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This thesis hoped to inform the practice of future individual myopia management. All myopia risk 

factors across global ethnic regions must be considered, instead of relying on the most widely 

used averaged parameters, towards the development of growth model tools. There could be 

possible crucial cut points of near phoria development at specified age ranges, earlier and later 

in life, suggesting this myopia risk factor should be measured alongside other primary outcome 

parameters important for treatment efficacy. Other notable human lifespan findings included: 

emmetropic and female patients attended eye examinations more frequently; females exhibited 

higher levels of near phoria and myopia; myopes were more esophoric than emmetropes, 

progressive myopes were more esophoric than both myopes and emmetropes, and were less 

likely to increase in exophoria with age. The presumed design optimisation, regarding daily CE-

marked optical myopia control strategies, was based on the possible mechanism behind myopic 

retinal defocus (blur) and accommodative lag in myopia development and progression. Contact 

lens designs could have an inherent characteristic for their treatment effect in the temporal 

retina at 30° and J0 astigmatic component. Multifocal contact lenses for myopia control 

significantly impacted glare, but did not affect contrast sensivitiy differently than standard 

lenses, and would offer equally acceptable treatment compliance and qualifty of life 

expectations. Specialty instrumentation for measuring primary outcomes (refraction and axial 

length) should be used interchangeably for myopia control studies. This was confirmed between 

the gold standard biometers, IOLMaster 700 and IOLMaster 500, for the key parameters of axial 

length, anterior chamber depth and corneal topography, where discrepancies in white-to-white 

corneal diameter values, following MiSight and NaturalVue contact lens wear, were minimal and 

clinically irrelevant. Further novel discoveries proved myopia control contact lenses were viable 

non-invasive sampling vehicles for human dopamine detection. Thus, the thesis probed the 

viability of novelty applications of such “labelled” and/or gold standard medical devices and 

instrumentations towards treating individual myopic patients and highlighted that appropriate 

global myopia management and standardisation remain poor. 

 
Keywords: (practice guidelines, growth models, risk factors, optical control strategies 
and instrumentation, mechanisms)  



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    3 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dedication 
 

For my mother Mariela, father Karol, grandmother Stefka, and uncle Plamen. 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    4 
 

 

 

 

 

 

 

 

 

 

Acknowledgements 

Special thanks to my supervisors James Wolffsohn, Nicola Logan, and Raquel Gil-Cazorla, and 
the entire School of Optometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    5 
 

List of Contents 

Title Page (p.1) 

Thesis Summary (p.2) 

Dedication (p.3) 

Acknowledgements (p.4)  

List of Contents (p.5-7) 

List of Tables (p.8-10) 

List of Figures (p.11-14) 

Chapter 1 Introduction (p.15-16) 

1.1 Emmetropisation & Eye Growth Overview  
1.1.1 Paediatric Development (p.16-19)  
1.1.2 Uncorrected Refractive Error Prevalence & Economic Burden (p.19)   

1.2 Myopia (p.17-45) 
1.2.1 Definition & Classification (p.19-22) 
1.2.2 Developmental (relative peripheral refraction; eye growth; refractive ametropia; age; 

binocular vision) Risk Factors & Progression (p.22-25) 
1.2.3 Genetic (family history; ethnicity) & Visual Environment (near work; time outdoors; 

education) Risk Factors & Progression (p.25-29) 
1.2.4 Worldwide Myopia Prevalence (p.29-30) 
1.2.5 Economic Burden of the Myopia Epidemic (p.30) 
1.2.6 Modes of Myopia Treatment (p.30-34) 
1.2.6.1 Spectacles (p.34) 
1.2.6.2 Soft Multifocal Contact Lenses (p.34-36) 
1.2.6.3 Orthokeratology (p.36-38) 
1.2.6.4 Pharmaceuticals (p.38-40) 
1.2.7 The Problem with Myopia Treatment (p.40-41) 
1.2.8 Developments in myopia assessment & prediction technology (p.41-42) 
1.2.8.1 Axial Length & Refractive Error (p.42-44) 
1.2.8.2 Models of Growth (p.44-45) 
1.2.8.3 Machine Learning & Artificial Intelligence (p.45-46)  
1.2.8.4 App & Device Tools (p.46-47) 
1.2.8.5 Summary (p.47) 
 
Chapter 2 Global trends in myopia management attitudes and strategies in clinical    

practice – 2019 update 

2.1 Introduction (p.48-49) 
2.2 Method (p.49-50) 
2.3 Results (p.50-64) 
2.4 Discussion (p.64-67) 
2.5 Conclusion (p.67) 
 
Chapter 3 Clinical myopia-related near phoria magnitude and variability across the 

human lifespan among Canadians 

3.1 Introduction (p.68-70) 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    6 
 

3.2 Methods (p.70-71) 
3.3 Results (p.71-79) 
3.4 Discussion (p.80-81) 
 
Chapter 4 Impact of blur from a dual focus and an extended depth of focus contact lens 

4.1 Introduction (p.82-84) 
4.2 Methods (p.84) 
4.2.1 Participants (p.84) 
4.2.2 Contact Lenses (p.84-85) 
4.2.3 Study Design (p.85-87) 
4.2.4 Statistical Analyses (p.87-88) 
4.3 Results (p.88) 
4.3.1 Cyclo-Autorefraction (p.88-90) 
4.3.2 Accommodative Lag (p.90-91) 
4.3.3 Contrast Sensitivity (p.91-93) 
4.3.4 Dysphotopsia (Glare) (p.93-96) 
4.4 Discussion (p.96) 
4.4.1 Peripheral Refraction (p.96-98) 
4.4.2 Accommodative Lag (p.98) 
4.4.3 Visual Quality (p.98-99) 
4.5 Conclusion (p.99) 
 
Chapter 5 IOLMaster agreement evaluation in healthy adults, comparing ocular biometry 

measurements, after immediate soft contact lens wear for myopia control 

5.1 Introduction (p.100-102) 
5.2 Methods (p.102) 
5.2.1 Participants (p.102) 
5.2.2 Study Lenses (p.102) 
5.2.3 Study Design (p.102-103) 
5.2.4 Statistical Analyses (p.103) 
5.3 Results (p.104) 
5.3.1 Agreement (p.104-111) 
5.4 Discussion (p.112-115) 
 
Chapter 6 Are soft contact lenses a viable source for human dopamine levels 

measurement using the ELISA dopamine kit? 

6.1 Introduction (p.116-118) 
6.2 Methods (p.118) 
6.2.1 Participants (p.118) 
6.2.2 Study Lenses (p.118) 
6.2.3 Study Design (p.118) 
6.2.4 Measurement of tear dopamine (p.119) 
6.2.5 Statistical Analyses (p.119) 
6.3 Results (p.119) 
6.3.1 Tear dopamine levels (p.119-120) 
6.4 Discussion (p.120-121) 
 
 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    7 
 

Chapter 7 Conclusions (p.122-123) 
 
7.1 Limitations & Future Direction 
7.1.2 Global trends in myopia management attitudes and strategies in clinical practice – 2019 

update (p.123) 
7.1.3 Clinical myopia-related near phoria magnitude and variability across the human lifespan 

among Canadians (p.123-124) 
7.1.4 Impact of blur from a dual focus and an extended depth of focus contact lens (p.124) 
7.1.5 IOLMaster agreement evaluation in healthy adults, comparing ocular biometry 

measurements, after immediate soft contact lens wear for myopia control (p.124) 
7.1.6 Are soft contact lenses a viable source for human dopamine levels measurement using 

the ELISA dopamine kit? (p.125) 
 
List of References (p.126-152) 

Appendices 

Appendix 1: Study Protocol (p.153-162) 
Appendix 2: Study Participant Information Sheet (p.163-168) 
Appendix 3: Study Consent Form (p.169) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    8 
 

List of Tables 

Chapter 1 Introduction 

Table 1.1  The recommended consensus on qualitative and quantitative myopia terms and 
definitions for global adaptation, as adapted and quoted from the IMI – Defining and 
Classifying Myopia: A Proposed Set of Standards for Clinical and Epidemiological 
Studies white paper report (Flitcroft et al., 2019). 

 
Table 1.2  The recommended consensus on myopia structural complications terms and 

definitions for global adaptation, as adapted and quoted from the IMI – Defining and 
Classifying Myopia: A Proposed Set of Standards for Clinical and Epidemiological 
Studies white paper report (Flitcroft et al., 2019). 

 
Table 1.3  Listed are the 27 currently known Online Mendelian Inheritance in Man (OMIM) 

secondary syndromic myopias associated with ocular abnormalities, as adapted and 
recreated from the IMI – Myopia Genetics Report (Tedja et al., 2019). 

 
Table 1.4  Listed are the 7 risk factor categories associated with myopia, along with the 

currently accepted relationship of each specific factor and its confounding issues, as 
adapted and recreated from the IMI – Risk Factors for Myopia Report white paper 
(Morgan et al., 2021). 

 
Table 1.5 The reported efficacy of atropine, soft multifocal contact lenses, and orthokeratology 

to reduce myopia by various controlled studies, after the review by Smith & Walline 
(2015). 

 
Table 1.6  A summary of reported CARE for different myopia control strategies, across the 

literature, as adapted and recreated from Brennan et al. (2020a), where 
abbreviations are as follows: Devices (Opt – optical interferometric biometry; US - 
ultrasound); Rand. (whether the study was randomised); N = (T, C) indicating the 
sample size in treated and control groups.     

 
Chapter 2 Global trends in myopia management attitudes and strategies in clinical    

practice – 2019 update  

Table 2.1 Perceived effectiveness (defined as the expected level of reduction in childhood 
myopia progression in percent) of myopia control options by practitioners in different 
continents. Data are expressed as mean ± S.D. 

 
Table 2.2 Frequency of prescribing myopia correction options for progressing / young myopes 

by practitioners in different continents for progressing / young myopes. Data are 
expressed as mean ± S.D. 

 
Table 2.3 Minimum patient age considered necessary by practitioners (from different 

continents who prescribed these options for different myopia correction options. Data 
are expressed as mean ± S.D years (% that would not prescribe this refractive 
modality). 

 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    9 
 

Table 2.4 Minimum level of patient myopia (in dioptres) before myopia correction options would 
be considered by practitioners from different continents who prescribed these 
options. Data are expressed as mean ± S.D. 

 
Chapter 3 Clinical myopia-related near phoria magnitude and variability across the 

human lifespan among Canadians  

Table 3.1  Percentile near phoria chart showing sex differences (female-male) over the human 
lifespan, where esophoric and exophoric deviations are represented by the (-) 
negative and (+) positive values. 

Table 3.2  Percentile near phoria chart showing refraction group differences (myope-
emmetrope) over the human lifespan, where esophoric and exophoric deviations are 
represented by the (-) negative and (+) positive values. 

Table 3.3  Percentile near phoria chart showing refraction group differences (progressive 
myope-emmetrope) over the human lifespan, where esophoric and exophoric 
deviations are represented by the (-) negative and (+) positive values. 

Table 3.4  Percentile near phoria chart showing refraction group differences (progressive 
myope-myope) over the human lifespan, where esophoric and exophoric deviations 
are represented by the (-) negative and (+) positive values. 

Table 3.5  Percentile near phoria chart showing refraction group differences (female-male 
progressive myope) over the human lifespan, where esophoric and exophoric 
deviations are represented by the (-) negative and (+) positive values. 

Chapter 4 Impact of blur from a dual focus and an extended depth of focus contact lens 

Table 4.1  Central (on-axis) and peripheral (at 30° temporally and nasally in the horizontal 

meridian) cyclo-Autorefraction measured after 8 hours of contact lens wear; values 

are means ± SD, where values denoted * were considered significant (p<0.05). 

Table 4.2  Contact lens group (Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) 

comparison of temporal (at 30° in the horizontal meridian) cyclo-Autorefraction for 

the J0 sphero-cylindrical power vector, where * represented a significant (p<0.05) 

difference. 

Table 4.3  Accommodative Lag measured after 8 hours of contact lens wear; values are means 

± SD, where values denoted * were considered significant (p<0.05). 

Table 4.4  Contact lens group (Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) 

comparison of Accommodative Lag, where * represented a significant (p<0.05) 

difference. 

Table 4.5  Contrast Sensitivity measured after 8 hours of contact lens wear; values are means, 

where values denoted * were considered significant (p<0.05). 

Table 4.6  Dysphotopsia (Glare) measured after 8 hours of contact lens wear; values are 

means, where values denoted * were considered significant (p<0.05). 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    10 
 

Table 4.7  Contact lens group (Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) 

comparison of Dysphotopsia (Glare) at 0°, where * represented a significant (p<0.05) 

difference. 

Table 4.8  Contact lens group (Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) 

comparison of Dysphotopsia (Glare) at 225°, where * represented a significant 

(p<0.05) difference. 

Chapter 5 IOLMaster agreement evaluation in healthy adults, comparing ocular biometry 

measurements, after immediate soft contact lens wear for myopia control 

Table 5.1  The reported post-wear Proclear lens mean difference and standard deviation, two 

tailed t test for the differences and their significance, and 95% confidence interval of 

lower and upper limits of agreement based on ± 1.96 SD between the IOLMaster 500 

and IOLMaster 700; AL = axial length; Km = mean keratometry; ACD = anterior 

chamber depth; WTW = horizontal (white-to-white) corneal diameter. 

Table 5.2  The reported post-wear MiSight lens mean difference and standard deviation, two 

tailed t test for the differences and their significance, and 95% confidence interval of 

lower and upper limits of agreement based on ± 1.96 SD between the IOLMaster 500 

and IOLMaster 700; AL = axial length; Km = mean keratometry; ACD = anterior 

chamber depth; WTW = horizontal (white-to-white) corneal diameter; * = p<0.05. 

Table 5.3  The reported post-wear NaturalVue lens mean difference and standard deviation, 

two tailed t test for the differences and their significance, and 95% confidence 

interval of lower and upper limits of agreement based on ± 1.96 SD between the 

IOLMaster 500 and IOLMaster 700; AL = axial length; Km = mean keratometry; ACD 

= anterior chamber depth; WTW = horizontal (white-to-white) corneal diameter; * = 

p<0.05. 

Chapter 6 Are soft contact lenses a viable source for human dopamine levels 
measurement using the ELISA dopamine kit?  

Table 6.1  Comparison of tear DA levels (pg/ml), as well as comparative Schirmer strip and 
capillary tube values from Sharma et al. (2019). 

 
Table 6.2  Comparison of tear DA levels (pg/ml) between the different contact lenses extracted 

from Plates 2 & 3.   
 

 

 

 

 

 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    11 
 

List of Figures 

Chapter 1 Introduction 

Figure 1.1 Vision-dependent/retinal defocus feedback mechanisms and associated 

functional/structural ocular anatomical changes, regulating emmetropisation and 

eye growth during paediatric development as adapted and copied from the IMI – 

Report on Experimental Models of Emmetropization and Myopia white paper (Troilo 

et al., 2019). 

Figure 1.2 The reported efficacy (%) of atropine, soft multifocal contact lenses, and 
orthokeratology to reduce myopia by various controlled studies adapted from Smith 
& Walline (2015). 

 
Chapter 2 Global trends in myopia management attitudes and strategies in clinical    

practice – 2019 update 

Figure 2.1 Level of practitioner concern (rated from 0-10) regarding the perceived increasing 
frequency of paediatric myopia in their practice for practitioners located in different 
continents. N=1,336. Box = 1 SD, line = median and whiskers 95% confidence 
interval. 

 
Figure 2.2 Perceived level of clinical activity in the area of myopia control for practitioners 

located in different continents. N=1,336. Box = 1 SD, line = median and whiskers 
95% confidence interval. 

Figure 2.3 Minimum annual amount of patient myopia progression, in dioptres per year (D/year), 
that practitioners located in different continents considered to necessitate a myopia 
control approach. N=1,336.  

 
Figure 2.4 Use of single-vision distance under-correction as a strategy to slow myopia 

progression by practitioners located in different continents. N=1,336.  
 
Figure 2.5 Factors preventing practitioners located in different continents from prescribing a 

myopia control approach. N=1,336.  
 
Chapter 3 Clinical myopia-related near phoria magnitude and variability across the 

human lifespan among Canadians  

Figure 3.1 Near phoria changes over the human lifespan, as a function of age for the right eye 
of 86 patients, where esophoric and exophoric deviations are represented by the (-) 
negative and (+) positive values on the y-axis. 

Figure 3.2 Percentile near phoria curves over the human lifespan, where esophoric and    
exophoric deviations are represented by the (-) negative and (+) positive values on 
the y-axis. 

Figure 3.3 Percentile near phoria curves over the male human lifespan, where esophoric and 
exophoric deviations are represented by the (-) negative and (+) positive values on 
the y-axis. 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    12 
 

Figure 3.4 Percentile near phoria curves over the female human lifespan, where esophoric and 
exophoric deviations are represented by the (-) negative and (+) positive values on 
the y-axis. 

Figure 3.5 Percentile near phoria curves over the emmetrope human lifespan, where esophoric 
and exophoric deviations are represented by the (-) negative and (+) positive values 
on the y-axis. 

Figure 3.6 Percentile near phoria curves over the myope human lifespan, where esophoric and 
exophoric deviations are represented by the (-) negative and (+) positive values on 
the y-axis. 

Figure 3.7 Percentile near phoria curves over the progressive myope human lifespan, where 
esophoric and exophoric deviations are represented by the (-) negative and (+) 
positive values on the y-axis. 

Figure 3.8 Percentile near phoria curves over the male progressive myope human lifespan, 
where esophoric and exophoric deviations are represented by the (-) negative and 
(+) positive values on the y-axis. 

Figure 3.9 Percentile near phoria curves over the female progressive myope human lifespan, 
where esophoric and exophoric deviations are represented by the (-) negative and 
(+) positive values on the y-axis. 

Figure 3.10 Clinical patient visit differences over the human lifespan for 70 patients. 

Chapter 4 Impact of blur from a dual focus and an extended depth of focus contact lens 

Figure 4.1 The Aston Contrast Sensitivity Near App, adopted from Kingsnorth et al. (2016). 

Figure 4.2 The Aston Halometer and Tablet App, adopted from Buckhurst et al. (2015). 

Figure 4.3 Contact lens group (Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) 
comparison of temporal (at 30° in the horizontal meridian) cyclo-Autorefraction mean 
values for the J0 sphero-cylindrical power vector, where * represented a significant 
(p<0.05) difference. 

Figure 4.4 Contact lens group (Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) 
comparison of Accommodative Lag mean values, where * represented a significant 
(p<0.05) difference. 

Figure 4.5 Contact lens comparison of Contrast Sensitivity across the sample population. 

Figure 4.6 Contact lens comparison of Dysphotopsia (Glare) across the sample population. 

Figure 4.7 Contact lens group (Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) 
comparison of Dysphotopsia (Glare) at 0° mean values, where * represented a 
significant (p<0.05) difference. 

Figure 4.8 Contact lens group (Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) 
comparison of Dysphotopsia (Glare) at 225° mean values, where * represented a 
significant (p<0.05) difference. 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    13 
 

Chapter 5 IOLMaster agreement evaluation in healthy adults, comparing ocular biometry 

measurements, after immediate soft contact lens wear for myopia control 

Figure 5.1 Bland-Altman plots for axial length comparison between the IOLMaster 500 and 

IOLMaster 700 with the post-wear Proclear lens. The mean difference is designated 

by the solid line. The 95% confidence interval of the upper and lower limits of 

agreement based on ± 1.96 SD are designated by the dotted lines.  

Figure 5.2 Bland-Altman plots for mean keratometry comparison between the IOLMaster 500 

and IOLMaster 700 with the post-wear Proclear lens. The mean difference is 

designated by the solid line. The 95% confidence interval of the upper and lower 

limits of agreement based on ± 1.96 SD are designated by the dotted lines.  

Figure 5.3 Bland-Altman plots for anterior chamber depth comparison between the IOLMaster 

500 and IOLMaster 700 with the post-wear Proclear lens. The mean difference is 

designated by the solid line. The 95% confidence interval of the upper and lower 

limits of agreement based on ± 1.96 SD are designated by the dotted lines.  

Figure 5.4 Bland-Altman plots for the horizontal (white-to-white) corneal diameter comparison 

between the IOLMaster 500 and IOL Master700 with the post-wear Proclear lens. 

The mean difference is designated by the solid line. The 95% confidence interval of 

the upper and lower limits of agreement based on ± 1.96 SD are designated by the 

dotted lines.  

Figure 5.5 Bland-Altman plots for axial length comparison between the IOLMaster 500 and 

IOLMaster 700 with the post-wear MiSight lens. The mean difference is designated 

by the solid line. The 95% confidence interval of the upper and lower limits of 

agreement based on ± 1.96 SD are designated by the dotted lines.  

Figure 5.6 Bland-Altman plots for mean keratometry comparison between the IOLMaster 500 

and IOLMaster 700 with the post-wear MiSight lens. The mean difference is 

designated by the solid line. The 95% confidence interval of the upper and lower 

limits of agreement based on ± 1.96 SD are designated by the dotted lines.  

Figure 5.7 Bland-Altman plots for anterior chamber depth comparison between the IOLMaster 

500 and IOLMaster 700 with the post-wear MiSight lens. The mean difference is 

designated by the solid line. The 95% confidence interval of the upper and lower 

limits of agreement based on ± 1.96 SD are designated by the dotted lines.  

Figure 5.8 Bland-Altman plots for the horizontal (white-to-white) corneal diameter comparison 

between the IOLMaster 500 and IOLMaster 700 with the post-wear MiSight lens. The 

mean difference is designated by the solid line. The 95% confidence interval of the 

upper and lower limits of agreement based on ± 1.96 SD are designated by the 

dotted lines.  

Figure 5.9 Bland-Altman plots for axial length comparison between the IOLMaster 500 and 

IOLMaster 700 with the post-wear NaturalVue lens. The mean difference is 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    14 
 

designated by the solid line. The 95% confidence interval of the upper and lower 

limits of agreement based on ± 1.96 SD are designated by the dotted lines.  

Figure 5.10 Bland-Altman plots for mean keratometry comparison between the IOLMaster 500 

and IOLMaster 700 with the post-wear NaturalVue lens. The mean difference is 

designated by the solid line. The 95% confidence interval of the upper and lower 

limits of agreement based on ± 1.96 SD are designated by the dotted lines.  

Figure 5.11 Bland-Altman plots for anterior chamber depth comparison between the IOLMaster 

500 and IOLMaster 700 with the post-wear NaturalVue lens. The mean difference is 

designated by the solid line. The 95% confidence interval of the upper and lower 

limits of agreement based on ± 1.96 SD are designated by the dotted lines.  

Figure 5.12 Bland-Altman plots for the horizontal (white-to-white) corneal diameter comparison 

between the IOLMaster 500 and IOLMaster 700 with the post-wear NaturalVue lens. 

The mean difference is designated by the solid line. The 95% confidence interval of 

the upper and lower limits of agreement based on ± 1.96 SD are designated by the 

dotted lines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    15 
 

Chapter 1 Introduction 

Myopia has become a global public health issue (Vitale et al., 2008; Morgan et al., 2010; Holden 

et al. 2016). Uncorrected myopia is the most common visual condition encountered and has 

been described as an epidemic with its increasingly early onset and high progression rates 

worldwide (Bourne et al., 2013; Holden et al. 2016; Fricke et al., 2018). Myopia progression 

during childhood even at low levels increases the risk of sight-threatening ocular diseases in 

adult life, as a result of abnormal eye growth (Vongphanit et al., 2002; Younan et al., 2002; 

Wong et al., 2003; Saw et al., 2005; Flitcroft, 2012). Previous animal research has shown that 

ocular growth is associated with peripheral hyperopic defocus (Smith et al., 2007; Smith et al., 

2009a; Smith et al., 2012). Treatment modes such as specialty spectacles and soft contact 

lenses, orthokeratology or OK (corneal reshaping/refractive therapy or reverse geometry rigid 

gas-permeable contact lenses), and pharmaceuticals have been shown to control myopia 

progression in addition to correcting visual acuity (Walline et al., 2011; Smith & Walline, 2015; 

Gonzalez-Meijome et al., 2016). 

 

The scientific community has been developing various interventions to control myopia, including 

the general undercorrection of myopic refraction (Chung et al., 2002; Adler & Millodot, 2006; 

Vasudevan et al., 2014), multifocal spectacles (Gwiazda et al., 2003; Berntsen et al., 2012; 

Cheng et al., 2014), contact lenses; [multifocal soft contact lenses or MFSCLs (Anstice & 

Phillips, 2011; Sankaridurg et al., 2011; Walline et al., 2013), rigid gas-permeable (Khoo et al., 

1999; Katz et al., 2003; Walline et al., 2004), and orthokeratology (Kakita et al., 2011; Hiraoka et 

al., 2012; Swarbrick et al., 2015)], topical pharmaceuticals; [low-dose atropine of 0.5%, 0.1%, 

and 0.01% (Lee et al., 2006; Chia et al., 2012; Chia et al., 2014) and pirenzepine (Siatkowski et 

al., 2004; Tan et al., 2005; Siatkowski et al., 2008)], and lifestyle changes (Guggenheim et al., 

2012; Jones-Jordan et al., 2012; Lin et al., 2014), but a standardized clinical protocol only 

continues in development. Additionally, these strategies are mostly off-label treatments (not 

approved specifically for myopia control), and low dose atropine and pirenzepine in particular 

are not commercially available (Smith & Walline, 2015). Other techniques such as scleral 

reinforcement surgery (Hu et al., 2018) and cross-linking (Zhang et al., 2015) have postulated 

scleral strengthening and thickening, but lack human reproducibility/repeatability (Ward, 2013).  

 

Despite evidence-based research, management challenges persist due to cost (Flitcroft, 2012), 

safety (Liu & Xie, 2016), inadequate information (Santodomingo-Rubido et al., 2012), and 

outcome unpredictability (Wolffsohn et al., 2016), whilst myopia often continues to be wrongfully 
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treated with conventional remedies (undercorrection, single vision spectacles and contact 

lenses) only capable of correcting visual acuity. Rigid orthokeratology and soft multifocal contact 

lenses currently remain the most promising tools available to clinicians (Smith & Walline, 2015; 

Gonzalez-Meijome et al., 2016; Wolffsohn et al., 2016). However, studies have not directly 

investigated the myopia management efficacy of different MFSCL designs. The optimisation of 

all methods, including “labelled” and gold standard instrumentation techniques and clinical 

guidelines, must be challenged to aid the quest towards universal myopia management 

standardisation. Moreover, this thesis will also explore novel applications of these treatment 

strategies, such as predictive technology, and other avenues including MFSCLs acting as viable 

dopamine vehicles, which may possibly lead to improved individual patient care.          

 

1.1 Emmetropisation & Eye Growth Overview 

1.1.1 Paediatric Development   

Refractive error, or ametropia, reflects the mismatch between the power of the eye’s optical 

system (corneal and lens shape/size/position) and its length. Ametropia is mainly described by 

the following terms: myopia (nearsightedness); hyperopia (farsightedness); astigmatism (error 

from irregular corneal or lens curvature and anterior chamber development; changes as the 

corneal curvature increases horizontally with age and typically occurs in conjunction with 

myopia and hyperopia); and presbyopia (age-related vision impairment at near distance, due to 

the natural loss of accommodation-the crystalline lens’ elastic ability to adjust light focus at 

various distances). Mutti et al. (2005) noted that whilst eye growth may continue until puberty, 

the increase in corneal curvature occurs in the first few months, whilst lens power decreases 

during early childhood. The average newborn infant is hyperopic (Mutti et al., 2005) and 

astigmatic (Gwiazda et al., 1984) with a decline between six months and six years of age. This 

reduction in refractive error, or emmetropisation, during the first years of life is based on the 

eye’s ability to focus light and corresponding retinal image quality dictated by optical power 

(spherical and astigmatic defocus) and visual optics (higher-order monochromatic aberrations-

mainly positive spherical aberrations, coma, trefoil, and astigmatism) respectively (Troilo et al., 

2019). Emmetropisation is regulated via the balance of increase in axial length (AL) leading to 

myopia and radius increases in the cornea or crystalline lens causing hyperopia by decreasing 

the lens power (Wildsoet, 1997; Ip et al., 2008). Although the impact is much lower, 

emmetropisation is further influenced by higher-order aberrations affecting luminance and 

chromatic contrast, due to additional corneal and lens refractive index and thickness changes 

during infantile development with previous studies reporting approximately 20-50% more 
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aberrations exhibited by children than adults (Brunette et al., 2003; Wang & Candy, 2005); as 

well as astigmatism (Fulton et al., 1982; Gwiazda et al., 2000). Overall, refractive status 

depends on an infant’s visual experience within sensitive periods of development, which is 

determined by genetics and the environment (Mutti et al., 2002; Farbrother et al., 2004).  

 

The IMI (International Myopia Institute) – Report on Experimental Models of Emmetropization 

and Myopia white paper by Troilo et al. (2019), summarized in full the current understanding on 

emmetropisation, myopia development and treatments for its progression from research with 

experimental animal models. This compendium also attributed axial and refractive changes 

triggered by form-deprivation/optical defocus, optical image quality (higher-order monochromatic 

aberrations and astigmatism), lighting (luminance and chromatic contrast signals), as well as 

circadian rhythms to both genetic and environmental vision-dependent factors – regulated signal 

cascade pathways locally restricted to the retina and decreased exerted magnitude with 

eccentricity, without brain input. Moreover, ocular anatomic changes caused by independent 

visual regulation during experimentally induced refractive errors were particularly related to the 

posterior segment (scleral and vitreous chamber shape and size) and not the programmed 

growth changes in the anterior segment (corneal curvature, anterior chamber depth, 

accommodation with increased intraocular pressure) (Bailey et al., 2008; Pucker et al., 2013, 

2015). The report has further reviewed the literature surrounding the involved molecular 

mechanisms and significant drug interactions in eye growth and refractive error relative to 

defocus, as well as including the following notably identified biochemical compounds: 

neurotransmitter (retinal dopamine, vasoactive intestinal peptide), growth factor (retinoic acid, 

glucagon, insulin), and gene expression (nitric oxide, melanopsin) visual signals in the retina, 

retinal pigment epithelium, choroid, and sclera; all depicted by Figure 1.1 below (Troilo et al., 

2019). Choroidal thickness is especially considered a major determinant of ocular growth and 

emmetropisation potentially via accommodation (Guggenheim et al., 2011); whilst atropine is 

consistently accepted to be effective in myopia prevention possibly via muscarinic/non-

muscarinic mechanisms inhibiting smooth muscle contraction and resultant choroidal thinning, 

but not involving ciliary muscles or accommodation (Stone et al., 1991; Tigges et al., 1999; 

Barathi et al., 2009). 
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Figure 1.1:  Vision-dependent/retinal defocus feedback mechanisms and associated 

functional/structural ocular anatomical changes, regulating emmetropisation and 

eye growth during paediatric development, as adapted and copied from the IMI – 

Report on Experimental Models of Emmetropization and Myopia white paper 

(Troilo et al., 2019). 

 

Human (Rabin et al., 1981; Huo et al., 2012) and animal (Gottlieb et al., 1987; Norton & 

Siegwart, 1995) studies have suggested shared mechanisms in form-deprivation myopia such 

as increased axial elongation rate (especially increased vitreous chamber depth and elongation) 

with thinned fibrous sclera and choroid at normal intraocular pressure. Likewise, human axial 

elongation rate and choroidal thickness compensation for optically-imposed defocus in the 

retina (along with gene expression changes) was shown to be bidirectional, respective of the 

encoded lens sign (Read et al., 2010; Chakraborty et al., 2012, 2013; Wang et al., 2016). Zhu et 

al. (2005) had stated choroidal thinning by as much as ~50 µm is possible in just an hour. 

Increased eye growth due to defocus also causes retinal pigment epithelium enlargement from 
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blocked ionic fluid transport between the vitreous chamber and choroid, resulting in swelling and 

thinning respectively (Liang et al., 2014; Jonas et al., 2017a, 2017b). Historically, the choroid 

(van Alphen, 1986), but especially the sclera (Curtin et al., 1979), are both considered to dictate 

human eye size and shape. Scleral remodeling caused by myopia results from thinning via loss 

of its extracellular matrix mainly at the posterior pole (Norton & Rada, 1995; Gentle et al., 2003), 

coupled with increased extensibility/viscoelasticity or decreased stiffness due to higher fibrous 

tissue creep rate (Siegwart & Norton, 1999; Phillips et al., 2000) and cartilage growth (Grytz & 

Siegwart, 2015).   

1.1.2 Uncorrected Refractive Error Prevalence & Economic Burden    

Refractive error prevalence varies with age (the most important factor), sex, ethnicity and 

socioeconomic status. Uncorrected refractive error is the primary cause of visual impairment 

(visual acuity <6/18) with a reported estimate of 108 million in 2010 and the second leading 

cause of blindness (visual acuity <3/60) worldwide (Bourne et al., 2013). In 2007, the global 

burden of uncorrected refractive error was conservatively estimated to be $268.8 billion (Smith 

et al., 2009). This is a global public health issue due to its effect on individual visual 

performance and quality of life, as well as economic productivity loss regarding subsequent care 

and disability. Since levels of hyperopia are typically low, human clinical studies have not been 

implemented to investigate control strategies. In contrast, myopia is now considered an 

epidemic by the World Health Organization (WHO) and is the commonest refractive error 

among children and young adults (Morgan et al., 2010). 

