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Abstract—The continuous operation of an industrial process,
such as water treatment or power generation, is governed by
an Industrial Control System (ICS). Cyber-attacks on industrial
networks are of growing concern because of the disruption they
can cause, leading to loss of revenue, and the possibility of harm
to workers, plant and surroundings. Operators therefore need a
Network Intrusion Detection System (NIDS) to analyse industrial
network traffic in real time for adversarial behaviour. Machine
Learning (ML) is applicable to the problem of network intrusion
detection. This paper investigates the possibility of training an
ML-based NIDS for an ICS (specifically, the well-known Secure
Water Treatment testbed) by combining network traffic data and
physical process data. In the supplied dataset, data had already
been labelled “according to normal and abnormal behaviours”;
the labelling of data collected around the start and end of each
attack was scrutinized and, where found to be problematic,
labelled data were excluded in order to improve the effectiveness
of supervised learning. The ML technique of “Learning using
Privileged Information” was evaluated and found to be superior
to six baseline ML algorithms trained on network traffic data
alone.

Index Terms—Network Intrusion Detection System, Industrial
Control System, Machine Learning, Learning using Privileged
Information

I. INTRODUCTION

INDUSTRIAL Control Systems (ICS) provide autonomous
control of physical processes, such as those found in

manufacturing, chemical processing, power generation and
water treatment. These cyber-physical systems are susceptible
to attack on their network infrastructure. Cyber-attacks are of
growing concern because of the disruption they can cause,
leading to loss of revenue, and the possibility of harm to work-
ers, plant and surroundings; theft of operational information
is another possible impact.1

The application of Machine Learning (ML) to intrusion
detection and, more generally, anomaly detection for ICS
is an active area of research. ML can be categorised as
supervised, semi-supervised and unsupervised; examples of
each kind can be found in [1]–[3]. Supervised learning in-
volves data that have been labelled, a manual, expensive
operation that requires domain knowledge. It is known for high
predictive ability, whereas semi-supervised and unsupervised
learning (which use unlabelled data) suffer from low predictive

1See https://collaborate.mitre.org/attackics/index.php/Impact for a detailed
classification of cyber-attack impact and real-life examples.

performance. Indeed, a comparative analysis conducted in
[4] found that supervised ML algorithms outperform semi-
supervised/unsupervised algorithms in an ICS context.

Research into supervised ML-based Network Intrusion De-
tection Systems (NIDSs) for ICS has mainly focused on
utilising industrial network traffic while ignoring physical
process data. For example, [5] uses the One-Class Support
Vector Machine (SVM) algorithm, [6] uses a knowledge-based
analysis technique to detect and classify attacks, and [7] uses
an autoencoder feature learning technique for network packets
to identify attacks. However, a survey of supervised ML-
based intrusion detection systems argued that “aggregation and
correlation of variables from multiple sources” (an “holistic
perspective”) was important [8]. For example, an adversary can
implant a malicious message in a payload of a network packet
without violating any protocol or communication pattern; a
NIDS would not be able to detect it. The importance of incor-
porating domain-knowledge and process context in detecting
cyber-attacks in ICS through modelling the physical processes
was indicated in [9]. However, generating an accurate model
requires a thorough understanding of the physical processes
and algorithms.

Other studies have focused on supervised ML-based
anomaly detection using process data only. For example, Hink
et al. proposed an attack discrimination technique by monitor-
ing normal, natural and attack events based on measurement
from power systems [10]. Junejo and Goh demonstrated the
effectiveness of supervised techniques on behaviour-based
anomaly detection while monitoring the process data and
reported a low false-positive rate as well as high precision and
recall [11]. Another method relying on the laws of physics to
detected an insider attack based on observing the dynamics of
the system [1].

It should be noted, however, that anomalies can arise be-
cause of device or system failure for reasons other than cyber-
attack. Anomaly detection based on physical process data
alone cannot distinguish between a faulty sensor, for example,
and a cyber-attack. Also, NIDS can identify the reconnaissance
phase of a cyber-attack, which takes place without affecting
physical processes.

Training and testing an ML-based NIDS for an ICS using
both network traffic data and physical process data may lead
to higher accuracy than network data alone. However, the



integration of the two sources of data during testing (i.e., at
run-time) is likely to be impractical because of differences in
the method and rate of data collection from those sources.
In particular, network traffic is monitored at high frequency
(e.g. in milliseconds), whereas the process data are reported
periodically at a fixed rate depending on process parameter
configuration (e.g. in seconds/minutes). In addition, during
run-time both process and network data are stored in different
locations.

