often unable to achieve its goal, and (c) cannot achieve its goal. In each experiment,
Agent B’s partner performs similarly to when it is alone.
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