 

1.2 Myopia  

1.2.1 Definition & Classification  

Due to the excessive classifications and associated terms of myopia in the existing literature, 

simpler and internationally agreed evidence-based standards are necessary. In their IMI – 

Defining and Classifying Myopia: A Proposed Set of Standards for Clinical and Epidemiological 

Studies white paper report, (Flitcroft et al., 2019) recommended the descriptive terminology to 

be consolidated into myopia, axial myopia, refractive myopia, secondary myopia, and 

pathological myopia; standardized quantitative myopia thresholds for children were proposed as 

pre-myopia (≤ +0.75 D and > -0.50 D), myopia (≤ -0.50 D), low myopia (≤ -0.50 D and > -6.00 

D), and high myopia (≤ -6.00 D). This comes after discovering significant myopia threshold 

variations among epidemiologic studies from conducted meta-analysis, reporting: 87.7% of 138 

studies used < -0.50 D or ≤ -0.50 D for myopia; 35.6% and 61% of 59 studies used < -5.00 D or 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    20 
 

≤ -5.00 D and < -6.00 D or ≤ -6.00 D for high myopia respectively (Flitcroft et al., 2019). In order 

to prevent inconsistency, over-simplification, and misleading for true myopia study and 

management, Tables 1.1 & 1.2 below include this IMI committee’s recommended consensus on 

terms and definitions for global adaptation; based on myopia “optics, etiology (if known), 

diagnostic thresholds, progression, and structural complications” (Flitcroft et al., 2019). 

 

Term Definition 

Qualitative definitions 
 

Myopia 
 
 
 
 
 
 

Axial myopia 
 
 
 

Refractive myopia 
 
 
 
 

Secondary myopia 
 
 
 
 

Quantitative definitions 
 

Myopia 
 
 

Low myopia 
 
 

High myopia 
 
 

Pre-myopia 

 

“A refractive error in which rays of light entering the eye parallel to 
the optic axis are brought to a focus in front of the retina when 
ocular accommodation is relaxed. This usually results from the 
eyeball being too long from front to back, but can be caused by an 
overly curved cornea and/or a lens with increased optical power. It 
also is called nearsightedness.” 
 
“A myopic refractive state primarily resulting from a greater than 
normal axial length.” 
 
 
“A myopic refractive state that can be attributed to changes in the 
structure or location of the image forming structures of the eye, i.e. 
the cornea and lens.” 
 
 
“A myopic refractive state for which a single, specific cause (e.g., 
drug, corneal disease or systemic clinical syndrome) can be 
identified that is not a recognized population risk factor for myopia 
development.” 
 
 
 
“A condition in which the spherical equivalent refractive error of an 
eye is ≤ -0.50 D when ocular accommodation is relaxed.” 
 
“A condition in which the spherical equivalent refractive error of an 
eye is ≤ -0.50 and > -6.00 D when ocular accommodation is 
relaxed.” 
 
“A condition in which the spherical equivalent refractive error of an 
eye is ≤ -6.00 D when ocular accommodation is relaxed.” 
 
“A refractive state of an eye of ≤ +0.75 D and > -0.50 D in children 
where a combination of baseline refraction, age, and other 
quantifiable risk factors provide a sufficient likelihood of the future 
development of myopia to merit preventative interventions.” 
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Table 1.1:  The recommended consensus on qualitative and quantitative myopia terms and 
definitions for global adaptation, as adapted and quoted from the IMI – Defining 
and Classifying Myopia: A Proposed Set of Standards for Clinical and 
Epidemiological Studies white paper report (Flitcroft et al., 2019). 

 

Term Definition 

Descriptive definitions 
 

Pathologic myopia 
 
 
 
 

 
Myopic macular 

degeneration (MMD) 
 
 
 

Diagnostic 
subdivisions of MMD 

 
Myopic maculopathy 

 
 
 
 
 
 
 
 

Presumed myopic 
macular degeneration 

 
 
 
 
 
 

Specific clinical 
conditions 

characteristic of 
pathologic myopia 

 
Myopic traction 

maculopathy (MTM) 
 
 
 

 

“Excessive axial elongation associated with myopia that leads to 
structural changes in the posterior segment of the eye (including 
posterior staphyloma, myopic maculopathy, and high myopia-
associated optic neuropathy) and that can lead to loss of best-
corrected visual acuity.” 
 
“A vision-threatening condition occurring in people with myopia, 
usually high myopia that comprises diffuse or patchy macular 
atrophy with or without lacquer cracks, macular Bruch’s membrane 
defects, CNV and Fuchs spot.” 
 
 
 
 
“Category 0: no myopic retinal degenerative lesion.  
Category 1: tessellated fundus.  
Category 2: diffuse chorioretinal atrophy.  
Category 3: patchy chorioretinal atrophy.  
Category 4: macular atrophy.  

‘‘Plus’’ features (can be applied to any category): lacquer cracks, 
myopic choroidal neovascularization, and Fuchs spot.” 
 
 
“A person who has vision impairment and vision acuity that is not 
improved by pinhole, which cannot be attributed to other causes, 
and:  

• The direct ophthalmoscopy records a supplementary lens < -
5.00 D and shows changes such as ‘‘patchy atrophy’’ in the 
retina or, 

• The direct ophthalmoscopy records a supplementary lens < -
10.00 D.” 

 
 
 
 
 
“A combination of macular retinoschisis, lamellar macula hole 
and/or foveal retinal detachment (FRD) in eyes with high myopic 
attributable to traction forces arising from adherent vitreous cortex, 
epiretinal membrane, internal limiting membrane, retinal vessels, 
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Myopia-associated 
glaucoma-like optic 

neuropathy 

and posterior staphyloma.” 
 
“Optic neuropathy characterized by a loss of neuroretinal rim and 
enlargement of the optic cup, occurring in eyes with high myopia 
eyes with a secondary macrodisc or peripapillary delta zone at a 
normal IOP.” 

Table 1.2:  The recommended consensus on myopia structural complications terms and 
definitions for global adaptation, as adapted and quoted from the IMI – Defining 
and Classifying Myopia: A Proposed Set of Standards for Clinical and 
Epidemiological Studies white paper report (Flitcroft et al., 2019). 

 

Moreover, the committee has also submitted these updated, as well as collectively agreed to be 

more accurate, myopia definitions to WHO’s International Classification of Disease (ICD). 

 

1.2.2 Developmental (relative peripheral refraction; eye growth; refractive ametropia; age; 
binocular vision) Risk Factors & Progression  
 

Animal studies have associated vision-dependent peripheral refraction (Smith et al., 2007, 2009; 

Zhu et al., 2013; Benavente-Perez et al., 2014), as well as vision-independent higher-order 

aberrations (Coletta et al., 2003; Garcia de la Cera et al., 2006; Ramamirtham et al., 2007; 

Coletta et al., 2010) and astigmatism (Kee et al., 2003; Kee, 2013; Chu & Kee 2015) with 

myopia development and progression, but these may not be principal causes in humans. 

Several human studies demonstrated myopes had higher higher-order aberrations (Collins et 

al., 1995; He et al., 2002; Paquin et al., 2002; Llorente et al., 2004); and peripheral hyperopia 

relative to the central refractive error, which was even maintained through five years regardless 

of the increasing eye elongation since the myopia onset (Mutti et al., 2007); whereas 

emmetropes and hyperopes had relative peripheral myopia (Chen et al., 2010; Ehsaei et al., 

2011; Sng et al., 2011). However, other human studies have particularly considered relative 

peripheral refraction (Lee & Cho, 2013; Atchison et al., 2015) and higher-order aberrations 

(Carkeet et al., 2002; Cheng et al., 2003) only as possible risk factors or consequences of 

myopia development and progression, instead of having a causal relationship.  

 

Myopia is caused by an increase in eye length or vitreous depth (axial ametropia, where every 

0.09-0.10 mm increase translates to 0.25 D in higher myopia), and/or corneal curvature and 

crystalline lens power (refractive ametropia); axial ametropia has the largest effect on refractive 

error as it may progress into the third decade of life (Hashemi et al., 2004). Since light is 

focused in front of the retina, distance vision is blurry, whilst close objects remain clear. 

Childhood myopia assumes onset around age eight and continues to develop during 
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adolescence between ages 15-16 (Goss & Cox, 1985; Thorn et al., 2005), after which is termed 

as late-onset (McBrien & Millodot, 1987; Jiang, 1995). However, the Correction of Myopia 

Evaluation Trial (COMET) stated that although myopia stabilised at an average age of 15.6 ± 4 

years, 95% stabilised by age 24 (COMET, 2013). The age to end treatment may be currently 

unspecified, but the need for early intervention is certainly indicated; the prospective Northern 

Ireland Childhood Errors of Refraction (NICER) and multi-center Collaborative Longitudinal 

Evaluation of Ethnicity and Refractive Error (CLEERE) key studies showed younger children 6-

10 years of age experienced axial growth faster (Breslin et al., 2013) with notable increases 

three years pre- and five years post- onset, as well as reduced hyperopia four years pre-onset 

(Mutti et al., 2007), respectively. Emmetropic axial length may range between 22-24.5 mm, 

whilst ALs >25 mm are considered myopic (Tideman et al., 2016b). Furthermore, annual AL 

increases of 0.1 mm vs. 0.2-0.3 mm are thought as emmetropic and myopic respectively (Mutti 

et al., 2007). In one study on Hong Kong Chinese high myopes of age 12-18, an AL >26 mm 

was considered significant for developing peripheral retinal pathologies (Cheng et al., 2013). 

Zadnik et al. (2015) additionally stated children at age six are of particular risk to develop 

myopia if they have hyperopia <0.75 D. This is further supported by Morgan et al. (2010), who 

stated that hyperopia is the natural endpoint for refractive development, in order to reduce the 

risk of myopia progression in children. A child’s binocular vision state is another possible 

association with myopia. Studies have reported higher levels of esophoria or inward eye 

deviation and unstable/insufficient accommodative responses or higher accommodative lag 

(Gwiazda et al., 1995; Nakatsuka et al., 2005; Allen & O’Leary, 2006), higher accommodative 

convergence or AC/A ratio (Gwiazda et al., 1999; Gwiazda et al., 2005), as well as lower 

accommodative facility (Allen & O’Leary, 2006; Pandian et al., 2006) at near distances among 

nearsighted children and young adults compared to their emmetropic counterparts. These 

outcomes are thought to be involved in triggering eye growth by causing relative peripheral 

retinal blur; however, both lower (Rosenfield et al., 2002; Berntsen et al., 2012) and higher 

(Gwiazda et al., 2003; Allen & O’Leary, 2006) accommodative lags have been shown among 

myopic and emmetropic subjects. For instance, better efficacy was achieved in children having 

higher esophoria and accommodative lag in the five-year COMET randomised clinical trial by 

spectacles fitted with progressive addition lenses (PALs) (Gwiazda et al., 2004); lower 

accommodative lag of <1.01 D by the three-year randomised clinical trial regarding prismatic 

bifocal spectacles (Cheng et al., 2014); lower accommodative amplitude with orthokeratology 

(Zhu et al., 2014), at near. These studies, including randomized clinical trials, suggest that 

binocular vision aspects also do not consistently indicate a causal relationship with myopia, 
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whilst remain important when designing control strategies and selecting management options 

for patients.  

 

Myopia progression refers to the uncontrolled growth of the eye via axial length elongation, 

which results in a change of refractive error (in the minus dioptric direction) and retinal/scleral 

thinning (Saw et al., 2005). Moreover, various studies have stated an average rate of 

progression in Caucasians per year of 0.50 D (Fulk et al., 2000; Gwiazda et al., 2003; Walline et 

al., 2004, 2009), whereas an earlier study on Singaporean children by Saw et al. (2000) 

considered annual progression of >0.50 D to indicate a faster rate. Although myopia 

progression is a multifactorial problem remaining misunderstood, previous studies in individual 

children have recognized earlier onset as the primary factor to its faster rate, regardless of 

genetic and environmental risks (Price et al., 2013; Sankaridurg & Holden, 2014; Chua et al., 

2016); with higher baseline myopia (Hsu et al., 2017) and seasonal changes such as during 

winter possibly due to reduced time outdoors coupled with more time in school (Gwiazda et al., 

2014) also considered. A population cohort meta-analysis of 20 myopia control investigations 

confirmed a similar average annual rate of progression in Caucasian and Asian nearsighted 

children of 0.50-1.00 D, with greater rates among younger female Asians (Donovan et al., 

2012). Even at low and moderate levels of myopia, nearsighted people are more prone to 

cataracts (Wong et al., 2001; Younan et al., 2002; Flitcroft, 2012), glaucoma (Yoshida et al., 

2001; Wong et al., 2003; Flitcroft, 2012), macular degeneration, retinal detachments/holes/tears, 

choroidal/peripapillary atrophy, tilted disc, staphyloma, and reduced cone photoreceptor density, 

whilst high myopia (>5.00-6.00 D) may ultimately lead to blindness (Pierro et al., 1992; 

Vongphanit et al., 2002; Saw et al., 2005; Flitcroft, 2012; Chang et al., 2013; Smith & Walline, 

2015). The risks for developing these ocular conditions are comparable to those of smoking and 

hypertension to cardiovascular health (Flitcroft, 2012). Even children with high myopia aged ≤10 

years had retinal pathologies in a retrospective review (Bansal & Hubbard, 2010). These 

conditions further solidify myopia’s status as an epidemic, being a primary contributor to global 

visual impairment and blindness, as described in the popular review by Holden et al. (2016), as 

well as more recently in a key systemic review and meta-analysis by Fricke et al. (2018). 

Although some of the risk factors associated with myopia are lower juvenile hyperopia (Zadnik 

et al., 2015), peripheral refraction (Mutti et al., 2007; Downie & Lowe, 2013), and binocular 

vision (Mutti et al., 2006; Felipe-Marquez et al., 2015), the type of visual environment has been 

shown to specifically dictate its onset, progression and cessation (Aller, 2014). Diet also may be 

a possible contributor, where Lim et al. (2010) noted that healthy Asian children with diets 
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consisting of higher saturated fat and cholesterol, but lower fruit, vegetable, and whole grain 

intakes had longer axial lengths, whilst Trier et al. (2008) identified caffeine (oral 7-

methylxanthine or 7-MX is approved as myopia control medication in Denmark) to reduce axial 

length via a scleral mechanism over three years; however, the 10-year Blue Mountains Eye 

Study deemed nutritional evidence as inconclusive (Hong et al., 2014). Other studies have also 

drawn an association between increased eye growth and human circadian rhythms, due to low 

sleep quality (Ayaki et al., 2016; Jee et al., 2016; Abbott et al., 2018) and higher serum 

melatonin (Kearney et al., 2017), but such lifestyle research is still limited. Although the exact 

physiological effects are unknown, this further stems from animal research associating diurnal 

light cycles (Li et al., 2000) and ocular circadian rhythms (Nickla, 2013) with myopic eye growth 

and emmetropisation based on axial length, choroidal thickness, or intraocular pressure daily 

fluctuations (Nickla et al., 2002) and scleral proteoglycan synthesis rate (Nickla et al., 1999); 

form-deprivation/defocus-related anterior chamber depth and corneal curvature changes 

resulting from circadian rhythm systems’ response to light duration, intensity, and level (Norton 

& Siegwart, 2013; Ashby, 2016); as well as the circadian rhythms and hormone roles of the 

spectral composition of light, chromatic signals, and wavelength-dependent defocus in 

luminance contrast (with specific oscillations in axial length, choroidal thickness, and vitreous 

chamber depth) (Rucker, 2013).   

 

1.2.3 Genetic (family history; ethnicity) & Visual Environment (near work; time outdoors; 
education) Risk Factors & Progression  
 

Rose et al. (2002) had already attributed genetics to the magnitude of myopia, especially the 

ocular biometry heritability of corneal curvature and axial length (Meng et al., 2011), whilst 

environmental factors are deemed responsible for the sudden worldwide increase in myopia 

prevalence (Morgan & Rose, 2005; Morgan et al., 2012; Dolgin, 2015). The IMI – Myopia 

Genetics Report (Tedja et al., 2019) confirmed refractive error and myopia predisposition is due 

to both genetics and environmental risk factors (near work and outdoor exposure; specifically 

education holding most prominence), as well as a light-processing retina-to-sclera molecular 

mechanism for common myopia development. The summarized literature on genome-wide 

association studies (GWAS) by the Consortium for Refractive Error and Myopia (CREAM) and 

23andMe, as well as genome-environment-wide interaction studies (GEWIS) has identified 

nearly 200 genetic loci for refractive error (spherical equivalent), high myopia, or eye growth 

(corneal curvature and axial length), and nine loci for the association between high education 

and high myopia susceptibility respectively (Tedja et al., 2019). In particular, more than half of 
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the loci were discovered during this decade and the report estimated myopia heritability in the 

range of 60-80%. Two GWAS meta-analyses also have found numerous retinal and other ocular 

tissue gene expression changes from animal studies to overlap with human myopia quantitative 

trait loci (QTL) (Verhoeven et al., 2013; Riddell & Crewther, 2017). Although all retinal cells and 

layers are considered sites of gene expression, a candidate gene meta-analysis validated only 

the PAX6 gene (Chen et al., 2012) for ocular development to be associated with high myopia 

(Tang et al., 2014). A GWAS meta-analysis specifically linked vasoactive intestinal peptide 

receptor 2 (VIPR2) with high myopia among Chinese people (Yiu et al., 2013). Likewise, 

secondary syndromic myopias (myopia with systemic or ocular conditions, as well as mental 

retardation and connective tissue disorders) have been uniquely associated to single causal 

genes (Li & Zhang, 2017) and only two such genes, the collagen type II alpha 1 chain or 

COL2A1 (Mutti et al., 2007; Metlapally et al., 2009) and fibrilin 1 or FBN1 (Fan et al., 2016; 

Tedja et al., 2018), have been linked to common myopia (Tedja et al., 2019). Table 1.3 below 

outlines the currently 27 secondary syndromic myopias associated with ocular abnormalities. 

Moreover, a combined GWAS meta-analysis by CREAM and 23andMe emphasized the TGF-

beta pathway and specific gene sets (“abnormal photoreceptor inner segment morphology”, 

“thin retinal outer nuclear layer”, “detection of light stimulus”, “nonmotile primary cilium”, 

“abnormal anterior-eye segment morphology”) as key myopia drivers (Tedja et al., 2018). Other 

methods, such as myopia epigenetics research considering noncoding RNAs, particularly 

microRNAs (miRNAs), have the potential for both prevention and treatment of associated retinal 

pathology (Liang et al., 2011; Chen et al., 2012; Jiang et al., 2017).        

 

Achromatopsia; Aland Island eye disease; Anterior-segment dysgenesis; Bietti crystalline 
corneoretinal dystrophy; Blue cone monochromacy; Brittle cornea syndrome; Cataract; 
Colobomatous macrophthalmia with microcornea; Cone dystrophy; Cone rod dystrophy; 
Congenital microcoria; Congenital stationary night blindness; Ectopia lentis et pupillae; High 
myopia with cataract and vitreoretinal degeneration; Keratoconus; Leber congenital amaurosis; 
Microcornea, myopic chorioretinal atrophy, and telecanthus; Microspherophakia and/or 
megalocornea, with ectopia lentis and/or secondary glaucoma; Ocular albinism; Primary open 
angle glaucoma; Retinal cone dystrophy; Retinal dystrophy; Retinitis pigmentosa; Sveinsson 
chorioretinal atrophy; Vitreoretinopathy; Wagner vitreoretinopathy; Weill-Marchesani syndrome 

Table 1.3:  Listed are the 27 currently known Online Mendelian Inheritance in Man (OMIM) 
secondary syndromic myopias associated with ocular abnormalities, as adapted 
and recreated from the IMI – Myopia Genetics Report white paper (Tedja et al., 
2019). 

 

Both Hammond et al. (2001) and Lyhne et al. (2001) attributed the variability of refractive error 

to genetic over environmental factors, due to the wide array of candidate genes and loci (Ciner 
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et al., 2009; Wojciechowski et al., 2009; Schache et al., 2013). In this regard, past familial and 

twin studies have reported a widely variable myopic spherical equivalent heritability in the range 

of 10%-98% (Angi et al., 1993; Lyhne et al., 2001; Sanfilippo et al., 2010). Similar studies have 

highlighted the high heritability of ocular biometry (Klein et al., 2009; Kim et al., 2013), and 

Guggenheim et al. (2013) especially stated a 64% correlation between measures of corneal 

curvature and axial length. Also, a family history correlation between increased genetic 

predisposition for myopia and the number of myopic parents has been demonstrated (Saw et 

al., 2006), with various studies highlighting an increased heritability risk of ≥3x when both 

parents are myopic (Mutti et al., 2002; Farbrother et al., 2004; Jones-Jordan et al., 2014; Wu et 

al., 2015). Jones-Jordan et al. (2010) particularly stated the risk of becoming nearsighted is five 

to six times greater when both parents are nearsighted, especially for children between 6-14 

years of age. The study additionally noted that the children of nearsighted parents spent less 

time outside, whilst engaged more in near work activities compared to children of parents 

without a refractive error.  

 

The IMI – Risk Factors for Myopia report (Morgan et al., 2021) recently stated education and 

time outdoors to be the leading risk factors for school myopia; Table 1.4 below shows the 

complete summary of factors associated with myopia, as outlined in this white paper. Studies 

also have considered ethnicity (Voo et al., 1998; Kleinstein et al., 2003; Ip et al., 2007, 2008; 

Rudnicka et al., 2010) to be an important determinant, since myopia onset, as well as its 

progression rate and duration differ worldwide, where Asians in particular have been worse off 

relative to other groups (Donovan et al., 2012; Morgan et al., 2018). East Asian children in 

Australia between 11-15 years of age were eight times more susceptible to become nearsighted 

compared to Caucasian children in the same age group (Ip et al., 2008). Similar ethnic myopia 

prevalence differences were given by the Child Heart and Health Study in England (CHASE) for 

South Asian children in Britain relative to their Caucasian European counterparts (Rudnicka et 

al., 2010). Rose et al. (2008) found that the duration of near tasks has ethnic variations, where 

East Asian children spent 20% more time than their Caucasian counterparts, whilst children 

from myopic parents were longer engaged with reading and less outside overall. However, 

environmental factors such as reduced time outdoors and sunlight exposure, as well as 

increased engagement in near tasks (especially using portable devices and reading at close 

distances of <20 cm for >45 minutes) with reduced lighting are considered the primary risks for 

developing myopia regardless of ethnicity (Ip et al. 2008; Li et al., 2015). Moreover, Ip et al. 

(2008) emphasized prolonged and intensive near tasks among highly pressured educational 
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systems as a contributing factor towards childhood myopia, just as found among Asian nations 

exhibiting the highest prevalence (Dolgin, 2015; Rose et al., 2016). Studies have approximated 

double the myopia prevalence among those entering higher education relative to groups at the 

level of primary education (Morgan & Rose, 2013; Mirshahi et al., 2013; Ramessur et al., 2015). 

Gene-environment (GxE) interaction studies with Mendelian randomization (MR) of GWAS 

meta-analysed cohorts have confirmed the causal relationship between education and myopia, 

reporting effects of 0.27 D myopic shift per year of education (Mountjoy et al., 2018) and 

estimated 0.92 D for two years of education (Cuellar-Partida et al., 2016). Although Jones-

Jordan et al. (2012) did not report a strong correlation between near work and myopia onset or 

progression, other studies have shown increased time outdoors to prevent myopia onset 

(Guggenheim et al., 2012; Jones-Jordan et al., 2014; Lin et al., 2014), but that is not an effective 

myopia control strategy (Jones-Jordan et al., 2012; Wu et al., 2013). 

 

Factor Evidence/Causal 
Relationship 

Confounding Issues 

Major factors 
Education 

Time outdoors 
 

Screen time 

 
Strong and causal 
Strong and causal 

 
Equivocal 

 
Time outdoors 

Role of light (intensity, 
duration, spectrum) 

Nearwork 

Basic birth factors 
Sex 

Ethnicity 
Parental myopia 

 
Birth order 

Birth season 

 
Weak 

Inconsistent 
Strong 

 
Weak 
Weak 

 
Social factors 

Cultural attitudes or genetics 
Genetics or myopiagenic 

environments 
Years of education 
Years of education 

Other personal factors 
Height 

Intelligence 
Physical activity 

Sleep 

 
Weak 

Moderate 
Moderate 

Weak 

 
Social factors 

Education, time outdoors 
Time outdoors 

Educational pressures 

Family characteristics 
Socio-economic status 

Smoking 
Diet 

 
Moderate 

Weak 
Weak 

 
Education 

Education, SES 
Education, SES 

Environment 
Urban/rural 

 
Pollution 
Housing 

Circadian rhythms 
Night light 

Light spectrum 

 
Moderate 

 
Weak 
Weak 
Weak 

Negative 
Weak 

 
Education, SES, time 

outdoors 
SES 

Education, SES 
Dopamine 

 
Limited data 
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Miscellaneous factors 
Allergic conjunctivitis, hay 
fever, Kawasaki disease, 

febrile diseases 
Fertility treatment 

 
Weak 

 
 

Weak 

 
Limited data, time outdoors 

 
 

Limited data 

Common beliefs 
Reading in dim light, under 
bed-clothes or in transport 
Posture in reading/writing 

and holding pen, font size in 
book 

 
Weak 

 
Weak 

 
Limited data 

 
Limited data 

Table 1.4:  Listed are the 7 risk factor categories associated with myopia, along with the 
currently accepted relationship of each specific factor and its confounding issues, 
as adapted and recreated from the IMI – Risk Factors for Myopia Report white 
paper (Morgan et al., 2021). 

 

Indeed, a more recent key meta-analysis and systemic review by Xiong et al. (2017) confirmed 

increased time outdoors to be effective in preventing myopia onset and slowing the myopic shift, 

but not in controlling progression. Various studies have recommended at least 8-15 hours of 

weekly outdoor time (Rose et al., 2008; Guggenheim et al., 2012; Jones-Jordan et al., 2012; He 

et al., 2015; Read et al., 2015). French et al. (2013) have suggested that the preventative 

mechanism of increased outdoor activity is related to reduced accommodative demand, bigger 

depth of focus, improved contrast, higher levels of Vitamin D (Mutti & Marks, 2011; Choi et al., 

2014; Tideman et al., 2016a) and retinal dopamine acting against form-deprivation myopia. 

However, only minimal myopia causality via MR has been attributed to Vitamin D concentration 

(Tedja et al., 2019). Other studies have inconclusively contemplated the brightness (Dharani et 

al., 2012; Read et al., 2014; Read et al., 2015; Hua et al., 2015), as well as the elevated 

ultraviolet radiation and short-wavelength (blue light of wavelength <400 nm) transmission (Torii 

et al., 2017; Williams et al., 2017) associated with outdoor light exposure.  

 

1.2.4 Worldwide Myopia Prevalence 

In a recent publication, Holden et al. (2016) approximated global myopia prevalence at 1.4 

billion people and 163 million with high myopia (≥6.00 D) in the year 2000; but predicted these 

values to reach nearly 5 (~50% of the world population) and 1 billion respectively by 2050, even 

from the overall current estimate of ~30%. Moreover, the same review showed that myopia 

distribution by 2050 will spread between ages 10-79, when previously compared to ages 10-39 

in 2000, implying that this increased global myopic population will also be older. Whilst myopia 

in the U.S. has increased from 25% to 42% in the past 30 years (Vitale et al., 2008), prevalence 

varies widely from 3% in Nepalese children (Garner et al., 1999) to 90% in Taiwanese university 
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students (Want et al., 2009). The literature is inconclusive whether males or females exhibit 

higher myopia prevalence (Katz et al., 1997; Attebo et al., 1999; Junghans & Crewther, 2003), 

although some studies have suggested females to hold greater representation (Dandona et al., 

2002; Hashemi et al., 2004; Bar Dayan et al., 2005; He et al., 2007). However, the samples of 

these studies largely varied in age groups and ethnicities. Overall, myopia prevalence is highest 

among children of Asian ethnicities (Voo et al., 1998; Kleinstein et al., 2003; Ip et al., 2007, 

2008), followed by Hispanic, African-American, and Caucasian backgrounds (Voo et al., 1998; 

Kleinstein et al., 2003).     

 

1.2.5 Economic Burden of the Myopia Epidemic 

Myopia carries a heavy socioeconomic burden. The cost of correcting myopia in Singapore, only 

for ages between 12-17 has been estimated to be $37.5 million (Lim et al., 2009), while the 

approximate individual cost for adults of age ≥ 40 was $709 annually (Zheng et al., 2013). In the 

United States, an approximate annual cost between $3.9-7.2 billion was reported (Vitale et al., 

2006). 

 

1.2.6 Modes of Myopia Treatment 

From the currently implemented myopia control strategies, only multifocal soft contact lenses 

(MFSCLs), orthokeratology (OK), and topical pharmaceuticals are considered clinically 

significant (the ability to reduce myopia progression by approximately 50%); Figure 1.2 (Smith 

& Walline, 2015) and Table 1.5, below. Myopic undercorrection (Chung et al., 2002; Adler & 

Millodot, 2006), as well as conventional single vision spectacles or contact lenses increase its 

progression in nearsighted children between 0.50-1.00 D annually (Donovan et al., 2012). 

However, multifocal spectacles and those with progressive addition lenses (PALs) can produce 

an efficacy of 20-50% in some cohorts (Gwiazda et al., 2003; Cheng et al., 2014) and with 

minimal safety concerns. Orthokeratology efficacy has been reported in the range of 30-60% by 

various studies (Walline et al., 2009; Hiraoka et al., 2012; Santodomingo-Rubido et al., 2012), 

including the longitudinal randomised Retardation of Myopia in Orthokeratology (ROMIO) 

clinical trial (Cho & Cheung, 2012). Reported treatment efficacy for OK may vary with study 

location and subject ethnicity, unless a range of ethnicities were present (Jones et al., 2019). 

Similar efficacy of 30-50% or higher can be achieved by MFSCLs depending on the design 

(Anstice & Phillips, 2011; Sankaridurg et al., 2011; Lam et al., 2014; Aller et al., 2016; Cooper et 

al., 2018). The efficacy with atropine extends to 30-80% (Chua et al., 2006; Tong et al., 2009; 

Chia et al., 2012), but unlike OK (Santodomingo-Rubido et al., 2017) and MFSCLs (Walline et 
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al., 2013), atropine (Pineles et al., 2017) is contraindicated for long-term application exceeding 

two years. Children have not been deemed anymore prone to either OK (Bullimore et al., 2013; 

Liu & Xie, 2016) or MFSCL (Chalmers et al., 2011; Bullimore, 2017) complications than adults. 

However, it is important to highlight the effects of myopia control lenses on contrast sensitivity 

and the accommodation response. Recent notable works by Sanchez et al. (2018) and 

Przekoracka et al. (2020) have stressed the role of multifocal contact lens design in distinctly 

limiting visual performance by inflicting halos, reduced contrast sensitivity and visual acuity. 

Furthermore, Ruiz-Pomeda et al. (2018) and Cheng et al. (2019) suggested that the contact 

lens optical design may have a crucial role in myopic children by influencing the binocular and 

accommodative function in utilising positive spherical aberration. Novel use of combination 

therapy between optical and pharmaceutical treatments is also possible, but research in this 

area is still very limited (Verzhanskaya & Tarutta, 2017; Tan et al., 2020).  

 

 
Figure 1.2 The reported efficacy (%) of atropine, soft multifocal contact lenses, and 

orthokeratology to reduce myopia by various controlled studies adapted from Smith & Walline 
(2015). 
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Treatment Study Efficacy in slowing 
myopia progression 

Efficacy in slowing 
axial elongation 

Soft multifocal 
contact lenses 

Paune et al. (2015) 
Aller et al. (2016) 

Cheng et al. (2016) 
Ruiz-Pomeda et al. 

(2018) 

42.9% 
77.2% 
20.6% 

39.32% 

26.9% 
79.2% 
38.9% 

36.04% 

Orthokeratology Paune et al. (2015)  38% 

Atropine 
1% 

0.5% 
0.1% 
0.01% 
0.5% 
0.05% 

0.025% 
0.01% 

 
Yi et al. (2015) 

Chia et al. (2016) 
 
 

Wang et al. (2017) 
Yam et al. (2018) 

 
138% 
75% 
67% 
58% 
160% 

-0.27 D 
-0.46 D 
-0.59 D 

 
109% 

0.27 mm 
0.28 mm 
0.41 mm 

300% 
0.20 mm 
0.29 mm 
0.36 mm 

Table 1.5 The reported efficacy of atropine, soft multifocal contact lenses, and orthokeratology 
to reduce myopia by various controlled studies, after the review by Smith & Walline (2015). 

 

Due to persistent variability in efficacy and mechanism understanding of the current optical, 

pharmacological, environmental, and surgical treatment strategies, the committee on 

Interventions for Myopia Onset and Progression (Wildsoet et al., 2019) maintains that no 

therapy yet exists for all patients able to fully prevent, delay, or control myopia. This IMI white 

paper extensively summarizes the variable optical treatment efficacies as such: single vision 

spectacles (14%); bifocal and progressive addition spectacles (6-51%); off-label soft multifocal 

contact lenses (38%); and orthokeratology (30-55%). Also, studies have shown myopia 

progression to be clinically similar between full correction single vision spectacles and soft 

contact lenses (Horner et al., 1999; Fulk et al., 2003; Marsh-Tootle et al., 2009), whilst 

undercorrection in some randomized controlled trials (RCTs) either holds no significant clinical 

effect or further increases myopia progression (Chung et al., 2002; Koomson et al., 2016; Adler 

& Millodot, 2006). Although pharmacological control of myopia has consisted of atropine (non-

selective antimuscarinic antagonist), pirenzepine (M1-selective muscarinic antagonist), oral 7-

methylxanthine (adenosine antagonist), and topical timolol (non-selective beta-adrenergic 

antagonist), the report mentions only topical atropine has been widely used in both trials and 

practice with ranging myopia control efficacy of 60-80% for the 1% dose (Yen et al., 1989; Shih 

et al., 1999; Chua et al., 2006) and 42-58% for the lower 0.01% dose (Shih et al., 1999; Chia et 

al., 2014; Chia et al., 2016) resulting in reduced rebound and side-effects. Studies on 

environmental strategies have associated outdoor time efficacy with myopia prevention and not 

its control (Donovan et al., 2012; Gwiazda et al., 2014; Li et al., 2015); noted a missing 
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correlation between near work and outdoor time (Guggenheim et al., 2012; Lin et al., 2014; Li et 

al., 2015); and missing support for a causal relationship between lower serum vitamin D levels 

and myopia (Guggenheim et al., 2014; Cuellar-Partida et al., 2017). Moreover, the meta-

analysis by Sherwin et al. (2012) linked every extra hour spent outdoors per week with a 2% 

reduction in myopia development among children and adolescents. The committe has 

mentioned that the only surgical interventions for mypia control in the literature involve scleral 

reinforcement including posterior scleral reinforcement (PSR), injection-based scleral 

strengthening (SSI), and collage cross-linking scleral strengthening (CCL); where both clinical 

application and research has been limited to PSR and only in China, Eastern Europe, and 

Russia. 

