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Despite the known visual and pathological implications of hyperopia, there has been inertia to 
address the modulation of refractive error in these individuals. 
 
Imposing relative peripheral hyperopic defocus using centre-near multifocal contact 
lenses accelerates axial growth in isohyperopic children.  
Axial growth and refractive error did not change during the 6 months prior to intervention in the 
intervention or control group. Axial growth across the 2-year period of intervention was 0.17 
mm in the intervention group versus 0.06 mm in the control group. Refractive error change 
across the same period was -0.26 D in the intervention group and +0.01 D in the control group. 
Axial growth and refractive error during the final 6 months without intervention did not change 
in either group. The overall difference in axial growth between groups was significant whereas 
the change in refractive error was not. 
 
Imposing relative peripheral hyperopic defocus using centre-near multifocal contact 
lenses does not accelerate axial growth nor reduce refractive error in anisohyperopic 
children.  
In this paired eye study, axial growth and refractive error did not change during the 6 months 
prior to intervention in either eye. Axial growth across the 2-year period of intervention was 
0.11 mm in the intervention eye versus 0.15 mm in the control eye. Refractive error change 
across the same period was -0.23 D in the intervention eye and -0.27 D in the fellow eye. Axial 
growth and refractive error during the final 6 months without intervention did not change in 
either group. The overall change in axial growth was greater in the control eye than the 
intervention eye, whereas the reduction in refractive error was comparable. 
 
Axial length measures are comparable and repeatable under pre- and post-cycloplegic 
conditions. 
 
Refractive error measures are comparable and repeatable at discrete time intervals after 
the instillation of a cycloplegic agent. 
 
 
 
 
 
Keywords: hyperopia, refractive error, peripheral defocus, contact lenses 
 
 
 
 

 
 
 
 
 
 
 



I.G.Beasley, PhD Thesis, Aston University 2021 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For Clarence 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 



I.G.Beasley, PhD Thesis, Aston University 2021 4 

Acknowledgements 

 

I would like to begin by thanking my supervisors, Professor Nicola Logan and Professor Leon 

Davies for their guidance, support and critical appraisal throughout. I would also like to thank 

Dr. Samantha Strong and Dr. Richard Armstrong for their statistical advice. 

 

I am indebted to the participants and their families for committing to taking part in the studies. 

I am obliged to Suresh Munyal for providing consulting room space for the duration of the 

studies. 

I am also grateful to the College of Optometrists for awarding a postgraduate research 

scholarship, without which, this research would not have been possible. I would like to thank 

CooperVision for providing contact lenses and solutions throughout the study, and in particular, 

Mark Chatham for taking care of the administrative burden of this task. 

Finally, I would like to thank my wife and daughters for their unswerving support over the past 

six years (x 2). I pledge to them that this is almost certainly my last thesis. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



I.G.Beasley, PhD Thesis, Aston University 2021 5 

List of Contents 

 

Summary            2 

Dedication           3 

Acknowledgements           4 

List of Contents          5 

List of Abbreviations          12 

List of Figures           14 

List of Tables            18 

1.0 Literature review           22 

1.1 Introduction         22 

1.2 Human emmetropisation        22 

1.2.1 Background         22 

  1.2.2 Phases of emmetropisation      23 

  1.2.3 Ocular structure changes during emmetropisation   24 

   1.2.3.1 Cornea       24 

   1.2.3.2 Anterior chamber depth     25 

   1.2.3.3 Lens        25 

   1.2.3.4 Axial length       26 

   1.2.3.5 Summary       26 

  1.2.4 Failures of emmetropisation      26 

   1.2.4.1 Background       26 

   1.2.4.2 Hyperopia       27 

   1.2.4.3 Myopia       30 

   1.2.4.4 Anisometropia       30 

   1.2.4.5 Summary       31 

1.3 Childhood refractive error        31 

  1.3.1 Prevalence        31 



I.G.Beasley, PhD Thesis, Aston University 2021 6 

   1.3.1.1 Hyperopia and myopia     32 

   1.3.1.2 Anisometropia       34 

  1.3.2 The burden of refractive error      35 

   1.3.2.1 Clinical implications of hyperopia    36 

   1.3.2.2 Clinical implications of anisometropia   38 

  1.3.3 Management of hyperopia      39 

 1.4 Experimental models of refractive error modulation    42 

  1.4.1 Background        42 

  1.4.2 Form deprivation       42 

  1.4.3 Lens-induced ametropia      44 

  1.4.4 Peripheral defocus       47 

  1.4.5 Ocular shape        49 

  1.4.6 Accommodation        51 

  1.4.7 High order aberrations       54 

  1.4.8 Spectral and temporal light characteristics    55 

  1.4.9 Summary        57 

 1.5 Optical interventions for refractive error modulation in humans   58 

  1.5.1 Background        58 

  1.5.2 Undercorrection of myopia      58 

  1.5.3 Spectacle lens correction      59 

  1.5.4 Contact lens correction       61 

   1.5.4.1 Rigid gas permeable contact lenses    61 

   1.5.4.2 Soft contact lenses      62 

   1.5.4.3 Orthokeratology      66 

  1.5.5 Summary        68 

 1.6 Thesis aims         68 

2.0 Instrumentation          70 

 2.1 Introduction         70 



I.G.Beasley, PhD Thesis, Aston University 2021 7 

 2.2 Assessment of unaided vision and visual acuity     70 

 2.3 Assessment of intraocular pressure      71 

 2.4 Cycloplegia         71 

 2.5 Biometry          72 

  2.5.1 Axial length and corneal curvature measurement   75 

  2.5.2 Anterior chamber depth measurement     76 

 2.6 Central refraction         76 

 2.7 Peripheral refraction        77 

 2.8 Pupil size          78 

 2.9 Accommodative lag        79 

 2.10 Amplitude of accommodation       80 

 2.11 Contrast sensitivity        80 

 2.12 Stereoacuity         81 

 2.13 Contact lenses         82 

3.0 Effect of peripheral defocus on axial growth and refractive error in children  

with isohyperopia          85 

 3.1 Introduction         85 

 3.2 Objective          86 

 3.3 Methods          86 

 3.4 Statistical analysis        91 

 3.5 Results          91 

  3.5.1 Primary outcome measures      93 

   3.5.1.1 Axial length       93 

   3.5.1.2 Post-cycloplegic refractive error    96 

  3.5.2 Secondary outcome measures      98 

   3.5.2.1 Unaided distance vision     98 

   3.5.2.2 Spectacle distance visual acuity    100 

    



I.G.Beasley, PhD Thesis, Aston University 2021 8 

3.5.2.3 Spectacle distance visual acuity versus contact lens  

distance visual acuity       102 

   3.5.2.4 Spectacle near visual acuity     104 

 3.5.2.5 Spectacle near visual acuity versus contact lens near  

visual acuity        106 

   3.5.2.6 Stereoacuity with spectacle correction   108 

   3.5.2.7 Stereoacuity: spectacle correction versus contact lens  

correction        110 

   3.5.2.8 Cover test with spectacle correction    110 

   3.5.2.9 Contrast sensitivity with spectacle correction  112 

   3.5.2.10 Contrast sensitivity: spectacle correction versus contact  

lens correction        113 

3.5.2.11 Corneal curvature      114 

3.5.2.12 Anterior chamber depth     116 

3.5.2.13 Pupil size       118 

3.5.2.14 Amplitude of accommodation    118 

3.5.2.15 Lag of accommodation with spectacle correction  120 

   3.5.2.16 Lag of accommodation: spectacle correction versus contact  

lens correction        122 

3.5.2.17 Central contact lens power     122 

3.5.2.18 Contact lens wearing time     124 

3.5.2.19 Peripheral refraction (mean spherical equivalent)  125 

3.5.2.20 Peripheral refraction (J0)     133 

3.5.2.21 Peripheral refraction (J45)     138 

3.5.2.22 Relative peripheral refraction with contact lens in situ 142 

3.6 Discussion          143 

4.0 Effect of peripheral defocus on axial growth and refractive error in children  

with anisohyperopia          148 



I.G.Beasley, PhD Thesis, Aston University 2021 9 

 4.1 Introduction         148 

 4.2 Objective          148 

 4.3 Methods          149 

 4.4 Statistical analysis        152 

 4.5 Results          152 

  4.5.1 Primary outcome measures      153 

   4.5.1.1 Axial length       153 

   4.5.1.2 Post-cycloplegic refractive error    155 

  4.5.2 Secondary outcome measures      157 

   4.5.2.1 Unaided distance vision     157 

   4.5.2.2 Spectacle distance visual acuity    159 

   4.5.2.3 Contact lens distance visual acuity    161 

   4.5.2.4 Spectacle distance visual acuity versus contact lens  

distance visual acuity       163 

   4.5.2.5 Spectacle near visual acuity     165 

   4.5.2.6 Contact lens near visual acuity    167 

 4.5.2.7 Spectacle near visual acuity versus contact lens near  

visual acuity        169 

   4.5.2.8 Stereoacuity with spectacle correction   171 

   4.5.2.9 Stereoacuity: spectacle correction versus contact lens  

correction        173 

   4.5.2.10 Cover test with spectacle correction   173 

   4.5.2.11 Contrast sensitivity with spectacle correction  174 

   4.5.2.12 Contrast sensitivity with contact lens correction  176 

   4.5.2.13 Contrast sensitivity: spectacle correction versus contact  

lens correction        177 

4.5.2.14 Corneal curvature      178 

4.5.2.15 Anterior chamber depth     180 



I.G.Beasley, PhD Thesis, Aston University 2021 10 

4.5.2.16 Pupil size       182 

4.5.2.17 Amplitude of accommodation    183 

4.5.2.18 Lag of accommodation with spectacle correction  185 

   4.5.2.19 Lag of accommodation: spectacle correction versus  

contact lens correction      186 

4.5.2.20 Central contact lens power     187 

4.5.2.21 Contact lens wearing time     188 

4.5.2.22 Peripheral refraction (mean spherical equivalent)  190 

4.5.2.23 Peripheral refraction (J0)     197 

4.5.2.24 Peripheral refraction (J45)     202 

4.5.2.25 Relative peripheral refraction with contact lens in situ 206 

4.6 Discussion          208 

5.0 Time course and repeatability of objective refraction and biometry following  

cycloplegia           212  

 5.1 Introduction         212 

 5.2 Objective          215 

 5.3 Methods          215 

 5.4 Statistical analysis        217 

 5.5 Results          217 

  5.5.1 Primary outcome measures      218 

   5.5.1.1 Axial length       218 

   5.5.1.2 Post-cycloplegic refractive error    220 

  5.5.2 Secondary outcome measures      221 

   5.5.2.1 Unaided distance vision     221 

   5.5.2.2 Distance visual acuity      222 

   5.5.2.3 Anterior chamber depth     223 

 5.6 Discussion          224 

6.0 General discussion         227 



I.G.Beasley, PhD Thesis, Aston University 2021 11 

References           232 

Appendices           258 

 Appendix 1 NHS ethical approval for studies in Chapters 3 and 4   258 

 Appendix 2 Aston University ethical approval for studies in Chapters 3 and 4 259 

Appendix 3 Background questionnaire      261 

Appendix 4 General practitioner advisal letter     264 

Appendix 5 Parent consent form       265 

Appendix 6 Participant consent form       267 

Appendix 7 Participant assent form       268 

Appendix 8 Follow up questionnaire       269 

Appendix 9 Aston University ethical approval for study in Chapter 5  271 

Appendix 10 Background questionnaire      272 

Appendix 11 Parent consent form       274 

Appendix 12 Participant consent form      275 

Appendix 13 Participant assent form       276 

Appendix 14 Individual participant data for intervention group showing  

key characteristics         277 

Supporting publications         278



I.G.Beasley, PhD Thesis, Aston University 2021 
 

12 

List of Abbreviations 

 

ACD  Anterior chamber depth 

AL  Axial length 

AMD  Age-related macular degeneration 

ANOVA Analysis of variance 

BF  Bifocal 

BFSCL  Bifocal soft contact lens 

CC  Corneal curvature 

CI  Confidence interval 

CL  Contact lenses 

CLEERE Collaborative Longitudinal Evaluation of Ethnicity and Refractive Error 

CS  Contrast sensitivity 

CSF   Contrast sensitivity function 

D  Dioptres 

DF  Dual focus 

DIMS  Defocus incorporated multiple segments 

DISC  Defocus incorporated soft contact lens 

Dk/t  Oxygen transmissibility 

DVA  Distance visual acuity 

DV  Distance vision 

FNS   Frisby Near Stereotest 

GAT  Goldmann applanation tonometry 

HCl  Hydrochloride 

HOA  High order aberration 

ILM  Internal limiting membrane 

IOP  Intraocular pressure 

LCA  Longitudinal chromatic aberration 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

13 

LoA  Limits of agreement 

LogMAR Logarithm of the minimum angle of resolution 

LOA  Low order aberration 

MF  Multifocal 

MRI  Magnetic resonance imaging 

MSE  Mean spherical equivalent 

NICER  Northern Ireland Childhood Errors of Refraction 

NVA  Near visual acuity 

OK  Orthokeratology 

PAL  Progressive addition lens  

PBF  Prismatic bifocal 

PCI  Partial coherence interferometry 

RAF  Royal Air Force 

RGP  Rigid gas permeable 

RPE  Retinal pigment epithelium 

RPH  Relative peripheral hyperopia 

RPHD  Relative peripheral hyperopic defocus 

RPMD  Relative peripheral myopic defocus 

+SA  Positive spherical aberration 

SEM  Standard error of the mean 

SF  Spatial frequency 

SRRG  Soft radial refractive gradient 

SV  Single vision 

TNO   TNO Randot Stereotest 

VA  Visual acuity 

VCD  Vitreous chamber depth 

WT  Wearing time 

 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

14 

List of Figures 

 

Figure 1.1 The probability of reaching +2.00 D by 18 months of age as a function of  
cycloplegic refractive error at 3 months of age       28 
 
Figure 1.2 The probability of reaching +2.00 D by 18 months of age as a function of the  
level of visual acuity group and Mohindra retinoscopy results at 3 months of age  29 
 
Figure 1.3 Relatively prolate ocular shape in myopia with corresponding retinal image  
shell, indicated by the green dashed line, demonstrating relative peripheral hyperopia  49 
 
Figure 1.4 Relatively oblate ocular shape in hyperopia with corresponding retinal image  
shell, indicated by the red dashed line, demonstrating relative peripheral myopia  50 
 
Figure 1.5 Relative peripheral hyperopic defocus corrected with a centre-distance  
bifocal contact lens while full refractive error is corrected centrally     63 
 
Figure 1.6 Dual focus contact lens with central distance zone and alternating concentric zones 
of myopic defocus and full refractive error correction      64 
 
Figure 2.1 The IOLMaster 500         73 
 
Figure 2.2 The PCI principle utilised by the IOLMaster 500     74 
 
Figure 2.3 Grand Seiko Auto Ref/Keratometer WAM-5500      77 

Figure 2.4 Hole-in-the-card method for establishing dominance    79 
 
Figure 3.1 Relative peripheral hyperopic defocus imposed with a centre-near bifocal  
contact lens while full refractive error is corrected centrally      86 
 
Figure 3.2 Change in axial growth (mean ± SEM)      95 
 
Figure 3.3 Change in MSE post-cycloplegic central refraction (mean ± SEM)   97 
 
Figure 3.4 Change in unaided DV at 6 m (mean ± SEM)      99 
 
Figure 3.5 Change in spectacle DVA at 6 m (mean ± SEM)      101 
 
Figure 3.6 Change in spectacle DVA versus CL DVA at 6 m throughout the intervention  
period (mean ± SEM). Measures at the initial timepoint taken at the first CL aftercare  
visit             103 
 
Figure 3.7 Change in spectacle NVA at 0.25 m (mean ± SEM)     105 
 
Figure 3.8 Change in spectacle NVA versus CL NVA at 0.25 m throughout the  
intervention period (mean ± SEM). Measures at the initial timepoint taken at the  
first CL aftercare visit           107 
 
Figure 3.9 Change in stereoacuity with spectacle correction (mean ± SEM).  
Excludes participants that were unable to complete the grading plates    109 
 
 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

15 

Figure 3.10 Change in contrast sensitivity with spectacle correction at 1 m  
(mean ± SEM)           112 
 
Figure 3.11 Change in CC (mean ± SEM)       115 
        
Figure 3.12 Change in ACD (mean ± SEM)        117 
 
Figure 3.13 Change in amplitude of accommodation (mean ± SEM)   119 
 
Figure 3.14 Change in accommodative lag with spectacle correction for a target at  
0.33 m (mean ± SEM)          121
        
Figure 3.15 Change in central CL power (mean ± SEM)      123 
 
Figure 3.16 Change in typical weekly CL WT (mean ± SEM). Measures at the initial  
timepoint taken at the first CL aftercare visit        124 
 
Figure 3.17 Absolute MSE post-cycloplegic central refraction compared to  
peripheral refraction at 30° temporally (mean ± SEM)      126 
 
Figure 3.18 Absolute MSE post-cycloplegic central refraction compared to  
peripheral refraction at 30° nasally (mean ± SEM)      127 
 
Figure 3.19 Absolute MSE post-cycloplegic central refraction compared to  
peripheral refraction at 20° superiorly (mean ± SEM)      127 
 
Figure 3.20 Absolute MSE post-cycloplegic central refraction compared to  
peripheral refraction at 20° inferiorly (mean ± SEM)       128 
 
Figure 3.21 MSE post-cycloplegic relative peripheral refractive error at each visit  
for the intervention group (mean ± SEM)        129 
 
Figure 3.22 MSE post-cycloplegic relative peripheral refractive error at each visit for the  
control group (mean ± SEM)          130 
 
Figure 3.23 J0 post-cycloplegic peripheral refractive error at each visit for the  
intervention group (mean ± SEM)         137 
 
Figure 3.24 J0 post-cycloplegic peripheral refractive error at each visit for the control  
group (mean ± SEM)          137 
 
Figure 3.25 J45 post-cycloplegic peripheral refractive error at each visit for the  
intervention group (mean ± SEM)         141 
 
Figure 3.26 J45 post-cycloplegic peripheral refractive error at each visit for the control  
group (mean ± SEM)           142 
 
Figure 3.27 MSE non-cycloplegic relative peripheral refraction with CL correction in situ  
(mean ± SEM)           143 
 
Figure 4.1 Change in axial growth (mean ± SEM)       154 
 
Figure 4.2 Change in MSE post-cycloplegic central refraction (mean ± SEM)  156 
 
Figure 4.3 Change in unaided DV (mean ± SEM)       158 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

16 

Figure 4.4 Change in spectacle DVA at 6 m (mean ± SEM)     160 
 
Figure 4.5 Change in CL DVA (mean ± SEM)       162 
 
Figure 4.6 Change in spectacle DVA versus CL DVA at 6 m for the intervention eye  
group (mean ± SEM). Measures at the first timepoint taken at the first CL aftercare visit  163 
 
Figure 4.7 Change in spectacle DVA versus CL DVA at 6 m for the control eye group  
(mean ± SEM). Measures at the initial timepoint taken at the first CL aftercare visit  164 
 
Figure 4.8 Change in spectacle NVA at 0.25 m (mean ± SEM)     166 
 
Figure 4.9 Change in CL NVA at 0.25 m (mean ± SEM)      168 
 
Figure 4.10 Change in spectacle NVA versus CL NVA at 0.25 m for the intervention eye  
group (mean ± SEM). Measures at the initial timepoint taken at the first CL aftercare visit 169 
 
Figure 4.11 Change in spectacle NVA versus CL NVA at 0.25 m for the control eye  
group (mean ± SEM). Measures at the initial timepoint taken at the first CL aftercare visit 170 
 
Figure 4.12 Change in stereoacuity with spectacle correction (mean ± SEM).  
Excludes participants that were unable to complete the grading plates    172 
 
Figure 4.13 Change in contrast sensitivity with spectacle correction at 1 m  
(mean ± SEM)           175 
 
Figure 4.14 Change in CC (mean ± SEM)        179 
 
Figure 4.15 Change in ACD (mean ± SEM)        181 
 
Figure 4.16 Pupil size in photopic and mesopic conditions for the intervention eye group  
and control eye group with CL in situ (mean ± SEM)      182 
 
Figure 4.17 Change in amplitude of accommodation (mean ± SEM)    184 
 
Figure 4.18 Change in accommodative lag with spectacle correction for a target at  
0.33 m (mean ± SEM)          185 
 
Figure 4.19 Change in central CL power (mean ± SEM)     188 
 
Figure 4.20 Change in typical weekly CL WT (mean ± SEM). Measures at the initial  
timepoint taken at the first CL aftercare visit        189 
 
Figure 4.21 Absolute MSE post-cycloplegic central refraction compared to  
peripheral refraction at 30° temporally (mean ± SEM)      191 
 
Figure 4.22 Absolute MSE post-cycloplegic central refraction compared to  
peripheral refraction at 30° nasally (mean ± SEM)       191 
 
Figure 4.23 Absolute MSE post-cycloplegic central refraction compared to  
peripheral refraction at 20° superiorly (mean ± SEM)      192 
 
Figure 4.24 Absolute MSE post-cycloplegic central refraction compared to  
peripheral refraction at 20° inferiorly (mean ± SEM)       192 
 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

17 

Figure 4.25 MSE post-cycloplegic relative peripheral refractive error at each visit  
for the intervention eye group (mean ± SEM)       193 
 
Figure 4.26 MSE post-cycloplegic relative peripheral refractive error at each visit for the  
control eye group (mean ± SEM)         194 
 
Figure 4.27 J0 post-cycloplegic peripheral refractive error at each visit for the  
intervention eye group (mean ± SEM)        201 
 
Figure 4.28 J0 post-cycloplegic peripheral refractive error at each visit for the  
control eye group (mean ± SEM)         201 
 
Figure 4.29 J45 post-cycloplegic peripheral refractive error at each visit for the  
intervention eye group (mean ± SEM)        205 
 
Figure 4.30 J45 post-cycloplegic peripheral refractive error at each visit for the  
control eye group (mean ± SEM)         206 
 
Figure 4.31 MSE non-cycloplegic relative peripheral refraction with CL correction in  
situ for the intervention eye group (mean ± SEM)       207 
 
Figure 4.32 MSE non-cycloplegic relative peripheral refraction with CL correction in  
situ for the control eye group (mean ± SEM)       208 
 
Figure 5.1 Difference versus the mean plot for pre-cycloplegic AL at Visits 1 and 2 219 
 
Figure 5.2 Difference versus the mean plot for post-cycloplegic AL at Visits 1 and 2.  
95% LoA enclosed by dashed lines        220 
 
Figure 5.3 Post-cycloplegic refractive error at discrete timepoints after instillation  
of cyclopentolate HCL 1% at each visit (mean ± SEM)      221 
 
Figure 5.4 Difference versus the mean plot for unaided vision at Visits 1 and 2  222 
 
Figure 5.5 Difference versus the mean plot for DVA at Visits 1 and 2    223 
 
Figure 5.6 Difference versus the mean plot for post-cycloplegic ACD at Visits 1 and 2.  
95% LoA enclosed by dashed lines        224 
 
 
 
 

 

 

 

 
 
 

 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

18 

List of Tables 

 

Table 1.1 Estimates of hyperopia prevalence by World Health Organization (WHO)  
region (95% confidence intervals (CI)        32 
 
Table 1.2 Summary of myopia control studies using spectacle lens correction with single  
vision (SV), bifocal (BF)/ prismatic bifocal (PBF), progressive addition lenses (PALs)  
and defocus incorporated multifocal segments (DIMS)      59 
 
Table 1.3 Summary of myopia control studies using soft bifocal and multifocal contact  
lenses comparing SV CL; dual focus (DF); reduction of relative peripheral hyperopia  
(RPH) design; SV spectacle lens; defocus incorporated soft (DISC) CL; soft radial  
refractive gradient (SRRG) CL; orthokeratology (OK); bifocal soft contact lens (BFSCL);  
and soft contact lens with positive spherical aberration (+SA)     62 
 
Table 1.4 Summary of myopia control studies using orthokeratology (OK) comparing:  
SV CL; SV spectacle lens          66 
 
Table 3.1 Procedures undertaken for participants in the intervention group at each visit  90 
 
Table 3.2 Procedures undertaken for participants in the control group at each visit  90 
 
Table 3.3 Summary of attrition in the intervention and control groups    92 
 
Table 3.4 Summary of key information from questionnaires for the intervention group  92 
 
Table 3.5 Summary of key information from questionnaires for the control group   93 
 
Table 3.6 Axial length at each visit (mean ± SEM)      95 
 
Table 3.7 MSE post-cycloplegic central refractive error at each visit  
(mean ± SEM)           97 
 
Table 3.8 Unaided DV at 6 m at each visit (mean ± SEM)     99 
 
Table 3.9 Spectacle DVA at 6 m at each visit (mean ± SEM)    101 
 
Table 3.10 Spectacle DVA versus CL DVA at 6 m throughout the intervention period  
(mean ± SEM). Measures at the initial timepoint taken at the first CL aftercare visit  103 
 
Table 3.11 Spectacle NVA at 0.25 m at each visit (mean ± SEM)    105 
 
Table 3.12 Spectacle NVA versus CL NVA at 0.25 m throughout the intervention period  
(mean ± SEM). Measures at the initial timepoint taken at the first CL aftercare visit  107 
 
Table 3.13 Stereoacuity at each visit (mean ± SEM). Intervention period shaded red.  
Excludes participants that were unable to complete the grading plates    109 
 
Table 3.14 Stereoacuity with spectacle correction versus CL correction  
(mean ± SEM). Intervention period shaded red. Excludes participants that were  
unable to complete the grading plates       110 
 
 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

19 

Table 3.15 Cover test with spectacle correction at distance and near for the intervention  
group             111 
  
Table 3.16 Cover test with spectacle correction at distance and near for the control  
group             111 
 
Table 3.17 Contrast sensitivity with spectacle correction at 1 m    113 
 
Table 3.18 Contrast sensitivity with spectacle correction versus CL correction at 1 m  
(mean ± SEM). Intervention period shaded red. Measures at the first timepoint taken  
at the first CL aftercare visit          113 
 
Table 3.19 CC at each visit (mean ± SEM)       115 
 
Table 3.20 ACD at each visit (mean ± SEM)       117 
 
Table 3.21 Pupil size in photopic and mesopic conditions for the intervention and  
control participants (mean ± SEM)         118 
 
Table 3.22 Amplitude of accommodation at each visit (mean ± SEM)   120 
 
Table 3.23 Accommodative lag with spectacle correction for a target at 0.33 m  
(mean ± SEM)           121 
 
Table 3.24 Accommodative lag with spectacle correction versus CL correction for a  
target at 0.33 m (mean ± SEM)        122 
 
Table 3.25 Central CL power (mean ± SEM)       123 
 
Table 3.26 Typical weekly CL WT (mean ± SEM). Measures at the initial timepoint  
taken at the first CL aftercare visit         125 
 
Table 3.27 MSE post-cycloplegic relative peripheral refractive error at each visit  
for the intervention group (mean ± SEM)       125 
 
Table 3.28 MSE post-cycloplegic relative peripheral refractive error at each visit for the  
control group (mean ± SEM)          126 
 
Table 3.29 J0 post-cycloplegic peripheral refractive error at each visit for the intervention  
group (mean ± SEM)          136 
 
Table 3.30 J0 post-cycloplegic peripheral refractive error at each visit for the control  
group (mean ± SEM)           136 
 
Table 3.31 J45 post-cycloplegic peripheral refractive error at each visit for the  
intervention group (mean ± SEM)        140 
 
Table 3.32 J45 post-cycloplegic peripheral refractive error at each visit for the control  
group (mean ± SEM)           141 
 
Table 3.33 MSE non-cycloplegic relative peripheral refraction with CL correction in situ  
(mean ± SEM)           143 
 
Table 4.1 Procedures undertaken for all participants at each visit     151 
 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

20 

Table 4.2 Summary of key information from questionnaires     152 
 
Table 4.3 Axial length at each visit (mean ± SEM)      154 
 
Table 4.4 MSE post-cycloplegic central refractive error at each visit (mean ± SEM) 156 
 
Table 4.5 Unaided DV at 6 m at each visit (mean ± SEM)     158 
 
Table 4.6 Spectacle DVA at 6 m at each visit (mean ± SEM)    160 
 
Table 4.7 CL DVA at 6 m at each visit (mean ± SEM)     162 
 
Table 4.8 Spectacle DVA versus CL DVA at 6 m for the intervention eye group  
(mean ± SEM). Measures at the first timepoint taken at the first CL aftercare visit   164 
 
Table 4.9 Spectacle DVA versus CL DVA at 6 m for the control eye group  
(mean ± SEM). Measures at the first timepoint taken at the first CL aftercare visit   165 
 
Table 4.10 Spectacle NVA at 0.25 m at each visit (mean ± SEM)    166 
 
Table 4.11 CL NVA at 0.25 m at each visit (mean ± SEM)     168 
 
Table 4.12 Spectacle NVA versus CL NVA at 0.25 m for the intervention eye group  
(mean ± SEM). Measures at the initial timepoint taken at the first CL aftercare visit  170 
 
Table 4.13 Spectacle NVA versus CL NVA at 0.25 m for the control eye group  
(mean ± SEM). Measures at the initial timepoint taken at the first CL aftercare visit  171 
 
Table 4.14 Stereoacuity at each visit (mean ± SEM). Excludes participants that were  
unable to complete the grading plates        172 
 
Table 4.15 Stereoacuity with spectacle correction versus CL correction  
(mean ± SEM). Excludes participants that were unable to complete the grading plates  173 
 
Table 4.16 Cover test with spectacle correction at distance and near for the intervention 
group             174 
 
Table 4.17 Contrast sensitivity with spectacle correction at 1 m.     175 
 
Table 4.18 Contrast sensitivity with CL correction at 1 m.      176 
 
Table 4.19 Contrast sensitivity with spectacle correction versus CL correction at 1 m  
for the intervention eye group (mean ± SEM). Measures at the initial timepoint taken at  
the first CL aftercare visit         177  
 
Table 4.20 Contrast sensitivity with spectacle correction versus CL correction at 1 m  
for the control eye group (mean ± SEM). Intervention period shaded red. Measures at  
the initial timepoint taken at the first CL aftercare visit      177 
 
Table 4.21 CC at each visit (mean ± SEM).        179 
 
Table 4.22 ACD at each visit (mean ± SEM).       181 
 
Table 4.23 Pupil size in photopic and mesopic conditions for the intervention eye  
group and control eye group with CL in situ (mean ± SEM)      183 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

21 

Table 4.24 Amplitude of accommodation at each visit (mean ± SEM)    184 
 
Table 4.25 Accommodative lag with spectacle correction for a target at 0.33 m  
(mean ± SEM)           186 
 
Table 4.26 Accommodative lag with spectacle correction versus CL correction for a  
target at 0.33 m (mean ± SEM)        187
       
Table 4.27 Central CL power (mean ± SEM)       188 
 
Table 4.28 Typical weekly CL WT (mean ± SEM). Measures at the initial timepoint  
taken at the first CL aftercare visit         189 
 
Table 4.29 MSE post-cycloplegic relative peripheral refractive error at each visit  
for the intervention eye group (mean ± SEM). Intervention period shaded red   190 
 
Table 4.30 MSE post-cycloplegic relative peripheral refractive error at each visit for the  
control eye group (mean ± SEM)         190 
 
Table 4.31 J0 post-cycloplegic peripheral refractive error at each visit for the intervention  
eye group (mean ± SEM)         200 
 
Table 4.32 J0 post-cycloplegic peripheral refractive error at each visit for the control eye  
group (mean ± SEM)           200 
 
Table 4.33 J45 post-cycloplegic peripheral refractive error at each visit for the  
intervention eye group (mean ± SEM)       204 
 
Table 4.34 J45 post-cycloplegic peripheral refractive error at each visit for the control  
eye group (mean ± SEM)          205 
 
Table 4.35 MSE non-cycloplegic relative peripheral refraction with CL correction in situ  
for the intervention eye group (mean ± SEM)       207 
 
Table 4.36 MSE non-cycloplegic relative peripheral refraction with CL correction in situ  
for the control eye group (mean ± SEM)        208 
  
Table 5.1 AL before and 30 minutes after instillation of cyclopentolate HCl 1% at  
each visit (mean ± SEM)          218 
 
Table 5.2 Post-cycloplegic refractive error at discrete timepoints after instillation  
of cyclopentolate HCl 1% at each visit (mean ± SEM)      221
    
Table 5.3 Unaided DV at 6 m at each visit (mean ± SEM)      222 

Table 5.4 DVA at 6 m at each visit (mean ± SEM)       223 

Table 5.5 ACD at each visit (mean ± SEM)        224 

 
 
 
 
 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

22 

1.0 Literature review  

 

1.1 Introduction 

Hyperopia is a known risk factor for the development of strabismus and amblyopia (Colburn et 

al., 2010). In addition to visual consequences, there is a growing body of evidence that 

uncorrected hyperopia (Williams et al., 2005) and anisohyperopia (Narayanasamy et al., 2014) 

may have a negative impact upon educational attainment and visuocognitive and visuomotor 

skills (Atkinson et al., 2007). Hyperopia occurs as a consequence of insufficient ocular growth 

and a failure to emmetropise in childhood with the majority of hyperopic refractive errors 

resulting from an eye that is too short for its refractive power (Strang et al., 1998).  

 

Currently hyperopia receives far less attention from research than myopia, even though the 

impact of moderate to high levels of hyperopia, especially in one eye, can lead to amblyopia if 

not corrected fully at a young age (Kulp et al., 2014). Although myopia has public health 

implications in an adult population (Flitcroft, 2012; Ohno-Matsui et al., 2021), within a paediatric 

population, hyperopia and anisometropia create the greatest ocular morbidity (Flitcroft, 2014).  

 

To understand the potential to modulate refractive error in hyperopes, it is important to explore 

the general literature. As such, this chapter will review human emmetropisation and how its 

failure leads to hyperopia. The optical approaches taken to control myopia progression will 

also be considered to hypothesise how these principles could be applied in the context of 

hyperopia. 

 

1.2 Human emmetropisation 

 

1.2.1 Background 

Emmetropisation describes a developmental process that matches optical power to axial 

length (AL) such that the unaccommodated eye is focused at distance (Troilo et al., 2019). 
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Human refraction differs from many other biological variables, such as height, which typically 

follow a normal distribution (Limpert et al., 2001). In fact, beyond 3 months of age, human 

refraction has a leptokurtic distribution, that is to say, a high peak and a distribution clustered 

around the mean, which is also negatively skewed (Flitcroft, 2014). Intriguingly, the ocular 

parameters that contribute to final refraction, namely corneal curvature (CC), anterior chamber 

depth (ACD), lens thickness and AL are distributed in a more typically Gaussian distribution 

(Flitcroft, 2014). The high prevalence of emmetropic and low hyperopic refractive errors in the 

human population has led to the hypothesis that there must be a mechanism in place to 

minimise refractive errors by regulation of eye growth; this is supported by the literature which 

shows that such a mechanism exists in human infants (Ehrlich et al., 1997; Mutti et al., 2005). 

Indeed, the mechanism responsible for aligning the optical and structural development of the 

eye to permit successful emmetropisation appears to be visually driven (Mutti et al., 2009). 

 

1.2.2 Phases of emmetropisation 

Half a century ago, the work of Sorsby and colleagues established that around 50% of 

postnatal eye growth in normal eyes occurs within the first 12 to 16 months of life, followed by 

a decade of decelerated axial elongation before stopping no later than the age of 13 years 

(Sorsby et al., 1961; Sorsby and Leary, 1970). On the basis of these observations, it is 

considered that emmetropisation can be broadly split into two distinct phases: a rapid infantile 

phase and a slow juvenile phase. 

 

The initial, rapid infantile phase of emmetropisation, is defined as the period from birth up to 3 

years of age (Sorsby and Leary (1970) where the components of the eye need to make 

significant adjustments to keep pace with axial elongation. During the first 12 months of life, 

the power of the eye drops markedly from 90 Dioptres (D) at birth to 75 D (Wood et al., 1996). 

The Gaussian distribution of refractive error observed at 3 months becomes leptokurtic by 9 

months of age (Mutti et al., 2005).  
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Neonates present with a wide refractive range, which decreases within the first year of life due 

to changes to CC (Inagaki, 1986; Mutti et al., 2005), AL (Fledelius and Christensen, 1996; 

Mutti et al., 2005; Fledelius et al., 2014), and crystalline lens power (Gordon and Donzis, 1985; 

Mutti et al., 2005). The reduction in hyperopia that occurs between the ages of 3 months and 

around 3 years of age is greater than which can be attributed to a passive process of 

emmetropisation, that is to say, through normal eye growth; therefore, an active feedback 

process to modulate axial growth must also play a part (Flitcroft, 2014).  

 

The slower juvenile phase of emmetropisation is considered to take place from the age of 3 

years up to the beginning of the teenage years. Between 3 and 6 years of age, 

emmetropisation continues but at a slower pace and the distribution remains leptokurtic but 

positively skewed at this stage of life (Flitcroft, 2014). After the age of 6 years, refraction starts 

to display divergence based upon geographical location. For instance, in Australia the 

distribution becomes more leptokurtic due to low levels of myopia and hyperopia (French et 

al., 2012) whereas in most populations, especially in the East, leptokurtosis reduces and the 

distribution becomes negatively skewed due to a higher prevalence of myopia (French et al., 

2012; Watanabe et al., 1999). In the Far East, and other parts of the world, including the UK 

(Logan et al., 2011; McCullough et al., 2016), myopia may present as early as 6 years of age 

(Matsumara and Hirai, 1999; Lin et al., 2004).  

 

1.2.3 Ocular structure changes during emmetropisation 

 

1.2.3.1 Cornea 

There is a rapid change in corneal power during the first 2 to 4 weeks of life with a reduction 

of 3 D reported, followed by a slowing of this trend after 8 weeks as measured using an adapted 

automated keratometer (Inagaki, 1986). Nevertheless, keratophakometry shows that the 

power of the cornea continues to reduce between the ages of 3 and 9 months, by 

approximately 1 D (Mutti et al., 2005). Despite this rapid pace of change in early life, which 
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sees average corneal power reduce from 47 to 48 D at infancy to 43 to 44 D by 9 months of 

age, it remains largely stable throughout childhood with little reduction in power seen thereafter 

(Zadnik et al., 2003; Mutti et al., 2005; Jones et al., 2005). 

 

1.2.3.2 ACD  

Assessment using A-scan ultrasonography has shown that ACD increases by 0.26 mm 

between 3 and 9 months of age (Mutti et al., 2005). The rapid growth phase sees ACD 

increasing by 0.9 to 1 mm from birth to 18 months of age, followed by modest growth of 0.3 to 

0.4 mm by age 7 years (Larsen, 1971a). From here, there is a slow phase, with growth of less 

than 0.1 mm between 8 and 13 years of age (Larsen, 1971a; Zadnik et al., 2003). 

 

1.2.3.3 Lens 

Normal development of the crystalline lens throughout childhood, as measured using A-sacn 

ultrasonography, is characterised by thinning, flattening and a decrease in power in order to 

achieve emmetropia by maintaining a balance with increasing AL (Mutti et al., 2012). A thinning 

of the crystalline lens occurs between 3 and 9 months of age with a flattening of both the 

anterior and posterior radii along with a small increase in equivalent refractive index leading to 

a net decrease in lens power of just over 3.5 D (Mutti et al., 2005). This decrease in crystalline 

lens power is around 3 times greater than the reduction in corneal power over this period. The 

mean thickness of the crystalline lens appears to decrease by approximately 0.3 mm during 

the first year of life and then by around 0.2 mm by the age of 8 to 10 years, whereupon this 

flattening process appears to stop or slow almost to the point of stopping (Larsen, 1971b). 

 

Between the ages of 6 and 14 years, ultrasound (Larsen, 1971b;) and videophakometry 

(Zadnik et al., 2003) show that thinning and flattening of the crystalline lens continues. Overall, 

the flattening of radii of curvature of the crystalline lens contributes towards an overall loss in 

equivalent power of about 18 to 19 D by 14 years of age. The curvature changes are 

accompanied by a decrease in equivalent refractive index from 1.45 in early infancy to about 
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1.42 by 10 years of age; this decrease in refractive index is responsible for almost half of the 

reduction in equivalent crystalline lens power (Mutti et al., 2005; Jones et al., 2005).  

 

1.2.3.4 AL 

A-scan ultrasonography demonstrates a rapid growth phase to AL in early life (Mutti et al., 

2005) with an increase of 3.7 to 3.8 mm from birth to 18 months, followed by 1.1 to 1.2 mm of 

elongation by 5 years of age and finally a further 1.3 to 1.4 mm by the age of 13 years (Larsen, 

1971c). An increase in vitreous chamber depth (VCD) is primarily responsible for this axial 

elongation. From birth to 18 months of age, VCD increases by 3 mm followed by slower growth 

of 1.3 mm up to the age of 7 years and then a further 1.1 mm during the early teenage years 

and beyond (Larsen, 1971d).  

 

1.2.3.5 Summary  

Despite the reduction in corneal and crystalline lens power during infancy, these adjustments 

do not correlate with the change in refractive error. However, AL changes are correlated with 

refractive error reduction with increases in axial elongation aligned to a decrease in hyperopia. 

In other words, the modulation of axial growth with respect to the initial level of refractive error 

appears to be more influential in the emmetropisation process than changes to other ocular 

components, namely the cornea and crystalline lens. Hence, the guidance of ocular growth 

towards reaching emmetropia appears to be an active rather than a passive mechanism (Mutti 

et al., 2005). 

