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Abstract

Topological insulators are electronic materials that behave like an ordinary insulator internally

(in the bulk), but have symmetry protected conducting states on the edge-sites or surface.

The simplest case of non trivial topology found amongst these materials is the one-dimensional

Su-Schreifer-Heeger (SSH) model. We analyse the unique features within the non-interacting

SSH model and explicitly define both the edge states and the bound states and give the

conditions of their presence. We show that the total number of bound states crucially depend

on the scattering amplitudes and their phases.

The sliding Luttinger liquid (SLL) phase can be destroyed by perturbations such as charge-

density wave (CDW) and superconducting (SC). We construct an analogue of the SSH model

by coupling one-dimensional quantum wires packed in a two-dimensional array, with alter-

nating couplings between wires. We calculate the scaling dimensions of the two most relevant

(dangerous) perturbations, CDW and SC interwire couplings. We create a phase diagram and

analyse whether nearest-neighbour interactions stabilise or destroy the SLL phase. Finally,

we find a stability region for the SLL.

Keywords: Topological insulators, Su-Schreiffer-Heeger model, bound states, scattering

amplitudes, Luttinger liquid, renormalization group, charge-density wave, superconductivity.

S.Begum, PhD Thesis, Aston University 2021 2



Acknowledgements

é<Ë YÒmÌ'@

I’d like to express my deepest thanks to my supervisor, Dr. Igor V. Yurkevich for the ex-

ceptional guidance and mentor-ship that he has provided throughout my time at Aston. I have

been incredibly fortunate to have a consistently patient supervisor who encouraged learning

above all else. Thank you to Prof. David Saad for being incredibly kind and supporting me

with the administration side of this PhD. I’d also like to thank my colleague and collaborator

Dr. Adam Lowe for his insights and our many stimulating discussions, in addition to Prof.

Victor Flueurov and Prof. Victor Kagalovsky for all of their insights in Chapter 10.

Thank you to my parents who I will forever be indebted to for giving me the opportunity

for education. This journey would not have been possible if not for their personal sacrifices,

and I dedicate this milestone to them. Special thanks to my brother Habib for his unparalleled

kindness, support and willingness to hear about my research for hours during our road-trips.

I’m especially grateful to my sister Asma for her unwavering presence in my life and shaping

the way that I think with her exceptional analysis of fictional characters in films/books that

we shared growing up. Not to forget my other precious sisters; Monwara, Rabeya, Anowara

and Hafiza who inspire me every day with their wholehearted kindness and grace.

Finally, my deep and sincere gratitude to all of my wonderful friends for their continuous

love and support. Javeria, Aqsa, Humaira, Milly, Jamilah, Safina and Roza, I’d be lost without

each one of you and everything you bring to my life. Thank you to my fellow PhD students

at Aston for being such a kind and inspirational community that made this experience all the

more memorable. Especially my dear friend Reham, who shared all of the ups and downs of

this journey and always knew exactly what to say. You kept me sane, thank you.

S.Begum, PhD Thesis, Aston University 2021 3



Contents

List of Figures 7

1 Introduction 9

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Non-interacting model 16

2.1 Topology and the Topological band theory of solids . . . . . . . . . . . . . . . . 16

2.2 The Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 The Classical Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 The Quantum Hall effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 The integer quantum Hall effect . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 The fractional quantum Hall effect . . . . . . . . . . . . . . . . . . . . . 24

2.5 Topological Insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.1 Berry/Zak phase and Berry curvature . . . . . . . . . . . . . . . . . . . 26

2.5.2 Winding Number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.6 One-dimensional Levinson’s theorem . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6.1 Even parity solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.2 Odd parity solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Topological aspects in strongly correlated systems 35

3.1 Fermi Liquid theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Renormalization Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

S.Begum, PhD Thesis, Aston University 2021 4



CONTENTS

3.3 Luttinger Liquid Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Bosonization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 One-dimensional Topological Insulators: The SSH model 41

4.1 Zak-Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Winding number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Bulk states and Edge states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Scattering Amplitudes for one-dimensional systems 49

5.1 Scattering amplitudes for a continuous chain . . . . . . . . . . . . . . . . . . . 50

5.2 Bound states for a continuous chain . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 Scattering amplitudes for Bravais lattice . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Scattering amplitudes for the SSH Model . . . . . . . . . . . . . . . . . . . . . 57

