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ABSTRACT Load forecasts are fundamental inputs for the reliable and resilient operation of a power
system. Globally, researchers endeavor to improve the accuracy of their forecast models. However, lack
of studies detailing standardized model development procedures remains a major issue. In this regard, this
study advances the knowledge of the systematic development of short-term load forecast (STLF) models
for electric power utilities. The proposed model has been developed by using hourly load (time series) of
five years of an electric power utility in Pakistan. Following the investigation of previously developed load
forecast models, this study addresses the challenges of STLF by utilizingmultiple linear regression, bootstrap
aggregated decision trees, and artificial neural networks (ANNs) as mutually competitive forecasting
techniques. The study also highlights both rudimentary and advanced elements of data extraction, synthetic
weather station development, and the use of elastic nets for feature space development to upscale its
reproducibility at global level. Simulations showed the superior forecasting prowess of ANNs over other
techniques in terms of mean absolute percentage error (MAPE), root mean squared error (RMSE) and
R2 score. Furthermore, an empirical approach has been taken to underline the effects of data recency,
climatic events, power cuts, human activities, and public holidays on the model’s overall performance.
Further analysis of the results showed how climatic variations, causing floods and heavy rainfalls, could
prove detrimental for a utility’s ability to forecast its load demand in future.

INDEX TERMS Load forecast, artificial neural networks, multiple linear regression.

I. INTRODUCTION
Load forecasts are fundamental inputs for a reliable, smooth,
and resilient operation of any power system. With the
advent of smart grid technologies, forecast models are
required to consider new elements such as demand response,
demand-side management, and distributed energy resources
to maintain desired reliability. Forecasting electricity demand
is pivotal for maintaining the balance between electricity sup-
ply and demand. Therefore, the process of load forecasting
introduces several factors which are responsible for influenc-
ing consumers’ electricity consumption patterns. A thorough
consideration of these factors into a forecast model results in
reliable forecasts. However, the forecast model may also end
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up producing either an over forecast or an under forecast due
to multiple reasons. These may include but are not limited
to, use of less significant demand determinants (explanatory
variables/features) during model development, an unsuitable
forecasting technique, or bad quality of data. Since both an
over forecast and an under forecast are principally undesir-
able, a systematic approach to the development of a fore-
cast model hence becomes necessary for producing credible
predictions.

Ensuring a reliable operation for a utility complements
its business needs. However, all such business needs asso-
ciated with load forecasts precisely depend on the forecast
lead times which are often referred to as forecast horizons.
Depending on its forecast horizon, a forecast model inhibits
different explanatory variables for the desired application.
For example, long term load forecasts (LTLF), with lead
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times ranging between three years to decades ahead, find
their business needs in energy trading, energy policy, system
planning and systemmaintenance [1], [2]. Medium-term load
forecasts (MTLF; lead times of 2 weeks to 3 years) are carried
out for unit commitment and power system planning and
operations. Whereas short term load forecasts (STLF; lead
times of 1 minute to 2 weeks) are primarily carried out for
energy purchasing, effective demand-side management, peak
load shifting, generation capacity planning and power pur-
chasing [3]–[5]. It must be noted that these conventions may
vary among different researchers as there are no universally
set criteria for such categorization.

Besides explanatory variables, forecasting techniques also
vary as the forecast lead times change. Therefore, load fore-
casts on all horizons i.e. long, medium, and short term are
conventionally carried out using different methods and tech-
niques. Of a variety of methods, for example, short term load
forecasting techniques can be broadly categorized based on
either the statistical modelling approach or machine learning
methods [6]. From the category of statistical methods, regres-
sion analysis, especially multiple linear regression (MLR),
is considered to be one of the most widely used methods
in short term load forecasting literature due to its modelling
flexibility [6]–[9]. It is a statistical technique and requires
less simulation time as compared to artificial intelligence (AI)
techniques like ANNs. Since it develops the model by deter-
mining the relationships between dependent and indepen-
dent variables, MLR methods carry the advantage of higher
interpretability and hence are one of the preferred methods
adopted by the electric utilities [10], [11]. The availability
of detailed load data at the consumer level has enabled the
development of improved load forecasts using a variety of
forecasting techniques. As a result, regression-basedmethods
are ramping up in the performance hierarchy of short-term
load forecasting techniques. This is due to the increased
computational power resulting in reduced execution times
with extensive training of data. However, these methods rely
heavily on explanatory variables and large historical data as
detailed data helps in generalizing such relationships [11].

Another forecast technique permeating in the list of short-
term load forecasting methods is an AI-based technique
called artificial neural networks. ANNs have been effectively
in use for load forecasting problems since the 1990s [1]. Their
data-driven approach enables forecasters to achieve desired
results without pre-postulating the model for parameters esti-
mation [12]. The accuracy of neural networks is subjected to
the spread of input data [1]. However, ANNs lack in determin-
ing the prominence of the features they are given as an input
for determining the forecasted variable; hence additional
feature selection techniques have to be used. Consequently,
the designed architecture of the ANNs, when given the sig-
nificant feature space, potentially improves the forecasting
accuracy. With their ability to capture the non-linearities of
input data, numerous architectures and variants of ANNs have
appeared in literature with prominent success [4], [13]–[19].
Although their simulation time can be higher, they have

the potential to approximate the non-linearities in the data
and thus are often referred to as global approximators. For
example, one of the applications of ANN-based forecasters
known for their wide applicability in numerous utilities across
the US and Canada has been presented in [20]. In their
model, the authors used two ANN forecasters. While one
predicted the base-load, the other predicted the change in
load. In the end, the final forecast was produced by the adap-
tive combination of the previously produced two forecasts.
Even beyond the scale of an electric utility, ANNs have been
reported to outperform other methods when forecasts are
made for service territories over wider geographical regions.
For example, the short-term electricity demand for Indonesia
has been forecasted best when neural networks were used in
combination with other forecasting methods. An ensemble
method SSA-LRF-NN predicted the load time series with the
least MAPE and RMSE values [21].