 

1.2.4 Failures of emmetropisation 

 

1.2.4.1 Background 

The majority of emmetropisation occurs early on in life and is mostly complete by 6 years of 

age (Flitcroft, 2014). If a significant degree of refractive error persists beyond this age, then 

this is due to: an initial refractive error that is too high to be corrected by the emmetropisation 
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process; a failure of the emmetropisation process itself; or a combination of the two. So, 

refractive errors present at the age of 6 years are considered to be primary failures in the 

process of emmetropisation (Flitcroft, 2013). The standard deviation of refractive error is lowest 

at this age as is the proportion of those with significant ametropia. With this in mind, it seems 

that the aetiology of refractive errors is not dominated by a primary failure in emmetropisation 

(Flitcroft, 2014).  

 

At 6 years of age, the distribution of refractive error is positively skewed demonstrating the 

different courses of myopia and hyperopia. In other words, hyperopia is predominantly due to 

a primary failure of emmetropisation whereas the onset of myopia typically occurs beyond the 

age of 6 years in those who have successfully achieved emmetropia earlier on in childhood 

and is considered to be a secondary failure of emmetropisation (Flitcroft, 2014). 

 

1.2.4.2 Hyperopia 

The eye appears to be able to direct its growth in response to the underlying level of ametropia, 

guided by feedback from visual input (Saunders et al., 1995; Mutti et al., 2005). The extent of 

exposure to hyperopic defocus could provide the visual cue required to allow the eye to detect 

the magnitude of refractive error and increase AL accordingly to reduce its level of hyperopia 

in early childhood (Mutti et al., 2009). Naturally, this exposure to hyperopic defocus in 

hyperopic infants is a function of both the magnitude of refractive error and the accommodative 

response.  

 

The accommodative response in early infancy is variable (Candy and Bharadwaj, 2007) 

although dynamic capability seems to be present at 2 months of age (Tondel and Candy, 

2007). Despite initial immaturities in the accommodative response, infants appear capable of 

maintaining accurate average levels of accommodation across a moderate range of hyperopic 

refractive errors as early as 3 months of age (Mutti et al., 2009) reaching adults levels as soon 

as 5 months of age (Brookman, 1983; Sokol et al., 1983). The variability in infant 
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accommodation and resultant hyperopic defocus signals may form the basis for 

emmetropisation. It follows, that if an infant is exposed to a higher level of hyperopic defocus 

then it may be expected that a greater refractive change would occur during emmetropisation 

(Mutti et al., 2009). However, the evidence shows that infants with high levels of hyperopia are 

less likely to achieve an emmetropisation outcome by 18 months of age (Mutti et al., 2009). 

The findings by Mutti et al., 2009 show that deficiencies in emmetropisation at higher levels of 

hyperopia are related to poorer accommodation and higher levels of defocus; this is contrary 

to the expectation that emmetropisation would be more likely in the presence of greater levels 

of hyperopic defocus exposure. Although the pace of growth is related to the initial level of 

refractive error (Mutti et al., 2005), the likelihood of emmetropisation reduces if the magnitude 

exceeds its operating range (see Figure 1.1). Others have found that during infancy, 

emmetropisation occurs more rapidly in those with ‘high’ refractive errors, although these 

measures were obtained without cycloplegia and limited to an upper range of +4.25 D 

(Saunders et al., 1995). 

 

 
Figure 1.1 The probability of reaching +2.00 D by 18 months of age as a function of cycloplegic 
refractive error at 3 months of age. Adapted from Mutti et al., 2009 
 

Evidence that similar amounts of defocus exists across moderate levels of hyperopia does not 

point to a simple model of emmetropisation that is guided by hyperopic defocus (Mutti et al., 

2009). It has been postulated that other emmetropisation models driven by defocus may be at 

play. For instance, the possibility that a consistent level of defocus above a particular threshold 
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may trigger a rapid growth phase that reduces hyperopia (Mutti et al., 2009). This fast phase 

of growth may then switch to a slower growth phase once emmetropia is achieved and defocus 

falls below the threshold level. In this model, the duration of rapid growth would be dictated by 

the magnitude of the initial refractive error and limited by a ‘stop’ signal such as the presence 

of minimal distance defocus (Norton et al., 2006). Another possible model for emmetropisation 

is that the rate of axial growth is related to the level of accommodative effort. In this scenario, 

the level of hyperopia could be the driver for a dose-dependent signal for emmetropisation by 

providing the stimulus to accommodation rather than through defocus. This latter model is 

supported by the fact that similar levels of defocus are present across a modest range of 

refractive errors where emmetropisation occurs indicating that an accurate accommodative 

response is a factor in this success (Mutti et al., 2009). Further, the failure of emmetropisation 

at higher levels of hyperopia may be the result of a lack of effort to accommodate to 

compensate for the refractive error as seen in animal work (Smith and Hung, 1999). 

 

The probability of emmetropisation during infancy also appears to be linked to the level of 

visual acuity (VA) (Mutti et al., 2009). Emmetropisation in hyperopic infants is more likely if VA 

is above a certain level whereas poorer or unmeasurable vision seems to impair this process 

(see Figure 1.2). Of course, acuity is also linked to the underlying level of refractive error. 

 

 
Figure 1.2 The probability of reaching +2.00 D by 18 months of age as a function of the level 
of visual acuity group and Mohindra retinoscopy results at 3 months of age. Adapted from Mutti 
et al., 2009 
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1.2.4.3 Myopia 

While the process of emmetropisation does not appear to have altered in recent decades, the 

distribution of refractive error in adults has changed dramatically due to an increase in myopia 

prevalence and its geographical variation over time (Flitcroft, 2014). The typical onset of 

myopia beyond the age of 6 years arises after several years of relatively stable refraction 

(Thorn et al., 2004). The initial phase of myopia progression adopts a linear path (Goss and 

Winkler, 1983) before slowing, although continuing to increase, throughout childhood and well 

into adulthood (Dirani et al., 2008). It is clear that increasing AL is the primary driver of myopia 

progression (Chung et al., 2002; Gwiazda et al., 2003; Chua et al., 2006). 

 

Despite extensive literature in the field, the triggers for the accelerated phase of myopia 

progression at onset and the mechanisms for the slowing of this process are still not fully 

understood (Flitcroft, 2014). 

 

1.2.4.4 Anisometropia 

Stochastic factors also appear to play a part in the aetiology of refractive errors as inferred by 

the existence of anisometropia. In anisometropes, despite sharing the same genome and 

environmental exposure, each eye emerges with a different refractive error. Anisometropia can 

be present early on in life with subsequent ocular development complicated by amblyopia 

(Flitcroft, 2014; Flitcroft et al., 2020). However, anisometropia often develops later, in both 

hyperopes and myopes (Abrahamsson et al., 1990, Deng and Gwiazda, 2012). Anisometropia 

is also linked to the magnitude of the refractive error, that is to say, higher levels of myopia, 

hyperopia, and astigmatism, are associated with an increasing frequency of anisometropia 

(Qin et al., 2005; Deng and Gwiazda, 2012). So, it seems that the regulated pattern of growth 

at around the age of 6 years exhibits increasing variability between individuals and between 

the two eyes of a single subject (Flitcroft, 2014). 
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The relationship between amblyopia and emmetropisation is still not clearly understood 

(Flitcroft, 2014). It has been shown in monkeys that induced amblyopia leads to hyperopia in 

the amblyopic eye (Kiorpes and Wallman, 1995) and that the development of amblyopia leads 

to a failure in compensatory growth to imposed defocus (Smith et al., 1999). The situation is 

less clear cut in humans, although some studies suggest that anisometropia may be a 

consequence of amblyopia as much as a cause (Lepard, 1975; Nastri et al., 1984). It has also 

been demonstrated that patterns of vitreous chamber growth are different between an 

amblyopic eye and its fellow eye (Burtolo et al., 2002). 

 

1.2.4.5 Summary 

The model of human emmetropisation in early life is in keeping with an optically guided model 

as predicted by animal work (Flitcroft, 2014). Rates of emmetropisation appear to be correlated 

with the magnitude of the initial refractive error, at least up to a moderate range (Saunders et 

al., 1995). Hyperopes with higher levels of refractive error appear to fall victim to a primary 

failure of emmetropisation, while later in childhood, secondary failures of emmetropisation are 

characterised by a rapid refractive acceleration in the direction of myopia.  

 

1.3 Childhood refractive error 

 

1.3.1 Prevalence 

The distribution of refractive error has changed in recent decades and continues to do so as a 

result of an alarming increase in the worldwide prevalence of myopia, which is already at 

epidemic levels in some countries (Holden et al., 2016; Sankaridurg et al., 2021). By 2050, it 

is estimated that around half of the population will be myopic with ~ 10% having levels of 5.00 

D or more (Holden et al., 2016). Despite the broad myopic shift in refractive error, there still 

represents a significant burden that results from other types of ametropia, namely hyperopia 

(Kleinstein et al., 2003; Logan et al., 2011; McCullough et al., 2016) and anisometropia (Deng 

and Gwiazda, 2012; O’Donoghue et al., 2013). 
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1.3.1.1 Hyperopia and myopia 

Given the geographical variance in the prevalence of myopia, location-specific differences in 

hyperopia also exist (Hashemi et al., 2018). While different cut off points are used in the 

literature to define hyperopia, the typical criterion is a post-cycloplegic mean spherical 

equivalent (MSE) refractive error of ≥ +2.00 D and ≥ +0.50 D for non-cycloplegic refraction 

(Hashemi et al., 2018). A meta-analysis of 45 studies identified an overall estimate of post-

cycloplegic childhood hyperopia prevalence of 4.6%, where under 20 years of age was used 

to define ‘children’. A breakdown of hyperopia prevalence by WHO region cited in the review 

is summarised in Table 1.1 (Hashemi et al., 2018).  

 

WHO region Estimated hyperopia prevalence (%) 
(95% CI) 

Africa 3.0 (1.8-4.3) 

Americas 14.3 (13.4-15.2) 

Southeast Asia 2.2 (1.2-3.3) 

Europe 9.0 (4.3-13.7) 

Eastern Mediterranean 6.8 (4.9-8.6) 

Western Pacific 3.1 (1.9-4.3) 

All 4.6 (3.9-5.2) 

Table 1.1 Estimates of hyperopia (post-cycloplegic MSE of ≥ +2.00 D) prevalence by World 
Health Organization (WHO) region (95% confidence intervals (CI)). Adapted from Hashemi et 
al., 2018 

 

A UK study in 2005 showed that the prevalence of (non-cycloplegic) hyperopia in an 

undergraduate university cohort was similar between the two predominant ethnic groups at 

18.8% and 17.3% for white and British Asian participants, respectively (Logan et al., 2005). In 

the same study, levels of myopia at that time were cited as 50% for white participants and 

53.4% for British Asians. The literature shows from studies in children that the distribution of 
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refractive errors in the UK is changing (Logan et al., 2011; McCullough et al., 2016), while at 

the same time demonstrating ethnic differences (Logan et al., 2011).  

The Aston Eye Study revealed that the overall prevalence of hyperopia (mean post-cycloplegic 

MSE ≥ +2.00 D in either/both eyes) in a mixed ethnic cohort was 12.3% for children aged 6 to 

7 years versus 5.4% for those aged 12 to 13 years (Logan et al., 2011). In white European 

children, the hyperopia prevalence was 22.9% at 6 to 7 years compared to 10.3% in South 

Asian children. At 12 to 13 years, the rates of hyperopia decreased to 10.4% versus 2.6% in 

white European and South Asian children, respectively. In contrast, the prevalence of myopia 

(mean post-cycloplegic MSE ≤ -0.50 D in either/both eyes) was 9.4% for those aged 6 to 7 

years compared to 29.4% for those aged 12 to 13 years. In the older group, the prevalence of 

myopia was 36.8% for South Asian children compared to 18.6% for white Europeans.  

 

The Northern Ireland Childhood Errors of Refraction (NICER) study reports longitudinal 

refractive data for white UK children over a 6-year period for 2 cohorts aged 6 to 7 years and 

12 to 13 years at baseline (McCullough et al., 2016). For the younger participants, the 

prevalence of hyperopia (mean post-cycloplegic MSE ≥ +2.00 D) at baseline was 21.7% 

(21.0% in males; 22.4% in females) and decreased to 14.2% (13.3% in males; 15.0% in 

females) after 6 years. In the older age group, the proportion of hyperopes at baseline was 

15.0% (17.4% in males; 13.3% in females) and 17.7% (19.4% in males; 16.4% in females) at 

the 6-year timepoint. The average annual rate of change in MSE refractive error was -0.09 D 

and +0.02 D in the younger and older participants, respectively. The proportion of myopes 

(mean post-cycloplegic MSE ≤ -0.50 D) at baseline in the younger group was 1.9%, rising to 

14.6% over the course of the 6-year study. In the older participants, myopia prevalence was 

16.4% at baseline and 18.6% after 6 years. There were no significant differences between 

gender in the annual rate of MSE refractive change for myopes in either age group.   
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Intriguingly, comparison of data from the NICER study with children in Australia shows 

differences in rates of hyperopia and myopia at two timepoints in childhood (French et al., 

2012). In 6- to 7-year-old children in Sydney, rates of hyperopia were lower in children in 

Sydney (12.0%) than children in Northern Ireland (22.3%). Similarly, the prevalence at age 12 

to 13 years was also lower in the Australian cohort compared to Northern Ireland at 4.4% and 

11.8%, respectively, although the MSE refractive error was higher at +0.83 D in Australian 

children compared to +0.66 D in the UK-based cohort. 

 

Elsewhere in the world, findings from the Collaborative Longitudinal Evaluation of Ethnicity and 

Refractive Error (CLEERE) study (Kleinstein et al., 2003) in the US, mirrors the higher rates of 

myopia seen in UK-based Asian children compared to those from other ethnic backgrounds. 

Overall rates of myopia were 9.2%, but specifically, the data showed that in children aged 5 to 

17 years, Asians had the highest prevalence of myopia (18.5%) followed by Hispanics (13.2%), 

while children of European ancestry had the lowest prevalence (4.4%), which was similar to 

African Americans (6.6%). Data for hyperopes (mean post-cycloplegic refraction in each 

principal meridian ≥ +1.25 D) from the same study showed an overall prevalence of 12.8% 

with highest rates seen in whites (19.3%), followed by Hispanics (12.7%), African Americans 

(6.4%) and Asians (6.3%). 

 

1.3.1.2 Anisometropia  

During the first year of life, the prevalence of anisometropia decreases (Wood et al., 1995; 

Mayer et al., 2001) but remains relatively stable throughout early (Abrahamsson et al., 1990; 

Borchert et al., 2010; de Vries, 1985) and late childhood (de Vries, 1985; Dobson et al., 2008), 

although higher rates are associated with childhood hyperopia (Deng and Gwiazda, 2012) and 

myopia (Tong et al., 2006; Deng and Gwiazda, 2012). The stable rates of anisometropia are 

maintained as a consequence of as many children losing as those developing this refractive 

status (Abrahamsson and Sjöstrand, 1996). 
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Although there does not appear to be a standard definition of anisometropia, an interocular 

MSE difference of ≥ 1.00 D appears to be a common criterion (Qin et al., 2005; Huynh et al., 

2006; Dobson et al., 2008; O’Donoghue et al., 2013). Others highlight that in strict terms, any 

difference in interocular refractive error could be classified as anisometropia but as a result of 

test-retest variability in measurement, a difference of ≥ 0.75 D should be reserved for a 

clinically significant definition (Barrett et al., 2013). 

 

Insight from the NICER study provides useful data on the prevalence of anisometropia at 2 

key timepoints during childhood (O’Donoghue et al., 2013). At age 6 to 7 years, the proportion 

of anisometropes (post-cycloplegic MSE ≥ 1.00 D) among white children in the UK was 8.5% 

and similar to levels in the 12 to 13 age group at 9.4%. In the older children, the results also 

highlighted that anisometropia is more common in those with moderate hyperopia (8 times the 

odds compared to myopia), but it remains unclear if this relationship is causal. In those with 

low levels of hyperopia, the odds of anisometropia was 80% lower than children with myopia. 

In the younger age group, there was no difference in the prevalence of anisometropia across 

refractive groups. 

 

The prevalence of anisometropia elsewhere in the world varies by location (O’Donoghue et al., 

2013). For instance, in Australia the prevalence is reported as 1.6% in 6-year-old children 

(Huynh et al., 2006), 6.7% in 4- to 13-year-old American Indians (Dobson et al., 2008) and 

9.9% in 7- to 18-year-old Taiwanese children (Shih et al., 2005). 

 

1.3.2 The burden of refractive error  

Concerns over the spiraling rates of myopia around the world are not centred on the 

inconvenience of refractive error but due to its association with a range of ocular comorbidities 

including glaucoma, cataract, myopic maculopathy and retinal detachment (Flitcroft, 2012). 

Nevertheless, myopia is not the only refractive error type that carries a burden of ocular 

disease and visual impairment. Indeed, both hyperopia and anisometropia have visual 
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implications in the early stages of life and elevated risk of ocular disease more latterly (Flitcroft, 

2012). 

 

1.3.2.1 Clinical implications of hyperopia 

While hyperopia appears to have a protective effect for certain types of cataract (Lim et al., 

1999), having a short AL, the predominant feature in hyperopia (Strang et al., 1998), 

predisposes the individual to other ocular conditions. 

 

Clinicians are alert to the fact that hyperopia carries a risk of angle closure glaucoma (Lowe, 

1970; Xu et al., 2008). It is also postulated that the link between hyperopia and angle closure 

glaucoma is greater for Caucasians than those of Asian origin (Congdon et al., 1997). Further, 

it has been shown that AL itself, rather than just a shallow anterior chamber, is important in 

terms of angle closure risk with an odds ratio of 2.04 per mm reduction in the length of the eye 

(Casson et al., 2009). Despite the association between AL, refractive error itself does not 

appear to be correlated with risk of angle closure (Casson et al., 2009; Senthil et al., 2010). 

 

Hyperopes also appear to be prone to certain retinal conditions (Flitcroft, 2012). For instance, 

eyes with a shorter AL and VCD appear to be anatomically predisposed to both central and 

branch retinal vein occlusion (Szigeti et al., 2015) although findings appear equivocal (Bandello 

et al., 1998; Kir et al., 1998). Nevertheless, the more recent work in this area by Szigeti et al., 

2015 utilised more accurate imaging techniques whereas the outcomes from earlier studies 

may be obscured by the resolution limitations of applanation ultrasound. Refractive error and 

AL also seem to have an association with the risk of diabetic retinopathy when considering a 

broad population-based sample from hyperopia to high myopia (Lim et al., 2010). In particular, 

myopic eyes appear less likely to have diabetic retinopathy, particularly at more severe stages 

of the disease. In terms of AMD, a meta-analysis showed that in comparison to emmetropes, 

hyperopes had a 13% higher risk of early disease whereas myopes had a 25% lower risk. 

Furthermore, each mm increase in AL was associated with a 21% reduction in odds and per-



I.G.Beasley, PhD Thesis, Aston University 2021 
 

37 

dioptre move towards hyperopia was linked to a 10% increase in early AMD prevalence (Li et 

al., 2014). In addition to the predisposition to retinal disease, hyperopes also present a greater 

surgical challenge for routine procedures such as cataract extraction due to the typical shallow 

nature of the anterior chamber in these patients (Gogate and Wood, 2008). In these eyes, it is 

more difficult for the surgeon to perform intraocular manipulations and introduce instruments 

in and out of the eye, which increases the risk of iatrogenic complications. 

 

Of course, outside of its association with the range of ocular comorbidities above, hyperopia 

is a well-recognised risk factor for the development of amblyopia and strabismus, particularly 

at moderate to high levels (Ingram, 1977; Ip et al., 2008; Klimek et al., 2004; Kulp et al., 2014). 

The literature shows that for post-cycloplegic refractive error >+3.25 D, the proportion of 3- to 

5-year-old children with amblyopia was 34.5% versus 2.8% in those ‘without’ hyperopia 

(defined as +3.25 D or less in the most positive meridian). Using the same criteria, strabismus 

was present in 17.7% of children with hyperopia >+3.25 D compared to just 2.2% in those with 

a refractive error below this threshold (Kulp et al., 2014). For those with +5.00 D of hyperopia 

or more, levels of amblyopia reached 51.5% compared to 13.2% in children with ametropia 

between +3.50 D and +4.75 D. Similarly, a greater proportion of strabismus was seen in the 

higher refractive group (32.9%) than at moderate levels of hyperopia (8.4%) (Kulp et al., 2014). 

Others have outlined the association between hyperopia and esotropia in children aged 6 

months to 6 years (Cotter et al., 2011; Tarczy-Hornoch et al., 2011). Compared with refractive 

errors between plano and +0.75 D, the odds ratios for esotropia are 23 for hyperopia between 

+3.00 D and +3.75 D, 59.8 for +4.00 D to +4.75 D and 122 for +5.00 D or more (Cotter et al., 

2011), which places these children at lifelong risk of unilateral and bilateral reduction in VA 

(Tarczy-Hornoch et al., 2011). Even in the absence of strabismus and amblyopia, impaired 

visual function at both distance and near is associated with increasing levels of hyperopia in 

pre-school children (Ciner et al., 2021). Furthermore, deficits in measures of attention, visual-

motor integration and visual perception are associated with moderate levels (3 D to 6 D) of 

uncorrected hyperopia in young children (Kulp et al., 2017). 
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1.3.2.2 Clinical implications of anisometropia 

While most refractive errors in humans are classified as isoametropic, a minority present with 

significant interocular differences, which can be deleterious to visual development (Barrett et 

al., 2013; O’Donoghue et al., 2013; Flitcroft et al., 2020). Anisometropia occurs despite both 

eyes being exposed to similar environmental influences throughout visual development. 

Anisometropia and amblyopia are often discovered at the same timepoint through vision 

screening programmes but it is widely proposed that the former is a precursor and the cause 

of the latter (Barrett et al., 2013). As anisometropia and amblyopia can exist without obvious 

signs and symptoms, these children typically p establish whether axial eye growth and 

refractive error could be modified in an isohyperopic cohort by imposing relative hyperopic 

defocus using MF CLs.resent to clinic some 3 years later than those with strabismus (Ingram, 

1977; Shaw et al., 1988; Woodruff et al., 1994)  

 

Most studies concur that anisometropia exists in around half of all cases of amblyopia in a 

human population (Robaei et al., 2006; Friedman et al., 2009; Chia et al., 2010; Pai et al., 

2012). A series of studies have highlighted that a greater proportion of anisometropic 

amblyopes are anisohyperopes than anisomyopes (Tanlamai and Goss, 1979; Rutstein and 

Corliss, 1999).  

 

Data from the NICER study reveals that significant differences in VA arise as a consequence 

of anisometropia with interocular differences in the logarithm of the minimum angle of 

resolution (LogMAR) acuity of 0.15 for 6- to 7-year-old children and 0.14 at 12 to 13 years of 

age; this compares to 0.04 and 0.03 for isometropes in the younger and older age groups, 

respectively (O’Donoghue et al., 2013). One study reported that the chance of finding a 

difference in VA of 2 lines or more was 4.5 times higher in those with 1 D to <2 D of 

anisometropia compared to children with 0 to <1 D of interocular refractive difference (Tarczy-

Hornoch et al., 2011). The same authors highlighted a strong linear relationship between the 

magnitude of anisometropia and prevalence of reduced VA. 
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Anisometropia coexists with strabismus in around 10% of cases (Friedman et al., 2009); some 

cite figures of 19% (Robaei et al., 2006) while others report a link in as many as 28% of cases 

(Flom and Neumaier, 1966; Flom and Bedell, 1985). Data from the NICER study characterised 

a cohort of 6- to 7-year-old anisometropes by prevalence of binocular vision status as follows: 

92.8% orthophoria; 2.1% esotropia; 1.0% exotropia; and 4.1% heterophoria. In 12- to 13-year-

old children, the prevalence rates were similar at 92.2% orthophoria; 2.4% esotropia; 0.8% 

exotropia; and 4.1% heterophoria (O’Donoghue et al., 2013).  

 

A recent study suggests that even small levels of anisometropia can be a marker for impaired 

regulation of eye growth and subsequent emmetropisation (Flitcroft et al., 2020). Data taken 

from the NICER study for non-amblyopic 6- to 7-year-old children revealed that 71% were 

isometropes with a MSE interocular difference in refraction of <0.50 D. For those categorised 

as anisometropes, 29% had a MSE difference of ≥0.50 D, with 6.9% exhibiting an interocular 

difference of ≥1.00 D and 2.5% with ≥1.50 D. Intriguingly, the refractive error profiles varied 

between the two groups with the isometropes showing a close to Gaussian distribution 

whereas anisometropes did not display a normal distribution with a positive skew due to the 

influence of more hyperopes in this group. Further, among anisometropes, refraction was 

significantly correlated with CC which was not the case in isometropes. The poor correlation 

between refraction and CC seen in older children is a marker for emmetropisation; this is due 

to the fact that CC does not change greatly beyond 2 years of age and as a result achieving 

emmetropia relies upon the regulation of AL growth to match the optics of the eye. As such, 

these changes result in a poor correlation between refraction and CC but a strong correlation 

between corneal radius and AL (Flitcroft et al., 2020). 

 

1.3.3 Management of hyperopia 

While myopes have a growing armamentarium of options to not only correct, but also to 

influence, or ‘treat’, progression of refractive error, hyperopes are not afforded an equivalent 
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range of options. Indeed, the management of iso- and anisohyperopic refractive error is 

typically confined to correction with standard optical appliances, namely spectacles and 

contact lenses (CLs).  

 

The approach to managing hyperopia, that is to say, the magnitude of correction provided 

relative to the manifest refractive error, or whether a correction should be given at all, is open 

to conjecture (Mutti, 2007; Cotter, 2007) with scant evidence from randomised studies in 

humans (Cotter, 2007; Leat, 2011). Correcting hyperopia ≥4.5 D has been suggested due to 

the increased risk of amblyopia and strabismus at this level of refractive error (Klimek et al., 

2004). However, some advocate that outside of those with strabismus/amblyopia risk, 

correcting hyperopia with spectacles may interfere with the emmetropisation process and 

result in persistence of refractive error (Donahue, 2007); the counter view suggests that 

correction of the refractive error improves VA and accommodative accuracy and that an optical 

appliance is unlikely to impede the rapid emmetropisation process that occurs early on in life 

(Mutti, 2007; Cotter, 2007). Adding to the debate, some report that consistently correcting 

hyperopia up to the age of about 3 and a half years impedes emmetropisation (Ingram et al., 

2000); others have shown that by the age of 3 years, there is no difference between those 

partially corrected or not (Atkinson et al., 2000; Atkinson et al., 2007). Unsurprisingly, the 

likelihood of achieving emmetropisation decreases in those with a higher level of hyperopia 

(Mutti et al., 2009). In hyperopic children under the age of 12 years, it has been shown that 

undercorrection of hyperopia results in a more rapid reduction in refractive error than those 

with full correction (Yang et al., 2014). A recent review considered the effect of prescribing 

spectacles compared to no intervention for preventing strabismus in infants and children with 

hyperopia (Jones-Jordan et al., 2020). The review concluded that the effect of spectacle 

correction for prevention of strabismus remains unclear. 

 

The summary of guidelines from the Royal College of Ophthalmologists for the management 

of amblyopia recommends that ‘significant refractive errors should be corrected’. The guidance 
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also outlines that consideration should be given to prescribing for degrees of refractive error 

which have the potential to induce amblyopia even in the presence of normal VA, specifically 

≥4.50 of isohyperopia (Royal College of Ophthalmologists, 2006). 

   

Conflicting evidence in the management of hyperopia presents a dilemma for the clinician. 

Nevertheless, age-dependent guidance on the level of refractive error to correct is available 

(Leat et al., 2011). Furthermore, it is argued that as uncorrected hyperopia in childhood has a 

negative impact on VA and accommodative accuracy, the reluctance by some to correct 

hyperopia is unwarranted; this is especially when taking into account that as the course of 

emmetropisation is largely complete early on in life, the immediate benefits of visual correction 

may outweigh any concerns regarding interference with this process (Mutti, 2007). 

 

For anisohyperopia specifically, while the mainstay of management is typically refractive 

correction with spectacles, the benefits of CLs should not be overlooked in these individuals. 

Using CLs to correct anisohyperopia reduces aniseikonia compared with spectacle lenses and, 

therefore, maximises the potential for normal binocular vision (Winn et al., 1986; Romano and 

von Noorden, 1999); this is the case for both refractive and axial anisometropes (Winn et al., 

1988). Further, CLs to correct high levels of anisometropia in children can deliver 

improvements in VA even after standard amblyopia treatment with spectacles and occlusion 

therapy has been tried (Roberts and Adams, 2002). 

 

In general, the level of refractive correction for anisohyperopes should aim to fully address any 

imbalance between the two eyes although, in the absence of accommodative strabismus, a 

symmetric reduction of up to 1.50 D in spherical correction may be applied (Pediatric Eye 

Disease Investigator Group, 2002; Repka et al., 2003; Holmes et al., 2003). The Royal College 

of Ophthalmologists’ guidance suggests that due to the risk of amblyopia, ≥1.50 D of 

anisohyperopia should be considered for correction (Royal College of Ophthalmologists, 

2006). 
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1.4 Experimental models of refractive error modulation 

 

1.4.1 Background 

Much of the evidence about the theories of emmetropisation and refractive error has developed 

from animal models (Trolio et al., 2019; Chakraborty et al., 2020). This body of research spans 

several decades and explores the optical, environmental and biochemical mechanisms in 

animal models, which has furthered our understanding of the factors that influence eye growth 

in humans. We know from this extensive work in animals, that visual experience plays a crucial 

role in guiding ocular growth along a path either towards emmetropisation or refractive error. 

An overview of the key optical aspects of this work is provided below. 

 

1.4.2 Form deprivation  

Experimental models of form deprivation were first described in the seventies where the lids 

of neonatal monkeys were sutured, which resulted in enlargement of the globe and 

development of myopia (Wiesel and Raviola, 1977). This work was quickly followed by other 

form-deprivation experiments using lid suturing method in other species, including tree shrews 

(Sherman et al., 1977), cats (Wilson and Sherman, 1977) and chicks (Wallman et al., 1978). 

Other methods of imposing form deprivation outlined in the literature include opacifying the 

cornea in newborn macaque monkeys (Wiesel and Raviola, 1979), use of translucent diffusers 

(Smith, 1998; Smith and Hung, 1999), glue (Wallman et al., 1978) and Velcro (Howlett and 

McFadden, 2006; Ashby et al., 2009). Regardless of the method of depriving form, the 

outcomes from these studies have shown consistently that a sharp retinal image at high 

contrast is required to permit normal eye growth, otherwise axial myopia will result 

(Chakraborty et al., 2020). Form-deprivation myopia is described as an ‘open-loop’ condition 

where an absence of visual feedback and a defined refractive endpoint results in an abnormal 

growth rate of the eye. The magnitude of refractive error, resulting mainly from elongation of 

the vitreous chamber (Gottlieb et al., 1987; Wallman et al., 1995; Wildsoet and Wallman, 1995; 

Troilo et al., 2000; Howlett and McFadden, 2006), varies among species. For instance, in 
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primates, depriving form for 17 weeks results in 5-6 D of myopia (Smith et al., 1994; Smith et 

al., 2002), whereas in chicks the rate is much faster with up to 17 D of myopia developing after 

just 10 days under these conditions (Wallman et al., 1995). Despite these varied growth rates 

between different species, the results unequivocally point towards a common mechanism of 

ocular growth (Chakraborty et al., 2020). 

 

Importantly, the degree of myopia induced by form deprivation is positively correlated to the 

extent of image degradation with even mild disruption to retinal image quality having the 

potential to induce a degree myopia (Siegwart and Norton, 1998; Howlett and McFadden, 

2006). Across a range of animals, the response to form deprivation decreases with age 

(Wallman et al., 1995; Siegwart and Norton, 1998; Smith et al., 1999; Troilo et al., 2000;) 

although a level of plasticity exists even at the end of the initial phase of emmetropisation, at 

least in chicks (Wallman and Adams, 1987; Papastergiou et al., 1998) and monkeys (Smith et 

al., 1999). 

 

Constant exposure to darkness is also sufficient to disrupt normal ocular growth resulting in 

axial elongation, along with corneal flattening in both chicks (Gottlieb et al., 1987; Trolio and 

Wallman, 1991) and monkeys (Guyton et al., 1998). This flattening of the cornea and 

subsequent loss of corneal power in young animals leads to a more hyperopic refraction.  

 

Common to all animals is the recovery from induced myopia upon cessation of form deprivation 

(Wallman and Adams, 1987; Wallman et al., 1995; Wildsoet and Wallman, 1995; Qiao-Grider 

et al., 2004; Howlett and McFadden, 2006), although the rate varies between species, with 

recovery within 2 weeks for chicks (Wallman and Adams, 1987) compared with around 8 days 

for guinea pigs (Howlett and McFadden, 2006) and up to 1366 days for rhesus monkeys (Qiao-

Grider et al., 2004). A rapid deceleration in eye growth occurs once the period of deprivation 

has ended, led chiefly by changes to the vitreous chamber and choroid (Wallman et al., 1995; 

Wildsoet and Wallman, 1995). The recovery response to form deprivation is dependent upon 
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the magnitude of myopia and the age at which the penalisation is ended (Qiao-Grider et al., 

2004). 

 

Intriguingly, visual deprivation in humans, as a result of conditions such as ptosis (O’Leary and 

Millodot, 1979), corneal opacity (Gee and Tabbara, 1988) or cataract (von Noorden and Lewis, 

1987), is also associated with the development of myopia and is presumed to be due to a 

similar mechanism observed in animals. 

 

1.4.3 Lens-induced ametropia 

Animal studies have shown that the eye is able to compensate for imposed defocus. In other 

words, ocular growth of the eye adapts in response to a change in focal plane to decrease or 

eliminate the refractive error; this occurs with both myopic and hyperopic defocus (Schaeffel 

et al., 1988; Trolio et al., 2019). When hyperopic defocus is introduced using negative lenses, 

the eye elongates as the choroid thins which moves the retina backwards resulting in a myopic 

shift. In the case of myopic defocus, imposed with positive lenses, the opposite response 

occurs where the choroid thickens, bringing the retina forward, leading to a hyperopic shift in 

refraction. In both scenarios, the changes are largely due to changes in the vitreous chamber 

(Wildsoet and Wallman, 1995). 

 

Defocus created using lenses is considered to be a ‘closed-loop’ condition, where changes to 

eye growth stop once the imposed refractive error has been compensated for (Morgan et al., 

2013). As with form deprivation, the changes in response to lens-induced ametropia are 

observed across a wide range of species including chicks (Irving et al., 1992; Wallman et al., 

1995; Wildsoet and Wallman, 1995), tree shews (Norton et al., 2006), monkeys (Hung et al., 

1995; Smith and Hung, 1999), marmosets (Graham and Judge, 1999) and mice (Tkatchenko 

et al., 2010). Although the broad response is shared across different species, the range of 

compensatory response varies. For instance, chick eyes are able to compensate for defocus 

extending from -10 to 20 D (Irving et al., 1992), whereas monkeys have a more confined range 
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of -5 to 8 D (Smith and Hung, 1999; Trolio et al., 2009). Interestingly, if the degree of imposed 

defocus falls outside the operating limits of lens compensation then this results in little to no 

change in refractive error (Irving et al., 1995; Smith and Hung, 1999; Tkatchenko et al., 2010). 

As seen in form deprivation work, when the experimental lens is removed, there is a fast 

reversal of choroidal thickness, and consequently, AL, to re-establish normal vision (Wallman 

et al., 1995; Wildsoet and Wallman, 1995). It is noteworthy that, in keeping with animal models, 

imposition of hyperopic and myopic defocus for one to two hours results in bidirectional 

changes in choroidal thickness and AL in young adult humans (Moderiano et al., 2019; 

Chakraborty et al., 2012; Chakraborty et al., 2013). 

 

Naturally, as the visual environment changes over time, so too does the dose, magnitude, 

frequency and sign of defocus. It follows, therefore, that the eye growth response is reliant 

upon the temporal integration of visual input (Trolio et al., 2019; Zhu, 2013). The regulation of 

ocular growth in response to visual signals over time does not appear to follow a linear path. 

For example, work in chicks has shown that exposing the eye to alternating periods of 

hyperopic and myopic defocus over equal blocks of time results in reduced axial growth and 

subsequent development of hyperopia (Zhu et al., 2003; Winawer et al., 2005). Other studies 

in chicks have shown that the response to myopic defocus has greater influence on refractive 

outcome than hyperopic defocus; this implies that different mechanisms may exist to drive the 

ocular response to hyperopic and myopic defocus (Zhu et al., 2005; Zhu, 2013;). The 

frequency and duration of exposure, rather than total time, seems important with regards to 

invoking a response. For instance, multiple periods of brief exposure to defocus across a single 

day leads to a greater response than a single dose over an equivalent time period, at least in 

chicks (Winawer and Wallman, 2002). Time of day in relation to exposure also appears to be 

important, not only in chicks (Nickla et al., 2017), but also humans, with work indicating that 

the eye may be more responsive to a hyperopic defocus, or ‘go’ signal in the morning, and a 

myopic defocus or ‘stop’ signal later in the day (Moderiano et al., 2019). 

 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

46 

Current optical approaches for myopia management in contemporary clinical practice include 

multifocal (MF) CL and orthokeratology (OK), which impose competing hyperopic and myopic 

defocus signals across large parts of the retina simultaneously (Chakraborty et al., 2020). Work 

in guinea pigs reveals that exposure to dual-focus lenses with alternating power zones 

produces a response that is equivalent to the mean of the two powers (McFadden et al., 2014). 

In other species (Tse et al., 2007; Benavente-Pérez et al., 2012a), the response to a dual-

focus stimulus seems to have a greater affinity for the positive component of the lens resulting 

in a hyperopic shift in refraction. 

 

Although form deprivation and hyperopic defocus both lead to axial myopia, the underlying 

mechanisms may be different. This is highlighted in work where blocking the parasympathetic 

innervation to the chick eye inhibits form-deprivation myopia but does not impact upon the 

expected response from lens-induced defocus (Schmid and Wildsoet, 1996). Furthermore, 

undertaking optic nerve section in chicks, which eliminates active accommodation, results in a 

50% greater change in AL driven by form derivation compared to an equivalent level of spatial 

blur imposed by defocus (Choh et al., 2006). 

 

Environmental light levels also appear to impact the response to both form deprivation and 

lens-induced defocus. Rearing chicks in bright light inhibits myopia development from form 

deprivation entirely but only has a modest effect on compensation to hyperopic defocus (Ashby 

and Schaeffel, 2010); a similar outcome is observed in macaques (Smith et al., 2012).  

 

The literature on lens-induced ametropia in animals has provided a firm foundation for the 

development of optical interventions to modulate refractive error in humans, although to date, 

exclusively in the context of myopia (Beasley et al., 2018). 
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1.4.4 Peripheral defocus 

Key findings in chicks have highlighted that eye growth can be guided selectively in areas 

locally subjected to retinal deprivation (Hodos and Kuenzel, 1984; Wallman et al., 1987); a 

similar response has also been shown to exist in monkeys (Smith et al., 2005; Smith et al., 

2009). In addition to form deprivation, a selective retinal response to localised defocus also 

occurs in chicks and non-human primates (Diether and Schaeffel, 1997; Morgan and 

Ambadeniya, 2006; Liu and Wildsoet, 2011; Benavente-Pérez et al., 2014) where hemifield 

exposure to negative and positive defocus results in the local development of myopia and 

hyperopia, respectively (Diether and Schaeffel, 1997; Smith et al., 2010). Peripheral defocus 

also appears to influence eye growth (Liu and Wildsoet, 2011; Benavente-Pérez A et al., 2012; 

Liu and Wildsoet, 2012; Benavente-Pérez et al., 2014). Intriguingly, the response to hyperopic 

peripheral defocus is less than full field exposure, whereas compensation to myopic peripheral 

defocus is the same (Morgan and Ambadeniya, 2006), if not greater (Liu and Wildsoet, 2011; 

Benavente-Pérez et al., 2014), than a full field approach. Animal work has shown that to slow 

eye growth with peripheral myopic defocus, treatment zones need to relatively large (Morgan 

and Ambadeniya, 2006; Liu and Wildsoet, 2011; Benavente-Pérez et al., 2014) compared to 

the smaller zones of peripheral hyperopic defocus that are required to trigger axial elongation 

(Smith et al., 2009; Benavente-Pérez A et al., 2012; Benavente-Pérez et al., 2014;). In 

contrast, some have shown that providing peripheral defocus using lenses with a central hole 

does not appear to impact central refraction in chicks, implying that peripheral defocus does 

not necessarily influence refraction measured centrally (Schippert and Schaeffel, 2006). 

 

Historically, it was thought that high foveal sensitivity was particularly important for detecting 

defocus and subsequent emmetropisation (Chakraborty et al., 2020). However, we now 

understand from work with non-foveated species, such as fish (Shen et al., 2005), or those 

without the ability to process at high spatial resolution (Sherman et al., 1977; Wallman et al., 

1995; Howlett and McFadden, 2006) that foveal input may not be critical. Work with rhesus 

monkeys supports this hypothesis, where despite having undergone foveal ablation, normal 
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emmetropisation was achieved along with compensation for form deprivation (Smith et al., 

2007). Also, it seems that foveal input is not essential for compensation to defocus, as chicks 

(Wildsoet and Schmid, 2000) and monkeys (Smith et al., 2005) are able to recover from 

induced refractions in the absence of a central signal. The fact that the eye responds at a local 

and regional retinal level, rather than being reliant upon a central, neural mechanism, has 

paved the way for refractive modulation approaches in humans.  