Although complete understanding remains elusive, the potential mechanisms of these 

treatments consist of peripheral refraction, positive spherical aberration, and accommodation; 

whilst the extended efficacy, safety, and rebound effects in the current literature only spans up 

to five years. For instance, Berntsen et al. (2013) linked PAL efficacy with peripheral myopic 

defocus restricted to the superior retina, whilst Smith (2013) attributed the greater efficacy with 

OK and MFSCLs to their ability for induced simultaneous peripheral myopic defocus over all or 

most of the retina. The randomized clinical trial by Walline et al. (2004) on standard rigid gas-

permeable contact lenses reported only a temporary significantly reduced myopia progression, 

due to changes in corneal curvature, but no effect on axial elongation. Indeed, AL changes by 

contact lenses are well-correlated with myopia control, where many studies have mentioned 

mean efficacy of 41%, as well as corresponding increased average elongation over two-years of 

0.33 mm and 0.55 mm in the experimental and control groups respectively (Walline et al., 2009; 

Kakita et al., 2011; Cho & Cheung, 2012; Santodomingo-Rubido et al., 2012b; Charm & Cho, 

2013; Cheung & Cho, 2013; Walline et al., 2013; Lam et al., 2014; Back et al., 2017; Jones et 

al., 2019). There are various designs of orthokeratology lenses, all producing similar levels of 

myopia control, which are significantly more effective than traditional means (undercorrection, 

single vision spectacles and contact lenses). Centre distance progressive contact lenses are 

also effective and have started to emerge commercially (Kollbaum et al., 2013). Although visual 

acuity may be compromised depending on the design, the primary goal is controlling myopia 

progression. For instance, contact lens use particularly with preserved cleaning solutions and 

potential wear discomfort (Fonn, 2009; Chalmers, 2014; Mizoguchi et al., 2017), as well as 

topical atropine preserved with benzalkonium chloride toxic to the cornea (Baudouin et al., 
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2010; Datta et al., 2017), have been generally linked with dry eye disease, especially in younger 

groups (Mizoguchi et al., 2017; Wu et al., 2017).  

 

1.2.6.1 Spectacles 

Multifocal spectacles correct distance vision through the upper half portion of the lenses and 

were perceived to be able to slow myopia by relaxing accommodation via the bottom half (Mutti 

et al., 2006). Randomised clinical trials, including COMET 1 & 2 and the Study of Theories 

about Myopia Progression (STAMP), have incorporated bifocals and PALs with +1.50 or +2.00 

Adds (Hyman et al., 2001; Edwards et al., 2002; Gwiazda et al., 2003; Berntsen et al., 2010; 

Cheng et al., 2010; COMET 2, 2011), but new designs exerting relative peripheral defocus are 

being developed (Sankaridurg et al., 2010; Lam et al., 2017). Although a longitudinal 

randomised three-year clinical trial by Cheng et al. (2014) did report myopia control of 51% in 

Chinese-Canadian children of age 8-13, both large (Li et al., 2011; Cheng et al., 2014) and 

small (Sankaridurg et al., 2010; Hasebe et al., 2014) efficacy by multifocal spectacles has been 

reported. Various studies noted the ability of multifocal spectacles to control myopia in 

comparison to single vision lenses, especially in nearsighted children with faster progression, 

lower baseline myopia, binocular errors (near esophoria or high accommodative lag) and 

reduced reading distance, but the effect was generally not clinically significant and did not last 

for more than a year (Cheng et al., 2010; COMET 2, 2011; Berntsen et al., 2013; Smith & 

Walline, 2015). The randomised trial by Berntsen et al. (2012) also showed no rebound effect 

post-PAL treatment in children after one year of wear. However, Hasebe et al. (2005) have 

reported that nearsighted children wearing multifocal spectacles misuse the near zone within 

the lens profile by not fixating correctly and require regular frame adjustments. Overall, due to 

their unconvincing efficacy, as well as lack of wear compliance from reduced esthetics and 

useful field of view with visual distortion, spectacles for myopia management should be 

considered second-tier options for patients unideal to be fitted with contact lens treatments or 

those in remote geographical regions (Gifford et al., 2019; Jones et al., 2019).  

 

1.2.6.2 Soft Multifocal Contact Lenses 

Soft multifocal contact lenses that are normally used to correct presbyopia are also promising 

for myopia control (Anstice & Phillips, 2011; Sankaridurg et al., 2011; Berntsen & Kramer, 2013; 

Kang et al., 2013; Ticak & Walline, 2013; Walline et al., 2013; Fujikado et al., 2014; Lam et al., 

2014; Cheng et al., 2016; Gifford & Gifford, 2016; Sankaridurg, 2017). This treatment mode 

allows for flexible wear (Lam et al., 2014) and even better self-esteem among children relative 
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to spectacles (Rah et al., 2010). As with the different spectacle lens designs, although no 

rebound effect was found post-MFSCL treatment after one-two years of wear, Cheng et al. 

(2016) reported efficacy only during the initial six months. The two main designs of MFSCLs, 

usually utilised with a +2.00 to +2.50 D power Add, include: concentric dual-focus or bifocal with 

alternating distance plus power for refractive error correction and myopic defocus treatment; 

and aspheric progressive power or peripheral add having a central zone correcting distance 

refractive error with gradual increase in relative peripheral plus power for myopia defocus 

(Gifford et al., 2019). In 2011, Anstice & Phillips carried out a 20-month crossover study 

comparing a dual-focus center-distance concentric soft multifocal lens in one eye with a 

conventional single vision soft lens for distance correction in the other eye, which were 

exchanged after a 10-month interval. The researchers reported ≥30% reduction in myopia 

progression with the dual-focus lens. In a two-year study, Cheng et al. (2013) showed that the 

myopia control mechanism with aspheric soft multifocal contact lenses is based on inducing the 

most positive spherical aberration, whilst Anstice & Phillips (2011) did not report significant 

difference in visual acuity and contrast sensitivity using a concentric design. However, Kollbaum 

et al. (2013) found reduced visual performance (decreased acuity by one line) and contrast 

sensitivity when they compared a dual-focus center-distance multifocal (MiSight, CooperVision) 

and center-near bifocal (Proclear Multifocal, CooperVision) two-zone concentric soft designs 

with +2.00 D power Add to conventional spectacle-corrected performance in young adults age 

18-25, whilst no difference resulted when only the multifocal lenses were compared. In a two-

year study on myopic children of age 8-11 wearing aspheric center-distance soft multifocal 

lenses (Proclear Multifocal, CooperVision) with +2.00 D power Add, Walline et al. (2013) 

reported a maintained 50% and 29% reduction in myopic refraction and eye elongation 

respectively, when compared to a conventional single vision soft lens.  

 

The three-year Bifocal Lenses in Nearsighted Kids (BLINK) study (Walline et al., 2020) on 

approximately 300 children age 7-11, also the first randomised clinical trial comparing center-

distance multifocal soft lenses of +1.50 D and +2.50 D Adds, found that bifocal contact lenses, 

especially those of high-add, slowed myopia progression by 43% and reduce axial length by 

0.23 mm, when compared to standard single-vision contact lenses. Walline et al. (2017) earlier 

noted that even if myopia control is the primary concern, children must be able to tolerate lens 

wear. This comes after Lopes-Ferreira et al. (2011) earlier concluded only center-distance 

MFSCLs with +3.00 D and +4.00 D power Adds can induce significant relative peripheral 

myopic defocus, but Adds >2.50 D may not be visually acceptable by children (Bickle & Walline, 
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2013). A study by Sankaridurg et al. (2011), where Chinese children age 7-14 were fitted with 

an aspheric, peripheral progressive plus-powered (center-distance) soft contact lens (Lotrafilcon 

B, CIBA Vision) for one year, resulted in 34% and 33% reduction in myopic refraction and axial 

elongation respectively, when compared to the nearly two-fold reduced myopia control effectivity 

of the flat optical profile in spectacle lens wearers within the same age group. Although new 

developments are constantly made, the literature suggests that the current majority of contact 

lens designs for myopia control correct the distance refractive error within their central optical 

diameter, whilst control myopia progression by reducing the relative peripheral hyperopia 

(Gifford & Gifford, 2016). The study by Sankaridurg et al. (2011) showed that the use of 

conventional soft single vision contact lenses for myopia control is ineffective, since their optical 

profile only exerts relative peripheral hyperopia, instead of creating peripheral myopic defocus. 

Additionally, in their two-year randomised clinical trial among nearsighted Hong Kong Chinese 

children, Lam et al. (2014) proposed a positive correlation between Defocus Incorporated Soft 

Contact (DISC) lens wearing time and corresponding efficacy, suggesting a daily modality of ≥5 

hours. Studies have been inconclusive regarding the efficacy influence of inducing a relative 

peripheral myopia refraction profile with varying add powers and visual field treatment extent, as 

well as the impact on accommodation, all requiring further research (Smith, 2013; Walline et al., 

2017). To better understand such differences in retinal peripheral refraction with different lens 

designs and powers, recent studies have visualised the power profiles of the many used 

MFSCLs (Kim et al., 2017; Nti et al., 2021).  

 

1.2.6.3 Orthokeratology 

Orthokeratology has been implemented since the 1960s, but only in the last two decades has it 

generated significant attention (Mountford, 1997; Lui et al., 2000; Mountford, 2004). This is 

largely attributed to the worldwide increased prevalence of myopia (Vitale et al., 2008; Williams 

et al., 2015; Holden et al., 2016), coupled with improvements in lens materials, designs, and 

instrumentation (Coon, 1984; Wlodyga & Bryla, 1989; Mountford, 1997). Overnight OK is a 

temporary, reversible, and non-invasive treatment option that can provide natural daytime clear 

vision, without the need of a corrective appliance (Swarbrick, 2006; Walline et al., 2009; Cho & 

Cheung, 2012). Such a clinical option offers ground-breaking independence with subsequent 

quality of life improvements for many myopes, as well as ease for parental involvement and 

oversight (Lipson et al., 2005; Smith et al., 2009b; Santodomingo-Rubido et al., 2013). Although 

the exact mechanism of orthokeratology remains inconclusive, the literature suggests that the 

redistribution of epithelial cells increases the power of the mid-periphery to reduce eye 
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elongation (Alharbi & Swarbrick, 2003; Nieto-Bona et al., 2011a; Nieto-Bona et al., 2011b; Qian 

et al., 2013). These corneal changes of flattening and steepening represent the central and 

peripheral transition zones respectively, while the area of corneal flattening is referred to as the 

treatment zone (Mountford, 2004; Swarbrick, 2006; Lu et al., 2007). Studies have speculated 

that the treatment zone size of orthokeratology lenses is responsible for the treatment effect in 

myopia control (Owens et al., 2004; Lu et al., 2007; Gifford & Swarbrick, 2009), but existing 

research in this area is scarce.   

 

Orthokeratology is particularly effective in comparison to other optical myopia control strategies, 

due to its ability to treat moderate and high nearsightedness (3.00-6.00 D), as well as being less 

susceptible to eye movement and blinking than soft contact lens correction (Smith, 2013). 

Efficacy for correcting high myopia >6.00 D in conjunction with single vision spectacles has also 

been demonstrated over a two-year randomised study (Charm & Cho, 2013). The treatment 

zone is the site for corneal reshaping, where the cornea changes from prolate to a spherical 

shape (Mountford et al., 2004; Swarbrick, 2006; Chan et al., 2008). Success has been linked to 

the treatment zone size (Alharbi & Swarbrick, 2003) in relation to corneal epithelial thinning and 

refractive surgery concepts surrounding Munnerlyn’s formula, where the expected 

orthokeratology change in refractive error is based on corneal thickness or sagittal height 

changes (Swarbrick et al., 1998); higher myopia requires a wider treatment zone and deeper 

corneal flattening, which may increase the risk for corneal abrasion (Chan et al., 2008). 

Furthermore, higher myopic refractive error imposes an increased risk of lens decentration and 

corneal staining (Lu et al., 2007). Thus, the application of orthokeratology towards correcting 

myopia beyond 4.00 D is usually restricted to smaller optical treatment zones, in order to limit 

flattening into the corneal stromal tissue (Owens et al., 2004) and account for pupil size 

changes under dim illumination (Swarbrick et al., 1998). Optical zone diameters of four- and 

five-zone orthokeratology lenses typically range between 5.50-6.50 mm, with 6.00 mm being the 

most common; however, for corrections between 1.00-3.00 D and 3.50-6.00 D, it is possible to 

have a zone of 6.00-6.50 mm and 4.00-5.00 mm respectively (Mountford et al., 2004). 

Moreover, both studies by Owens et al. (2004) and Lu et al. (2007) found that longer 

orthokeratology lens wear (over four weeks) leads to an increasing treatment zone size, which 

has been associated with better visual acuity, increased optical aberrations, and improved 

subjective visual quality. A more recent study by Kang et al. (2013) investigated the effects on 

peripheral refraction, corneal topography, and aberrations and did not find significant differences 

after changing orthokeratology lens parameters (5.00 mm and 6.00 mm optic zone diameters) in 
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myopic (1.00 D to 4.00 D) young adults over a two-week period. Although statistically 

insignificant, the authors reported that the 6.00 mm orthokeratology lens seemingly achieved 

greater peripheral myopic defocus via steepening of the corneal midperiphery. Thus, the 

relationship between corneal reshaping, treatment zone sizes, optical aberrations, and quality of 

life measures warrants further research.  

 

Orthokeratology predominantly exists as an overnight modality based on many advantages: it 

eliminates adaptation problems associated with a blink reflex since lens movement and lid 

interaction are reduced in a closed eye, it lowers the risk of foreign bodies and corneal staining, 

offers a stable environment leading to a potentially higher compliance, and has higher overall 

efficacy (Mountford, 1997; Swarbrick, 2006; Cho et al., 2008). Also, the lenses never leave 

one’s home and parents may be involved with every aspect of their use in cases of children 

wearers (Santodomingo-Rubido et al., 2013). In addition to myopia control, overnight 

orthokeratology provides the same convenience and cosmetic appeal as laser surgery by 

providing quality unaided daytime vision, with the further advantages of being reversible, non-

invasive, and allowing patients to take a break from lens wear (Soni et al., 2004; Wu et al., 

2009; Chen et al., 2010). Orthokeratology can also be used to correct refractive error regression 

and restore corneal regularity due to complications arising from refractive surgeries (Ozkurt et 

al., 2012). Furthermore, dry eye prevalence in ages ≥40 was reported to be 54.3% (Shah & 

Jani, 2015), whilst tear evaporation has been found to be significantly higher in ages ≥45 

(Guillon & Maissa, 2010), especially in females, as the lipid layer in the tear film becomes 

thinner and less efficient with age. Dry eye symptoms experienced by presbyopic contact lens 

users can be avoided with overnight orthokeratology wear, since rigid lenses allow for less tear 

evaporation in a closed eye (Muntz et al., 2014).    

 

1.2.6.4 Pharmaceuticals 

The literature has shown that topical cycloplegic therapy (low-dose atropine of 0.01% or 

pirenzepine antimuscarinic drugs) most commonly applied to young children between ages 3-11 

is a highly effective myopia control strategy (Tan et al., 2005; Siatkowski et al., 2008; Tong et 

al., 2009; Chia et al., 2016). Cycloplegic drugs are already used to slow myopia progression in 

East Asia and success rates are between 32%-72% (Chia et al., 2014, 2016). However, 

atropine is not often clinically prescribed due to its side effects (temporary and reversible light- 

sensitivity, blurry vision at close distance, stinging/burning, and allergic conjunctivitis) via pupil 

dilation and lowered accommodation, whilst pirenzepine is not commercially available (Chua et 
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al., 2006; Tong et al., 2009; Chia et al., 2012; Smith & Walline, 2015). Unlike atropine, 

pirenzepine is a selective muscarinic receptor and may exert reduced side effects (Siatkowski et 

al., 2008). Tan et al. (2005) reported 50% (0.35 D) myopia reduction and deemed the 

application of 2% pirenzepine gel in Asian myopic children of age 6-12 over a one-year period 

as safe (one case of abdominal pain, two cases of treatment withdrawal due to accommodative 

relaxation and pupil dilation, and 8% withdrawal due to allergic reactions). In a two-year 

longitudinal study on the application of 2% pirenzepine gel among myopic children of age 8-12, 

Siatkowski et al. (2008) showed myopia control (myopia progression of 0.26 D and 0.58 D at 

years one and two respectively compared to the control group) and patient safety to be 

maintained. However, the use of pirenzepine is limited due to its unknown mechanism, initial 

age to commence application, treatment length, and long-term efficacy.  

 

Atropine is particularly a potent drug only available in 0.5% and 1% doses in the UK as ointment 

and drops. Other concentrations of ≤0.5% are not commercially available and unlicensed by the 

Medicines & Healthcare Products Regulatory Agency (MHRA). According to the Medicines Act 

1968, atropine is classified as a prescription only medicine (POM) available to UK practitioners 

with a minimum of additional supply training and is mainly used in hospital eye services (HES) 

for mydriasis or cycloplegia. In another two-year longitudinal study on myopic Asian children of 

age 6-12, Tong et al. (2009) showed that the cycloplegic effect of 1% atropine drops was 

reduced within six months and a lower myopia progression was observed in the following six 

months. Like the different orthokeratology lens designs, there is a rebound effect after atropine 

cessation, but long-term investigation on myopia control and post-treatment stabilisation with 

variable atropine concentrations also has not been performed yet. Debate continues regarding 

the optimum concentration necessary, in order to minimize the associated adverse reactions, 

whilst maintaining effectiveness and preventing rebound. The two-year longitudinal study on 

Asian myopic children of age 6-12 by Chia et al. (2012) demonstrated that lower atropine 

concentrations (0.5%, 0.1%, and 0.01%) had comparable efficacy and safety results. The 0.01% 

dose was especially shown to be the safest and with lower rebound effect (Chia et al., 2012; 

Loughman & Flitcroft, 2016), as well as reducing accommodative amplitude only by 2-3 D (Chia 

et al., 2016). The Atropine for the Treatment of Myopia (ATOM) studies (Chua et al., 2006; Chia 

et al., 2016) confirmed these outcomes, but over a five-year clinical trial. Although atropine’s 

action may be based on reduced accommodation and changes of the crystalline lens curvatures 

(Chua et al., 2006; Chia et al., 2014), or eye growth receptor interaction associated with 

circadian rhythms (Stone et al., 2013; Bullimore & Berntsen, 2018), the exact mechanism 
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remains unknown. One meta-analysis has also considered ethnicity, stipulating improved 

atropine efficacy in Asian children over their Caucasian counterparts (Li et al., 2014).    

 

1.2.7 The Problem with Myopia Treatment 

Although clinicians are aware of the available myopia control strategies, as well as the sufficient 

and accepted research evidence behind their efficacy and safety (Wolffsohn et al., 2016), the 

lack of global standardization in treatment protocol persists. In a review by Wolffsohn et al. 

(2016), important trends among current clinical practice regarding myopia control were noted: 

undercorrection continues to be employed as a control strategy particularly in India, Spain, 

Portugal, and South America despite its myopia inducing effects, pharmaceutical efficacy was 

reported to be underestimated, while the efficacy of increased outdoor activity was 

overestimated, and >68% of nearsighted children were still prescribed with single vision 

spectacles or contact lenses. In addition to clinical standardization, further clinical trials are still 

necessary to confirm the mechanism, efficacy, safety, predictability, and economic feasibility of 

these optical treatments, in order to gain clinical acceptance worldwide (Polse et al., 1983a and 

b; Santodomingo-Rubido et al., 2012).  

 

Myopia control treatments are mainly off-label/unlicensed prescriptions, and the relevant legal, 

regulatory, and professional stance is country-specific, varying worldwide. An exception is the 

recently approved European certification standard or CE marking for the MFSCLs dailies 

MiSight (CooperVision) and NaturalVue (Visioneering Technologies), which is also recognised 

in Canada, Australia/New Zealand, and sporadically in Asia. Increased practitioner training and 

patient education are additionally required to stagnate the myopia crisis. The IMI – Industry 

Guidelines and Ethical Considerations for Myopia Control Report (Jones et al., 2019) discussed 

extensively the ethical and regulatory responsibilities shared by stakeholders (governmental and 

regulatory bodies, manufacturers, academics, health and eye care practitioners, patients) 

regarding myopia control products, since these are mainly off-label/unlicensed treatments and 

devices directed at vulnerable patients. Off-label/unlicensed prescribing must be thoroughly 

understood, as listed reasons for and against off-label promotion, as well as permitted FDA 

sources of related use information in the United States may be found in the white paper report, 

as adapted from Ventola (2009). Its reported use by an early study was both common and 

frequent, for instance, accounting for about 21% of all prescriptions and possibly reaching 83% 

in some therapeutic specialties or patient populations in the United States (Radley et al., 2006).  
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The IMI – Clinical Management Guidelines Report (Gifford et al., 2019) has provided an 

evidence-based best practice framework to identify risk factors and environment interventions; 

lay terminology to discuss myopia, its risks and treatment options, including off-label strategies; 

standard procedure for baseline examination, as well as additional evaluation and exploratory 

tests; regulations for clinical advice and care; and advise for future research and clinician 

professional development. Further key conclusions from the white paper report include: a 

myopia range of at least 0.50-0.75 D is necessary before considering treatment; myopia 

correction is to be worn full time and undercorrection as a control strategy should be 

abandoned; near work should not be prevented, but coupled with time spent outdoors for the 

minimally recommended 8-15 hours/week; the efficacy and safety of treatments should be 

monitored on 6-month intervals.  

 

Futhermore, the IMI – Clinical Myopia Control Trials and Instrumentation Report (Wolffsohn et 

al., 2019) highlighted the following: clinical trials should span a minimum of three years (two 

years with treatment and the final year without treatment to assess possible rebound effects); a 

control group is mandatory; a standardised adverse event reporting system and dilated fundus 

examinations should be inplace; dysphotopsia should be investigated at baseline and 

throughout the study; classification of outcome measures is to consist of primary (refractive 

error or axial length), secondary (patient/guardian reported outcomes via a questionnaire and 

treatment compliance in real time), and exploratory (peripheral refraction, changes in 

accommodative lag and dynamics, ocular alignment, pupil size, outdoor activity and lighting 

levels, anterior and posterior segment anatomical changes particularly related to choroidal 

thickness, and scleral and corneal biomechanics) results.  

 

1.2.8 Developments in myopia assessment & prediction technology 

The global myopia epidemic has prompted the development of clinical models to predict and 

monitor its onset, progression, and control. Such predictive methods of assessment and 

technology have taken various forms from the use of growth models (Tideman et al., 2018; Diez 

et al., 2019; Jagadeesh et al., 2020), electronic medical record (EMR) systems into machine 

learning (Kaya et al., 2018; Lin et al., 2018; Xu et al., 2018; Yang et al., 2020), as well as mobile 

apps and devices (the Brien Holden Vision Institute [BHVI] Myopia Calculator; Plano; FitSight; 

Myopia Master; MYAH). Epidemiological research has identified many risk factors for childhood 

and adolescent myopia (Pan et al., 2012; Kim et al., 2013; Stambolian, 2013), but predictive 
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models have grouped these into optical, structural, genetic and environmental classifications. 

These categories have also assigned myopia-specific measurement parameters, such as 

uncorrected refractive error (including parental history), corneal curvature, crystalline lens 

power, accommodative lag, axial length (AL), age, ethnicity, sex, education and time spent with 

outdoor and near-vision tasks (He et al., 2015; Medina, 2015; Zadnik et al., 2015) towards the 

application of specialty devices. Furthermore, in the recent Singapore Cohort Study of the Risk 

Factors for Myopia (SCORM) among 674 children of age 7-10, Brennan et al. (2020) noted that 

although annual and subsequent annual progression were strongly correlated (1 D increase = 

0.35 D increase respectively), annual progression alone was a poor model for predicting long-

term myopia development. The authors concluded that practitioners must additionally consider 

past progression rates, if known, as well as the age of onset (especially early onset considered 

to be younger than age 12) and parental history, before commencing a myopia control 

treatment. Bullimore & Richdale (2020) added that multiple criteria for progression, investigated 

by standardised measurement methods, must be applied towards obtaining accurate myopia 

rate predictions.  

The present feasibility to predict true individual myopia progression rates is low (Hernandez et 

al., 2018). Thus, there is strong interest in non-invasive, predictive prevention and treatment 

strategies, particularly targeting at-risk potential high myopes, which will further equip 

policymakers, parents, and eye care professionals in successfully managing myopia. The scope 

corresponds to the proposed Package of Eye Care Interventions (PECI) and Integrated People-

Centred Eye Care (IPCEC) approaches, outlined in the latest World Health Organization report 

on vision (WHO, 2019), which should be considered by all involved in eye care. This is thought 

to be the first review of its kind on myopia predictive technology. 

1.2.8.1 Axial Length & Refractive Error 

Gordon & Donzis (1985) noted that AL and corneal diameter changes were the most significant 

factors in the first two years of life that determined human refractive development during 

childhood. Axial length measurement is long recommended as the gold standard in monitoring 

pediatric myopia progression (Meng et al., 2011), where ocular disease risk increases with each 

millimeter of elongation (Haarman et al., 2020), high myopia (≥6.00 D) has been linked with 

excessive AL (≥26 mm) (Tideman et al., 2016), and the associated higher risk of visual 

impairment evidenced by some of the latest randomised myopia control clinical trials 

(Chamberlain et al., 2019; Walline et al., 2020). However, the International Myopia Institute (IMI) 

has suggested the use of both AL and refractive error to predict myopia onset, due to their 
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variable correlation, particularly in early childhood, as well as the lack of global standardised AL 

criteria for individual patients (Gifford et al., 2019; Wolffsohn et al., 2019).  

A recent meta-analysis also highlighted significant ethnical differences in AL, where Asian 

children had 40% greater length than their Caucasian counterparts (Brennan et al., 2018) for the 

same refractive error. Brennan et al. (2020a) have additionally suggested the use of the 

Cumulative Absolute Reduction in Axial Elongation (CARE) factor for assessing myopia control 

efficacy, stating a maximum CARE of 0.44 mm (~1 D) over a period of 2-3 years for currently 

available treatments, as illustrated by Table 1.6. This is especially relevant, as Bullimore & 

Brennan (2019) previously analysed the data of 21,000 patients across five population-based 

studies, showing that a 1 D myopia increase and 0.44 mm reduction in axial length 

corresponded to a 67% increase and 40% decrease in myopic maculopathy, respectively. 

Further clinical research is needed to validate whether AL, refractive error, or their combination 

is the most reliable predictor for individual myopia progression rates within all population 

cohorts. 

 

Study Treatment CARE 
(mm) 

Study design details 

Time 
(y) 

Device Rand.  N= 
(T, C) 

 

Santodomingo-Rubido 
et al. (2017) 

OK 0.44 6+ Opt N  14, 16  

Hiraoka et al. (2012) OK 0.42 5 Opt N  22, 21  

Leung & Brown (1999) Specs 0.41 1.5 US N  14, 32  

Chua et al. (2006) Atr 1.0% 0.40 2 US Y  166,190  

Zhu et al. (2014) OK 0.36 2 Opt N  65, 63  

Chen et al. (2013) OK 0.33 2 Opt N  35, 23  

Charm & Cho (2013) OK 0.32 2 Opt Y  12, 16  

Walline et al. (2009) OK 0.32 2 US N  28, 28  

Lam et al. (2019) Specs 0.31 2 Opt Y  79, 81  

Chamberlain et al. 
(2019) 

SMCLs 0.28 3 Opt Y  48, 51  

Cho et al. (2005) OK 0.28 2 US N  35, 35  

Cheng et al. (2014) Specs 0.28 3 US Y  46, 50  

Cho et al. (2012) OK 0.27 2 Opt Y  37, 41  

https://www.sciencedirect.com/science/article/pii/S1350946220300951#bib172
https://www.sciencedirect.com/science/article/pii/S1350946220300951#bib172
https://www.sciencedirect.com/science/article/pii/S1350946220300951#bib93
https://www.sciencedirect.com/science/article/pii/S1350946220300951#bib121
https://www.sciencedirect.com/science/article/pii/S1350946220300951#bib46
https://www.sciencedirect.com/science/article/pii/S1350946220300951#bib228
https://www.sciencedirect.com/science/article/pii/S1350946220300951#bib34
https://www.sciencedirect.com/science/article/pii/S1350946220300951#bib33
https://www.sciencedirect.com/science/article/pii/S1350946220300951#bib204
https://www.sciencedirect.com/science/article/pii/S1350946220300951#bib114
https://www.sciencedirect.com/science/article/pii/S1350946220300951#bib32
https://www.sciencedirect.com/science/article/pii/S1350946220300951#bib32
https://www.sciencedirect.com/science/article/pii/S1350946220300951#bib43
https://www.sciencedirect.com/science/article/pii/S1350946220300951#bib35
https://www.sciencedirect.com/science/article/pii/S1350946220300951#bib41
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Table 1.6  A summary of reported CARE for different myopia control strategies, across the 

literature, as adapted and recreated from Brennan et al. (2020a), where 
abbreviations are as follows: Devices (Opt – optical interferometric biometry; US - 
ultrasound); Rand. (whether the study was randomised); N = (T, C) indicating the 
sample size in treated and control groups.     

 
  

1.2.8.2 Models of Growth  

Research efforts have validated longitudinal population- and age- specific growth percentile 

charts referencing the visual development (refractive error and ocular biometry) of children and 

adolescents using large epidemiological cohorts, in order to estimate abnormally distributed 

clinical myopia relative to normative data. Early (Jones et al., 2005) and later (Rozema et al., 

2019) studies have also shown that myopia onset occurs at around a similar AL between future 

myopes and children who remained emmetropic, where boys and future myopes had a greater 

axial elongation rate than girls and persistent emmetropes, respectively. The study by Jones et 

al. (2005) tested 247 Californian myopic children of age 6-14 between 1989-2001 and produced 

differing myopic and persistent emmetropic growth curves for corneal power, axial length, as 

well as anterior and vitreous chamber depth. Furthermore, Rozema et al. (2019) added from 

their longitudinal SCORM data that future myopes had higher lenticular power loss than 

persistent emmetropes, before myopia onset. The Collaborative Longitudinal Evaluation of 

Ethnicity and Refractive Error (CLEERE) Study, which tested 1854 nonmyopic children, 

highlighted the relatively low sensitivity and specificity of first grade refractive error and the 

number of myopic parents alone for predicting myopia onset between grades two and eight, 

being 62.5% and 81.9%, respectively (Jones-Jordan et al., 2010). These results suggested that 

a multitude of myopia predictors must be combined to produce models with greater accuracy. 

Zadnik et al. (2015) also used CLEERE data, based on 4512 nonmyopic children from grades 

one to eight of diverse ethnicities between 1989 and 2010. The authors investigated 13 possible 

risk factors for their predictive ability of myopia onset and stated spherical equivalent refractive 

error as the best factor for estimation, particularly six years old children of <0.75 D. Zhang et al. 

(2011) validated a three-year predictive myopia model from two different population cohorts 

(236 and 1979 Chinese children from mixed urban-rural Xiamen and Singapore, respectively) by 

using measures of visual acuity, refractive error, biometry, height, and weight. The authors 

reported similar sensitivity and specificity to Jones-Jordan et al. (2010), but additionally 

mentioned that children of the Singaporean cohort had more myopia, longer mean axial length, 

and were taller and heavier.  
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Chen et al. (2016) compared the Guangzhou Refractive Error Study in Children (RESC) cross-

section data of 4218 children aged 5-15 and the Guangzhou Twin Eye Study (GTES) 

longitudinal data between 2006-2012 of 354 children, in order to validate reference centile 

refraction curves for predicting the high myopia onset and scaled severity that may be 

representative of the South Chinese school-aged urban population. The authors noted the 

efficacy of this age-specific tool and particularly the lower percentiles, where the 5th centile was 

the best overall diagnostic test (92.9% sensitivity; 97.9% specificity; 65% positive predictive 

value). Other studies have focused on AL growth. Tideman et al. (2018) provided normative eye 

growth values for myopia prevention and control, representative of European children; the study 

sample of 12,386, combined the AL and corneal curvature data from the Dutch Generation R 

and Rotterdam Study III (RS-III), and British Avon Longitudinal Study of Parents and Children 

(ALSPAC) studies, but was limited to only Dutch refractive error data. The authors reported AL 

growth predicted future myopia at a 50% rate. Diez et al. (2019) produced similar AL percentile 

growth curves from 12,554 Chinese children aged 6-15 and offered a comparison. The Chinese 

and European populations had similar percentiles for AL at age 6, but Chinese children showed 

higher percentile AL values at the ages of 9 and 15, and females always exhibited lower ALs 

than their male counterparts. More recently, Jagadeesh et al. (2020) analyzed the myopia-

associated structural changes from multiple optic disc and retinal features (ODRFs) on 2851 

Chinese children aged 6-9. The authors suggested such data may additionally be used in 

predicting myopia incidence and AL progression, having planned for an upcoming validation 

study of this model. 