With advanced computational resources and easy to access
graphical user interfaces (GUIs), forecasting load using
ANNs has become relatively less challenging today. How-
ever, a thorough review of literature on load forecasting in
Pakistan shows that most of the literature is missing key
elements of a load forecasting process. Authors often acquire
the data and, without elaborating the relationship between the
variables and the load, produce load forecasts for multiple
time leads and geographical regions. Forecasting techniques
with few selected variables are used without any justifica-
tion or validation for their impact on the final forecast. For
example, in [22], particle swarm optimization (PSO) based
ANNs have been used to develop an STLF model. How-
ever, this model incorporates only the lagged load variables
without considering any weather information or calendar
effects. In another study [23], ANNs were used in com-
parison with the bagged regression trees (BRT) to forecast
day-ahead electricity demand for an electric utility. In this
study, authors claimed to have used weather data, calendar
effects and lagged load variables in their model. However,
no details of the model pertaining to the selection of its
explanatory variables andmodel development were provided.
Similarly, another one-hour ahead load forecast model was
developed for an educational institution by using historical
load data, weather information, and calendar effects [24]. The
proposed model used the XGBoost algorithm as a forecasting
engine. Although the authors of the study presented satis-
factory results in terms of performance indices, they did not
provide any insights on the model selection process for the
achieved results; hence restricted the reproducibility of the
study. In [25], the authors used a non-linear autoregressive
(NARX) technique to develop an STLF model for a city’s
residential load using weather information, calendar effects
and lagged load data. In a comparison with multiple other
forecasting techniques, the authors demonstrated the high-
est forecast accuracy by using the proposed technique. Yet
again, no information was provided on the feature selection
process for the development of the proposed model. While
investigating the economic impact of over/under forecasted
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load for city-wide electricity consumption, authors in [26]
used two different models to test multiple machine learning-
based forecasting techniques. These models were: (a) model
with input features including lagged load variables plus cal-
endar effects and (b) model with input features including
lagged load variables, calendar effects and meteorological
parameters. The focus of this study remained on the economic
significance of load forecasts on a city-wide scale and did not
address the dynamics of a complete electric utility serving
multiple cities with different weather profiles in its service
territory.

Following the literature produced on load forecasting in
Pakistan, it can be established that a standardized and sys-
tematic approach to model development remained missing
in the published literature. Moreover, most of these studies
lacked explaining the major developmental stages of a typical
load forecast model. Whereas none of the published work
addressed the feature selection process, development of syn-
thetic weather stationwhen required, and the effect of recency
on the model’s forecast accuracy. Besides that, insufficient
information on sources of the acquired data for their respec-
tive forecast models yet again renders their reproducibility
compromised. Thus, the need for a comprehensive study
with reproducible results is imminent to help improve the
future forecasting scenarios where the power system is facing
tougher operational constraints with increasing penetration of
renewable technologies, trigeneration systems and other such
technologies.

In this regard, this paper presents a comprehensive and
reproducible process of model development, model’s train-
ing, and testing for a power utility, Islamabad Electric Supply
Company (IESCO) in Pakistan which can be potentially
reproduced for other similar distribution companies as well.
Data used in this study consists of energy readings observed
at one-hour resolution for five years (2015-2019) of IESCO.
To evaluate the proposed model, both statistical and machine
learning-based techniques have been applied and evaluated.
Unlike previous studies, a systematic approach of features
selection and model development based on a variety of input
variables is presented by systematically eliminating the non-
significant variables. The feature space includes variables
related to meteorological parameters, calendar effects, and
lagged time series of load and weather data exhibiting the
recency effect as well as multiple seasonalities. Overall,
the contribution of this study lies in connecting the pre-
viously unrelated facts about short term load forecasting
in Pakistan by using synthetic weather station development
and feature selection process. Furthermore, the study also
discusses multiple prospects of different explanatory vari-
ables in a local context and highlights their significance for
global applications as well. Therefore, this study promises
to advance the knowledge on load forecasting research and
benefit researchers and professional engineers to evaluate the
performance of their respective forecast models.

Furthermore, the paper is organized as follows. In
section 2, an overview of the energy system in Pakistan

is given. Section 3 discusses the methodological frame-
work including data pre-processing, development of synthetic
weather station, feature selection process and forecasting
techniques. In section 4, results and analysis are detailed.
Section 5 includes conclusive remarks and future works.

II. OVERVIEW OF ELECTRIC POWER SYSTEM IN
PAKISTAN
Before its vertical unbundling, the water and power devel-
opment authority (WAPDA) of Pakistan used to control
power generation, power transmission, and distribution as the
only government-controlled body in the country. However,
in 1992, all the constituent elements of Pakistan’s power
infrastructure gained their operational autonomy under the
regulation of the national electric power regulatory authority
(NEPRA). The only power purchaser in the country is a state-
owned central power purchasing agency (CPPA) whereas no
utility is allowed to purchase power from the power gen-
erators, independently. Most of the power in the country is
generated by state-owned generation plants using a variety
of energy sources such as hydroelectric, furnace oil, diesel,
gas, coal, and nuclear energy sources. In addition to state-
owned power generation plants, a large number of inde-
pendent power producers (IPPs) also add to the country’s
overall power generation. For the transmission of bulk power,
the state directly runs national transmission and dispatch
company (NTDC). Similarly, for the distribution of power,
there are 10 distribution companies commonly referred to
as DISCOs. All these DISCOs operate under a government
agency i.e. Pakistan electric power company (PEPCO) [27].