 

As peripheral defocus has the ability to influence refraction, it follows that this would be 

expected to be accompanied by corresponding eye growth. In humans, the characteristics of 

peripheral refraction are linked to central refraction. Specifically, myopes have a tendency to 

be relatively hyperopic along the horizontal axis, whereas hyperopes tend to exhibit relative 

peripheral myopia (Millodot, 1981; Mutti et al., 2000). There is conjecture as to whether these 

respective peripheral profiles are the cause or the result of central refractive development 

(Seidemann et al., 2002). We have learnt from work with monkeys that exposure to form 

deprivation leads to relative peripheral hyperopia (RPH) which increases with the magnitude 

of central myopia (Huang et al., 2009). The extent of peripheral refraction asymmetry varies 

with eccentricity in marmosets as does the strength of the relationship between central and 

peripheral refraction (Totonellly et al., 2006; Benavente-Pérez et al., 2012b; Benavente-Pérez 

et al., 2014). In addition to the shift towards relative hyperopia as the eye grows, in marmosets 

it appears that there is a move towards relative peripheral myopia during periods of slower 

growth during emmetropisation (Benavente-Pérez et al., 2016).  

 

The temporal aspects of visually driven eye growth and its interaction with peripheral refraction 

have also been considered in marmosets (Benavente-Pérez et al., 2016). This work has shown 

that baseline measures of peripheral refraction can only predict the compensatory changes to 

negative defocus in combination with central refraction, or once the eyes have started to 

compensate for the imposed status (Benavente-Pérez et al., 2016). The collective evidence in 

this area provides an understanding of the relationship between peripheral refractive 
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asymmetry and the visual experience of the central retina (Benavente-Pérez et al., 2012a; 

Benavente-Pérez et al., 2012b; Benavente-Pérez et al., 2014;). The fact that peripheral 

refraction appears to be both a cause and an effect of eye growth, points towards its role in 

the progression of myopia, and perhaps most significantly, opportunities to develop 

interventions to control it (Chakraborty et al., 2020). 

 

1.4.5 Ocular shape 

Ocular shape in humans varies according to refractive subtype with myopic eyes typically 

having a steeper, or relatively prolate, profile whereas emmetropes and hyperopes have a 

flatter, or oblate, retinal shape (; Atchison et al., 2005; Gilmartin et al., 2005; Charman and 

Radhakrishnan, 2010; Atchison and Charman, 2011; Schmid, 2011; Verkicharla et al., 2012). 

Techniques such as magnetic resonance imaging (MRI) have been used to show the link 

between ocular shape and peripheral refraction with the relatively more prolate myopic eye 

exhibiting RPH (see Figure 1.3). Conversely, the oblate profiles seen in emmetropes and 

hyperopes are associated with a relatively myopic peripheral refraction (Atchison et al., 2005; 

Gilmartin et al., 2005; Charman and Radhakrishnan, 2010; Atchison and Charman, 2011; 

Schmid, 2011; Verkicharla et al., 2012) (see Figure 1.4).  

 
Figure 1.3 Relatively prolate ocular shape in myopia with corresponding retinal image shell, 
indicated by the green dashed line, demonstrating RPH 
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Figure 1.4 Relatively oblate ocular shape in hyperopia with corresponding retinal image shell, 
indicated by the red dashed line, demonstrating relative peripheral myopia  
 

MRI studies in infant rhesus monkeys (Huang et al., 2009; Smith et al., 2013) and marmosets 

(Totonelly and Trolio, 2008) with specific parts of the visual field targeted by form deprivation 

or defocus reveal that changes in peripheral refraction correspond to vitreous chamber shape 

changes. A limited number of human studies have explored peripheral refraction and retinal 

shape in combination and where these have been undertaken, the emphasis has been in 

relation to myopia. It has been shown, using partial coherence interferometry (PCI), that 

peripheral refraction, peripheral AL and retinal profile are affected by race, meridian and 

refraction (Verkicharla et al., 2016; Verkicharla et al., 2017). East Asians have a more prolate 

retinal shape and exhibit a greater degree of RPH than Caucasians with a steeper profile along 

the horizontal meridian compared to the vertical meridian.  

 

Although many contemporary clinical approaches to arrest myopia progression centre on 

manipulation of peripheral hyperopic defocus, the role of retinal shape in the pathogenesis of 

myopia is yet to be fully established (Chakraborty et al., 2020). Indeed, there is evidence 

among both Caucasian and Chinese cohorts which show that peripheral hyperopic defocus 

may not predict the development, nor the progression of myopia (Sng et al., 2011a; Sng et al., 

2011b; Mutti et al., 2011; Lee and Cho, 2013; Atchison et al., 2015; Atchison and Rosén, 2016; 

Rotolo et al., 2017; Mutti et al., 2019). The findings from this body of work highlight that the 

interaction between peripheral refraction and myopia is far from straightforward and that a 

number of optical factors are at play. Nevertheless, as retinal shape is related to peripheral 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

51 

defocus it may play an important role in driving the development and progression of myopia in 

humans.  

 

1.4.6 Accommodation 

Given that accommodation is driven by various cues, including retinal defocus, chromatic 

aberration and optical vergence (Kruger et al., 1993; Del Aguila-Carrasco et al., 2017), it has 

been identified as a potential factor in the development of myopia. Although animal work 

indicates that emmetropisation is guided by retinal defocus, it is unclear whether 

accommodation-related defocus has a part to play in this process (Chakraborty et al., 2020). 

Evidence drawn from chicks (Schaeffel et al., 1988; Ostrin et al., 2011), marmosets (Clarke et 

al., 1985) and rhesus monkeys (Croft et al., 1998; Ostrin and Glasser, 2010) has demonstrated 

the presence of active accommodation and explored its influence with regard to ocular growth. 

As in humans, accommodation in primates is driven by the crystalline lens, whereas in chicks 

the cornea is also involved in the process (Troilo and Wallman, 1991; Glasser et al., 1994; 

Glasser et al., 1995). Accommodative lag (Mutti et al., 2006), accommodative microfluctuations 

(Day et al., 2009), tonic accommodation (McBrien and Millodot, 1987; Gwiazda et al., 1995) 

and interpretation of blur (Gwiazda et al., 1993) have all been implicated in the process of 

emmetropisation and myopia development. Early work suggested that the accommodative 

response to induced hyperopic defocus using negative lenses provided a signal for eye growth 

(Schaeffel et al., 1988). Use of atropine, a muscarinic antagonist has shown a protective effect 

for myopia progression in animal models and was thought at the time to relate to the 

cycloplegic effect on the ciliary muscle (Young, 1965). However, subsequent work has shown 

that the mechanism of atropine in the context of myopia control is not attributable to 

accommodation.  

 

The cues to accommodation begin at a retinal level with afferent signals transmitted by the 

optic nerve for higher level processing. The efferent signals pass from the Edinger-Westphal 

nucleus en route to the ciliary ganglion and then to the ciliary muscle via the ciliary nerves 
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(Crawford et al., 1989). Signals arising from the Edinger-Westphal nucleus, situated in the 

midbrain, kickstarts a binocular and consensual accommodative response. It has been 

discovered from animal work that disruption of the afferent or efferent components of the 

pathway does not stop the development of myopia in response to lens-induced defocus 

(Schaeffel et al., 1990). It seems that ocular growth proceeds, led by visual cues, even in the 

absence of active accommodation as demonstrated in rhesus monkeys with optic nerve 

section (Raviola and Wiesel, 1990), along with ciliary nerve section (Schmid and Wildsoet, 

1996) and destruction of the Edinger-Westphal nucleus (Schaeffel et al., 1990) in chicks. 

Further, it has also been shown that atropine in chicks reduces experimental myopia but given 

this drug has no effect on the striated ciliary muscle in these animals, the findings point towards 

a non-accommodative mechanism (McBrien et al., 1993). In addition, local growth of the eye 

is influenced by defocus applied regionally; this does not support the theory that 

accommodation is responsible for the modulation of eye growth given that accommodative 

effort changes focus in a uniform manner across the visual field (Diether and Schaeffel, 1997). 

Taken together, these findings indicate that a local mechanism within the eye is responsible 

for eye growth control (Chakraborty et al., 2020). However, the findings above do not entirely 

exclude accommodation as a factor in the process of refractive modulation given its link with 

retinal defocus (Charman, 1999). Allowing brief intervals of clear vision between periods of 

hyperopic defocus impedes the development of experimental myopia in a range of species 

(Schmid and Wildsoet, 1996; Shaikh et al., 1999; Kee et al., 2007). The outcome from this 

work suggests that if it is possible to compensate for induced defocus by accommodating, a 

similar myopia inhibitory effect should occur. With this in mind, a high lag of accommodation 

would be expected to provide a stimulus to the eye to grow from the resultant hyperopic 

defocus (Chakraborty et al., 2020). Efforts to explore this hypothesis have looked at the 

characteristics of accommodation in marmosets before and after experimental myopia has 

been induced (Troilo et al., 2007). The outcome showed that accommodative lag increased 

after lens-induced myopia occurred suggesting this was a consequence rather than a cause 

of this refractive change. The findings also showed that accommodative performance prior to 
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induced defocus was unable to predict the extent of myopia development, a result that is 

supported by additional work in chicks (Aleman and Schaeffel, 2018). Others have evaluated 

how accommodation affects the ability of chicks to decode focusing errors (Diether and 

Wildsoet, 2005). A key outcome revealed that disabling accommodative function through 

ciliary nerve section results in impaired ability to decode and compensate for imposed defocus. 

In particular, when presented with simultaneous hyperopic and myopic signals, the growth 

response is biased towards myopia. This work led to the conclusion that accommodation 

appears to play a part in decoding defocus during the process of emmetropisation. 

Nevertheless, when all this research is considered in tandem, it is clear that a complex process 

exists in relationship to accommodation and emmetropisation with multiple pathways at play. 

 

The research undertaken in animals and the role of accommodation has helped to drive the 

evidence base for humans. Research into the potential link between accommodative lag and 

myopia in children have been spurred on by the work in animals showing that hyperopic 

defocus leads to myopia development. However, the outcomes in this area are equivocal with 

some reporting that increased lags are in place prior to the onset of myopia (Goss, 1991; Drobe 

and de Saint-André, 1995; Gwiazda et al., 2005) whereas others assert that higher levels of 

lag arise after myopia development (Mutti et al., 2006). Although in animals, myopic defocus 

slows or stops myopia development, adopting this rationale to control progression in children 

using bifocal (BF) and MF spectacle lenses has shown mixed outcomes, achieving little (Shih 

et al., 2001; Edwards et al., 2002) to modest success (Leung and Brown, 1999; Gwiazda et 

al., 2003). More recently, research using BF and MF CLs (Anstice and Phillips, 2011; Lam et 

al., 2014; Pauné et al., 2015; Walline, 2016; Aller et al., 2016; Li et al., 2017;  Chamberlain et 

al., 2019) have achieved more impressive results in slowing the progression of myopia, 

although it remains unclear if this is due to the impact of accommodation, peripheral defocus, 

or a combination of factors. Indeed, a recent appraisal of the current evidence does not point 

towards a role for binocular vison and accommodation in the development and progression of 

myopia (Logan et al., 2021).  
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1.4.7 High order aberrations 

Although low order aberrations (LOAs) are given prominence when considering the optical 

characteristics of the eye, monochromatic high order aberrations (HOAs) should not be 

overlooked as they can degrade the quality of the retinal image and may contribute to refractive 

error development (Chakraborty et al., 2020). It is thought that HOAs, alongside those of low 

order, can influence depth of focus with a subsequent impact upon ocular development 

(Charman, 1991; Charman, 2005).   

 

Animal work has allowed fundamental understanding of the changes in HOAs that arise during 

emmetropisation and the role they play in leading to refractive errors. In particular, the literature 

shows that in chicks (García de la Cera et al., 2006), marmosets (Coletta et al., 2010) and 

monkeys (Ramamirtham et al., 2006) HOAs reduce with age due to structural changes to the 

cornea and lens, findings that are mirrored in humans (Brunette et al., 2003). The outcomes 

from these studies conclude that HOAs contribute relatively little to the improvements in spatial 

vision and CS that occur during development. Further, it is thought that HOA reduction is a 

passive process without significant influence from the visual environment (Artal et al., 2001). 

The association between induced ametropias and HOAs have also been explored in a range 

of species including chicks (García de la Cera et al., 2006; Kisilak et al., 2006) and monkeys 

(Ramamirtham et al., 2007). Results from this work show that experimental myopia, induced 

by form deprivation and exposure to hyperopic defocus, are associated with increased levels 

of HOAs. Interspecies variation exists with ametropias in monkeys linked to higher levels of 

positive spherical aberration (+SA), whereas in chicks, an increase in negative spherical 

aberration occurs. The optical shifts that arise during these experimental conditions are 

thought to be a result of curvature and refractive index changes to the optical structures within 

the eye as well as changes to the crystalline lens position with respect to the cornea 

(Ramamirtham et al., 2007). It is also noteworthy that myopia is associated with greater levels 

of +SA in humans (Llorente et al., 2004). Importantly, it has been shown that increased HOAs 
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have been strongly correlated with the degree of LOAs and axial refractive error in hyperopic 

and myopic monkeys, which implies they arise as a consequence, rather than a cause of 

ametropia (Ramamirtham et al., 2007).  

 

In humans with normal healthy eyes, spherical aberration, coma and trefoil are the key HOAs. 

Nevertheless, the type and amount of HOAs varies significantly between individuals 

(Charman, 1991; Thibos et al., 2002; Castejón-Mochón et al., 2002). The role that HOAs play 

in the development of refractive error, in humans and animals, remains unclear. Some suggest 

that spherical aberration and coma in particular are associated with myopia (He et al., 2002; 

Paquin et al., 2002) whereas others have found no significant change in HOAs with myopia 

(Carkeet et al., 2002; Cheng et al., 2003; Atchison et al., 2006). The picture is clouded further 

by the influence of accommodation which results in dynamic changes to both HOA and LOAs 

(Lopez-Gil et al., 1998; Vilupuru et al., 2004). Further longitudinal studies are required to clarify 

the potential role of HOAs in driving emmetropisation and refractive error (Chakraborty et al., 

2020).  

 

1.4.8 Spectral and temporal light characteristics 

In addition to monochromatic aberrations, the influence of other factors on ocular growth and 

development, such as longitudinal chromatic aberration (LCA), wavelength, intensity and 

duration of exposure need consideration. 

 

Evidence from work in guinea pigs (Liu et al., 2011) and chicks (Rucker and Wallman, 2009) 

indicates that the eye uses LCA to help steer axial growth and refraction. As LCA results in 

long wavelengths of light to be focused in a more hyperopic plane than short wavelengths of 

light, the eye’s refractive state is relatively hyperopic for long-wavelength light. Colour fringes 

that arise from broadband light, which are component parts of the retinal image, provide cues 

to the nature of defocus, that is to say, hyperopic or myopic (Rucker, 2013). Although the 

literature highlights that LCA can provide a directional signal for accommodation in humans, 
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its role in the process of emmetropisation remains uncertain (Kruger et al., 1993; Seidemann 

and Schaeffel, 2002). Detection of LCA relies upon the presence of short, medium and long 

wavelength cones (Gisbert and Schaeffel, 2018); however, in humans, short-wavelength 

cones are more scarce than medium and long wavelength variants (Roorda and Williams, 

1999). It has been shown from electrophysiological research that the sensitivity of short-

wavelength cones is reduced in myopia (Kawabata et al., 1996; Yamamoto et al., 1997) while 

others suggest that retinal ganglion cells, which have high sensitivity to short-wavelength light 

may offer a spectral tuning mechanism to differentiate between long and short wavelengths of 

light (Gamlin et al., 2007). 

 

In animals, the spectral influences of light upon eye growth appear to be species dependent. 

In fish (Kröger and Wagner, 1996), chicks (Seidemann and Schaeffel, 2002; Foulds et al., 

2013; Torii et al., 2017) and guinea pigs (Liu et al., 2011; Jiang et al., 2014), eyes become less 

myopic when reared under short-wavelength light compared to those exposed to long-

wavelength light. In the short-term, the direction and extent of growth match the model 

predictions; however, growth rates under these conditions for a longer period exceed the 

expected outcome suggesting that a more complex process is at play (Seidemann and 

Schaeffel, 2002; Rucker and Osorio, 2008). One hypothesis proposes that blue light may be 

responsible for preferential stimulation of the ‘ON’ pathway to inhibit myopia progression (Jiang 

et al., 2014). In contrast to the species above, non-human primates raised under long-

wavelength light exhibit decreased eye growth (Hung et al., 2018); this finding is supported by 

work showing that rhesus monkeys exposed to conditions predominated by long-wavelength 

light demonstrate slowed eye growth (Smith et al., 2015). In tree shrews, exposure to red (long-

wavelength) light results in hyperopia (Gawne et al., 2017a), whereas myopia occurs under 

conditions of short-wavelength light (Gawne et al., 2017b) even in the presence of defocus. In 

other words, the chromatic signals dictated the direction of eye growth to an extent where the 

defocus conditions were largely ignored. In particular, even when exposed to hyperopic 
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defocus, with expectation that myopia would follow, the animals remained relatively hyperopic. 

The underlying reasons for these outcomes remain obscure (Chakraborty et al., 2020). 

 

A selection of studies has shown that the status of ambient lighting also has a role in regulating 

eye growth with increased levels having a protective effect against myopia under conditions of 

form deprivation (Cohen et al., 2011; Smith et al., 2012; Chen et al., 2017). The findings here 

may align to work showing that time outdoors can curb myopia development in children (Xiong 

et al., 2017; Morgan et al., 2021; Wolffsohn et al., 2021). The underlying mechanisms relating 

to these protective effects are yet to be established but neurochemical factors, such as 

melanopsin and dopamine, have been implicated (Ashby and Schaeffel, 2010; Ostrin, 2018; 

Flanagan et al., 2020). In an outdoor setting, light levels range from 1000 lux under cloudy 

conditions to 150,000 lux on a bright day (Ostrin, 2017) with a broad spectral composition. 

With this in mind, it is difficult to pinpoint if the protective effects of time outdoors in relation to 

myopia can be attributed to a specific region of the spectrum. The situation is complicated by 

the fact that greater time outdoors reduces the potential for accommodation-related defocus 

experienced during near tasks in an indoor environment. 

 

1.4.9 Summary 

The extensive body of work on animals outlined here affirms the role of the visual environment 

in guiding refractive state by mediating eye growth. The vast range of studies have furthered 

our understanding of the process of emmetropisation and refractive error development in 

humans. Taken together, the outcomes demonstrate that several cues exist to allow the eye 

to modulate its growth during emmetropisation. In particular, visual signals provided by 

accommodation, peripheral defocus, HOAs and chromatic aberrations, serve to direct the sign 

and magnitude of retinal defocus and ultimately drive refractive development.  
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1.5 Optical interventions for refractive error modulation in humans 

 

1.5.1 Background  

Here, optical interventions for modulating refractive error in humans will be considered. It is 

striking that this entire body work relates exclusively to the realm of myopia. As such, it may 

be more appropriate to consider this section as a summary of ‘lessons from myopia’, which 

provides an opportunity to ponder if, and how, these approaches could be applied to a 

hyperopic cohort.  

 

1.5.2 Undercorrection of myopia 

As outlined earlier (see section 1.4.3), it has been shown in animals that myopic defocus can 

inhibit axial growth during development (Schaeffel et al., 1988; Wildsoet and Wallman, 1995 

Trolio et al., 2019). The overarching outcome from these studies has led practitioners to 

purposefully avoid fully correcting myopia for distance vision (DV) in an attempt to slow the 

progression of refractive error (Tang et al., 2020). As close work and accommodation have 

been implicated as possible factors that lead to the development of, and drive, the progression 

of myopia, the rationale was that undercorrection of the refractive error would reduce 

accommodative demand and exert some influence over the outcome. 

 

In contrast to the findings in animal studies, evidence from two clinical studies in humans has 

revealed that undercorrection accelerates the development and progression of myopia (Chung 

et al., 2002; Adler and Millodot, 2006). In particular, a randomised trial has shown that 

undercorrection of refractive error rendering the child unable to see beyond 6/12 leads to a 

mean myopic progression of 1.00 D over two years versus 0.77 D in those receiving full 

correction (Chung et al., 2002). The findings from this study are mirrored in a retrospective 

review of clinical data, once again showing that undercorrection of myopia leads to greater 

levels of progression (Adler and Millodot, 2006). However, the outcomes here are contested 

by evidence from a study reporting that children with no refractive correction showed slower 
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progression and less axial growth than those given full correction, by a magnitude of 0.27 D 

over 2 years (Sun et al., 2017). Despite the equivocal findings from this work, the argument for 

undercorrection of myopia to prevent progression, remains unconvincing (Tang et al., 2020; 

Logan and Wolffsohn, 2020; Jonas et al., 2021).   

 

1.5.3 Spectacle lens correction 

Over the past 20 years, numerous studies have explored the effect of BF, MF and progressive 

addition lenses (PALs) on the progression of myopia (see Table 1.2). The general rationale for 

these approaches is to allow the wearer to utilise the top part of the spectacle lens to see 

clearly in the distance through full refractive correction, with the addition power in the bottom 

part of the lens designed to reduce accommodative effort and lag.  

 

Study Duration Details Cohort Intervention *Effect 
Fulk et al., 

2000 2.5 years Randomised, 
masked 6-13 years SV (n = 40) 

BF 1.50 D add (n = 42) 
0.25 D 
(20%) 

Edwards et 
al., 2002 2 years Randomised, 

double masked 

7-10.5 
years 

Chinese 

SV (n = 132) 
PAL 1.50 D add (n = 121) 

0.14 D 
(11%) 

Gwiazda et 
al., 2003 3 years Randomised, 

masked 6-11 years SV (n = 233) 
PAL 2.00 D add (n = 229) 

0.20 D 
(14%) 

Yang et al., 
2009 2 years Randomised, 

masked 
7-13 years 
Chinese 

SV (n = 75) 
PAL 1.50 D add (n = 74) 

0.26 D 
(17%) 

COMET2, 
2011 3 years 

Randomised, 
masked, 

multicentre 
8-12 years SV (n = 58) 

PAL 2.00 D add (n = 52) 
0.28 D 
(24%) 

Sankaridurg 
et al., 
2010 

1 year Randomised 6-16 years 
Chinese 

Type I, Type III, SV (n = 
50 per group 

Type II (n = 60) 

**0.29 D 
(30%) 

Berntsen et 
al., 2012 1 year Randomised, 

masked 6-11 years SV (n = 42) 
PAL 2.00 D add (n = 41) 

0.18 D 
(35%) 

Hasebe et 
al., 2014 1.5 years 

Randomised, 
masked, cross-

over 

6-12 years 
Japanese 

SV (n = 44) 
PAL 1.50 D add (n = 42) 

Phase 1: 
0.31 D (18%) 

Phase 2: 
0.02 D (2%) 

Cheng et 
al., 2014 3 years Randomised, 

masked 
8-13 years 
Chinese 

SV (n = 41) 
BF 1.50 D add (n = 48) 

PBF 1.50 D add 3 Δ base 
in (n = 48) 

BF: 0.81 D 
(39%) 

PBF: 1.05 D 
(51%) 

Lam et al., 
2019 2 years Randomised, 

masked 
8-13 years 
Chinese 

SV (n = 90) 
DIMS (n = 93) 

0.44 D 
(52%) 
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Table 1.2 Summary of myopia control studies using spectacle lens correction with single vision 
(SV), BF/prismatic bifocal (PBF), PALs and defocus incorporated multiple segments (DIMS). 
Adapted from Tang et al., 2020. *Dioptric treatment effect in slowing myopia progression over 
study period. ** In a subgroup of children (with myopic parents) using Type III lenses. 
 

For PALs, the studies (COMET2, 2001; Edwards et al., 2002; Gwiazda et al., 2003; Yang et 

al., 2009; Berntsen et al., 2012; Hasebe et al., 2014) point towards an insignificant effect of 

myopia retardation overall although children with esophoria and accommodative lag may 

benefit from a greater effect (Tang et al., 2020). 

 

For BF spectacle lenses, an early study showed that a 1.50 D add slowed progression of 

myopia in children with near-point esophoria by 20% compared to SV lenses, which equated 

to 0.25 D over 30 months (Fulk et al., 2000). A more recent study has shown that executive 

BFs both with and without base in prism can exert control on progression of myopia in fast 

progressors, particularly for those with a low accommodative lag (Cheng et al., 2014). Although 

the inclusion of base in prism to reduce fusional vergence achieved a greater dioptric effect 

than lenses without prism, AL length changes were similar for both lens types. 

 

A more complex paradigm was explored in a study using 3 bespoke lens designs aimed at 

reducing relative peripheral hyperopic defocus (RPHD) in myopes (Sankaridurg et al., 2010). 

Only one type of lens design managed to achieve a meaningful effect of 30% reduction in 

progression compared to SV lenses in a subgroup of younger participants aged 6 to 12 years 

whose parents were both myopic. This ‘Type III’ lens had an asymmetrical design with a central 

clear aperture with positive additional power in the horizontal meridian, optimised to reduce 

astigmatism in that meridian. The other, ineffective lens variants consisted of rotationally 

symmetric designs each with differing amounts of positive peripheral power surrounding a 

clear central aperture. 

 

A recent novel design termed DIMS has shown more promise as a myopia control spectacle 

lens option (Lam et al., 2019; Jonas et al., 2021). The DIMS lens offers simultaneous vision 
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with a central optic zone which provides full refractive correction, surrounded by multiple 

segments which deliver constant myopic defocus of +3.50 D. Initial results from the 2-year 

clinical trial have shown that children wearing the experimental design had 52% less myopic 

progression and 62% less axial growth than SV controls. Recently, follow up results have 

shown that the myopia control effect was sustained in the third year for children who had used 

the DIMS in the original 2 years of the study and was also shown in children switching from 

SV lenses during the first 2 years of the study to the DIMS lens in the third year (Lam et al., 

2021). 

 

1.5.4 CL correction 

The following sections outline the attempts to arrest the progression of myopia through use of 

various CL designs. 

 

1.5.4.1 Rigid gas permeable (RGP) CLs 

Several studies have considered the impact of daytime wear of RGP CLs on myopia 

progression. Outcomes from early work in this area were limited by study design, such as lack 

of randomisation or participant age criteria being outside the expected range of likely 

progression (Stone, 1976; Perrigin et al., 1990; Khoo et al., 1999). Nevertheless, two 

randomised clinical trials (Walline et al., 2004; Katz et al., 2003) have shown that RGP CLs do 

not appear to influence axial growth, although one of the studies did report slower progression 

of myopia in participants wearing RGP CLs versus those wearing soft CL (Walline et al., 2004). 

It is thought that the effect of RGP CLs on the refractive outcome in this study occurred at a 

corneal level and that any apparent retardation of myopia was likely to be transient. Taking all 

of the above into account, daytime wear of RGP CLs is not considered to be a credible 

approach for myopia control. 
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1.5.4.2 Soft CLs 

BF and MF soft CLs have become increasingly popular interventions to attempt to control 

myopia progression in children (Wolffsohn et al., 2021). The ease of adaptation, along with the 

cosmetic and practical advantages that soft CLs offer, make them an attractive option for the 

patient. For the practitioner, having a simple fitting approach without the need for specialist 

equipment makes soft CLs an accessible entry point into myopia management. Numerous 

studies have explored the efficacy of BF and MF CLs, the outcomes from which are 

summarised in Table 1.3. 

 

Study Duration Details Cohort Intervention *Effect 

Anstice and 
Phillips, 

2011 

20 
months 

Randomised, 
paired eye 

control, 
cross-over 

11-14 
years 

DF 2.00 D add (n = 
40) 

SV (n = 40) 

0-10 months: 0.25 
D (37%) 

11-20 months: 0.20 
D (54%) 

 
Sankaridurg 
et al., 2011 

12 
months Randomised 7-14 years 

Chinese 
RPH CL (n = 45) 

SV (n = 40) 
0.29 D 
(34%) 

Walline et al., 
2013 

24 
months Matched study 8-11 years 

Proclear multifocal 
2.00 D add (n = 40) 

SVCL (n = 40) 

0.52 D 
(50%) 

Lam et al., 
2014 

24 
months 

Randomised, 
double 
masked 

8-13 years 
Chinese 

DISC 2.5 D add (n = 
65) 

SVCL (n = 63) 

0.21 D (25%) 
0.44 D (50%) > 6 h 
0.54 D (58%) > 7 h 
0.53 D (60%) > 8 h 

Pauné et al., 
2015 

24 
months 

Prospective, 
non-

randomised 

9-16 years 
Caucasian 

SRRG (n = 30) 
OK (n = 29) 
SV (n = 41) 

0.42 
(43%) 

Aller et al., 
2016 

12 
months 

Randomised, 
masked 8-18 years BFSCL (n = 39) 

SVCL (n = 40) 

0.57 D (72% in 
those with eso 

fixation disparity) 

Cheng et al., 
2016 

12 
months 

Randomised, 
double 
masked 

8-11 years +SA (n = 64) 
SVCL (n = 63) 

0-6 months: 
0.21 D (54%) 
At 12 months: 
0.14 D (20%) 

Chamberlain 
et al., 2019a 

36 
months 

Randomised, 
double 
masked 

8-12 years 
DF 2.00 D add (n = 

70) 
SVCL (n = 74) 

0.73 
(59%) 

Ruiz-Pomeda 
et al., 2018 

24 
months 

Randomised, 
double 
masked 

8-12 years 
DF 2.00 D add (n = 

46) 
SVCL (n = 33) 

0.29 
(39%) 

Table 1.3 Summary of myopia control studies using soft BF and MF CLs comparing: SV CL; 
dual focus (DF); reduction of RPH design; SV spectacle lens; defocus incorporated soft CL 
(DISC); soft radial refractive gradient (SRRG) CL; OK; bifocal soft CL (BFSCL); and soft CL 
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with +SA. Adapted from Tang et al., 2020. *Dioptric treatment effect in slowing myopia 
progression over study period.  
 

For soft BF CLs, there are broadly two approaches taken in the attempt to control progression 

of myopia. In both scenarios, the CL design consists of a central distance zone providing full 

correction of myopia. However, the guiding principle of one design is to have a peripheral 

annulus of relative positive power around the central zone to reduce peripheral hyperopic 

defocus (see Figure 1.5). The second design, often termed ‘DF’, also exposes the eye to 

myopic defocus in the periphery but in this case the design consists of concentric rings which 

alternate between full distance correction and relative positive power (see Figure 1.6). 

 
Figure 1.5 RPHD corrected with a centre-distance BF CL while full refractive error is corrected 
centrally 
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Figure 1.6 DF CL with central distance zone and alternating concentric zones of myopic 
defocus and full refractive error correction 
 

Other lens designs exist which also target reduction of RPH. For instance, a novel soft lens 

design with a clear central zone surrounded by an annulus that increases in relative positive 

power towards the periphery, has been reported to achieve 34% less progression in refractive 

error and an estimated 33% slowing in axial growth compared to spectacle wearers over a 12-

month period (Sankaridurg et al., 2011). Impressive results from a randomised, masked study 

showed a 72% slowing of myopia progression using a BF CL compared to SV CLs, although 

this effect was limited to children with eso fixation disparities at near (Aller et al., 2016). The 

addition of the Vistakon Acuvue Bifocal (Johnson & Johnson, Vision) used in the study was 

selected to neutralise the associated phoria in each participant. 

 

A study, using a soft, centre-distance, MF CLs intended for presbyopes, the Proclear multifocal 

(CooperVision), reported a 50% reduction in myopia progression along with 29% less axial 

elongation over a 2-year period (Walline et al., 2013). In further work, a SRRG design was 

utilised to correct central refraction while exposing the eye to myopic defocus that gradually 

increased with eccentricity; this intervention resulted in retardation of myopia progression over 
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a 2-year period of 43% with 27% less axial growth than SV spectacle-wearing controls (Pauné 

et al., 2015).  

 

CL designs incorporating +SA have also been considered based upon the observation that 

myopic children with higher levels of +SA demonstrate slower eye growth (Hiraoka et al., 2017; 

Lau et al., 2018). A unique lens incorporating +SA into the design to reduce RPH showed a 

slowing in axial growth compared to controls, although this did not translate into sustained 

refractive error control at the 12-month timepoint (Cheng et al., 2016).  

 

A paired eye control, cross-over trial investigated the use of an experimental concentric BF, or 

DF soft CL, which provided 2.00 D of myopic defocus (Anstice and Philips, 2011). Participants 

were assigned randomly to have the intervention in one eye and a SV CL in the fellow eye for 

10 months with the lens types then switched over for a further 10 months. In the first 10 months, 

the intervention lens resulted in a 37% slowing of myopia progression compared to the control 

condition; axial growth in the intervention eye was almost half the rate of the fellow eye. 

Following cross-over, the outcome achieved in the second period showed a reduction of 54% 

in refractive change and 80% in axial growth in the intervention eye versus the control eye. 

 

A novel design, termed the defocus incorporated soft CL (DISC) with 2.50 D of myopic defocus 

reported impressive dose-dependent results achieving a slowing of myopia progression of 

50%, 58% and 60% for children wearing the intervention for >6, >7 and >8 hours, respectively 

(Lam et al., 2014). AL changes were consistent with the refractive findings, although precise 

dose-dependent values for this outcome measure were not reported. 

 

Data from ‘Part 1’ of a multicentre, randomised, double masked trial using a DF, daily 

disposable soft lens showed a slowing in myopia progression and axial elongation by 59% and 

52%, respectively, over a 3-year period compared to children wearing SV CLs (Chamberlain 

et al., 2019a). The lens is available commercially in various parts of the world as MiSight 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

66 

(CooperVision). Part 2 of the study was initiated at the 3-year point where children in the control 

arm of the study were refitted with the intervention lens; these participants were tracked 

separately from children who had worn the DF lens from the outset. Results after 5 years 

showed that children from the original control group matched the performance of those wearing 

the intervention lens from the beginning of the study in terms of refractive error change and 

axial growth (Chamberlain et al., 2019b). A recent update has revealed that 23% of eyes after 

6 years of intervention displayed a total MSE refractive change of less than -0.25 D 

(Chamberlain et al., 2020). Another study in Spain also investigated the efficacy of the MiSight 

CL and showed a 39% and 36% slowing in myopia progression and axial elongation, 

respectively, over a 2-year timeframe (Ruiz-Pomeda et al., 2018). However, this study lacked 

masking as controls were wearing spectacles, which in turn may have altered compliance with 

the wearing time (WT) of control correction. 

 

1.5.4.3 OK 

In recent decades, OK has become a popular option for myopia management in children. Not 

only does this modality enhance unaided vision it also provides control of myopia progression 

as highlighted in a number of studies (see Table 1.4). 

Study Duration Details Cohort Intervention *Effect 

Cho et al., 2005 2 years Self-selected, 
prospective 

7-12 
years 

OK (n = 35) 
SV (n = 35) 

0.25 mm 
(46%) 

Walline et al., 
2009 2 years Prospective, 

historical controls 
8-11 
years 

OK (n = 28) 
SVCL (n = 28) 

0.32 mm 
(56%) 

Kakita et al., 2011 2 years Self-selected, 
retrospective 

10-15 
years 

OK (n = 45) 
SV (n = 60) 

0.22 mm 
(36%) 

Cho and Cheung, 
2012 2 years Randomised, 

single-masked 
6-10 
years 

OK (n = 37) 
SV (n = 41) 

0.27 mm 
(43%) 

Hiraoka et al., 
2012 5 years Self-selected, 

retrospective 
8-11 
years 

OK (n = 29) 
SV (n = 30) 

0.42 mm 
(30%) 

Santodomingo-
Rubido et al., 

2012 
2 years Self-selected, 

prospective 
6-12 
years 

OK (n = 31) 
SV (n = 30) 

0.22 mm 
(32%) 

Charm and Cho, 
2013 2 years Randomised, 

single-masked 
8-11 
years 

OK (n = 12) 
SV (n = 16) 

0.32 mm 
(63%) 

Chen et al., 2013 2 years Self-selected, 
prospective 

6-12 
years 

OK (n = 35) 
SV (n = 23) 

0.33 mm 
(52%) 
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Table 1.4 Summary of myopia control studies using OK comparing: SV CL; SV spectacle lens. 
Adapted from Tang et al., 2020. *Mean AL difference between intervention and control 
participants over study period.  
 

Modern OK designs comprise a central optic zone, a reverse curve zone, an alignment zone 

and a peripheral zone (Swarbrick, 2006; Lipson et al., 2018). The central zone is used to 

correct the refractive error and also assists with flattening of the central cornea. The steeply 

designed reverse curve helps to steer corneal reshaping and maximise reduction of myopia, 

while the alignment zone maintains lens centration. The peripheral zone is important as it 

allows tear exchange to take place. 

 

It is thought that the myopia control effect facilitated by OK is due to the imposition of myopic 

defocus on the peripheral retina (Tahhan et al., 2003). Following OK treatment, the corneal 

shape becomes more oblate which leads to a reduction in RPHD (Kang and Swarbrick, 2011). 

The clinical studies summarised in Table 1.4 demonstrate that the effect of OK on slowing 

axial elongation ranges from 32% to 63%.  

 

Although the maximum power of myopia reduction possible with OK is yet to be established 

definitively, -4.00 D is typically taken as the exclusion criteria in most studies (Tang et al., 

2020). Nevertheless, partial correction of high myopia with OK, with residual refractive error 

correction with spectacles, still affords a comparable myopia control effect to studies in low to 

moderate myopes (Charm and Cho, 2013; Wolffsohn et al., 2021). While OK is a useful option 

for myopia control, with significant impact upon mean rates of axial growth retardation, there 

does appear to be variability in the individual response to this intervention. AL change over 3 

years in children receiving OK treatment showed that while 65% showed axial elongation of 

0.5 mm or less, 15% of participants experienced growth of more than 1.00 mm (Lipson et al., 

2018). It has been proposed that age, baseline myopia, corneal profile and pupil size are all 

possible factors that could influence treatment outcomes (Cho et al., 2005; Cho and Cheung, 

2012; Hiraoka et al., 2012; Santodomingo-Rubido et al., 2013; Lipson et al., 2018). 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

68 

 

1.5.5 Summary 

The research to date has shown that careful selection of the method for correction of myopia 

can, to some extent, dictate the refractive outcome and extent of axial elongation. 

Undercorrection of myopia should be avoided and a blanket approach to spectacle correction 

with BFs, MFs or PALs is likely to deliver underwhelming results. However, the encouraging 

results from the recent DIMS study points towards a more optimistic future for myopia control 

in spectacle form. In addition, existing soft CLs along with OK have proven to be important 

options for myopia management in contemporary clinical practice.  

 

1.6 Thesis aims 

The literature has highlighted the deleterious effects that hyperopia can have upon visual 

development and educational attainment throughout childhood, alongside elevating the risk of 

numerous ocular comorbidities later in life. Research from animal work demonstrates that 

growth of the eye can be modulated in response to defocus in a range of species. The 

outcomes from this body work have been successfully translated from the laboratory to the 

clinic, with a growing armamentarium of interventions available for use in mainstream practice 

to slow the progression of axial growth in myopes. 

 

Research in the field of refractive error modulation in hyperopia is conspicuous by its absence. 

With this in mind, the experimental chapters that follow will focus on the potential to accelerate 

axial growth in children with iso- and anisohyperopia. The aim is to apply the overarching 

principles highlighted in the animal literature, along with lessons learned from myopia in a 

human cohort, to assess the impact of imposing hyperopic defocus, on axial growth and 

refractive error in children with hyperopia.  
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If the hypothesis is proven, then this body of work offers the potential to mitigate for the effects 

of hyperopia, thereby permitting normal visual development in childhood and reducing the risk 

of ocular comorbidity associated with this condition in later life. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

70 

2.0 Instrumentation 

 

2.1 Introduction 

This chapter outlines details of the equipment utilised throughout the experimental chapters. 

All measurements were undertaken using equipment available for standard optometric 

practice following standard operating procedures and professional guidance (The College of 

Optometrists, Guidance for Professional Practice). 

 

2.2 Assessment of unaided vision and VA 

In keeping with other refractive modulation studies (Anstice and Phillips, 2011; Chamberlain 

et al., 2019; Lam et al., 2019, Ruiz-Pomeda et al., 2019), measures of distance monocular 

vision, distance monocular VA and near monocular VA were undertaken using logMAR charts 

to assess the impact of the intervention on these parameters. The standard room illumination 

was measured at 440 lux using a digital light meter (LX1330B, Dr.meter, US), which falls within 

the suggested range to avoid the reduction in acuity measures that can arise due to inadequate 

illumination (Tidbury et al., 2016). 

 

The Bailey-Lovie logMAR chart was originally designed to improve the measurement of VA for 

patients with age-related macular degeneration (AMD) by providing five letters on each line, 

thereby avoiding problems with letter memorisation (Bailey et al., 1976). The chart has uniform 

spacing between letters which is equivalent to one letter width. Spacing between lines is equal 

to the letter height of the row below. 

 

Use of logMAR notation mitigates for some of the widely acknowledged issues with Snellen 

charts (McGraw et al., 1995), for example, disproportionate letter crowding between the lower 

and upper ends of the acuity scale. Other limitations of Snellen charts are the variation in letter 

legibility and a non-logarithmic scaling of letter size between successive lines; this results in 

relatively small gaps between lines at the higher end of the acuity scale.  
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In all experimental chapters, visions and VAs for distance were determined using a 

computerised test chart (Thomson Software Solutions, Herts, UK) at 6 m equivalent, which 

allowed changing of optotypes to avoid letter memorisation. For monocular near visual acuity 

(NVA), a handheld LogMAR chart at 0.25 m was used.  