In this paper, we present an ML-based NIDS that integrates
network and process data during the training phase; the model
solely uses network data during testing. The proposed method
utilises the Learning Using Privileged Information (LUPI)
framework [12], [13]. In LUPI, a supervised ML model
is constructed by integrating additional informative features,
known as privileged information, during the training phase.
We hypothesise that this integration will improve the accuracy
of intrusion detection compared with models utilizing only
network data.

The LUPI framework has proved to be effective in vari-
ous domains, including computer vision [14]–[16], astronomy
[17]–[19] and medical diagnosis [20], [21]. The application of
LUPI in the cybersecurity domain has also been investigated
in the context of detecting malicious botnet activities in IT
networks [22]. LUPI was also investigated in [23] to train
anomaly detection systems using forensic data as privileged
information in a variety of security applications, such as face
authentication, fast-flux Bot Detection and Malware Traffic
Detection. However, the application of LUPI to NIDS for ICS
has not been investigated before.

The effectiveness of the proposed methodology is evaluated
in the context of the Secure Water Treatment (SWaT) testbed,
an ICS for a scaled-down water treatment plant [24]. There is a
large body of work investigating ML-based anomaly detection
for the SWaT testbed but, to the best of our knowledge, this
paper is the first to apply the LUPI framework.

The rest of the paper is organised as follows: Sections
II and III provide background information about LUPI and
the SWaT testbed, respectively. Section IV describes our
proposed framework for NIDS using process data as privileged
information. Experimental results are evaluated in Section V
and conclusions are drawn in Section VI.

II. LEARNING USING PRIVILEGED INFORMATION (LUPI)
VERSUS CLASSICAL MACHINE LEARNING (ML)

ALGORITHMS

Supervised classical ML algorithms aim to learn the distri-
bution pattern of labelled training data presented in n number
of training pairs (xi, yi), where i = 1, ..., n, xi ∈ X ,
and yi ∈ {+1,−1}. During training, a mapping function
f : X −→ +1,−1 is formulated that can map an input instance
(xi) to a predicted output (yi) with the lowest error possible. In
classical supervised learning problems, the same data features
are used for both training and testing (run-time).

In some pattern recognition problems, there may be addi-
tional helpful information about the training samples that will

not be available during the testing phase. Such data would of-
ten be discarded by classical ML algorithms since models have
been trained based on training input features only. Recently,
there has been a trend in designing ML models that incor-
porate this additional information (referred to as ”privileged
information”), alongside the main the training samples. The
framework of Learning Using Privileged Information (LUPI)
was originally proposed by Vapnik and Vashist [12], [13] in the
context of the Support Vector Machine (SVM) classifier, where
a triplet of training data is provided (xi, xi∗, yi), i = 1, ..., n,
xi ∈ X , x∗i ∈ X∗, and yi ∈ {+1,−1}. Similar to classical
ML, the goal is to find a function f : X −→ +1,−1 that can
predict labels with the lowest error possible. The idea is that
the privileged information might improve the learning process
and help the ML model converge to a better decision boundary
in the input space.

A. SVM+ Learning Algorithm for LUPI
SVM [25], is a popular supervised learning algorithm for

solving non-linear classification problems. The aim is con-
struct a non-linear hyperplane with maximum margin that
separates two classes (in the case of binary classification).
The SVM allows the decision margin to make some violations
known as slack variables (ξi). The task here is to find a
decision function f(x) = sgn[〈w, x〉+b], where w ∈ X , b ∈ R
and they are obtained by solving the following optimization
problem

min
w,b,ξi

1

2
||w||22 + γ

n∑
i=1

ξi (1)

under the constraints,

∀ 1 ≤ i ≤ n, [yi〈w, xi〉+ b] ≥ 1− ξi, ξi ≥ 0, (2)

where γ ≥ 0 is a hyper-parameter that controls the tradeoff
between margin maximization and margin violation. If the
slacks ξi are all equal to zero then we call the set of given
examples separable, otherwise they are non-separable.