A. OVERVIEW OF DISCOS
The distribution utilities of Pakistan, independent in their
regional autonomy and operation, buy their required energy
from the central power purchasing agency (CPPA) and collect
revenue at the consumer end. CPPA, being a government
entity, is exclusively responsible for managing financial
aspects of power sale and purchase between generation (both
state-owned and IPPs) and distributions companies in the
country [28]. Since this study considers specifically a sin-
gle DISCO/utility for its case development i.e., Islamabad
electric supply company (IESCO), the overview of IESCO
is given below as well.

B. IESCO
Since its inception in 1998, IESCO has primarily remained
responsible for supplying and distributing power to the coun-
try’s capital (Islamabad) and its immediate surroundings.
These include administrative districts of Rawalpindi, Chak-
wal, Attock, Jhelum, and federal capital Islamabad itself,
along with some areas of Azad Jammu and Kashmir region as
well. This is shown in FIGURE 1. IESCO operates with 108
distribution grid stations and 951 feeders with a total power
capacity of 5224MVAs [29].With its service territory spread-
ing over 23,160 sq. km, IESCO serves over 2.42 million
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FIGURE 1. Administrative regions of IESCO service territory.

consumers including domestic, commercial, industrial, and
agricultural customers [28].

As a large-scale electric utility, accurate load forecasts for
IESCO serve as elementary inputs to its utility planning pro-
cedures and business needs. Amidst continuously changing
fuel prices, ageing infrastructure, and generation restrictions
due to environmental regulations, the chance of rising system
constraints becomes even higher. Under such circumstances,
a reliable forecast for any electric utility becomes crucial for
efficient resource planning, tariff restructuring, and power
dispatch.

III. METHODOLOGY
A. DATA EXTRACTION, DESCRIPTION, AND PREPARATION
Development of a reliable forecast model while using data-
driven forecasting techniques requires quality input data.
Since this study aims at developing a robust STLF model,
a high quality-high resolution data becomes a prerequisite for
producing a reliable forecast. Therefore, the authors acquired
the hourly load data for IESCO from NTDC [30] to develop
a forecasting model as well as validate its forecast accuracy.
As the service territory of IESCO covers a wide region having
diverse terrain and weather, data at the same time resolution
as the load from multiple weather stations becomes another
important requirement for model development.

However, the data available from the meteorological
department of Pakistan was not detailed i.e. an average
of 24 hours and only minimum and maximum readings of
the data was available. Moreover, there were no weather
stations installed in many areas of the utility’s territory either.
Consequently, the meteorological variables i.e., 2m dry bulb

TABLE 1. Data statistics for load time series.

temperature and 2m dew point temperature utilized in this
study were acquired from an open-source online climate
datastore [31]. This hourly data for both the meteorological
parameters were extracted fromEuropean Centre forMedium
Range Weather Forecasts Re-Analysis-5 (ERA5) land hourly
database. ERA5-land hourly data is a reanalysis dataset pro-
viding a consistent view of the evolution of land variables
over several decades at an enhanced resolution compared to
its versions. It is pertinent to mention that the selection of
the meteorological parameters i.e. dry bulb temperature and
wet bulb temperature was primarily because of the public
data availability. Other load determining parameters such as
humidity, dewpoint, air pressure, and wind velocity etc. were
not publicly available for the service territory of the IESCO
and hence were not used in the model development process.

The acquired load data is a time series of IESCO recorded
at one-hour time stamps from 00:00 hours on Jan 01, 2015,
to 00:00 hours on Dec 10, 2019. As shown in TABLE 1, this
accounts for 43, 297 distinct load data points with a minimum
load of 601.2 MW and a maximum of 2389 MW. This load
time series is also shown in FIGURE 2.

It can be noticed that there are multiple seasonalities
present in this time series. A strong seasonal trend can be
observed over the years which exists due to two reasons. First,
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FIGURE 2. Hourly load time series between 2015 to 2019.

FIGURE 3. (a) Correlation of load with dry bulb temperature
(b) Correlation of load with dewpoint temperature.

as shown in FIGURE 3. (a, b), there exists a strong depen-
dence of load on weather patterns of summers (when the load
is maximum) and winters (when the load is minimum). It can
be observed that in Pakistan, there is a positive correlation
between load and temperature (dry bulb and wet bulb) in
summers. This means that when the temperatures rise, the
electricity consumption increases primarily due to increased
air conditioning. On the contrary, as temperatures start to drop
down in winters, electricity consumption develops a negative
correlation with temperature. However, the increase in load
demand in summers is larger as compared to the winters
and hence exhibits a much larger load demand on utility.
Secondly, the electricity consumption patterns also depend on
human activities which get reflected in holidays and calendar
effects.

Such effects of human activities on electricity consumption
can be observed through weekly and daily load patterns.

FIGURE 4. Weekly and hourly seasonality in electricity consumption of
IESCO consumers.

TABLE 2. Weather stations and their coordinates.

As shown in FIGURE 4., it can be observed that there are
cyclic patterns in load across consumption hours of day and
night within 24 hours’ time period. Moreover, on weekends,
load generally tends to decrease as compared to weekdays.
Later in this study, the empirical effects of these seasonali-
ties and their impact on determination of response variable
shall be discussed. Similarly, this study incorporates hourly
weather data for eight different weather stations between the
same time and dates as it did for the electric load. These
weather stations spread across eight cities as presented in
TABLE 2. To account for their accumulative impact, data
from every individual weather station were averaged and a
synthetic weather station was developed.

