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   Abstract In this paper, we consider the problem of allocating resources among 
Decision Making Units (DMUs). Regarding the concept of overall (cost) efficiency, we 
consider three different scenarios and formulate three Resource Allocation (RA) models 
correspondingly. In the first scenario, we assume that overall efficiency of each unit 
remains unchanged. The second scenario is related to the case where none of overall 
efficiency scores is deteriorated. We improve the overall efficiencies by a pre-determined 
percentage in the last scenario. We formulate Linear Programming problems to allocate 
resources in all scenarios. All three scenarios are illustrated through numerical and 
empirical examples. 

   Keywords: Data Envelopment Analysis; Resource Allocation; Overall Efficiency. 

1. Introduction 

1.1. Literature review and motivation  

Data envelopment analysis is a mathematical programming technique for measuring the 
efficiency of a group of Decision Making Units (DMUs) initially proposed by [5]. Later on, 
[4] generalized their model to a Variable Returns to Scale case later. All DMUs are evaluated 
based on their observed input/output values, and an efficiency score is obtained for each one. 
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One interesting application of DEA is in the problem of Resource Allocation (RA) in a 
production plan that is well-known in operations research and management sciences 
literature. Recent developments exhibit an additional planning orientation for the resource 
allocation problem. The use of DEA provides an alternative to the RA problem because it 
makes it possible to consider feasible production plans and trade-offs between inputs/outputs 
of different units based on the empirical characterization of the Production Possibility Set 
(PPS). [9] utilized the additive DEA model and introduced an RA model in this framework. 
Besides efficiency, they also consider effectiveness and equality in their RA model. [3] and 
[2] applied goal programming models in order to propose a two-phase RA model in a general 
DEA framework.  

In many RA applications like emission, banks, police stations, hospitals, schools, etc., 
there is a top manager who is interested in maximizing the efficiency of each individual unit. 
Simultaneously, (s)he might minimize the total input consumption or maximize the total 
output production. This sort of situation occurs when a DM is managing and providing 
resources for all units. [11] considered the corresponding RA problems as the centralized RA 
problems. They suggested centralized DEA models to reduce the total value of resources 
consumed by all units in an organization, rather than considering the consumption of 
individual units separately. [12] dealt with the RA problem in a centralized framework in the 
presence of undesirable outputs. They took into account the emission permit reallocation in 
their RA model based on DEA.  developed a number of non-radial, output-oriented, 
centralized DEA models to determine individual and collective output targets and apply the 
proposed approach to the Spanish Port Agency. [10] developed a multiple-objective linear 
programming approach for resource allocation with the aim to maximize the total amount of 
outputs of all units simultaneously. They assumed that a central unit controls all the units 
simultaneously and proposed RA models by taking into account the total amount of the 
outputs of all units to be maximized. Their RA model keep the technical efficiency of all 
DMUs unchanged.  

[7] proposed two RA models based on the cost efficiency concept. Their first RA model 
guarantees both unchanged technical efficiency and unchanged cost efficiency level. Their 
second model guarantees that the cost efficiency of none of DMUs deteriorates after 
allocating resources.  Defining the overall performance of the whole system as the ratio of 
the efficiencies before and after the RA, [13] formulated a linear programming RA model to 
improve the performance of the system. [18] provided a review of DEA-based resource and 
cost allocation approaches by classifying them by industry and by model formulation. [19] 
dealt with the scale economies in the RA problem based on DEA approach. [8] dealt with the 
emission issues in the process of resource allocation and proposed an emission-based RA 
model-based DEA and environmental efficiency measures. [14] dealt with the centralized 
RA and developed two generalized models based on DEA for the centralized RA problem. 
They extended the centralized RA model of [11] for the possibility of reallocation of 
resources. [6] incorporated the cross-efficiency measures in the centralized RA problem. [15] 
considered the target setting line in the RA problem and concentrated on the profit 
improvement of targeted units. [17] studied the centralized RA models based DEA from an 
axiomatic perspective. They described the envelopment form and multiplier form of 
associated DEA models. In the current paper, we propose a scenario-based RA model that is 
more generalized and more flexible compared with exisiting models in the literature. We take 
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the overall efficiency into consideration and provide different setings that help decision-
maker in the process of allocating resources.    

1.2. Primary comparison with relative work in the literature and contribution 
of the current work  

In this paper, we propose three RA models based on the concept of overall (cost) efficiency. 
The first model preserves the overall efficiency scores of all DMUs. Our first RA model in 
this study is more flexible compared to the first RA model in [7]. Particularly, our first RA 
model does not force input-output changes to be proportional, while the first RA model in 
[7] was formulated based on that assumption. Our second RA model in this paper guarantees 
that the overall efficiency of none of DMUs deteriorates after allocating resources.  Basically, 
the main structure of the second RA model imposes no restrictions on allocation of extra 
resources and improvements of overall efficiency scores, but the managerial and resource 
limitations that usually occur in real-life applications are incorporated into the second model. 
The third RA model improves the overall efficiency score of all units by a predetermined 
percentage desired for the DM. This RA model can be utilized for the short, mid, and long-
run planning based on the DM’s wishes and limitations. All proposed RA models in this 
paper are linear, and there is no concern regarding to solving and finding their optimal 
solutions.  

This paper unfolds as follows. Section 2 provides basic preliminaries necessary for our 
results. Section 3 investigates three scenarios and RA models are formulated and illustrated 
by numerical examples correspondingly. Section 4 provides an empirical example using the 
real data to show the strength and applicability of proposed RA models.  Concluding results 
are provided in the last section.  