 

2.3 Assessment of intraocular pressure 

Measures of intraocular pressure (IOP) were taken prior to instillation of a cycloplegic using a 

rebound tonometer, the iCare TA01i (iCare Finland Oy, Helsinki, Finland). The literature has 

shown that this instrument is adequate as a screening tool in comparison to Goldmann 

applanation tonometry (GAT) (Clement Clarke International, Harlow, UK) and other handheld 

tonometers (Fernandes et al., 2005; Beasley et al., 2013) and is a recommended safeguard 

when instilling a cycloplegic (The College of Optometrists, Guidance for Professional Practice).  

 

The iCare TA01i rebound tonometer consists of a solenoid and housing, a magnetised probe, 

and other electronic components. The probe is 40 mm long, 0.3 mm in diameter with a 1.7mm 

diameter plastic end-tip (Davies et al., 2006). The device uses a solenoid to fire the magnetised 

probe towards the cornea. Electronics monitor the movement of the probe, allowing its speed 

and direction to be monitored and converted to a measure of IOP. The device is well tolerated, 

particularly in a paediatric population, and does not require topical anaesthesia (Kageyama et 

al., 2011). 

 

2.4 Cycloplegia 

Cycloplegic refraction was undertaken at specified data collection points as outlined in the 

experimental chapters. 1 drop of cyclopentolate hydrochloride (HCl) 1% in minim form (Bausch 

+ Lomb, Kingston upon Thames, UK) was instilled in each eye to help control accommodation, 

thereby facilitating more stable measures of objective refraction, which were taken 30 minutes 

after the drugs were instilled. 
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Cyclopentolate prevents the action of acetylcholine at muscarinic sites. As muscarinic 

receptors are abundant in the iris and ciliary body, mydriasis and accommodative inhibition 

occur with the use of this drug (Kyei et al., 2017). 

 

Cyclopentolate is widely used in routine optometric practice as the cycloplegic agent of choice 

in children due to a relatively short duration of action (Doherty et al., 2019).  Importantly, 

cyclopentolate has been shown to be as effective at achieving adequate cycloplegia but with 

fewer side effects than other drugs such as atropine (Farhood, 2012). Tropicamide has the 

benefit of a short duration of action but may not provide sufficient paralysis of accommodation 

required for accurate refraction in young children, particularly in those with high hyperopia 

(Yazdani et al., 2018). Further, cyclopentolate 1% is recommended as the agent of choice for 

cycloplegic refraction in children under 12 years of age with 0.5% reserved for those under the 

age of 6 months (The Royal College of Ophthalmologists, 2012). 

 

2.5 Biometry 

Following the approach of earlier work, throughout the experimental chapters, biometric 

assessment included measures of AL, ACD and CC Walline et al., 2013; Aller et al., 2016; 

Ruiz-Pomeda et al., 2019). Data were collected using the Zeiss IOLMaster 500 (Zeiss, 

Oberkochen, Germany) (see Figure 2.1).  
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Figure 2.1 The IOLMaster 500 
 

The IOLMaster 500 is an instrument that uses the principle of PCI and is considered ideal for 

the purposes of AL monitoring in clinical practice where available (Gifford et al., 2019). It 

permits a range of ocular parameters to be measured using a non-contact technique, which 

avoids the need for topical anaesthesia. The instrument works by producing a dual beam of 

infrared light using a beam splitter and two mirrors, one fixed and the other moveable (see 

Figure 2.2). As the light enters the eye, it rebounds off the retinal pigment epithelium (RPE) 

and the anterior surface of the cornea resulting in four emerging beams. A photodetector 

analyses the interference patterns of the beams which the instrument uses to calculate the AL 

(Santodomingo-Rubido et al., 2002). 
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Figure 2.2 The PCI principle utilised by the IOLMaster 500  
 
 

The IOLMaster 500 is considered to be the gold-standard instrument for taking accurate and 

reliable biometric measures in both adults (Lam et al., 2001; Kielhorn et al., 2003) and children 

(Carkeet et al., 2004; Hussin et al., 2006; Kimura et al., 2007). The PCI method of 

measurement is reported to give greater repeatability and delivers higher resolution measures 

than using more traditional contact methods of determining AL, namely A-scans 

(Santodomingo-Rubido et al., 2002; Carkeet et al., 2004; Hussin et al., 2006). There is 

conjecture relating to agreement between PCI and A-scan methods with some reporting that 

the IOLMaster records consistently higher readings for AL than the latter technique (Goyal et 

al., 2003; Rose and Moshegov, 2003) whereas others have found that the two instrument types 

produce comparable results (Santodomingo-Rubido et al., 2002; Hussin et al., 2006). As the 

non-contact method of PCI records the signal from the RPE whereas A-scans require a degree 

of applanation with the signal originating from the internal limiting membrane (ILM), this may 

explain the measurement differences reported by some. More recent methods of measuring 

IOLMaster: A Practical Operation Guide

Taking Measurements 4-2

☞ Important Note: Unlike A-scan ultrasound, which reflects off the wide cupped

surface of the macula, the IOLMaster beam passes through the translucent

surface of the retina and back further to the more opaque pigment layer. The

computer corrects for this difference.

In addition, the use of contact ultrasound will indent the cornea, thus

decreasing the distance between the cornea and the retina and artificially
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AL, for instance, the swept-source technology embedded within the IOLMaster 700, shows 

good agreement with the PCI method utilised by the IOLMaster 500 (Kunert et al., 2016). 

 

Measures of CC are determined by analysing images taken from the anterior surface of the 

cornea (Elbaz et al., 2007); these measures compare well with those taken by other methods 

including Javal-Schiotz keratometers and videokeratoscopy (Santodomingo-Rubido et al., 

2002; Németh et al., 2003). 

 

Measurement of ACD using the IOLMaster 500 is achieved by projecting a narrow optic 

section, temporal to fixation through the anterior chamber. When the instrument is suitably 

aligned, the operator presses the joystick button to take a photograph. The distance from the 

anterior corneal surface and anterior crystalline lens surface is then calculated. When 

comparing measures taken with different methods, evidence appears equivocal with some 

reporting shorter ACD when measured by the IOLMaster 500 compared to A-scans 

(Santodomingo-Rubido et al., 2002) whereas others have demonstrated the opposite (Lam et 

al., 2001). 

Calibration of the instrument should be checked prior to each measurement session as 

outlined in the manufacturer’s instructions (Carl Zeiss Meditec). To prepare for measurement, 

the patient is asked to fixate on the central fixation light while the practitioner evaluates the 

integrity of the tear film. The practitioner can instruct the patient to blink if the image quality of 

the mires is poor. Using the overview mode, the practitioner should align the 6 illumination 

LEDs around the pupil. A traffic light display helps to identify when the optimum measurement 

position has been achieved, as the light changes from red to yellow and finally, green. 

 

2.5.1 AL and CC measurement 

After performing the initial set up using the overview mode described above, the dual 

measurement mode is selected to capture AL and CC parameters in a single step. Three 
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measures of CC are taken and displayed as a mean value. Five measures of AL are taken 

automatically and reported as a composite AL value with the signal-to-noise-ratio (SNR) 

displayed alongside. For the purposes of experimental data collection, 10 measures of AL 

were taken for each eye. If a measurement point is not correctly identified, a blue flashing dot 

appears indicating that a further measurement should be taken. If the instrument detects any 

measurement errors, for example, deviations within the last three measurements, ‘Evaluation’ 

appears in the display indicating that it should be repeated until the results are within tolerance.  

 

2.5.2 ACD measurement 

After establishing the initial setup using the overview mode, the ACD mode should be selected 

and the patient advised to look straight into the yellow light. As a white light is introduced from 

the side, the patient should be reminded to continue looking at the yellow light only. The 

manufacturer advises that the best results are obtained with dilated pupils and to minimise 

potential reflections from other light sources. The instrument displays an average of 5 readings. 

Measures of ACD were undertaken following cycloplegia at timepoints outlined in Chapters 3 

and 4. 

 

2.6 Central refraction 

Refraction was undertaken prior to instillation of cyclopentolate 1% HCl using standard 

optometric techniques, namely using retinoscopy and subjective methods to evaluate the 

latent and manifest status of refractive error.  

Objective central refraction was undertaken 30 minutes after instillation of the cycloplegic 

agent using the Grand Seiko Auto Ref/Keratometer WAM-5500 autorefractor (Shin-Nippon, 

Rexxam, Japan) (see Figure 2.3). Use of an autorefractor provides more repeatable results 

than subjective refraction or other objective techniques such as retinoscopy and is, therefore, 

the favoured method for use in refractive error studies (Bullimore et al., 1998; Davies et al., 

2003; Mallen et al., 2015). 
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The Grand Seiko Auto Ref/Keratometer WAM-5500 autorefractor has an open-field design 

which permits the use of real-world targets and control over viewing distance, thereby reducing 

the effects of proximal accommodation. As such, this type of instrument has become a 

standard method for use in studies of human refractive error (Logan et al., 2005; O’Donoghue 

et al., 2015; Chamberlain et al., 2019). Use of an LCD display allows easy alignment and 

monitoring of fixation. A target of infrared light is projected onto the retina and the reflection is 

utilised by a moveable lens to focus the device. The output is analysed to provide refraction 

data in sphero-cylindrical form in increments of 0.01 D and axes to 1°. The instrument provides 

reliable and valid objective refraction data over a wide range of refractive errors (Sheppard et 

al., 2010) 

 

 
Figure 2.3 Grand Seiko WAM-5500 autorefractor 
 

2.7 Peripheral refraction 

Peripheral refraction measures were undertaken during the studies outlined in Chapters 3 and 

4 using the Grand Seiko Auto Ref/Keratometer WAM-5500 autorefractor. Open-field 

autorefractors are frequently used to measure changes in both central and peripheral refraction 

over time. Measurements with the Grand Seiko Auto Ref/Keratometer WAM-5500 
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autorefractor show good repeatability although this decreases with eccentricity, particularly at 

measures extending to 40° (Moore and Berntsen, 2014). Perhaps unsurprisingly, repeatability 

has been shown to be better under cycloplegic conditions compared to studies where a 

cycloplegic was not used (Mallen et al., 2001; Davies et al., 2003). 

 

Throughout the experimental chapters (see Chapters 3 and 4), peripheral refraction was 

undertaken under cycloplegic conditions at 30° temporally, 30° nasally, 20° superiorly and 20° 

inferiorly in line with other examples of peripheral refraction work (Mutti et al., 2000; Davies 

and Mallen, 2009; Chen et al., 2010). Participants were asked to fixate Maltese crosses which 

were placed on a wall to achieve the desired eccentricity points for each of the four peripheral 

measures. An average of three readings was recorded for each location. 

 

2.8 Pupil size 

Assessment of pupil size was undertaken as outlined in the experimental chapters (see 

Chapters 3 and 4), mirroring the approach taken by others (Anstice and Phillips, 2011; Lam et 

al., 2014). The size of the pupil was recorded using data obtained from the Grand Seiko Auto 

Ref/Keratometer WAM-5500 autorefractor. The instrument automatically detects the iris 

boundary and superimposes a best-fit circle to determine pupil size (Sheppard et al., 2010). 

Previous work has shown there is a tendency for the instrument to slightly overestimate pupil 

size except at the smaller end of pupil size range (Sheppard et al., 2010). 

 

Pupil size was assessed under photopic and mesopic conditions. Room illumination was 

established, using a digital light meter (LX1330B, Dr.meter, US) as 440 lux and 11 lux in 

photopic and mesopic conditions, respectively; these levels are considered suitable to create 

the intended light levels for each condition (Jones, 2016).  
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2.9 Accommodative lag 

Lag of accommodation occurs when the accommodative effort is lower than that expected for 

a given stimulus. For instance, in experimental Chapters 3 and 4, a target placed at 0.33 m 

provides an accommodative stimulus of 3.00 D. However, an individual’s response to this 

stimulus will often fall short resulting in accommodative lag. As the magnitude of 

accommodative lag appears to be associated with changes to refractive error, namely 

progression of myopia (Gwiazda et al., 2004), and in line with previous work (Anstice and 

Phillips, 2011; Lam et al., 2019; Ruiz-Pomeda et al., 2019), measures were incorporated into 

the experimental protocols outlined in Chapters 3 and 4. 

 

An average of 3 measures of accommodative lag were taken using the Grand Seiko Auto 

Ref/Keratometer WAM-5500 autorefractor. The participant was asked to view a target (Maltese 

cross) at 0.33 m wearing either their spectacle refractive correction in a trial frame or their 

prescribed CLs as outlined in the respective study protocols. Participants viewed the target 

binocularly, but measures of accommodative lag were taken in the dominant eye only (Flitcroft 

and Morley, 1997). Dominance was established using the hole-in-the-card test which involves 

holding a rectangular card with a small hole in it of ~ 3cm in diameter and held at arm’s length. 

In this method, the participant is instructed to view the investigator’s nose through the hole in 

the card (see Figure 2.4); this allows the investigator to identify the participant’s dominant eye.  

 

 
Figure 2.4 Hole-in-the-card method for establishing dominance 
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Some object to the use of so-called ‘sighting dominance’ tests as they fail to identify cases of 

central eye dominance (Portal and Romano, 1988). Nevertheless, in the context of the 

refractive error modulation experiments it is desirable to establish a binary outcome through a 

forced-choice method such as the hole-in-the-card test. Furthermore, the hole-in-the-card test 

is widely used by others (Lopes-Ferreira et al., 2013). 

 

2.10 Amplitude of accommodation 

Amplitude of accommodation is typically measured in clinical practice using a Royal Air Force 

(RAF) rule (Burns et al., 2020) and is also a technique used in refractive error modulation 

studies (Anstice and Phillips, 2011; Lam et al., 2019). The test should be performed with the 

patient’s optimal distance correction in situ (Sterner et al., 2004). There is debate as to whether 

the test should be performed with the target pushed up towards the patient or away from them. 

The result tends to be overestimated when the target is ‘pushed-up’ and underestimated when 

it is ‘pulled-down’ (Rosenfield and Cohen, 1996). Amplitude of accommodation was performed 

with the mean of 3 push-up and 3 pull-down measures as outlined in experimental Chapters 3 

and 4. 

 

2.11 Contrast sensitivity 

Contrast sensitivity (CS) is a useful way to assess visual function in refractive error modulation 

work (Anstice and Phillips, 2011; Lam et al., 2019) by providing more of a real-world measure. 

Whereas VA assesses an individual’s ability to see small objects at high contrast, CS allows 

an assessment at lower contrasts (Koch, 1989; Elliott and Hurst, 1990). The CS function (CSF) 

provides a more complete insight into visual status as VA can be unaffected by certain 

conditions even though peak CS may be reduced (Pelli and Bex, 2013). 

 

CS can be affected for several reasons including pupil miosis, changes to the crystalline lens 

and reduction in retinal luminance (Pelli and Bex, 2013). Both central and peripheral CS can 
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be impaired by wearing MF CLs designed to control myopia progression (Kang et al., 2017; 

Przekoracka et al., 2020).  

 

Central CS was measured at timepoints specified in experimental Chapters 3 and 4 both with 

spectacle and CL correction using a computerised version of the Pelli-Robson chart (Thomson 

Software Solutions, Herts, UK). The Pelli-Robson chart uses triplets of Sloan letters as stimuli, 

which progressively reduce in contrast. As the initial stimuli are presented at high contrast, 

they are easily recognisable by the participant. The use of letters as a target provides a multiple 

forced-choice method which makes it less prone to guessing than other methods. Each triplet 

of letters carries a score of 0.15 log units and the range of CS measured is between 0.00-2.25 

log units. Single letter measurement can be used with each letter scoring 0.05 log units (Elliott 

et al., 1991). Measurement is ceased when the observer identifies 2 or 3 letters within a given 

triplet incorrectly. When the test is conducted at a distance of 1 M, the letters equate to 

approximately 1 CPD allowing measures at low spatial frequency (SF). 

 

2.12 Stereoacuity 

An assessment of stereoacuity provides insight into how visual function may be affected by 

the introduction of novel forms of refractive correction (Lam et al., 2019; Ruiz-Pomeda et al., 

2019), using a test of relatively short duration.  

 

The Frisby Near Stereotest (FNS) (Frisby stereotests, UK) is the most commonly used test in 

clinical practice for measuring stereoacuity, followed by the TNO (Vancleef and Read, 2019). 

However, the TNO appears to be more sensitive at detecting subtle binocular abnormalities, 

for instance, in cases of anisometropia, compared to other tests (Ateiza and Davis, 2019; 

Nabie et al., 2019). 

 

Stereoacuity was measured during specified visits with spectacle and CL correction as outlined 

in experimental Chapters 3 and 4 using the TNO Randot Stereotest (TNO) at a distance of 40 
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cm (Edition 15, Laméris Ootech BV, Netherlands). The test measures resolution of fine texture 

and simulates stereoscopic depth by the horizontal displacement of 2 images while the 

participant wears red/green glasses. The test figures in the screening plates have disparities 

of 2000″ whereas the quantitative plates allow measurement of stereoacuity from 480″ to 

15″ (Charman and Jennings, 1995). Although, no obvious changes have been made to 

different editions of this test, there is evidence to show that results are not comparable 

between, for instance, TNO 13 and TNO 15 (van Doorn et al., 2014). Nevertheless, for the 

purposes of the experiments here, a single edition was used consistently throughout the data 

collection points.  

 

Visual correction with MF lenses, including those designed for myopia control do not appear 

to significantly affect stereoacuity (Sha et al., 2015; Kang and Wildsoet, 2016; Ruiz-Pomeda 

et al., 2018). Nevertheless, measures of stereoacuity with novel forms of visual correction in 

situ offers value in understanding the visual impact of these interventions on participants. 

Furthermore, it is important to establish if improvements to stereoacuity can be achieved by 

taking this unique approach to vision correction in iso- and anisohyperopes.  

 

2.13 CLs 

CLs were used as the optical intervention outlined in Chapters 3 and 4. Monthly disposable 

Biofinity multifocal (centre-near design with an add power of +2.00 D) and Biofinity SV CLs 

were supplied by CooperVision under the following terms: 

‘The CLs in the study were supplied free of charge by CooperVision. CooperVision did not 

sponsor the research and does not support or have an opinion regarding any of the content in 

the study.’ A +2.00 D add was selected in line with previous refractive error modulation studies 

studies (Anstice and Phillips, 2011; Walline et al., 2013; Chamberlain et al., 2019a) and aimed 

to strike a balance between ensuring adequate visual performance (Sha et al., 2015) while 

imposing peripheral defocus at a level sufficient to test the hypothesis (Walline et al., 2020).   
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Biofinity multifocal CLs are manufactured using a silicone hydrogel material (comfilcon A) with 

a low modulus and high oxygen transmissibility (Dk/t) of 142 and 160 for the MF and SV 

modalities, respectively. The MF design is available in centre-distance and centre-near 

designs with add powers in 0.50 D increments from +1.00 D to +2.50 D (CooperVision, UK). 

Use of silicone hydrogel versus hydrogel material reportedly reduces limbal hyperaemia 

(Maldonado-Codina et al., 2004) and mitigates for the risk of hypoxic changes that can arise 

with low Dk/t CLs (Covey et al., 2001). CLs appear to be safe for children to wear with scarce 

reports of serious complications in Europe and the US (Bullimore, 2017). Adverse events from 

clinical trials involving children and CLs are not widely reported (Bullimore, 2017). Interestingly, 

the rate of corneal infiltrative events in young CL wearers is no higher than in adults and in the 

range of 8 to 11 years, it may be markedly lower (Bullimore, 2017). 

 

Measures of the power profile of Biofinity multifocal centre-distance lenses show that they have 

a constant power in the central 1.5 mm zone with an annular zone where the power increases 

almost linearly and finally an outer zone demonstrating a slow, linear increase in power that is 

almost independent of the add power (Plainis et al., 2013). The centre-near design is broadly 

similar to the centre-distance design (Plainis et al., 2013). In the centre-distance design, the 

change between the distance to near zone power occurs from 1.6 mm to 2.1 mm radius. In the 

centre-near design, the transition from the near to distance zone power occurs from 1.2 mm 

to 2.0 mm radius. The measured add amplitude between the 1.6 mm to 2.1 mm zone for a 

nominal add power of 2.00 D in the centre-distance design has been reported as 1.01 D. 

However, for the centre-near design, the power between the 1.6 mm to 2.1 mm zone has been 

shown to be much closer to its nominal add of 2.00 D being measured at 1.83 D (Kim et al., 

2017). 

 

Previous CL wear was stated as an exclusion criterion for the studies outlined in Chapters 3 

and 4; this was due to the recognised variability in peripheral power profiles across different 
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SV CL designs, which could potentially impact upon peripheral refractive error (Wagner et al., 

2015). 
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3.0 Effect of peripheral defocus on axial growth and refractive error in children with 

isohyperopia 

 

3.1 Introduction 

Despite the known visual consequences and pathological implications of hyperopia (see 

1.3.2.1), there has been inertia to address the modulation of refractive error in this cohort of 

individuals. Given the extensive literature, which reveals the ability to both accelerate and 

retard axial growth in a range of species (see 1.4.3), it seems plausible that these principles 

could be applied to children with hyperopia.  

 

Peripheral refraction measures differ between myopes and hyperopes as a result of retinal 

shape (see 1.4.5); myopes typically exhibit RPH whereas hyperopes tend to be relatively 

myopic in the periphery. As discussed previously (see 1.5.4.2), soft centre-distance BF CLs 

have been used as a myopia management strategy in children by correcting distance refractive 

error through the central optic zone, while simultaneously reducing RPHD through the outer 

optic zone. For hyperopes, using soft centre-near BF CLs to correct distance refractive error 

through the central optic zone, while simultaneously imposing RPHD through the outer optic 

zone, could provide a stimulus to axial growth (see Figure 3.1). For example, a child with 5.00 

D of hyperopia could be fitted with a centre-near CL with a prescription of +3.00 D add +2.00 

D; this specification would provide 5.00 D of refractive correction in the central portion, while 

imposing 2.00 D of relative hyperopia in the periphery. 

 

Hitherto, there has been no attempt to impose RPHD to modulate refractive error and axial 

growth in human isohyperopes. 
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Figure 3.1 Schematic to demonstrate RPHD imposed with a centre-near BF CL while full 
refractive error is corrected centrally 
 

3.2 Objective 

The objective of this clinical trial was to understand the natural progression of axial eye growth 

and refractive error in children with isohyperopia. Considering the paucity of literature to date, 

this work sought to establish whether axial eye growth and refractive error could be modified 

in this cohort by imposing relative hyperopic defocus bilaterally using MF CLs.  

 

3.3 Methods 

Suitable candidates for the study were recruited by displaying notices at the research venues. 

Potential participants were also sourced through a database search at the research venues to 

identify individuals that met the age and refractive error inclusion criteria.  

 

Participants were allocated to 1 of 2 groups: 

(1) Natural progression group: refractive error and axial growth was followed over a 3-year 

period with recruitment open to hyperopes aged between 5 and <20 years-of-age to gain an 

understanding of natural progression of these parameters in the specified cohort. This arm of 
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the study did not involve an intervention and therefore served as a control group for the clinical 

trial. 

(2) Hyperopic intervention group: for the intervention arm of the trial, hyperopes wore centre-

near MF soft CLs (See Chapter 2.11) between the 6- and 30-month timepoints of the 3-year 

trial. The CLs provided clear central vision at both distance and near through the near central 

zone while simultaneously exposing the retina to RPHD from the outer distance zone. 

Participants aged between 8 and <16 years-of-age were recruited for this arm of the study. 

 

Sample size calculation indicated that 22 participants would be required to achieve 80% power 

for an effect size of 0.25 at a significance level of 5% using a mixed factor repeated measures 

ANOVA design (G*Power 3.1, Franz Faul, Universität Kiel, Germany). The aim was to recruit 

28 participants to allow for an attrition rate of 20%. Allocation to the respective arms of the 

study was not randomised. Individuals who were willing and able to use CLs were given the 

opportunity to be included in the CL arm of the study in the first instance; those who did not 

want to wear, were unable to handle, or considered unsuitable for CLs, were given the 

opportunity to participate in the natural progression arm of the study.  

 

Prior to commencing the research, ethical approval was obtained from both the National Health 

Service Health Research Authority (see Appendix 1) and Aston University’s Research Ethics 

Committees (see Appendix 2) with the study designed to follow the tenets of the Declaration 

of Helsinki. Each participant, and their parent or guardian where appropriate, was given 

detailed information regarding the nature of the study, both verbally and in written form; this 

allowed informed consent and assent to take place prior to participation. The participants were 

required to complete a short questionnaire to ensure that they met the inclusion criteria (see 

Appendix 3). The programme of research was registered as a clinical trial: ClinicalTrials.gov 

NCT02686879. The participant’s general practitioner was notified of their inclusion in the study 

(see Appendix 4).  
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Inclusion criteria were as follows: 

• Aged between 5 and < 20 years-of-age at the initial examination for the natural progression 

group 

• Aged between 8 and < 16 years-of-age at the initial examination for the intervention group 

• For participants < 16 years-of-age, parents must have read, understood and signed the 

informed consent form (see Appendix 5) 

• Participants must have read, understood and signed the consent or assent form as 

appropriate (see Appendix 6 and 7) 

• Participants in the intervention group agreed to wear the prescribed CLs for a minimum of 

10 hours per day, at least 6 days per week for the 2-year duration of the intervention period 

• Be in good general health with no contraindications to CL wear 

• Maximum manifest spherical refractive error of +6.00 D 

• Maximum manifest cylindrical refractive error of -1.00 D 

• Maximum manifest anisometropia of 1.00 D (mean spherical error)  

• Minimum mean post-cycloplegic spherical refractive error of +2.00D in the more hyperopic 

eye for inclusion in the intervention group 

• Be competent at handling CLs and understand the instructions given to ensure safe wear. 

 

Exclusion criteria were as follows: 

• Previous CL wear  

• Participating in another clinical study 

• Regular use of medication to treat ocular conditions 

• Current use of systemic medication that could impact upon successful CL wear or affect 

focusing ability 

• Known ocular or systemic disease 

• Findings identified during CL assessment that would preclude CL wear 
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• Participants who were not able to provide informed consent without the aid of an interpreter 

due to lack of funding available for the provision of this facility. 

 

A summary of the procedures conducted at each visit are detailed below and in Table 3.1 and 

Table 3.2, for the intervention and control groups, respectively. Visits 1 to 7 were undertaken 

at 6-monthly intervals (± 2 weeks) for all participants. For participants in the intervention group, 

CL fitting, CL aftercare at 1 to 2 weeks after the initial fitting and CL aftercare 1 month after the 

first aftercare were also scheduled. At visit 1, all participants completed a background 

questionnaire (see Appendix 3) to elicit detail of previous ocular history and general health 

status. At visits 2 to 8, all participants completed a follow-up questionnaire (see Appendix 8) 

to elicit detail of any changes to ocular history and general health status. 

 

Procedure Visit 
1 

Visit 
2a 

Visit 
2b 

Visit 
2c 

Visit 
3 

Visit 
4 

Visit 
5 

Visit 
6 

Visit 
7 

Unaided DV ✅ ✅   ✅ ✅ ✅ ✅ ✅ 

Subjective refraction ✅ ✅   ✅ ✅ ✅ ✅ ✅ 

DVA ✅ ✅   ✅ ✅ ✅ ✅ ✅ 

NVA ✅ ✅   ✅ ✅ ✅ ✅ ✅ 
Lag of 

accommodation ✅ ✅   ✅ ✅ ✅ ✅ ✅ 

Lag with CL in situ     ✅  ✅   
Amplitude of 

accommodation ✅ ✅   ✅ ✅ ✅ ✅ ✅ 

Stereoacuity ✅ ✅   ✅ ✅ ✅ ✅ ✅ 
Stereoacuity with CL 

in situ     ✅  ✅   

Cover test ✅ ✅   ✅ ✅ ✅ ✅ ✅ 

CC ✅ ✅   ✅ ✅ ✅ ✅ ✅ 
Slit lamp 

examination ✅ ✅    ✅  ✅ ✅ 

AL ✅ ✅   ✅ ✅ ✅ ✅ ✅ 

IOP ✅ ✅    ✅  ✅ ✅ 
Post-cycloplegic 
autorefraction ✅ ✅    ✅  ✅ ✅ 
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Peripheral refraction ✅ ✅    ✅  ✅ ✅ 

CS  ✅      ✅ ✅ 

CS with CL in situ   ✅     ✅  

ACD ✅ ✅   ✅   ✅ ✅ 

Pupil size     ✅     

CL fitting  ✅        

CL aftercare   ✅ ✅ ✅ ✅ ✅ ✅  
Central refraction 

with CL in situ     ✅     

Peripheral refraction 
with CL in situ     ✅     

Table 3.1 Procedures undertaken for participants in the intervention group at each visit 

 

Procedure Visit 
1 

Visit 
2 

Visit 
3 

Visit 
4 

Visit 
5 

Visit 
6 

Visit 
7 

Unaided DV ✅ ✅ ✅ ✅ ✅ ✅ ✅ 

Subjective refraction ✅ ✅ ✅ ✅ ✅ ✅ ✅ 

DVA ✅ ✅ ✅ ✅ ✅ ✅ ✅ 

NVA ✅ ✅ ✅ ✅ ✅ ✅ ✅ 
Lag of 

accommodation ✅ ✅ ✅ ✅ ✅ ✅ ✅ 

Amplitude of 
accommodation ✅ ✅ ✅ ✅ ✅ ✅ ✅ 

Stereoacuity ✅ ✅ ✅ ✅ ✅ ✅ ✅ 

Cover test ✅ ✅ ✅ ✅ ✅ ✅ ✅ 

CC ✅ ✅ ✅ ✅ ✅ ✅ ✅ 
Slit lamp 

examination ✅ ✅  ✅  ✅ ✅ 

AL ✅ ✅ ✅ ✅ ✅ ✅ ✅ 

IOP ✅ ✅  ✅  ✅ ✅ 
Post-cycloplegic 
autorefraction ✅ ✅  ✅  ✅ ✅ 

Peripheral refraction ✅ ✅  ✅  ✅ ✅ 

CS  ✅    ✅ ✅ 

ACD ✅ ✅  ✅  ✅ ✅ 
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Pupil size   ✅     
Table 3.2 Procedures undertaken for participants in the control group at each visit 

 

3.4 Statistical analysis 

All data were analysed using the commercially available software, SPSS, v. 25, IBM, New 

York, U.S.A. Data were examined with mixed factor repeated measures analysis of variance 

(ANOVA) with one within-subject factor (time) and one between-subject factor (intervention or 

control). Bonferroni correction was applied and a significance level of α < 0.05 used throughout 

(Armstrong et al., 2011; Armstrong et al., 2002). Where within-subject factors had three 

categories or more, sphericity was considered with Greenhouse-Geisser results reported 

where appropriate. For the primary outcome measures, the mean longitudinal change to AL 

was the same for right and left eyes (F1,10 = 0.678, P = 0.429); this was also the case for post-

cycloplegic refractive error (F1,10 = 0.281, P = 0.608). As such data is presented for the right 

only, which was selected at random (Armstrong, 2013). 

 

3.5 Results  

Data were analysed to compare the primary (see 3.5.1) and secondary (see 3.5.2) outcome 

measures for the intervention group and control group.  

 

28 participants were recruited in total, with 16 in the intervention group and 12 in the control 

group. Due to attrition, 5 participants in the intervention group and 2 participants in the control 

group did not complete the study, with 1 participant transferring from the intervention group to 

the control group at the second visit (see Table 3.3). In total, 22 participants completed the trial 

with 11 in the intervention group (8 females and 3 males) with an age range at baseline of 

8.42-13.5 years (mean 11.13 SD 1.72 years); these data were normally distributed 

(Kolmogorov-Smirnov, Z = 0.166, P = 0.200). The control group consisted of 11 participants 

(9 females and 2 males) with an age range of 8.33-13.92 years (mean 11.42 SD 2.23 years); 

these data were normally distributed (Kolmogorov-Smirnov, Z = 0.187, P = 0.200). The groups 
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were age-matched (unpaired t-test: t = 0.348, df = 20, P = 0.732). The data presented 

throughout this chapter are for participants that completed the full trial. 

 

Group Timepoint (months) Reason for drop out 

Intervention 6 Difficulty with lens handling 

Intervention 6 Cosmetic appearance; transferred to control group 

Intervention 8 Difficulty with lens handling 

Intervention 9 Poor CL compliance 

Intervention 10 Parent cited ‘external issues’ 

Control 7 Moved away 

Control 12 Lost to follow up 
Table 3.3 Summary of attrition in the intervention and control groups 
 

A summary of descriptive data from questionnaires undertaken at each visit is detailed in Table 

3.4 and Table 3.5 for the intervention group and control group, respectively.  

 Visit 1 Follow up visits 

Participant History Medication Notes 

1 Full time spectacles at 4 years of age Nil Spectacles part-
time from Visit 5 

2 Full time spectacles at 2 years of age Nil  

3 Spectacles at 6 years of age for concentrated 
tasks Nil  

4 Full time spectacles at 15 months of age Ventolin  

5 Full time spectacles at 2 years of age Salbutamol Beclometasone 
PRN 

6 Full time spectacles at 6 years of age Desmopressi
n 

No medication 
from Visit 2 

7 Full time spectacles at 5 years of age Nil  

8 Full time spectacles at 3 years of age Nil  

9 Full time spectacles at 4 years of age Nil  

10 Full time spectacles at 4 years of age Nil  

11 Spectacles at 6 years of age for concentrated 
tasks Nil  

Table 3.4 Summary of key information from questionnaires for the intervention group 
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 Visit 1 Follow up visits 

Participant History Medication Notes 

1 Full time spectacles at 6 years of age Nil  

2 Spectacles at 9 years of age for concentrated 
tasks Salbutamol No medication 

from Visit 4 
3 Full time spectacles at 6 years of age Nil  

4 Full time spectacles at 4 years of age Nil  

5 Spectacles at 7 years of age for concentrated 
tasks Nil  

6 Full time spectacles at 8 years of age Nil  

7 Full time spectacles at 5 years of age Nil  

8 Full time spectacles at 4 years of age Nil  

9 Full time spectacles at 4 years of age Nil  

10 Full time spectacles at 5 years of age Nil  

11 Full time spectacles at 2 years of age. 
Occlusion therapy not adhered to Nil  

Table 3.5 Summary of key information from questionnaires for the control group 

 

3.5.1 Primary outcome measures 

 

3.5.1.1 Axial growth  

 

Main findings: 

• AL increased over time (F (6, 120) = 27.091, P < 0.0005) for the intervention group but 

not the control group (F (6, 120) = 4.663, P < 0.0005). Observed power was 0.986 

• For the intervention group, AL did not change during the first 6 months prior to CL wear 

(P = 1.000). Axial growth accelerated throughout the 2 years of intervention (P = < 

0.0005) but did not change once the intervention was withdrawn for the final 6 months 

of the trial 

• For the control group, AL did not change across the 3-year period (P = 0.466). 
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Pairwise comparisons for between-visit analysis (see Figure 3.2 and Table 3.6) showed that 

for the intervention group, AL did not change from baseline to the 6-month timepoint (P = 

1.000). However, when the intervention was introduced, axial growth accelerated between the 

6- and 12-month timepoints (P = 0.003), 12- and 18-month timepoints (P = 0.009), 18- and 24-

month timepoints (P = 0.005), and 24- and 30-month timepoints (P = 0.027). Once the 

intervention was withdrawn, AL did not change between the 30- and 36-month timepoints (P = 

1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 3.2 and Table 3.6) showed that 

for the control group, AL did not change from baseline to the 6-month timepoint (P = 1.000), 

nor between the 6- and 12-month timepoints (P = 0.496), 12- and 18-month timepoints (P = 

1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month timepoints (P = 1.000) and 

the 30- and 36-month timepoints (P = 1.000). 

 

Due to the inclusion of amblyopes in the study, the analysis was repeated with data removed 

for the two participants in each group that fell into this category. Reanalysis showed that the 

key outcome did not change, that is to say, AL increased over time (F (6, 96) = 19.905, P < 

0.0005) for the intervention group but not the control group (F (6, 96) = 2.859, P = 0.013). 

Observed power was 0.871. 
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Figure 3.2 Change in AL (mean ± standard error of the mean (SEM)) 
 

 

 

Timepoint (months) AL (mm) 

Baseline 21.45 ± 0.27 21.81 ± 0.27 

6 21.46 ± 0.27 21.83 ± 0.27 

12 21.50 ± 0.27 21.85 ± 0.28 

18 21.54 ± 0.27 21.86 ± 0.27 

24 21.60 ± 0.28 21.88 ± 0.28 

30 21.63 ± 0.29 21.89 ± 0.28 

36 21.65 ± 0.30 21.91 ± 0.28 

 Intervention (n = 11) Control (n = 11) 
Table 3.6 AL at each visit (mean ± SEM). Intervention period shaded red 
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3.5.1.2 Post-cycloplegic refractive error 

 

Main findings: 

• Post-cycloplegic MSE refractive error decreased over time (F (4, 80) = 6.572, P < 0.0005) 

by a similar amount in both the intervention and control groups (F (4, 80) = 1.463, P = 

0.221) 

• Observed power was 0.435 and partial η2 was 0.068. 

   

Post-cycloplegic MSE refractive error at baseline for the intervention group and the control 

group were the same (unpaired t-test: t = 1.645, df = 20, P = 0.116). 

 

Pairwise comparisons for between-visit analysis (see Figure 3.3 and Table 3.7) showed that 

for the intervention group, post-cycloplegic MSE refractive error did not change from baseline 

to the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 0.817), 

18- and 30-month timepoints (P = 1.000), and the 30- and 36-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 3.3 and Table 3.7) showed that 

for the control group, post-cycloplegic MSE refractive error did not change from baseline to the 

6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 18- 

and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 0.628). 

 

As with AL measures, the data were reanalysed with removal of amblyopic participants. Once 

again, the outcome remained the same with post-cycloplegic MSE refractive error decreasing 

over time (F (4, 64) = 5.260, P = 0.001) by a similar amount in both the intervention and control 

groups (F (4, 64) = 1.161, P = 0.336). Observed power was 0.344 and partial η2 was 0.068. 
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Figure 3.3 Change in MSE post-cycloplegic central refraction (mean ± SEM) 
 

 

Timepoint (months) Refractive error (D) 

Baseline +5.23 ± 0.68 +3.78 ± 0.57 

6 +5.19 ± 0.67 +3.75 ± 0.56 

18 +5.04 ± 0.72 +3.80 ± 0.56 

30 +4.93 ± 0.72 +3.76 ± 0.60 

36 +4.76 ± 0.69 +3.54 ± 0.59 

 Intervention (n = 11) Control (n = 11) 
Table 3.7 MSE post-cycloplegic central refractive error at each visit (mean ± SEM). 
Intervention period shaded red 
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3.5.2 Secondary outcome measures 

 

3.5.2.1 Unaided DV 

 

Main findings: 

• Unaided DV was similar for the intervention and control groups (F (1, 20) = 2.607, P = 

0.122) and did not change over time (F (6, 120) = 1.099, P = 0.367) in either group (F (6, 

120) = 0.536, P = 0.780). 

 

Pairwise comparisons for between-visit analysis (see Figure 3.4 and Table 3.8) showed that 

for the intervention group, unaided DV did not change from baseline to the 6-month timepoint 

(P = 1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-month 

timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month timepoints 

(P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 3.4 and Table 3.8) showed that 

for the control group, unaided DV did not change from baseline to the 6-month timepoint (P = 

1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-month timepoints 

(P = 1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month timepoints (P = 

1.000), and the 30- and 36-month timepoints (P = 1.000). 
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Figure 3.4 Change in unaided DV at 6 m (mean ± SEM) 
 

 

Timepoint (months) DV (LogMAR) 

Baseline 0.21 ± 0.10 0.06 ± 0.05 

6 0.22 ± 0.09 0.06 ± 0.05 

12 0.22 ± 0.09 0.04 ± 0.05 

18 0.21 ± 0.09 0.04 ± 0.05 

24 0.20 ± 0.09 0.03 ± 0.05 

30 0.21 ± 0.09 0.04 ± 0.05 

36 0.20 ± 0.09 0.04 ± 0.05 
 Intervention (n = 11) Control (n = 11) 

Table 3.8 Unaided DV at 6 m at each visit (mean ± SEM). Intervention period shaded red 
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3.5.2.2 Spectacle DVA 

 

Main findings: 

• Spectacle DVA was similar for the intervention and control groups (F (1, 20) = 2.996, P = 

0.099) and did not change over time (F (6, 120) = 0.647, P = 0.692) in either group (F (6, 

120) = 0.713, P = 0.640).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.5 and Table 3.9) showed that 

for the intervention group, spectacle DVA did not change from baseline to the 6-month 

timepoint (P = 1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-

month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month 

timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 3.5 and Table 3.9) showed that 

for the control group, spectacle DVA did not change from baseline to the 6-month timepoint (P 

= 1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-month 

timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month timepoints 

(P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 
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Figure 3.5 Change in spectacle DVA at 6 m (mean ± SEM) 
 

 

Timepoint (months) DVA (LogMAR) 

Baseline 0.02 ± 0.04 -0.06 ± 0.03 

6 0.03 ± 0.04 -0.07 ± 0.02 

12 0.00 ± 0.03 -0.07 ± 0.03 

18 0.00 ± 0.03 -0.07 ± 0.03 

24 -0.02 ± 0.03 -0.07 ± 0.03 

30 0.00 ± 0.04 -0.07 ± 0.03 

36 -0.01 ± 0.03 -0.06 ± 0.03 

 Intervention (n = 11) Control (n = 11) 
Table 3.9 Spectacle DVA at 6 m at each visit (mean ± SEM). Intervention period shaded red 
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3.5.2.3 Spectacle DVA versus CL DVA 

 

Main findings: 

• DVA was better with spectacles than CLs (F (1, 10) = 29.321, P < 0.0005) and improved 

over time (F (4, 40) = 4.061, P = 0.007) with both forms of correction (F (4, 40) = 1.315, P = 

0.281). 