In load forecasting, this is a highly recommended and prac-
ticed technique for developing weather-based load forecast
models [1], [11], [32], [33]. Selection of the weather sta-
tions to create a synthetic weather station requires selection
of significant weather stations, as an insignificant weather
station can skew the synthetic weather station and results
in a poor forecasting model. Following the aggregation of
weather stations, resulting meteorological observations of the
synthetic weather station are shown in FIGURE 5 (a, b).
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FIGURE 5. (a) Average dry bulb temperature of eight weather stations
(b) Average dew point temperature of eight weather stations.

During the model development process, the quality of
the input data was assured. This was achieved through the
necessary pre-processing of the input data. These data pre-
processing steps which were carried out in this study are
shown in FIGURE 6.

Finally, 80% of the data was used to develop a train-
ing/fitting set i.e., from Jan 01, 2015, to Dec 31, 2018, and
the remaining 20% for testing/predicting set i.e. from Jan 01,
2019, to Dec 10, 2019.

B. FEATURE SELECTION
In this study, a feature space of 22 different explanatory
variables, which have frequently appeared in literature, has
been developed [4], [5], [25], [32], [23], [34]–[37]. These
explanatory variables are different factors that usually affect
the electricity consumption patterns of any utility. However,
the complexity of the resulting model is reduced without sig-
nificantly compromising its accuracy. To actualize an accu-
rate and relatively simple model, authors took advantage of
a feature selection method during the model development
process. For this purpose, the elastic-nets feature selection
technique was used on the selected feature space. Since,
for any regression problem where lasso and ridge regression
can be used, elastic nets have empirically proven to have
performed better [38]. They are a hybrid of both lasso and
ridge regression and are used to solve regularization prob-
lems. They also have the ability to degenerate a model to its
reduced form by generating zero-valued coefficients. Elastic
nets come with the ability of grouped/pool variable selection;
a feature that a simple lasso regression lacks [39].

TABLE 3. Feature space for model development.

Having decided on the feature selection technique, the base
model with all the 22 features was first used to produce a
load forecast. Following that, the applied feature selection
technique gradually refined the model to reach an optimized
set of features to yield both accuracy as well as simplicity.
This trade-off between the model’s accuracy and parsimony
was done by excluding features from the base model one after
another while recording their impact on forecast accuracy.
Since using all the distinct combinations of 22 different fea-
tures (∼22! i.e. 11 × 1020 combinations) is computationally
highly challenging and, the authors made the best use of the
relevance-to-load hierarchy of these 22 features produced by
the elastic nets algorithm. In this way, a hierarchy of the
explanatory variables in terms of their relevancy in determin-
ing the response variable (load) was developed. TABLE 3
lists all the explanatory variables that were used in the base
model. These variables were further categorized into lagged
variables (L), meteorological parameters (M) and calendar
days/seasonal effects (C).

In the category of lagged variables, the average of
previous 24 hours observations of load, temperature, and
dewpoint as L1, L2, and L3 were used, respectively. In addi-
tion to that, observations of load, temperature, and dewpoint
for the same hour from the previous day as L4, L5, L6 were
also considered.

To incorporate the effect of weekly cyclic patterns, obser-
vations from the same hour on the same day from the prior
week were also used for load, temperature, and dewpoint
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FIGURE 6. Preparation and pre-processing of data.

as L7, L8, and L9, respectively. Similarly, hourly observa-
tions of meteorological parameters such as temperature and
dewpoint were used as M1 and M2, respectively. In addition
to these weather-based parameters, other significant features
such as precipitation, wind speed, wind chill index, cloud
cover, light intensity, frequency of occurrence of natural dis-
asters like mass flooding etc. could not be incorporated in
the proposed method due to the limited access to that data.
However, of all the features that were utilized, the majority
of features belonged to calendar days and seasonal effects.
Under calendar days/seasonal effects, year (C1), month of
the year (C2, C3), day of the week (C4, C5), hour of the
day (C6, C7), weekends (C8), calendar holidays (C9), binary
zones (C10), and seasons (C11) were included. Because
month of the year, day of the week, and hour of the day shows
cyclic patterns and incorporate long term periodicities, their
rectangular coordinates as C2, C3, C4, C5, C6, C7, respec-
tively, were used instead of considering them otherwise. This
is shown in (1) and (2).

X − coordinate =
sin(2π×t)

n
(1)

Y − coordinate =
cos(2π×t)

n
(2)

Here, t is the month of the year, day of the week, and hour
of the day for the respective values of n as total number of
months in a year (12), days in a week (7), and hours in a
day (24). Owing to their periodic nature, the resulting features
improved the network’s training process for higher testing
accuracies.

For capturing the effects of weekends, Monday-Friday was
considered as normal weekdays and Saturday and Sunday as
typical weekends. To include holidays effect, several national

and religious holidays which are observed every year in
Pakistan were considered. These are listed in TABLE 4.

Moreover, based on periodic increase and decrease in load
during certain hours of the day, a new binary variable was
tested and introduced in the model development process.
It was named as ‘binary zones’ and was placed under the
category of calendar days and seasonal effects as C10.

The reason behind including C10was the effect of business
hours on daily load patterns. For example, electricity demand
tends to rise in the morning hours when all the commercial
activities start and decreases as the night falls. Similarly,
another binary variable for weather-based bi-yearly season-
ality was introduced which stretches across summers (May
to September) as well as winters (October to April) as C11.

To forecast a response variable, it is usually a group of
certain variables, and not an individual variable, that produces
minimum forecast error. It is also not necessary for the com-
plete feature space to be utilized to produce the most accurate
results [33]. Therefore, the most suitable combination of
explanatory variables must be sought after. Starting with the
base model, all the 22 chosen features were grouped as P1.