2. Preliminaries 

Suppose that there are n decision making units DMUj , consuming the input vector 𝑋! =
(𝑋"! , … , 𝑋#!)	 to produce the output vector 𝑌! = (𝑌"! , … , 𝑋$!), for  j=1,…n. All input and 
output components are assumed to be positive. The famous Production Possibility Set (PPS) 
can be defined as 

																		𝑇
= *(𝑋, 𝑌)+∑ 𝜆!𝑋!%

!&" ≤ 𝑋,∑ 𝜆!𝑌!%
!&" ≥ 𝑌, 𝑌 ≥ 0, 𝜆 ∈ Λ3,																																								(1) 

where  

• Λ = ℝ'
%  stands for the PPS with the constant returns to scale (CRS) technology, 

• Λ = *𝜆 ∈ ℝ'
% + ∑ 𝜆! = 1%

!&" 3
 
stands for the PPS with variable returns to scale (VRS) 

technology, 
• Λ = *𝜆 ∈ ℝ'

% + ∑ 𝜆! ≤ 1%
!&" 3

 
stands for the PPS with the non-increasing returns to 

scale (NIRS) technology, and  
• Λ = *𝜆 ∈ ℝ'

% + ∑ 𝜆! ≥ 1%
!&" 3

 
stands for the PPS with the non-decreasing returns to 

scale (NDRS) model. 
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Correspondingly, we denote the PPS by 𝑇CRS, 𝑇VRS, 𝑇NIRS, and 𝑇NDRS, in the four above-
mentioned cases.  

The fundamental DEA model to measure the technical efficiency of DMUk, for	𝑘 =
1,2, … , 𝑛, can be written as follows: 

                                            𝑇𝐸( = 𝑀𝑖𝑛			𝜃                                                                          
	(2)        

																												𝑠. 𝑡.			@𝜆!𝑋)!

%

!&"

≤ 𝜃𝑋)( ,						𝑖 = 1,… ,𝑚																			 

																																																																									@𝜆!𝑌*!

%

!&"

≥ 𝑌*( ,					𝑟 = 1,… , 𝑝 

                                                                 𝜆 ∈ Λ. 

Model (2) is said to be an input-oriented CCR (BCC) model in envelopment form assuming 
the CRS (VRS) technology for the PPS (See [5] and [4] for more details.). 

Definition 1. Let (𝜃∗, 𝜆∗) be the optimal solution of problem (2). The value of  𝜃∗ is said to 
be the technical efficiency score for DMUk. If 𝜃∗ = 1, we say DMUk is technically efficient. 
Otherwise, it is technically inefficient. 

In case that the prices of inputs are is available, the concept of overall (cost) efficiency 
can be obtained for each unit. Assume that 𝑐) is the price of one unit of i-th input, for 𝑖 =
1,… ,𝑚. The following model provides the minimum cost for producing output vector 𝑌(: 

																																																		𝐶∗(𝑌()

= 		𝑀𝑖𝑛			@𝑐)𝑋) 																																																																	(3)
#

)&"

 

																															𝑠. 𝑡.			@𝜆!𝑋)!

%

!&"

≤ 𝑋) ,							𝑖 = 1,… ,𝑚 

																																																																															@𝜆!𝑌*!

%

!&"

≥ 𝑌*( ,								𝑟 = 1,… , 𝑝 

                                                                       𝜆 ∈ Λ. 

Definition 2. Let (𝑋∗, 𝜆∗)	be the optimal solution for model (3). The overall efficiency of 
DMUk is defined as the ratio of the minimum cost to the actual cost of producing	𝑌(       
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𝐶𝐸( =
,∗(.")
,(.")

= ∑ 1#2#
∗$

#%&
∑ 1#2#"$
#%&

 . 

If 𝐶𝐸( = 1, DMUk is said to be overall efficient.  

On this definition of cost efficiency, refer to Cooper et al,  (pp 236-237).   It can be shown 
that the overall efficiency is a sufficient condition for technical efficiency. In other words, if 
a unit is overall efficient, it is also technically efficient, but the converse does not necessarily 
hold true.  Technical efficiency does not provide a full picture of causes of inefficiency (See 
[7]). On the other hand, the number of efficient units are fewer if the performance of the 
system is evaluated by means of overall efficiency instead of technical efficiency (See [16]). 
Furthermore, overall efficiency can be regarded as a special case of effectiveness when 
multipliers must reflect realistic values or prices (See [1] for more details about 
effectiveness). All these facts motivate us to consider overall efficiency instead of technical 
efficiency analysis in the context of resource allocation.  

3. Overall Efficiency Analysis in the context of Resource Allocation 

 Suppose that an expectation level is available for each DMUk in the production plan. Let 𝑌G*( 
be the value of expected r-th output for DMUk for 𝑟 = 1,… , 𝑝 and k=1,…,n. The question is 
how much input is required for producing the expected output levels. Bearing the concept of 
overall efficiency in mind, this aim can be met considering three different goals: 

I. Overall efficiency of all units stays unchanged.   
II. Overall efficiency of none of DMUs deteriorates.  

III. Overall efficiency of individual units improves by a pre-determined percentage 
desirable for the DM. 

    We consider three different scenarios based on the above-mentioned goals. The first 
scenario defines the situation where the DM is interested in keeping the overall efficiency 
scores unchanged. Such a scenario is useful in the short-term where there are some resources 
available and the DM is interested in devoting them to all decision making units and keeping 
the efficiencies unchanged in a short period seems reasonable. The second scenario is related 
to the situation where improvements in efficiencies are expected. We model a linear 
programming RA problem and prove that overall efficiencies are not deteriorated after 
solving it. The third scenario relates to the case that the exact amount of improvements in 
overall efficiencies is pre-determined. The RA model formulated in this case guarantees the 
achievement of pre-determined values for overall efficiencies.  

 

3.1 First Scenario: Unchanged Overall Efficiencies 

Improving the performance of DMUs may not be an easy task in the short run, and so we 
should not expect a revolution in the performance of DMUs via the RA process. This 
motivates us to construct the first scenario of RA assuming unchanged overall efficiency 
scores of all units in the process of RA.  
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Assume that 𝑌G*( is the expected value for output r of DMUk. We formulate and solve the 
following linear programming model for DMUk: 

					𝑀𝑖𝑛			@𝑐)𝑋) 																																																											(4)
#

)&"

 

      𝑠. 𝑡.			 ∑ 𝜆!𝑋)!%
!&" ≤ 𝑋) ,							𝑖 = 1,… ,𝑚             (4.1) 

																																																														∑ 𝜆!𝑌*!%
!&" ≥ 𝑌G*( ,								𝑟 = 1,… , 𝑝           (4.2) 

                                                       𝜆 ∈ Λ. 