 

1.2.8.3 Machine Learning & Artificial Intelligence  

Prognostic algorithms based on large-scale EMRs, or big data, and integration with cloud 

technology remain an untapped, but potentially may be the ultimate future clinical tool in 

medicine. As Obermeyer & Emanuel (2016) reported, the ability of such methods to compile 

seemingly infinite, complex volumes of clinical parameters and predictors is still based on 

correlation principles, which are prone to overestimate biased real-world data and still cannot 

provide knowledge of causation. The current research is promising, but independent clinical 

validation databases from unique population and time clusters are limited. Lin et al. (2018) 

combined the refraction data of Chinese school-aged children from EMRs spanning eight 

independent centres and two longitudinal population-based cohorts (>half a million ophthalmic 

records between 2005-2015), in order to validate a predictive random forest (RF) algorithm for 

high myopia in adulthood. By using the age of examination, spherical equivalent, and annual 
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progression rate predictors, the authors concluded that their model was clinically accurate in 

predicting high myopia over 10 years, which may be used as a targeted myopia progression 

monitoring and control intervention tool representative of Chinese school-aged populations. A 

more recent study by Yang et al. (2020) for instance, applied a Gradient Boosting Regression 

Tree (GBRT) machine learning method based on correlation analysis and found their predictive 

Support Vector Machine (SVM) model to be accurate. Other works have analysed 

Electrooculogram (EOG) data by various data mining techniques (Logistic Regression [LR]; 

Naive Bayes [NB]; RF; REP Tree [RT]) to categorise individual ametropia (Kaya et al., 2018), 

whilst Multiple Kernel Learning (MKL) frameworks have been utilised to predict ocular pathology 

(Xu et al., 2018). Thus, validated prospective models originating from the analysis and synthesis 

of longitudinal myopia progression datasets may hold the most promise towards solving the 

global myopia prediction problem.   

 

1.2.8.4 App & Device Tools  

Additional methods of predicting and tracking myopia progression exist. The Myopia Calculator 

by the BHVI combines patient history (age, ethnicity, refractive error) with the available 

evidence-based myopia control strategies to estimate an individual’s future myopia outlook 

using average data. The calculator is based on BHVI statistical datasets and the meta-analysis 

by Donovan et al. (2012) of myopia progression rates among urban Asian and European 

children corrected with single-vision spectacles from 20 studies, all spanning 1-3 years. Its 

effectiveness has been compared to the Northern Ireland Childhood Errors of Refraction 

(NICER) longitudinal data, where McCullough et al. (2016) evaluated the six-year refractive 

error change in UK Caucasian children and adolescents (aged 6-19) relative to an Australian 

cohort of European Caucasian children, as well as retrospective UK data of 50 years. Overall, 

the literature suggests accuracy of the BHVI calculator to improve with age (>12) and higher 

baseline refractive error, whereas myopia progression rates are prone to overestimation in 

younger Caucasian children; for instance, the BHVI Myopia Calculator overestimated myopia 

progression for groups aged 9-10 and 12-13 by 1 D and 0.75 D, respectively, than the NICER 

model. The Myappia Calculator, created by Thomas Aller in 2016, is another digital tool utilising 

peer-reviewed growth curves from large population cohorts, but also states it incorporates other 

myopia risk factors into its progression estimates aimed for a range of 10 years. The EndMyopia 

Calculator is one other, but different calculator, which has inputs for a patient’s current spherical 

prescription (D) and blur-distance or edge of blur (cm), in order to provide a true myopia value 

(D) result, according to the developers. This tool could eventually be used as an alternative 
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customisable monitoring option for parents and their children next to other recent smartphone 

application technologies, such as Plano of the Singapore National Eye Centre by Mo Dirani in 

2017, which tracks a child’s digital device habits and behaviour. The smartphone/smartwatch 

wearable FitSight tracker evaluating time spent outdoors patterns and associated levels of light 

illumination follows the same concept (Verkicharla et al., 2017). Although more validation is 

necessary, these options together could aid global myopia screening efforts by adding more 

longitudinal databases and consequentially enhance the ability to predict myopia.  

The combined advancement of the mentioned science and technology in this review has also 

allowed for the development of specialty instrumentation tailored to assessing and predicting 

myopia. These include the very new Myopia Master (2019) from OCULUS and MYAH (2020) by 

Topcon. OCULUS stated that the Myopia Master is the first device to apply the licensed 

predictive refractive error algorithms by the BHVI, alongside a documenting software for 

myopia-specific risk factors (ethnicity, number of nearsighted parents, time spent with outdoor 

and near-vision tasks) and measurement parameters (refraction, AL, keratometry); in order to 

compare an individual patient’s values to a large built-in age-related normative database, 

providing growth curves for refraction and AL. According to Topcon, MYAH assesses corneal 

topography coupled with aberration summary and support for specialty myopia contact lens 

fitting, dynamic pupillometry, AL by optical low coherence interferometry, myopia progression 

relative to treatment efficacy and provided initial baseline, as well as comprehensive dry eye 

analysis. Since these instruments are brand new, no peer-reviewed validation yet exists.   

 

1.2.8.5 Summary  

The predicting and tracking of myopia are multifactorial. Research involving large datasets of 

bespoke associated risk factors for individual patients across unique ethnic regions is still 

necessary to explain discrepancies in progression rates of similar cohorts. Moreover, these 

datasets must be perpetually updated to precisely reflect global epidemiological shifts. Axial 

length changes alone are insufficient to predict future myopia and should be considered 

alongside the other optical, structural, genetic, and environmental patterns discussed, in order 

to create true comparative emmetropic and myopic growth models. This may lead to greater 

specificity for predicting and tracking clinical myopia, as well as the efficacy of any 

correspondingly applied control treatments. Although various developments in these 

assessments exist, further validation is required to expand success outside of averaging the 

highly myopic and at-risk children. 
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Chapter 2 Global trends in myopia management attitudes and strategies in clinical    
practice – 2019 update  

2.1 Introduction 

Due to the uncontrolled global myopia growth, perpetual improvement in the evidence-based 

understanding of its vision risks and associated management remains essential. Holden et al. 

(2016) projected myopia to affect half of the world’s inhabitants by 2050 and its propensity to 

become the leading cause for irreversible blindness. Deeming it a public health concern 

worldwide, The International Myopia Institute (IMI) released white papers (available online: 

https://www.myopiainstitute.org/imi-white-papers.html) compounding the latest and complete 

knowledge surrounding myopia across seven expert committees, including: Myopia Control 

Reports Overview and Introduction (Wolffsohn et al., 2019); Defining and Classifying Myopia 

(Flitcroft et al., 2019); Experimental Models of Emmetropization and Myopia (Troilo et al., 2019); 

Myopia Genetics (Tedja et al., 2019); Interventions for Myopia Onset and Progression (Wildsoet 

et al., 2019); Clinical Myopia Control Trials and Instrumentation (Wolffsohn et al., 2019); 

Industry Guidelines and Ethical Considerations for Myopia Control (Jones et al., 2019); Clinical 

Myopia Management Guidelines (Gifford et al., 2019). This is a major milestone among many, 

as the field has always continued to expand and develop: the biennial International Myopia 

Conference, since 1964; the National Committee on Myopia, since 1990s; joint global myopia 

scientific meeting by the World Health Organization and the Brien Holden Vision Institute 

(2015); FDA interdisciplinary public workshop on myopia clinical trial design (2016).  

               

During the past two decades, research in the field of myopia has extrapolated, but global 

agreement of an optimum and standardized treatment guidance is still limited. Similarly, 

reported practitioner perception in the literature is scarce. A survey by Jung et al. (2011) noted 

that most Korean ophthalmologists preferred to prescribe full cycloplegic spectacle refraction for 

childhood myopia control, followed by orthokeratology and spectacle undercorrection, whilst 

atropine was mostly considered ineffective. An international perspective (Zloto et al., 2018), but 

also solely focused on the prescribing trends of pediatric ophthalmologists, reported: 57% of the 

total 940 respondents routinely engaged in myopia control, but a lack of consensus remained on 

when to initiate treatment; the main precursor for treatment was myopia progression of ≥ 1 

D/year; 70% prescribed eye drops of which atropine 0.01% accounted for 63.4%; 86% 

recommended increased time spent outdoors, whilst 60.2% and 63.9% advised less screen 

viewing and smartphone use respectively. From the survey conducted in 2015, Wolffsohn et al. 

(2016) reported that despite the high concern and activity over myopia progression and control 

https://www.myopiainstitute.org/imi-white-papers.html
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respectively, most eye care practitioners worldwide prescribed single vision spectacles and 

contact lenses. This paper provides an update of these attitudes and trends toward myopia 

management strategies in clinical practice four years later. 

 

2.2 Method 

A self-administrated, internet-based cross-sectional survey in Chinese, English, French, 

German, Italian, Portuguese, Russian and Spanish was distributed using software 

SurveyMonkey (Palo Alto, California, USA) through various professional bodies across the 

world to reach eye care professionals (optometrists, dispensing opticians, ophthalmologists and 

others) globally. The survey matched the 2015 version (Wolffsohn et al., 2016) comprising of 

nine questions relating to the self-reported clinical management behaviours of practitioners for 

progressive myopia and practitioner’s current opinions on myopia related clinical care including: 

• level of concern about the increasing frequency of paediatric myopia in their clinical practice 

(rated as ‘Not at all,’ to ‘extremely,’ on a 10 point scale) 

• perceived effectiveness, defined as the expected level of reduction in childhood myopia 

progression of a range of myopia control options (rated as a percentage from 0 to 100%) 

• how active they would consider their clinical practice in the area of myopia control (rated as 

‘Not at all,’ to ‘fully,’ on a 10 point scale) 

• frequency of prescribing different myopia correction options for progressive / young myopes 

during a typical month  

• minimum age a patient would need to be for them to consider myopia refractive correction 

options (assuming average handling skills and child/parent motivation) 

• minimum amount of myopia that would need to be present to consider myopia refractive 

correction options (specified in half dioptre steps) 

• minimum level of myopia progression that would prompt a practitioner to specifically adopt a 

myopia control approach (specified in quarter dioptre steps) 

• frequency of adopting single vision under-correction as a strategy to slow myopia 

progression (reported as ‘no,’ ‘sometimes,’ or ‘always’)? 

• if they had only ever fitted single vision spectacles/contact lenses for myopic patients, what 

had prevented them (multiple options could be selected) from prescribing alternative 

refractive correction methods; options consisted of: 

o They don’t believe that these are any more effective 

o The outcome is not predictable 

o Safety concerns 
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o Cost to the patient makes them uneconomical 

o Additional chair time required 

o Inadequate information / knowledge 

o Benefit / risk ratio 

o Other 

 

There was an option to add further comments to each of the questions and the topic as a whole. 

Voluntary participation in the survey, following an explanation of the research, was anonymous, 

however, respondents were asked to provide basic demographic information about themselves 

(highest qualification, years of being qualified and everyday working environment). The data 

was collected between October 2018 and April 2019. 

 

Statistical Analysis 

Statistical analysis was conducted with SPSS (v21 IBM, New York, USA). Only complete 

surveys were analysed. Median, mean and standard deviations were calculated for each 

question response, with the results grouped by continent (Asia, Australasia, Europe, North 

America and South America) and countries within a continent where response rate allowed (n ≥ 

30), with Kruskal-Wallis tests applied to determine statistical difference (taken as p < 0.05) 

between them. For conciseness, only significant comparisons have been reported. 

 

2.3 Results 

Responses 

The total number of 1,336 complete survey responses were received, with the distribution by 

continent being: Africa 13 (not included in further analysis), Asia 202, Australasia 79; Europe 

717; Middle East 5 (not included in further analysis), North America 147; and South America 

173. Country specific responses could be extracted from: 

• Europe: Germany (n=68), Italy (n = 102), Netherlands (n = 40) Portugal (n = 76), Russia 

(n=78), Spain (n = 173) and UK/EIRE (n = 78) 

• Asia: China (n = 37), Hong Kong (n = 59) and India (n = 30) 

• North America; Canada (n = 47) and USA (n = 90) 

Of the study participants, 72.5% (n=968) were optometrists, 19.6% (n = 262) were 

ophthalmologists, 6.7% (n = 90) were contact lens opticians and 1.2% (n = 16) were other types 

of eye care specialists. The principal working environment for 90.7% was in clinical practice (n = 

1,212), 5.1% worked in academia (n = 68), 2.1% worked within industry (n = 29) and 2.1% (n = 
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29) worked in other environments. However, all study participants were registered eye care 

practitioners. The median number of years qualified was the 11-20 category, with a normal 

distribution.   

 

Self-reported concern about the increasing frequency of paediatric myopia (Figure 2.1) 

Practitioners’ concern about the increasing frequency of paediatric myopia in their practices was 

highest (9.0 ± 1.6; p < 0.001) in Asia and lowest (7.6 ± 2.2; p < 0.001) in Australasia among the 

surveyed continents, with similar levels across Europe (8.0 ± 2.2; p < 0.001), North (7.9 ± 2.1; p 

< 0.001) and South America (8.5 ± 2.2; p < 0.001). In Asia, Chinese practitioners were more 

concerned (9.5 ± 1.2; p < 0.001) than those in Hong Kong (8.7 ± 1.4; p < 0.001) or India (8.9 ± 

1.3; p < 0.001). In Europe, practitioners from Russia (8.7 ± 1.9; p < 0.001), Portugal (8.7 ± 2.0; p 

< 0.001) and Spain (8.5 ± 1.9; p < 0.001) were most concerned, followed by Italy (7.8 ± 2.2; p < 

0.001) and the UK/EIRE (7.5 ± 2.5; p < 0.001), with lowest concern in the Netherlands (7.1 ± 

2.3; p < 0.001) and Germany (6.4 ± 2.3; p < 0.001). In North America, practitioners from the 

USA (8.1 ± 2.0; p < 0.001) were more concerned than their Canadian (7.5 ± 2.2; p < 0.001) 

neighbours. 
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Continental Location
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Figure 2.1: Level of practitioner concern (rated from 0-10) regarding the perceived increasing 
frequency of paediatric myopia in their practice for practitioners located in 
different continents. N=1,336. Box = 1 SD, line = median and whiskers 95% 
confidence interval. 

 

Perceived effectiveness of myopia control options (Table 2.1) 

Overall, orthokeratology was perceived by practitioners to be the most effective method of 

myopia control, followed by pharmaceutical approaches and approved myopia control soft 

contact lenses. The least effective perceived methods were single vision distance under-

correction and single vision spectacles, as well as single vision soft contact lenses and 

refractive surgery options. These findings were largely consistent across all continents with 

some variations: practitioners from South America held the lowest relative consideration 

regarding the most effective perceived methods, whilst practitioners from Asia, Europe, and 

South America held the highest relative consideration for the least effective perceived methods 

(p < 0.001). Moreover, the single vision spectacles modality was considered the 7th least 

effective out of the 12 survey choices in South America (p < 0.001). Practitioners from Asia 
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considered bifocals and progressive addition (PALs) lenses to be relatively more effective for 

reducing childhood myopia progression compared with practitioners from all other continents (p 

< 0.001). Practitioners from Australasia and North America perceived single vision distance 

under-correction, single vision spectacles, rigid gas permeable (RGP) and single vision soft 

contact lenses, refractive surgery, and increased time outdoors as less effective than 

practitioners from other continents (p < 0.001).  

 

Within Asia, Chinese practitioners generally held the highest relative consideration for most 

myopia control options, whereas practitioners from Hong Kong held the least overall perceived 

effectiveness for most myopia control options (p < 0.001). Similar effectiveness among 

practitioners from China, Hong Kong, and India was perceived for multifocal and approved 

myopia control soft contact lenses, as well as orthokeratology and pharmaceutical modalities (p 

< 0.001). Within Europe, the Netherlands generally held the lowest relative consideration for 

most myopia control options, whereas practitioners from Portugal, Russia, and Spain held the 

highest overall perceived effectiveness for most myopia control options (p < 0.001). Spanish 

practitioners perceived approved myopia control soft contact lenses and orthokeratology as 

more effective than their European colleagues, while Portuguese practitioners did so regarding 

refractive surgery (p < 0.001). Russian practitioners perceived pharmaceutical methods as less 

effective than other European practitioners, while Italian practitioners and those from the 

UK/EIRE did so regarding increased time spent outdoors (p < 0.001).  Within North America, 

practitioners from the USA perceived rigid gas permeable (RGP) and multifocal soft contact 

lenses, as well as orthokeratology and pharmaceutical options as more effective than their 

Canadian counterparts (p < 0.001). 
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 Continent 

Technique  
Asia Australasia Europe 

North 

America 

South 

America 

S
p

e
c

ta
c

le
s
 

Under-correction 11.6 ± 21.6 -0.2 ± 6.6 6.9 ± 17.6 1.4 ± 4.6 14.9 ± 21.9 

Single Vision   17.6 ± 24.9 1.2 ± 3.8 13.4 ± 24.7 1.2 ± 3.7 21.3 ± 32.9 

Bifocals 33.0 ± 22.7 25.4 ± 17.4 19.4 ± 20.5 16.7 ± 15.1 16.0 ± 22.2 

Progressive 

Addition (PALs) 
32.9 ± 23.0 22.4 ± 15.2 20.9 ± 21.4 16.5 ± 14.9 18.2 ± 24.6 

C
o

n
ta

c
t 

L
e
n

s
e

s
 

Rigid Gas 

Permeable (RGP) 
25.0 ± 27.8 8.4 ± 16.3 16.8 ± 24.1 6.8 ± 12.7 15.0 ± 25.1 

Single Vision Soft 18.1 ± 24.6 3.1 ± 10.3 13.1 ± 21.9 1.7 ± 4.5 16.3 ± 27.1 

Multifocal Soft 31.9 ± 23.6 35.7 ± 18.0 26.6 ± 22.5 31.4 ± 19.0 21.9 ± 26.6 

Approved Myopia 

Control Soft 
45.4 ± 24.0 45.6 ± 18.2 44.1 ± 24.4 42.9 ± 20.0 29.0 ± 29.4 

Orthokeratology 60.7 ± 21.9 52.5 ± 21.2 52.1 ± 24.7 48.3 ± 22.0 34.8 ± 31.1 

  Pharmaceutical 54.5 ± 23.6 52.1 ± 20.9 43.1 ± 26.9 45.6 ± 21.3 43.0 ± 29.8 

  Refractive Surgery 20.6 ± 33.0 7.7 ± 21.3 13.9 ± 25.6 8.1 ± 22.2 13.9 ± 24.8 

  Increased Time 

Outdoors  
43.6 ± 27.8 20.4 ± 20.5 37.1 ± 27.7 22.4 ± 20.1 40.2 ± 31.8 

Table 2.1: Perceived effectiveness (defined as the expected level of reduction in childhood 
myopia progression in percent) of myopia control options by practitioners in 
different continents. Data are expressed as mean ± S.D. 

 

Perceived level of clinical activity in the area of myopia control (Figure 2.2) 

Practitioners from Asia considered their clinical practice of myopia control to be the most active 

(7.7 ± 2.3; p < 0.001) among the surveyed continents, with similar levels for Australasia (7.3 ± 

2.5; p < 0.001) and Europe (7.0 ± 4.2; p < 0.001), and least by practitioners from North America 

(6.3 ± 2.9; p < 0.001) and South America (6.4 ± 3.2; p < 0.001). North American practitioners 

perceived themselves to be the least active in this area of practice (p < 0.001). Within Europe, 

practitioners from Russia (8.5 ± 9.8; p < 0.001) reported the highest perceived level of clinical 

activity in myopia control and the lowest was reported by those from the UK/EIRE (6.1 ± 3.5; p < 

0.001), with similar responses by Spain (7.0 ± 2.6; p < 0.001), Italy (7.0 ± 2.3; p < 0.001), 

Portugal (6.6 ± 2.5; p < 0.001), the Netherlands (6.6 ± 2.6; p < 0.001), and Germany (6.6 ± 3.0; 

p < 0.001). Within Asia, Indian practitioners (6.3 ± 2.6; p < 0.001) considered themselves 

relatively less active than their counterparts in China (8.4 ± 2.2; p < 0.001) or Hong Kong (8.1 ± 
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2.0; p < 0.001). Within North America, Canadian practitioners (5.7 ± 3.0; p < 0.001) considered 

themselves less active than those from the USA (6.6 ± 2.8; p < 0.001). 
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Figure 2.2: Perceived level of clinical activity in the area of myopia control for practitioners 
located in different continents. N=1,336. Box = 1 SD, line = median and whiskers 
95% confidence interval. 

 

Frequency of prescribing different myopia correction options for progressing / young myopes 

(Table 2.2) 

The majority of progressing / young myopes were being prescribed single vision (full correction) 

spectacles (39.3 ± 30.0%), followed by single vision soft contact lenses (12.3 ± 15.5%) and 

orthokeratology (12.0 ± 20.0%). The least frequently prescribed myopia correction option was 

refractive surgery (0.8 ± 4.1%), followed by rigid gas permeable (RGP) contact lenses (2.1 ± 

6.6%) and bifocal spectacles (2.4 ± 6.2%). Progressive addition (PALs) spectacles (8.8 ± 

14.5%), multifocal soft contact lenses (6.8 ± 13.9%), approved myopia control soft contact 

lenses (7.3 ± 13.0%), and pharmaceutical (8.2 ± 16.3%) options were prescribed at a similar 

frequency. These findings were largely consistent across all continents with some variations. 
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Practitioners from Asia indicated prescribing single vision (full correction) spectacles most 

frequently, whereas those from Australasia prescribed them least often (p < 0.001). Also, 

practitioners from Asia indicated prescribing bifocal spectacles most frequently for progressing / 

young myopes, whereas those from South America prescribed them least often (p < 0.001). 

Practitioners from Australasia, and to a lesser degree, practitioners from Asia, prescribed 

progressive addition (PALs) spectacles more frequently than those from other continents, while 

the option was prescribed least often by South America (p < 0.001). South American 

practitioners prescribed rigid gas permeable (RGP) contact lenses most frequently to these 

patients, while was done least often by their counterparts in Australasia (p < 0.001). 

Practitioners from North America and Australasia prescribed more single vision and multifocal 

soft contact lenses respectively, while Asian practitioners prescribed these options less often 

than other regions (p < 0.001). Approved myopia control soft contact lenses are being 

prescribed most in Australasia, Europe, and North America, while notably less in Asia and 

South America (p < 0.001). Practitioners from Australasia, and to a lesser degree, practitioners 

from Europe, prescribed orthokeratology more frequently than their counterparts, while the 

option was prescribed least frequently by South American practitioners (p < 0.001). South 

American practitioners indicated utilising pharmaceutical options notably most frequently for 

progressing / young myopes, while those from Asia and Europe did so the least (p < 0.001). 

South American practitioners also recommended refractive surgery more than other continents 

for these patients, but the prescribing frequency was still low (p < 0.001).  

 

Within Asia, practitioners from India prescribed single vision spectacles, rigid gas permeable 

(RGP), single vision, multifocal, and approved myopia control soft contact lenses, as well as 

pharmaceutical myopia correction options most frequently (p < 0.001). Chinese practitioners 

prescribed progressive addition (PALs) spectacles the most frequently and orthokeratology the 

least in comparison to Hong Kong and India (p < 0.001). Within Europe, practitioners from 

Russia and Spain prescribed single vision spectacles and soft contact lenses most frequently, 

whereas practitioners from the Netherlands prescribed these options the least (p < 0.001). 

Russian practitioners also prescribed bifocal and progressive addition (PALs) spectacles the 

most, whereas their colleagues from the Netherlands and Portugal did so the least (p < 0.001). 

German practitioners prescribed rigid gas permeable (RGP) and multifocal soft contact lenses 

most frequently, whereas those from the UK/EIRE and Portugal prescribed these options the 

least respectively (p < 0.001). Spanish practitioners demonstrated the highest frequency of 

prescribing approved myopia control soft contact lenses (p < 0.001). Orthokeratology was 
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prescribed the most in Italy and the Netherlands, and the least by Portuguese practitioners (p < 

0.001). Russian practitioners had the highest frequency of prescribing pharmaceutical and 

refractive surgery options (p < 0.001). Within North America, practitioners from the USA 

prescribed single vision spectacles and soft contact lenses more frequently than their Canadian 

colleagues (p < 0.001).       

 

Continent  

Technique  
Asia Australasia Europe 

North 

America 

South 

America 

S
p

e
c

ta
c

le
s
 Single Vision   54.7 ± 31.9 18.8 ± 22.3 37.3 ± 29.3 36.5 ± 30.5 49.3 ± 35.8 

Bifocals 3.4 ± 7.7 2.8 ± 6.2 2.0 ± 7.5 2.6 ± 5.7 1.1 ± 4.0 

Progressive 

Addition (PALs) 

11.0 ± 15.5 19.4 ± 20.3 4.5 ± 10.5 5.6 ± 14.3 3.7 ± 11.9 

C
o

n
ta

c
t 

L
e
n

s
e

s
 

Rigid Gas 

Permeable (RGP) 

1.8 ± 4.7 0.3 ± 1.1 2.9 ± 9.6 1.1 ± 9.1 4.5 ± 8.4 

Single Vision Soft 7.2 ± 13.0 9.6 ± 13.3 15.6 ± 17.3 16.6 ± 19.0 12.4 ± 14.8 

Multifocal Soft 1.7 ± 5.1 13.0 ± 18.5 5.5 ± 13.7 8.2 ± 15.5 5.6 ± 16.7 

Approved Myopia 

Control Soft 

3.6 ± 8.7 10.5 ± 14.9 10.5 ± 16.9 9.6 ± 16.4 2.2 ± 8.3 

Orthokeratology 11.5 ± 20.4 16.8 ± 22.0 15.9 ± 24.4 12.3 ± 19.4 3.3 ± 11.8 

  Pharmaceutical 4.1 ± 11.9 8.7 ± 11.7 4.7 ± 15.0 7.2 ± 12.1 16.3 ± 30.7 

  Refractive Surgery 0.9 ± 4.1 0.1 ± 0.6 1.0 ± 6.7 0.4 ± 2.9 1.7 ± 6.3 

Table 2.2: Frequency of prescribing myopia correction options for progressing / young 
myopes by practitioners in different continents for progressing / young myopes. 
Data are expressed as mean ± S.D. 

 

 

Minimum patient age that practitioners consider myopia correction options (Table 2.3) 

Overall, single vision spectacles were prescribed from the youngest age (6.8 ± 4.2 years), 

whereas rigid gas permeable (RGP) contact lenses were reserved for older children (13.3 ± 

5.3). Bifocal spectacles (8.9 ± 5.7), progressive addition (PALs) spectacles (8.9 ± 6.0), single 

vision soft contact lenses (9.0 ± 4.8), multifocal soft contact lenses (10.2 ± 4.9), specific myopia 
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control soft contact lenses (8.9 ± 4.0), orthokeratology (9.7 ± 4.8), and pharmaceutical (9.6 ± 

6.0) options were all prescribed for a similar minimum patient age range. Practitioners from all 

regions did not recommend refractive surgery to patients under 18 years of age (19.6 ± 1.6). 

Practitioners from Asia, Australasia, and North America were more conservative in their 

minimum fitting age of rigid gas permeable (RGP) contact lenses than European and South 

American practitioners (p < 0.001). Practitioners from Asia were most conservative in their 

minimum patient age for prescribing single vision, multifocal, and specific myopia control soft 

contact lenses (p < 0.001). South American practitioners tended to be least conservative 

towards most myopia correction options relative to their colleagues (p < 0.001).   

 

Within Asia, practitioners from Hong Kong were the most conservative in their minimum age for 

fitting rigid gas permeable (RGP), single vision and multifocal soft contact lenses, as well as 

pharmaceuticals (p < 0.001). Practitioners from India were the most conservative in fitting 

bifocal and progressive addition (PALs) spectacles, as well as orthokeratology (p < 0.001). 

Chinese practitioners were least conservative in prescribing bifocal spectacles, multifocal soft 

contact lenses, and pharmaceutical options (p < 0.001). Within Europe, practitioners from the 

Netherlands were the most conservative in their minimum age for fitting most of the myopia 

correction options, followed by the UK/EIRE, particularly for bifocal and progressive addition 

(PALs) spectacles, rigid gas permeable (RGP) contact lenses, as well as orthokeratology, 

pharmaceutical, and refractive surgery (p < 0.001). Within North America, Canadian 

practitioners were more conservative regarding bifocal spectacles and orthokeratology than 

their USA colleagues (p < 0.001).  
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Continent  

Technique  
Asia Australasia Europe 

North 

America 

South 

America 

S
p

e
c

ta
c

le
s
 

Single Vision   

7.0 ± 4.4 (1) 8.0 ± 6.0 6.0 ± 3.2 

(10) 

7.7 ± 5.9 5.5 ± 1.7 

(12) 

Bifocals 

10.4 ± 6.5 

(13) 

9.5 ± 6.9 9.0 ± 6.1 

(30) 

9.6 ± 7.0 5.9 ± 2.1 

(44) 

Progressive 

Addition (PALs) 

9.4 ± 4.9 (7) 7.6 ± 5.1 9.4 ± 5.7 

(27) 

10.4 ± 7.0 7.5 ± 3.6 

(48) 

C
o

n
ta

c
t 

L
e
n

s
e

s
 

Rigid Gas 

Permeable (RGP) 

15.2 ± 5.6 

(8) 

15.4 ± 6.2 10.8 ± 4.8 

(28) 

14.2 ± 6.2 10.9 ± 3.9 

(45) 

Single Vision Soft 

13.2 ± 5.2 

(10) 

11.1 ± 5.8 9.0 ± 3.9 (9) 10.4 ± 5.3 10.2 ± 3.9 

(22) 

Multifocal Soft 

13.8 ± 5.9 

(16) 

9.9 ± 5.2 9.3 ± 4.5 

(26) 

9.4 ± 4.9 8.8 ± 4.1 

(52) 

Specific Myopia 

Control Soft 

10.8 ± 4.8 

(11) 

8.5 ± 3.9 7.8 ± 3.2 (4) 8.3 ± 3.9 9.2 ± 4.2 

(30) 

Orthokeratology 

9.8 ± 5.1 

(10) 

9.6 ± 5.0 9.3 ± 4.0 (8) 10.7 ± 6.1 9.1 ± 4.2 

(35) 

  Pharmaceutical 

13.0 ± 7.6 

(13) 

8.5 ± 5.8 10.6 ± 6.9 

(51) 

9.5 ± 6.5 6.5 ± 3.2 

(16) 

  Refractive Surgery 

19.9 ± 2.1 

(23) 

20.4 ± 1.2 19.3 ± 2.7 

(55) 

20.4 ± 1.2 18.2 ± 0.9 

(46) 

Table 2.3: Minimum patient age considered necessary by practitioners (from different 
continents who prescribed these options for different myopia correction options. 
Data are expressed as mean ± S.D years (% that would not prescribe this 
refractive modality). 

 

Minimum degree of myopia that needs to be present for practitioners to consider myopia control 

options (Table 2.4) 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    60 
 

Overall, practitioners indicated that myopia would be corrected with single vision spectacles at 

the lowest degree of myopia (-0.82 ± 0.58 D), whereas it would be corrected with refractive 

surgery at the highest degree (-2.80 ± 1.72 D). All other myopia control options would be 

considered at approximately -1.50 D, except for rigid gas permeable (RGP) contact lenses that 

were considered at -2.50 D. Australasian and North American practitioners were willing to fit 

most modalities at a lower level of myopia than Asian, European or South American clinicians (p 

< 0.001). South American practitioners required a higher level of myopic refractive error before 

they would consider bifocal spectacles, multifocal soft contact lenses, and orthokeratology than 

all other regions (p < 0.001). Asian practitioners prescribed rigid gas permeable (RGP) and 

single vision soft contact lenses, as well as refractive surgery to children with higher degree of 

myopia than others (p < 0.001). However, North American practitioners considered rigid gas 

permeable (RGP) contact lenses at a lower level of myopia than in other continents (p < 0.001). 

Practitioners from Asia and South America recommended approved myopia control soft contact 

lenses and pharmaceutical options at higher levels of myopia (p < 0.001). 

 

Within Asia, Indian practitioners required a higher level of refractive error before they would 

consider bifocal and progressive addition (PALs) spectacles, as well as orthokeratology, 

pharmaceutical and refractive surgery options (p < 0.001) than practitioners from China or Hong 

Kong. Within Europe, Portuguese practitioners considered single vision, bifocal and progressive 

addition (PALs) spectacles, rigid gas permeable (RGP) and approved myopia control soft 

contact lenses, orthokeratology, pharmaceutical, and refractive surgery options for a higher 

myopia level than other countries in the continent (p < 0.001). Spanish practitioners also 

required a higher level of myopia for approved myopia control soft contact lenses and 

pharmaceuticals, as well as multifocal soft contact lenses (p < 0.001). Italian practitioners 

required high myopia levels when considering refractive surgery (p < 0.001). Practitioners from 

Russia required a higher level of myopia before utilising single vision soft contact lenses, but 

lower levels for pharmaceuticals relative to their European colleagues (p < 0.001). Practitioners 

from the UK/EIRE considered single vision, bifocal and progressive addition (PALs) spectacles, 

single vision, multifocal and approved myopia control soft contact lenses, and refractive surgery 

options for a lower myopia level than others in the continent (p < 0.001). German practitioners 

also required a lower level of myopia for single vision, bifocal and progressive addition (PALs) 

spectacles, as well as rigid gas permeable (RGP) and single vision soft contact lenses (p < 

0.001). The same was reported by practitioners from the Netherlands regarding single vision 

and bifocal spectacles, and rigid gas permeable (RGP) and single vision soft contact lenses (p < 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    61 
 

0.001). The only difference across North America was that Canadian practitioners required a 

higher level of myopia before they would consider rigid gas permeable (RGP) contact lenses 

than those from the USA (p < 0.001).  