Following that, four more groups of explanatory variables
were developed as P2 (top 20 features), P3 (top 15 features),
P4 (top 10 features) and P5 (top 5 features). This is shown in
FIGURE 7. Every group contains a combination of explana-
tory variables from all three categories i.e. lagged variables,
meteorological variables, and calendar days/seasonal effects.
This grouping was based on the relevance-to-load hierarchy
that was produced as a result of feature selection. The sig-
nificance of each group of variables manifests itself into a
varying degree of performance accuracy and model’s sim-
plicity. For example, the variable group P3 best forecasts the
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TABLE 4. List of holidays.

load with the least MAPE. However, it does not make the
simplest of the possible models. Whereas the simplest model
with the least number of explanatory variables (P5) incurs
the highest error. This qualifies the basic axiom of prioritiz-
ing a combination of variables instead of using only highly
correlated or all the available variables in the feature space.
Across the spectrum of accuracy and simplicity, a trade-off
must therefore be made to maintain both the properties in the
final forecast model.

Tomake a better sense of this trade-off, every group of vari-
ables was assigned an arbitrary value as its parsimony score
or P-score. From a range of values between 0.2 to 1.0, the
variable group making the simplest model (P5) was assigned

FIGURE 7. Variable groups containing different sets of features.

FIGURE 8. Trade-off between model’s accuracy and simplicity.

the maximum score of 1.0. Similarly, the variable group that
made the least simple model was given the minimum P-score
of 0.2. This quantification was then plotted along with the
relevant accuracies in terms of MAPE for all five models.
This is shown in FIGURE 8. It can be seen that P3 results
in the minimum MAPE; hence giving the most accurate
forecast.

It can also be noticed that as additional features are intro-
duced to this model, it loses both the relative accuracy as well
as simplicity as compared to P3. Similarly, if some features
are excluded from it, it becomes simpler but relatively less
accurate.

C. LOAD FORECASTING TECHNIQUES
Short term load forecasts can be produced using a variety of
statistical and nonstatistical methods. Since different tech-
niques in both domains have their advantages and disad-
vantages, their suitability keeps changing from one model
to another. In this study, three different techniques to fore-
cast electric load for an electric utility have been used.
These include multiple linear regression, decision trees, and
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artificial neural networks. All three techniques were applied
to the final model and a comparison has been made according
to each model’s performance.

In the absence of the best available forecasting technique
in literature [1], the selection of any such method for a
load forecasting application becomes highly subjective to
that particular model. This means that while one technique
performs better on a particular data set, it may perform
poorly on the other, and vice versa. Consequently, forecast
performance, instead of the forecast technique itself, becomes
desirous in the majority of the load forecasting applications.
Similarly, in this study, all forecasting techniques have been
chosen for their comparative performance with each other.
All three techniques have been finalized for their global
applicability and widely reported success in load forecasting
applications in industry and academia. Moreover, the absence
of their usage in Pakistan’s power distribution sector for
high-resolution data (hourly observations for five years), its
granularity, as well as for a systematically developed model
for an hour ahead load forecasting resulted in their selection
for this research.

1) MULTIPLE LINEAR REGRESSION
While usingmultiple linear regression (MLR), a load forecast
model is conceived by developing a relationship between the
target variable (dependent variable i.e. load) and multiple
explanatory variables (load determinants such as meteorolog-
ical parameters etc.). The mathematical representation of an
MLR based forecast model is given below.

y = β0 + β1X1 + β2X2 + β3X3 + · · · + βnXn + ε (3)

In the above expression, y corresponds to the target variable
(i.e. load), X1,X2,X3, . . . ,Xn are the explanatory variables,
β0, β1, β2, β3, . . . ,βn are the regression coefficients whereas
ε is the error value; a numerical difference between the
observed and predicted values. For multiple values of y, the
following representation can be used.

yk = β0 + β1Xk1 + β2Xk2 + β3Xk3 + · · · + βnXkn + εk (4)

where k = 1, 2, 3, . . . k . In a matrix form, this model can be
represented as:

y = Xβ + ε (5)

where:

y =


y1
y2
...

yk

 , X =


1 X11 X12
1 X21 X22

· · ·
X1k
X2k

...
. . .

...

1 Xn1 Xn2 · · · Xnk



β =


β0
β1
...

βk

 and ε =


ε0
ε1
...

εn



Since the regression coefficients betas (βs) are still
unknown, Eq. 2 can be used to find out these coefficients.

β = (X ′X )−1X ′y (6)

After finding out the values of regression coefficients,
the above model can be used to predict future values of y
following the below mathematical representation.

ŷ = β̂0 + β̂1X1 + β̂2X2 + β̂3X3 + · · · + β̂pXp (7)

Here, ŷ (read as y-hat) corresponds to the predicted value.
Similarly, β̂ (read as beta-hat) are the values of estimated
regression coefficients.

2) BOOTSTRAP AGGREGATED DECISION TREES FOR
REGRESSION
When used for a regression problem, bootstrap aggregated
decision trees are commonly known as bagged regression
trees or BRT. Since the data set contained multiple predictive
features, regression trees was applied as one of the forecasting
techniques to test the proposed forecast model. Moreover,
regression trees have a history of wide-scale usage in load
forecasting across the world and, in some studies, have per-
formed better than other forecasting techniques as well [23],
[10], [40]–[44]. Regression trees leverage bagging (which is
a smoothing operation) and a bootstrap methodology which
results in variance reduction [45]. In an attempt to reduce the
overfitting in training data, 30 decision trees were used whose
individual results had to be combined to produce the final
forecast model [46].