In SVM+ [12], [13], [19], which is based on LUPI, the
additional information xi

∗ ∈ X∗ will be available during
training but not at the test stage. Unlike SVM which uses
a correcting slack variable ξi, the SVM+ uses a slack function
ξi = [〈w∗, x∗i 〉 + b∗], where w∗ ∈ X∗, b∗ ∈ R and they are
obtained by solving the following optimization problem:

min
w,w∗

1

2
||w||22 +

ρ

2
||w∗||22 + γ

n∑
i=1

[〈w∗, x∗i 〉+ b∗] (3)

under the constraints,

∀ 1 ≤ i ≤ n, [yi〈w, xi〉+ b] ≥ 1− [yi〈w∗, x∗i 〉+ b∗],

[〈w∗, x∗i 〉+ b∗] ≥ 0
(4)

In SVM+, correcting functions control the slack variables
based on the privileged information. The objective function
of SVM+ contains two hyper-parameters γ, ρ > 0. The ρ
is a non-negative parameter that reflects the imposition of
smoothness in the slack model.



Fig. 1. Overview of SWaT Network Architecture, adapted from [24].

III. SECURE WATER TREATMENT TESTBED

The Secure Water Treatment (SWaT) testbed was con-
structed at the Singapore University of Technology and Design
[24]. It is an operational scaled down water treatment plant
with six process stages which can produce 5gal/min of double
filtered water. Figure 1 presents the Network Architecture, a
distributed control system where each stage of the process is
under the control of programmable logic.

There are various datasets available on request for the
SWaT testbed. For this study, we use SWaT A1 & A2-Dec
2015 dataset, which contains recordings from network traffic
as well as 51 field instruments over 11 days of continuous
operation. For the first seven days, data were collected under
normal operation, whereas the remaining four days included 36
attacks. In this dataset, attackers hijacked data packets through
the Level 1 communication link of Figure1, manipulated the
sensor data in the packets and sent them to the PLCs [24].

While all the physical properties of the field instruments
were recorded periodically as process data in the Historian
server, network data was captured from Level 1 at much higher
frequency. The latter is claimed to only include data valuable
for intrusion detection. All process and network data has a
timestamp, allowing the provider of the dataset to flag data
occurring within an attack.

IV. NETWORK INTRUSION DETECTION FOR THE SWAT
TESTBED USING PROCESS DATA AS PRIVILEGED

INFORMATION

Here, we introduce a NIDS for the SWaT testbed using
the LUPI framework for supervised ML. Unlike current ML-
based NIDS, our ML method incorporates the process data
as privileged information during training, whilst using only
network data for testing.

The proposed framework is presented in Figure 2. In brief,
the process and network features are extracted from their
original sources preserving the labelling, where +1 supposedly
indicates a record collected during an attack, and −1 indicates
a record collected under normal operation. Any misalignment
in data labels (discussed below) will be addressed. The process
and network data will then be integrated in order to create
the training data. The LUPI framework will then be applied
via the Support Vector Machine plus (SVM+) algorithm, an
extension of the SVM which integrates privileged information
during training to help construct an optimal hyperplane. Lastly,

Fig. 2. Network intrusion detection framework for the SWaT testbed using
process data as privileged information.

the trained SVM+ model will be applied (during run-time) on
the testing set, which consists of network data only.

A. Network and process data selection for ML training

1) Network traffic (original training set): Network dataset,
provided by iTRUST [24], contains 19 selected features cap-
tured from communication between SCADA and PLC, they
considered to be valuable for intrusion detection, namely,
Date, Time, Origin, Type, Interface Name, Interface Direc-
tion, Source IP, Destination IP, Protocol, Proxy Source IP,
Application Name, Modbus Function Code, Modbus Function
Description, Modbus Transaction ID, SCADA Tag, Modbus
Value, Service/Destination Port, Source Port. Note that the
hex-encoded binary payload of the Modbus protocol includes
multiple register readings. When analysing this dataset we
merged the request and response messages that were part of
the same transaction into a single record. We extracted the
values representing the readings of the available SCADA Tag
in the dataset, and used only the first value of the Modbus field.
Note that network traffic is monitored at high frequency (e.g.
in milliseconds). In this study, the network dataset includes
493,001 records and was randomly divided into 70% and 30%
for training and testing, respectively, see Figure 2.