 

Continent  

Technique  
Asia Australasia Europe 

North 

America 

South 

America 

S
p

e
c

ta
c

le
s
 Single Vision   -1.0 ± 0.9 -0.6 ± 0.2 -0.9 ± 0.7 -0.7 ± 0.4 -0.9 ± 0.7 

Bifocals -1.8 ± 1.4 -0.9 ± 0.4 -1.8 ± 1.3 -1.2 ± 1.0 -2.3 ± 1.7 

Progressive 

Addition (PALs) 

-1.7 ± 1.2 -0.8 ± 0.3 -1.8 ± 1.3 -1.2 ± 1.1 -2.0 ± 1.6 

C
o

n
ta

c
t 

L
e
n

s
e

s
 

Rigid Gas 

Permeable (RGP) 

-2.9 ± 2.0 -2.5 ± 2.1 -2.4 ± 2.0 -2.0 ± 1.6 -2.7 ± 2.1 

Single Vision Soft -1.8 ± 1.4 -1.0 ± 0.4 -1.3 ± 0.9 -1.0 ± 0.5 -1.5 ± 1.2 

Multifocal Soft -1.7 ± 1.2 -1.0 ± 0.4 -1.6 ± 1.3 -1.2 ± 0.7 -1.9 ± 1.6 

Approved Myopia 

Control Soft 

-1.8 ± 1.5 -1.0 ± 0.4 -1.5 ± 1.1 -1.2 ± 0.7 -1.9 ± 1.6 

Orthokeratology -1.7 ± 1.3 -1.3 ± 0.7 -1.6 ± 1.0 -1.3 ± 0.7 -2.1 ± 1.6 

  Pharmaceutical -1.9 ± 1.8 -1.2 ± 0.5 -1.5 ± 1.3 -1.3 ± 1.0 -1.9 ± 1.2 

  Refractive Surgery -3.8 ± 2.4 -2.2 ± 1.0 -3.3 ± 2.3 -2.0 ± 1.2 -2.7 ± 1.7 

Table 2.4: Minimum level of patient myopia (in dioptres) before myopia correction options 
would be considered by practitioners from different continents who prescribed 
these options. Data are expressed as mean ± S.D. 

 

Minimum annual amount of patient myopia progression that would prompt a practitioner to 

specifically adopted a myopia control approach (Figure 2.3) 

The minimum myopia progression rate that practitioners considered warranted a myopia control 

approach was 0.51 to 0.75 D/year for the majority of respondents (36.7%), with 82% indicating a 

level between 0.25 and 1.00 D/year. Practitioners from Australasia indicated they would adopt 

myopia control strategies for the lowest level of myopia progression, followed by Europe and 

North America (p < 0.001). Highest rates of progression were required in South America, 

followed by Asia (p < 0.001). Practitioners from Australasia, Europe, and North America 
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particularly indicated a range between 0.26 and 0.75 D/year of patient myopia progression that 

would prompt the adaptation of a myopia control approach. In comparison, the range increased 

to between 0.26 and 1.00 D/year for Asian practitioners and spread further between 0.26 and > 

1.00 D/year among South American practitioners (p < 0.001). Other factors influencing 

practitioners’ management decisions, as identified from the free text responses, included 

ethnicity (1 respondent), absolute degree of refractive error at the time (2 respondents), 

environmental factors/lifestyle (2 respondents), lighting exposure (2 respondents), parental 

decisions (2 respondents), ocular biometry (3 respondents), family history of myopia (6 

respondents), and age of myopia onset (10 respondents).  
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Figure 2.3: Minimum annual amount of patient myopia progression, in dioptres per year 
(D/year), that practitioners located in different continents considered to 
necessitate a myopia control approach. N=1,336  

 

Use of single-vision under-correction as a strategy to slow myopia progression (Figure 2.4) 

Overall, most practitioners did not consider single-vision distance under-correction to be an 

effective strategy for attenuating myopia progression (79.6%). South American practitioners 

used this strategy relatively more than all other regions (p < 0.001). Within Asia, Indian 

practitioners utilised under-correction more than those from China or Hong Kong (p < 0.001). 

Within Europe, practitioners from Portugal, Russia, and Spain indicated using under-correction 
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as a strategy to control myopia more than their counterparts (p < 0.001). Within North America, 

there was no difference in the use of under-correction between Canada and the USA (p < 

0.001).  

Continent

Asia Australasia Europe N America S America

P
ra

c
ti

ti
o

n
e
rs

 (
%

)

0

20

40

60

80

100

No

Sometimes

Yes

 

Figure 2.4: Use of single-vision distance under-correction as a strategy to slow myopia 
progression by practitioners located in different continents. N=1,336.  

 

Factors preventing the prescription of a myopia control approach (Figure 2.5) 

The most common reasons practitioners gave for not adopting myopia control strategies were: 

they were felt to be uneconomical (20.6%); they considered there to be inadequate information 

about the modalities (17.6%); they viewed the outcomes to be unpredictable (9.6%); concerns 

about safety (8.5%); they perceived them to be ineffective for reducing myopia progression 

(7.9%); the benefit to risk ratio was too low (7.0%); and additional chair time (3.1%). There was 

no significant difference in the distribution of these factors between or within continents (p > 

0.05). Free text comments identified other factors affecting the prescription of these strategies to 

relate to the relative availability of the myopia control treatments and the instrumentation 

necessary to prescribe them, and the need for consistent regulations and informational 

materials.  
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Figure 2.5: Factors preventing practitioners located in different continents from prescribing a      
myopia control approach. N=1,336.  

 

2.4 Discussion 

This is the updated follow-up study to examine the self-reported attitudes and practices of eye 

care practitioners towards myopia control approaches across the globe. More than one 

thousand practitioners responded, principally spread over five continents. The exact response 

rate is not known, as maximum coverage was promoted by involving professional bodies whose 

members may not all be practicing eye care practitioners. However, it may be presumed that 

questionnaires are completed both by people cynical and enthusiastic to the issue being 

examined, balancing the average response. In addition, the recruitment approach across 

nations was the same, allowing cross-national comparisons. The majority of the respondents 

(92.1%) were again optometrists and ophthalmologists, reflecting those professions legally 

allowed to prescribe vision care correction and, in many regions, pharmaceuticals as well.  
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Once again, as one might expect from the high prevalence rates of myopia in Asia, Asian 

practitioners, especially those practicing in China, were more concerned about the increasing 

prevalence of paediatric myopia in their practices than clinicians in any of the other continents. 

A similar pattern existed in relation to how active they considered their clinical practice in the 

area of myopia control. Myopia prevalence is approximately 30% in 30-35 year olds in Spain 

(Montes-Mico et al., 2000) and may be increasing in Portugal (Jorge et al., 2007), but is as high 

as 58% in Italian university students, and as low as 23% in 12-13 year olds in the UK 

(McCullough et al., 2016) and 28% in Dutch school children (Hendricks et al., 2009); hence it is 

unclear why the former country’s practitioners are more concerned than the latter. The 

prevalence of myopia in the USA is around 42% in 12-54 year olds (Vitale et al., 2009). Despite 

their lower concern, the myopia occurrence is not documented in Canada; neither in Russia or 

Germany to warrant their higher and lower concern in Europe respectively. 

 

Overall, orthokeratology was again perceived by practitioners to be the most effective method of 

myopia control. However, in this survey update, eye care practitioners correctly perceived 

pharmaceutical approaches and approved myopia control soft contact lenses to be similarly 

effective, in accordance with the mentioned IMI white paper by Wildsoet et al. (2019). While 

single vision distance under-correction has been shown fairly conclusively to increase, rather 

than decrease, the rate of myopia progression in children (Chung et al., 2002; Adler et al., 

2006), there were still practitioners who consider the converse to be true; this was confirmed by 

a question later in the survey, with under-correction still practiced as a method of myopia control 

particularly by practitioners from South America, Portugal, Russia and Spain within Europe and 

India within Asia; however the reported use of undercorrection as a strategy for myopia control 

has decreased from the original survey (Wolffsohn et al., 2016). 

 

Despite the self-perceived activity of practitioners in the area of myopia control, still over half of 

progressing and/or young myopes were being prescribed single vision spectacles or contact 

lenses (52%), with continental and national differences in the adoption of refractive correction 

options known to reduce myopia progression. However, this is an improvement in comparison to 

the reported 68% from the original study four years ago (Wolffsohn et al., 2016). Approximately 

one third of practitioners not adopting myopia control approaches felt them to be uneconomical 

and/or that there was inadequate information about them; about another one third of 

respondents suggested that outcomes were unpredictable, the relative safety of these strategies 

was concerning, myopia control methods were ineffective and/or that the benefit to risk ratio 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    66 
 

was too low; with some also mentioning the involved additional chair time. Further comments 

raised the issue of availability of some myopia control options, presumably of novel myopia 

control lenses, as current approaches are off-label, highlighting the need for regulatory oversight 

and guidance (Jones et al., 2019). Limited access to necessary instrumentation was also raised 

as a potential barrier, as more advanced contact lens fitting, such as orthokeratology, require 

the use of corneal topography (Gifford et al., 2019). Attempts to specifically manipulate 

peripheral retinal focus may also require instrumentation to rapidly and robustly assess 

peripheral retinal shape and/or refraction with myopia control ophthalmic medical devices 

(Wolffsohn et al., 2019). However, this strategy might not ‘translate’ well from animal studies to 

human trials (Mutti et al., 2011; Atchison et al., 2015). 

 

Spherical equivalent refractive error (measured under cycloplegia) is currently the single best 

predictive measure of juvenile myopia development, with children aged six years with less than 

+0.75D of hyperopia being at increased risk of developing myopia [108]. Most practitioners were 

again comfortable fitting single vision spectacles to myopic patients of this age, but in this 

update tended to wait until a child was older for single vision soft contact lenses and 

pharmaceuticals in addition to the more complex designs such as PALs, novel myopia control 

soft contact lenses and RGPs (including orthokeratology). Interestingly, one potential advantage 

of orthokeratology is that the parents or carer can manage lens application, removal and lens 

care, along with the lenses not having to leave the home, which can make this modality a 

popular option for parents or carers with younger myopic children. This is exemplified by Hong 

Kong, an early adopter of orthokeratology, where its use is considered at an earlier age than 

other countries in the region.  

 

Research suggests that lower levels of hypermetropia at a young age is a strong risk factor for 

myopia development, so it would seem that practitioners remain too conservative in waiting until 

mild-moderate levels of myopia (approximately -1.50 D for most interventions) are present 

before control approaches are considered (Mutti et al., 2011; Zadnik et al., 2015). However, this 

is an improvement in comparison to the reported -2.00 D minimum degree of myopia from the 

original study four years ago (Wolffsohn et al., 2016). Myopia progresses at much faster rates in 

children in comparison to teenagers, thus supporting the need for earlier intervention (Dong et 

al., 2013). There may be also a “window of opportunity” for myopia treatment according to the 

age of onset, rate of progression and myopia magnitude (Thorn et al., 2005). More research is 

needed on the relative benefits of myopia control strategies in adolescents and even young 
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adults. Interestingly, Australasian and North American practitioners, but not those from Asia this 

time, considered most myopia control approaches at a lower level of myopia than other 

continents. This is evidence for the worldwide leap in success over recent years in the field, as 

demonstrated by the IMI and its white paper compendium (Wolffsohn et al., 2019). Chinese 

practitioners still considered prescribing pharmaceutical modalities at a younger age, and at a 

much lower level of myopia, compared with practitioners from other countries in the region. This 

may be due to different countries having different regulations and practitioners with different 

backgrounds (for example training, education and scope of practice), which can affect local 

practice, apart from the prevalence of myopia and need for correction or retardation. The rate of 

patient refractive progression that triggered practitioners to prescribe a myopia control approach 

generally mirrored the prevalence rate of myopia in each region; the higher the prevalence of 

myopia, usually the higher the level of myopia developed in individuals and the higher the risk of 

ocular pathology (Saw et al., 2005). Practitioners understandably also identified several other 

factors that, combined with the degree of myopic progression, influenced their decision to 

prescribe myopia control approaches; these included ethnicity, absolute degree of refractive 

error at the time, environmental factors/lifestyle, lighting exposure, parental decisions, ocular 

biometry, family history of myopia, and the age of myopia onset.  

 

2.5 Conclusion  

This updated global survey of current trends in eye care practitioner myopia management 

attitudes and strategies in clinical practice has identified that, despite growing evidence of the 

negative impact of even low levels of myopia on health economics, and moderate levels of 

practitioner concern and perceived activity (particularly where the prevalence of myopia is 

highest) uptake of appropriate techniques has improved, but remains generally poor. 

Furthermore, myopia control techniques are not being applied early enough in a child’s ocular 

development to elicit their optimum effect. Adequate education of practitioners is lacking, along 

with access to appropriately regulated myopia control ‘labelled’ products with efficacy and safety 

data. A guide, such as the IMI white papers, has been developed to inform practitioners of 

economically viable models of eye care, including the development of instrumentation to 

enhance management selection, which address the myopia epidemic to reduce the growing 

health burden.  
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Chapter 3 Clinical myopia-related near phoria magnitude and variability across the 
human lifespan among Canadians  

3.1 Introduction  

The recent review by Bullimore & Richdale (2020) suggested that the ability to decide when to 

implement myopia control treatment, but more importantly, to predict and prevent myopia 

progression cannot be based on a single factor; where, age, ethnicity, familial refractive history, 

as well as the measurement methods, separately influenced an individual patient’s 

management. The recent survey of paediatric ophthalmologists worldwide by Leshno et al. 

(2020) stated a progression rate of 1.10 D/year−1 in children, as the basis for treatment initiation. 

Notable publications pointed to baseline age as the primary criterion for myopia progression 

(Donovan et al., 2012) and axial elongation (Brennan et al., 2018), where ethnicity was a 

significant contributor, as both studies mentioned Asian children had 50% faster rates, 

respectively; specific axial elongation rates of 0.3 mm/year−1 (age 8) and 0.2 mm/year−1 (age 11) 

in White children, compared to 0.4 mm/year−1 (age 9) and 0.3 mm/year−1 (age 11) in Asian 

children were reported by Brennan et al. (2018). The effects of parental myopia history are 

scarcely documented and no recent literature exists: Saw et al. (2001) found rates of 

0.63 D/year−1 in children with myopic parents, compared to 0.42 D/year−1 in children without 

myopic parents, irrespective if one or both parents were myopic; whilst Kurtz et al. (2007) had 

rates of 0.78 D/year−1 and 0.55 D/year−1 among children with two myopic parents and with one 

or none, respectively. Despite these well-established mean rates, Hernandez et al. (2018) 

highlighted that past rates of averaged fast progression were able to aid in predicting future 

individual rates by only 2%. The effect of measurement methods on the clinical trial primary 

outcomes of refractive error and axial length must also be considered. Twelker & Mutti (2001) 

and Sankaridurg et al. (2017) reported that refractions without cycloplegia were more myopic in 

infants and children, respectively. Furthermore, studies have demonstrated that the cycloplegic 

drug of choice has an impact, where tropicamide led to higher myopic outcomes than 

cyclopentolate (Egashira et al., 1993; Mutti et al., 1994; Yazdani et al., 2018). Instrument 

myopia must also be accounted, as Moore & Berntsen (2014) noted an autorefraction 

repeatability of ~±0.21 D. Regarding axial length, Chakraborty et al. (2011) emphasised the 

importance of limiting diurnal variations, whilst Wolffsohn et al. (2019) have discussed in detail 

the ultrasound and optical biometry instrumentation techniques.  

The literature also differed on myopia progression across the human lifespan with reports of up 

to age 18 (Cooper et al., 2012); early 20s (Irving et al., 2009); 10% into late 30s (Fernandez-

Montero et al., 2015); 35% in ages 20-25, 20% in ages 25-30, 14% in ages 30-35, and 10% in 
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ages 35-40 (Buillmore et al., 2002); as well as that 40% of non-myopes becoming myopic by 

age 25 (National Research Council, 1989). Furthermore, Goss & Winkler (1983) showed myopia 

stabilised in females at ages 14.5-15.5 and males at ages 15-16.5, and Kurtz et al. (2007) later 

reported a similar mean age of 15.5, but this estimate was irrespective of parental myopia or 

sex differences. Regarding axial length, Hou et al. (2018) found the mean age of stabilisation to 

be at 16.5, slightly after refractive myopia. Bullimore & Richdale (2020) already summarised 

from these studies that axial length stabilisation was correlated with the patient’s sex and 

parental myopia history, but not ethnicity, whereas none of these factors were associated with 

myopia stabilisation. Longitudinal and population-based research has focused on prevalence 

distributions such as those outlined above, but studies investigating severity or magnitude 

changes over the human lifespan are limited; especially examinations of individual ocular 

changes with age (Strenk et al., 2006; Atchison et al., 2008; Richdale et al., 2013), refractive 

error (Atchison et al., 2004; Irving et al., 2019)), accommodation (Strenk et al., 2006; Richdale 

et al., 2013), and all three (Richdale et al., 2016); as well as those concerning binocular vision 

and near phoria (Palomo et al., 2006; Leat et al., 2013). Irving & Machan (2012) also previously 

noted distance phoria to trend towards orthophoria and remain stable over time. Furthermore, 

the Study of Progression of Adult Nearsightedness (SPAN) by Bullimore et al. (2006) stated that 

near work was the greatest risk factor for myopia progression and stabilisation in adults and 

teens, respectively. Previous research has also suggested a significant link of higher near 

esophoria among myopes (Gwiazda et al., 1995; Nakatsuka et al., 2005; Allen & O’Leary, 

2006); with variable prevalence rates in pre-presbyopic populations, due to differences in 

inclusion criteria: 10% (Hokoda, 1985); 15.5% (Porcar & Martinez-Palomera, 1997); 22% 

(Montes-Mico, 2001). In adult populations, Yekta et al. (1989) and Pickwell et al. (1991) found 

higher near exophoria up to age 65 and among those aged 40+, respectively. Leat et al. (2013) 

further showed the prevalence of binocular vision disorders was lower for all age groups 10 

years younger corresponding to the age groups 60-69, 70-79, and 80+, overall. Overall, Jones 

et al. (2005) compared various ocular component growth curves in refractive error groups 

among children and noted progression differences exist between emmetropes and myopes, but 

not relative to hyperopes.  

Thus, it remains unknown whether binocular vision errors are a component of myopia or directly 

cause its state. The literature above has investigated longitudinal population and individual 

changes, but not regarding near phoria, or the possible associated differences in sex and 
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among progressive myopes. This added investigation was intended to contribute further clues 

and aid to forming more appropriate myopia management guidelines. 

3.2 Methods  

Retrospective cross-sectional clinical data of 86 patient files were taken from the Waterloo Eye 

Study (WatES) database, consisting of 1400+ assessment dates and an average of 16 patient 

visits. The selected patients were drawn from a pool of 118 files, all seen between 1968 and 

2010 and for at least 27 years, having full and complete records for all measured parameters 

analysed in this study, and without a history of health conditions or treatments, whether medical 

or ocular in nature, as justified by the literature described below. This study focused on the 

following data: age, sex, and near phoria (measured by alternate cover test). The study was 

also approved by the University of Waterloo’s Office of Research Ethics and followed the 

Declaration of Helsinki. It is important to note the limitations of near phoria measures, as 

reported in the prospective, randomised study by Anstice et al. (2021). Specific to the alternate 

cover test data used in the present study, the authors noted that this method had the lowest 

variability for near heterophoria measures, indicating a stable accommodative response during 

clinical testing.   

Machan et al. (2011) previously confirmed the quality of the WatES database and that it was 

representative of Canadian patients. The database was used by Irving et al. (2011) and Irving & 

Machan (2012) in investigating the overall longitudinal prevalence changes of human refractive 

error and near vergence across the human lifespan, respectively, whilst Irving et al. (2019) and 

Leat et al. (2013) further applied those methodologies in examining the severity behind those 

parameters, respectively. These studies have also confirmed the similarity in systematic 

variations between longitudinal and cross-sectional clinical data. The current study followed 

these works by examining such changes in separate groups to explore individual differences in 

age (across the human lifespan), sex (males and females), and refraction (emmetropes, 

myopes and progressive myopes). Participants were defined by spherical equivalent refraction 

(SER; sum of sphere and ½ cylinder) as emmetropes (-0.50 D<SER<1.00 D), myopes (SER ≤-

0.50 D), and progressive myopes (rate of ≥-0.50 D (Parssinen et al., 2014; Afanasyeva, 2020)), 

all who remained in the respective groups, throughout the period.  

Statistical analyses (Microsoft Excel; Microsoft Corp.) from the right eye data included: means 

and standard deviations; ANOVA t-tests and Bonferroni post hoc tests (where P < 0.05 

represented statistical significance); regression mixed model linear functions, as well as 
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percentile (3rd, 50th, and 97th [Chen et al., 2016]) generated reference curves and charts over 

time for near phoria age distribution and direct group (sex and refraction) comparisons based on 

binned individual patients of the same parameters. Percentile growth curves and charts have 

been a recent application within the vision sciences used to predict the risk and severity of 

myopia and its development (Chen et al., 2016; Tideman et al., 2018; Diez et al., 2019). These 

studies have all highlighted the specific relevance of the 3rd, 50th, and 97th percentiles, where the 

3rd centile was particularly noteworthy for magnitude differences, the 50th centile was indicative 

of variation differences, and the 97th centile was best for representing changes between groups. 

3.3 Results  

The 70 analysed patients consisted of the following demographics: 43 women and 27 men 

(emmetropes [11 female and 10 male]; myopes [16 female and 11 male]; progressive myopes 

[16 female and 6 male]); mean age of 48.1 ± 18.0 years (range 2.7 to 91.3 years); mean SER of 

-1.19 ± 2.61 D, p<0.001 (Males -0.92 ± 2.53 D; Females -1.64 ± 2.38 D; p<0.001). The 

remaining 16 patients of the total 86 were hyperopes (13 females and 3 males), which were only 

accounted for to construct a complete near phoria (Figure 3.1) representations for the human 

lifespan, as well as to compare this Canadian sample with earlier works.  

 
 

 
Figure 3.1. Near phoria changes over the human lifespan, as a function of age for the right eye 
of 86 patients, where esophoric and exophoric deviations are represented by the (-) negative 

and (+) positive values on the y-axis. 
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The mean for near phoria (-3.00 ± 3.75; p<0.001) had statistical significance over the human 

lifespan in this population sample. There were statistically significant sex differences for mean 

near phoria (Males -2.53 ± 3.57; Females -3.28 ± 3.85; p=0.002), as well as within progressive 

myopes for near phoria (Males -1.54 ± 2.65; Females -3.46 ± 4.49; p=0.0007). Overall, females 

exhibited higher levels of near phoria and myopia. 

Percentile Growth Charts & Curves for Near Phoria 

Figures 3.2-3.4 and Table 3.1 show percentile (3rd, 50th, and 97th) generated reference curves 

and charts, respectively, over time for near phoria age (across the human lifespan) distribution, 

as well as associated sex differences; Figures 3.5-3.9 and Tables 3.2-3.5 provide the same for 

refraction (emmetropes, myopes and progressive myopes) group comparisons. 

 
Figure 3.2. Percentile near phoria curves over the human lifespan, where esophoric and 

exophoric deviations are represented by the (-) negative and (+) positive values on the y-axis. 
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Figure 3.3. Percentile near phoria curves over the male human lifespan, where esophoric and 
exophoric deviations are represented by the (-) negative and (+) positive values on the y-axis. 

 

 
Figure 3.4. Percentile near phoria curves over the female human lifespan, where esophoric and 
exophoric deviations are represented by the (-) negative and (+) positive values on the y-axis. 
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Age (Years) 3rd 50th 97th 

10 -5.5 -5.5 4.43 

15 -4.55 -1.5 -0.1 

20 -5 0 1.98 

25 -2.2 0 5.62 

30 -6.08 0 -1.03 

35 -9 1 4.16 

40 -6 0 0.4 

45 -0.63 0 -0.86 

50 -1.14 -1 -0.29 

55 6.02 0.5 3.39 

60 -5.52 0 -0.32 

65 -4 0 0 

70 -3 2 0 

75 -6.76 0 1.4 

Table 3.1. Percentile near phoria chart showing sex differences (female-male) over the human 
lifespan, where esophoric and exophoric deviations are represented by the (-) negative and (+) 

positive values. 
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The female 3rd centile was more esophoric for all available age groups, spanning ages 10-79. 

The 50th centile was similar for both sexes, except where females were more esophoric for ages 

10-19 and 50-54. The 97th centile showed exophoric and esophoric changes, but differences 
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Figure 3.5. Percentile near phoria curves over the emmetrope human lifespan, where esophoric 
and exophoric deviations are represented by the (-) negative and (+) positive values on the y-

axis. 

 

 
Figure 3.6. Percentile near phoria curves over the myope human lifespan, where esophoric and 
exophoric deviations are represented by the (-) negative and (+) positive values on the y-axis. 

 

 
Figure 3.7. Percentile near phoria curves over the progressive myope human lifespan, where 
esophoric and exophoric deviations are represented by the (-) negative and (+) positive values 

on the y-axis. 
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Age (Years) 3rd 50th 97th 

10 0.3 2.5 10.79 

15 0.03 0.5 0.03 

20 -2.37 1.5 7.45 

25 -7.93 -0.5 0.09 

30 -0.09 -0.5 -5.55 

35 -0.12 -3 -2 

40 -4 -1 -0.06 

45 -6.1 -1 -3.04 

50 -1.33 0 -1.84 

55 -0.26 0 1.75 

60 -6.3 -1 -4.44 

65 -4 0 -2 

70 -4.28 -6 -0.02 

Table 3.2. Percentile near phoria chart showing refraction group differences (myope-
emmetrope) over the human lifespan, where esophoric and exophoric deviations are 

represented by the (-) negative and (+) positive values. 

 

All three centiles were of similar variation between myopes and emmetropes, but progressively 

differed with age commencement. The myope 3rd centile was more esophoric for all available 

age groups, spanning ages 20-74. The 50th centile was similar for both refraction groups, except 

where myopes were more esophoric from age 25. The 97th centile showed exophoric and 

esophoric changes, except where myopes were more esophoric from age 30.    

Age (Years) 3rd 50th 97th 

10 -6.07 -1 4.52 

15 -8.02 0.5 6.09 

20 -5.09 0.5 6.71 

25 -10.49 -1.5 5.19 

30 -7.85 -0.5 -0.57 

35 -9.45 -4 2.19 

40 -9.8 -1 -0.28 

45 0 -1 0.96 

50 0.15 0 -1.54 

55 4.24 -2 0.74 

Table 3.3. Percentile near phoria chart showing refraction group differences (progressive 
myope-emmetrope) over the human lifespan, where esophoric and exophoric deviations are 

represented by the (-) negative and (+) positive values. 
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All three centiles were of different variation between progressive myopes and emmetropes. The 

progressive myope 3rd centile was more esophoric for all available age groups, spanning ages 

10-44. The 50th centile was similar for both refraction groups, except where progressive myopes 

were more exophoric for ages 15-24 and 50-54. The 97th centile showed a reversed trend, 

compared to the other centiles.   

 

Age (Years) 3rd 50th 97th 

10 -6.37 -3.5 -3.79 

15 -8.05 0 6.68 

20 -2.72 -1 -2.26 

25 -2.56 -1 4.8 

30 -7.76 0 4.37 

35 -9.33 -1 4.28 

40 -5.8 0 -0.5 

45 6.1 0 0.46 

50 1.48 0 2.58 

55 4.5 -2 -5.75 

Table 3.4. Percentile near phoria chart showing refraction group differences (progressive 
myope-myope) over the human lifespan, where esophoric and exophoric deviations are 

represented by the (-) negative and (+) positive values. 

 

All three centiles were of different variation between progressive myopes and myopes. The 

progressive myope 3rd centile was more esophoric for all available age groups, spanning ages 

10-44. The 50th centile was similar for both refraction groups, except where progressive myopes 

were more esophoric for ages 10-14, 20-29, 35-39, and 55-59. The 97th centile showed 

exophoric and esophoric changes, but differences were more similar to the 50th centile.   

 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    78 
 

 
Figure 3.8. Percentile near phoria curves over the male progressive myope human lifespan, 

where esophoric and exophoric deviations are represented by the (-) negative and (+) positive 
values on the y-axis. 

 

 
Figure 3.9. Percentile near phoria curves over the female progressive myope human lifespan, 
where esophoric and exophoric deviations are represented by the (-) negative and (+) positive 

values on the y-axis. 
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Age (Years) 3rd 50th 97th 

10 -7.66 -6.5 1 

15 -4.82 -2 0.26 

20 -5 -0.5 1.31 

25 -10.55 -1 6.04 

30 -6.26 -1 1.15 

35 -9.15 -0.5 4.61 

40 -10.4 -2 3 

45 -9.77 -2.5 -0.94 

50 -1.28 -1 2.19 

Table 3.5. Percentile near phoria chart showing refraction group differences (female-male 
progressive myope) over the human lifespan, where esophoric and exophoric deviations are 

represented by the (-) negative and (+) positive values. 

 

The female progressive myope 3rd and 50th centiles were both more esophoric for all available 

age groups, spanning ages 10-54. The 97th centile showed a reversed trend, compared to the 

other centiles, except where female progressive myopes were more esophoric for ages 45-49.  

Clinical Patient Visits 

Investigation of patient visit (Figure 3.10) differences only across the emmetrope, myope, and 

progressive myope groups showed emmetropic and female patients were examined more 

frequently. 

 
Figure 3.10. Clinical patient visit differences over the human lifespan for 70 patients. 
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3.4 Discussion  

The mean for near phoria (-3.00 ± 3.75 Δ) over the human lifespan in this sample was similar to 

the results (mean near phoria of -2.03 ± 4.00 Δ analysed at the first visit, relative to that of -4.49 

± 4.56 Δ at the final visit) reported by Irving & Machan (2012) of the same larger population, 

both using the WatES database. This reliability was then applied towards additional individual 

patient analysis to investigate the age-dependent distribution of near phoria severity. However, 

no previous such study exists for further comparisons of the reported differences in sex, 

progressive myopes, as well as percentile growth charts and curves for near phoria spanning at 

least 27 years. 

Overall for the current study, emmetropic and female patients were examined more frequently; 

females and female progressive myopes exhibited higher levels of near phoria and myopia; 

myopes were more esophoric than emmetropes, progressive myopes were more esophoric than 

both myopes and emmetropes, and were less likely to increase in exophoria with age. These 

findings are important, since previous literature has reported on the constant and gradual 

increase of near exophoria with age in both pre-presbyopes and presbyopes, irrespective of a 

reading addition (Yekta et al., 1989; Hrynchak et al., 2011; Irving & Machan, 2012; Leat et al., 

2013).  

In this population sample, the 3rd centile was particularly noteworthy for differences in the near 

phoria magnitude, whereas the 50th centile was more indicative of the variation in near phoria 

onset, and the 97th centile was best for representing esophoric and exophoric changes among 

the sex and refraction groups, across the human lifespan. This agreed with Chen et al. (2016), 

who reported younger Chinese children with refractive centiles below lower percentiles, 

especially those below the 5th percentile having the highest predictive accuracy and age-related 

cut points, were expected to have high myopia later in life. In-between refractive group 

comparisons showed the most interesting changes. Myopes and emmetropes differed by 

esophoria onset, occurring earlier among myopes and 5 years later in each subsequent centile: 

ages 20-24 for the 3rd centile; 25-29 for the 50th, and 30-34 for the 97th. This is interesting 

relative to the study by Jones et al. (2005), who noted the growth differences between 

emmetropic and myopic eyes, whereas the respective investigated changes between these 

refraction groups remained similar at baseline. The present study also supported the notion of a 

short opportunistic interval for prediction and intervention prior myopia onset, as well as that 

myopes and emmetropes differed by growth. Moreover, the 3rd centile of the percentile growth 

curves in this study showed near phoria severity peaks occurred at the following: for the overall 
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sample population at ages 15-19, 25-29, 40-44, and 60-64, where this happened at 15-19, 25-

29, 45-49, 55-59 and 15-19, 25-29 for males and females, respectively; for emmetropes at ages 

45-49 and 55-59, for myopes at ages 25-29, 45-49, and 60-64, and for progressive myopes at 

ages 15-19, 25-29, and 40-44. The 50th centile from the percentile growth chart results included: 

relative to emmetropes, myopes were esophoric at ages 25-29, whilst progressive myopes were 

exophoric for ages 15-24 and 50-54; relative to myopes, progressive myopes were esophoric for 

ages 10-14, 20-29, and 55-59. Also relative to myopes, progressive myopes were esophoric for 

ages 10-14 and exophoric for ages 15-19 at the 97th centile of that percentile growth chart. 

These findings agreed with Rozema et al. (2019), noting the increased growth changes 

surrounding onset, followed by a gradual dip among progressive myopes. Likewise, the findings 

here supported the statement by Irving et al. (2019), who discovered the myopes in that 

population were the cause for the greater longitudinal refractive error variability and change over 

human life. The results suggested possible crucial cut points of near phoria development at the 

age ranges of 10-29 and 40-64, particularly 15-19, 25-29, and 40-49, earlier and later in life, 

respectively. This was emphasised by Diez et al. (2019), who suggested the age of 9 to be vital 

for Chinese children, after reporting that axial length centiles there, above the 50th percentile 

were expected to develop high myopia. Similar findings were observed by Tideman et al. (2018) 

in a European population. Thus, there may be a clinically manifesting myopia-related near 

phoria control target across the human lifespan, which was observed to be greater and occurred 

later in males and male progressive myopes.       