    Denote the optimal solution of model (4) as (𝜆I, 	𝑋J() . Assume that (𝑋( + Δ𝑋( , 𝑌( +
Δ𝑌()	is the activity level of DMUk after RA. The optimal value for input/output changes for 
units after resource allocation can be obtained from solving the following RA model: 

		𝑀𝑖𝑛						@@𝑐)

%

!&"

#

)&"

Δ𝑋)! 																																																																																			(5) 

				𝑠. 𝑡.					 ∑ 𝜆(!𝑋)!%
!&" ≤ (𝑋)( + Δ𝑋)(),				𝑖 = 1,… ,𝑚, 𝑘 = 1,… , 𝑛								(5.1)																	  

																	∑ 𝜆(!𝑌*!%
!&" ≥ 𝑌*( + Δ𝑌*( ,									𝑟 = 1,… , 𝑝,			𝑘 = 1,… , 𝑛						(5.2)																	  

																			𝑌*( + Δ𝑌*( ≥ 𝑌G*( ,																								𝑟 = 1,… , 𝑝, 𝑘 = 1,… , 𝑛							(5.3) 

																			𝐶3		(𝑋( + Δ𝑋() =
	,'	25"	
,6"

,													𝑘 = 1,… , 𝑛																											(5.4)														  

																					𝜆( 	 ∈ 	Λ( ,																																								𝑘 = 1,… , 𝑛.																									(5.5) 

Although model (5) may look similar to model (7) proposed by Dehnokhalaji et al. (2017), 
there are differences between them. While the latter is a multi-objective linear 
programming model, model (5) is a linear programming model and easier to solve. Also, 
the constraint (5.4) is new here to guarantee that the overall efficiency score remains 
unchanged after allocation. The following theorem proves our claim. 

Theorem 1. The overall efficiency of DMUk remains unchanged after the resource 
allocation obtained from model (5).  

Proof. Let (𝑋( + Δ𝑋( , 𝑌( + Δ𝑌() be the input/output vector for DMUk  after solving model 
(5).  We solve the following problem: 

										𝐶∗(𝑌( + Δ𝑌() = 		𝑀𝑖𝑛			@𝑐)𝑋) 																																																																																(6)
#

)&"

 

																																													𝑠. 𝑡.			 ∑ 𝜆!𝑋)!%
!&" ≤ 𝑋) ,																						𝑖 = 1,… ,𝑚                 (6.1) 

																																																								∑ 𝜆!𝑌*!%
!&" ≥ 𝑌*( + Δ𝑌*( ,								𝑟 = 1,… , 𝑝                (6.2) 
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                                                    𝜆 ∈ Λ. 

Let (𝜆7, 𝑋′) be the optimal solution of problem (6). We prove that  

∑ 1#2#
∗$

#%&
∑ 1#2#"$
#%&

= ∑ 1#2#
($

#%&
∑ 1#(2#"'82#")$
#%&

.                       (7) 

From (5.4) we have 

		∑ 1#2#
∗$

#%&
∑ 1#2#"$
#%&

= 𝐶𝐸( =
∑ 1#
$
#%& 25 #

∑ 1#(2#"'82#")$
#%&

	.                   (8) 

From (5.3), we have		𝑌*( + Δ𝑌*( ≥ 𝑌G*(	for all r, k.  Therefore, any feasible solution for 
problem (6) is also a feasible solution for problem (4), and since constraints (4.1) and (6.1) 
hold as equality at optimality, we can conclude that the following equation holds at the 
optimality of problems (4) and (6): 

∑ 𝑐)#
)&" 𝑋P ) = ∑ 𝑐)𝑋)

(#
)&" .                                    (9) 

Now from (8) and (9), we can conclude that (7) holds true. Thus the overall efficiency score 
of all units remains unchanged after solving RA model (5).      ∎    

    In contrast with the first RA model of [7], which also guarantees unchanged overall 
efficiency scores, model (5) is more flexible and general. Input/output changes are assumed 
to be proportional in RA model proposed by [7] while we do not impose such a constraint in 
RA model (5). Regardless of input-output changes, in RA model (5) we only impose 
constraints that guarantee unchanged overall efficiency scores for all units.     

Numerical Example 1.   Consider five DMUs using two inputs to produce one single 
output. We consider C= (2,5). The input prices are imaginary here, and our approach 
works, no matter how we select prices. The data and overall efficiency scores are reported 
in Table 1. 

Table 1: Input-output data and overall efficiency scores for Numerical Example 1. 

DMUs Input 1 Input 2 Output  Overall Efficiency (OE) 
A 5 8 3 0.1457 
B 3 4 7 0.6538 
C 9 5 5 0.2823 
D 4 6 6 0.3834 
E 6 1 7 1.0000 

 

    Using the first scenario and assuming the increment of 2 and 0.5 units for the output of 
units A and B, respectively, we obtain new input/output values by solving RA model (5) 
reported in Table 2. It can be seen from the last column of Table 2 that the overall efficiency 
scores of all units remain unchanged in the first scenario.  
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Table 2: Result of the first scenario for Numerical Example 1. 

DMUs Input 1 Input 2 Output OE OE NEW 

A 2.1429 15.8095 5.0000 0.1457 0.1457 

B 3.2143 4.2857 7.5000 0.6538 0.6538 

C 2.1429 7.7429 5.0000 0.2824 0.2824 

D 2.5714 6.5714 6.0000 0.3835 0.3835 

E 6.0000 1.0000 7.0000 1.0000 1.0000 

 
 

3.2 Second Scenario: Overall Efficiencies are improved or remain unchanged 

 The second scenario assumes more freedom for the overall efficiency of DMUs; that is, it 
assumes the possibility of improving overall efficiency scores for all units. Consequently, the 
second scenario is more flexible comparing to the first one.   