2) Process data (privileged information): There are two
versions of process dataset for the physical recordings of the
SWaT normal state that are available at [24]. The first version,
records activities started when the plant was draining the water
storage tank for 30 minutes. Since in general this is part of
the maintenance process out of normal operation, the second
version was generated by removing the first 30 minutes of
data. The latter version is used here which represents the
normal operations and includes 495,000 records from 51 field
instruments. In SWaT testbed, the process data are reported
periodically to an historian server at a fixed rate depending
on process parameters configuration and characteristics (e.g.



Fig. 3. Illustration of the misalignment between indicated end points of attack
(in red) and process behavior change (in blue) for Attack 3 and 36 within
SWaT testbed

in seconds in SwaT testbed). In this study, the process data
will be used as privileged Information for the model training
only, but not for testing, see Figure 2.

B. Label Alignment and Data Integration

In this section we identify two shortcomings in data labels
of the SWaT dataset. The first shortcoming was found in
the process data where records were labelled as attacks but
this was not evident in the physical process behaviour. This
problem has been briefly mentioned in [4] but not thoroughly
investigated nor addressed. The second shortcoming was found
in the network traffic where each record appears to inherit
its label from process data by a coarse-grained mapping of
timestamps.

Two attacks (numbered 3 and 36 in the supplied dataset
documentation) have been selected here to illustrate the first
shortcoming, Figure 3. These attacks target a sensor in the first
processing stage of the water treatment plant. Attack 36 sets
the level reading (LIT101) to a value lower than the process
lower warning limit. As a consequence, the outlet pump turns
off and the tank inlet valve opens to increase the water level,
which causes the tank to overflow. As shown in Figure 3, the
start (end) of Attack 36 has been indicated earlier than the drop
(jump) in the level reading of the sensor. Attack 3 increases
the level reading by 1mm per second. As a consequence, a
pump is required to operate unnecessarily, which will cause
it to fail earlier than expected — this is a good example of a
stealthy attack [26]. Figure 3 shows that the gradual increase
in the LIT101 reading starts earlier than the indicated start of
the attack and the reading returns to the correct level before
the indicated end of the attack. Similar to the process data, the
inconsistency between labels and behavioural change can also
been observed in the network traffic for the above attacks.

As mentioned above, network data has been recorded at a
higher sampling rate in comparison to process data. There is
a many-to-one relationship between network and process data
under a timewise mapping. Consequently, a single instance
of process data with a given timestamp S will be integrated
with multiple network data records with timestamps within
one second of S and they will inherit its label.

In the context of ML-based intrusion detection systems, it
is important to ensure that the labelling of attacks is well
aligned with behavioural change to facilitate valid, accurate
data analysis. Rather than alter labels in the dataset supplied

by iTRUST, we have simply filtered out any labelled data
around the start and end of attacks where we considered the
labelling to be problematic. This improved the effectiveness
of supervised learning, as we shall see.

V. EXPERIMENTS AND ANALYSIS

The effectiveness of the proposed methodology, integrat-
ing and incorporating process data as privileged information
in learning, alongside network data, was evaluated in the
context NIDS for the SWaT testbed. Firstly, the proposed
label alignment approach has been evaluated on the network
data. Secondly, we validate our hypothesis that using process
data as privileged information during learning, via the LUPI
framework, improves the effectiveness of supervised learning
for network intrusion detection.

A. Data pre-processing and experimental setup

In the data pre-processing step, numerical features of pro-
cess and network data were normalized to zero mean and
unit variance to ensure that all features contribute equally
to the classification task. The unequal distribution of classes
within the data (no. -1 vs. no. +1) was addressed using the
under sampling method, often used as a pre-processing step
in ML practice for dataset that has a skewed class distribution,
in our case the number of samples of normal activity (-
1). In network data, categorical data were transformed using
one-hot encoding framework [27]. The network data was
randomly divided into 70% and 30% for training and testing,
respectively. The process data records corresponding to the
network training instances were used by SVM+ (LUPI) for
training purposes.

In this study, we applied a feature selection method [28] to
assess and compare the predictive ability of the network and
process features using the Decision Tree (DT) ML algorithm.
This experiment was conducted on the integrated training set,
which combines both network and process data after resolving
the data labels misalignment. We ranked the predictive features
according to their weight importance with respect to the classi-
fication task. The analysis revealed that the process features act
as stronger predictors for intrusion detection in SWaT testbed
when compared to the network features, therefore, used here
as privileged information in the training phase.