Although these findings reflected the age-, sex-, and refraction-specific near phoria distribution 

in Canadians, the study (known to be the first of its kind) intended to inform future research 

towards better understanding myopia prediction, its progression over human life, the way 

individuals might benefit from intervention, as well as suggesting that the near phoria risk factor 

should be measured alongside other primary outcome parameters important for treatment 

efficacy. This study may also be added towards the implementation of individual monitoring 

standards relative to a population, which would be beneficial for myopia assessment and 

prediction technologies.  
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Chapter 4 Impact of blur from a dual focus and an extended depth of focus contact lens 

4.1 Introduction  

Since Holden et al. (2016) projected half of the world to become myopic by the year 2050, 

efforts towards myopia control and prevention have increased. In a meta-analysis of thirty 

randomized controlled trials (RCTs) with a minimum of one year treatment duration, Huang et 

al. (2016) noted that a range of interventions are effective against myopia progression in 

children relative to single vision spectacles or no intervention at all. However, due to persistent 

variability in efficacy and mechanism understanding of the current optical, pharmacological, 

environmental, and surgical myopia treatment strategies, the International Myopia Institute (IMI) 

committee on Interventions for Myopia Onset and Progression (Wildsoet et al., 2019) 

maintained that no therapy yet exists for all patients that is able to fully prevent, delay, or control 

myopia. Also, many myopia control treatments are currently off-label/unlicensed prescriptions, 

and the relevant legal, regulatory, and professional stance is country-specific, varying 

worldwide. An exception is the approved European certification standard or CE marking for the 

multifocal soft contact lenses MFSCLs MiSight (CooperVision), NaturalVue (Visioneering 

Technologies), and MYLO (Mark’ennovy in collaboration with the Brien Holden Vision Institute), 

of which only MiSight is additionally Food and Drug Administration (FDA)-approved and 

recognised in the US, Canada, Australia, New Zealand, Hong Kong, and Singapore for 

controlling myopia progression. MYLO is a monthly silicone hydrogel contact lens with extended 

depth of focus (EDOF) optics and higher water content, whilst MiSight and NaturalVue are both 

daily hydrogel lenses of similar water content, but MiSight has a dual focus optical design, 

whereas NaturalVue also incorporates EDOF. Since these options currently stand as the most 

accessible to eye care practitioners, it is of vital importance to understand the associated “real 

world” clinical applications.  

Wildsoet et al. (2019) outlined the variable optical treatment efficacies (reduction in myopia over 

time, compared to a simultaenous control group) such as: single vision spectacles (14%) [where 

the literature is adamant that any effect is unsustained and this treatment strategy is ultimately 

ineffective in slowing myopia]; bifocal and progressive addition spectacles (6-51%); MFSCLs 

(38%); and orthokeratology (30-55%). Despite these results, animal studies have consistently 

suggested that myopia developement and progression is driven by standard spherical optical 

treatments causing relative peripheral hyperopic defocus (Smith et al., 2007; Smith, 2010; 

Cooper et al., 2012). On the other hand, orthorokeratology options have been of concern 

regarding adverse effecs (Lang & Rah, 2004; Liu & Xie, 2016) and limitations for correcting low 
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and high myopia, as well as older patients (Fu et al., 2016; Want et al., 2017). A meta-analysis 

and systemic review by Bullimore (2017) on the safety of soft contact lenses in children, for 

example, asserted the risk of infiltrative complications was shown to be lower for ages 8-12 

relative to older groups, which also matches the typical commencement range for myopia 

control implementation. Thus, MFSCLs with centre-distance concentric ring or progressive 

power designs have been increasingly used as an attractive optical paediatric myopia 

intervention and are well accepted by both clinicians and their patients.  

Chamberlain et al. (2019) and Wildsoet et al. (2019) have recently summarised the majority of 

published MFSCLs trials, but without inclusion of the lone NaturalVue (Cooper et al., 2018) and 

MYLO (Sankaridurg et al., 2019) investigations, and only a few of these studies used country-

dependent commercially available lenses (Anstice & Phillips, 2011; Walline et al., 2011; Ruiz-

Pomeda et al., 2018; Chamberlain et al., 2019; Sankaridurg et al., 2019). NaturalVue also has a 

presently on-going clinical study performed by Thomas Aller and Visioneering Technologies, 

Inc. with an estimated completion by mid-2022. Wildsoet et al. (2019) highlighted that MFSCLs 

of concentric ring designs were more effective in slowing axial elongation. Furthermore, only 

Sankaridurg et al. (2011) and Fujikado et al. (2014) with MFSCLs, and Paune et al. (2015) with 

orthokeratology contact lenses, have examined the role of corrected peripheral refraction. The 

contact lenses in these studies have been termed concentric (Anstice & Phillips, 2011; Aller et 

al., 2016) or peripheral gradient (Sankaridurg et al., 2011; Fujikado et al., 2014; Paune et al., 

2015) lenses. The literature is definitive in that contact lenses are superior to spectacles in 

correcting peripheral refraction, as they move with the eye and are on the cornea. MFSCLs in 

particular have been shown to reduce myopia significantly more than progressive addition 

spectacles, due to their ablitity for exerting more extensive peripheral myopic defocus (Smith, 

2013).   

In addition to refractive error, axial length (AL), and relative peripheral defocus, there are other 

well established outcome measures from myopia control trials that should be adopted on the 

quest to solving the unanswered efficacy and mechanism questions (Wolffsohn et al., 2019). 

Early research has reported higher near accommodative lag and associated errors among 

myopes (Gwiazda et al., 1995; Nakatsuka et al., 2005; Allen & O’Leary, 2006), which are 

importantly linked to the induced retinal blur by MFSCLs (Anstice & Phillips, 2011; Paune et al., 

2016; Gong et al., 2017). The report by the IMI committee on Clinical Myopia Control Trials and 

Instrumentation (Wolffsohn et al., 2019) has stressed the examination of treatment compliance 

and qualifty of life impact by the effect of dysphotopsia and contrast sensitivity with myopia 
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control strategies. However, only single studies have reported some of these measures with 

0.01% atropine (Loughman & Flitcroft, 2016) and the MiSight and NaturalVue MFSCLs 

(Ghorbani-Mojarrad et al., 2021). MFSCLs, in particular, have previously been shown to 

significantly impact these measures in presbyopes, due to the alternating zones of optical 

powers (Rajagopalan et al., 2007; Kolbaum et al., 2012; García-Lazaro et al., 2015; Wahl et al., 

2018), but myopia control use is aimed at children and young adults.     

In order to address the above gaps in knowledge, this study evaluated the clinical impact 

(peripheral refractive defocus, accommodative lag, contrast sensitivity, and dysphotopsia) of the 

commercially available and CE-marked for myopia control MiSight and NaturalVue MFSCLs, 

compared with a standard single vision Proclear lens, after daily wear. This is considered the 

first such study, comparing these lenses and parameters, aimed at better understanding the 

possible mechanisms surrounding optical myopia control options, as well as how effectiveness 

may vary for individual patient or combine with other therapies. 

 

4.2 Methods  

4.2.1 Participants 

The study (single-centre, prospective, randomised, and double-masked) was conducted at the 

Aston University Ophthalmic Research Clinics, where 18 participants with myopia in good overall 

general and ocular health were recruited. This sample size was enough to obtain 80% statistical 

power for a significance level of α = 0.05 with a confidence level of 95%, based on an effect size of 

0.8 for the statistical analyses used in this study, published literature, and priori power analysis 

(G*Power 3.1, University of Dusseldorf). All participants gave informed written consent. All 

procedures followed the Declaration of Helsinki and the protocol was approved by the Aston 

University Research Ethics Committee.  

4.2.2 Contact Lenses 

Three different daily soft contact lenses (standard single vision Proclear® 1-Day [omafilcon A; 

hydrophilic; CooperVision, Inc.] for the control group, as well as specialty multifocal MiSight® 1-

Day [omafilcon A; hydrophilic, water content 60%; refractive index 1.40; center thickness of 0.08 

mm at -3.00 D; CooperVision, Inc.] and NaturalVue® 1-Day [etafilcon A; hydrophilic, water 

content 58%; refractive index 1.40; center thickness of 0.08 mm at -3.00 D; Visioneering 

Technologies, Inc.] designed for myopia control for the test groups) were compared. The optical 
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design technology of the MiSight and NaturalVue lenses has already been described in detail by 

Chamberlain et al. (2019) and Cooper et al. (2018), respectively.  

4.2.3 Study Design 

Eligible participants visited on alternating days and in the same week, in order to implement a test 

group washout period in between, and so that each participant can be fitted with all lenses. 

Participants were asked to attend for a morning visit (8:30 AM – 11:30 AM) and 8 hours later in the 

afternoon to allow for an adaptation period, mimic a typical work-day interval, and consistency in 

diurnal variation. The visits were each conducted by two separate investigators, where the first 

investigator fitted the randomised contact lenses via coded letter (A, B, C) assignment, known only 

by the principal investigator, whilst the second investigator performed the measurements. The 

participants were unaware as to which lens and in which eye they were fitted during the visit.   

During the morning visit, Investigator 1 provided a copy of the informed consent and participant 

information sheet; confirmed eligibility (age range 18-35; prescription range -0.75 D to -4.50 D with 

astigmatism ≤1 D; spectacle, contact lens, and myopia control intervention history; as well as no 

relevant contraindication; and medical and ocular health history, including medications); and 

performed autorefraction (3 measurements were taken from each eye, whilst the participant viewed 

a distant non-accommodative target [Grand Seiko WAM-5500; Grand Seiko Co., Hiroshima, 

Japan]), best-corrected distance visual acuity (logMAR letter chart), slit-lamp biomicroscopy 

anterior eye examination, and randomised contact lens fitting according to manufacturers’ criteria.  

In order to investigate differences in materials and designs, peripheral refractive defocus, 

accommodative lag, contrast sensitivity, and dysphotopsia were measured by also accounting 

for diurnal variations. 

During the afternoon visit, Investigator 2 measured the following:  

Accommodative Lag: 3 measurements were taken from each contact lens-corrected eye with the 

opposite eye being occluded and the lights turned off; the participant viewed a distant non-

accommodative target, followed by near readings at -3 D/33 cm and fixating the centre of a near 

Maltese cross target in free space attached to the mounted adjustable apparatus [Grand Seiko 

WAM-5500; Grand Seiko Co., Hiroshima, Japan].  

Contrast Sensitivity and Dysphotopsia (Glare): Contrast Sensitivity was measured with the 

Aston Contrast Sensitivity Near App and Dysphotopsia (disability glare) was measured with the 
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Aston Halometer and Tablet App; both monocularly from each contact lens-corrected eye and using 

an iPad4. The validation and repeatability completed previously on these techniques have been 

assessed by Kingsnorth et al. (2016) and Buckhurst et al. (2015; 2017), respectively, where the 

measurement protocol followed the recommendations in those studies. These tests were selected 

for their objectivity towards such normally subjective reported data.  

Contrast Sensitivity was measured at 40 cm, as participants traced the boundary of contrast grating 

detection using their finger on the touch screen (Figure 4.1). 

 

Figure 4.1. The Aston Contrast Sensitivity Near App, adopted from Kingsnorth et al. (2016). 

Dysphotopsia was measured at 2 m with the lights turned off. The Halometer is a light-emitting-

diode (LED) glare source centrally positioned on the iPad. The investigator manually moved 

randomised letters subtending 0.21° centrifugally from the LED in 0.05° steps in all 8 directions of 

gaze. Photopic scotoma size was measured, once participant responses were recorded at all 

orientations, where each letter response had to be correct in at least 2 out of 3 presentations 

(Figure 4.2).  
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Figure 4.2. The Aston Halometer and Tablet App, adopted from Buckhurst et al. (2015). 

Cyclo-Autorefraction: 3 measurements were taken from each eye with the opposite eye being 

occluded and the lights turned off; central (on-axis) refractive error was measured with the 

participant viewing a distant target 1 line larger than best VA; peripheral refraction was measured at 

30° in the horizontal meridian with the participant viewing a distant Maltese cross on a wall and the 

nasal/temporal sides randomised by head turning (Wolffsohn et al., 2019) [Grand Seiko WAM-

5500; Grand Seiko Co., Hiroshima, Japan]. 

Cycloplegia: complete details of the drops were provided along with official College of Optometrists 

leaflet; the British National Formulary (BNF) number, expiration date, and time of instillation were 

recorded [1% Tropicamide; 1 drop/eye; minimum 20-minute waiting period]. 

Visual acuity (logMAR letter scoring) and anterior eye health (slit-lamp biomicroscopy with 

fluorescein) were also examined, and the study concluded with a verbal debrief. Visual acuity 

(distance at 4 m [2000 Series Revised ETDRS Chart; Precision Vision] and near at 40 cm [Near 

Point Flip Charts; Precision Vision]) was assessed monocularly from each contact lens-corrected 

eye, until missing ≥3 letters on a line.    

4.2.4 Statistical Analyses 

The normality of the data distributions was confirmed using the Kolmogorov-Smirnov test 

(P>0.05). ANOVA t-tests and Bonferroni post hoc tests were carried out in Microsoft Excel for 

Office 365 ProPlus (Microsoft Corp.); values are means ± SD, where values denoted * were 
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considered significant (p<0.05). Statistical significance (P<0.05) between groups (contact lenses 

Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) is denoted *.  

An accommodative response ≥1.00 D was considered as lag of accommodation (Manny et al., 

2009), which was calculated as the average refraction difference between distance and near 

readings (Wolffsohn et al., 2019).  

Sphero-cylindrical refraction data was converted into power vector components M, J0, and J45 

using the standard formulas (Thibos et al., 1997) below: 

Spherical equivalent M = sphere + (cylinder/2) 

J0 = -(cyl/2) x cos(2xaxis) 

J45 = -(cyl/2) x sin(2xaxis) 

 

 

4.3 Results  

From the 18 subjects included in the study, the pool consisted of the following demographics: 15 

female and 3 male (12 British Asian and 6 white European); mean age of 22.8 years ± 4.1 

(range 18 to 35 years); mean spherical equivalent refraction (SER) of -2.4 ± 1.3 D (range -0.75 

to -4.50 D); there were no adverse events. 

4.3.1 Cyclo-Autorefraction 

Central and peripheral refractive error results measured by cyclo-Autorefraction are summarised 

in Table 4.1. Temporal (at 30° in the horizontal meridian) refraction for the J0 sphero-cylindrical 

power vector was found to be significant (p=0.019*), after 8 hours of contact lens wear. The 

result was followed by individual group comparisons in Table 4.2, where temporal peripheral 

defocus for the J0 vector exerted by the NaturalVue MFSCLs test group was significant 

(p=0.011*) relative to the Proclear single vision contact lens control group. This was not the 

case for the other MiSight MFSCLs test group, as well as there was no significant difference 

between test groups. These contact lens group differences are further illustrated by Figure 4.3.    
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 Proclear MiSight NaturalVue p 

Central 
Refraction (D) 

 
M 
J0 

J45 

 
 
 

-2.08 ± 1.41 
0.003 ± 0.19 
0.03 ± 0.24 

 
 
 

-1.99 ± 1.47 
-0.01 ± 1.47 
0.04 ± 0.22 

 
 
 

-2.19 ± 1.46 
0.05 ± 0.22 
-0.01 ± 0.21 

 
 
 

0.921912 
0.666939 
0.741804 

Temporal 
Refraction (D) 

 
M 
J0 

J45 

 
 
 

0.5 ± 3.25 
-0.67 ± 1.20 
-0.26 ± 1.03 

 
 
 

0.93 ± 2.29 
0.001 ± 0.90 
0.03 ± 0.90 

 
 
 

0.80 ± 1.95 
0.27 ± 0.87 
-0.16 ± 0.69 

 
 
 

0.875083 
  0.019611 * 

      0.73341 

Nasal 
Refraction (D) 

 
M 
J0 

J45 

 
 
 

1.20 ± 2.83 
0.28 ± 0.74 
0.07 ± 0.72 

 
 
 

0.68 ± 2.46 
0.16 ± 0.95 
-0.01 ± 0.86 

 
 
 

0.18 ± 2.57 
0.09 ± 0.80 
-0.28 ± 0.58 

 
 
 

0.533038 
0.793238 

      0.32894 

Table 4.1. Central (on-axis) and peripheral (at 30° temporally and nasally in the horizontal 

meridian) cyclo-Autorefraction measured after 8 hours of contact lens wear; values are means ± 

SD, where values denoted * were considered significant (p<0.05). 

 

 J0 Temporal Refraction (D) 

Group A vs. Group B P 
Group A vs. Group C P 
Group B vs. Group C P 

0.064925 
  0.010582 * 

                             0.368238 

Table 4.2. Contact lens group (Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) 

comparison of temporal (at 30° in the horizontal meridian) cyclo-Autorefraction for the J0 

sphero-cylindrical power vector, where * represented a significant (p<0.05) difference. 
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Figure 4.3. Contact lens group (Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) 
comparison of temporal (at 30° in the horizontal meridian) cyclo-Autorefraction mean values for 
the J0 sphero-cylindrical power vector, where * represented a significant (p<0.05) difference. 

 

4.3.2 Accommodative Lag 

The type of contact lens had a significant (p=0.006*) effect on accommodative lag, after 8 hours 

of wear (Table 4.3). The result was followed by individual group comparisons in Table 4.4, 

where Accommodative Lag exerted by the NaturalVue MFSCLs test group was significant 

(p=0.002*) relative to the Proclear single vision contact lens control group. This was not the 

case for the other MiSight MFSCLs test group, as well as there was no significant difference 

between test groups. These contact lens group differences are further illustrated by Figure 4.4.    

 Proclear MiSight NaturalVue p 

Accommodative 
Lag (D) 

1.88 ± 0.65 1.39 ± 1.04 0.73 ± 1.28 0.006019 * 

Table 4.3. Accommodative Lag measured after 8 hours of contact lens wear; values are means 

± SD, where values denoted * were considered significant (p<0.05). 

 Accommodative Lag (D) 

Group A vs. Group B P 
Group A vs. Group C P 
Group B vs. Group C P 

0.102538   
  0.001833 * 

0.099409 

Table 4.4. Contact lens group (Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) 

comparison of Accommodative Lag, where * represented a significant (p<0.05) difference. 
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Figure 4.4. Contact lens group (Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) 
comparison of Accommodative Lag mean values, where * represented a significant (p<0.05) 

difference. 

 

4.3.3 Contrast Sensitivity 

Results for Contrast Sensitivity are summarised in Table 4.5. Although no significant differences 

were found, after 8 hours of contact lens wear, Figure 4.5 further illustrates the contact lens 
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 Proclear MiSight NaturalVue p 

CS at -1 
Frequency 

(cpd) 

0.06 -0.02 -0.003 0.66733 
 

CS at -0.84 
Frequency 

(cpd) 

0.60 
 

0.53 
 

0.43 
 

0.632625 
 
 

CS at -0.68 
Frequency 

(cpd) 

1.04 
 

0.93 
 

0.80 
 

0.386645 
 
 

CS at -0.53 
Frequency 

(cpd) 

1.33 
 

1.25 
 

1.17 
 

0.699912 
 
 

CS at -0.37 
Frequency 

(cpd) 

1.60 
 

1.54 
 

1.49 
 

0.868029 
 
 

CS at -0.21 
Frequency 

(cpd) 

1.85 
 
 

1.80 
 

1.78 
 

0.934923 
 
 

CS at -0.06 
Frequency 

(cpd) 

2.05 
 

2.00 
 

1.98 
 

0.943056 
 
 

CS at 0.1 
Frequency 

(cpd) 

2.20 
 

2.14 
 

2.12 
 

0.922987 
 
 

CS at 0.26 
Frequency 

(cpd) 

2.29 2.22 2.20 0.896381 
 

CS at 0.41 
Frequency 

(cpd) 

2.33 2.23 2.21 0.797075 
 

CS at 0.57 
Frequency 

(cpd) 

2.30 2.19 2.14 0.628749 
 

CS at 0.72 
Frequency 

(cpd) 

2.19 2.08 1.99 0.429189 
 

CS at 0.88 
Frequency 

(cpd) 

2.01 1.91 1.78 0.303972 
 

CS at 1.04 
Frequency 

(cpd) 

1.78 1.70 1.55 0.212765 
 

CS at 1.19 
Frequency 

(cpd) 

1.53 1.47 1.33 
 

0.275027 
 

CS at 1.35 
Frequency 

(cpd) 

1.29 1.19 1.12 0.496834 
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Table 4.5. Contrast Sensitivity measured after 8 hours of contact lens wear; values are means, 

where values denoted * were considered significant (p<0.05). 

 

 
Figure 4.5. Contact lens comparison of Contrast Sensitivity across the sample population. 

 

4.3.4 Dysphotopsia (Glare) 

Results for Dysphotopsia (Glare) are summarised in Table 4.6. Glare at 0° and 225° was found 

to be significant (p=0.015901* and p=0.024147*, respectively), after 8 hours of contact lens 

wear. Figure 4.6 further illustrates the contact lens comparison of Glare across the sample 

population. The result was followed by individual group comparisons in Table 4.7 and Table 

4.8, representing Glare at 0° and 225°, respectively. Glare at 0° exerted by the NaturalVue 

MFSCLs test group was significant (p=0.015548*) relative to the Proclear single vision contact 

lens control group. This was not the case for the other MiSight MFSCLs test group, but there 

was a significant difference between test groups (p=0.02591*). Additionally, Glare at 225° 

exerted by both the NaturalVue and MiSight MFSCLs test groups was significant (p=0.007196* 

and p=0.016713*, respectively) relative to the Proclear single vision contact lens control group. 

There was no significant difference between test groups. These contact lens group differences 

are further illustrated by Figure 4.7 and Figure 4.8, representing Glare at 0° and 225°, 

respectively.    
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 Proclear MiSight NaturalVue p 

Radii (DOV°) at 
0° 

1.31 1.35 1.62   0.015901 * 

Radii (DOV°) at 
45° 

1.42 
 

1.22 
 

1.47 
 

0.051771 
 

Radii (DOV°) at 
90° 

1.24 
 

1.26 
 

1.39 
 

0.144891 
 

Radii (DOV°) at 
135° 

1.27 
 

1.39 
 

1.40 
 

0.323785 
 

Radii (DOV°) at 
180° 

1.32 
 

1.44 
 

1.40 
 

0.557052 
 

Radii (DOV°) at 
225° 

1.26 
 

1.56 
 

1.48 
 

  0.024147 * 
 

Radii (DOV°) at 
270° 

1.32 
 

1.38 
 

1.36 
 

0.766676 
 

Radii (DOV°) at 
315° 

1.35 
 

1.33 
 

1.38 
 

0.971743 
 

Table 4.6. Dysphotopsia (Glare) measured after 8 hours of contact lens wear; values are 

means, where values denoted * were considered significant (p<0.05). 

 

 
Figure 4.6. Contact lens comparison of Dysphotopsia (Glare) across the sample population. 

 

 Glare at 0° [Radii (DOV°)] 

Group A vs. Group B P 
Group A vs. Group C P 
Group B vs. Group C P 

0.691174  
  0.015548 * 

                             0.02591 * 
Table 4.7. Contact lens group (Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) 

comparison of Dysphotopsia (Glare) at 0°, where * represented a significant (p<0.05) difference. 
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Figure 4.7. Contact lens group (Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) 

comparison of Dysphotopsia (Glare) at 0° mean values, where * represented a significant 
(p<0.05) difference. 

 

 Glare at 225° [Radii (DOV°)] 

Group A vs. Group B P 
Group A vs. Group C P 
Group B vs. Group C P 

  0.016713 *   
  0.007196 * 

0.565933 
Table 4.8. Contact lens group (Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) 

comparison of Dysphotopsia (Glare) at 225°, where * represented a significant (p<0.05) 

difference. 
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Figure 4.8. Contact lens group (Proclear [Group A], MiSight [Group B], NaturalVue [Group C]) 
comparison of Dysphotopsia (Glare) at 225° mean values, where * represented a significant 

(p<0.05) difference. 

 

4.4 Discussion 

The successful contact lens efficacy in slowing refractive myopia progression and axial 

elongation is well established, but the surrounding mechanisms and associated clinical impact 

remain inconclusive. Although Ghorbani-Mojarrad et al. (2021) recently assessed 

accommodative lag and contrast sensitivity based on patient experience, their analyses were 

exploratory and did not test a hypothesis. The present study is considered the first to 

additionally measure corrected peripheral defocus and dysphotopsia with the MiSight and 

NaturalVue MFSCLs (the only daily CE-marked myopia control options). This study is further 

unique in its used cohort (British Asian and European myopic adults) and control group 

(commercially available single vision contact lenses) for the comparisons, after 8 hours of  

contact lens wear. 

4.4.1 Peripheral Refraction 

Gifford et al. (2019) and Wolffsohn et al. (2019) have summarised the research surrounding 

peripheral refraction, concluding that its mechanism in myopia control and progression remains 

unknown, whilst clinically significant standardised criteria does not yet exist. However, studies 

have consistently showed that myopes have greater relative peripheral hyperopia, compared to 

emmetropes and hyperopes, and vice-versa for myopic relative peripheral refraction (Ehsaei et 

al., 2011; Sng et al., 2011; Lundstrom & Rosen, 2017). Based on the compiled findings for 

significant patterns in uncorrected relative peripheral refraction measurements across the 

literature, Wolffsohn et al. (2019) stated differences between 0.50-1.00 D in the 30° temporal 

visual field may be used as a reference. As mentioned above, only Sankaridurg et al. (2011) 

and Fujikado et al. (2014) have previously measured corrected peripheral defocus during 

MFSCLs wear, using single vision spectacle and contact lenses as controls, respectively. 

Moreover, the studies were performed on Chinese myopic children of ages 7-14 and Japanese 

myopic children of ages 10-16, respectively.    

Sankaridurg et al. (2011) measured peripheral refraction horizontally (both nasal and temporal 

directions) at 20°, 30°, and 40°, with and without correction, after 12 months. The authors 

reported no differences in relative hyperopia magnitude and/or eccentricity, without correction; 

expected increases with increased eccentricity, but particularly higher hyperopia magnitude 
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nasally for both spectacle and contact lens groups; however, spectacles lenses equally 

increased the relative peripheral hyperopia, whereas, contact lenses showed reductions, 

especially nasally, presumed to be a result of the nasal centering on the corneal geometric axis 

during wear. This study stated that increased relative peripheral hyperopia at 30° and 40° 

nasally, as well as 40° temporally were ultimately correlated with greater myopia progression. 

Fujikado et al. (2014) expanded the above findings in a randomised study with MFSCLs of 

nasally decentered optical design and lower add (0.50 D), after 12 and 24 months. However, no 

significant difference in reduced relative peripheral hyperopic blur between the naked eye and 

either contact lens type, regardless of eccentricity, was reported. In comparison to Sankaridurg 

et al. (2011), the authors attributed this discrepancy to that study’s use of higher addition (2.00 

D) MFSCLs, but concluded that the efficacy in AL reduction was similar, possibly due to the 

reduced near accommodation, which neither study investigated.     

Although interesting changes in central and peripheral (nasal and temporal) refractive blur were 

observed, where individual contact lens results supported indications by the literature, the 

present study also consistently found the temporal horizontal meridian at 30° for the J0 sphero-

cylindrical power vector to be of practical significance, particularly with the NaturalVue MFSCLs 

of EDOF optical design achieving the highest level of blur. No previous similar data exists for 

direct comparison, but Paune et al. (2015) did report a lack of significant correlations for the 

horizontal (J0) and oblique (J45) astigmatic components with multifocal orthokeratology contact 

lenses when tested on Caucasian myopic children of ages 9-16. A more recent study by Moore 

et al. (2018) investigated the effect of peripheral retinal defocus with four commercially available 

spherical soft contact lenses (Biofinity, Acuvue2, PureVision2, and Air Optix Night & Day) on 

myopic young adults at 20°, 30°, and 40°. The study stated that all lenses significantly reduced 

relative peripheral hyperopic defocus on the temporal retina when compared to the uncorrected 

eye, except PureVision2, but magnitudes differed with eccentricities: J0 was significant for the 

same three lenses at 40° temporally, as well as at 30° temporally and 40° nasally for Air Optix; 

J45 was significant only for Air Optix at 40° temporally. The authors noted that Air Optix was the 

only contact lens to decenter nasally, as well as that a more negative contact lens power overall 

(which is the opposite mechanism to spectacles [Lin et al., 2010]), and the optic zone size 

significantly accounted for differences between eccentricities; results confirmed to be similar to 

the summarised literature based on previous such studies. These insights further support the 

results in the current study, emphasising the essential importance of the optical design 
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characteristics in contact lenses, where: the treatment zones of the MiSight optic zone 

incorporate 2.00 D of defocus, whilst NaturalVue has a universal addition power up to 3.00 D.               

4.4.2 Accommodative Lag 

The significant results of reduced near accommodative lag, especially with the NaturalVue 

MFSCLs achieving the lowest level of lag, corresponded to the outcome in induced peripheral 

defocus. Although there are no previous data, but similar findings were reported in studies on 

myopic children evaluating changes in accommodative lag with MFSCLs (Paune et al., 2016; 

Gong et al., 2017); whereas, Anstice & Phillips (2011) and Berntsen et al. (2010) did not 

discover an impact on the accommodative lag with dual-focus soft contact lenses (which are of 

similar design to the MiSight lenses with 2.00 D treatment zones) and progressive addition 

lenses (2.00 D add), respectively. An early longitudinal study also stated a lack of significant link 

in childhood myopia progression with near accommodative lag (Weizhong et al., 2008). 

Moreover, Anstice & Phillips (2011) suggested the myopia control mechanism of the dual-focus 

contact lenses was based on sustained and simultaneous myopic defocus at both distance and 

near, where the lenses did not seem to be used as multifocal and relax accommodation, which 

can be attributed to the MiSight findings in the current study. The authors also noted this design 

with 2.00 D treatment zones and overall parameters may not be optimal. 

4.4.3 Visual Quality 

The effect on glare at 0° and 225° was significantly impacted by the contact lenses, especially 

for MiSight and NaturalVue achieving the highest level of glare at 225° and 0°, respectively. 

There were no significant differences in contrast sensitivity. Some studies in children have 

reported reduced contrast sensitivity with MFSCLs, particularly at the lower spatial frequencies 

(Paune et al., 2016; Gong et al., 2017; Sankaridurg et al., 2019), whilst others have not (Collins 

et al., 1989; Anstice & Phillips, 2011). The study by Wahl et al. (2018), which investigated 

contrast sensitivity (with and without glare) and disability glare influenced by centre-near and 

centre-distance MFSCLs with single vision spectacle and contact lenses as controls in myopic 

young adults, is the most similar to the present study for comparisons. The authors reported 

significant reductions in contrast sensitivity with the centre-distance MFSCLs, but only under the 

glare condition; disability glare was significant for all lenses and highest at low and medium 

contrast, but greatest for the centre-distance MFSCLs, whilst all other types had similar levels. 

Furthermore, van Den Berg et al. (2010) and Wahl et al. (2018) stated that visual acuity is not 

linked to glare, due to its minimal impact on contrast sensitivity relative to corrected blur with 
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MFSCLs. Gifford et al. (2013) and Loughman & Flitcroft (2016) also offered agreeable insights 

with overnight orthokeratology and 0.01% atropine, respectively. These findings support the 

observations in the current study and highlight the importance of including these visual 

performance parameters in myopia control research utilising various optical designs. 

 

4.5 Conclusion 

The presumed design optimisation, regarding the only daily CE-marked optical myopia control 

strategies, was based on the possible mechanism behind peripheral refraction and 

accommodative lag in myopia development and progression. MiSight and NaturalVue MFSCLs 

achieved myopic retinal defocus differently; MiSight reduced hyperopic blur by sustained and 

simultaneous myopic defocus, whilst reduced lag was not only associated with the treatment 

effect for NaturalVue in reducing hyperopic blur, but this novel EDOF lens design could have an 

inherent characteristic for doing so in the temporal retina at 30° and J0 astigmatic component, 

which potentially may also be used as a predictive factor for success. These findings may be 

extended to comparisons of all concentric and peripheral gradient contact lens types, 

suggesting that except for the possibility of a causal effect by these factors with NaturalVue, 

reduced hyperopic blur (temporally at 30° for the J0 sphero-cylindrical power vector) and 

accommodative lag appeared only to be byproducts of the optical design in other contact lenses 

influencing myopia progression. The optical design of multifocal contact lenses also directly 

influenced visual quality. Both myopia control strategies significantly impacted glare, but did not 

effect contrast sensivitiy differently than standard lenses, and would offer equally acceptable 

treatment compliance and qualifty of life expectactions.   
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Chapter 5 IOLMaster agreement evaluation in healthy adults, comparing ocular biometry 

measurements, after immediate soft contact lens wear for myopia control 

5.1 Introduction  

Optical biometry instrumentation is a critical tool for eye care practitioners in assessing 

keratometry (K), central corneal thickness (CCT), horizontal white-to-white (WTW) corneal 

diameter measurements, lens thickness (LT), anterior chamber depth (ACD), and axial length 

(AL); especially in relation to cataract and refractive surgery optical power planning (Rohrer et 

al., 2009; Akman et al., 2016; Young et al., 2018), glaucoma screening (Hashemi et al., 2005; 

Rosa et al., 2006; Dinc et al., 2010), specialty contact lens fitting and corneal shape analysis 

(Cho et al., 2002; Kamiya et al., 2014; Lloyd et al., 2014), and following myopia progression and 

control (Smith, 2013; Walline et al., 2017; Gifford et al., 2019). Although the IOLMaster 500’s 

(Carl Zeiss Meditec, Germany) partial coherence interferometry (PCI) technology has been 

established as the gold standard (Vogel et al., 2001), the newer swept-source optical coherence 

tomography (SS-OCT) approach, such as that used by the IOLMaster 700 (Carl Zeiss Meditec, 

Germany), has been shown to have many advantages, including faster analysis, the ability to 

measure CCT, LT, and both anterior and posterior structural curvatures, as well as higher 

accuracy performance with complicated patients (Tonn et al., 2014; Young et al., 2018; Haddad 

et al., 2020). Several studies have already reported on the excellent interchangeability, 

repeatability, and reproducibility of the IOLMaster 700 relative to the IOLMaster 500 in cataract 

patients (Srivannaboon et al., 2015; Akman et al., 2016; Kunert et al., 2016; Shammas et al., 

2016; Yoo et al., 2017; Lee & Kim, 2018; Bullimore et al., 2019; Moshirfar et al., 2019; Wang et 

al., 2019), but only one also included healthy children and adult groups (Huang et al., 2020).  