3) ARTIFICIAL NEURAL NETWORKS
Given the input and output sample data, ANN is a promising
technique to extrapolate the observed past values of the data
into the future. These networks learn the relationship between
the samples of input and output values by the supervised
learning method. This learning method processes patterns of
input values and generates the output closest to the value in
the dataset by updating the weights. A variety of ANNmodels
have been used in the literature. However, a feed-forward
multi-layered perceptron (MLP) ANN model was used in
this study. These models are primarily used for supervised
learning as the data is neither sequential nor time-dependent.
A simple MLP ANN model is shown in FIGURE 9(a). The
MLP feedforward networks have hidden layers that help them
to learn the non-linear relationship between inputs and out-
puts, hence dealing effectively with the system complexity.

This is the reason that these networks are widely used
in solving large datasets problems like load forecast-
ing [47], [15]. The architecture of the feed-forward network is
governed by the connection of neurons that are systematized
into layers. Each neuron consists of one or more inputs xi that
are linearly combined. These inputs are attuned by specific
weights wi. In addition to this, a bias term θ is also used
to fit the data in a better way by shifting the activation
function to left or right. A simple neuron model is shown in
FIGURE 9(b).
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FIGURE 9. (a). Feed forward multi-layered perceptron (MLP) ANN model
(b) A simple neuron model.

a: CREATING A FITTING NETWORK
The neural network developed in this study has five hidden
layers in addition to one input and one output layer. Hav-
ing decided the number of hidden layers, neurons in each
layer form a connection with all the neurons of the former
layer through specific weights. These weights act as network
encoders. As the network is feedforwarded, the information
is transferred layer by layer in the forward direction.

To predict the output in a feed-forward network, a two-
step procedure is followed as shown in FIGURE 10. First,
the input parameters of each neuron are multiplied by its
weight and are then linearly combined. It is then passed to
the activation function that simulates the behavior of neurons
to get the output from them. The activation function can either
be an identity function or a sigmoid function [48]. These
functions must be differentiable and non-decreasing so that
the non-linearity can be mapped.

In this study, a sigmoid function has been used as it can
handle nonlinearities in the data. The sigmoid function is
given as:

f =
1

1+ e−zj
(8)

If a logistic activation function is used for hidden layer
neurons i.e. a sigmoid and a linear function is used for out-
put layer neurons, then the ANN model can be expressed

mathematically as [48]:

yk =
n∑
j=1

wjk×
1

1+ exp(−zj)
+ θk (9)

where yk is the predicted output, wjk represent the weight of
link joining the output of neuron j and k , zj is the output from
the hidden layer node represented by

∑m
i=1 xiwij + θj. The

values of weights w and biases θ can be determined by a
training algorithm. These values are important and need to
be tuned to minimize the error.

b: THE NEURAL NETWORK TRAINING PROCESS
The training algorithm that has been used to train neural
network is a back-propagation algorithm, famously known
as Levenberg Marquardt (LM) [49]. This algorithm is an
advanced version of the gauss newton method. LM works
by back-propagating the error and i suitable for function
fitting problems like load forecasting and nonlinear regres-
sion problems [47]. It eliminates the need to find a Hessian
matrix by computing a Jacobian matrix which speeds up the
process [50]. This process is shown in FIGURE 11.
For the LM algorithm [50], let us first consider Newton’s

method to minimize the performance function with respect
to x.

wi+1 = wi − H−1∇V (10)

where H is the hessian matrix, V is a function of a sum of
squares of errors that is V =

∑N
i=1 e

2
i ,∇V is the gradient

of V and wi+1 and wi are the updated and current weights
respectively. When performance index is approximated as V ,
then:

∇V = JT .e (11)

where J is the Jacobian matrix containing first derivatives of
errors w.r.t to weightsw and biases θ and e is thematrix of net-
work errors. From here, a Hessian matrix can be represented
as:

H = JT J + S (12)

Here S is a product of combination coefficient µ and
identity matrix I . The value of S is very small as compared to
the product of the Jacobian matrix, so it can be assumed zero.
Therefore, the equation becomes,

H ≈ JT J (13)

Using this approximation, the Gauss-Newton algorithm
can be represented as follows:

wi+1 = wi −
[
JT J

]−1
JT .e (14)

where wi+1 is the updated value of weight and wi is the
current value of weight. The Hessian matrix (H ) in (13) is
noninvertible. This is the reason why a modification is made
in the matrix to make it invertible. A modified version of
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FIGURE 10. Two step procedure for developing a feed forward network.

FIGURE 11. Levenberg Marquardt back propagation algorithm.

Hessian matrix with identity matrix I and variable µ is given
as follows:

H ≈ JT J + µI (15)

This modification leads to the LM algorithm as follows:

wi+1 = wi −
[
JT J + µI

]−1
JT .e (16)

where the value of µ can be varied. Levenberg-Marquardt
is a combination of two algorithms i.e. gradient descent and

Gauss-Newton. Its values shift between the two based on the
value of µ. For a large value of µ, the algorithm becomes
gradient descent and for a small value of µ, it shifts to Gauss-
Newton. As the Gauss-Newton method is fast in terms of
processing, it was shift towards its corresponding value by
decreasing µ.

This implies that the performance function will always
decrease in this iterative process. While training the network,
maximum number of iterations was set to 500. This selection
is again arbitrary and depends on the network’s performance.
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TABLE 5. Variations in performance metrics across different feature groups.

It must also be noted that the number of iterations is model
specific and hence, therefore, are subject to change as the
model varies.

IV. RESULTS AND DISCUSSIONS
In pursuit of achieving an accurate as well as efficient model,
model’s most optimized performance on scales of both accu-
racy and simplicity was considered paramount.