 

Pairwise comparisons for between-visit analysis (see Figure 3.6 and Table 3.10) showed that 

with spectacle correction, DVA did not change between the 6- and 12-month timepoints (P = 

0.911), 12- and 18-month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), 

nor the 24- and 30-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 3.6 and Table 3.10) showed that 

with CL correction, DVA did not change between the 6- and 12-month timepoints (P = 0.286), 

12- and 18-month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), nor the 

24- and 30-month timepoints (P = 1.000). 
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Figure 3.6 Change in spectacle DVA versus CL DVA at 6 m throughout the intervention period 
(mean ± SEM). Measures at the initial timepoint taken at the first CL aftercare visit 
 

 

Timepoint (months) DVA (LogMAR) 

6 0.03 ± 0.04 0.16 ± 0.03 

12 0.00 ± 0.03 0.10 ± 0.03 

18 0.00 ± 0.03 0.09 ± 0.02 

24 -0.02 ± 0.03 0.08 ± 0.03 

30 0.00 ± 0.04 0.09 ± 0.03 

 Spectacles (n = 11) CLs (n = 11) 
Table 3.10 Spectacle DVA versus CL DVA at 6 m throughout the intervention period (mean ± 
SEM). Measures at the initial timepoint taken at the first CL aftercare visit 
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3.5.2.4 Spectacle NVA 

 

Main findings: 

• Spectacle NVA was similar for the intervention and control groups (F (1, 20) = 1.999, P = 

0.173) and improved over time (F (6, 120) = 8.289, P < 0.0005) in both groups (F (6, 120) = 

0.996, P = 0.432).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.7 and Table 3.11) showed that 

for the intervention group, spectacle NVA did not change from baseline to the 6-month 

timepoint (P = 1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-

month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month 

timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 3.7 and Table 3.11) showed that 

for the control group, spectacle NVA did not change from baseline to the 6-month timepoint (P 

= 1.000), nor between the 6- and 12-month timepoints (P = 1.000). There was an improvement 

in mean spectacle NVA between the 12- and 18-month timepoints (P = 0.02) but not between 

the 18- and 24-month timepoints (P = 1.000), 24- and 30-month timepoints (P = 1.000), nor 

the 30- and 36-month timepoints (P = 1.000). 
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Figure 3.7 Change in spectacle NVA at 0.25 m (mean ± SEM) 
 

 

Timepoint (months) NVA (LogMAR) 

Baseline 0.23 ± 0.03 0.18 ± 0.03 

6 0.23 ± 0.03 0.16 ± 0.02 

12 0.21 ± 0.03 0.18 ± 0.04 

18 0.19 ± 0.03 0.13 ± 0.03 

24 0.18 ± 0.03 0.12 ± 0.03 

30 0.18 ± 0.03 0.13 ± 0.03 

36 0.15 ± 0.02 0.13 ± 0.02 

 Intervention (n = 11) Control (n = 11) 
Table 3.11 Spectacle NVA at 0.25 m at each visit (mean ± SEM). Intervention period shaded 
red  
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3.5.2.5 Spectacle NVA versus CL NVA 

 

Main findings: 

• NVA was better with spectacles than CLs (F (1, 10) = 12.000, P = 0.006) and improved 

over time (F (4, 40) = 5.152, P = 0.002) with both forms of correction (F (4, 40) = 0.154, P = 

0.960). 

 

Pairwise comparisons for between-visit analysis (see Figure 3.8 and Table 3.12) showed that 

with spectacle correction, NVA did not change between the 6- and 12-month timepoints (P = 

1.000), 12- and 18-month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), 

nor 24- and 30-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 3.8 and Table 3.12) showed that 

with CL correction, NVA did not change between the 6- and 12-month timepoints (P = 0.816), 

12- and 18-month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), nor 24- 

and 30-month timepoints (P = 1.000). 
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Figure 3.8 Change in spectacle NVA versus CL NVA at 0.25 m throughout the intervention 
period (mean ± SEM). Measures at the initial timepoint taken at the first CL aftercare visit 
 

 

Timepoint (months) NVA (LogMAR) 

6 0.23 ± 0.03 0.26 ± 0.02 

12 0.21 ± 0.03 0.24 ± 0.02 

18 0.19 ± 0.03 0.22 ± 0.03 

24 0.18 ± 0.03 0.22 ± 0.02 

30 0.18 ± 0.03 0.22 ± 0.02 

 Spectacles (n = 11) CLs (n = 11) 
Table 3.12 Spectacle NVA versus CL NVA at 0.25 m throughout the intervention period (mean 
± SEM). Measures at the initial timepoint taken at the first CL aftercare visit 
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3.5.2.6 Stereoacuity with spectacle correction 

 

Main findings: 

• Stereoacuity with spectacles was similar for the intervention and control groups (F (1, 18) 

= 0.856, P = 0.367) and did not change over time (F (6, 108) = 0.838, P = 0.544) for either 

group (F (6, 120) = 0.350, P = 0.908).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.9 and Table 3.13) showed that 

for the intervention group, stereoacuity did not change from baseline to the 6-month timepoint 

(P = 1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-month 

timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month timepoints 

(P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 3.9 and Table 3.13) showed that 

for the control group, stereoacuity did not change from baseline to the 6-month timepoint (P = 

1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-month timepoints 

(P = 1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month timepoints (P = 1.000) 

and the 30- and 36-month timepoints (P = 1.000). 
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Figure 3.9 Change in stereoacuity with spectacle correction (mean ± SEM). Excludes 
participants that were unable to complete the grading plates 
 

 

Timepoint (months) Stereoacuity (arcsec) 

Baseline 144.00 ± 41.18 99.00 ± 42.44 

6 132.00 ± 39.80 102.00 ± 42.00 

12 150.00 ± 40.25 111.00 ± 41.96 

18 126.00 ± 40.45 90.00 ± 18.44 

24 113.33 ± 17.61 98.18 ± 22.88 

30 133.33 ± 45.28 130.91 ± 40.53 

36 126.67 ± 45.93 136.36 ± 53.73 

 Intervention (n = 10) Control (n = 10) 
Table 3.13 Stereoacuity at each visit (mean ± SEM). Intervention period shaded red. Excludes 
participants that were unable to complete the grading plates 
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3.5.2.7 Stereoacuity: spectacle correction versus CL correction 

 

Main findings: 

• Stereoacuity was better with spectacles than CLs (F (1, 9) = 7.071, P = 0.026) and did 

not change over time (F (1, 9) = 0.000, P = 1.000) with either form of correction (F (1, 9) = 

3.692, P = 0.087). 

 

Pairwise comparisons for between-visit analysis (see Table 3.14) showed that with spectacle 

correction, stereoacuity was similar at the 12- and 24-month timepoints (P = 0.373). 

 

Pairwise comparisons for between-visit analysis (see Table 3.14) showed that with CL 

correction, stereoacuity did not change between the 12- and 24-month timepoints (P = 0.168). 

 

Timepoint (months) Stereoacuity (arcsec) 

12 150.00 ± 40.25 192.00 ± 50.44 

24 126.00 ± 20.88 216.00 ± 49.15 

 Spectacles (n = 10) CLs (n = 10) 
Table 3.14 Stereoacuity with spectacle correction versus CL correction (mean ± SEM). 
Intervention period shaded red. Excludes 1 participant who was unable to complete the grading 
plates 
 

 

3.5.2.8 Cover test with spectacle correction 

A summary of binocular status with spectacle correction at distance and near for the 

intervention and control participants is detailed in Table 3.15 and Table 3.16, respectively. 
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 Cover test 

Participant Distance at 6 m Near at 0.25 m 

1 Orthophoria Orthophoria 

2 Orthophoria Orthophoria 

3 Orthophoria Orthophoria 

4 Small esophoria Small esophoria 

5 Orthophoria Orthophoria 

6 Right esotropia Right esotropia 

7 Alternating 
esotropia 

Alternating 
esotropia 

8 Orthophoria Orthophoria 

9 Orthophoria Orthophoria 

10 Orthophoria Orthophoria 

11 Right esotropia Right esotropia 
Table 3.15 Cover test with spectacle correction at distance and near for the intervention group 
 

 

 Cover test 

Participant Distance at 6 m Near at 0.25 m 

1 Orthophoria Orthophoria 

2 Orthophoria Orthophoria 

3 Orthophoria Orthophoria 

4 Orthophoria Small exophoria 

5 Orthophoria Orthophoria 

6 Orthophoria Orthophoria 

7 Orthophoria Small exophoria 

8 Orthophoria Orthophoria 

9 Orthophoria Small exophoria 

10 Orthophoria Orthophoria 

11 Left esotropia Left esotropia 
Table 3.16 Cover test with spectacle correction at distance and near for the control group 
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3.5.2.9 CS with spectacle correction 
 

 
Main findings: 

• CS with spectacle correction was better in the control group than the intervention group 

(F (1, 20) = 5.125, P = 0.035). This measure did not change over time (F (2, 40) = 1.296, P 

= 0.285) in either group (F (2, 40) = 0.432, P = 0.652).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.10 and Table 3.17) showed that 

for the intervention group, CS with spectacle correction did not change between the 6- and 30-

month timepoints (P = 1.000), nor between the 30- and 36-month timepoints (P = 0.716). 

 

Pairwise comparisons for between-visit analysis (see Figure 3.10 and Table 3.17) showed that 

for the control group, CS with spectacle correction was the same between the 6- and 30-month 

timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

 
Figure 3.10 Change in CS with spectacle correction at 1 m (mean ± SEM) 
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Timepoint (months) Log CS (CPD) 

6 1.51 ± 0.04 1.62 ± 0.03 

30 1.53 ± 0.03 1.62 ± 0.03 

36 1.57 ± 0.02 1.64 ± 0.03 
 Intervention (n = 11) Control (n = 11) 

Table 3.17 CS with spectacle correction at 1 m. Intervention period shaded red 

 

3.5.2.10 CS: spectacle correction versus CL correction 

 

Main findings: 

• CS was similar with spectacle correction and CL correction (F (1, 10) = 0.000, P = 1.000) 

and did not change over time (F (1, 10) = 1.379, P = 0.267) with either form of correction 

(F (1, 10) = 1.000, P = 0.341). 

 

Pairwise comparisons for between-visit analysis (see Table 3.18) showed that with spectacle 

correction, CS was similar at the 6- and 30-month timepoints (P = 0.588). 

 

Pairwise comparisons for between-visit analysis (see Table 3.18) showed that with CL 

correction, CS was similar at the 6- and 30-month timepoints (P = 0.192). 

 

Timepoint (months) Log CS (Cycles per degree) (CPD)) 

6 1.51 ± 0.04 1.50 ± 0.03 

30 1.53 ± 0.03 1.54 ± 0.03 

 Spectacles (n = 11) CLs (n = 11) 
Table 3.18 CS with spectacle correction versus CL correction at 1 m (mean ± SEM). 
Intervention period shaded red. Measures at the first timepoint taken at the first CL aftercare 
visit 
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3.5.2.11 CC 

 

Main findings: 

• CC was similar for the intervention and control participants (F (1, 20) = 0.578, P = 0.456) 

and did not change over time (F (6, 120) = 0.547, P = 0.772) in either group (F (6, 120) = 

0.525, P = 0.788).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.11 and Table 3.19) showed that 

for the intervention group, CC did not change from baseline to the 6-month timepoint (P = 

1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-month timepoints 

(P = 1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month timepoints (P = 1.000) 

and the 30- and 36-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 3.11 and Table 3.19) showed that 

for the control group, CC did not change from baseline to the 6-month timepoint (P = 1.000), 

nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-month timepoints (P = 

1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month timepoints (P = 1.000) and 

the 30- and 36-month timepoints (P = 1.000). 
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Figure 3.11 Change in CC (mean ± SEM) 
 

 

Timepoint (months) CC (mm) 

Baseline 7.80 ± 0.08 7.71 ± 0.09 

6 7.80 ± 0.08 7.70 ± 0.10 

12 7.79 ± 0.08 7.72 ± 0.09 

18 7.81 ± 0.08 7.71 ± 0.09 

24 7.79 ± 0.08 7.70 ± 0.09 

30 7.80 ± 0.08 7.71 ± 0.09 

36 7.80 ± 0.08 7.70 ± 0.09 
 Intervention (n = 11) Control (n = 11) 

Table 3.19 CC at each visit (mean ± SEM). Intervention period shaded red 
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3.5.2.12 ACD 

 

Main findings: 

• ACD was similar for the intervention and control groups (F (1, 20) = 1.167, P = 0.293). 

ACD changed over time (F (4, 80) = 7.041, P < 0.0005) in both the intervention group and 

the control group (F (4, 80) = 0.740, P = 0.568).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.12 and Table 3.20) showed that 

for the intervention group, ACD did not change from baseline to the 6-month timepoint (P = 

1.000), nor between the 6- and 18-month timepoints (P = 0.211), 18- and 30-month timepoints 

(P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 3.12 and Table 3.20) showed that 

for the control group, ACD did not change from baseline to the 6-month timepoint (P = 1.000), 

nor between the 6- and 18-month timepoints (P = 1.000), 18- and 30-month timepoints (P = 

1.000) and the 30- and 36-month timepoints (P = 0.386). 
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Figure 3.12 Change in ACD (mean ± SEM) 
 

 

Timepoint (months) ACD (mm) 

Baseline 3.32 ± 0.11 3.48 ± 0.07 

6 3.32 ± 0.12 3.47 ± 0.07 

18 3.34 ± 0.11 3.48 ± 0.06 

30 3.35 ± 0.12 3.49 ± 0.07 

36 3.36 ± 0.12 3.50 ± 0.07 
 Intervention (n = 11) Control (n = 11) 

Table 3.20 ACD at each visit (mean ± SEM). Intervention period shaded red 
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3.5.2.13 Pupil size 

 

Main findings: 

• Pupil size was similar for the intervention and control groups (F (3, 43) = 2.250, P = 0.293) 

and was smaller under photopic conditions than mesopic conditions (F (3, 43) = 12.883, 

P = 0.001) in both the intervention group and the control group (F (3, 43) = 0.103, P = 

0.750) (see Table 3.21). 

 

 

 Pupil size (mm) 
Timepoint 
(months) 

Intervention - 
photopic 

Control - 
photopic 

Intervention - 
mesopic 

Control - 
mesopic 

12 5.92 ± 0.21 6.23 ± 0.16 6.58 ± 0.16 6.78 ± 0.15 
Table 3.21 Pupil size in photopic and mesopic conditions for the intervention and control 
participants (mean ± SEM) 
 

 

3.5.2.14 Amplitude of accommodation 

 

Main findings: 

• Amplitude of accommodation was similar for the intervention and control groups (F (1, 

20) = 0.049, P = 0.827) and did not change over time (F (6, 120) = 1.469, P = 0.195) in 

either group (F (6, 120) = 0.275, P = 0.948).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.13 and Table 3.22) showed that 

for the intervention group, amplitude of accommodation did not change from baseline to the 6-

month timepoint (P = 1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 

18-month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month 

timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 
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Pairwise comparisons for between-visit analysis (see Figure 3.13 and Table 3.22) showed that 

for the control group, amplitude of accommodation did not change from baseline to the 6-

month timepoint (P = 1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 

18-month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month 

timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

 

 
Figure 3.13 Change in amplitude of accommodation (mean ± SEM) 
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Timepoint (months) Amplitude of accommodation (D) 

Baseline 11.61 ± 0.53 11.61 ± 0.46 

6 11.44 ± 0.51 11.73 ± 0.38 

12 11.39 ± 0.50 11.39 ± 0.27 

18 11.18 ± 0.40 11.11 ± 0.39 

24 11.03 ± 0.37 11.33 ± 0.44 

30 11.15 ± 0.43 11.00 ± 0.36 

36 10.86 ± 0.34 11.21 ± 0.36 
 Intervention (n = 11) Control (n = 11) 

Table 3.22 Amplitude of accommodation at each visit (mean ± SEM). Intervention period 
shaded red 
 

3.5.2.15 Lag of accommodation with spectacle correction 

 

Main findings: 

• Lag of accommodation with spectacle correction was similar for the intervention and 

control groups (F (1, 20) = 2.139, P = 0.159) and increased over time (F (6, 120) = 3.477, P 

= 0.003) in both groups (F (6, 120) = 1.793, P = 0.106).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.14 and Table 3.23) showed that 

for the intervention group, lag of accommodation with spectacle correction did not change from 

baseline to the 6-month timepoint (P = 1.000), nor between the 6- and 12-month timepoints (P 

= 1.000), 12- and 18-month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), 

24- and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 3.14 and Table 3.23) showed that 

for the control group, lag of accommodation with spectacle correction did not change from 

baseline to the 6-month timepoint (P = 1.000), nor between the 6- and 12-month timepoints (P 
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= 1.000), 12- and 18-month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), 

24- and 30-month timepoints (P = 1.000), and the 30- and 36-month timepoints (P = 1.000). 

 

 
Figure 3.14 Change in accommodative lag with spectacle correction for a target at 0.33 m 
(mean ± SEM) 
 

 
Timepoint (months) Accommodative lag (D) 

Baseline 0.76 ± 0.11 0.82 ± 0.12 

6 1.01 ± 0.10 0.86 ± 0.14 

12 1.16 ± 0.08 0.93 ± 0.09 

18 1.23 ± 0.09 0.84 ± 0.10 

24 1.10 ± 0.05 0.99 ± 0.10 

30 1.11 ± 0.06 1.13 ± 0.09 

36 1.09 ± 0.10 1.11 ± 0.08 
 Intervention (n = 11) Control (n = 11) 

Table 3.23 Accommodative lag with spectacle correction for a target at 0.33 m (mean ± SEM). 
Intervention period shaded red 
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3.5.2.16 Lag of accommodation: spectacle correction versus CL correction 

 

Main findings: 

• For the intervention group, lag of accommodation was higher with CL correction than 

spectacle correction (F (1, 10) = 5.94, P = 0.035) and did not change over time (F (1, 10) = 

0.516, P = 0.489) with either form of correction (F (1, 10) = 0.101, P = 0.757). 

 

Pairwise comparisons for between-visit analysis (see Table 3.24) showed that with spectacle 

correction, lag of accommodation was similar at the 12- and 24-month timepoints (P = 0.476). 

 

Pairwise comparisons for between-visit analysis (see Table 3.24) showed that with CL 

correction, lag of accommodation was similar at the 12- and 24-month timepoints (P = 0.591). 

 

Timepoint (months) Accommodative lag (D) 

12 1.16 ± 0.08 1.48 ± 0.20 

24 1.10 ± 0.05 1.34 ± 0.18 

 Spectacles (n = 11) CLs (n = 11) 
Table 3.24 Accommodative lag with spectacle correction versus CL correction for a target at 
0.33 m (mean ± SEM). Intervention period shaded red 
 

 

3.5.2.17 Central CL power 

 

Main findings: 

• Central CL power reduced over time (F (4, 40) = 21.174, P < 0.0005).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.15 and Table 3.25) showed that 

central CL power did not change between the 6- and 12-month timepoints (P = 0.162), nor 

between the 12- and 18-month timepoints (P = 0.379). There was a decrease in central CL 
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power between the 18- and 24-month timepoints (P = 0.019) but not between the 24- and 30-

month timepoints (P = 1.000). 

 

 
Figure 3.15 Change in central CL power (mean ± SEM) 
 

 

Timepoint (months) Central CL power (D) 

6 3.93 ± 0.74 

12 3.82 ± 0.73 

18 3.73 ± 0.74 

24 3.57 ± 0.73 

30 3.55 ± 0.74 
Table 3.25 Central CL power (mean ± SEM) 
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3.5.2.18 CL WT 

 

Main findings: 

• CL WT changed over time (F (4, 40) = 3.652, P = 0.013) with a significant increase over 

the first 6 months of wear and remained at that level thereafter. 

 

Pairwise comparisons for between-visit analysis (see Figure 3.16 and Table 3.26) showed that 

mean weekly CL WT increased between the 6- and 12-month timepoints (P = 0.049), but not 

between the 12- and 18-month timepoints (P = 1.000), 18- and 24-month timepoints (P = 

1.000) nor the 24- and 30-month timepoints (P = 1.000). 

 

 

 
Figure 3.16 Change in typical weekly CL WT (mean ± SEM).  
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Timepoint (months) Weekly CL WT (hours) 

6 59.45 ± 1.64 

12 71.09 ± 2.74 

18 71.27 ± 3.54 

24 66.00 ± 2.44 

30 70.45 ± 3.22 
Table 3.26 Typical weekly CL WT (mean ± SEM). Measures at the initial timepoint taken at 
the first CL aftercare visit 
 
 
 
3.5.2.19 Peripheral refraction (MSE) 

 

Main findings: 

• MSE peripheral refraction was relatively myopic in the temporal, nasal, superior, and 

inferior quadrants in the intervention (see Table 3.27) and control groups (Table 3.28). 

• Absolute values for central and peripheral refraction in all four quadrants are detailed 

in Figures 3.17 to 3.20. 

 

 

 Relative peripheral refraction (D) 

Timepoint (months) Temporal 30° Nasal 30° Superior 20° Inferior 20° 

Baseline -2.38 ± 0.52 -0.75 ± 0.30 -0.43 ± 0.14 -0.92 ± 0.25 

6 -2.62 ± 0.53 -0.51 ± 0.25 -0.71 ± 0.14 -0.57 ± 0.22 

18 -2.32 ± 0.61 -0.90 ± 0.30 -1.02 ± 0.34 -0.76 ± 0.20 

30 -2.28 ± 0.59 -1.25 ± 0.52 -0.76 ± 0.14 -0.85 ± 0.22 

36 -2.29 ± 0.52 -0.77 ± 0.31 -0.58 ± 0.25 -0.66 ± 0.31 
Table 3.27 MSE post-cycloplegic relative peripheral refractive error at each visit for the 
intervention group (mean ± SEM). Intervention period shaded red 
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 Relative peripheral refraction (D) 

Timepoint (months) Temporal 30° Nasal 30° Superior 20° Inferior 20° 

Baseline -1.26 ± 0.37 -0.91 ± 0.27 -0.69 ± 0.22 -0.93 ± 0.30 

6 -1.39 ± 0.33 -1.17 ± 0.28 -0.77 ± 0.22 -0.90 ± 0.31 

18 -1.26 ± 0.28 -1.30 ± 0.26 -0.81 ± 0.20 -0.95 ± 0.29 

30 -0.98 ± 0.40 -1.16 ± 0.43 -0.77 ± 0.28 -0.75 ± 0.22 

36 -0.75 ± 0.40 -0.66 ± 0.39 -0.49 ± 0.19 -0.47 ± 0.22 
Table 3.28 MSE post-cycloplegic relative peripheral refractive error at each visit for the control 
group (mean ± SEM) 
 

 

 
Figure 3.17 Absolute MSE post-cycloplegic central refraction compared to peripheral 
refraction at 30° temporally (mean ± SEM) 
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Figure 3.18 Absolute MSE post-cycloplegic central refraction compared to peripheral 
refraction at 30° nasally (mean ± SEM) 
 

 

 
Figure 3.19 Absolute MSE post-cycloplegic central refraction compared to peripheral 
refraction at 20° superiorly (mean ± SEM) 
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Figure 3.20 Absolute MSE post-cycloplegic central refraction compared to peripheral 
refraction at 20° inferiorly (mean ± SEM) 
 
 
 
Analysis of the main effects showed that for the intervention group, relative MSE peripheral 

refraction varied by location (F (3, 30) = 7.006, [Greenhouse-Geisser P = 0.011, Epsilon 0.489]) 

(See Figure 3.21). A greater degree of relative MSE myopia was found in the temporal 

quadrant compared to the nasal quadrant (P = 0.023). The temporal quadrant was similar to 

the superior (P = 0.125) and inferior (P = 0.101) quadrants. Relative MSE peripheral myopia 

in the nasal quadrant was similar to the superior (P = 1.000) and inferior (P = 1.000) quadrants; 

this was also the case when comparing the superior quadrant to the inferior quadrant (P = 

1.000). 
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Figure 3.21 MSE post-cycloplegic relative peripheral refractive error at each visit for the 
intervention group (mean ± SEM) 
 

Analysis of the main effects showed that for the control group, relative peripheral MSE 

refraction did not vary by location (F (3, 30) = 1.173, P = 0.336) (See Figure 3.22). Relative 

peripheral MSE myopia in the temporal quadrant was similar to the nasal (P = 1.000), superior 

(P = 0.731), and inferior (P = 1.000) quadrants; this was also the case when comparing the 

nasal quadrant to the superior (P = 1.000) and the inferior quadrants (P = 1.000). The superior 

and inferior quadrants also had similar levels of relative peripheral MSE myopia (P = 1.000). 
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Figure 3.22 MSE post-cycloplegic relative peripheral refractive error at each visit for the control 
group (mean ± SEM) 
 

 

Analysis of the main effects showed that relative peripheral MSE refraction in the temporal 

quadrant was similar for the intervention and control groups (F (1, 20) = 4.200, P = 0.056) and 

did not change over time (F (4, 80) = 1.618, P = 0.178) in either group (F (4, 80) = 0.415, P = 0.797).  

 

Pairwise comparisons for between-visit analysis (see Figures 3.17 and 3.21, and Table 3.27) 

showed that for the intervention group, relative peripheral MSE refraction in the temporal 

quadrant did not change from baseline to the 6-month timepoint (P = 1.000), nor between the 

6- and 18-month timepoints (P = 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- 

and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figures 3.17 and 3.22, and Table 3.28) 

showed that for the control group, relative peripheral MSE refraction in the temporal quadrant 

did not change from baseline to the 6-month timepoint (P = 1.000), nor between the 6- and 18-

month timepoints (P = 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- and 36-

month timepoints (P = 1.000). 
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Analysis of the main effects showed that relative peripheral MSE refraction in the nasal 

quadrant was similar for the intervention and control groups (F (1, 20) = 0.250, P = 0.622) and 

did not change over time (F (4, 80) = 2.046, P = 0.096) in either group (F (4, 80) = 1.282, P = 0.284).  

 

Pairwise comparisons for between-visit analysis (see Figures 3.18 and 3.21, and Table 3.27) 

showed that for the intervention group, relative peripheral MSE refraction in the nasal quadrant 

did not change from baseline to the 6-month timepoint (P = 1.000), nor between the 6- and 18-

month timepoints (P = 0.511), 18- and 30-month timepoints (P = 1.000) and the 30- and 36-

month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figures 3.18 and 3.22, and Table 3.28) 

showed that for the control group, relative peripheral MSE refraction in the nasal quadrant did 

not change from baseline to the 6-month timepoint (P = 1.000), nor between the 6- and 18-

month timepoints (P = 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- and 36-

month timepoints (P = 1.000). 

 

Analysis of the main effects showed that relative peripheral MSE refraction in the superior 

quadrant was similar for the intervention and control groups (F (1, 20) = 0.001, P = 0.977) and 

did not change over time (F (4, 80) = 2.044, P = 0.096) in either group (F (4, 80) = 0.631 P = 0.642).  

 

Pairwise comparisons for between-visit analysis (see Figures 3.19 and 3.21, and Table 3.27) 

showed that for the intervention group, relative peripheral MSE refraction in the superior 

quadrant did not change from baseline to the 6-month timepoint (P = 1.000), nor between the 

6- and 18-month timepoints (P = 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- 

and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figures 3.19 and 3.22, and Table 3.28) 

showed that for the control group, relative peripheral MSE refraction in the superior quadrant 
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did not change from baseline to the 6-month timepoint (P = 1.000), nor between the 6- and 18-

month timepoints (P = 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- and 36-

month timepoints (P = 1.000). 

 

Analysis of the main effects showed that relative peripheral MSE refraction in the inferior 

quadrant was similar for the intervention and control groups (F (1, 20) = 0.031, P = 0.863) and 

did not change over time (F (4, 80) = 1.153, P = 0.338) in either group (F (4, 80) = 0.679 P = 0.608).  

 

Pairwise comparisons for between-visit analysis (see Figures 3.20 and 3.21, and Table 3.27) 

showed that for the intervention group, relative peripheral MSE refraction in the inferior 

quadrant did not change from baseline to the 6-month timepoint (P = 1.000), nor between the 

6- and 18-month timepoints (P = 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- 

and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figures 3.20 and 3.22, and Table 3.28) 

showed that for the control group, relative peripheral MSE refraction in the inferior quadrant 

did not change from baseline to the 6-month timepoint (P = 1.000), nor between the 6- and 18-

month timepoints (P = 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- and 36-

month timepoints (P = 1.000). 
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3.5.2.20 Peripheral refraction (J0) 

 

Main findings: 

• J0 peripheral refraction for the intervention group varied by location (F (3, 30) = 47.032, 

P < 0.0005) (See Figure 3.23). The temporal quadrant showed a greater degree of 

relative myopia to the nasal (P < 0.0005), superior (P < 0.0005), and inferior (P < 

0.0005) quadrants. The nasal quadrant also demonstrated greater relative peripheral 

myopia compared to the superior (P = 0.001) and inferior (P = 0.041) quadrants. The 

superior and inferior quadrants were similar to each other (P = 1.000) 

• For the control group, analysis of the main effects showed that J0 peripheral refraction 

varied by location (F (3, 30) = 13.008, P < 0.0005) (See Figure 3.28). The temporal 

quadrant was similar to the nasal quadrant (P = 1.000) but relatively more myopic than 

both the superior (P = 0.006), and inferior (P = 0.033) quadrants. The nasal quadrant 

also demonstrated greater relative peripheral myopia compared to the superior (P = 

0.004) and inferior (P = 0.005) quadrants. The superior and inferior quadrants were 

similar to each other (P = 1.000). 

 

Analysis of the main effects showed that J0 peripheral refraction in the temporal quadrant was 

similar for the intervention and control groups (F (1, 20) = 2.132, P = 0.160) and did not change 

over time (F (4, 80) = 0.166, P = 0.955) in either group (F (4, 80) = 0.692, P = 0.600).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.23 and Table 3.29) showed that 

for the intervention group, measures in the temporal quadrant did not change from baseline to 

the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 

18- and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.24 and Table 3.30) showed that 

for the control group, measures in the temporal quadrant did not change from baseline to the 
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6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 18- 

and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

Analysis of the main effects showed that J0 peripheral refraction in the nasal quadrant was 

similar for the intervention and control groups (F (1, 20) = 4.054, P = 0.058) and did not change 

over time (F (4, 80) = 1.376, P = 0.250) in either group (F (4, 80) = 2.309, P = 0.065).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.23 and Table 3.29) showed that 

for the intervention group, measures in the nasal quadrant did not change from baseline to the 

6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 18- 

and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.24 and Table 3.30) showed that 

for the control group, measures in the nasal quadrant did not change from baseline to the 6-

month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 18- and 

30-month timepoints (P = 0.610) and the 30- and 36-month timepoints (P = 1.000). 

 

Analysis of the main effects showed that J0 peripheral refraction in the superior quadrant were 

relative more myopic in the control group compared to the intervention group (F (1, 20) = 7.525, 

P = 0.013) and changed over time (F (4, 80) = 4.613, P = 0.002) in the intervention group (F (4, 

80) = 2.925 P = 0.026).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.23 and Table 3.29) showed that 

for the intervention group, measures in the superior quadrant did not change from baseline to 

the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 0.159), 

18- and 30-month timepoints (P = 0.285) and the 30- and 36-month timepoints (P = 1.000).  
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Pairwise comparisons for between-visit analysis (see Figure 3.24 and Table 3.30) showed that 

for the control group, measures in the superior quadrant did not change from baseline to the 

6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 18- 

and 30-month timepoints (P = 1.000), and the 30- and 36-month timepoints (P = 1.000). 

 

Analysis of the main effects showed that J0 peripheral refraction in the inferior quadrant were 

relative more myopic in the control group compared to the intervention group (F (1, 20) = 5.297, 

P = 0.032) but did not change over time (F (4, 80) = 0.863, P = 0.490) in either group (F (4, 80) = 

1.179 P = 0.327).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.23 and Table 3.29) showed that 

for the intervention group, measures in the inferior quadrant did not change from baseline to 

the 6-month timepoint (P = 0.434), nor between the 6- and 18-month timepoints (P = 0.827), 

18- and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.24 and Table 3.30) showed that 

for the control group, relative peripheral refraction in the inferior quadrant did not change from 

baseline to the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P 

= 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 

1.000). 
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 Peripheral refraction (D) 

Timepoint (months) Temporal 30° Nasal 30° Superior 20° Inferior 20° 

Baseline -1.61 ± 0.32 -0.27 ± 0.22 0.43 ± 0.07 0.71 ± 0.13 

6 -1.50 ± 0.27 -0.24 ± 0.14 0.51 ± 0.09 0.44 ± 0.23 

18 -1.38 ± 0.32 -0.43 ± 0.19 0.91 ± 0.15 0.66 ± 0.14 

30 -1.59 ± 0.28 -0.36 ± 0.29 0.64 ± 0.10 0.60 ± 0.16 

36 -1.69 ± 0.25 -0.17 ± 0.30 0.58 ± 0.10 0.31 ± 0.25 
Table 3.29 J0 post-cycloplegic peripheral refractive error at each visit for the intervention group 
(mean ± SEM). Intervention period shaded red 
 

 

 Peripheral refraction (D) 

Timepoint (months) Temporal 30° Nasal 30° Superior 20° Inferior 20° 

Baseline -1.10 ± 0.29 -0.52 ± 0.15 0.13 ± 0.10 0.08 ± 0.19 

6 -1.16 ± 0.23 -0.58 ± 0.16 0.26 ± 0.11 -0.04 ± 0.20 

18 -1.13 ± 0.23 -0.63 ± 0.14 0.24 ± 0.13 -0.07 ± 0.21 

30 -0.98 ± 0.24 -0.90 ± 0.17 0.28 ± 0.14 0.01 ± 0.23 

36 -1.02 ± 0.24 -1.08 ± 0.13 0.26 ± 0.16 0.09 ± 0.20 
Table 3.30 J0 post-cycloplegic peripheral refractive error at each visit for the control group 
(mean ± SEM) 
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Figure 3.23 J0 post-cycloplegic peripheral refractive error at each visit for the intervention 
group (mean ± SEM) 
 

 

 
Figure 3.24 J0 post-cycloplegic peripheral refractive error at each visit for the control group 
(mean ± SEM) 
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3.5.2.21 Peripheral refraction (J45) 

 

Main findings: 

• J45 peripheral refraction for the intervention group varied by location (F (3, 30) = 4.073, 

P = 0.015) (See Figure 3.25). The temporal quadrant was similar to the nasal (P = 

1.000), superior (P = 0.261), and inferior (P = 1.000) quadrants. The nasal quadrant 

was relatively more myopic than the superior quadrant (P = 0.030) but similar to the 

inferior quadrant (P = 1.000). However, the inferior quadrant demonstrated a greater 

degree of relative myopia compared to the superior quadrant (P = 0.008) 

• For the control group, analysis of the main effects showed that J45 peripheral refraction 

did not vary by location (F (3, 30) = 1.252, P = 0.308) (See Figure 3.26). The temporal 

quadrant was similar to the nasal (P = 1.000), superior (P = 0.739), and inferior (P = 

1.000) quadrants. The nasal quadrant was also similar to the superior (P = 1.000) and 

inferior (P = 1.000) quadrants. The superior and inferior quadrants were also 

comparable to each other (P = 0.088). 

 

Analysis of the main effects showed that J45 peripheral refraction in the temporal quadrant 

was similar for the intervention and control groups (F (1, 20) = 0.004, P = 0.951) and did not 

change over time (F (4, 80) = 2.077, P = 0.091) in either group (F (4, 80) = 1.188, P = 0.322).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.25 and Table 3.31) showed that 

for the intervention group, measures in the temporal quadrant did not change from baseline to 

the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 0.550), 

18- and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.26 and Table 3.32) showed that 

for the control group, measures in the temporal quadrant did not change from baseline to the 
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6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 18- 

and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

Analysis of the main effects showed that J45 peripheral refraction in the nasal quadrant was 

similar for the intervention and control groups (F (1, 20) = 0.002, P = 0.963) and did not change 

over time (F (4, 80) = 1.158, P = 0.336) in either group (F (4, 80) = 0.888, P = 0.475).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.25 and Table 3.31) showed that 

for the intervention group, measures in the nasal quadrant did not change from baseline to the 

6-month timepoint (P = 0.916), nor between the 6- and 18-month timepoints (P = 1.000), 18- 

and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.26 and Table 3.32) showed that 

for the control group, measures in the nasal quadrant did not change from baseline to the 6-

month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 18- and 

30-month timepoints (P = 0.610) and the 30- and 36-month timepoints (P = 1.000). 

 

Analysis of the main effects showed that J45 peripheral refraction in the superior quadrant 

were relative more myopic in the control group compared to the intervention group (F (1, 20) = 

11.422, P = 0.003) and changed over time (F (4, 80) = 4.843, P = 0.002) in both groups (F (4, 80) 

= 1.909 P = 0.117).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.25 and Table 3.31) showed that 

for the intervention group, measures in the superior quadrant did not change from baseline to 

the 6-month timepoint (P = 0.138), nor between the 6- and 18-month timepoints (P = 0.108), 

18- and 30-month timepoints (P = 0.570), and the 30- and 36-month timepoints (P = 0.723).  
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Pairwise comparisons for between-visit analysis (see Figure 3.26 and Table 3.32) showed that 

for the control group, measures in the superior quadrant did not change from baseline to the 

6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 18- 

and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

Analysis of the main effects showed that J45 peripheral refraction in the inferior quadrant was 

similar for the intervention and control groups (F (1, 20) = 0.493, P = 0.491) and did not change 

over time (F (4, 80) = 0.498, P = 0.737) in either group (F (4, 80) = 1.052, P = 0.386).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.25 and Table 3.31) showed that 

for the intervention group, measures in the inferior quadrant did not change from baseline to 

the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 

18- and 30-month timepoints (P = 0.363) and the 30- and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figure 3.26 and Table 3.32) showed that 

for the control group, relative peripheral refraction in the inferior quadrant did not change from 

baseline to the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P 

= 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 

1.000). 

 

 Peripheral refraction (D) 

Timepoint (months) Temporal 30° Nasal 30° Superior 20° Inferior 20° 

Baseline -0.20 ± 0.21 0.18 ± 0.16 0.34 ± 0.13 -0.10 ± 0.13 

6 -0.24 ± 0.25 0.02 ± 0.09 0.55 ± 0.08 -0.07 ± 0.09 

18 0.18 ± 0.16 -0.06 ± 0.14 0.42 ± 0.10 -0.12 ± 0.08 

30 0.08 ± 0.16 -0.12 ± 0.18 0.34 ± 0.09 -0.29 ± 0.11 

36 -0.01 ± 0.16 -0.10 ± 0.16 0.26 ± 0.08 -0.13 ± 0.16 
Table 3.31 J45 post-cycloplegic peripheral refractive error at each visit for the intervention 
group (mean ± SEM). Intervention period shaded red 
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 Peripheral refraction (D) 

Timepoint (months) Temporal 30° Nasal 30° Superior 20° Inferior 20° 

Baseline -0.10 ± 0.10 -0.01 ± 0.06 0.14 ± 0.05 -0.12 ± 0.05 

6 -0.04 ± 0.10 0.00 ± 0.06 0.13 ± 0.05 -0.12 ± 0.09 

18 -0.06 ± 0.06 0.02 ± 0.06 0.07 ± 0.04 -0.09 ± 0.05 

30 0.08 ± 0.07 -0.12 ± 0.15 0.01 ± 0.04 -0.06 ± 0.06 

36 -0.01 ± 0.06 0.06 ± 0.10 0.05 ± 0.05 -0.01 ± 0.07 
Table 3.32 J45 post-cycloplegic peripheral refractive error at each visit for the control group 
(mean ± SEM) 
 

 

 

 
Figure 3.25 J45 post-cycloplegic peripheral refractive error at each visit for the intervention 
group (mean ± SEM) 
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Figure 3.26 J45 post-cycloplegic peripheral refractive error at each visit for the control group 
(mean ± SEM) 
 

 

3.5.2.22 Relative peripheral refraction with CL in situ 

 

Main findings: 

• Non-cycloplegic peripheral refraction with CL correction in situ demonstrated relative 

hyperopia in all four quadrants although the magnitude varied by location (F (3, 30) = 

6.991, P = 0.001). 

 

Pairwise comparisons (see Figure 3.27 and Table 3.33) showed that the temporal quadrant 

was similar to the nasal (P = 1.000), superior (P = 0.165), and inferior quadrants (P = 0.239), 

respectively. The nasal quadrant demonstrated a greater degree of relative hyperopia 

compared to the superior (P = 0.013) and inferior quadrants (P = 0.016), while the superior 

and inferior quadrants were similar to each other (P = 1.000). 
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Figure 3.27 MSE non-cycloplegic relative peripheral refraction with CL correction in situ (mean 
± SEM) 
 
 

 Peripheral refraction (D) 

Timepoint (months) Temporal 30° Nasal 30° Superior 20° Inferior 20° 

12 1.91 ± 0.60 1.90 ± 0.33 0.33 ± 0.35 0.46 ± 0.36 
Table 3.33 MSE non-cycloplegic relative peripheral refraction with CL correction in situ (mean 
± SEM) 
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ceased during the final 6 months of the trial, the faster growth rates experienced by the 

intervention group during the two-year period of wearing CLs, reverted to a pace that matched 

the control group.  