The second RA model that guarantees overall efficiency of none of DMUs deteriorates can 
be formulated as the following linear programming problem: 

		𝑀𝑖𝑛						@@𝑐)

%

!&"

#

)&"

Δ𝑋)! 																																																																																			(10) 

				𝑠. 𝑡.					 ∑ 𝜆(!𝑋)!%
!&" ≤ (𝑋)( + Δ𝑋)(),				𝑖 = 1,… ,𝑚, 𝑘 = 1,… , 𝑛								(10.1)																	  

																	∑ 𝜆(!𝑌*!%
!&" ≥ 𝑌*( + Δ𝑌*( ,									𝑟 = 1,… , 𝑝,			𝑘 = 1,… , 𝑛						(10.2)																	  

																			𝑌*( + Δ𝑌*( ≥ 𝑌G*( ,																								𝑟 = 1,… , 𝑝, 𝑘 = 1,… , 𝑛							(10.3) 

																			𝐶3		(𝑋( + Δ𝑋() ≤
	,'	25"	
,6"

,													𝑘 = 1,… , 𝑛																											(10.4)														  

																					𝜆( 	 ∈ 	Λ( ,																																								𝑘 = 1,… , 𝑛.																									(10.5) 

Although model (10) may look similar to model (13) proposed by Dehnokhalaji et al. (2017), 
there are differences between them. While the latter is a multi-objective linear programming 
model, model (5)  has a linear programming formulation, and hence it is easier to solve. Also, 
the constraint (10.4) is new here to guarantee that the overall efficiency score is not 
deteriorated after allocation. Theorem 2 provides the evidence for this claim. 

Theorem 2. The overall efficiency of DMUk is not deteriorated after resource allocation. 

Proof. Let (𝑋( + Δ𝑋( , 𝑌( + Δ𝑌() be the input/output vector for DMUk  after solving model 
(10).  We first solve the following model: 
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										𝐶∗(𝑌( + Δ𝑌() = 		𝑀𝑖𝑛			@𝑐)𝑋) 																																																																																(11)
#

)&"

 

																																													𝑠. 𝑡.			 ∑ 𝜆!𝑋)!%
!&" ≤ 𝑋) ,																						𝑖 = 1,… ,𝑚                 (11.1) 

																																																								∑ 𝜆!𝑌*!%
!&" ≥ 𝑌*( + Δ𝑌*( ,								𝑟 = 1,… , 𝑝                (11.2) 

                                                    𝜆 ∈ Λ. 

Let (𝜆7, 𝑋′) be the optimal solution of problem (11). We prove that  

∑ 1#2#
∗$

#%&
∑ 1#2#"$
#%&

≤ ∑ 1#2#
($

#%&
∑ 1#(2#"'82#")$
#%&

.                                  (12) 

 

From (10.4) we have 

		∑ 1#2#
∗$

#%&
∑ 1#2#"$
#%&

= 𝐶𝐸( ≤
∑ 1#
$
#%& 25 #

∑ 1#(2#"'82#")$
#%&

.	                   (13) 

 

From (10.3), we get		𝑌*( + Δ𝑌*( ≥ 𝑌G*(	for all r, k.  Therefore, any feasible solution for 
problem (11) is also feasible for problem (4), and since constraints (4.1) and (11.1) hold as 
equality at optimality, we can conclude that the following equation holds at the optimality of 
problems (4) and (11): 

       ∑ 𝑐)#
)&" 𝑋P ) = ∑ 𝑐)𝑋)

(#
)&"                                     (14) 

Now from (13) and (14), we can conclude that (12) holds true. Thus the overall efficiency of 
DMUk is not deteriorated for all k after solving RA model (10).     ∎    

 

The next theorem compares our second RA model with the second RA model proposed by 
[7], which is as follows 

		𝑀𝑖𝑛						 ∑ ∑ 𝑐)%
!&"

#
)&" Δ𝑋)! 																																																																																			(15)         

𝑠. 𝑡.				@𝜆(!𝑋)!

%

!&"

≤ 𝑋)( + Δ𝑋)( ,																					𝑖 = 1,… ,𝑚, 𝑘 = 1,… , 𝑛								 

																																		@𝜆(!𝑌*!

%

!&"

≥ 𝑌*( + Δ𝑌*( ,																							𝑟 = 1,… , 𝑝, 𝑘 = 1,… , 𝑛 

																																						@𝑐)Δ𝑋)( ≤ 0																																									𝑘 = 1,… , 𝑛																																	
	#

)&"
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						𝜆( 	 ∈ 	Λ( ,																																																𝑘 = 1,… , 𝑛. 

Theorem 3. Considering the same managerial assumptions and expecting the same output 
level of 𝑌*( + Δ𝑌*(, the total cost of RA model (10) is not greater than the total cost of model 
(15). 

Proof. Let (𝜆∗, Δ𝑋∗, Δ𝑌∗) be the optimal solution of RA model (15). Thus we have  

		@𝜆(!𝑋)!

%

!&"

≤ 𝑋)( + Δ𝑋)(∗ ,																					𝑖 = 1,… ,𝑚, 𝑘 = 1,… , 𝑛								 

																																					@𝜆(!𝑌*!

%

!&"

≥ 𝑌*( + Δ𝑌*(∗ ,																							𝑟 = 1,… , 𝑝, 𝑘 = 1,… , 𝑛 

																																											∑ 𝑐)Δ𝑋)(∗ ≤ 0																																									𝑘 =	#
)&"

1,… , 𝑛																																		       

					𝜆(∗ 	 ∈ 	Λ( ,																																																𝑘 = 1,… , 𝑛. 

The input and output set constraints and intensity constraint of 𝜆( 	 ∈ 	Λ( are the same in both 
RA models; thus the optimal solution of RA model (15) satisfies associated constraints in 
RA model (10). We just need to check the third constraint of this model. Please note that 

∑ 𝑐)Δ𝑋)(∗ ≤ 0				𝑘 = 1,… , 𝑛	#
)&" . 

 

Therefore, 

∑ 1#
$
#%& 25 #

∑ 1#(2#"'82#"
∗ )$

#%&
= ∑ 1#

$
#%& 25 #

∑ 1#2#"'∑ 1#82#"
∗$

#%&
$
#%&

≥ ∑ 1#
$
#%& 2#"

∗

∑ 1#2#"$
#%&

= 𝐶𝐸( . 