A. BETWEEN PARSIMONY AND ACCURACY
Of all the five pools of explanatory variables, it was observed
that P3 showed the most optimized performance in terms of
forecasting accuracy as well as model’s simplicity. As shown
in TABLE 5, there is a significant percentage increase in
MAPE as model selection traverses from P3 to P4 and P5;
hence more parsimonious but less accurate. This remained
consistent for MLR, BRT, and ANNs. However, while look-
ing back from P3 to P2 and P1, the percentage decrease in
MAPE for both MLR and BRT is relatively less significant as
the model becomes more accurate as well as more complex.
Whereas, while applying ANN, the model showed higher
MAPE as it moved from P3 to P2. This too was undesirable
and facilitated in deciding P3 as the most optimized choice
of all the other pools of explanatory variables. Since deciding
between accuracy and complexity is a choice based on the
business needs, a tradeoff between the model’s complexity
and efficiency needs to be considered for making a final
decision.

B. THE RECENCY EFFECT
The term ‘recency effect’ refers to the effect of variables
of preceding time stamps on the variable being predicted.
Variables with such properties of recency are known as lagged
variables [51]. In load forecasting, literature reports ample
evidence where numerous studies empirically suggest that
the consideration of recency effect in load forecast models
significantly improves the forecasting results [34], [52]–[54].

To elaborate on the significance of the recency effect, this
study takes advantage of significantly relevant lagged vari-
ables to demonstrate their forecasting prowess. The selected
pool of features (P3) was further into P3RE (with only lagged

TABLE 6. Division of P3 into P3RE lagged and P3NRE without lagged
variables.

variables i.e. with recency effect) and P3NRE (without lagged
variables i.e. no recency effect). This is shown in TABLE 6.
Our experiments showed a significant improvement in model
accuracy after introducing the recency effect to it. As lagged
variables were added to the model, a threefold decrease in
MAPE across all the techniques (MLR, BRT, ANNs) was
observed.

Another significant observation was the composite effect
of both lagged and non-lagged explanatory variables in deter-
mining our response variable (load) across all the forecasting
techniques. This has been demonstrated using MAPE as a
performance metric as shown in TABLE 6. It must be noted
for convenience that authors have used P3NRE+RE instead
of P3 interchangeably in TABLE 6 solely for explanatory
reasons.

C. THE HOLIDAY EFFECT
Having finalized the feature space for explanatory vari-
ables, it is important to highlight an explanatory variable
i.e. Holiday Effect. This variable was dropped during the fea-
ture selection process. Since, in Pakistan, national holidays
appear according to the Gregorian calendar and religious hol-
idays appear according to the lunar calendar. Therefore, dates
appearing on these two calendars are highly incompatible
with each other with a difference of 11 days. This means
that any religious holiday that appears on a particular date
in the Gregorian calendar in 2015 will appear on a different
Gregorian date in 2016 and so on. This resulted in a year-wise
incoherence in holiday occurring dates and eventually lead
to a low relevance status of holidays as a load determining
variable in our forecast model.
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FIGURE 12. Results of proposed forecasting techniques.

D. FORECASTING TECHNIQUES AND THE WINNING
MODEL
On the selected pool of features i.e. P3, three different fore-
casting techniques were applied. As shown in FIGURE 12,
our results showed that ANNs outperformed both MLR and
BRT with a considerable margin across all the performance
metrics. In terms of MAPE, for example, while testing our
model, forecasts produced by ANNs showed the least over-
all MAPE of 2.913% followed by 3.294% and 3.592% for
BRT and MLR, respectively. This is a consequence of the
extensive training process of neural networks and their ability
to capture the non-linear relationships between input and the
target variables. It was also noticed that compared to ANNs
and MLR, regression trees showed large variance and tended
to overfit the model during their training process. Whereas
the element of overfitting seemed to be insignificant, and
comparatively minimum, in ANN-based training and testing
of the model. Such a property is desirable while developing
accurate predictive models for load forecast applications.

The comparative performance of forecasted load series
has been widely measured in terms of performance metrics
such as MAPE, RMSE etc. irrespective of the employed
forecast technique [33]. To ensure a fair comparison between
different techniques, the same simulation conditions were
used for all scenarios. Moreover, different error matrices
including MAPE, RMSE and R2 have been used to compare
the performance of all algorithms. The consistency of the
results across these statistical performance measures shows
a fair comparison between the proposed and the comparative
methods.

E. COMPARISON OF OBSERVED AND FORECASTED LOAD
Since ANNs showed the least forecasting error, it can be
observed in FIGURE 13. (a, b) that in comparison to other
techniques, ANNs very well followed the observed load
trend in the test set of our data. It can also be noticed that,
unlike ANNs and MLR, forecasts produced by regression
trees performed particularly poor on load peaks and valleys.
This is due to the high variance and overfitting of the BRT
model. Another observation could be the behavior of MLR
on peaks and valleys in the load series as it tended to under
forecast the load on these instances more than ANNs and
BRTs. If applied, such forecasting discrepancies could have

TABLE 7. Monthly performance of MLR, BRT and ANN.

TABLE 8. Performance metrics and the computational cost.

severe consequences on a utility in terms of peak hour load
dispatch and generation scheduling. Therefore, the observa-
tions helped us concede the forecasting superiority of ANNs
on our proposed set of explanatory variables and rendered it
the most suitable forecasting technique for electric utilities of
Pakistan.

F. COMPARISON AND ANALYSIS OF MODEL’S
PERFORMANCE ON MONTHLY AND WEEKLY BASIS
Furthermore, the performance of all the applied techniques
has been evaluated on a monthly and weekly basis. While
looking at the monthly performance as shown in TABLE 7,
it is observed that ANNs remained consistent in performing
better than their counterparts. However, during the winters
season, ANNs performed better (2.845% MAPE) than in the
summers season (3.008% MAPE). The underlying factors
resulting in seasonal performance will be elaborated in the
proceeding section. Similarly, TABLE 8 shows the minimum
and maximum values of performance metrics on a monthly
and weekly basis along with the computational cost of each
method.