Our classification results were evaluated using four perfor-
mance measures:

• Classification accuracy, measures all of the correctly
identified cases,

TP + TN

TP + FP + TN + FN,
(5)

where TP , FP , FN and TN denotes true positives, false
positives, false negatives and true negatives, respectively

• Precision, the ratio of correctly predicted positive records
to the total predicted positive records,

TP

TP + FP
(6)



• Recall, the ratio of correctly predicted positive records to
the all data records in a class,

TP

TP + FN
(7)

• The F1-score, it conveys the balance between the preci-
sion and the recall.

2× (Recall × Precision)
(Recall + Precision)

(8)

In all experiments, we applied supervised ML models to
identify one type of attack (Attack 36) using network data of
the SWaT testbed. We particularly evaluated the performance
of six classical and popular ML models including, K-Nearest
Neighbour (K-NN), Logistic Regression (LR), Decision Tree
(DT), Multilayer Perceptron (MLP), one-dimension Convolu-
tional Neural Network (CNN), and Support Vector Machine
(SVM) [29]. (Hyper-)parameters of all classification algo-
rithms were tuned via 5-fold cross-validation on the training
set. For fair comparisons, the experiments were run five times
for each classifier and we reported the average results over
five runs. All experiments were run using Python (scikit-learn
libraries) and Jupyter hosted on Google’s Colab platform.

B. Evaluate the effectiveness of the label alignment approach
on the NIDS

In this experiment, we applied six classical ML models
(mentioned above) to identify Attack 36 in network data of the
SWaT testbed. The NIDS performance results before resolving
the label misalignment problem is reported in Table I. Table
II presents the NIDS performances after excluding the records
with inconsistent data labels, which ensures that labels (attack
or not) are consistent with the behaviour change.

As shown in Tables I and II, the detection performance ob-
tained after applying the label alignment method outperforms
results obtained using the original data labels, which is an
evident that this strategy reduces the number of false negatives.
On average, across all the assessed ML models applying the
proposed label alignment method on network data improves
the NIDS performance by 3.04%, 2.44%, and 5.02%, in terms
of Accuracy, Recall and F1-score, respectively.

C. Evaluate the Effectiveness of LUPI on the NIDS

In this experiment, we integrated the process and network
dataset of SWaT testbed using the proposed method in Figure
2. Then, we applied the SVM+ (LUPI), discussed in section
II-A, to identify Attack 36 using the integrated training set. The
NIDS performance obtained by SVM+ algorithm is reported in
Table III. Note that the SVM+ algorithm will be tested using
the network data only.

Results obtained here can be compared against the six
classical ML models (in Table II), trained and tested on
network traffic only, without considering the impact of the
process data. Note that, on average, the accuracy, precision,
Recall and F1-scores results obtained by SVM+ algorithm
outperform the results obtained by all classical ML algorithms
by 12.49%, 22.57%, 16.71%, and 19.45%, respectively. Note

that, the accuracy obtained by SVM+ outperforms all baseline
ML algorithms except for the DT classifier. However, due to
the nature on the imbalanced class dataset, the results reported
by F1-score maybe more reliable than the accuracy measure
in our scenario.

VI. CONCLUSION

In this paper, we presented an alternative ML-based NIDS
that uses the LUPI framework. Unlike classical ML algorithms
for anomaly detection which rely upon only one source of data
for learning, our NIDS incorporates process data as privileged
information during the training phase. This allows for a
more accurate and resilient ML-based NIDS than is possible
using baseline methods, while requiring similar computational
resources at run-time because the testing phase only involves
one source of data, namely, the industrial network. To the best
of our knowledge, this is first attempt to combine industrial
network traffic and physical process data in supervised learn-
ing for a NIDS.

We used the SWaT testbed to assess the effectiveness of
our proposed methodology. Before integrating process and
network data, we ensured that data labels (attack or not)
were aligned with behavioural change. The effectiveness of
the label alignment method was validated experimentally by
comparing the NIDS accuracy obtained before and after the
label alignment. Our second experiment demonstrated that
SVM+, trained on both network as well as process features
using the LUPI framework, outperforms six baseline ML
models trained on network features only. Our work suggests
that LUPI framework has good potential for application to ML-
based NIDSs for ICS. However, there is still considerable room
of improvement in its performance; hence, we are planning to
attempt other approaches involving LUPI such as knowledge
transfer and distillation [23].
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