This implies that 

∑ 1#
$
#%& 25 #

,6"
≥ ∑ 𝑐)(𝑋)( + Δ𝑋)(∗ )#

)&" . 

Equivalently, 

∑ 𝑐)(𝑋)( + Δ𝑋)(∗ ) ≤
∑ 1#
$
#%& 25 #

,6"
#
)&" . 

This means that the optimal solution of the RA model (15) satisfies the constraint set (10.4) 
of the RA model (10). Therefore, (𝜆∗, Δ𝑋∗, Δ𝑌∗) satisfies all constraint of the RA model (10) 
that implies ∑ ∑ 𝑐)%

!&"
#
)&" Δ𝑋P)! ≤ ∑ ∑ 𝑐)%

!&"
#
)&" Δ𝑋)!∗  and this ends the proof.   ∎ 

Although models (10) and (15) has the same structure, our RA model (10) provides better 
solutions in terms of the total cost comparing to model (5), the second RA model of [7], and 
both models guarantee that overall efficiency of none of units deteriorates after allocation.  
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Numerical Example 2. Consider the data of Example 1 and outputs changes reported in the 
fourth column of Table 3.   

 

     Table 3: Input-output data and overall efficiency scores for Numerical Example 2. 

DMUs Input 1 Input 2 Output OE 

A 5 8 3+2 0.1457 

B 3 4 7+0.5 0.6538 

C 9 5 5+1 0.2823 

D 4 6 6+1.5 0.3834 

E 6 1 7+0.75 1.0000 

 

Following the second scenario, we find the following results for input changes reported in 
Table 4. As you can see, the overall efficiency scores of all units are improved after using the 
new input/output values. 

       Table 4: Result of the second scenario for Numerical Example 2. 

DMUs Input 1 Input 2 Output OE OE NEW 
A 4.2857 0.7143 5.0000 0.1457 1.0000 

B 6.4286 1.0714 7.500 0.6538 1.0000 

C 5.1429 0.8571 6.0000 0.2824 1.0000 

D 6.4286 1.0714 7.500 0.3835 1.0000 

E 6.6429 1.1071 7.7500 1.0000 1.0000 

 
Observe that the new overall efficiency scores of all DMUs become unity. This fact is not 
surprising when we do not impose any restriction for improving cost efficiency scores due to 
the existence of no limitation in changing (increasing or decreasing) the current input levels. 
However, there are some limitations for input changes in practice, and we are not allowed to 
freely increase or decrease input values. Numerical Example 3 illustrates the practical 
situation in scenario 2. 
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Numerical Example 3. Consider the same output changes as in numerical example 2, where 
we impose the constraint −0.3𝑋)( < 𝛥𝑋)( < 0.3 + 𝑋)( as the restriction on input values. We 
solve RA model (5) and obtain the results reported in Table 5. 

Table 5: Result of the modified second scenario. 

DMUs Input 1 Input 2 Output OE OE NEW 
A 3.5000     5.6000      5.0000 0.1457 0.3469 

B 3.9000     3.6000       7.5000 0.6538 0.7060 

C 6.3000     3.5000       6.0000 0.2824 0.4841 

D 3.3000     4.2000       7.5000 0.3835 0.6599 

E 6.6429     1.1071       7.7500 1.0000 1.0000 

 

Observe that the overall efficiency scores of all DMUs improve after allocation, but we find 
more rational results in the sense that input changes are restricted, and overall efficiency 
scores of all units are not equal to unity. Note that limitation on input changes can be 
considered in all RA models, including RA models in scenario 1 and scenario 3, if it is 
necessary.  

 

3.3 Third Scenario: Improvement of Overall efficiencies by certain values 

The third scenario might be more applicable for a long-run strategy and planning, where we 
assume a specific percentage of improvement for the efficiency score of each unit which is 
at the DM’s discretion limitations, desires, goals, etc. can be considered in the planning 
process of the third RA scenario.  

Assume that hk is the percentage improvement for DMUk.The third RA model can be 
formulated as the following linear programming problem: 

		𝑀𝑖𝑛						@@𝑐)

%

!&"

#

)&"

Δ𝑋)! 																																																																																																			(16) 

				𝑠. 𝑡.					 ∑ 𝜆(!𝑋)!%
!&" ≤ (𝑋)( + Δ𝑋)(),														𝑖 = 1,… ,𝑚, 𝑘 =

1,… , 𝑛													(16.1)																	  

																	∑ 𝜆(!𝑌*!%
!&" ≥ 𝑌*( + Δ𝑌*( ,																		𝑟 = 1,… , 𝑝,			𝑘 =

1,… , 𝑛												(16.2)																	  

																			𝑌*( + Δ𝑌*( ≥ 𝑌G*( ,																														𝑟 = 1,… , 𝑝, 𝑘 = 1,… , 𝑛								(16.3) 
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																(1 + ℎ()	𝐶3(𝑋( + Δ𝑋() ≥
	,'	25"	
,6"

,				𝑘 =
1,… , 𝑛																																								(16.4)														  

																	𝜆( 	 ∈ 	Λ( ,																																																𝑘 = 1,… , 𝑛.																																					(16.5) 

 

Clearly, if no improvement is assumed, the RA model (16) will be similar to the RA model 
(5).       

Theorem 4. The overall efficiency of DMUk increases hk times at most for all k after solving 
the RA model (16). 

Proof. Let (𝑋( + Δ𝑋( , 𝑌( + Δ𝑌() be the input-output vector for DMUk  after solving model 
(16).  We solve the following model: 

										𝐶∗(𝑌( + Δ𝑌() = 		𝑀𝑖𝑛			@𝑐)𝑋) 																																																																																(17)
#

)&"

 

																																													𝑠. 𝑡.			 ∑ 𝜆!𝑋)!%
!&" ≤ 𝑋) ,																						𝑖 = 1,… ,𝑚                 (17.1) 

																																																								∑ 𝜆!𝑌*!%
!&" ≥ 𝑌*( + Δ𝑌*( ,								𝑟 = 1,… , 𝑝                (17.2) 

                                                    𝜆 ∈ Λ. 