 

As participants in the intervention arm of the trial experienced a faster rate of axial growth than 

controls, it would be expected that a decrease in hyperopia would also occur. However, 

although the overall trend showed a greater reduction in post-cycloplegic refractive error in 

those receiving the intervention compared to the control group, this did not reach a level of 

significance nor achieve adequate statistical power. Nevertheless, the mean reduction in 

refractive error for participants receiving the intervention was almost double the decrease in 

the control group at 0.47 D and 0.24 D, respectively, which offers optimism for further research 

in this area. Unlike AL, post-cycloplegic refraction was only measured at 5 out of 7 timepoints. 

Although capturing data at these 2 additional timepoints would have increased statistical 

power, this has to be balanced against placing additional burden upon participants, which 

could in turn, affect rates of attrition. Given the effect size, it is estimated that to achieve 

statistical power at 80% over 5 data collection points, a sample size of 23 participants per 

group would be required. 

 

In terms of secondary outcome measures, the results were largely in keeping with expectation. 

For parameters related to vision, unaided DV and spectacle DVA were similar for the 

intervention and control groups and did not change; this is unsurprising given the age of 

participants and relatively small reduction in refractive error over the period of the trial. Both 

DVA and NVA were better in spectacles than CLs, which is line with previous findings when 

comparing SV with MF CL correction (Sha et al., 2016). Nevertheless, VA improved over time 

with both forms of correction at distance and near. Taking into account the mean DVA values, 

there was greater improvement over time with CLs compared to spectacles which is likely to 

reflect a period of adaptation. Although stereoacuity with spectacles was similar for both 

groups and did not change over time, in the intervention group it was poorer with CL correction 
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compared to spectacles and failed to improve during the two-year period of CL wear; this is in 

contrast to findings from earlier work demonstrating that stereoacuity appears to be preserved 

in MF CL wear compared to SV correction, albeit in a presbyopic cohort (Ferrer-Blasco and 

Madrid-Costa, 2011). From the start, CS was better in the control group than the intervention 

group and did not change over time. Encouragingly, CS was similar with spectacle and CL 

correction. For measures of anterior eye parameters, as with previous refractive modulation 

work in myopes (Sankaridurg et al., 2001; Lam et al., 2014; Aller et al., 2016), CC did not 

change over time in either group. ACD changed over time in both the control and intervention 

groups by a comparable amount; this suggests that the greater AL change observed in the 

intervention group is attributable primarily to VCD growth. Evaluation of accommodation 

revealed that lag with spectacles was similar for intervention and control participants and 

increased over time; this is surprising, particularly given that NVA improved over time in both 

groups. Perhaps of greater relevance is that accommodative lag was greater with CL 

correction than spectacle correction, which may reflect that hyperopes would be expected to 

converge less through the former. Given that accommodative lag has been implicated in 

myopia progression (Mutti et al., 2006; Chakraborty et al., 2020) it is plausible that lag may be 

a factor in driving axial growth in CL-wearing participants in the present study. It is noteworthy 

that central CL power decreased significantly over time although this measure was determined 

under non-cycloplegic conditions. Nevertheless, the mean power reduction of 0.38 D over the 

two-year intervention period was in broad agreement with the reduction in spectacle refraction 

recorded under cycloplegia in these participants over the same time period.  

 

In line with previous work, peripheral refraction was relatively myopic in all four quadrants 

(Atchison et al., 2005; Gilmartin et al., 2005; Charman and Radhakrishnan, 2010; Atchison 

and Charman, 2011; Schmid, 2011; Verkicharla et al., 2012). Importantly, while wearing the 

intervention, relative peripheral refraction was hyperopic in all four quadrants, demonstrating 

merit in using centre-near CLs to expose the peripheral retina to hyperopic defocus. There 

remains conjecture regarding the role of peripheral hyperopic defocus in the progression of 
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myopia (Charman and Radhakrishnan, 2010; Mutti et al., 2019). As outlined earlier (see 

Sections 1.5.3 and 1.5.4), studies evaluating the benefit of spectacle lenses that manipulate 

peripheral defocus in myopes report inconsistent results whereas soft multifocal contact lenses 

targeting a similar objective, are, with a moderate certainty of evidence, capable of slowing 

axial growth in this refractive cohort. Further, it is proposed that customising the CL design 

with the express purpose of achieving a greater shift in peripheral defocus may be of value, 

although further evidence using this approach is required (Nemeth et al., 2021). At a simple 

level, it is clear that ocular shape and peripheral characteristics are different between refractive 

subtypes. Specifically, myopic eyes tend to be relatively prolate, exhibit relative peripheral 

hyperopia with a slowing of axial growth in response to the imposition of myopic defocus. 

Conversely, hyperopes have a more oblate shape, are relatively myopic in the periphery, and 

on the basis of the present work, demonstrate accelerated axial growth in response to the 

imposition of RPHD. Indeed, the outcome witnessed in the intervention group offers credibility 

to the hypothesis that exposing the hyperopic eye to RPHD may provide the necessary signal 

to stimulate axial growth in children.  

 

Participants in the intervention arm of the study proved to be adept at handling and maintaining 

their CLs which is in keeping with earlier work on the safety of CLs in children (Bullimore, 2017; 

Chalmers et al., 2021). Two participants failed to handle CLs adequately and did not proceed; 

interestingly, both were teenagers rather than younger children. Almost all of the participants 

that successfully transitioned the application and removal phase of the study continued to wear 

CLs for the full two years of intervention with just one being withdrawn due to poor compliance. 

 

In future work, it would be important to establish if a greater effect can be achieved through 

earlier intervention. Exposing the hyperopic eye to peripheral hyperopic defocus at a younger 

age when natural growth is faster may yield better results as well as potentially improving the 

visual outcome, for instance, measures of VA and stereopsis. Nevertheless, it is important to 

recognise the difficulties of recruiting hyperopes, particularly at a young age. Given the nature 
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of refractive error distribution, hyperopes are relatively scarce in comparison to their myopic 

counterparts. Furthermore, in the absence of amblyopia, many isohyperopes may pass vision 

screening protocols as they enter the school system and remain unidentified. For those who 

fail vision screening, many are diverted to secondary care for several years making recruitment 

at a young age more difficult in a primary care setting.  

 

In terms of the main objective, the results demonstrating the effect of the intervention on axial 

growth is encouraging. However, it is important to recognise the limitation of this work in terms 

of refractive error outcome, which lacked statistical power and did not reach a significant level. 

Further work would benefit from a larger scale study undertaken as a double-masked, 

randomised control trial. An additional limitation is the reporting of CL compliance, specifically 

with respect to wearing times as these were self-reported by participants. Still, anecdotally, the 

majority of participants were disappointed to reach the end of the intervention period as they 

were keen to continue with CL wear, which suggests that in most cases, compliance was high.  

 

Inclusion of amblyopes formed part of the study protocol to ensure that participants were drawn 

from a representative sample. Nevertheless, to disentangle this potential confounding variable 

from the main dataset, further analysis with the exclusion of amblyopic participants was 

undertaken for the primary outcome measures. Interestingly, this reanalysis did not impact 

upon the findings for AL or refractive error, suggesting that the effect of the intervention is not 

influenced by the presence of amblyopia. 

 

Having identified a mechanism to modulate axial growth holds promise for hyperopes and 

provides a platform for an extension to this work. The ability to accelerate axial growth in 

hyperopes may help to decrease the risk of ocular comorbidities associated with small globes 

as well as reduce the burden of refractive error in these children. Furthermore, MF CLs in 

children with isohyperopia appear to be well tolerated both from a handling and wearing 

perspective as well as providing adequate visual performance. 
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4.0 Effect of peripheral defocus on axial growth and refractive error in children with 

anisohyperopia 

 

4.1 Introduction 

In Chapter 3, the impact of imposing RPHD in isohyperopes using soft centre-near BF CLs 

was explored. The aim with this approach was to attempt to accelerate axial growth bilaterally 

to reduce the overall level of refractive error. A natural extension to this work is to consider a 

similar method with anisohyperopes. The aim here would be to accelerate axial growth 

unilaterally, that is to say, in the more hyperopic eye, to reduce the overall level of 

anisometropia thereby providing a platform for a more natural binocular status. In addition to 

the risk of amblyopia and strabismus in anisohyperopia, accelerating the growth of the smaller 

eye could help to mitigate for conditions with known association to eyes of short axial length 

including angle closure glaucoma, early AMD, and vascular events, such as branch and central 

retinal vein occlusion. 

 

Take for example, a child with the following refractive error: R +5.00 D L +2.50 D. In this case, 

the child could be fitted with a centre-near CL with a prescription of +3.00 D add +2.00 D in 

the right eye; this specification would provide 5.00 D of refractive correction in the central 

portion, while imposing 2.00 D of relative hyperopia in the periphery. In the left eye, a SV CL 

could be used with a power of +2.50 D. 

 

To date, there has been no attempt to impose RPHD to modulate refractive error and axial 

growth in human anisohyperopes. 

 

4.2 Objective 

The objective of this clinical trial was to establish whether axial eye growth and refractive error 

could be modified in an anisohyperopic cohort by imposing relative hyperopic defocus using a 
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MF CL in the more hyperopic eye. The aim here was to reduce the interocular difference in 

refractive error thereby mitigating for the effects of anisohyperopia. 

 

4.3 Methods 

Sample size calculation indicated that 11 participants would be required to achieve 80% power 

for an effect size of 0.25 at a significance level of 5% using a mixed factor repeated measures 

ANOVA design (G*Power 3.1, Franz Faul, Universität Kiel, Germany). The aim was to recruit 

13 participants to achieve statistical power and allow for attrition. Suitable candidates for the 

3-year study were recruited by displaying notices at the research venues. Potential participants 

were also sourced through a database search at the research venues to identify individuals 

that met the age and refractive error inclusion criteria.  

 

During the 6- to 30-month timepoints, participants were fitted with a centre-near MF soft CL in 

their more hyperopic eye, while the fellow eye was fitted with a SV CL if required (see Chapter 

2.11). Participants aged between 8 and <16 years-of-age were recruited for the study. 

 

Prior to commencing the research, ethical approval was obtained from both the NHS (see 

Appendix 1) and Aston University’s Research Ethics Committees (see Appendix 2) with the 

study designed to follow the tenets of the Declaration of Helsinki. Each participant, and their 

parent or guardian where appropriate, was given detailed information regarding the nature of 

the study, both verbally and in written form; this allowed informed consent and assent to take 

place prior to participation. The participants were required to complete a short questionnaire 

to ensure that they met the inclusion criteria (see Appendix 3). The programme of research 

was registered as a clinical trial: ClinicalTrials.gov NCT02686879. The participant’s general 

practitioner was notified of their inclusion in the study (see Appendix 4).  

 

Inclusion criteria were as follows: 

• Aged between 8 and < 16 years-of-age at the initial examination 
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• Parents must have read, understood and signed the informed consent form (see Appendix 

5) 

• Participants must have read, understood and signed the consent or assent form as 

appropriate (see Appendix 6 and 7) 

• Participants agreed to wear the prescribed CLs for a minimum of 10 hours per day, at least 

6 days per week for the 2-year duration of the intervention period 

• Be in good general health with no contraindications to CL wear 

• Maximum manifest spherical refractive error of +6.00 D 

• Maximum manifest cylindrical refractive error of -1.00 D 

• Manifest anisometropia of >1.00 D (mean spherical error)  

• Minimum mean spherical refractive error of +2.00D in the more hyperopic eye for inclusion 

in the intervention group 

• Be competent at handling CLs and understand the instructions given to ensure safe wear. 

 

Exclusion criteria were as follows: 

• Previous CL wear  

• Participating in another clinical study 

• Regular use of medication to treat ocular conditions 

• Current use of systemic medication that could impact upon successful CL wear or affect 

focusing ability 

• Known ocular or systemic disease 

• Findings identified during CL assessment that would preclude CL wear 

• Participants who were not able to provide informed consent without the aid of an interpreter 

due to lack of funding available for the provision of this facility. 

 

A summary of the procedures conducted at each visit are detailed below and in Table 4.1. 

Visits 1 to 7 were undertaken at 6-monthly intervals (± 2 weeks) for all participants. For 
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participants in the intervention group, CL fitting, CL aftercare at 1 to 2 weeks after the initial 

fitting and CL aftercare 1 month after the first aftercare were also scheduled. At visit 1, all 

participants completed a background questionnaire (see Appendix 3) to elicit detail of previous 

ocular history and general health status. At visits 2 to 8, all participants completed a follow-up 

questionnaire (see Appendix 8) to elicit detail of any changes to ocular history and general 

health status. 

 

Procedure Visit 
1 

Visit 
2a 

Visit 
2b 

Visit 
2c 

Visit 
3 

Visit 
4 

Visit 
5 

Visit 
6 

Visit 
7 

Unaided DV ✅ ✅   ✅ ✅ ✅ ✅ ✅ 

Subjective refraction ✅ ✅   ✅ ✅ ✅ ✅ ✅ 

DVA ✅ ✅   ✅ ✅ ✅ ✅ ✅ 

NVA ✅ ✅   ✅ ✅ ✅ ✅ ✅ 
Lag of 

accommodation ✅ ✅   ✅ ✅ ✅ ✅ ✅ 

Lag with CL in situ     ✅  ✅   
Amplitude of 

accommodation ✅ ✅   ✅ ✅ ✅ ✅ ✅ 

Stereoacuity ✅ ✅   ✅ ✅ ✅ ✅ ✅ 
Stereoacuity with CL 

in situ     ✅  ✅   

Cover test ✅ ✅   ✅ ✅ ✅ ✅ ✅ 

CC ✅ ✅   ✅ ✅ ✅ ✅ ✅ 
Slit lamp 

examination ✅ ✅    ✅  ✅ ✅ 

AL ✅ ✅   ✅ ✅ ✅ ✅ ✅ 

IOP ✅ ✅    ✅  ✅ ✅ 
Post-cycloplegic 
autorefraction ✅ ✅    ✅  ✅ ✅ 

Peripheral refraction ✅ ✅    ✅  ✅ ✅ 

CS  ✅      ✅ ✅ 

CS with CL in situ   ✅     ✅  

ACD ✅ ✅   ✅   ✅ ✅ 

Pupil size     ✅     
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CL fitting  ✅        

CL aftercare   ✅ ✅ ✅ ✅ ✅ ✅  
Central refraction 

with CL in situ     ✅     

Peripheral refraction 
with CL in situ     ✅     

Table 4.1 Procedures undertaken for all participants at each visit 

 

4.4 Statistical analysis 

All data were analysed using the commercially available software, SPSS, v. 25, IBM, New 

York, U.S.A. Data were examined with mixed factor repeated measures analysis of variance 

(ANOVA) with one within-subject factor (time) and one between-subject factor (intervention or 

control). Bonferroni correction was applied and a significance level of α < 0.05 used throughout 

(Armstrong et al., 2011; Armstrong et al., 2002). 

 

4.5 Results  

Data were analysed to compare the primary (see 4.5.1) and secondary (see 4.5.2) outcome 

measures for the intervention eye group and control eye group. In total, 11 participants were 

recruited, all of whom completed the trial and comprised of 8 females and 3 males with an age 

range at baseline of 8.25-13.42 years (mean 10.56 SD 1.43 years); these data were normally 

distributed (Kolmogorov-Smirnov, Z = 0.179, P = 0.200). A summary of descriptive data from 

questionnaires undertaken at each visit is detailed in Table 4.2. 

 

 Visit 1 Follow up visits 

Participant History Medication Notes 

1 Full time spectacles at 2 years of age. 
Occlusion therapy until 3 years of age. Nil  

2 Full time spectacles at 5 years of age Nil  

3 Full time spectacles at 5 years of age Nil 
Cetirizine during 

hay fever 
seasons 

4 Full time spectacles at 3 years of age Nil  
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5 Full time spectacles at 6 years of age Nil  

6 Full time spectacles at 7 years of age Nil  

7 Full time spectacles at 4 years of age Nil  

8 Full time spectacles at 4 years of age. 
Occlusion therapy until 5 years of age. Nil  

9 Full time spectacles at 5 years of age Salbutamol 
Cetirizine during 

hay fever 
seasons 

10 Full time spectacles at 7 years of age Nil  

11 Full time spectacles at 4 years of age Nil  
Table 4.2 Summary of key information from questionnaires  
 

4.5.1 Primary outcome measures 

 

4.5.1.1 Axial growth  

 

Main findings: 

• AL changed over time (F (6, 60) = 14.808, P < 0.0005) for the control eye group but not 

the intervention eye group (F (6, 60) = 2.609, P = 0.026)  

• Observed power was 0.816. 

 

Pairwise comparisons for between-visit analysis (see Figure 4.1 and Table 4.3) showed that 

for the intervention eye group, AL did not change from baseline to the 6-month timepoint (P = 

1.000). When the intervention was introduced, AL did not change between the 6- and 12-month 

timepoints (P = 0.452) but did change between the 12- and 18-month timepoints (P = 0.049). 

There was no change in AL between the 18- and 24-month timepoints (P = 0.700) or the 24- 

and 30-month timepoints (P = 1.000). Once the intervention was withdrawn, AL did not change 

between the 30- and 36-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 4.1 and Table 4.3) showed that 

for the control eye group, AL did not change from baseline to the 6-month timepoint (P = 0.052), 
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nor between the 6- and 12-month timepoints (P = 1.000) but did change between the 12- and 

18-month timepoints (P = 0.003). There was no change in AL between the 18- and 24-month 

timepoints (P = 1.000), 24- and 30-month timepoints (P = 0.820) and the 30- and 36-month 

timepoints (P = 1.000). 

 
 
 

 
Figure 4.1 Change in AL (mean ± SEM) 
 

 

Timepoint (months) AL (mm) 

Baseline 21.67 ± 0.20 22.19 ± 0.21 

6 21.70 ± 0.19 22.27 ± 0.21 

12 21.74 ± 0.19 22.30 ± 0.21 

18 21.77 ± 0.19 22.35 ± 0.21 

24 21.80 ± 0.18 22.34 ± 0.20 

30 21.81 ± 0.19 22.42 ± 0.22 

36 21.84 ± 0.19 22.43 ± 0.22 

 Intervention (n = 11) Control (n = 11) 
Table 4.3 AL at each visit (mean ± SEM). Intervention period shaded red 
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4.5.1.2 Post-cycloplegic refractive error 

 

Main findings: 

• Post-cycloplegic MSE refractive error decreased over time (F (4, 40) = 4.601, P = 0.004) 

for both the intervention eye group and the control eye group (F (4, 40) = 0.318, P = 

0.864)  

• Observed power was 0.114 and partial η2 was 0.031. 

 

Pairwise comparisons for between-visit analysis (see Figure 4.2 and Table 4.4) showed that 

for the intervention eye group, post-cycloplegic MSE refractive error did not change from 

baseline to the 6-month timepoint (P = 0.318), nor between the 6- and 18-month timepoints (P 

= 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 

1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 4.2 and Table 4.4) showed that 

for the control eye group, post-cycloplegic MSE refractive error did not change from baseline 

to the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 0.076), 

18- and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 
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Figure 4.2 Change in MSE post-cycloplegic central refraction (mean ± SEM) 
 

 

Timepoint (months) Refractive error (D) 

Baseline +5.28 ± 0.44 +3.37 ± 0.35 

6 +5.06 ± 0.46 +3.28 ± 0.37 

18 +4.95 ± 0.41 +3.02 ± 0.39 

30 +4.83 ± 0.45 +2.98 ± 0.41 

36 +4.94 ± 0.56 +3.01 ± 0.44 

 Intervention (n = 11) Control (n = 11) 
Table 4.4 MSE post-cycloplegic central refractive error at each visit (mean ± SEM). 
Intervention period shaded red 
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4.5.2 Secondary outcome measures 

 

4.5.2.1 Unaided DV 

 

Main findings: 

• Unaided DV was better for the control eye group than the intervention eye group (F (1, 

10) = 18.730, P = 0.001) 

• Unaided DV did not change over time (F (6, 60) = 1.155, P = 0.343) in either group (F (6, 

60) = 0.615, P = 0.717).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.3 and Table 4.5) showed that 

for the intervention eye group, unaided DV did not change from baseline to the 6-month 

timepoint (P = 1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-

month timepoints (P = 0.797), 18- and 24-month timepoints (P = 1.000), 24- and 30-month 

timepoints (P = 0.860) and the 30- and 36-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 4.3 and Table 4.5) showed that 

for the control eye group, unaided DV did not change from baseline to the 6-month timepoint 

(P = 1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-month 

timepoints (P = 0.164), 18- and 24-month timepoints (P = 1.000), 24- and 30-month timepoints 

(P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 
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Figure 4.3 Change in unaided DV (mean ± SEM) 
 

 

Timepoint (months) DV (LogMAR) 

Baseline 0.18 ± 0.04 -0.01 ± 0.02 

6 0.19 ± 0.04 -0.02 ± 0.02 

12 0.17 ± 0.04 -0.01 ± 0.02 

18 0.16 ± 0.04 -0.03 ± 0.02 

24 0.15 ± 0.04 -0.04 ± 0.02 

30 0.17 ± 0.04 -0.03 ± 0.03 

36 0.17 ± 0.05 -0.04 ± 0.03 
 Intervention (n = 11) Control (n = 11) 

Table 4.5 Unaided DV at 6 m at each visit (mean ± SEM). Intervention period shaded red 
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4.5.2.2 Spectacle DVA 

 

Main findings: 

• Spectacle DVA was better for the control eye group than the intervention eye group (F 

(1, 10) = 11.988, P = 0.006) and changed over time (F (6, 60) = 4.479, P = 0.001) in both 

groups (F (6, 60) = 1.437, P = 0.216).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.4 and Table 4.6) showed that 

for the intervention eye group, spectacle DVA did not change from baseline to the 6-month 

timepoint (P = 1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-

month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month 

timepoints (P = 0.102) and the 30- and 36-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 4.4 and Table 4.6) showed that 

for the control eye group, spectacle DVA did not change from baseline to the 6-month timepoint 

(P = 0.956), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-month 

timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month timepoints 

(P = 0.223) and the 30- and 36-month timepoints (P = 1.000). 
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Figure 4.4 Change in spectacle DVA at 6 m (mean ± SEM) 
 

 

Timepoint (months) DVA (LogMAR) 

Baseline 0.05 ± 0.04 -0.09 ± 0.02 

6 0.06 ± 0.04 -0.07 ± 0.01 

12 0.03 ± 0.04 -0.09 ± 0.01 

18 0.03 ± 0.04 -0.10 ± 0.01 

24 0.03 ± 0.04 -0.11 ± 0.01 

30 0.07 ± 0.04 -0.09 ± 0.01 

36 0.08 ± 0.04 -0.06 ± 0.01 

 Intervention (n = 11) Control (n = 11) 
Table 4.6 Spectacle DVA at 6 m at each visit (mean ± SEM). Intervention period shaded red 
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4.5.2.3 CL DVA 

 

Main findings: 

• CL DVA was better for the control eye group than the intervention eye group (F (1, 10) = 

40.193, P < 0.0005) and improved over time (F (6, 60) = 4.441, P = 0.005) in both groups 

(F (6, 60) = 2.019, P = 0.110).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.5 and Table 4.7) showed that 

for the intervention eye group, CL DVA did not change between the 6- and 12-month timepoints 

(P = 0.075), 12- and 18-month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000) 

and the 24- and 30-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 4.5 and Table 4.7) showed that 

for the control eye group, CL DVA did not change between the 6- and 12-month timepoints (P 

= 1.000), 12- and 18-month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000) 

and the 24- and 30-month timepoints (P = 1.000). 
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Figure 4.5 Change in CL DVA (mean ± SEM) 
 

 
 

Timepoint (months) DVA (LogMAR) 

6 0.24 ± 0.04 0.02 ± 0.02 

12 0.16 ± 0.03 0.00 ± 0.02 

18 0.17 ± 0.04 -0.03 ± 0.02 

24 0.16 ± 0.04 -0.03 ± 0.02 

30 0.19 ± 0.04 -0.04 ± 0.02 

 Intervention (n = 11) Control (n = 11) 
Table 4.7 CL DVA at 6 m at each visit (mean ± SEM). Intervention period shaded red 
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4.5.2.4 Spectacle DVA versus CL DVA 

 

Main findings: 

• For the intervention eye group, DVA was better with spectacles than CLs (F (1, 10) = 

0.547, P < 0.0005) and changed over time (F (4, 40) = 4.306, P = 0.005) with both forms 

of correction (F (4, 40) = 2.045, P = 0.106) (see Figure 4.6 and Table 4.8) 

• For the control eye group, DVA was better with spectacles than CLs (F (1, 10) = 25.883, 

P < 0.0005) and changed over time (F (4, 40) = 3.811, P = 0.010) with both forms of 

correction (F (4, 40) = 2.576, P = 0.052) (see Figure 4.7 and Table 4.9). 

 

 

 
Figure 4.6 Change in spectacle DVA versus CL DVA at 6 m for the intervention eye group 
(mean ± SEM). Measures at the first timepoint taken at the first CL aftercare visit 
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Timepoint (months) DVA (LogMAR) 

6 0.06 ± 0.04 0.24 ± 0.04 

12 0.03 ± 0.04 0.16 ± 0.03 

18 0.03 ± 0.04 0.17 ± 0.04 

24 0.03 ± 0.04 0.16 ± 0.04 

30 0.07 ± 0.04 0.19 ± 0.04 

 Spectacles (n = 11) CLs (n = 11) 
Table 4.8 Spectacle DVA versus CL DVA at 6 m for the intervention eye group (mean ± SEM). 
Measures at the first timepoint taken at the first CL aftercare visit 
 

 

 
Figure 4.7 Change in spectacle DVA versus CL DVA at 6 m for the control eye group (mean 
± SEM). Measures at the initial timepoint taken at the first CL aftercare visit 
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Timepoint (months) DVA (LogMAR) 

6 -0.07 ± 0.01 0.02 ± 0.02 

12 -0.09 ± 0.01 0.00 ± 0.02 

18 -0.10 ± 0.01 -0.03 ± 0.02 

24 -0.11 ± 0.01 -0.03 ± 0.02 

30 -0.09 ± 0.01 -0.04 ± 0.02 

 Spectacles (n = 11) CLs (n = 11) 
Table 4.9 Spectacle DVA versus CL DVA at 6 m for the control eye group (mean ± SEM). 
Measures at the first timepoint taken at the first CL aftercare visit 
 

 

4.5.2.5 Spectacle NVA 

 

Main findings: 

• Spectacle NVA was better for the control eye group than the intervention eye group (F 

(1, 10) = 26.532, P < 0.0005) and improved over time (F (6, 60) = 9.838, P < 0.0005) in both 

groups (F (6, 60) = 1.643, P = 0.151).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.8 and Table 4.10) showed that 

for the intervention eye group, spectacle NVA did not change from baseline to the 6-month 

timepoint (P = 1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-

month timepoints (P = 1.000), 18- and 24-month timepoints (P = 0.797), 24- and 30-month 

timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 4.8 and Table 4.10) showed that 

for the control eye group, spectacle NVA did not change from baseline to the 6-month timepoint 

(P = 1.000), nor between the 6- and 12-month timepoints (P = 1.000) or the 12- and 18-month 

timepoints (P = 1.000). Spectacle NVA improved between the 18- and 24-month timepoints (P 
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= 0.039) but did not change between the 24- and 30-month timepoints (P = 1.000) nor the 30- 

and 36-month timepoints (P = 1.000). 

 

 
 

 
Figure 4.8 Change in spectacle NVA at 0.25 m (mean ± SEM) 
 

 

Timepoint (months) NVA (LogMAR) 

Baseline 0.28 ± 0.02 0.19 ± 0.02 

6 0.25 ± 0.02 0.18 ± 0.01 

12 0.27 ± 0.02 0.16 ± 0.02 

18 0.25 ± 0.02 0.17 ± 0.01 

24 0.21 ± 0.02 0.11 ± 0.02 

30 0.22 ± 0.02 0.11 ± 0.02 

36 0.22 ± 0.02 0.13 ± 0.02 

 Intervention (n = 11) Control (n = 11) 
Table 4.10 Spectacle NVA at 0.25 m at each visit (mean ± SEM). Intervention period shaded 
red  
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4.5.2.6 CL NVA 

 

Main findings: 

• CL NVA was better for the control eye group than the intervention eye group (F (1, 10) = 

45.000, P < 0.0005) and improved over time (F (6, 60) = 6.378, P < 0.0005) in both groups 

(F (6, 60) = 1.034, P = 0.401).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.9 and Table 4.11) showed that 

for the intervention eye group, CL NVA did not change between the 6- and 12-month timepoints 

(P = 0.959), 12- and 18-month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000) 

and the 24- and 30-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 4.9 and Table 4.11) showed that 

for the control eye group, CL NVA did not change between the 6- and 12-month timepoints (P 

= 1.000), 12- and 18-month timepoints (P = 1.000), 18- and 24-month timepoints (P = 0.816) 

and the 24- and 30-month timepoints (P = 1.000). 
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Figure 4.9 Change in CL NVA at 0.25 m (mean ± SEM) 
 
 
 

Timepoint (months) NVA (LogMAR) 

6 0.30 ± 0.02 0.22 ± 0.01 

12 0.25 ± 0.02 0.20 ± 0.00 

18 0.24 ± 0.02 0.19 ± 0.01 

24 0.24 ± 0.02 0.16 ± 0.02 

30 0.22 ± 0.01 0.17 ± 0.01 

 Intervention (n = 11) Control (n = 11) 
Table 4.11 CL NVA at 0.25 m at each visit (mean ± SEM). Intervention period shaded red 
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4.5.2.7 Spectacle NVA versus CL NVA 

 

Main findings: 

• For the intervention eye group, NVA was similar with spectacles and CLs (F (1, 10) = 

0.558, P = 0.472) and improved over time (F (4, 40) = 5.523, P = 0.001) with CL correction 

only (F (4, 40) = 3.320, P = 0.019) (see Figure 4.10 and Table 4.12) 

• For the control eye group, NVA was better with spectacles than CLs (F (1, 10) = 17.872, 

P = 0.002) and improved over time (F (4, 40) = 9.744, P < 0.0005) with both forms of 

correction (F (4, 40) = 2.088, P = 0.100) (see Figure 4.11 and Table 4.13). 

 

 
 

 
Figure 4.10 Change in spectacle NVA versus CL NVA at 0.25 m for the intervention eye group 
(mean ± SEM). Measures at the initial timepoint taken at the first CL aftercare visit 
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Timepoint (months) NVA (LogMAR) 

6 0.25 ± 0.02 0.30 ± 0.02 

12 0.27 ± 0.02 0.25 ± 0.02 

18 0.25 ± 0.02 0.24 ± 0.02 

24 0.21 ± 0.02 0.24 ± 0.02 

30 0.22 ± 0.02 0.22 ± 0.01 

 Spectacles (n = 11) CLs (n = 11) 
Table 4.12 Spectacle NVA versus CL NVA at 0.25 m for the intervention eye group (mean ± 
SEM). Measures at the initial timepoint taken at the first CL aftercare visit 
 

 
 

 
Figure 4.11 Change in spectacle NVA versus CL NVA at 0.25 m for the control eye group 
(mean ± SEM). Measures at the initial timepoint taken at the first CL aftercare visit 
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Timepoint (months) NVA (LogMAR) 

6 0.18 ± 0.01 0.22 ± 0.01 

12 0.16 ± 0.02 0.20 ± 0.00 

18 0.17 ± 0.01 0.19 ± 0.01 

24 0.11 ± 0.02 0.16 ± 0.02 

30 0.11 ± 0.02 0.17 ± 0.01 

 Spectacles (n = 11) CLs (n = 11) 
Table 4.13 Spectacle NVA versus CL NVA at 0.25 m for the control eye group (mean ± SEM). 
Measures at the initial timepoint taken at the first CL aftercare visit 
 

 

4.5.2.8 Stereoacuity with spectacle correction 

 

Main findings: 

• Stereoacuity did not change over time (F (6, 54) = 1.070, P = 0.392). 

 

Pairwise comparisons for between-visit analysis (see Figure 4.12 and Table 4.14) showed that 

stereoacuity did not change from baseline to the 6-month timepoint (P = 1.000), nor between 

the 6- and 12-month timepoints (P = 1.000), 12- and 18-month timepoints (P = 1.000), 18- and 

24-month timepoints (P = 1.000), 24- and 30-month timepoints (P = 1.000) and the 30- and 

36-month timepoints (P = 1.000). 
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Figure 4.12 Change in stereoacuity with spectacle correction (mean ± SEM). Excludes 1 
participant who was unable to complete the grading plates 
 

 

Timepoint (months) Stereoacuity (arcsec) 

Baseline 78.00 ± 9.17 

6 84.00 ± 9.80 

12 90.00 ± 10.00 

18 72.00 ± 8.00 

24 78.00 ± 9.17 

30 72.00 ± 8.00 

36 90.00 ± 10.00 

 (n = 10) 
Table 4.14 Stereoacuity at each visit (mean ± SEM). Intervention period shaded red. Excludes 
participants that were unable to complete the grading plates 
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4.5.2.9 Stereoacuity: spectacle correction versus CL correction 

 

Main findings: 

• Stereoacuity was similar with spectacles and CLs (F (1, 9) = 4.338, P = 0.067) and did 

not change over time (F (1, 9) = 3.524, P = 0.093) with either form of correction (F (1, 9) = 

3.128, P = 0.111). 

 

Pairwise comparisons for between-visit analysis (see Table 4.15) showed that with spectacle 

correction, stereoacuity was similar at the 12- and 24-month timepoints (P = 0.168). 

 

Pairwise comparisons for between-visit analysis (see Table 4.15) showed that with CL 

correction, stereoacuity was similar at the 12- and 24-month timepoints (P = 0.095). 

 

Timepoint (months) Stereoacuity (arcsec) 

12 90.00 ± 10.00 168.00 ± 39.80 

24 78.00 ± 9.17 114.00 ± 16.61 

 Spectacles (n = 10) CLs (n = 10) 
Table 4.15 Stereoacuity with spectacle correction versus CL correction (mean ± SEM). 
Intervention period shaded red. Excludes participants that were unable to complete the grading 
plates 
 

4.5.2.10 Cover test with spectacle correction 

A summary of binocular status with spectacle correction at distance and near for the 

participants is detailed in Table 4.16. 
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 Cover test 

Participant Distance at 6 m Near at 0.25 m 

1 Orthophoria Orthophoria 

2 Orthophoria Orthophoria 

3 Orthophoria Small exophoria 

4 Orthophoria Orthophoria 

5 Orthophoria Orthophoria 

6 Orthophoria Orthophoria 

7 Orthophoria Orthophoria 

8 Orthophoria Orthophoria 

9 Orthophoria Orthophoria 

10 Orthophoria Orthophoria 

11 Orthophoria Orthophoria 
Table 4.16 Cover test with spectacle correction at distance and near for the intervention group 
 

 

4.5.2.11 CS with spectacle correction 

 

Main findings: 

• CS with spectacle correction was better in the control eye group than the intervention 

eye group (F (1, 10) = 9.146, P = 0.013) and did not change over time (F (2, 20) = 0.510, P 

= 0.608) in either group (F (2, 20) = 0.377, P = 0.690).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.13 and Table 4.17) showed that 

for the intervention eye group, CS with spectacle correction did not change between the 6- and 

30-month timepoints (P = 1.000), nor between the 30- and 36-month timepoints (P = 1.000). 
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Pairwise comparisons for between-visit analysis (see Figure 4.13 and Table 4.17) showed that 

for the control eye group, CS with spectacle correction did not change between the 6- and 30-

month timepoints (P = 0.501), nor between the 30- and 36-month timepoints (P = 1.000). 

 

 
Figure 4.13 Change in CS with spectacle correction at 1 m (mean ± SEM) 
 

 

Timepoint (months) Log CS (CPD) 

6 1.51 ± 0.02 1.58 ± 0.02 

30 1.54 ± 0.03 1.61 ± 0.02 

36 1.53 ± 0.04 1.62 ± 0.03 
 Intervention (n = 11) Control (n = 11) 

Table 4.17 CS with spectacle correction at 1 m. Intervention period shaded red 
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4.5.2.12 CS with CL correction 

 

Main findings: 

• CS with CL correction was better for the control eye group than the intervention eye 

group (F (1, 10) = 5.213, P = 0.046) and did not change over time (F (1, 10) = 0.290, P = 

0.602) in either group (F (1, 10) = 3.378, P = 0.096).  

 

Pairwise comparisons for between-visit analysis (see Table 4.18) showed that for the 

intervention eye group, CS with CL correction did not change between the 6- and 30-month 

timepoints (P = 0.796). 

 

Pairwise comparisons for between-visit analysis (see Table 4.18) showed that for the control 

eye group, CS with CL correction did not change between the 6- and 30-month timepoints (P 

= 0.104). 

 

Timepoint (months) Log CS (CPD) 

6 1.53 ± 0.02 1.54 ± 0.02 

30 1.51 ± 0.03 1.60 ± 0.02 
 Intervention (n = 11) Control (n = 11) 

Table 4.18 CS with CL correction at 1 m. Intervention period shaded red 
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4.5.2.13 CS: spectacle correction versus CL correction 

 

Main findings: 

• For the intervention eye group, mean CS was similar with spectacle correction and CL 

correction (F (1, 10) = 0.102, P = 0.756) and did not change over time (F (1, 10) = 0.036, P 

= 0.852) with either form of correction (F (1, 10) = 0.506, P = 0.493) (see Table 4.19) 

• For the control eye group, mean CS was similar with spectacle correction and CL 

correction (F (1, 10) = 2.222, P = 0.167) and did not change over time (F (1, 10) = 3.750, P 

= 0.082) with either form of correction (F (1, 10) = 1.000, P = 0.341) (see Table 4.20). 

 

 

Timepoint (months) Log CS (CPD) 

6 1.51 ± 0.02 1.53 ± 0.03 

30 1.54 ± 0.03 1.51 ± 0.03 

 Spectacles (n = 11) CLs (n = 11) 
Table 4.19 CS with spectacle correction versus CL correction at 1 m for the intervention eye 
group (mean ± SEM). Intervention period shaded red. Measures at the initial timepoint taken 
at the first CL aftercare visit 
 

 

Timepoint (months) Log CS (CPD) 

6 1.58 ± 0.02 1.54 ± 0.02 

30 1.61 ± 0.02 1.60 ± 0.02 

 Spectacles (n = 11) CLs (n = 11) 
Table 4.20 CS with spectacle correction versus CL correction at 1 m for the control eye group 
(mean ± SEM). Intervention period shaded red. Measures at the initial timepoint taken at the 
first CL aftercare visit 
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4.5.2.14 CC 

 

Main findings: 

• CC was similar for the intervention eye group and control eye group (F (1, 10) = 0.143, P 

= 0.713) and did not change over time (F (6, 60) = 1.704, P = 0.136) in either group (F (6, 

120) = 0.767, P = 0.599).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.14 and Table 4.21) showed that 

for the intervention eye group, CC did not change from baseline to the 6-month timepoint (P = 

1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-month timepoints 

(P = 0.222), 18- and 24-month timepoints (P = 1.000), 24- and 30-month timepoints (P = 1.000) 

and the 30- and 36-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 4.14 and Table 4.21) showed that 

for the control eye group, CC did not change from baseline to the 6-month timepoint (P = 

0.950), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-month timepoints 

(P = 1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month timepoints (P = 1.000) 

and the 30- and 36-month timepoints (P = 1.000). 

 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

179 

 
Figure 4.14 Change in CC (mean ± SEM) 
 

 

Timepoint (months) CC (mm) 

Baseline 7.78 ± 0.10 7.76 ± 0.09 

6 7.79 ± 0.09 7.79 ± 0.09 

12 7.79 ± 0.10 7.79 ± 0.09 

18 7.82 ± 0.09 7.79 ± 0.08 

24 7.81 ± 0.10 7.81 ± 0.09 

30 7.79 ± 0.10 7.80 ± 0.08 

36 7.79 ± 0.09 7.78 ± 0.09 
 Intervention (n = 11) Control (n = 11) 

Table 4.21 CC at each visit (mean ± SEM). Intervention period shaded red 
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4.5.2.15 ACD 

 

Main findings: 

• ACD was greater for the control eye group than intervention eye group (F (1, 10) = 8.401, 

P = 0.016) and did not change over time (F (4, 40) = 1.436, P = 0.240) in either group (F 

(4, 40) = 0.487, P = 0.745).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.15 and Table 4.22) showed that 

for the intervention eye group, ACD did not change from baseline to the 6-month timepoint (P 

= 0.212), nor between the 6- and 18-month timepoints (P = 0.066), 18- and 30-month 

timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 4.15 and Table 4.22) showed that 

for the control eye group, ACD did not change from baseline to the 6-month timepoint (P = 

0.063), nor between the 6- and 18-month timepoints (P = 1.000), 18- and 30-month timepoints 

(P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 
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Figure 4.15 Change in ACD (mean ± SEM) 
 

 

Timepoint (months) ACD (mm) 

Baseline 3.33 ± 0.09 3.45 ± 0.08 

6 3.35 ± 0.09 3.48 ± 0.08 

18 3.37 ± 0.09 3.49 ± 0.08 

30 3.36 ± 0.09 3.48 ± 0.08 

36 3.37 ± 0.09 3.47 ± 0.08 
 Intervention (n = 11) Control (n = 11) 

Table 4.22 ACD at each visit (mean ± SEM). Intervention period shaded red 
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4.5.2.16 Pupil size 

 

Main findings: 

• Pupil size was similar for the intervention eye group and control eye group (F (1, 10) = 

1.432, P = 0.259)  

• Pupil size was smaller in photopic conditions than in mesopic conditions (F (1, 10) = 

55.694, P < 0.0005) in both groups (F (1, 10) = 0.226, P = 0.645) (see Figure 4.16 and 

Table 4.23).  