It is observed that the applied ANN structure yet again per-
formed better than other techniques and showed least of the
maximum MAPEs both on monthly and weekly resolutions.
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FIGURE 13. (a, b) Comparison of all techniques.

This must be noticed that the performance of neural networks
remained consistent in terms of all the applied performance
metrics (MAPE, RMSE, R2). Throughout this work, the pri-
mary aim has been to develop a fairly accurate short term
load forecast model for electric power utilities considering the
model’s performance paramount. However, it is not necessary
to have the highest performance and lowest runtime in a
single model. As shown in Table 8, the ANNs appear to
outperform other techniques in terms of forecasting accuracy.
But at the same time, the ANN model takes the highest
runtime (29.13 s) to execute; reflecting its high computational
complexity. This is due to the rigorous training process of
neural networks as compared to traditional regression meth-
ods, which arguably, results in better accuracy as well. Better
in performance than other competing models, the runtime

of the ANN model turned out to be 2.1 times the runtime
of the MLR model (13.54 s) and 1.56 times that of the
BRT model (18.64 s). Although comparatively the fastest
and computationally less challenging model, MLR loses its
appeal when it comes to model’s forecast accuracy; hence
becoming a secondary choice for utilities to adopt.

All the measured runtimes were calculated by running
all the models individually on a 64-bit Intel(R) Core (TM)
i7-8550U CPU @ 1.80GHz 1.99 GHz with 8GB RAM.

Overall results suggest that the ANNs outperform all other
approaches and tend to perform better in terms of forecast
accuracy. Further detailed analysis of the results was car-
ried out to ascertain the reasons where and why the devel-
oped model performed relatively poorer. On monthly basis,
the maximum MAPE occurred in June. While finding the
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possible reasons behind the model’s poor performance in
a summers’ month i.e. June, it was noted that in Pakistan,
there is unscheduled load shedding that mostly occurs in the
summers season because of the peak load demand in the
season. Moreover, the monsoon season that lasts from mid-
June to September in Pakistan also brought heavy flooding
in the country in 2019 [55]. This resulted in unprecedented
power cuts and unaccounted unserved energy for IESCO’s
consumers. Unfortunately, it was not possible to obtain any
data to account for the quantitative effect of this unserved
energy on the model’s performance. On account of these two
events, the major reasons behind the maximum performance
error in June were both load shedding and massive flash
flooding. Similarly, the maximum weekly error occurred in
the second week of April 2019. Detailed analysis of the
model’s performance during that time of the year again traced
back to the events like flash flooding which affected many
parts of Pakistan including the southern service territory of
IESCO. These floods took away multiple human lives while
damaging dozens of houses and other infrastructure [56]. Yet
again, with no access to data for the unserved energy during
the second and third weeks of April, it was not possible to
quantify the impact of this flood in the forecast model.

A detailed analysis of the results suggests that it is possible
to develop a good forecasting model for a country like Pak-
istan where data availability is scarce to date and hencemakes
the development of research more challenging. However,
while comparing different models, it is important to con-
sider the special events including natural disasters, calamities,
regional weather dynamics, and other human factors. If the
availability of data allows, a comparison should be carried
out during periods where no such events occur. Overall, the
results suggest that the proposed model shows a higher level
of accuracy as compared to other similar models developed in
past. In addition to its widescale reproducibility, the proposed
model followed a systemic approach to its development and
hence becomes the right contender for serving as a base
model for future load forecasting studies in Pakistan.

V. CONCLUSION
Load forecasting is considered a key input for the safe oper-
ation of the power systems. In this paper, the problem of
systematic development of a short-term load forecast model
for electric utilities in Pakistan was addressed. Maintaining
the global applicability of the conducted research, the case
of IESCO was presented for the systematic development of
the proposed forecast model. The model was trained and
tested on real-time data from the utility’s five years hourly
energy consumption. To produce desired load forecasts, three
forecasting techniques i.e. MLR, BRTs, and ANNs were con-
sidered for evaluation by usingmultiple performancemetrics.
Significant weather profiles from eight different cities were
selected to develop a synthetic weather station. For systematic
model development, twenty-two explanatory variables were
selected for the variable selection process by using elastic nets
based feature selection algorithm. Experiments showed that

compared to MLR and BRTs, neural networks showed higher
accuracy for hourly load predictions at hourly as well as
weekly and monthly basis. The model was further evaluated
to highlight the significance of data recency by incorporating
lagged time series of load and weather data. An interesting
aspect of the effect of public holidays in Pakistan was also
examined which empirically suggested the low relevancy of
public holidays for determining the load. Finally, the perfor-
mance of the proposedmodel was evaluated on amonthly and
weekly basis as well. Analysis showed that unprecedented
events like load shedding and power cuts during flash flood-
ing negatively impacted the model’s forecasting accuracy.
With limited or no access to data regarding climate variability
and resulting natural disasters, the proposed model could
not capture the effects of such special events which have
had prominence in determining utility’s final load demands
in past.

In future, multiple prospects of this research can be
explored for further development. For example, the dynamics
of the ‘holiday’ variable can bemodelled to capture its impact
on forecasting accuracy. Moreover, the effect of unserved
energy and power cuts can be modelled given the availability
of the relevant modelling data. Another important develop-
ment could be the design of an online forecast model for
electric utilities using recurrent neural networks through a
univariate analysis approach.
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