Let (𝜆7, 𝑋′) be the optimal solution of problem (17). We prove that  

∑ 1#2#
($

#%&
∑ 1#(2#"'82#")$
#%&

≤ (1 + ℎ()
∑ 1#2#

∗$
#%&

∑ 1#2#"$
#%&

.                                  (18) 

From (16.4) we have 

		∑ 1#2#
∗$

#%&
∑ 1#2#"$
#%&

= 𝐶𝐸( ≥
∑ 1#
$
#%& 25 #

∑ 1#(2#"'82#")$
#%&

"
("'9")

	                   (19) 

From (16.3), we get		𝑌*( + Δ𝑌*( ≥ 𝑌G*(	for all r, k.  Therefore, any feasible solution for 
problem (17) is also feasible for problem (4), and since constraints (4.1) and (17.1) hold as 
equality at optimality, we can conclude that the following equation holds at the optimality of 
problems (4) and (17): 

                 ∑ 𝑐)#
)&" 𝑋P ) = ∑ 𝑐)𝑋)

(#
)&"                                     (20) 

Now from (19) and (20), we can conclude that (18) holds true. Therefore the overall 
efficiency of DMUk increases hk times at most for all k after solving the RA model (16).∎    

 

Numerical Example 4.With the same data, we consider new output values reported in the 
fourth column of Table 6. We also assume a specific improvement percentage for the 
overall efficiency of each unit reported in the last column of Table 6. 
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Table 6: Input-output data and overall efficiency scores for Numerical Example 3. 

DMUs Input 1 Input 2 Output OE Improvement (%) 

A 5 8 3+2.00 0.1457 0.9 

B 3 4 7+0.50 0.6538 0.3 

C 9 5 5+1.00 0.2823 0.8 

D 4 6 6+1.50 0.3834 0.7 

E 6 1 7+0.75 1.0000 0.0 

 

Using the aforementioned setting for new output levels and overall efficiency improvement 
percentages and using the third scenario, we find the following results reported in Table 7 by 
solving the RA model (16).  As you see, the new input/output values guarantee to produce 
the expected output levels and overall efficiency improvement percentage. 

Table 7: Result of the third scenario for Numerical Example 3. 

DMUs Input 1 Input 2 Output Improvement (%) OE OE NEW 
A 14.787 2.8571 5.00 0.9 0.1457 0.2769 
B 5.3572 2.1428 7.50 0.3 0.6538 0.8500 
C 5.7619 3.4286 6.00 0.8 0.2824 0.5083 
D 3.2563 4.2857 7.50 0.7 0.3835 0.6519 
E 6.6429 1.1071 7.75 0.0 1.0000 1.0000 

 

4. Empirical illustration   

 In this section, we apply our models for a data set of 25 supermarkets in Finland taken from 
[10] reported in Table 8. Man-hours and size are considered as inputs (second and third 
columns), and sales and profit are considered as outputs (fourth and fifth columns). Man-
hours refer to the labor force used within a certain period, and size is the total retail floor 
space of the supermarket. Assuming the input cost vector of C = (1.5, 2), the overall 
efficiency scores are reported at the sixth column of Table 8. Note that the input prices are 
imaginary here and we can obtain the results of our proposed RA model for any choice of 
input prices. 
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Table 8: Input-output data and overall efficiency of 25 Finnish supermarkets 

SM Man-hour Size Sales Profit OE 
SM1 4.99 79.1 115.3 1.71 0.7986 

SM2 3.30 60.1 75.2 1.81 0.6877 

SM3 8.12 126.7 225.5 10.39 1.0000 

SM4 6.70 153.9 185.6 10.42 0.7521 

SM5 4.74 65.7 84.5 2.36 0.7032 

SM6 4.08 76.8 103.3 4.35 0.7491 

SM7 2.53 50.2 78.8 0.16 0.8642 

SM8 2.47 44.8 59.3 1.30 0.7274 

SM9 2.32 48.1 65.7 1.49 0.7527 

SM10 4.91 89.7 163.2 6.26 1.0000 

SM11 2.24 56.9 70.7 2.80 0.6900 

SM12 5.42 112.6 142.6 2.75 0.6979 

SM13 6.28 106.9 127.8 2.70 0.6561 

SM14 3.14 54.9 62.4 1.42 0.6241 

SM15 4.43 48.8 55.2 1.38 0.6131 

SM16 3.98 59.2 95.9 0.74 0.8860 

SM17 5.32 74.5 121.6 3.06 0.8913 

SM18 3.69 94.6 107 2.98 0.6255 

SM19 3.00 74.0 65.4 0.62 0.7621 

SM20 3.87 54.6 71 0.01 0.7102 

SM21 3.31 90.1 81.2 5.12 0.5991 

SM22 4.25 95.2 128.3 3.89 0.7437 

SM23 3.79 80.1 135 4.73 0.9290 

SM24 2.99 68.7 98.9 1.86 0.7947 

SM25 3.10 62.3 66.7 7.41 1.0000 

 

Scenario 1 

    Consider the expected output values for units reported in 4th and 5th columns of Table 9, 
that is, 10 percentage increment for both outputs. We aim to find the required input levels 
that can produce the expected output value with the same overall efficiency scores. The input 
and outputchanges after allocation are reported in the 2nd and 3rd columns of Table 9.   
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   As can be seen from Table 9, the changes in man-hour can be positive or negative for all 
supermarkets and the total changes required for the man-hours is equal to -5.24. On the other 
hand, the required changes in the size of supermarks are all positive, with the total value of 
changes equal to 201.8. Also changes in both sales and profit are positive as expected and 
the total sum of changes in Sales and profit is 258.6 and 8.19 units for all supermarkets 
altogether. The overall efficiency scores remain unchanged after the allocation as we 
expected according to Table 9. This allocation of resources to supermarkets require 395.7 
extra costs for all supermarkets to be paid.  