 

 

Figure 4.16 Pupil size in photopic and mesopic conditions for the intervention eye group and 
control eye group with CL in situ (mean ± SEM) 
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 Pupil size (mm) 

Timepoint (months) Intervention - 
photopic 

Control - 
photopic 

Intervention - 
mesopic 

Control - 
mesopic 

12 6.31 ± 0.21 6.45 ± 0.26 7.01 ± 0.20 7.12 ± 0.21 
Table 4.23 Pupil size in photopic and mesopic conditions for the intervention eye group and 
control eye group with CL in situ (mean ± SEM) 
 

 

4.5.2.17 Amplitude of accommodation 

 

Main findings: 

• Amplitude of accommodation was similar for the intervention eye and control eye 

groups (F (1, 10) = 3.778, P = 0.081) and did not change over time (F (6, 60) = 0.404, P = 

0.873) in either group (F (6, 60) = 2.157, P = 0.060).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.17 and Table 4.24) showed that 

for the intervention eye group, amplitude of accommodation did not change from baseline to 

the 6-month timepoint (P = 1.000), nor between the 6- and 12-month timepoints (P = 1.000), 

12- and 18-month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), 24- and 

30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

Pairwise comparisons for between-visit analysis (see Figure 4.17 and Table 4.24) showed that 

for the control eye group, amplitude of accommodation did not change from baseline to the 6-

month timepoint (P = 1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 

18-month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month 

timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 
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Figure 4.17 Change in amplitude of accommodation (mean ± SEM) 
 

 

Timepoint (months) Amplitude of accommodation (D) 

Baseline 11.01 ± 0.48 11.33 ± 0.38 

6 10.94 ± 0.37 11.11 ± 0.37 

12 10.74 ± 0.40 11.54 ± 0.26 

18 11.31 ± 0.50 11.30 ± 0.29 

24 10.95 ± 0.46 11.54 ± 0.38 

30 11.02 ± 0.37 11.18 ± 0.31 

36 10.79 ± 0.40 11.62 ± 0.29 
 Intervention (n = 11) Control (n = 11) 

Table 4.24 Amplitude of accommodation at each visit (mean ± SEM). Intervention period 
shaded red 
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4.5.2.18 Lag of accommodation with spectacle correction 

 

Main findings: 

• Lag of accommodation with spectacle correction did not change over time (F (6, 60) = 

2.222, P = 0.053). 

 

Pairwise comparisons for between-visit analysis (see Figure 4.18 and Table 4.25) showed that 

lag of accommodation with spectacle correction did not change from baseline to the 6-month 

timepoint (P = 1.000), nor between the 6- and 12-month timepoints (P = 1.000), 12- and 18-

month timepoints (P = 1.000), 18- and 24-month timepoints (P = 1.000), 24- and 30-month 

timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

 
Figure 4.18 Change in accommodative lag with spectacle correction for a target at 0.33 m 
(mean ± SEM). 
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Timepoint (months) Accommodative lag (D) 

Baseline 0.78 ± 0.10 

6 0.93 ± 0.06 

12 1.04 ± 0.12 

18 0.93 ± 0.12 

24 1.00 ± 0.10 

30 1.10 ± 0.08 

36 1.16 ± 0.12 
 Intervention (n = 11) 

Table 4.25 Accommodative lag with spectacle correction for a target at 0.33 m (mean ± SEM). 
Intervention period shaded red 
 

 

4.5.2.19 Lag of accommodation: spectacle correction versus CL correction 

 

Main findings: 

• Lag of accommodation was less with spectacle correction than CL correction (F (1, 10) = 

20.845, P = 0.001) and did not change over time (F (1, 10) = 0.816, P = 0.388) with either 

form of correction (F (1, 10) = 0.096, P = 0.763). 

 

Pairwise comparisons for between-visit analysis (see Table 4.26) showed that with spectacle 

correction, lag of accommodation was similar at the 12- and 24-month timepoints (P = 0.741). 

 

Pairwise comparisons for between-visit analysis (see Table 4.26) showed that with CL 

correction, lag of accommodation was similar at the 12- and 24-month timepoints (P = 0.438). 

 

 

 

 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

187 

 

Timepoint (months) Accommodative lag (D) 

12 1.04 ± 0.12 1.70 ± 0.09 

24 1.00 ± 0.10 1.60 ± 0.11 

 Spectacles (n = 11) CLs (n = 11) 
Table 4.26 Accommodative lag with spectacle correction versus CL correction for a target at 
0.33 m (mean ± SEM). Intervention period shaded red 
 

 

4.5.2.20 Central CL power 

 

Main findings: 

• Central CL power reduced over time (F (4, 40) = 18.408, P < 0.0005) for the intervention 

eye group only (F (4, 40) = 3.866, P = 0.010). 

 

Pairwise comparisons for between-visit analysis (see Figure 4.19 and Table 4.27) showed that 

for the intervention eye group, central CL power did not change between the 6- and 12-month 

timepoints (P = 0.119) but decreased between the 12- and 18-month timepoints (P = 0.019) 

and the 18- and 24-month timepoints (P = 0.039) but not between the 24- and 30-month 

timepoints (P = 1.000). 

 
Pairwise comparisons for between-visit analysis (see Figure 4.19 and Table 4.27) showed that 

for the control eye group, central CL power did not change between the 6- and 12-month 

timepoints (P = 0.531), nor between the 12- and 18-month timepoints (P = 0.251), the 18- and 

24-month timepoints (P = 0.379) and the 24- and 30-month timepoints (P = 1.000). 
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Figure 4.19 Change in central CL power (mean ± SEM) 
 

 

 
Timepoint (months) Central CL power (D) 

6 3.59 ± 0.42 2.00 ± 0.39 

12 3.41 ± 0.44 1.89 ± 0.41 

18 3.25 ± 0.46 1.75 ± 0.43 

24 3.07 ± 0.43 1.66 ± 0.43 

30 3.14 ± 0.47 1.68 ± 0.45 
 Intervention (n = 11) Control (n = 11) 

Table 4.27 Central CL power (mean ± SEM) 

 

4.5.2.21 CL WT 

 

Main findings: 

• CL WT changed over time (F (4, 40) = 4.476, P = 0.004), increasing over the first 6 months 

of wear and then remained stable throughout the remainder of the intervention period. 
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Pairwise comparisons for between-visit analysis (see Figure 4.20 and Table 4.28) showed that 

mean weekly CL WT increased between the 6- and 12-month timepoints (P = 0.009), but not 

between the 12- and 18-month timepoints (P = 1.000), 18- and 24-month timepoints (P = 

1.000), nor the 24- and 30-month timepoints (P = 1.000). 

 

 

 
Figure 4.20 Change in typical weekly CL WT (mean ± SEM). 
 

 

Timepoint (months) Weekly CL WT (hours) 

6 59.64 ± 1.98 

12 69.91 ± 3.18 

18 69.82 ± 3.26 

24 71.82 ± 3.57 

30 71.45 ± 2.67 
Table 4.28 Typical weekly CL WT (mean ± SEM). Measures at the initial timepoint taken at 
the first CL aftercare visit 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

12 18 24 30

C
ha

ng
e 

in
 w

ee
kl

y 
W

T 
(h

ou
rs

)

Timepoint (months)



I.G.Beasley, PhD Thesis, Aston University 2021 
 

190 

4.5.2.22 Peripheral refraction MSE 

 

Main findings: 

• MSE peripheral refraction was relatively myopic in the temporal, nasal, superior, and 

inferior quadrants in the intervention eye and control eye groups (see Table 4.29 and 

Table 4.30)  

• Absolute values for central and peripheral refraction in all four quadrants are detailed 

in Figures 4.21 to 4.24. 

 

 

 Relative peripheral refraction (D) 

Timepoint (months) Temporal 30° Nasal 30° Superior 20° Inferior 20° 

Baseline -2.40 ± 0.46 -0.55 ± 0.48 -0.43 ± 0.27 -0.71 ± 0.13 

6 -2.68 ± 0.54 -1.12 ± 0.44 -0.45 ± 0.32 -0.26 ± 0.27 

18 -2.24 ± 0.64 -1.11 ± 0.52 -0.86 ± 0.45 -0.16 ± 0.34 

30 -2.15 ± 0.70 -2.18 ± 0.81 -0.66 ± 0.40 -0.62 ± 0.17 

36 -2.18 ± 0.76 -1.47 ± 0.66 -0.54 ± 0.41 -0.86 ± 0.12 
Table 4.29 MSE post-cycloplegic relative peripheral refractive error at each visit for the 
intervention eye group (mean ± SEM). Intervention period shaded red 
 

 

 Relative peripheral refraction (D) 

Timepoint (months) Temporal 30° Nasal 30° Superior 20° Inferior 20° 

Baseline -1.45 ± 0.30 -0.39 ± 0.26 -0.36 ± 0.26 -0.21 ± 0.17 

6 -1.81 ± 0.51 -0.69 ± 0.41 -0.41 ± 0.25 -0.05 ± 0.21 

18 -1.27 ± 0.70 -0.96 ± 0.43 -0.52 ± 0.37 -0.36 ± 0.35 

30 -1.27 ± 0.51 -0.98 ± 0.60 -0.56 ± 0.33 -0.60 ± 0.35 

36 -1.50 ± 0.53 -0.94 ± 0.45 -0.60 ± 0.29 -0.52 ± 0.41 
Table 4.30 MSE post-cycloplegic relative peripheral refractive error at each visit for the control 
eye group (mean ± SEM) 
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Figure 4.21 Absolute MSE post-cycloplegic central refraction compared to peripheral 
refraction at 30° temporally (mean ± SEM) 
 
 
 

 
Figure 4.22 Absolute MSE post-cycloplegic central refraction compared to peripheral 
refraction at 30° nasally (mean ± SEM) 
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Figure 4.23 Absolute MSE post-cycloplegic central refraction compared to peripheral 
refraction at 20° superiorly (mean ± SEM) 
 

 

 
Figure 4.24 Absolute MSE post-cycloplegic central refraction compared to peripheral 
refraction at 20° inferiorly (mean ± SEM) 
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For the intervention eye group, relative MSE peripheral refraction varied by location (F (3, 30) = 

6.179, P = 0.002) (See Figure 4.25). The temporal quadrant demonstrated a similar degree of 

relative myopia compared to the nasal (P = 0.186) and superior (P = 0.110) quadrants, 

respectively but was relatively more myopic than the inferior quadrant (P = 0.033). Relative 

MSE peripheral myopia in the nasal quadrant was similar to the superior (P = 1.000) and 

inferior (P = 0.822) quadrants; this was also the case when comparing the superior quadrant 

to the inferior quadrant (P = 1.000). 

 

 
Figure 4.25 MSE post-cycloplegic relative peripheral refractive error at each visit for the 
intervention eye group (mean ± SEM) 
 

For the control eye group, relative peripheral MSE refraction did not vary by location (F (3, 30) = 

2.744, [Greenhouse-Geisser P = 0.104, Epsilon 0.613]) (See Figure 4.26). Relative peripheral 

MSE myopia in the temporal quadrant was similar to the nasal (P = 1.000), superior (P = 

0.646), and inferior (P = 0.466) quadrants, respectively; this was also the case when comparing 

the nasal quadrant to the superior (P = 1.000) and the inferior quadrants (P = 1.000). The 

superior and inferior quadrants also had similar levels of relative peripheral MSE myopia (P = 

1.000). 
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Figure 4.26 MSE post-cycloplegic relative peripheral refractive error at each visit for the control 
eye group (mean ± SEM) 
 

Relative peripheral MSE refraction in the temporal quadrant was more myopic for the 

intervention eye group than the control eye group (F (1, 10) = 11.139, P = 0.008) and did not 

change over time (F (4, 40) = 0.825, P = 0.517) in either group (F (4, 40) = 0.087, P = 0.986).  

 

Pairwise comparisons for between-visit analysis (see Figures 4.21 and 4.25, and Table 4.29) 

showed that for the intervention eye group, relative peripheral MSE refraction in the temporal 

quadrant did not change from baseline to the 6-month timepoint (P = 1.000), nor between the 

6- and 18-month timepoints (P = 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- 

and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figures 4.21 and 4.26, and Table 4.30) 

showed that for the control eye group, relative peripheral MSE refraction in the temporal 

quadrant did not change from baseline to the 6-month timepoint (P = 1.000), nor between the 

6- and 18-month timepoints (P = 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- 

and 36-month timepoints (P = 1.000). 
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Relative peripheral MSE refraction in the nasal quadrant was similar for the intervention eye 

and control eye groups (F (1, 10) = 2.463, P = 0.148) and did not change over time (F (4, 40) = 

2.522, P = 0.056) in either group (F (4, 40) = 1.197, P = 0.327).  

 

Pairwise comparisons for between-visit analysis (see Figures 4.22 and 4.25, and Table 4.29) 

showed that for the intervention eye group, relative peripheral MSE refraction in the nasal 

quadrant did not change from baseline to the 6-month timepoint (P = 0.488), nor between the 

6- and 18-month timepoints (P = 0.511), 18- and 30-month timepoints (P = 0.651) and the 30- 

and 36-month timepoints (P = 0.696).  

 

Pairwise comparisons for between-visit analysis (see Figures 4.22 and 4.26, and Table 4.30) 

showed that for the control eye group, relative peripheral MSE refraction in the nasal quadrant 

did not change from baseline to the 6-month timepoint (P = 1.000), nor between the 6- and 18-

month timepoints (P = 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- and 36-

month timepoints (P = 1.000). 

 

Relative peripheral MSE refraction in the superior quadrant was similar for the intervention eye 

and control eye groups (F (1, 10) = 0.550, P = 0.476) and did not change over time (F (4, 40) = 

0.632, P = 0.642) in either group (F (4, 40) = 0.844 P = 0.506).  

 

Pairwise comparisons for between-visit analysis (see Figures 4.23 and 4.25, and Table 4.29) 

showed that for the intervention eye group, relative peripheral MSE refraction in the superior 

quadrant did not change from baseline to the 6-month timepoint (P = 1.000), nor between the 

6- and 18-month timepoints (P = 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- 

and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figures 4.23 and 4.26, and Table 4.30) 

showed that for the control eye group, relative peripheral MSE refraction in the superior 
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quadrant did not change from baseline to the 6-month timepoint (P = 1.000), nor between the 

6- and 18-month timepoints (P = 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- 

and 36-month timepoints (P = 1.000). 

 

Relative peripheral MSE refraction in the inferior quadrant was similar for the intervention eye 

and control eye groups (F (1, 10) = 0.666, P = 0.433) and did not change over time (F (4, 40) = 

1.434, P = 0.240) in either group (F (4, 40) = 1.125 P = 0.359).  

 

Pairwise comparisons for between-visit analysis (see Figures 4.23 and 4.25, and Table 4.29) 

showed that for the intervention eye group, relative peripheral MSE refraction in the inferior 

quadrant did not change from baseline to the 6-month timepoint (P = 0.877), nor between the 

6- and 18-month timepoints (P = 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- 

and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figures 4.24 and 4.26, and Table 4.30) 

showed that for the control eye group, relative peripheral MSE refraction in the inferior 

quadrant did not change from baseline to the 6-month timepoint (P = 1.000), nor between the 

6- and 18-month timepoints (P = 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- 

and 36-month timepoints (P = 1.000). 

 

 

 

 

 

 

 

4.5.2.23 Peripheral refraction (J0) 
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Main findings: 

• For the intervention eye group, J0 peripheral refraction varied by location (F (3, 30) = 

10.933, [Greenhouse-Geisser P = 0.002, Epsilon 0.618]) (See Figure 4.27). The 

temporal quadrant was similar to the nasal quadrant (P = 0.148) but relatively more 

myopic than the superior (P = 0.005), and inferior (P = 0.014) quadrants, respectively. 

The nasal quadrant was similar to the superior (P = 0.206) and inferior (P = 0.392) 

quadrants, respectively. The superior and inferior quadrants were also similar to each 

other (P = 0.859). 

• For the control eye group, mean J0 peripheral refraction varied by location (F (3, 30) = 

14.319, [Greenhouse-Geisser P < 0.0005, Epsilon 0.711]) (See Figure 4.28). The 

temporal quadrant was similar to the nasal quadrant (P = 0.129) but relatively more 

myopic than both the superior (P = 0.005), and inferior (P = 0.008) quadrants. The 

nasal quadrant was similar to the superior (P = 0.069) and inferior (P = 0.130) 

quadrants, respectively. The superior and inferior quadrants were also similar to each 

other (P = 0.598). 

 

J0 peripheral refraction in the temporal quadrant was similar for the intervention eye and 

control eye groups, respectively (F (1, 10) = 0.394, P = 0.544) and did not change over time (F 

(4, 40) = 0.976, P = 0.431) in either group (F (4, 40) = 0.123, P = 0.974).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.27 and Table 4.31) showed that 

for the intervention eye group, measures in the temporal quadrant did not change from 

baseline to the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P 

= 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 

1.000).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.28 and Table 4.32) showed that 

for the control eye group, measures in the temporal quadrant did not change from baseline to 
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the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 

18- and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

J0 peripheral refraction in the nasal quadrant was similar for the intervention eye and control 

eye groups, respectively (F (1, 10) = 1.254, P = 0.289) and changed over time (F (4, 40) = 3.355, 

P = 0.018) in both groups (F (4, 40) = 1.167, P = 0.340).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.27 and Table 4.31) showed that 

for the intervention eye group, measures in the nasal quadrant did not change from baseline 

to the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 

18- and 30-month timepoints (P = 0.116) and the 30- and 36-month timepoints (P = 0.897).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.28 and Table 4.32) showed that 

for the control eye group, measures in the nasal quadrant did not change from baseline to the 

6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 18- 

and 30-month timepoints (P = 1.000), and the 30- and 36-month timepoints (P = 1.000). 

 

J0 peripheral refraction in the superior quadrant was similar for the intervention eye and control 

eye groups, respectively (F (1, 10) = 4.51, P = 0.060) and changed over time (F (4, 40) = 3.216, P 

= 0.022) in both groups (F (4, 40) = 0.440, P = 0.779).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.27 and Table 4.31) showed that 

for the intervention eye group, measures in the superior quadrant did not change from baseline 

to the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 

18- and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.28 and Table 4.32) showed that 

for the control eye group, measures in the superior quadrant did not change from baseline to 
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the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000).  

There was a change between the 18- and 30-month timepoints (P = 0.032) but not between 

the 30- and 36-month timepoints (P = 1.000). 

 

J0 peripheral refraction in the inferior quadrant was similar for the intervention eye and control 

eye groups, respectively (F (1, 10) = 2.285, P = 0.162) and did not change over time (F (4, 40) = 

0.644, P = 0.634) in either group (F (4, 40) = 0.536 P = 0.710).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.27 and Table 4.31) showed that 

for the intervention eye group, measures in the inferior quadrant did not change from baseline 

to the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 

18- and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.28 and Table 4.32) showed that 

for the control eye group, relative peripheral refraction in the inferior quadrant did not change 

from baseline to the 6-month timepoint (P = 1.000), nor between the 6- and 18-month 

timepoints (P = 1.000), 18- and 30-month timepoints (P = 1.000) and the 30- and 36-month 

timepoints (P = 1.000). 

 

 

 

 

 

 

 

 Peripheral refraction (D) 

Timepoint (months) Temporal 30° Nasal 30° Superior 20° Inferior 20° 
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Baseline -1.48 ± 0.31 -0.29 ± 0.20 0.32 ± 0.12 0.24 ± 0.19 

6 -1.79 ± 0.29 -0.38 ± 0.31 0.37 ± 0.18 0.27 ± 0.14 

18 -1.59 ± 0.37 -0.61 ± 0.37 0.40 ± 0.23 -0.08 ± 0.27 

30 -1.24 ± 0.46 -1.39 ± 0.55 0.16 ± 0.16 -0.05 ± 0.32 

36 -1.19 ± 0.48 -0.98 ± 0.48 0.13 ± 0.14 0.20 ± 0.20 
Table 4.31 J0 post-cycloplegic peripheral refractive error at each visit for the intervention eye 
group (mean ± SEM). Intervention period shaded red 
 

 

 Peripheral refraction (D) 

Timepoint (months) Temporal 30° Nasal 30° Superior 20° Inferior 20° 

Baseline -1.47 ± 0.22 -0.15 ± 0.14 0.43 ± 0.12 0.36 ± 0.11 

6 -1.60 ± 0.42 -0.41 ± 0.30 0.67 ± 0.16 0.36 ± 0.18 

18 -1.31 ± 0.59 -0.58 ± 0.34 0.63 ± 0.10 0.35 ± 0.09 

30 -1.20 ± 0.45 -0.71 ± 0.40 0.33 ± 0.11 0.22 ± 0.15 

36 -1.20 ± 0.51 -0.69 ± 0.35 0.22 ± 0.09 0.28 ± 0.15 
Table 4.32 J0 post-cycloplegic peripheral refractive error at each visit for the control eye group 
(mean ± SEM) 
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Figure 4.27 J0 post-cycloplegic peripheral refractive error at each visit for the intervention eye 
group (mean ± SEM) 
 

 

 
Figure 4.28 J0 post-cycloplegic peripheral refractive error at each visit for the control eye 
group (mean ± SEM) 
 

 

 

 

4.5.2.24 Peripheral refraction (J45) 

 

Main findings: 

• For the intervention eye group, J45 peripheral refraction for the intervention eye group 

was similar in all locations (F (3, 30) = 0.612, P = 0.613) (See Figure 4.29). The temporal 

quadrant was similar to the nasal (P = 1.000), superior (P = 1.00), and inferior (P = 

1.000) quadrants, respectively. The nasal quadrant was similar to the superior (P = 

1.000) and inferior (P = 1.000) quadrants, respectively. The superior quadrant was also 

similar to the superior quadrant (P = 1.000). 
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• For the control eye group, J45 peripheral refraction was similar in all locations (F (3, 30) 

= 0.905, P = 0.450) (See Figure 4.30). The temporal quadrant was similar to the nasal 

(P = 1.000), superior (P = 1.00), and inferior (P = 1.000) quadrants, respectively. The 

nasal quadrant was similar to the superior (P = 1.000) and inferior (P = 1.000) 

quadrants, respectively. The superior quadrant was also similar to the superior 

quadrant (P = 1.000). 

 

J45 peripheral refraction in the temporal quadrant was similar for the intervention eye and 

control eye groups (F (1, 10) = 0.319, P = 0.585) and did not change over time (F (4, 40) = 1.320, 

P = 0.279) in either group (F (4, 40) = 3.822, P = 0.100).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.29 and Table 4.33) showed that 

for the intervention eye group, measures in the temporal quadrant did not change from 

baseline to the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P 

= 1.000), 18- and 30-month timepoints (P = 0.078) and the 30- and 36-month timepoints (P = 

1.000).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.30 and Table 4.34) showed that 

for the control eye group, measures in the temporal quadrant did not change from baseline to 

the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 

18- and 30-month timepoints (P = 0.659) and the 30- and 36-month timepoints (P = 1.000). 

 

J45 peripheral refraction in the nasal quadrant was similar for the intervention eye and control 

eye groups (F (1, 10) = 2.296, P = 0.161) and did not change over time (F (4, 40) = 0.262, P = 

0.901) in either group (F (4, 40) = 2.396, P = 0.066).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.29 and Table 4.33) showed that 

for the intervention eye group, measures in the nasal quadrant did not change from baseline 
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to the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 

18- and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.30 and Table 4.34) showed that 

for the control eye group, measures in the nasal quadrant did not change from baseline to the 

6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 18- 

and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

J45 peripheral refraction in the superior quadrant was similar for the intervention eye and 

control eye groups (F (1, 10) = 0.309, P = 0.590) and did not change over time (F (4, 40) = 1.357, 

P = 0.266) in either group (F (4, 40) = 1.491, P = 0.223).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.29 and Table 4.33) showed that 

for the intervention eye group, measures in the superior quadrant did not change from baseline 

to the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 

18- and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.30 and Table 4.34) showed that 

for the control eye group, measures in the superior quadrant did not change from baseline to 

the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 

18- and 30-month timepoints (P = 1.000) and the 30- and 36-month timepoints (P = 1.000). 

 

J45 peripheral refraction in the inferior quadrant was similar for the intervention eye and control 

eye groups (F (1, 10) = 1.670, P = 0.225) and did not change over time (F (4, 40) = 1.318, P = 

0.280) in either group (F (4, 40) = 0.298, P = 0.878).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.29 and Table 4.33) showed that 

for the intervention eye group, measures in the inferior quadrant did not change from baseline 
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to the 6-month timepoint (P = 1.000), nor between the 6- and 18-month timepoints (P = 1.000), 

18- and 30-month timepoints (P = 0.363) and the 30- and 36-month timepoints (P = 1.000).  

 

Pairwise comparisons for between-visit analysis (see Figure 4.30 and Table 4.34) showed that 

for the control eye group, relative peripheral refraction in the inferior quadrant did not change 

from baseline to the 6-month timepoint (P = 1.000), nor between the 6- and 18-month 

timepoints (P = 1.000), 18- and 30-month timepoints (P = 0.517) and the 30- and 36-month 

timepoints (P = 1.000). 

 

 Peripheral refraction (D) 

Timepoint (months) Temporal 30° Nasal 30° Superior 20° Inferior 20° 

Baseline 0.13 ± 0.08 0.08 ± 0.09 0.11 ± 0.07 0.07 ± 0.08 

6 -0.03 ± 0.15 0.02 ± 0.10 -0.14 ± 0.16 0.09 ± 0.09 

18 -0.07 ± 0.13 0.22 ± 0.11 0.10 ± 0.06 0.27 ± 0.17 

30 0.36 ± 0.17 0.21 ± 0.09 0.00 ± 0.10 0.04 ± 0.20 

36 0.38 ± 0.15 0.28 ± 0.13 0.10 ± 0.06 0.15 ± 0.11 
Table 4.33 J45 post-cycloplegic peripheral refractive error at each visit for the intervention eye 
group (mean ± SEM). Intervention period shaded red 
 

 

 Peripheral refraction (D) 

Timepoint (months) Temporal 30° Nasal 30° Superior 20° Inferior 20° 

Baseline 0.03 ± 0.15 0.09 ± 0.13 0.20 ± 0.10 -0.12 ± 0.09 

6 0.06 ± 0.15 -0.01 ± 0.13 0.14 ± 0.12 0.00 ± 0.09 

18 0.27 ± 0.09 -0.17 ± 0.16 0.04 ± 0.10 0.23 ± 0.09 

30 -0.09 ± 0.15 -0.14 ± 0.13 0.08 ± 0.06 -0.10 ± 0.15 

36 0.01 ± 0.11 -0.20 ± 0.14 0.03 ± 0.06 -0.05 ± 0.11 
Table 4.34 J45 post-cycloplegic peripheral refractive error at each visit for the control eye 
group (mean ± SEM) 
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Figure 4.29 J45 post-cycloplegic peripheral refractive error at each visit for the intervention 
eye group (mean ± SEM) 
 

 

 
Figure 4.30 J45 post-cycloplegic peripheral refractive error at each visit for the control eye 
group (mean ± SEM) 
 

 

4.5.2.25 Relative peripheral refraction with CL in situ 
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Main findings: 

• Non-cycloplegic peripheral refraction with CL correction in situ demonstrated more 

relative hyperopia in the intervention eye group than the control eye group (F (1, 10) = 

25.425, P = 0.001) and varied by location (F (3, 30) = 5.604, P = 0.004) in both groups (F 

(3, 30) = 0.592, P = 0.625). 

 

Pairwise comparisons (see Figure 4.31 and Table 4.35) for the intervention eye group showed 

that the temporal quadrant was similar to the nasal quadrant (P = 1.000) and the inferior 

quadrant (P = 0.375) but was relatively more hyperopic than the superior quadrant (P = 0.021). 

The nasal quadrant demonstrated a similar degree of relative hyperopia to the superior (P = 

0.408) and inferior quadrants (P = 0.016), while the superior and inferior quadrants were also 

similar to each other (P = 1.000). 

 

Pairwise comparisons (see Figure 4.32 and Table 4.36) for the control eye group showed that 

the temporal quadrant was similar to the nasal (P = 1.000), superior (P = 0.056) and the inferior 

quadrants (P = 0.807). The nasal quadrant demonstrated a similar degree of relative hyperopia 

to the superior (P = 0.404) and inferior quadrants (P = 1.000), while the superior and inferior 

quadrants were also similar to each other (P = 1.000). 
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Figure 4.31 MSE non-cycloplegic relative peripheral refraction with CL correction in situ for 
the intervention eye group (mean ± SEM) 
 
 
 

 Peripheral refraction (D) 
Timepoint 
(months) Temporal 30° Nasal 30° Superior 20° Inferior 20° 

12 2.69 ± 0.40 2.25 ± 0.53 1.03 ± 0.40 1.57 ± 0.45 
Table 4.35 MSE non-cycloplegic relative peripheral refraction with CL correction in situ for the 
intervention eye group (mean ± SEM) 
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Figure 4.32 MSE non-cycloplegic relative peripheral refraction with CL correction in situ for 
the control eye group (mean ± SEM) 
 

 

 Peripheral refraction (D) 
Timepoint 
(months) Temporal 30° Nasal 30° Superior 20° Inferior 20° 

12 0.98 ± 0.28 0.77 ± 0.24 0.01 ± 0.35 0.39 ± 0.37 
Table 4.36 MSE non-cycloplegic relative peripheral refraction with CL correction in situ for the 
control eye group (mean ± SEM) 
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can be reduced in anisohyperopes by imposing RPHD unilaterally in the more hyperopic eye, 

with the fellow eye serving as a control. The first of two primary outcome measures, axial 

growth, showed that despite the imposition of RPHD, AL did not increase significantly over 
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and in fact, the interocular difference in AL was greater at the point of exit from the trial than at 

baseline. The findings here are in contrast to the work outlined in Chapter 3 for isohyperopes 

where axial growth in the intervention group outperformed the control group during the 

intervention period. The outcome from the present study may be considered unsurprising given 

recently published work demonstrating that, even at a small degree, anisometropia appears to 

disrupt the regulation of eye growth (Flitcroft et al., 2020).  

 

For the second primary outcome measure, post-cycloplegic refractive error, once again results 

did not align with the original hypothesis. While mean refractive error decreased over time, this 

was by a similar amount in both the intervention and control eye group with a failure to close 

the gap between the interocular difference measured at baseline compared to the final 

outcome. As with the findings in Chapter 3, unlike AL, this outcome measure did not achieve 

statistical power. Once again, data could have been collected at each of the 7 timepoints to 

increase power but decisions such as these need to be considered alongside the burden 

placed upon young participants and potential impact upon drop out. Based upon the effect 

size, it is estimated that to achieve statistical power at 80% over 5 data collection points, a 

sample size of 49 participants would be required. 

 

For secondary outcome measures, the longitudinal changes for anisohyperopes were 

broadly in keeping with their isohyperopic counterparts (see Chapter 3). For instance, while 

unaided DV was better in the control eye than the intervention eye group, this parameter did 

not change over time. Although statistically, spectacle DVA worsened over time in both the 

control eye and intervention eye groups, this was limited to 0.03 LogMAR units from baseline 

to exit measures so is, therefore, of limited clinical relevance, particularly taking into account 

the variability seen at interim visits. DVA was better with spectacles than CLs although there 

was greater improvement with the latter form of correction over time. Interestingly, 

improvements over time in DVA with CLs were similar in both the intervention (MF) wearers 

as the control (SV) wearers suggesting that adaptation may relate more to the CL itself rather 
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than the optics of the different designs. Measures of NVA with CLs also improved over time 

in both the intervention eye and control eye groups. Stereoacuity with spectacles did not 

change over time; however, unlike the isohyperopes in Chapter 3, stereoacuity was similar 

with spectacles and CLs which may be a result of reduced image degradation with unilateral 

MF optics in the anisohyperopic cohort. In terms of CS, once again, as with isohyperopes, 

measures were similar with spectacles compared to CLs in both SV and MF designs and did 

not change over time; this offers reassurance that visual performance with both unilateral 

and bilateral MF CLs is adequate for young wearers, which is borne out in the low levels of 

drop out witnessed throughout the studies outlined in both chapters. Neither CC nor ACD 

changed over time in either group, with the latter suggesting that the longitudinal increase in 

AL seen in the control eye group was likely to be due to VCD changes. In terms of 

accommodative function, lag with spectacle correction in the intervention eye did not change 

over time although it was significantly greater when compared to CLs; this finding could be 

important given that in myopic work, impaired lag has been implicated as a driver for axial 

growth and myopia progression (Mutti et al., 2006; Chakraborty et al., 2020) although it does 

not appear to be the case here. Paradoxically, given the findings for post-cycloplegic 

spectacle refraction, central CL power reduced over time in the intervention eye group but 

not the control eye group. Nevertheless, this may be accounted for by virtue of CL power 

being assessed under non-cycloplegic conditions.  

 

All participants completed the trial, reinforcing the findings from Chapter 3 that young wearers 

can successfully transition into CL wear and also adapt well to wearing a MF design 

unilaterally. As outlined in Chapter 3, a potential limitation is the use of self-reported wearing 

times as the basis for presumed compliance. However, as with isohyperopes, the participants 

here were also, on the whole, reluctant to give up CLs at the end of the intervention period 

with the majority intending to resume wear upon exiting the study, which suggests that 

compliance was in line with reported values. 
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As with isohyperopes in Chapter 3, peripheral refraction was relatively myopic in all four 

quadrants in both the intervention eye and control eye groups and did not change over time. 

Importantly, relative peripheral refraction with CL in situ neatly demonstrated that centre-near 

MF CLs are a viable method to induce the desired defocus in anisohyperopes with a greater 

degree of RPH seen in the intervention eye group compared to the SV CL-wearing control 

eye group. However, regardless of this, as outlined in the discussion for isohyperopes, the 

role of peripheral defocus in the manipulation of axial growth remains uncertain and the 

primary outcomes here for anisohyperopes fails to add clarity. While the imposition of relative 

peripheral hyperopic defocus appears to influence growth rates in isohyperopes the same 

does not hold true for anisohyperopes using the paradigm outlined in the present work. It 

seems that, unlike isohyperopes, the unique growth patterns typically experienced by 

anisohyperopes are resistant to the influence of RPHD, at least in this age demographic and 

at the magnitude imposed here. It remains to be seen if earlier intervention and a more 

aggressive approach to defocus would yield more promising results; this provides an 

opportunity for future work with the aim to remedy the impact of near lifelong visual 

impairment these individuals would otherwise face. Instinctively, for anisohyperopes, the eye 

closer to emmetropia, in this case the control, would be considered the ‘normal’ eye. 

However, given that the mean growth rate for the more hyperopic eye is closer to the 

expected norm (Breslin et al., 2013), perhaps the control eye should be considered to be the 

‘abnormal’ one of the pair. Redefining the eye in this way could change the approach to 

refractive error modulation in anisohyperopes where the primary endeavour would be to slow 

down growth in the least hyperopic eye rather than attempting to accelerate growth in the 

more hyperopic eye. To stretch this concept further, perhaps imposing competing defocus 

models could yield the greatest result, that is to say, using myopic defocus to slow down 

growth in the least hyperopic eye, with the opposite approach taken in the fellow eye. 
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5.0 Time course and repeatability of objective refraction and biometry following 

cycloplegia  

 

5.1 Introduction 

Refractive error modulation studies typically report changes to AL and post-cycloplegic 

refraction as the key outcome measures to determine the effect of a given intervention. With 

this in mind, it is important to understand the sensitivity of these measures in order to have 

confidence that any changes have arisen as a result of the intervention rather than any inherent 

variability in the clinical techniques that can occur between visits. 

 

To date, refractive modulation studies in humans have primarily focused on myopes (see 

Chapter 1). Within a hyperopic cohort, particularly in young participants, it is possible that 

fluctuations in accommodation could play a greater role in measurement variability compared 

to their myopic counterparts given that they are likely to spend time without refractive correction 

and may not have their full manifest refractive error corrected (Leat, 2011).  

 

The Zeiss IOLMaster 500 is considered ideal for the purposes of AL monitoring (see Chapter 

2) with good repeatability. Lam et al., 2002 reported a mean difference between measures 

taken on the same day of 0.0042 mm in a young, adult, myopic cohort under non-cycloplegic 

conditions with 95% limits of agreement (LoA) of ± 0.047 mm. Others concur, reporting high 

repeatability of non-cycloplegic AL measurement in adults (Santodomingo-Rubido et al., 

2002;); these measures are also repeatable for children in both mixed (Hussin et al., 2006) 

and myopic refractive cohorts under non-cycloplegic conditions (Kimura et al., 2007) and 

following cycloplegia (Carkeet et al., 2004). Interestingly, cycloplegia appears to have little 

effect on IOLMaster 500 AL measurements using tropicamide 1% (Sheng et al., 2004; 

Khambhiphant et al., 2015) or cyclopentolate HCl 1% (Cheung et al., 2009; Arici et al., 2014), 

which is also the case with the IOLMaster 700 after instillation of tropicamide 1% (Momeni-

Moghaddam et al., 2019). IOLMaster 500 ACD measurements are affected by cycloplegia with 
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shallower readings reported prior to, compared to after instillation of the drug, with mean 

differences of between 0.05 mm (SD ± 0.03) (Cheung et al., 2009) and 0.15 mm (SD ± 0.10) 

(Arici et al., 2014) using cyclopentolate HCl 1%, and 0.11 mm with tropicamide 1% 

(Khambhiphant et al., 2015). 

 

Unsurprisingly, results from non-cycloplegic autorefraction are prone to inaccuracies, 

particularly in young hyperopes due to an active accommodative response (Sankaridurg et al., 

2017). While refraction undertaken under cycloplegia will yield more accurate results, in the 

context of tracking longitudinal refractive error changes for research, it is prudent to evaluate 

both the repeatability of autorefraction and the time course of cycloplegia upon the outcome 

measure.  

 

The repeatability of autorefraction using the Grand Seiko WAM-5500, 30 minutes after the 

instillation of tropicamide 1% in a young, adult myopic cohort demonstrated a mean difference 

between visits of 0.02 D (SD ± 0.11) and LoA of ± 0.21 D (Moore and Bentsen, 2014). Similarly, 

the repeatability of autorefraction using the Shin-Nippon SRW-5000, in a mixed refractive 

cohort of children aged 4 to 8 years after the instillation of cyclopentolate HCl 1% has been 

reported as a mean difference of 0.01 D (SD ± 0.35) with LoA of ± 0.35 D (Chat and Edwards, 

2001).  

 

Measures of cycloplegic refraction are typically taken at 30 minutes after the instillation of the 

drug (Chat and Edwards, 2001; Moore and Bentsen, 2014;) as this has been shown to be the 

point at which maximum cycloplegia is reached in most children (Laojaroenwanit et al., 2016), 

although this does vary according to iris colour (Manny et al., 1993). Regardless of iris colour, 

the time course for pupil dilation is not the same as the time course for cycloplegia. Some 

report that maximal cycloplegia is not reached until 90 minutes after instillation of 

cyclopentolate HCl 1% (Kyei et al., 2017). Others suggest that in hyperopes, maximum 

refractive power is found at 50 to 70 minutes after instillation, although this can be accelerated 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

214 

by around ten minutes by using a topical anaesthetic prior to the cycloplegic (Xiaoming et al., 

2011). Nevertheless, the difference in autorefraction taken after instillation of cyclopentolate 

HCl 1% in emmetropic and hyperopic children at 30 and 60 minutes, respectively, has been 

reported as being just 0.06 D (SD ± 0.28), with marginally more hyperopia measured at the 

latter timepoint (Mutti et al., 1994). In hyperopes with brown irides, it has been proposed that 

two drops of cyclopentolate HCl 1% instilled 10 minutes apart should be used to achieve a 

deeper level of cycloplegia than a single dose (Mohan and Sharma, 2011). In a predominantly 

hyperopic cohort, others have reported that a single drop of cyclopentolate HCl 1% appears to 

be sufficient and results in fewer side effects than a multidose approach (Bagheri et al., 2007). 

 

Within refractive error modulation studies, measures are typically taken following a specified 

time period after the instillation of a cycloplegic agent (Anstice and Phillips, 2011; Walline et 

al., 2013; Chamberlain et al., 2019a, although others use different criteria for establishing if 

adequate cycloplegia has been achieved. For instance, some use pupil diameter and absence 

of a light reflex as marker (Negrel et al., 2000), whereas others use measures of 

accommodative amplitude (Logan et al., 2011; Lam et al., 2019). 

 

While it is desirable to take measurements in strict accordance with the protocol, the reality, 

particularly with younger participants, is that there can often be minor departures from the 

intended plan. For instance, a participant may have measurements taken at precisely 30 

minutes after the instillation of the cycloplegic on the first visit, yet unexpected circumstances 

can mean that assessment takes place several minutes before or after the desired timepoint 

on a subsequent visit.  

 

Taking all of the above into account, it is useful to confirm the differences that arise in pre-

cycloplegic versus post-cycloplegic measures of AL in a mixed refractive cohort and also to 

determine if there is any short-term variability in these parameters. In addition, being able to 

elucidate the changes that occur in post-cycloplegic objective refraction across discrete time 
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intervals on the same visit, along with an assessment of repeatability across visits, provides 

helpful insight when designing refractive error modulation studies. 