The report by the International Myopia Institute (IMI) committee on Clinical Myopia Control Trials 

and Instrumentation (Wolffsohn et al., 2019) provided best practice guidelines to assess myopia 

control intervention efficacy and mechanisms, as well as treatment and instrumentation 

development. Refractive error and axial length were classified as primary outcome measures. 

The literature has already established the strong correlation between increased axial length and 

myopia progression (Atchison et al., 2004; Saw et al., 2005; Richter et al., 2017), where diurnal 

variations (Stone et al., 2004; Read et al., 2008; Chakraborty et al., 2011), intraocular pressure 

(Leydolt et al., 2008; Read et al., 2011), and accommodation changes (Drexler et al, 1998; 

Read et al., 2010) must be accounted for during measurements. This is especially important, 

since a 0.1 mm change in axial length leads to a refractive change of ~0.3 D (Findl et al., 2003). 

In comparison to early axial biometry via ultrasound instrumentation limited to a resolution of 
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~0.30 D (Santodomingo-Rubido et al., 2002), accuracy of ~0.1 mm (Olsen, 1989), and 

repeatability of 95% limits of agreement (LoA) between 60.2 to 60.3 mm (Rudnicka et al., 1992; 

Chan et al., 2006; Hussin et al., 2006), current commercial optical biometers offer resolution of 

~0.03 D (Santodomingo-Rubido et al., 2002; Buckhurst et al., 2009), precision of ~0.01 mm 

(Drexler et al., 1998; Haigis et al., 2000; Santodomingo-Rubido et al., 2002), and repeatability of 

95% LoA of 60.04 mm (Chan et al., 2006; Hussin et al., 2006). Furthermore, some relevant 

exploratory measures indentified by this IMI white paper included anterior segment anatomical 

changes and biomechanics. Axial elongation is well correlated with a flatter corneal curvature 

(Chang et al., 2001; Fledelius & Goldschmidt, 2010; Park et al., 2010), whilst various studies 

have reported a deeper ACD in myopic populations (Hosny et al., 2000; Ucakhan et al., 2008; 

Park et al., 2010), as well as greater vitreous chamber volume (Orucoglu et al., 2015; Kasahara 

et al., 2017; Zong et al., 2017). Also, an association between axial elongation and weakened 

biomechanical properties of the posterior sclera (Saka et al., 2013) has been reported.  

Despite it being considered advantageous to be able to keep myopia control lenses in-situ, 

whilst performing measurements, in order to fully assess their demonstrated efficacy in exerting 

AL reduction (Walline et al., 2013; Lam et al., 2014; Chamberlain et al., 2019), studies by Lewis 

et al. 2008 (IOLMaster PCI; AL and K; undilated) and Ferrer-Blasco et al. 2019 (IOLMaster SS-

OCT; AL, CCT, ACD, and K; undilated) noted clinically significant changes with biometry 

through CLs compared to the naked eye. Hence CLs need to be removed to assess ocular 

biometry. The only study to examine the effect of prior soft CL wear on (undilated) ocular 

biometry (Goudie et al. 2018), immediately after removing contact lenses and then after 2, 4 and 

7 days of no contact lens use, concluding that any change in corneal shape did not significantly 

alter AL and K parameters. However, these were spherical lenses and lenses for myopia control 

have a more complex surface profile which could impact corneal topography and possibly axial 

length. Hence, this study investigated possible causes of these differences that may be 

attributed to the mentioned varying biometry technology, as well as the specialty optical dual 

focus and extended depth of focus designs (concentric ring design with alternating optical 

correction and treatment zones, simultaneously correcting the distance central myopia and 

exerting peripheral myopic defocus) of myopia control soft contact lenses (Ruiz-Pomeda et al., 

2018; Chamberlain et al., 2019).  

Thus, the clinical reliability of optical biometry instrumentation impacted by the post-wear of 

myopia control indicated soft contact lenses among healthy adults has not been previously 

investigated and warrants consideration towards improving myopia progression monitoring. The 
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purpose of this study was to evaluate the agreement between the IOLMaster 700 and 

IOLMaster 500 measurements in myopic eyes for axial length (AL), mean keratometry (Km), 

anterior chamber depth (ACD), and horizontal white-to-white (WTW) corneal diameter, after 

immediate MiSight and NaturalVue daily soft contact lens wear for myopia control, compared 

with a standard single vision Proclear lens. 

5.2 Methods  

5.2.1 Participants 

The study (single-centre, prospective, randomised, and double-masked) was conducted at the 

Aston University Ophthalmic Research Clinics, where 18 participants with myopia in good overall 

general and ocular health were recruited. This sample size was enough to obtain 80% statistical 

power for a significance level of α = 0.05 with a confidence level of 95%, based on an effect size of 

0.8 for the statistical analyses used in this study, published literature, and priori power analysis 

(G*Power 3.1, University of Dusseldorf). All participants gave informed written consent. All 

procedures followed the Declaration of Helsinki and the protocol was approved by the Aston 

University Research Ethics Committee.  

5.2.2 Study Lenses 

Two investigators compared the interchangeability between the IOLMaster 700 and IOLMaster 

500 for four measurement parameters (AL, Km, ACD, and WTW), after cycloplegia, and 

immediately following the removal of three different daily soft contact lenses (standard single 

vision Proclear® 1-Day [omafilcon A; hydrophilic; CooperVision, Inc.] for the control group, as 

well as MiSight® 1-Day [omafilcon A; hydrophilic, water content 60%; refractive index 1.40; 

CooperVision, Inc.; with center thickness of 0.08 mm at -3.00 D] and NaturalVue® 1-Day 

[etafilcon A; hydrophilic, water content 58%; refractive index 1.40; Visioneering Technologies, 

Inc.; with center thickness of 0.08 mm at -3.00 D] designed for myopia control for the test 

groups) via randomised coded letter (A, B, C) assignment (only the principal investigator had 

access to the lens assignments). 

5.2.3 Study Design 

Eligible participants visited twice on alternating days and in the same week, in order to implement a 

test group washout period in between, and so that each participant can be fitted with all three 

lenses. Participants were asked to attend for a morning visit (8:30 AM – 11:30 AM) and 8 hours 

later in the afternoon to allow for an adaptation period, mimic a typical work-day interval, and 
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consistency in diurnal variation. The two visits were each conducted by separate investigators, 

where the first investigator fitted the randomised contact lenses, whilst the second investigator 

performed the biometry measurements. The participants were unaware as to which lens and in 

which eye they were fitted during the visit.   

During the morning visit, Investigator 1 provided a copy of the informed consent and participant 

information sheet; confirmed eligibility (age range 18-35; prescription range -0.75 D to -4.50 D with 

astigmatism ≤ 1 D; spectacle, contact lens, and myopia control intervention history; as well as no 

relevant contraindication; and medical and ocular health history, including medications); and 

performed autorefraction (3 measurements were taken from each eye, whilst the participant viewed 

a distance non-accommodative target [Grand Seiko WAM-5500; Grand Seiko Co., Hiroshima, 

Japan]), best-corrected distance visual acuity (logMAR letter chart), slit-lamp biomicroscopy 

anterior eye examination, and randomised contact lens fitting. During the afternoon visit, 

Investigator 2 verified the distance visual acuity (logMAR letter chart); removed the contact lenses; 

applied cycloplegia (complete details of the drops were provided along with official College of 

Optometrists leaflet; the British National Formulary (BNF) number, expiration date, and time of 

instillation were recorded [1% Tropicamide; 1 drop/eye; minimum 20-minute waiting period]); 

performed cycloplegic-IOLMaster 500 (Carl Zeiss Meditec, Germany) and -IOLMaster 700 (Carl 

Zeiss Meditec, Germany) measurements for AL, Km, ACD, and WTW (>2.0 signal:noise or SNR), 

slit-lamp biomicroscopy anterior eye examination with fluorescein assessment; and concluded with 

a verbal debrief.  

5.2.4 Statistical Analyses 

The IOLMaster 700 and IOLMaster 500 agreement was evaluated by using Bland-Altman plots, 

where analyses were made with two tailed t tests (AL, Km, ACD, and WTW values with p<0.05 

were considered statistically significant) and 95% limits of agreement (LoA) as the mean 

difference ± 1.96 SD (narrow LoA was indicative of strong instrument interchangeability) in 

Microsoft Excel for Office 365 ProPlus (Microsoft Corp.). A Bland-Altman difference plot is a 

routinely used, standardised method of agreement analyses between quantitative 

measurements through the application of LoA. The normality of the data distributions was 

confirmed using the Kolmogorov-Smirnov test (P>0.05), enabling parametric statistical 

analyses. 
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5.3 Results  

From the 18 subjects included in the study, the pool consisted of the following demographics: 15 

women and 3 men (12 British Asian and 6 white European); mean age of 22.8 years ± 4.1 

(range 18 to 35 years); mean spherical equivalent refraction (SER) of -2.4 ± 1.3 D (range -0.75 

to -4.50 D); there were no adverse events. 

5.3.1 Agreement 

The mean difference and standard deviation, two tailed t test for the differences and their 

significance, and 95% confidence interval of lower and upper LoA based on ± 1.96 SD between 

the IOLMaster 700 and IOLMaster 500 for 4 parameters (AL = axial length; Km = mean 

keratometry; ACD = anterior chamber depth; WTW = horizontal [white-to-white] corneal 

diameter) are represented by Tables 5.1-5.3 for a post-wear Proclear, MiSight, and NaturalVue 

lens. The mean difference ± SD WTW (mm) values taken by the newer IOLMaster 700 were 

statistically significant and had wide 95% LoA, when measured from the post-wear MiSight (-

0.21 ± 0.23; -0.66. 0.24) and NaturalVue (-0.19 ± 0.41; -1.00. 0.62) daily soft contact lenses for 

myopia control test groups, compared with the IOLMaster 500 and post-wear standard single 

vision Proclear (-0.07 ± 0.49; -1.02. 0.89) lens control group. Bland-Altman plots (Figures 5.1-

5.12) implied good comparison agreement for all other parameters between the two instruments 

(where those mean differences were not significantly different from zero and with narrow 95% 

confidence interval of limits of agreement) and may be used interchangeably. This study 

evaluated clinical / “real world” correlations and comparisons of agreement via t tests, p values, 

95% LoA, and Bland-Altman plots, instead of assessing repeatability and reproducibility.  

Parameter Mean Difference ± 
SD 

P Value* 95% LoA 

AL (mm) -0.004 ± 0.06 .25 -0.13. 0.12 

Km (mm) -0.01 ± 0.02 .78 -0.05. 0.03 

ACD (mm) -0.07 ± 0.05 0.13 -0.17. 0.03 

WTW (mm) -0.07 ± 0.49 0.12 -1.02. 0.89 

Table 5.1. The reported post-wear Proclear lens mean difference and standard deviation, two 
tailed t test for the differences and their significance, and 95% confidence interval of lower and 
upper limits of agreement based on ± 1.96 SD between the IOLMaster 500 and IOLMaster 700; 
AL = axial length; Km = mean keratometry; ACD = anterior chamber depth; WTW = horizontal 

(white-to-white) corneal diameter. 
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Figure 5.1. Bland-Altman plots for axial length comparison between the IOLMaster 500 and 

IOLMaster 700 with the post-wear Proclear lens. The mean difference is designated by the solid 
line. The 95% confidence interval of the upper and lower limits of agreement based on ± 1.96 

SD are designated by the dotted lines.  

 

 
Figure 5.2. Bland-Altman plots for mean keratometry comparison between the IOLMaster 500 
and IOLMaster 700 with the post-wear Proclear lens. The mean difference is designated by the 
solid line. The 95% confidence interval of the upper and lower limits of agreement based on ± 

1.96 SD are designated by the dotted lines.  
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Figure 5.3. Bland-Altman plots for anterior chamber depth comparison between the IOLMaster 
500 and IOLMaster 700 with the post-wear Proclear lens. The mean difference is designated by 
the solid line. The 95% confidence interval of the upper and lower limits of agreement based on 

± 1.96 SD are designated by the dotted lines.  

 

 
Figure 5.4. Bland-Altman plots for the horizontal (white-to-white) corneal diameter comparison 
between the IOLMaster 500 and IOL Master700 with the post-wear Proclear lens. The mean 
difference is designated by the solid line. The 95% confidence interval of the upper and lower 

limits of agreement based on ± 1.96 SD are designated by the dotted lines.  
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Parameter Mean Difference ± 
SD 

P Value 95% LoA 

AL (mm) -0.002 ± 0.02 .58 -0.05. 0.04 

Km (mm) -0.01 ± 0.02 .77 -0.05. 0.03 

ACD (mm) -0.07 ± 0.07 0.33 -0.2. 0.07 

WTW (mm) -0.21 ± 0.23 0.02* -0.66. 0.24 

Table 6.2. The reported post-wear MiSight lens mean difference and standard deviation, two 
tailed t test for the differences and their significance, and 95% confidence interval of lower and 
upper limits of agreement based on ± 1.96 SD between the IOLMaster 500 and IOLMaster 700; 
AL = axial length; Km = mean keratometry; ACD = anterior chamber depth; WTW = horizontal 

(white-to-white) corneal diameter; * = p<0.05. 

 

 
Figure 5.5. Bland-Altman plots for axial length comparison between the IOLMaster 500 and 

IOLMaster 700 with the post-wear MiSight lens. The mean difference is designated by the solid 
line. The 95% confidence interval of the upper and lower limits of agreement based on ± 1.96 

SD are designated by the dotted lines.  
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Figure 5.6. Bland-Altman plots for mean keratometry comparison between the IOLMaster 500 
and IOLMaster 700 with the post-wear MiSight lens. The mean difference is designated by the 
solid line. The 95% confidence interval of the upper and lower limits of agreement based on ± 

1.96 SD are designated by the dotted lines.  

 

 
Figure 5.7. Bland-Altman plots for anterior chamber depth comparison between the IOLMaster 
500 and IOLMaster 700 with the post-wear MiSight lens. The mean difference is designated by 
the solid line. The 95% confidence interval of the upper and lower limits of agreement based on 

± 1.96 SD are designated by the dotted lines.  

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

7 7.2 7.4 7.6 7.8 8 8.2

D
if

fe
re

n
ce

 (
m

m
)

Mean of the 2 Devices (mm)

MiSight Km (mm)

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

3 3.2 3.4 3.6 3.8 4 4.2 4.4

D
if

fe
re

n
ce

 (
m

m
)

Mean of the 2 Devices (mm)

MiSight ACD (mm)



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    109 
 

 
Figure 5.8. Bland-Altman plots for the horizontal (white-to-white) corneal diameter comparison 

between the IOLMaster 500 and IOLMaster 700 with the post-wear MiSight lens. The mean 
difference is designated by the solid line. The 95% confidence interval of the upper and lower 

limits of agreement based on ± 1.96 SD are designated by the dotted lines.  

 

Parameter Mean Difference ± 
SD 

P Value 95% LoA 

AL (mm) 0.004 ± 0.01 .09 -0.02. 0.02 

Km (mm) -0.02 ± 0.01 .39 -0.05. 0.01 

ACD (mm) -0.04 ± 0.06 0.06 -0.16. 0.08 

WTW (mm) -0.19 ± 0.41 0.01* -1.00. 0.62 

Table 5.3. The reported post-wear NaturalVue lens mean difference and standard deviation, 
two tailed t test for the differences and their significance, and 95% confidence interval of lower 
and upper limits of agreement based on ± 1.96 SD between the IOLMaster 500 and IOLMaster 

700; AL = axial length; Km = mean keratometry; ACD = anterior chamber depth; WTW = 
horizontal (white-to-white) corneal diameter; * = p<0.05. 
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Figure 5.9. Bland-Altman plots for axial length comparison between the IOLMaster 500 and 

IOLMaster 700 with the post-wear NaturalVue lens. The mean difference is designated by the 
solid line. The 95% confidence interval of the upper and lower limits of agreement based on ± 

1.96 SD are designated by the dotted lines.  

 

 
Figure 5.10. Bland-Altman plots for mean keratometry comparison between the IOLMaster 500 
and IOLMaster 700 with the post-wear NaturalVue lens. The mean difference is designated by 
the solid line. The 95% confidence interval of the upper and lower limits of agreement based on 

± 1.96 SD are designated by the dotted lines.  

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

22 22.5 23 23.5 24 24.5 25 25.5 26

D
if

fe
re

n
ce

 (
m

m
)

Mean of the 2 Devices (mm)

NaturalVue AL (mm)

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

7 7.2 7.4 7.6 7.8 8 8.2

D
if

fe
re

n
ce

 (
m

m
)

Mean of the 2 Devices (mm)

NaturalVue Km (mm)



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    111 
 

 
Figure 5.11. Bland-Altman plots for anterior chamber depth comparison between the IOLMaster 
500 and IOLMaster 700 with the post-wear NaturalVue lens. The mean difference is designated 
by the solid line. The 95% confidence interval of the upper and lower limits of agreement based 

on ± 1.96 SD are designated by the dotted lines.  

 

 
Figure 5.12. Bland-Altman plots for the horizontal (white-to-white) corneal diameter comparison 
between the IOLMaster 500 and IOLMaster 700 with the post-wear NaturalVue lens. The mean 
difference is designated by the solid line. The 95% confidence interval of the upper and lower 

limits of agreement based on ± 1.96 SD are designated by the dotted lines. 
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5.4 Discussion  

This study evaluated the agreement between the IOLMaster 700 and IOLMaster 500 

measurements in myopic eyes for axial length (AL), mean keratometry (Km), anterior chamber 

depth (ACD), and horizontal white-to-white (WTW) corneal diameter, after cycloplegia, 

immediately following the removal of three different daily soft contact lenses; standard single 

vision Proclear® 1-Day, as well as MiSight® 1-Day and NaturalVue® 1-Day designed for 

myopia control. This is considered the first study to investigate optical biometer instrument 

validation impacted by the post-wear of myopia control indicated soft contact lenses and 

specifically focused on the relative parameters.  

The mean difference ± SD WTW (mm) values taken by the IOLMaster 700 with its SS-OCT 

technology were statistically significant and had wide 95% LoA, when measured from the post-

wear MiSight (-0.21 ± 0.23; -0.66. 0.24) and NaturalVue (-0.19 ± 0.41; -1.00. 0.62) contact 

lenses, compared with the IOLMaster 500 and post-wear standard Proclear lens (-0.07 ± 0.49; -

1.02. 0.89). However, the discrepancy in WTW values between the IOLMaster 700 and 

IOLMaster 500 with the post-wear MiSight and NaturalVue contact lenses alone were minimal 

and clinically irrelevant, implying agreement. Bland-Altman plots suggested good comparison 

agreement for all other parameters (AL, Km, ACD) between the two instruments, across all 

post-wear contact lenses used, and may be used interchangeably. These WTW differences may 

be attributed to the overall varying technology in measurement, as previously suggested by Cho 

et al. (2018) in their comparison of the IOLMaster 700 with the Galilei G4 from cataract eyes, or 

the PCI with the Tomey OA-2000 using SS-OCT in healthy adults (Huang et al., 2017; Hua et 

al., 2018) and the AL-Scan in cataract eyes (Huang et al., 2014), stating the impact of grey-

scale image processing discrepancies and limbus detection sensitivity by any imposed darkness 

(device / eyelash / nose shadow), as possible causes. In addition to cataract patients, the only 

other evaluation of confirmed biometric measurement reliability with the IOLMaster 700 using 

SS-OCT, relative to the IOLMaster 500, as well as also including healthy adults and the WTW 

parameter is by Huang et al. (2020). The authors consistently noted excellent repeatability and 

reproducibility between the two devices for all parameters (AL, Km, ACD) in all three groups, 

besides WTW values among cataract patients (corneal arcus was reported to result in dimmer 

central boundaries).   

Lewis et al. (2008) previously validated the IOLMaster’s PCI repeatability and reliability for AL 

and Km in healthy myopic eyes fitted with soft contact lenses of -0.50 D (cast-molded 

SofLens38 [polymacon; hydrophilic, water content 38%; refractive index 1.43; Bausch & Lomb; 
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with center thickness of 0.035 mm] and the soft-molded Acuvue2 [etafilcon A; hydrophilic, water 

content 58%; refractive index 1.40; Johnson & Johnson; with center thickness of 0.119 mm]), 

relative to the naked eye. The study was interested in the possible coupling of soft contact 

lenses (as ideal optical interfaces) with PCI biometry in patients with corneal irregularities, 

inadequate fixation, and severe cataracts, before and after cataract surgery and Descemet’s 

stripping with endothelial keratoplasty (DSEK), which otherwise leads to unpredictable 

measurements. The authors noted the corresponding increased AL measures, as well as 

associated change in precorneal tear layer and central corneal thicknesses (which were 

correlated with the K differences), with the contact lens manufacturing method, thickness and 

higher water-content attributes. A different and more recent study by Goudie et al. (2018) 

investigated the effect of the specific cessation duration of soft contact lenses on IOLMaster 

biometry, concluding that any change in corneal shape did not significantly alter AL and K 

parameters. The only evaluation of confirmed biometric measurement reliability with the 

IOLMaster 700 using SS-OCT on eyes with soft contact lenses (hilafilcon B; hydrophilic, water 

content 59%; refractive index 1.40) was by Ferrer-Blasco et al. (2019), performed only on eight 

subjects with healthy eyes. This study was interested in the interaction of soft contact lenses 

with OCT biometry measurements, as a prelude to the use of specialty therapeutic (ocular drug 

delivery) or bandage (corneal epithelial healing) contact lenses, when not removed for 

assessments. Although there was no reported LT difference between soft contact lens wear and 

the naked eye (where contact lenses of varying optical powers may impose specific 

accommodation requirements in eyes without cycloplegia and possibly result in LT differences), 

increased changes in AL, CCT, ACD, and K were statistically significant, which the authors 

attributed to the individual contact lens thickness and optical design discrepancies, as described 

earlier by Lewis et al. (2008). This study is of particular interest regarding any future biometry 

evaluation with myopia control indicated soft contact lenses in-situ and assessing the possible 

impact on the crystalline lens, considering MiSight and NaturalVue are of similar material, water 

content, and refractive index.    

Previous studies involving IOLMaster validation have noted the following: a significantly flatter 

Km from the RK-F1 AutoRef-Keratometer in children of age 6 (Huynh et al., 2006) and the 

Lenstar OLCR assessed on cataract eyes (Chen et al., 2011) relative to the IOLMaster; 

interchangeable agreement in K and ACD values between the Lenstar OLCR, IOLMaster, and 

an A-scan ultrasonographer (Salouti et al., 2011); high repeatability, reproducibility, and 

agreement for corneal power from a comprehensive assessment of 8 devices (Wang et al., 
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2012), as well as when comparing the Keratograph 4, Pentacam HR, and IOLMaster (Mao et 

al., 2013), and the OphthaTOP, Pentacam HR, and IOLMaster (Huang et al., 2015) in normal 

eyes, without clinically significant differences. Mehravaran et al. (2014) compared the 

keratometry repeatability and agreement of the previous gold standard manual Javal 

keratometer with the IOLMaster, Pentacam, Topcon, and EyeSys instruments, stating that the 

IOLMaster had the best repeatability for minimum and maximum keratometry measurements. 

Other studies have further noted the IOLMaster’s accuracy and reliability for IOL power 

calculation in regular cataract patients (Olsen, 2007; Hsieh & Wang, 2012), as well as those 

also having high myopia (Roessler et al., 2012), although difficulty with abnormal eyes has been 

previously reported (Freeman & Pesudovs, 2005; McAlinden et al., 2015). Moreover, a 

comprehensive literature review by Dominguez-Vicent et al. (2016), specified device 

interchangeability for measuring ACD and WTW in healthy eyes among the following: A-scan 

ultrasound, Orbscan and Orbscan II, Pentacam and Pentacam HR, Galilei, Visante OCT, 

IOLMaster, and Lenstar LS 900.   

Regarding studies specifically investigating the interchangeability, repeatability, and 

reproducibility of the IOLMaster 700 and IOLMaster 500, Akman et al. (2016) did so by 

comparing AL, ACD, K, and failure rate measurements on cataract eyes, reporting excellent 

agreement, but significantly higher acquisition rate via the IOLMaster 700’s SS-OCT technology; 

which was able to overcome the IOLMaster 500’s PCI limitations, particularly in groups with 

advanced cataracts. In a prospective, multi-centre study on elderly patients undergoing cataract 

surgery, Kunert et al. (2016) noted a high repeatability between the IOLMaster 700 and 

IOLMaster 500 for AL, ACD, and spherical equivalent (SE), and for CCT and LT with the 

Lenstar OLCR. Cho et al. (2018) evaluated the agreement in cataract eyes between the 

IOLMaster 700 and IOLMaster 500, A-scan for AL; and Galilei G4, A-scan for ACD; and Galilei 

G4 for WTW; and Galilei G4, manual keratometer, automated refractor for Km. The study also 

concluded a higher acquisition rate over the IOLMaster 500, as well as outstanding agreement 

for AL and Km; for ACD between the IOLMaster 700 and Galilei G4, but poor correlation for the 

A-scan with either instrument; and no interchangeability with the Galilei G4 for WTW. However, 

Yang et al. (2017) found a longer AL from the IOLMaster 700 compared to the IOLMaster 500 in 

myopic eyes, emphasising its greater precision in patients with posterior staphyloma of good 

fixation status. The overall literature comparing the IOLMaster 700 and IOLMaster 500 is 

limited, particularly outside of cataract populations, but these authors suggested AL 
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discrepancies may be due to fixation loss, which is not necessarily evaluated by the IOLMaster 

500.     

Therefore, this study’s firstly comparative evaluation also confirmed good clinical agreement 

between the IOLMaster 700 and IOLMaster 500 for AL, Km, ACD, and WTW measured on the 

myopic eyes of healthy adults, following daily soft contact lens (standard and specialty for 

myopia control) post-wear, with separate results consistent with the previous relative literature. 
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Chapter 6 Are soft contact lenses a viable source for human dopamine levels 
measurement using the ELISA dopamine kit? 

6.1 Introduction  

Myopia has been well established as a worldwide epidemic and high myopia (≥6 D or axial 

length ≥26 mm) is one of the leading causes of global blindness (Holden et al., 2016). Although 

optical myopia may be corrected by optical and surgical interventions, high myopia still is not 

completely preventable or treatable (Bosch-Morell et al., 2015). The International Myopia 

Institute (IMI) – Myopia Genetics Report (Tedja et al., 2019) confirmed refractive error and 

myopia predisposition is due to both genetics and environmental risk factors (near work and 

outdoor exposure; specifically education holding most prominence), as well as a light-

processing retina-to-sclera molecular mechanism for common myopia development. A key 

meta-analysis and systemic review by Xiong et al. (2017), also noted increased time outdoors to 

be effective in preventing myopia onset and slowing the myopic shift, but not in controlling 

progression. French et al. (2013) previously suggested that the preventative mechanism of 

increased outdoor activity is related to reduced accommodative demand, bigger depth of focus, 

improved contrast, higher levels of Vitamin D (Mutti & Marks, 2011; Choi et al., 2014; Tideman 

et al., 2016a) and retinal dopamine acting against form-deprivation myopia. However, the 

mechanisms behind these protective effects remain unresolved, which may be vital to slowing 

childhood myopia progression and lead to more proficient clinical management.   

The dopamine (DA) retinal neurotransmitter is part of the signalling cascade that regulates eye 

growth (Feldkaemper & Schaeffel, 2013), where its increased levels during the day and with 

higher light intensity have been shown to inhibit axial elongation upon emmetropisation 

(Nebbioso et al., 2014), and has been recognised to be critical for light adaptation and 

preventing myopia (Teves et al., 2014). Although human DA levels could be measured from 

biological fluids such as blood plasma, cerebrospinal fluid (CSF) and urine (Suominen et al., 

2013), tear fluid sample extraction through the commonly used Schirmer strips and capillary 

tubes (Dumortier & Chaumeil, 2004; Shetty et al., 2016; Shetty et al., 2017) has been preferred 

for its non-invasive nature (Sharma et al., 2019). This is especially beneficial to longitudinal 

studies with pediatric patients, where compliance is of paramount importance. However, 

comparative investigation of the non-invasive Schirmer strip and capillary tube sampling 

techniques for human tear fluid has been mixed. Capillary tube collection was perceived as less 

invasive, since Schirmer strips have been reported to induce irritation and further reflex tear 

secretion (Choy et al., 2001), as well as damage conjunctival cells (van Setten et al., 1990), 

which may all affect the true tear concentrations. On the other hand, the Schirmer strip 
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technique was reported to be quick, simple, and precise (Small et al., 2000), whilst the capillary 

tube extraction was more aggressive and irritable, posing a higher injury risk. More recently, 

Posa et al. (2012) concluded that the difference of tears from Schirmer strips containing higher 

protein composition was minimal, and although both methods were efficient and suitable for 

non-invasive human tear fluid analysis, Schirmer strips were quicker, simpler, and perceived as 

having a more pleasant sensation by patients.         

 

The proteins found in human tear fluid have long been identified as non-invasive biomarkers for 

numerous conditions (Hagan et al., 2016), including cancers (Evans et al., 2001) and diabetes 

(Herber et al., 2001), as well as eye-specific pathologies (blepharitis [Koo et al., 2005]; allergic 

conjunctivitis [Li et al., 2010]; keratoconus [Acera et al., 2011]; and pterygium [Zhou et al., 2009] 

among others). Likewise, abnormal DA levels have been linked to Parkinson’s (Dirkx et al., 

2017); Alzheimer’s (Yates et al., 1979); schizophrenia (Brisch et al., 2014); epilepsy (Starr, 

1996); and various ocular diseases (myopia [Feldkaemper & Schaeffel, 2013]; glaucoma 

[Bucolo et al., 2018]; and dry eye [Lemon & Shah, 2013]. Research on DA detection from 

human tears is scarce (Van Haeringen, 1981; Trope & Rumley, 1984; Sharma et al., 2019) and 

only that by Sharma et al. (2019) has evaluated the use of the direct competitive 

chemiluminescent enzyme-linked immunosorbent assay (ELISA; [Cloud Clone Corp, TX, USA]) 

dopamine kit, as an alternative quantification method. Soft multifocal contact lenses have been 

successful to reduce myopia and axial length progression in children and young adults via 

peripheral defocus (Walline et al., 2013; Lam et al., 2014; Chamberlain et al., 2019). Willcox 

(2019) summarised the literature showing the many tear film proteins adsorbing on contact 

lenses, which varied with the material (Saville et al., 2010; Babaei et al., 2011; Brown et al., 

2013), patient (Omali et al., 2013), modality (Willcox et al., 2002), as well as whether a 

disinfectant was used or if there were other proteins (Chao et al., 2019). Moreover, Willcox 

(2019) noted that besides fibronectin, phospholipids, secretory immunoglobulin A, and 

cholesterol, tear film biochemistry was not affected by contact lens wear.    

 

Thus, the purpose of this study was to (1) assess the viability of daily soft contact lenses 

(MiSight and NaturalVue for myopia control, as well as a standard single vision Proclear lens) to 

be used as a non-invasive vehicle for DA measurements in human tears and (2) optimise the 

ELISA-based dopamine kit methodology for ex vivo lenses and future applications, since the 

effect of other tear components on the DA assay has yet to be determined. This exploratory/pilot 

study is considered the first of its kind – investigating the potential for an additional non-
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invasive, efficient, and reliable tool to monitor local DA status, which may become an integral 

early diagnostic clinical component in the fight against myopia. 

 

6.2 Methods  

6.2.1 Participants 

This exploratory/pilot study (single-centre, prospective, randomised, and double-masked) was 

conducted at the Aston University Ophthalmic Research Clinics, where 18 participants with 

myopia in good overall general and ocular health were recruited. This sample size was enough 

to obtain 80% statistical power for a significance level of α = 0.05 with a confidence level of 95%, 

based on an effect size of 0.8 for the statistical analyses used in this study, published literature, 

and priori power analysis (G*Power 3.1, University of Dusseldorf). All participants gave informed 

written consent. All procedures followed the Declaration of Helsinki and the protocol was 

approved by the Aston University Research Ethics Committee.  

 

6.2.2 Study Lenses 

The three different daily soft contact lenses used in this study were: standard single vision 

Proclear® 1-Day (CooperVision, Inc.), as well as MiSight® 1-Day (CooperVision, Inc.) and 

NaturalVue® 1-Day (Visioneering Technologies, Inc.) designed for myopia control. These 

lenses were randomised via coded letter (A, B, C) assignment (only the principal investigator 

had access to the lens assignments). Equal unworn number of these lenses were used as the 

control sample group.  

6.2.3 Study Design 

Eligible participants were asked to attend for a morning visit (8:30 AM – 11:30 AM) and 8 hours 

later in the afternoon to allow for an adaptation period, mimic a typical work-day interval, and 

consistency in diurnal variation. The first investigator fitted the randomised contact lenses in the 

morning and removed these 8 hours later. The lenses were then stored in random order, in a 

beaker that was either dry, or instilled with a saline solution just fully covering the lens. The 

beakers were sealed, labelled, and transferred to the Biomaterials Research Unit (BRU) within 

48 hours for tear sample analysis by a second investigator; the fluid envelop and ocular species 

associated with each lens on removal allows analysis of tear proteins and lipids, without tear 

fluid stimulation. The participants were unaware as to which lens and in which eye they were 

fitted during the visit.   
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6.2.4 Measurement of tear dopamine 

Total dopamine levels in the tear fluid from the lenses were quantified using a direct competitive 

chemiluminescent enzyme-linked immunosorbent assay (ELISA) dopamine kit.  