   According to the results of the first scenario, if the top management team sets targets to 
increase the sales and profits for all supermarkets, and expects each local branch to have the 
same performance in the short-run, then it is expected to supply more resources for the second 
output and decrease the resources of the first ourput. If changing the size is impossible for 
supermarkets, then this input can be considered as a non-sicretionary one and we expect to 
get different results for our analysis. The model can be generalized to the case where there 
are non-discretionary inputs in the dataset.  

The difference between our approach and Korhonen and Syrjanen’s (2004) mthod is that we 
solve an LP and our assumprion is to keep Overal efficiencies unchanges while their model 
is an MOLP and they concentrate on the technical efficiencies remaining unchanged. The 
motivation of considering the cost efficiency instead of technical efficiency in resource 
allocation problems has been explained in the work of Dehnokhalaji and Ghiasi (2017). 

 

Scenario 2 

We keep the same setting as the first scenario, that is, 10 percentage increments of both 
outputs and our goal is finding the required input levels such that the overall efficiency score 
of none of the supermarkets deteriorates after allocation. However, input levels are allowed 
to be decreased or increased at least by 10 percentage. Table 10 reports the results of this run. 
The changes in input/output values after allocation for each supermarket is reported in Table 
10. Both man-hour and size show positive and negative changes for different supermarkets. 
But the the sum of changes in both man-hour and size are both negative and equal to -11.73 
and -281.9 respectively. This means that both resources need to be increased with the 
emphasize on the size in order to improve the overall efficiency scores. The overall efficiency 
scores remain unchanged only for the overall efficient units SM3, SM10 and SM25 and both 
inputs are increased after resource allocation for this units to keep their efficiency unchanged 
and increase their ourputs. The input/output changes are exactly the same as in the first 
scenario for these three units. For all other 22 supermarkets, overall efficiencies are improved 
between 0.071 as for SM23 and 0.4007 as for SM21. Man-hour and size change are both 
positive for SM23, while the size change for SM21 is equal to -31.2 which is the largest value 
of decrease in the size among all supermarkets. This can explain how the largest value of 
increase in efficiency scores happens for SM21.  

   This scenario is applicable when the top management aim is to improve the efficiency 
scores of supermarkets in long term and there are no extra resources available for 
supermarkets, and each local branch needs to increase the profit and sale, so the only way to 
achive this goal is to decrease staff members and the size of the supermarkets. In reality, this 
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scenario may not work if the inputs are not easy to decrease, for instance in the long-run, it 
is not easy to decrease the human resources, or size in this specific example.  

 

   Scenario 3 

    In order to determine specific improvements for overall efficiency scores in resource 
allocation, we consider the third scenario and the corresponding RA model. The percentage 
of improvements of overall efficiency scores of all units are reported in Table 11. The 
assumed changes vary from one supermarket to another. Therefor the overall efficiency of 
the whole system is improved as well. 

    of the input/output changes after allocation are reported in Table 11 for each supermarket. 
As can be seen, the total man-hour increased by 1.31 unit while the total size decreased by 
233.82. So this scenario concentrates on decreasing the second input again to allow the pre-
determined improvement level for each supermarket. The overall efficiency scores remain 
unchanged only for the overall efficient units SM3, SM10 and SM25, as there was no room 
for more improvement for these units and the percentage of improvement was defined as 0 
percent for these three brancesh. Both inputs are increased after resource allocation for this 
units to keep their efficiency unchanged and increase their ourputs. All three scenarios 
provide the same input changes values for us because in the all three models, the efficiency 
scores remain unchanged. Assuming the aforementioned overall efficiency improvement for 
the whole system, it is possible to save 432.65 units of costs in total. This scenario may be 
considered as a mid-run or a long-run plan.    Scenario 1 concentrates on keeping the overall 
efficiencies unchanged, and so it is useful in short term. In order to increase the outputs, the 
management teams need to devote extra resources to the system. Both Scenario 2 and 3 
concentrate on improving the overall performance of the system when there are no extra 
resources available. Hence, to achieve larger values of outputs, there is an essential need to 
decrease inputs in both scenarios. While scenario 2 does not impose any restriction on the 
level of improvement of efficiency scores for branches, scenario 3 sets some target for the 
level of improvement to control improvements and the process of allocation more. Scenario 
3 may be preferred to scenario 1 because it is more systematic, but how to indicate the 
percentage of improvements for each unit is an issue, and needs to be considered by the 
managerial team. Overal efficient units show the same level of changes in all three scenarios. 
Scenario 1 asks for increasing resources whereas scenarios 2 and 3 show decreasing 
resources. All provide different changes for resources for inefficient units. 

    

5. Concluding Remarks 

In this paper, we developed a resource allocation model in the context of overall efficiency 
for three different scenarios. First, we consider the problem of allocating resources among 
decision making units in order to keep the overall efficiency scores unchanged. This scenario 
is useful in the short-run when the DM is interested in allocating available resources to units. 
The second scenario assumes that overall efficiencies are not deteriorated through resource 
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allocation. Finally, we supposed a pre-determined improvement of the overall efficiency 
score of each decision making unit and allocated resources to DMUs to achieve this goal.  

We formulated three linear programming models for all scenarios, which is the preference of 
this approach to other existing approaches like [7]. All three scenarios are illustrated by 
numerical and empirical examples, and they provided promising results.  

All models can be generalized for the case that there are non-discretionary and discretionary 
inputs simultaneously, so we can keep the input values unchanged when changing them is 
out of the control of the decision maker. 

  

Appendix 

Table 9: Results of the first scenario for the Empirical Example. 