 

5.2 Objective 

The purpose of this pilot study was to establish the variation in measures of post-cycloplegic 

refraction at discrete time intervals and changes to AL measures before and after cycloplegic 

refraction. The aim was to establish if there was variability in these measures taken at two 

separate visits across an interval of 1 to 2 weeks. 

 

5.3 Methods 

Sample size calculation indicated that 24 participants would be required to achieve 80% power 

for an effect size of 0.25 at a significance level of 5% using a repeated measures ANOVA 

design (G*Power 3.1, Franz Faul, Universität Kiel, Germany). The aim was to recruit 28 

participants to allow for an attrition rate of 20%. Suitable candidates were enrolled by 

displaying notices at the research venues. Potential participants were also sourced through a 

database search at the research venues to identify individuals that met the inclusion criteria.  

 

Prior to commencing the research, ethical approval was obtained from Aston University’s 

Research Ethics Committees (see Appendix 9) with the study designed to follow the tenets of 

the Declaration of Helsinki. Each participant was given detailed information regarding the 

nature of the study, both verbally and in written form; this allowed informed consent and assent 

to take place prior to participation. The participants were required to complete a short 

questionnaire to ensure they met the inclusion criteria (see Appendix 10). 

 

Inclusion criteria were as follows: 

• Aged between 8 and < 31 years-of-age 

• Parents must have read, understood and signed the informed consent form where 

appropriate (see Appendix 11) 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

216 

• Participants must have read, understood and signed the consent or assent form as 

appropriate (see Appendix 12 and 13) 

• Be in good general health 

 

Exclusion criteria were as follows: 

• Current use of systemic medication that could affect focusing ability 

• Known ocular or systemic disease 

• Participants who were not able to provide informed consent without the aid of an interpreter 

due to lack of funding available for the provision of interpreter facilities. 

 

Participants were required to attend for two visits taking place within 1 to 2 weeks of each 

other. A summary of the procedures conducted at each visit are detailed below. 

 

Visit 1 

• Unaided DV at 6 m (LogMAR) 

• DVA at 6 m (LogMAR) 

• Slit lamp examination 

• IOPs 

• Pre-cycloplegic AL 

• Post-cycloplegic autorefraction at 25, 30, 35 and 40 minutes, following instillation of 1 drop 

of cyclopentolate HCl 1% in minim form (Bausch + Lomb, Kingston upon Thames, UK) in 

each eye  

• Post-cycloplegic AL at 30 minutes 

• Post-cycloplegic ACD at 30 minutes. 

 

Visit 2 

• Unaided DV at 6 m (LogMAR) 
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• DVA at 6 m (LogMAR) 

• Slit lamp examination 

• IOPs 

• Pre-cycloplegic AL 

• Post-cycloplegic autorefraction at 25, 30, 35 and 40 minutes, following instillation of 1 drop 

of cyclopentolate HCl 1% in minim form (Bausch + Lomb, Kingston upon Thames, UK) in 

each eye  

• Post-cycloplegic AL at 30 minutes 

• Post-cycloplegic ACD at 30 minutes. 

 

5.4 Statistical analysis 

All data were analysed using the commercially available software, SPSS, v. 25, IBM, New 

York, U.S.A. (Armstrong et al, 2011; Armstrong et al., 2002). Data were examined with t-tests 

or repeated measures ANOVA with Bonferroni correction applied, as indicated, with a 

significance level of α < 0.05 used throughout.  

 

5.5 Results 

Primary outcome measures (see 5.5.1) were changes in post-cycloplegic MSE refractive error 

over discrete time intervals at each visit and between the two visits, along with differences in 

pre- and post-cycloplegic AL measures on and between both visits. Primary outcome 

measures were the same for the right and left eyes for AL (F1,23 = 0.453, P = 0.508) and post-

cycloplegic refraction (F1,23 = 0.754, P = 0.394). As such, data presented here is for the right 

eye only (Armstrong, 2013).  

 

All 24 participants that were recruited completed the study and comprised of 18 females and 

6 males with an age range at baseline of 12.58-29.08 years (mean 19.04 SD 5.66 years); these 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

218 

data were normally distributed (Kolmogorov-Smirnov, Z = 0.215, P = 0.05). The refractive 

range was -3.51 D to +5.91 D (mean 2.43 D SD 3.08). 

 

5.5.1 Primary outcome measures 

 

5.5.1.1 AL 

Analysis showed that AL measures were the same prior to cycloplegia compared to 30 minutes 

after instillation of cyclopentolate HCl 1% (F (1, 23) = 1.231, P = 0.279). Measures of AL did not 

change across the two visits (F (1, 23) = 0.351, P = 0.559) under pre- or post-cycloplegic 

conditions (F (1, 23) = 0.437, P = 0.515) (see Table 5.1). Observed power was 9.7% and partial η2 

was 0.019. 

 

 AL (mm) (n = 24) 

Timepoint Pre-cycloplegic Post-cycloplegic 

Visit 1 22.42 ± 0.26 22.42 ± 0.26 

Visit 2 22.42 ± 0.26 22.42 ± 0.26 
Table 5.1 AL before and 30 minutes after instillation of cyclopentolate HCl 1% at each visit 
(mean ± SEM) 
 

For pre-cycloplegic AL, the mean difference between Visit 1 and Visit 2 was 0.004 mm SD ± 

0.01 (t-test: t = 1.366, df = 23, P = 0.185) with 95% LoA of ± 0.026 mm (see Figure 5.1).  
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Figure 5.1 Difference versus the mean plot for pre-cycloplegic AL at Visits 1 and 2. 95% LoA 
enclosed by dashed lines. Mean difference indicated by solid line 
 

 

For post-cycloplegic AL, the mean difference between Visit 1 and Visit 2 was 0.000 mm SD ± 

0.013 (t-test: t = 0.000, df = 23, P = 1.000) with 95% LoA of ± 0.025 mm (see Figure 5.2). 
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Figure 5.2 Difference versus the mean plot for post-cycloplegic AL at Visits 1 and 2. 95% LoA 
enclosed by dashed lines. Mean difference indicated by solid line 
 

 

5.5.1.2 Post-cycloplegic refractive error 

Analysis for the main effects revealed that post-cycloplegic MSE refractive error did not change 

over discrete timepoints following cycloplegia (F (1, 23) = 0.392, P = 0.759). Measures did not 

change between visits (F (1, 23) = 0.121, P = 0.731) with no interaction between factors (F (1, 23) 

= 0.362, P = 0.781). Observed power was 11.8% and partial η2 was 0.016. 

 

Pairwise comparisons showed that during the first visit, post-cycloplegic MSE refractive error 

was the same at 25 (P = 1.000), 30 (P = 1.000) 35 (P = 1.000) and 40 minutes (P = 1.000) 

after instillation of cyclopentolate HCl 1%; this was also the case during the second visit at 25 

(P = 1.000), 30 (P = 1.000) 35 (P = 1.000) and 40 minutes (P = 1.000), respectively (see Figure 

5.3 and Table 5.2). 
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Figure 5.3 Post-cycloplegic MSE refractive error at discrete timepoints after instillation of 
cyclopentolate HCl 1% at each visit (mean ± SEM) 
 

 

 Refractive error (D) (n = 24) 

Timepoint 25 mins 30 mins 35 mins 40 mins 

Visit 1 2.43 ± 0.63 2.40 ± 0.63 2.38 ± 0.63 2.42 ± 0.63 

Visit 2 2.41 ± 0.62 2.45 ± 0.62 2.38 ± 0.62 2.45 ± 0.61 
Table 5.2 Post-cycloplegic MSE refractive error at discrete timepoints after instillation of 
cyclopentolate HCl 1% at each visit (mean ± SEM) 
 

 

5.5.2 Secondary outcome measures 

 

5.5.2.1 Unaided DV 

Unaided DV did not change between Visit 1 and Visit 2 with a mean difference of -0.003 

LogMAR SD ± 0.06 (t-test: t = -0.199, df = 23, P = 0.844) (see Table 5.3) with 95% LoA of ± 

0.12 LogMAR (see Figure 5.4). Linear regression analysis indicated a level of bias between 

visits (t = -2.338, P = 0.029). 
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Timepoint DV (LogMAR) (n = 24) 

Visit 1 0.25 ± 0.06 

Visit 2 0.25 ± 0.07 
Table 5.3 Unaided DV at 6 m at each visit (mean ± SEM) 

 

 

 

Figure 5.4 Difference versus the mean plot for unaided vision at Visits 1 and 2. 95% LoA 
enclosed by dashed lines. Mean difference indicated by solid line 
 

 

5.5.2.2 DVA 

DVA was unchanged between Visit 1 and Visit 2 with a mean difference of 0.014 LogMAR SD 

± 0.06 (t-test: t = 1.204, df = 23, P = 0.241) (see Table 5.4) with 95% LoA of ± 0.11 LogMAR 

(see Figure 5.5). Linear regression analysis confirmed a level of agreement between visits (t 

= -1.199, P = 0.243). 
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Timepoint DVA (LogMAR) (n = 24) 

Visit 1 -0.03 ± 0.02 

Visit 2 -0.04 ± 0.02 
Table 5.4 DVA at 6 m at each visit (mean ± SEM) 

 

 

Figure 5.5 Difference versus the mean plot for DVA at Visits 1 and 2. 95% LoA enclosed by 
dashed lines. Mean difference indicated by solid line 
 

 

5.5.2.3 ACD 

ACD did not change between Visit 1 and Visit 2 with a mean difference of 0.002 mm SD ± 0.05 

(t-test: t = 0.226, df = 23, P = 0.823) (see Table 5.5) with 95% LoA of ± 0.09 mm (see Figure 

5.6). Linear regression analysis confirmed a level of agreement between visits (t = -0.574, P = 

0.571). 
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Timepoint ACD (mm) (n = 24) 

Visit 1 3.53 ± 0.06 

Visit 2 3.53 ± 0.06 
Table 5.5 ACD at each visit (mean ± SEM) 

 

 

Figure 5.6 Difference versus the mean plot for post-cycloplegic ACD at Visits 1 and 2. 95% 
LoA enclosed by dashed lines. Mean difference indicated by solid line 
 

 

5.6 Discussion 

This pilot study offers useful insight into the influence of cycloplegia on AL and refractive error. 

These key ocular parameters are typically the primary outcomes in refractive error modulation 

research, so it is important to understand the effect of cycloplegia on these measures. The 

study also provides data on the repeatability of the ocular parameters outlined above; this is 

valuable as it allows researchers to place any changes that have occurred over time, for 

example, to AL, in the context of variability that may arise naturally across sessions in studies 

of this type. 
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In terms of AL measures in this study, there are two important aspects to consider: firstly, the 

repeatability of AL measures under both non-cycloplegic and cycloplegic conditions; secondly, 

to understand the impact of a cycloplegic agent on AL. These insights allow researchers to 

review options when designing refractive error modulation experimental paradigms. For 

instance, in Chapters 3 and 4, participants had axial growth monitored under pre-cycloplegic 

conditions over a 3-year period at 6-monthly intervals, that is to say, on 7 visits in total. In the 

same trials, post-cycloplegic refractive error was evaluated on 5 visits over the same 3-year 

interval. In other words, a cycloplegic agent was only used on 5 out of the 7 visits. In the 

present study, measures of AL in a young, mixed refractive cohort were the same under non-

cycloplegic and cycloplegic conditions across two separate visits. The outcome here is 

reassuring as it gives researchers the confidence to design refractive error modulation studies, 

in line with the paradigm adopted for Chapters 3 and 4, without necessarily having to specify 

that a cycloplegic agent is required in order to track longitudinal axial growth. There are several 

benefits that arise from this finding: recruitment of participants may become easier, particularly 

with young children if cycloplegia is either not required, or if the requirement can be removed 

at certain data collection points; the burden of cycloplegia for participants can be removed or 

frequency reduced in study designs; researchers can take the opportunity to investigate other 

secondary outcome measures under non-cycloplegic conditions at intervals where a 

cycloplegic agent is not required, for example, peripheral refraction with CLs in situ under 

natural a refractive state (see Chapters 3 and 4).  

 

The present study also investigated both the repeatability of cycloplegic refraction in a young, 

mixed refractive cohort and the impact of duration of drug exposure at discrete time intervals. 

In terms of repeatability, as with AL measures described above, it is essential to understand 

natural variability in cycloplegic refraction that can arise between measurement sessions so 

that any reported changes are attributed confidently to a particular intervention. In addition, it 

is important to understand the effect that variability in the duration of drug exposure can have 

on the outcome measures; in the author’s experience, it is not unusual for participants to 



I.G.Beasley, PhD Thesis, Aston University 2021 
 

226 

unintentionally return later than specified time following instillation of the cycloplegic. For 

example, the participant or a younger sibling may request a comfort break prior to resuming 

data collection, resulting in measures being taken several minutes after the intended timepoint. 

As such, it is helpful to elucidate the potential impact of these discrete time deviations. It is 

reassuring to note that the results from the present study show that measures of refractive 

error taken at four time points across a 15-minute window do not differ significantly and are 

repeatable across two measurement sessions. 

 

In terms of secondary outcome measures, this study has shown that in line with previous work, 

measures of unaided DV and DVA (Raasch et al., 1998; Siderov and Tiu, 1999), and ACD 

(Lam et al., 2001; Sheng et al., 2004) are repeatable.  

 

In summary, the results of this study have shown that AL does not change significantly when 

comparing measures taken before and after the introduction of a cycloplegic agent in a young, 

mixed refractive cohort. The other main outcome from this study offers reassurance to 

researchers that objective measures of cycloplegic refraction are repeatable and do not vary 

significantly across discrete time intervals. Further work could look to explore objective 

measures of cycloplegic refraction at a greater spread of timepoints to establish if this key 

outcome measure can be reliably taken within a shorter window to increase the efficiency of 

data collection for the benefit of participants and investigators. It would be helpful if this pilot 

work could be expanded upon with a larger sample to achieve statistical power, and given the 

effect size determined in the present work, this would require 190 participants. 
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6.0 General discussion 

The overarching conclusion from this body of work provides evidence to support the original 

hypothesis and offers a clinically accessible mechanism to reduce the lifelong impact of 

hyperopia. But there is more to do. Indeed, it is important to recognise that the clinical trials 

outlined here are a starting point in an area of research that, against the backdrop of the 

myopia epidemic, has thus far been neglected. 

 

The primary outcome measures outlined in Chapter 3 demonstrate the ability to accelerate 

axial growth in isohyperopes. Two-year axial growth rates of 0.17 mm versus 0.06 mm in the 

intervention and control groups, respectively, shows promise. In terms of the second primary 

outcome measure, post-cycloplegic error, while the decrease in hyperopia did not reach 

statistical significance, the overall trend was in the desired direction and an extension of the 

work is required with a larger sample size to achieve sufficient power. Furthermore, a larger 

sample size would permit further statistical analysis, such as multiple linear regression, to help 

identify factors that may predict potential responders to the types of intervention outlined in the 

present work. It is also worth noting the effects of ‘optical dampening’ and the reduction in the 

refraction: AL ratio seen in larger myopic eyes (Cruickshank and Logan, 2018) and how this 

may translate into a greater refractive impact for those with smaller globes, namely hyperopes. 

In other words, an increase in AL in a small, hyperopic eye would be expected to result in a 

larger refractive change than an equivalent AL change in a larger eye. Once again, this could 

be elucidated with a sufficiently large dataset. 

 

A deeper delve into the raw data clearly shows that while the majority of children respond to 

the intervention, there appears to be others that could be regarded as non-responders, where 

growth rates follow a natural time course. Interestingly, the two best responders were almost 

3 years younger and had a baseline refraction ~ +2.00 D lower than the two worst responders 

(see Appendix 14). While a trend cannot be established from this small-scale observation, it is 
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intriguing, and the relevance of age and refractive error at baseline should be explored in future 

work.   

 

Establishing proof of concept and taking into account lessons learnt throughout the 

experimental chapters has created a platform to develop the efficacy of this approach. In the 

first instance, it would be useful to assess the impact of earlier intervention. While the entry 

point for participants in the present study was 8 years of age, the mean age was > 11 years. 

Nevertheless, it is worth stressing that recruitment of hyperopes within primary care and 

research settings is challenging, particularly within a younger age group. In the absence of 

amblyopia or symptoms, low to moderate hyperopes are likely to ‘pass’ rudimentary vision 

screening at school (O’Donoghue et al., 2012) and may not present for routine assessment 

within primary care optometry. On the other hand, strabismic and / or amblyopic hyperopes 

are usually diverted to secondary care and not discharged to primary care until beyond the 

age of 7 years. Taking the above into account, two points need to be addressed, at least in the 

UK. Firstly, as with dental care, it is essential to place the visual welfare of young children on 

the healthcare checklist of parents. A timely visit to primary care optometry would allow for pre-

school detection of latent hyperopia, amblyopia and anisometropia, creating the best 

opportunity for intervention. Although, as a sidenote, it seems there is still some work to do 

within the profession itself to educate practitioners on taking an evidence-based approach to 

inform clinical decisions when using cycloplegia during paediatric examinations (Doyle et al., 

2019). Secondly, there is a pressing need for research collaboration with Hospital Eye Service 

colleagues, once again, to maximise the visual prognosis for these children at the earliest 

possible stage.  

 

Additional opportunities to expand upon refractive error modulation in children with hyperopia 

could be through nuanced optical approaches based upon the mechanism established in 

Chapter 3. In the present study, a single dose approach was taken using a 2.00 D add in an 

‘off-the-shelf’ design intended for presbyopic correction. Due to minimal axial growth typically 
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seen in hyperopes, ‘…they really need to have a good kick in the pants to reactivate their long 

dormant growth...’ (Dr Thomas Aller, California, US, personal communication, 4 September 

2020). In this context, a ‘good kick’ refers to using custom-designed MF CLs, in the smallest 

sized central zone and the highest add power that the child will tolerate; this approach is not 

unreasonable given that myopic defocus, at least in chicks, seems to have greater potency 

than hyperopic defocus (Zhu et al., 2005; Zhu, 2013). Furthermore, customising the design to 

ensure sufficient RPHD in all four quadrants on an individual basis may also yield better 

results.  

 

There remains, as with myopes, conjecture as to whether the signal for accelerated growth 

observed in this cohort was due to the imposition of RPHD, the effect of the intervention upon 

accommodative lag, or both. From a clinician’s standpoint, and certainly from the patient’s 

perspective, does it really matter? Nevertheless, from a research stance, this question requires 

answering, at the very least to satisfy curiosity, but more importantly to hone future approaches 

in this area.  

 

While the results in Chapter 3 bring optimism and a firm foundation on which to build, the 

results for anisohyperopes in Chapter 4 are an intriguing contrast to their isohyperopic 

counterparts. In view of the fact that as little as 0.50 D of anisometropia is enough to disrupt 

emmetropisation (Flitcroft et al., 2020) and given that participants in the present trial had a 

minimum baseline interocular difference in refractive error of >1.00 D, they were arguably 

faced with an uphill battle to achieve the intended outcome, particular at the age inclusion 

criteria specified in the study. Of course, the points raised previously in relation to early 

intervention are equally valid here, but perhaps also the definition of anisometropia ought to 

be softened and interocular differences of >0.50 D should be regarded as abnormal enough 

to warrant intervention. Once again, as with isohyperopes, anisohyperopes may also benefit 

from a ‘good kick.’   
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As alluded to in Chapter 4 (see Section 4.6), for anisohyperopes specifically, a more 

aggressive approach could be taken with the least hyperopic eye. The rationale for this is that 

in the present study, it was the ‘better’ eye that appeared to display a more atypical growth 

rate than its fellow. Could the ‘better’ eye actually be regarded as the abnormal one of the pair 

in the case of anisohyperopes? With this in mind, the eye closer to emmetropia could be 

treated in the same way as a progressing myope by imposing relative peripheral myopic 

defocus (RPMD) to slow down axial growth. Of course, this does not preclude the opportunity 

to simultaneously impose RPHD in the fellow eye to maximise the chances of narrowing the 

interocular difference in refractive error. Building upon this concept, even a pharmacological 

strategy could be employed in those with anisohyperopia by trying to slow down growth in the 

eye closest to emmetropia. Indeed, there is precedent for this in the context of myopic 

anisometropia where atropine has been used successfully to slow down axial growth only in 

the eye with the highest refractive error (Lixia et al., 2013).  

 

Regardless of the effect of RPHD on axial growth modulation, or lack thereof, in 

anisohyperopes, it is worth emphasising the point from Chapter 1 (see Section 1.3.3) in relation 

to the advantages of CL wear for these individuals. Certainly, practitioners should at least be 

mindful that correction of anisometropia with this form of correction instead of spectacles 

facilitates the potential for normal binocular vision (Winn et al., 1986; Romano and von 

Noorden, 1999) and can deliver improvements to VA. 

 

Outside of CL modalities, novel spectacle lens designs for both aniso- and isohyperopes 

remains an unexplored area of research. Could lessons be learnt from existing spectacle lens 

designs for myopia such as the DIMS lens? A central optic zone to provide full refractive 

correction surrounded by multiple segments to deliver constant hyperopic of defocus of -3.50 

D perhaps? 
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In addition to the experimental chapters relating to refractive error modulation, the pilot study 

summarised in Chapter 5 offers reassurance to practising clinicians and researchers that the 

typical approach to collection of key data in this field is robust. In particular, post-cycloplegic 

measures across a broad range of refractive errors are comparable at 25 minutes through to 

40 minutes, which provides scope for leeway when making assessments in the clinic or lab. In 

addition, it seems that AL measures are repeatable and comparable under both cycloplegic 

and non-cycloplegic conditions. 

 

In summary, it is hoped that by demonstrating the ability to modulate refractive error in 

isohyperopes, this will generate sufficient intrigue to build upon this work. There is much to do. 

For instance, it would be desirable to undertake a multicentre randomised control trial with 

customised MF CL designs, to explore the potential for novel spectacle lens designs, and to 

consider a different approach to the management of anisohyperopes with scope to use 

pharmacological agents.  
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West Midlands - Edgbaston Research Ethics Committee 

The Old Chapel 
Royal Standard Place 

Nottingham 
NG1 6FS 

28 April 2016 
 
Dr Ian Beasley 
Postgraduate student 
School of Life and Health Sciences 
Aston University 
Birmingham 
B4 7ET 
 
Dear Dr Beasley 
 
Study title: The effect of peripheral defocus on axial growth and 

modulation of refractive error in hyperopes 
REC reference number: 16/WM/0162 
SSA reference number: 16/WM/0212 
Protocol number: 150-2015-IB 
IRAS project ID: 187441 
 
The REC gave a favourable ethical opinion to this study on . 
 
Following site-specific assessment by the Committee, I am pleased to confirm the extension 
of the favourable opinion to the new site(s) and investigator(s) listed below: 
 
Research site   Principal Investigator / Local Collaborator   
School of Life and Health Sciences  Dr Ian Beasley  
 
The favourable opinion is subject to management permission or approval being obtained 
from the host organisation prior to the start of the study at the site concerned.   

Statement of compliance 
 
The Committee is constituted in accordance with the Governance Arrangements for 
Research Ethics Committees and complies fully with the Standard Operating Procedures for 
Research Ethics Committees in the UK. 
 
16/WM/0162 Please quote this number on all correspondence 

 
Yours sincerely 

 
Adam Garretty 
REC Assistant 
 
Email: NRESCommittee.WestMidlands-Edgbaston@nhs.net 
 
Copy to: N/A   Ms Alpa Patel  
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Appendix 2  

 

 

 

 

Confirmation of Aston Governance Approval 

Page 1 of 6 
 
 

 

Ian Beasley 

School of Life and Health Sciences 

 

2nd June 2016 

 

Dear Ian 

Study title: The effect of peripheral defocus on axial growth and modulation of 
refractive error in hyperopes. 

REC reference: 16/WM/0162 

Protocol number: 150-2015-IB 

IRAS project ID: 187441 

AHRIC ref number: 150-2015-IB 
Non-NHS Research 
Sites: 

1. Vision Sciences Aston University. SSA Reference No. 16/WM/0212 
2. Eyesite Eyecare Centre, 249 Walsgrave Road, Coventry, CV2 4BA. 
 SSA Reference No. 16/WM/0213 

I am writing to confirm permission for your project to proceed on behalf of the University Research 
Ethics Committee. 

This approval is subject to: 

x The project being undertaken in conjunction with the non-NHS sites listed above. 
x Undertaking the project as described in the Protocol. 
x Using the supporting documents listed below. 
x Participation of staff and students as described below. 
x Formal approval of any amendments including personnel changes. 
x Adverse event and serious adverse event reporting. 
x Provision of annual reports. 
x Provision of End of Study report. 
x Provision of study data (anonymised) for archiving. 

Amendments to the Project 

Any proposed amendments to the project (including personnel) must be approved by AHRIC and if 
required NHS Research Ethics Committee approval prior to implementation.   

Approval of AHRIC should be sought by e-mailing details of the amendment to 
ahricgovernance@aston.ac.uk. 

Adverse Event and Serious Adverse Event Reporting 

Aston Triangle 
Birmingham B4 7ET 
United Kingdom 

Tel: +44 (0)121 204 3000 

www.aston.ac.uk 
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Appendix 3  

 

Background questionnaire     Date 
 
Participant code ____________ 
 
Age _________ years _________months 
 
1. Do you wear glasses? 
☐ No (skip to Q4) 
☐ Yes  
☐ Worn previously but no longer used  
 
2. How old were you when you first started wearing glasses? 
 
_______________ years old 
 
3. When do/did you wear your glasses? 
☐ Full-time 
☐ Concentrated tasks such as TV, computer and reading 
☐ Reading only 
☐ Distance only 
☐ Never  
☐ No longer required 
 
4. Have you ever had surgery on your eyes? 
☐  No  
☐  Yes  
 
If yes, please detail what you had done and when 
 
__________________________________________________________________________
___________________ 
 
5. Have you ever been to see a specialist about any other problem with your eyes? 
☐  No  
☐  Yes 
 
If yes, please detail the reason 
 
__________________________________________________________________________
___________________ 
 
6. Have you ever had to wear an eye patch? 
☐ No (skip to Q12) 
☐ Yes  
 
7. Which eye did you wear the patch on? 
☐  Right eye 
☐  Left eye 
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☐ Alternated between eyes 
 
8. How old were you when you started wearing the patch? 
 
_______________ years old 
 
9. How old were you when you stopped wearing the patch? 
 
_______________ years old 
 
10. How many hours per day were you instructed to wear it? 
 
_______________  
 
11. In terms of wearing the patch did you: 
 
☐  Always use it as instructed 
☐  Mostly used it as instructed 
☐  Hardly used it as instructed 
☐  Never used it as instructed 
 
12. Do you suffer from any general health conditions? 
☐  No 
☐  Yes 
 
If yes, please detail here   
 
__________________________________________________________________________
___________________ 
 
13. Are you taking any regular medication? 
☐  No 
☐  Yes 
 
If yes, please detail here  
 
__________________________________________________________________________
___________________ 
 
14. Are you under the care of an eye specialist for any ongoing treatment? 
☐  No 
☐  Yes 
 
If yes, please detail here  
 
__________________________________________________________________________
___________________ 
 
15. Do you wear or have you ever worn contact lenses? 
☐  No 
☐  Yes 
 
If yes, please detail here  
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__________________________________________________________________________
___________________ 
 
16. Are you participating in any other studies? 
☐  No 
☐  Yes 
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Appendix 4  

 
Dear Dr  
 
Re  
 
I am writing to advise you that the above-named patient is participating in a research trial 
conducted by a team from Aston University. The study will examine the effect of peripheral 
defocus on axial growth and modulation of refractive error in hyperopes. 
 
Some recent studies have shown that wearing a particular type of contact lens can slow down 
the progression of myopia. The purpose of this study is to see if a contact lens, similar to those 
used in the myopia studies, could be used to reduce hyperopia. 
 
The study will last three years with a group of participants wearing the intervention while the 
other group will have the natural progression of their hyperopia monitored. 
 
I trust that this information is useful but if you require any further information then please 
contact the investigators. 
 
Yours sincerely 
 
 
 
 
Dr Ian Beasley beasleyi@aston.ac.uk (07798 633536) 
Dr Nicola Logan n.s.logan@aston.ac.uk (0121 204 4128) 
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Appendix 5 
 
 
CONSENT FORM (Parent natural progression) 
 
 
NAME OF PARTICIPANT __________________________  Age: _______ Years 
______ Months   
 
 
Title of Project: The effect of peripheral defocus on axial growth and modulation of 
refractive error in hyperopes 
 
Project investigators: Dr Nicola Logan, Dr Ian Beasley, Dr Leon Davies   
  
Please initial the boxes: 
1. I confirm that I have read and understand the information sheet (Version 2 
09/05/16) for this study, have had the opportunity to ask questions and have 
explained the study to my child. 
 

 

2. I understand that my child’s participation is voluntary and that my child is free 
to withdraw at any time, without giving any reason, without their medical care or 
legal rights being affected. 
 

 

3. I understand that the researchers may need to review certain sections of my 
child’s eye clinic notes and give my permission for them to do so. 
 

 

4. I agree for my child to take part in the above study and I will follow the 
investigator’s instructions relating to the dilation drops. 

 

 
 
__________________________________ ________________
 ____________________ 
Name of parent/representative Date Signature 
 
 
__________________________________ ________________
 ____________________ 
Name of person taking consent Date Signature 
(If different from investigator) 
 
 
__________________________________ ________________
 ____________________ 
Investigator                                      Date                                      Signature 
 
CONSENT FORM  
 
 
NAME OF PARTICIPANT __________________________  Age: _______ Years 
______ Months   
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Title of Project: The effect of peripheral defocus on axial growth and modulation of 
refractive error in hyperopes 
 
Project investigators: Dr Nicola Logan, Dr Ian Beasley, Dr Leon Davies   
  
Please initial the boxes: 
1. I confirm that I have read and understand the information sheet (Version 2 
07/05/16) for this study, have had the opportunity to ask questions and have 
explained the study to my child. 
 

 

2. I understand that my child’s participation is voluntary and that my child is free 
to withdraw at any time, without giving any reason, without their medical care or 
legal rights being affected. 
 

 

3. I understand that the researchers may need to review certain sections of my 
child’s eye clinic notes and give my permission for them to do so. 
 

 

4. I agree for my child’s GP to be advised about my participation in the study 
 

 

5. I agree for my child to take part in the above study and I will follow the 
investigator’s instructions relating to contact lens wear and the dilation drops. 

 

 
 
__________________________________ ________________
 ____________________ 
Name of parent/representative Date Signature 
 
 
__________________________________ ________________
 ____________________ 
Name of person taking consent Date Signature 
(If different from investigator) 
 
 
__________________________________ ________________
 ____________________ 
Investigator                                      Date                                      Signature 
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Appendix 6 
 
CONSENT FORM (16-19 Natural progression) 
 
 
NAME OF PARTICIPANT __________________________  Age: _______  Years 
______ Months   
 
Title of Project: The effect of peripheral defocus on axial growth and modulation of refractive 
error in hyperopes 
 
Project investigators: Dr Nicola Logan Dr Ian Beasley, Dr Leon Davies   
  
Please initial boxes (not tick) 
 

1. I confirm that I have read and understood the information sheet attached (Version 
2 07/05/16) for the above study 

 

2. I have had a chance to ask questions about the research. 
 

 

3. All of my questions have been answered in a way that I understand. 
 

 

4. I understand that it is my choice on whether or not to take part in the research and 
that I can stop being part of the research at any time, without giving a reason.  The 
care I receive from my optometrist will not be affected if I ask to be removed from the 
study. 
 

 

5. I agree to follow the investigator’s instructions regarding the dilation drops.  
 

 

6. I agree to take part in the study. 
 

 

 
 
__________________________________ ________________
 ____________________ 
Name of participant Date Signature 
 
 
__________________________________ ________________
 ____________________ 
Name of person taking consent Date Signature 
(If different from investigator) 
 
 
__________________________________ ________________
 ____________________ 
Investigator                                      Date                                      Signature 
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Appendix 7 
 
ASSENT FORM  
 
Participant ID………………… Participant Initials…………. 
 
Title of Project: The effect of peripheral defocus on axial growth and modulation of refractive 
error in hyperopes 
 
Project investigators: Dr Nicola Logan, Dr Ian Beasley, Dr Leon Davies   
 
(To be completed by the child and their parent/guardian)  
 
Child (or if unable, parent on their behalf) to circle all they agree with: 
  

1. Have you read (or had read to you) the information sheet attached 
(Version 2 09/05/16) for the above study 

 

Yes No 

2. Has somebody else explained this project to you? 
 

Yes No 

3. Do you understand what this project is about?  
 

Yes No 

4. Have you asked all the questions you want?  
 

Yes No 

5. Have you had your questions answered in a way you understand? 
 

Yes No 

6. Do you understand it’s OK to stop taking part at any time?  
 

Yes No 

7. I agree to follow the investigator’s instructions regarding contact lens wear 
and the dilation drops.  
 

Yes No 

8  Are you happy to take part?  
 

Yes No 

If any answers are ‘no’ or you don’t want to take part, do not write your name below 
 

If you do want to take part, you can write your name below  
__________________________________ ________________
 ____________________ 
 Date Signature 
 
 
 
__________________________________ ________________
 ____________________ 
Name of person taking consent Date Signature 
(If different from investigator) 
 
 
__________________________________ ________________
 ____________________ 
Investigator                                      Date                                      Signature 
 
Thank you for your help. 
 

Your name (or if child is 
unable, parent/guardian to 
help) 
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Appendix 8 
 
Follow up questionnaire     Date 
 
Participant code ____________ 
 
Age _________ years _________months 
 
1. Do you suffer from any general health conditions? 
☐  No 
☐  Yes 
 
If yes, please detail here   
 
__________________________________________________________________________
___________________ 
 
2. Are you taking any regular medication? 
☐  No 
☐  Yes 
 
If yes, please detail here  
 
__________________________________________________________________________
___________________ 
 
3. Are you under the care of an eye specialist for any ongoing treatment? 
☐  No 
☐  Yes 
 
If yes, please detail here  
 
__________________________________________________________________________
___________________ 
 
4. How many days per week are you wearing your contact lenses? 
 
_________________  
 
5. On average, how many hours per day are you wearing your contact lenses? 
 
_________________ 
 
6. Is the vision clear with your contact lenses? 
 
☐  No 
☐  Yes 
 
 
 
Follow up questionnaire     Date 
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Participant code ____________ 
 
Age _________ years _________months 
 
 
1. Do you suffer from any general health conditions? 
☐  No 
☐  Yes 
 
If yes, please detail here   
 
__________________________________________________________________________
___________________ 
 
2. Are you taking any regular medication? 
☐  No 
☐  Yes 
 
If yes, please detail here  
 
__________________________________________________________________________
___________________ 
 
3. Are you under the care of an eye specialist for any ongoing treatment? 
☐  No 
☐  Yes 
 
If yes, please detail here  
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Appendix 9 
 

 
 

   
                                                                                                                                                

    Aston University 
Aston Triangle  

Birmingham  
B4 7ET  

0121 204 5069 
 

Date: 12th February 2019 

Dr Ian Beasley 
School of Life and Health Sciences 
 
Dear Ian, 
 

Study title:   Time course and repeatability of objective refraction and axial length 
measures following cycloplegia 

REC REF:  #1331 
 
Confirmation of Ethical Opinion  
 
On behalf of the Committee, I am pleased to confirm a favourable opinion for the above research 
based on the basis described in the application form, protocol and supporting documentation listed 
below. 
 
The Committee would like to thank you for the way that your response to their letter of Provisional 
Opinion was presented. 
 
Approved documents  
 
The final list of documents reviewed and approved by the Committee is as follows:  
 

Document  Version  Date  
Parent Information Sheet 2 21/01/19 
Parent Consent Form 2 21/01/19 
Information Sheet (8-12) 2 21/01/19 
Assent form (8-12) 2 21/01/19 
Information Sheet (13+) 2 21/01/19 
Consent form (13+) 2 21/01/19 
Recruitment poster   
Background questionnaire 2 25/11/18 

 
With the Committee’s best wishes for the success of this project. 
 
Yours sincerely  
 
Professor Richard Booth 
Acting Chair of the University Research Ethics Committee  
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Appendix 10 
 
Background questionnaire     Date 
 
Participant code ____________ 
 
Age _________ years  
 
1. Do you wear glasses? 
☐ No (skip to Q3) 
☐ Yes  
☐ Worn previously but no longer used  
 
2. When do/did you wear your glasses? 
☐ Full-time 
☐ Concentrated tasks such as TV, computer and reading 
☐ Reading only 
☐ Distance only 
☐ Never  
 
3. Have you ever had surgery (including laser treatment) on your eyes? 
☐  No  
☐  Yes  
 
If yes, please detail what you had done and when 
 
__________________________________________________________________________
___________________ 
 
5. Have you ever been to see a specialist about any other problem with your eyes? 
☐  No  
☐  Yes 
 
If yes, please detail the reason 
 
__________________________________________________________________________
___________________ 
 
6. Do you suffer from any general health conditions? 
☐  No 
☐  Yes 
 
If yes, please detail here   
 
__________________________________________________________________________
___________________ 
 
7. Are you taking any regular medication? 
☐  No 
☐  Yes 
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If yes, please detail here  
 
__________________________________________________________________________
___________________ 
 
8. Are you under the care of an eye specialist for any ongoing treatment? 
☐  No 
☐  Yes 
 
If yes, please detail here  
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Appendix 11 
 
 
Time course and repeatability of objective refraction and axial length measures following 
cycloplegia 
Parent consent Form 
Name of Chief Investigator: Dr Ian Beasley 
Please initial boxes 

1.  I confirm that I have read and understand the Participant Information 
Sheet (Version 3, 03/04/19) for the above study. I have had the opportunity 
to consider the information, ask questions and have had these answered 
satisfactorily. 
 

 

2.  I understand that my child’s participation is voluntary and that I am free to 
withdraw at any time, without giving any reason and without my legal rights 
being affected. 
 

 

3.  I agree to my child’s personal data and data relating to them collected 
during the study being processed as described in the Participant 
Information Sheet. 
 

 

4.  I agree to my child’s GP being informed of my participation in the study. 
 

 

5.  I agree to my child’s anonymised data being used by research teams for 
future research. 
 

 

6.  I agree to my child’s personal data being processed for the purposes of 
inviting them to participate in future research projects. I understand that I 
may opt out of receiving these invitations at any time.  
  

 

7.  I agree to my child taking part in this study.  
 
 
_________________________ ________________ ___________________ 
Name of parent Date Signature 
 
 
_________________________ ________________ ___________________ 
Name of Person receiving Date Signature 
consent. 
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Appendix 12 
 
 
Time course and repeatability of objective refraction and axial length measures following 
cycloplegia 
Consent Form 
Name of Chief Investigator: Dr Ian Beasley 
Please initial boxes 

1.  I confirm that I have read and understand the Participant Information 
Sheet (Version 3, 03/04/19) for the above study. I have had the opportunity 
to consider the information, ask questions and have had these answered 
satisfactorily. 
 

 

2.  I understand that my participation is voluntary and that I am free to 
withdraw at any time, without giving any reason and without my legal rights 
being affected. 
 

 

3.  I agree to my personal data and data relating to me collected during the 
study being processed as described in the Participant Information Sheet. 
 

 

4.  I agree to my GP being informed of my participation in the study. 
 

 

5.  I agree to my anonymised data being used by research teams for future 
research. 
 

 

6.  I agree to my personal data being processed for the purposes of inviting 
me to participate in future research projects. I understand that I may opt 
out of receiving these invitations at any time.  
  

 

7.  I agree to take part in this study.  
 
 
_________________________ ________________ ___________________ 
Name of participant Date Signature 
 
 
_________________________ ________________ ___________________ 
Name of Person receiving Date Signature 
consent. 
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Appendix 13 
 
 
Time course and repeatability of objective refraction and axial length measures following 
cycloplegia 
 
Assent form 
 
Name of Chief Investigator: Dr Ian Beasley  
 
(To be completed by the child and their parent/guardian)  
 
Child to circle all they agree with: 
  

2. Have you read (or had read to you) the information sheet attached 
(Version 3 03/04/19) for the above study 

 

Yes No 

2. Has somebody else explained this project to you? 
 

Yes No 

3. Do you understand what this project is about?  
 

Yes No 

4. Have you asked all the questions you want?  
 

Yes No 

5. Have you had your questions answered in a way you understand? 
 

Yes No 

6. Do you understand it’s OK to stop taking part at any time?  
 

Yes No 

7. I agree to follow the investigator’s instructions regarding the dilation drops.  
 

Yes No 

8.  Are you happy to take part?  
 

Yes No 

If any answers are ‘no’ or you don’t want to take part, do not write your name below 
 

If you do want to take part, you can write your name below  
 
 

_________________________________________________________________ 
Your name Date Signature 
 
 
 
_________________________________________________________________ 
Name of Person receiving       Date       Signature 
consent. 
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Appendix 14 
 
 

 Intervention group 

Participant 
Age at 

baseline 
(years) 

MSE refractive 
error at 

baseline (D) 

Change in AL 
(mm) 

1 9.58 +2.62 0.59 

2 13.50 +2.94 0.21 

3 11.83 +4.45 0.05 

4 9.25 +8.75 0.06 

5 13.33 +6.13 0.02 

6 9.67 +3.87 0.36 

7 11.08 +5.74 0.29 

8 11.83 +7.63 0.07 

9 8.42 +8.12 0.18 

10 11.17 +4.98 0.33 

11 12.75 +2.37 0.11 

 
Appendix 14 Individual participant data for intervention group showing key 
characteristics. Rows shaded in orange highlight the two best responders whereas the 
rows shaded in red highlight the worst responders 
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