The methodology sequence was: (1) lens removed from eye; (2) tear fluid (envelop) extracted into 

phosphate-buffered saline (PBS) solution in a sterile 1.5 ml microcentrifuge tube at 4°C for 1.5 

hours; (3) the tear extract in saline was quantified using an ELISA dopamine kit (ENZO Life 

Sciences) where positive results were shown as blue colouration (each plate has 96 wells, where 

the first 16 are used to create the standard curve); (4) plate read in spectrometer (SpectraMax 2; 

Molecular Devices Corp., CA, USA), where each sample was run in duplicate with each well read 9 

times; (5) averaged absorbance values for the samples converted to concentrations using the 

standard curve (This study used 3 plates in total).   

6.2.5 Statistical Analyses  

The data was reported as means and standard deviations, or as median with the corresponding 

range. P<0.05 was considered of statistical significance. 

 

6.3 Results 

From the 18 subjects included in the study, the pool consisted of the following demographics: 15 

women and 3 men (12 British Asian and 6 white European); mean age of 22.8 years ± 4.1 

(range 18 to 35 years); mean spherical equivalent refraction (SER) of -2.4 ± 1.3 D (range -0.75 

to -4.50 D); there were no adverse events.  

6.3.1 Tear dopamine levels 

The tear DA level (Table 6.1) extracted from Plate 1 was 354.1 ± 49.3 pg/ml (mean ± SEM) with 

a value range of 268.9 and 484.8 pg/ml (median, 333.3 pg/ml). In comparison, this was lower 

than Plates 2 & 3 with a DA level of 485.8 ± 44.6 pg/ml (mean ± SEM), and a value range of 415 

and 569.1 pg/ml (median, 477 pg/ml). Thus, Table 6.1 showed the collection variation between 

the three plates, prior continued standardisation, where collections for Plates 2 & 3 were better 

controlled, despite being comparative to previous studies using Schirmer strips and capillary 

tubes.    
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  Literature values 

 

Initial 
Set 

(Plate 
1) 

Subsequent 
Set 

(Standardised 
Plates 2 & 3) Schirmer Capillary 

Mean 354.1 485.8 279 470.4 

Min 268.9 415 152 254.7 

Max 484.8 569.1 519.1 845.0 

Median 333.3 477 273.2 428.4 

SD ± 49.3 ± 44.6 ± 14.8 ± 37.6 

Table 6.1. Comparison of tear DA levels (pg/ml), as well as comparative Schirmer strip and 
capillary tube values from Sharma et al. (2019). 

 

Table 6.2 showed the differences between the daily soft contact lenses used in the current 

study, reflecting the results obtained only from the standardised set (Plates 2 & 3). Proclear DA 

was 491.5 ± 48.1 pg/ml (mean ± SEM) with a value range of 415 and 569.2 pg/ml (median, 

479.2 pg/ml); MiSight DA was 482.5 ± 47.2 pg/ml (mean ± SEM) with a value range of 415.2 

and 547.4 pg/ml (median, 470.2 pg/ml); NaturalVue DA was 488.5 ± 42.9 pg/ml (mean ± SEM) 

with a value range of 405.5 and 556.9 pg/ml (median, 486.4 pg/ml). Thus, similar DA levels 

were obtained, irrespective of the contact lens type, suggesting lens material was not a factor.  

    

 Proclear MiSight NaturalVue 

Mean 491.5 482.5 488.5 

Min 415 415.2 405.5 

Max 569.2 547.4 556.9 

Median 479.2 470.2 486.4 

SD ± 48.1 ± 47.2 ± 42.9 

Table 6.2. Comparison of tear DA levels (pg/ml) between the different contact lenses extracted 
from Plates 2 & 3. 

 

6.4 Discussion  

 
Although the DA values were within the range reported by the only other recent study (Sharma 

et al., 2019) with human tears DA values using ELISA, the recovery rate from the Schirmer 

strips was less, emphasising one of the indications for contact lenses being used as a probe to 

remove the tear envelope. Sharma et al. (2019) further noted that the tear DA level from both 

Schirmer strips and capillary tubes was significantly higher relative to plasma fluids, specifically 

stated as 3.9 ± 0.84 (mean ± SEM) and 6.2 ± 0.85 (mean ± SEM) fold higher respectively. 
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Additionally, the authors showed 80% of the subjects had >1.2 fold higher tear DA levels from 

the capillary tubes, relative to the Schirmer strips.   

 

DA measured from plasma and urine has been originally implemented by high-performance 

liquid chromatography (HPLC) with fluorescence (Peaston & Weinkove, 2004; Tsunoda, 2006; 

Pussard et al., 2009). A study by Nichkova et al. (2013) on the validation of a competitive ELISA 

for urinary DA samples did report high specificity, good precision, reliability and efficiency for the 

analysis and monitoring of a pathological DA system such as Parkinson’s disease, which was 

well-correlated to liquid chromatography tandem mass spectrometry (LC-MS/MS; the more 

recently preferred method [Kushnir et al., 2002; de Jong et al., 2011; Moriarty et al., 2011]). 

Although immunoassays have been considered being more efficient than LC-MS/MS, research 

has reported on associated drawbacks when applied to biological fluids, such as an oxidising 

tendency, specific antibody requirement, and low physiological concentrations (Peaston & 

Weinkove, 2004; Kim et al., 2008, 2010). Furthermore, You et al. (2015) compared the 

quantification of human tear lactoferrin between ELISA and multiple reaction monitoring (MRM) 

mass spectrometry in prostate cancer patients, noting that despite tear fluid analysis being 

limited by the small available tear volumes of ≤10 µl, the amounts of lactoferrin were 

comparable to the published literature. A previous study examining the tear film in patients with 

keratoconus with a capillary tube and specific ELISAs concluded that the differences in tear 

proteomics had no correlation with age, gender, or contact lens wear (Balasubramanian et al., 

2012).   

 

Therefore, data from this exploratory/pilot study informed the following: (1) daily soft contact 

lenses proved to be viable non-invasive tear envelope sampling vehicles for human DA 

detection; (2) lens type was not a factor, as the detected DA levels were well correlated for all 

contact lenses used in this study; (3) ELISA successfully detected DA; (4) values were similar to 

those reported previously from tears obtained with Schirmer’s strips and capillary tubes, but 

throughout the wear period. 
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Chapter 7 Conclusions 
 
This thesis explored novelty utilization methods of some of the latest myopia control strategies 

available with a scope on assessing and managing the individual short-sighted patient.  

 

Despite the negative worldwide myopia outlook, as well as the notable escalation of practitioner 

concern and treatment activity, the global trends survey showed that appropriate management 

and standardisation remain poor. Moreover, treatment is not implemented early enough, whilst 

practitioner education and access to regulated myopia control options are still inadequate. The 

following research chapters probed the viability of such “labelled” and/or gold standard medical 

device and instrumentation options towards their application in individual patient treatment.  

 

For instance, percentile growth curves and charts demonstrated that there may be a clinically 

manifesting myopia-related near phoria control target across the human lifespan, including 

possible associated differences in sex and within progressive myopes. This study intended to 

better understand myopia prediction and its progression by suggesting that the near phoria risk 

factor should be measured alongside other primary outcome parameters important for individual 

treatment efficacy.  

 

In studying the only daily CE-marked optical myopia control strategies, it was evident that 

MiSight and NaturalVue MFSCLs achieved myopic retinal defocus differently. These findings 

may be extended to comparisons of all concentric and peripheral gradient contact lens types, 

suggesting that except for the possibility of a causal effect by these factors with NaturalVue, 

reduced hyperopic blur and accommodative lag appeared only to be byproducts of the optical 

design in other contact lenses influencing myopia progression. The optical design of multifocal 

contact lenses also directly influenced visual quality and although glare was significantly 

impacted, contrast sensitivity, treatment compliance and quality of life expectations were 

undeterred.   

 

The evaluation of the agreement between the gold standard optical biometers investigated the 

impact by the post-wear of myopia control indicated soft contact lenses, after cycloplegia. 

Findings reported good interchangeability for all other parameters (AL, Km, ACD) between the 

two instruments, where WTW differences were attributed to the overall varying technology in 

measurement, as well as the impact of grey-scale image processing discrepancies and limbus 

detection sensitivity by any imposed darkness. The overall literature comparing the IOLMaster 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    123 
 

700 and IOLMaster 500 is limited in myopic populations. Thus, this study should be of particular 

interest regarding any future biometry evaluation with myopia control indicated soft contact 

lenses in-situ and assessing the possible impact on the crystalline lens. 

 

The exploratory/pilot study informed that daily soft contact lenses are viable non-invasive tear 

envelope sampling vehicles for human DA detection. This suggested that practitioners may 

have an additional tool to monitor local DA status, which may become an integral early 

diagnostic clinical component in the fight against myopia.  

 

This thesis intended to contribute to the growing innovative developments in the field of myopia. 

The IMI white papers should be used in conjunction by all professionals interested in this topic. 

The global myopia problem is not going anywhere and such efforts at dissecting the individual 

utility potential by each control strategy must be pursued.  

 
7.1 Limitations & Future Direction 
 
 
7.1.2 Global trends in myopia management attitudes and strategies in clinical practice – 2019 

update  

Future similar studies should note the many strengths (cheap, practical, quick, simple, scalable, 

standardised, anonymous, valid, reliable) and limitations (room for dishonesty, allows user 

interpretation, accessibility constraints, response fatigue) of online questionnaires, as a 

methodology.  

 
7.1.3 Clinical myopia-related near phoria magnitude and variability across the human lifespan 

among Canadians  

Like Chen et al. (2016), the attributes in this exploratory study were specific to the examined 

cross-sectional WatES database. Future efforts should implement equal sample sizes for all 

groups; ethnicity and prevalence levels towards international validation and translation; data for 

ages before 10; further centiles (2nd, 5th, 10th, 25th, 75th, 90th, 95th, and 98th); receiver 

operating characteristic (ROC) analysis for model validation by including sensitivity and 

specificity, as well as positive predictive value (PPV) diagnostic testing of the near phoria 

percentile curves. Additional consideration of risk factors such as optical biometry (Jones et al., 

2005; Tideman et al., 2018; Diez et al., 2019; Rozema et al., 2019), near work activity (Rose et 

al., 2008; French et al., 2013), genetics (parental myopic history [Negrel et al., 2000; Baird et al. 

2010]) and environmental (Rose et al., 2008; Morgan et al., 2018) into the model is also 
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warranted. It would be of value to make future comparisons to the myopic SER reversal in the 

late 20s reported by various studies (Irving et al., 2019).  

7.1.4 Impact of blur from a dual focus and an extended depth of focus contact lens 

Limitations from this study, regarding the measure of peripheral refraction and accommodative 

lag stem from the cohort (young adults and not children) and the use of the Grand Seiko WAM-

5500, which is affected by the contact lens optical design. Future studies should consider the 

following: other lens designs and of different powers; peripheral defocus effects in other retinal 

locations; disability glare and dysphotopsia under further conditions; varying contact lens wear 

periods to understand the natural time course of such parameter changes; richer demographics 

for a better balance between the sexes, ethnicities, age groups, and eyes of varying complexity 

and severity; inclusion of subjects with binocular vision ailments; adding fixation status, ocular 

alignment, or lens decentration as stand-alone parameters; the implementation of a multi-

centre, longitudinal clinical trial.      

7.1.5 IOLMaster agreement evaluation in healthy adults, comparing ocular biometry 

measurements, after immediate soft contact lens wear for myopia control 

Sources of analysis variability consisted of the following: the timing of post-lens wear 

measurements was not standardised and future studies should measure exactly the time 

between lens removal and parameter measurement. 

Future instrument validation studies on the IOLMaster 700 may consider the following: a follow-

up study with peripheral off-axis measurements and the plausible inquiry into the effect of 

varying contact lens cessation periods; study the comparison with myopia control soft contact 

lenses in-situ to assess the possible impact on off-axis measurements, crystalline lens, or post-

lens tear film and associated refractive index changes of similar and different contact lens 

materials; investigate the repeatability and reproducibility for other specialty contact lenses such 

as orthokeratology and sclerals, considering appropriate timespans across the set of visits; 

implement different optical powers and richer demographics to incorporate a better balance 

between the sexes, as well as additional ethnicities, age groups, and eyes of varying complexity 

and severity; inclusion of lens status, but especially fixation status as a stand-alone parameter; 

astigmatism and vector analysis relative to toric IOL; the implementation of a multi-centre trial. 
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7.1.6 Are soft contact lenses a viable source for human dopamine levels measurement using 
the ELISA dopamine kit?  

Sources of analysis variability consisted of the following: some data was incomplete, since 

lenses stored in saline solution were in variable volumes and too large for the detection limit, 

hence, dry lens collection is recommended; although stored at the same temperature (-80°C 

degrees), the storage time interval between lens collection and analysis was longer for plate 1 

than plates 2 and 3, therefore, lenses should be placed directly into the extraction (where 

volume of 300 µl is recommended) microtube of an ELISA plate to reduce degradation.  

 

Future studies should explore the following: whether there is a significant drop in dopamine if 

contact lenses were to be worn only for a shorter daytime period and/or in the evening/overnight 

to note any diurnal variations; the application of a microcuvette to enable direct use of a 300 µl 

dopamine extract and other ocular biomarkers via ELISA, without following ex vivo lens 

extraction and possibly make the analysis more sensitive to lower dopamine levels; collect tear 

fluid using Schirmer’s strips and capillary tubes on the same visit for alternative sampling 

technique control comparison; include a richer patient demographic and larger cohort, in order 

to enable monitoring. 
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1. Background and Rationale 

Myopia, and its increasing global prevalence, has been described as a global epidemic; 
a condition which brings significant socio-economic burden and can lead to sight-
threatening ocular complications.1 While the highest prevalence of myopia is found in 
East Asian populations, research from the UK demonstrates that myopia constitutes a 
significant burden in our population; with nearly 20% of white teenagers and 40% of 
South Asian teenagers being myopic.2,3 There is an increasing body of evidence to 
suggest that myopia is influenced by environmental factors. Research points to the 
protective effects of spending time outdoors,4,5 more specifically that it could prevent the 
onset of myopia however the exact mechanism is currently unclear. Evidence for the role 
of time outdoors as being protective for myopia progression is equivocal. Studies on 
animals have suggested that manipulating peripheral defocus through an optical means 
while simultaneously providing correct axial focus can either discourage or encourage 
axial growth to effectively treat myopia or hyperopia respectively6. Recent research has 
established that progression of myopia and axial growth can be significantly reduced in 
children and adolescents through the use of bifocal, dual focus, extended depth of focus 
or multifocal contact lenses7-10. The dual focus and extended depth of focus lenses while 
correcting the distance central myopia impose simultaneous myopic defocus. This 
intervention relies on active accommodation and the myopia control studies show that 
children accommodate normally with multifocal contact lenses. Some children in myopia 
control intervention studies show minimal further progression in their myopia whereas 
others show greater progression of myopia.10 Understanding the mechanisms underlying 
development and progression of myopia is paramount to establishing greater efficacy in 
myopia control interventions. 

 

The proposed study would explore how blur impacts on ocular parameters and in 
particular how the eye responds to the simultaneous defocus (blur) it receives from a 
dual focus contact lens (MiSight) and an extended depth of focus contact lens 
(NaturalVue). 
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2. Study Objective and Design 
 

2.1 Study Objective 
 

• To explore how the ocular parameters in particular the ciliary muscle and choroid 
respond when subject to simultaneous blur 
 

2.2 Study Design 
 

Everyone who is able to take part in the study will visit the research centre over a period of 3 

within a two week period. Two visits per day for 3 consecutive days. The 2 visits per day is to 

allow fitting of the contact lenses in the morning and allow an adaption period before 

measurements are taken in the afternoon. The participants will be randomised to which lens 

they wear on which day. 

Lens conditions: 

1) Single vision Proclear daily disposable (DD) contact lens 

2) MiSight DD contact lens 

3) NaturalVue DD contact lens 

 

The measurement procedures are described below.  

At the first visit to the research centre, we will: 

• assess spectacle and contact lens wearing history and any history of previous myopia 

control interventions 

• assess suitablility to participate in the study by measuring refractive error with an 

autorefractor (WAM Grand Seiko. This instrument is used in a number of research studies eg ref 

#556).  

 

At each visit to the research centre, we will: 

• measure visual acuity using a logMAR letter chart. Additionally VA will also be measured 

using a black and white grating chart both with the participant looking straight ahead and with 

them looking at 40 degrees to fixation. This is to assess impact of peripheral blur from the 

contact lens on vision. 

• measure the shape of the anterior part of the eye and it’s components (lens, anterior 

chamber and ciliary muscle). This is done using an ocular coherence tomographer (Zeiss Cirrus 
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5000/ Zeiss Visante). The participant is required to place your chin on a rest and look at a 

target. 

• the thickness of the retina and choroid will also be made using the ocular coherence 

tomographer.  

• measure the length of the eye. This is done using the IOLMaster 500 (Zeiss). It has been 

used in previous studies ref (#556 #551). The participant places their chin on the machine’s chin 

rest and looks at a spot of light straight ahead and the machine will take several quick 

measurements of the eye length. Nothing touches the eye. 

• Assess lag of accommodation – focussing ability at near to a specific distance of 33cm, 

this will be assessed with the autorefractor. 

 

At the final visit we will also: 

• measure refractive error under cycloplegia using tropicamide 1% with an autorefractor to 

allow accurate assessment.   

Eye drop information: Tropicamide 1.0% 

The eye drops used in the study are used to make the pupils larger than normal allowing the 

investigator to view the inside of the eye more easily and to reduce focusing at near. The drops 

take about 15 to 30 minutes to work and around 6 hours to wear off, off (in some cases up to 24 

hours.) It is very unlikely, but should you experience any unusual symptoms such as severe 

pain and/ or blood shot around the eye and cloudy vision during this period please contact Dr 

Nicola Logan (n.s.logan@aston.ac.uk 0121 204 4128) and/ or your optometrist/ GP as you may 

be experiencing an adverse reaction to the drops. 

 

An adaptation period will be allowed between each set of measurements to allow for any 

change in lighting level and for change in fixation distance. 

Refractive error will be assessed using the Grand Seiko WAM 500 open-field autorefractor. This 

is a non-contact instrument and involves the participant placing his chin on a chinrest and 

forehead against a forehead rest. Five measurements will be taken from each eye when the 

participant is viewing a distance non-accommodative target. 

The measurements will take a maximum of 45 minutes to complete including time for adapting 

to the different conditions. We allow 20 minutes for initial fitting of the contact lens in the 

morning and 1 hour for the afternoon session. 
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3. Selection and Withdrawal of Participants 
 

3.1 Inclusion Criteria 

• Able to wear contact lenses 

• Participants aged 18-30 years 

• Myopia range -0.75D to -5.00D 

• Astigmatism 1D or less 

 
3.2 Exclusion Criteria 

• Amblyopia 

• History of ocular surgery or myopia control intervention 

• Use of medications known to impact on growth 

 

3.3 Withdrawal of Participants 
 

Participants will be withdrawn from the study in the following circumstances: 

• If there are not able to have tropicamide instilled into their eyes 

• any serious side effects related to contact lens wear 

• If the investigator determines that it is not in the best interest of the participant to 
continue in the study 

 

3.4 Expected Duration of Study 
 

The study is expected to last one year from July 2019 to July 2020.  
 

 

4. Study Procedures 

• Informed consent 

• Visual acuity using logMAR chart at distance and using grating acuity centrally and 
peripherally 

• Lag of accommodation using autorefractor 

• Axial length measures using a biometer 

• Ciliary body and crystalline lens assessment using optical coherence tomography 

• Choroidal thickness measures using OCT 

• Cycloplegia using tropicamide 
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• Refraction undertaken objectively with autorefractor 

• Verbal debrief at the end of the study. 

 

5. Assessment of Safety 
 

5.1 Participant Safety 

Potential hazards in this study relate to those associated with contact lens wear but are no 

greater than with normal use. All participants will be experienced contact lens wearers and 

aware of risks with contact lens wear. The researchers are experienced optometrists (one 

researcher, Daniel Lea, is a student optometrist who will work under supervision) who are 

trained to recognise and manage any complications arising from contact lens wear and will 

closely monitor subjects throughout the study.  

 

Dilation drops are used routinely during the course of optometric practice. All eyes will be 

checked appropriately prior to instillation of tropicamide. 

 

The instruments used within this study are standard ophthalmic instruments. The risks in this 

study are considered to be minimal and no greater than those associated with normal contact 

lens wear or the use of dilation drops in routine practice. A number of measures have been 

taken to minimise risks: 

 

• Participants will be monitored closely throughout the study  

• Eyes will be checked prior to instillation of tropicamide and pre and post contact lens 

wear. 

 

Participants will be instructed during the consent process that they are free to withdraw at any 

stage of the study. Leaving the study part way through will not have detrimental consequences. 

 

Confidentiality - records upon which the participant's name appears will be kept strictly 

confidential within the eye clinic. The information collected throughout the study, which will be 

used for analysis and publication will have the participant’s details removed and replaced by a 

code known only to the investigators so that the participant will not be identifiable from it. 
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Investigators will have completed appropriate training and will be experienced clinicians 

registered with the General Optical Council 

 

For participants in this study there is no direct benefit, however the findings may be of benefit for 

intervention for myopia progression in the future. 

 

5.2 Procedures for Reporting Adverse Events 
 

Adverse clinical events associated with the project will be reported through UREC 
adverse event reporting systems. 

Any adverse events associated with the specific procedures will be reported immediately 
to the Chief Investigator who will formally report them to the Aston University Research 
Ethics Committee. 

 

6. Statistics 
 

Analysis 

Comparison between data taken with single vision (standard) contact lenses will be 
compared to data taken with MiSight and NaturalVue contact lenses. 

 

7. Direct Access to Source Data and Documents 
 

The investigators will permit UREC review by providing direct access to source data and 
other documents. 

 

8. Ethics and Governance 
 

The study will be conducted in compliance with principles of the Declaration of Helsinki 
(1996), the principles of GCP and in accordance with all applicable requirements. 

 

This protocol and related documents will be submitted for review to Aston University 
Research Ethics Committee. The Chief Investigator will submit a final report to the 
UREC. 
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9. Quality Assurance 
  

Monitoring and auditing of this study will be in accordance with the Aston University 
Monitoring and Auditing Policy for Human Participant Research. 

 

10. Data Management 
 

The Chief Investigator will act as custodian of the study data. The data will be shared 
with the other study investigators. 

 

The following guidelines will be strictly adhered to: 

• Participant data will be anonymized 

• All study data will be stored in accordance with University data storage policies for 
research data 

 

Study data will be archived in accordance with Aston University Archive Policies and 
Procedures for archiving of clinical research data. 

 

11. Publication 
 

It is intended that the results of the study will be reported in peer reviewed scientific 
journals. 

   

12. Insurance/Indemnity 
 

Insurance/indemnity will not be provided for non-negligent harm. 

Insurance/indemnity for negligent harm will be provided for clinical research procedures 
undertaken by Aston University staff and research students by the University. 

Aston University will provide indemnity/insurance for the design and management of the 
research.  

 

13. Signature of Chief Investigator 

              Nicola Logan 

 ------------------------------------       26/09/2019 

Chief Investigator        Date 

Dr Nicola Logan 
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Appendix 2: Study Participant Information Sheet 

 

PARTICIPANT INFORMATION SHEET 

 

How does the eye respond to blur? 

 

 

You are being invited to take part in a research study. Please take time to read the following 

information carefully and discuss it with others if you wish. Before you decide whether you want to 

take part or not, it is important for you to understand why the research is being done and what it will 

involve.  Our team will be available by phone or in person to go through this information leaflet with 

you, to help you decide whether or not you want to take part and answer any questions you may 

have. If there is anything that you don’t understand, please ask one of the research team to explain 

this further. 

The study is being carried out at Aston University Ophthlamic Research Clinics. We would like 20 

short-sighted young adults to take part in our study. 

This Participant Information Sheet tells you the purpose of the study and an explanation of what will 

happen to you during the study if you decide to take part . Please ask if anything is unclear. 

 

 

 

 

 

 

 

 

 

Thank you for taking the time to read this Participant Information Sheet. 
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What is the study about? 

Short-sightedness, also called myopia makes objects in the distance, such as the television, look 

blurred. This is caused by the eye growing too long, something that usually happens during 

childhood but can continue into young adulthood. 

We can make people with myopia see better with glasses or contact lenses, but this doesn’t stop 

their eyes continuing to grow longer and become more myopic. 

Children in a study at Aston University have successfully been using a new design of soft contact 

lens (MiSight) to slow the progression of myopia for over 5 years now, however we do not fully 

understand how this lens works. The current study is the first of its kind looking at specifically how 

the eye responds to this type of contact lens. It will allow us to better understand why myopia 

develops and progresses. 

Why have I been chosen? 

You have been given information about this study as you are short-sighted. Whether you decide to 

take part in the study or not, we would like you to continue to go to your own optometrist for regular 

eye tests and glasses and/or contact lens checks. This study does not replace your routine eye 

examination. 

Do I have to take part? 

It is up to you to decide whether you want to take part or not.  If you decide now that you wish to 

take part, you can change your mind in the future and withdraw from the study. You don’t have to 

tell us why and it won’t affect your eye care in the future. 

We will ask you to sign a form (called an informed consent form) to say that you have agreed to be 

part of the study.  At this time, you will be given a copy of this information sheet and a copy of the 

form you have signed. 

Am I suitable for the study? 

If you decide you would like to take part, the first thing we need to do is to check whether you are 

definitely myopic.  We will do this by taking an autorefraction measurement. This takes 

approximately 2 minutes and is a little like having a photograph taken. It measures the strength of 

any spectacles you may require. We need to make sure all particpants who take part are short-

sighted, are not receiving any other treatments for myopia (apart from glasses or contact lenses), 

have healthy eyes and are in good general health too.  

What will happen to me if I take part? 

In this study, we will be comparing how the eye responds when it is corrected with a standard 

contact lens to how it responds when corrected with the MiSight design of contact lens and with 

another lens for myopia control called NaturalVue. Everyone who is able to take part in the study 

will visit the research centre over a period of 2 days. Two visits are required per day. At each visit, 

we will take some measurements of your eyes and test how well you can see. These 

measurements are described below.  
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At the first visit to the research centre, we will: 

• ask you about your spectacle and contact lens wearing history and if you have used any 
myopia control interventions previously 

• assess if you are suitable to participate in the study by measuring your level of myopia using 
an autorefractor. A non-contact instrument where you place your chin on a rest and look at a distant 
target. The measurement takes seconds.  
 
At each visit to the research centre, we will: 
 

• measure how well you see things far away using letters on a letter chart. We will do this while 
you are wearing contact lenses. We will also measure your vision using a black and white grating 
chart 

• measure the shape of the anterior part of your eye and it’s components (lens, anterior chamber 
and ciliary muscle). This is done using an ocular coherence tomographer. Nothing touches your 
eye and you are required to place your chin on a rest and look at a target. 

• the thickness of the light-sensitive tissues at the back of your eye (retina and choroid) using a 
ocular coherence tomographer. Nothing touches your eye and you are required to place your chin 
on a rest and look at a target. 

• measure the length of your  eye. This is done using a machine called an ocular biometer. You 
will place your chin on the machine’s chin rest and look at a spot of light straight ahead and the 
machine will take several quick measurements of the eye length. Nothing touches the eye and all 
you have to do is look at the light and keep your eyes still.  

• assess how well you can focus at near while looking at an image at 33cm. 

• measure the effect of glare on your vision. You will look at a letter target while a bright light is 
near the target 

• measure how well you can see letters of different contrast i.e light grey to dark grey 

• measure the aberrations in the eye – this involves looking at a fixation target while an 
instrument takes some readings. It does not touch your eye. 

 

At the final visit we will also: 

• measure your level of myopia.  To do this accurately, we will put an eye drop into each of your 
eyes. This eye drop relaxes the muscles in the eyes and allows us to accurately measure the level 
of short-sightedness. These drops are used routinely by optometrists.  After 20 minutes, we will 
measure the amount of short-sightedness with a machine called an autorefractor. Again you put 
your chin on the machine’s chin rest and look at a picture or letter placed on the other side of the 
room. Details of the drops are given below. You should not to drive, cycle or operate moving 
machinery until the drop has worn off. 

Eye drop information: Tropicamide 1.0% 

The eye drops used in the study are used to make the pupils larger than normal allowing the 

investigator to view the inside of the eye more easily and to reduce focusing at near. The drops 

take about 15 to 30 minutes to work and around 6 hours to wear off, (in some cases up to 24 

hours.) It is very unlikely, but should you experience any unusual symptoms such as severe 

pain and/ or blood shot around the eye and cloudy vision during this period please contact Dr 

Nicola Logan (n.s.logan@aston.ac.uk 0121 204 4128) and/ or your optometrist/ GP as you may 

be experiencing an adverse reaction to the drops. 

mailto:n.s.logan@aston.ac.uk
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How long do the visits last? 

The first and last visit to the clinic will last up to one hour.  The other visits will take approximately 

30 minutes. There will be time for you to rest between measurements if you need to.  

What are the possible disadvantages and risks of taking part? 

The following side effects are possible from the use of tropicamide.  

An increase in pupil size (which may make your vision a little uncomfortable when it is really bright 
outside, but you can use sunglasses or a hat to help with this) and a reduction in the ability to focus 
very close up.   

What are the possible benefits of taking part? 

There are no direct benefits to you for participating in the study. 

Your help with the study is valuable because it will help us decide how this new design of contact 

lenses may work to slow myopia progression. 

What happens when the research study stops? 

The information we collect will be kept for six years after the study is concluded and may be 

combined with other research studies. After that, the information we have on computer and on 

paper will be safely deleted or destroyed. 

What if I have a concern about the study? 

If you have any concerns about anything to do with this study, please speak to the research 

team and we will do our best to answer your questions.  Contact details can be found at the end 

of this information sheet. 

If the research team are unable to address your concerns or you wish to make a complaint 

about how it is being conducted then you should contact the Aston University Director of 

Governance, Mr John Walter, at j.g.walter@aston.ac.uk or telephone 0121 204 4869. 

Will my taking part in this study be kept confidential? 

We will take great care to ensure that any information we collect is stored safely.  In computer files 

that contain information about you, we will use an identification number rather than their name or 

any other detail that would allow someone to work out who you are. All information that we collect 

about your eyes will be kept on a password protected computer or in a locked filing cabinet. 

What are the costs and payments for taking part in this study? 

You will be given a £30 voucher to thank you for taking part in this study.  

What will happen to the results of the research study? 

At the end of the study we will tell you what the results of the study were.  We hope to do this quite 

soon after the study ends.  We will tell other researchers and the public about what we have found 

through scientific reports, websites and press releases. Your name won’t appear in any of the 

reports describing the study or its findings. 

mailto:j.g.walter@aston.ac.uk
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Who is funding the research? 

There is no specific funding for this study. 

Who has reviewed the study? 

This research has been reviewed by an independent group of people, called a Research Ethics 

Committee, to protect your safety, rights, wellbeing and dignity. This study has been reviewed and 

given a favourable opinion by the University Research Ethics Committee.  

Contact for Further Information 

Principal Investigator 

Name:   Dr Nicola Logan       

Address:  Vision Sciences, Aston University, Birmingham, B4 7ET 

 

Investigators 

Dr Raquel Gil Cazorla 

Mr Nikolay Boychev 

Ms Noelia Martinez 

Mr Daniel Lea 

 

 

 

 

 

 

 

 

 

 

 

Thank you for taking time to read this information leaflet 
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Transparency statement 

Aston University takes its obligations under data and privacy law seriously and complies 

with the General Data Protection Regulation (“GDPR”) and the Data Protection Act 2018 

(“DPA”).   

Aston University is the data controller and organizer for this study based in the United 

Kingdom. We will be using information from you and your child in order to undertake this study.  

Aston University will process your and your child’s personal data in order to register your child 

as a participant and to manage your child’s participation in the study.  It will process your child’s 

personal data on the grounds that it is necessary for the performance of a task carried out in the 

public interest (GDPR Article 6(1)(e).  Aston University may process special categories of data 

about your child which includes details about your child’s health.  Aston University will process 

this data on the grounds that it is necessary for statistical or research purposes (GDPR Article 

9(2)(j)). Aston University will keep identifiable information about your child for 6 years after the 

study has finished. 

Your rights to access, change or move your child’s information are limited, as we need to 

manage your child’s information in specific ways in order for the research to be reliable and 

accurate. If your child withdraws from the study, we will keep the information about your child 

that we have already obtained. To safeguard your child’s rights, we will use the minimum 

personally identifiable information possible. 

You can find out more about how we use your child’s information at 

www.aston.ac.uk/dataprotection or by contacting our Data Protection Officer at 

dp_officer@aston.ac.uk. 

If you wish to raise a complaint on how we have handled your child’s personal data, you 

can contact our Data Protection Officer who will investigate the matter. If you are not satisfied 

with our response or believe we are processing your child’s personal data in a way that is not 

lawful you can complain to the Information Commissioner’s Office (ICO).  

 

 

 

 

 

 

 

 



N.B.Boychev, PhD Thesis, Aston University 2021                                                                    169 
 

Appendix 3: Study Consent Form 

Volunteer Consent Form 

Participant Number:________ 

 

Title of Project:  How does the eye respond to blur? 

 

Name of Researchers: Dr Nicola Logan, Dr Raquel Gil Cazorla, Mr Nikolay Boychev, Ms 

Noelia Martinez, Mr Daniel Lea 

  Initial 
box 

1 I confirm that I have read and understand the information sheet 
(version 3 dated 27/11/19) for the above study.  I have had the 
opportunity to consider the information, ask questions and have had 
these answered satisfactorily.  

 

2 I understand that my participation is voluntary and that I am free to 
withdraw at any time without giving any reason, without my legal rights 
being affected. 

 

3 I agree to take part in the above study.  

 

_________________        ______________         ___________________ 

Name of volunteer        Date                           Signature 

 

________________     _____________      ___________________ 

Investigator taking consent Date                   Signature 

2 copies: 1 for participant 

1 for investigator 