SM Man-hour 
Changes 

Size 
Changes 

Sales 
Changes 

Profit 
Changes 

OE OE NEW 

SM1 -1.17 9.2 11.5 0.17 0.7986 0.7964 
SM2 -0.81 6.9 7.5 0.18 0.6877 0.6876 
SM3 0.81 12.7 22.6 1.04 1.0000 1.0000 
SM4 1.60 14.7 18.6 1.04 0.7521 0.7563 
SM5 -1.67 8.2 8.5 0.24 0.7032 0.7002 
SM6 1.01 7.2 10.3 0.44 0.7491 0.7507 
SM7 0.08 5.2 7.9 0.02 0.8642 0.8655 
SM8 -0.51 5.0 5.9 0.13 0.7274 0.7273 
SM9 -0.15 5.1 6.6 0.15 0.7527 0.7543 
SM10 0.49 9.0 16.3 0.63 1.0000 1.0000 
SM11 1.34 4.9 7.1 0.28 0.6900 0.6938 
SM12 -0.70 12.2 14.3 0.28 0.6979 0.6994 
SM13 -2.05 12.7 12.8 0.27 0.6561 0.6552 
SM14 -1.07 6.5 6.2 0.14 0.6241 0.6236 
SM15 -2.60 7.2 5.5 0.14 0.6131 0.6060 
SM16 -0.81 6.8 9.6 0.07 0.8860 0.8824 
SM17 -1.30 8.8 12.2 0.31 0.8913 0.8865 
SM18 -0.15 9.8 10.7 0.3 0.6255 0.6288 
SM19 -0.84 5.6 6.5 0.06 0.7621 0.7598 
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SM20 -1.52 6.9 7.1 0 0.7102 0.7065 
SM21 2.52 7.4 8.1 0.51 0.5991 0.6034 
SM22 0.00 9.8 12.8 0.39 0.7437 0.7462 
SM23 1.66 7.0 13.5 0.47 0.9290 0.9313 
SM24 0.28 6.9 9.9 0.19 0.7947 0.7977 
SM25 0.31 6.2 6.7 0.74 1.0000 1.0000 
Sum  -5.24 201.8 258.6 8.19   

 

Table 10: Modified input/output values and results of the second scenario. 

SM Man-hour 
Change 

Size 
Change 

Sales 
Change 

Profit 
Change 

OE OE NEW 

SM1 -1.17 -9.4 11.5 0.17 0.7986 0.9734 
SM2 -0.81 -14.6 7.5 0.18 0.6877 0.8405 
SM3 0.81 12.7 22.6 1.04 1.0000 1.0000 
SM4 0.98 -27.4 18.6 1.04 0.7521 0.9206 
SM5 -1.67 -14.6 8.5 0.24 0.7032 0.8558 
SM6 -0.33 -13.7 10.3 0.44 0.7491 0.9175 
SM7 0.08 -2.6 7.9 0.02 0.8642 1.0000 
SM8 -0.51 -8.9 5.9 0.13 0.7274 0.8889 
SM9 -0.15 -8.4 6.6 0.15 0.7527 0.9219 
SM10 0.49 9.0 16.3 0.63 1.0000 1.0000 
SM11 0.17 -14.0 7.1 0.28 0.6900 0.8449 
SM12 -0.70 -26.4 14.3 0.28 0.6979 0.8548 
SM13 -2.05 -29.6 12.8 0.27 0.6561 0.8008 
SM14 -1.07 -17.2 6.2 0.14 0.6241 0.7622 
SM15 -2.60 -15.4 5.5 0.14 0.6131 0.7406 
SM16 -0.81 -1.2 9.6 0.07 0.8860 0.9950 
SM17 -1.30 -1.0 12.2 0.31 0.8913 0.9926 
SM18 -0.15 -29.9 10.7 0.30 0.6255 0.7685 
SM19 -0.84 -7.5 6.5 0.06 0.7621 0.9287 
SM20 -1.52 -11.7 7.1 0.00 0.7102 0.8635 
SM21 0.15 -31.2 8.1 0.51 0.5991 0.7366 
SM22 0.00 -17.6 12.8 0.39 0.7437 0.9109 
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SM23 0.68 1.5 13.5 0.47 0.9290 0.9313 
SM24 0.28 -8.9 9.9 0.19 0.7947 0.9694 
SM25 0.31 6.2 6.7 0.74 1.0000 1.0000 
Sum       

 

Table 11: New input-output data based on the third scenario. 

SM % Man-hour 
Change 

Size 
Change 

Sales 
Change 

Profit 
Change 

OE OE NEW 

SM1 0.3 -1.30 -11.8 11.5 0.17 0.7986 1.0000 
SM2 0.4 1.63 -14.6 7.5 0.18 0.6877 0.9627 
SM3 0.0 0.81 12.7 22.6 1.04 1.0000 1.0000 
SM4 0.3 0.61 -24.9 18.6 1.04 0.7521 0.9833 
SM5 0.3 0.00 -10.6 8.5 0.24 0.7032 0.9103 
SM6 0.3 -0.56 -11.9 10.3 0.44 0.7491 0.9759 
SM7 0.2 -0.02 -4.3 7.9 0.02 0.8642 1.0000 
SM8 0.3 0.00 -7.2 5.9 0.13 0.7274 0.9455 
SM9 0.3 0.00 -7.7 6.6 0.15 0.7527 0.9806 
SM10 0.0 0.49 9.0 16.3 0.63 1.0000 1.0000 
SM11 0.3 0.37 -9.3 7.1 0.28 0.6900 0.9019 
SM12 0.3 0.00 -17.9 14.3 0.28 0.6979 0.9092 
SM13 0.4 0.00 -23.9 12.8 0.27 0.6561 0.9173 
SM14 0.4 0.00 -12.3 6.2 0.14 0.6241 0.8731 
SM15 0.4 0.00 -11.2 5.5 0.14 0.6131 0.8484 
SM16 0.2 -0.98 -4.4 9.6 0.07 0.8860 1.000 
SM17 0.2 -1.54 -5.4 12.2 0.31 0.8913 1.000 
SM18 0.4 0.33 -21.1 10.7 0.30 0.6255 0.8803 
SM19 0.3 -0.16 -7.5 6.5 0.06 0.7621 0.9878 
SM20 0.3 0.00 -8.8 7.1 0.00 0.7102 0.9185 
SM21 0.4 0.44 -20.2 8.1 0.51 0.5991 0.8448 
SM22 0.3 0.13 -15.2 12.8 0.39 0.7437 0.9700 
SM23 0.1 0.57 -0.4 13.5 0.47 0.9290 1.0000 
SM24 0.3 0.17 -11.0 9.9 0.19 0.7947 1.0000 
SM25 0.0 0.31 6.2 6.7 0.74 1.0000 1.0000 
  1.31 -233.82 258.61 8.17   
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