5.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Density of states via the S-Matrix 63

6.1 General reduction to T-Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.1.1 Meaning of T-Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.1.2 S-matrix properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Density of states via the continuity equation 69

7.1 Application to the continuous Schrödinger equation with δ-function potential . 76

7.2 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8 Bound states for Bravais lattice with arbitrary hopping 78

8.1 Total number of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

8.2 Quantification of bound states . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.3 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

S.Begum, PhD Thesis, Aston University 2021 5



CONTENTS

9 Bound states for the SSH model with arbitrary hopping 85

9.1 The semi-infinite chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9.2 The infinite chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

9.3 The SSH model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10 Strongly correlated 1D systems: The Sliding Luttinger Liquid 91

10.1 The Luttinger model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

10.2 Eigenfunctions of the interaction matrix . . . . . . . . . . . . . . . . . . . . . . 93

10.3 Bulk scaling dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

10.4 Stability region of the SLL phase . . . . . . . . . . . . . . . . . . . . . . . . . . 98

10.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

11 Conclusions and Future work 104

11.1 The non-interacting model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

11.2 The interacting model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

11.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

12 Bibliography 109

S.Begum, PhD Thesis, Aston University 2021 6



List of Figures

1.1 Topological insulator represented by a trefoil knot (left) and ordinary insulator

represented by a closed loop (right). . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Infinite chain of the polymer Polyacetylene. . . . . . . . . . . . . . . . . . . . . 11

2.1 Torus with topological invariants (left to right) 0, 1 and 2 . . . . . . . . . . . . 17

2.2 The periodic potential used to model electrons in a conductor where each ion

is the source of a Coulomb potential. . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Demonstration of the formation of energy levels due to the distance between

(a) two atoms, (b) four atoms and (c) N atoms. . . . . . . . . . . . . . . . . . 18

2.4 The integer quantum Hall effect performed by Klitzing, 1980 . . . . . . . . . . 23

2.5 The fractional quantum Hall effect performed by Tsui and Stormer, 1982 . . . 25

2.6 The valence band and conduction band of a topological insulator. . . . . . . . . 26

2.7 Sketch illustrating states being projected onto each other in ascending order

until a loop is formed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 One-dimensional SSH lattice with alternating identical sites . . . . . . . . . . . 42

4.2 Energy bands for the SSH model . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 (left to right) topological transition from trivial to non-trivial winding number 45

5.1 The wavefunction for λ > 0 represents scattering states oscillating around the

impurity and then behaving as free-particles at ±∞. . . . . . . . . . . . . . . . 56

S.Begum, PhD Thesis, Aston University 2021 7



LIST OF FIGURES

5.2 The wavefunction for λ < 0 is the bound state that we are looking for. It

is shown to be localised about the centre and then exponentially decaying far

from the origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 The wavefunction for τ < 1 is the scattering state oscillating about the origin

and fading to zero at ±∞. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 The wavefunction for τ > 1 is the bound state that we are looking for. It

is shown to be localised about the centre and then exponentially decaying far

from the origin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

10.1 A 3D plot of the product Eq. (10.32), labelled 1 crossed by the flat surface

labelled 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

10.2 A 3D plot of the product Eq. (10.32) crossed by the flat surface labelled 1 and

2 respectively - as seen from above. The region of stability of the SLL phase is

clearly seen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

10.3 A 3D plot of the functions KSC(α, β) and K−1
CDW (α, β) labelled by 1 and 2

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10.4 The plot of the product
∏

as a function of the parameter α for three values of

the modulation parameter β; (1)-β = 0, (2)-β = 0.3 and (3)-β = 0.8. . . . . . . 102

S.Begum, PhD Thesis, Aston University 2021 8



Chapter 1

Introduction

Condensed-matter physics is often applied to understand how order emerges in the case of

a large number of simple constituents, such as ions or electrons and how they interact with

each other. In a crystal, which is an example of an ordered phase, the order can be described

through symmetry breaking. The lattice structure of a crystal contains ions that are period-

ically arranged due to their electrostatic interactions, and therefore, only if you move by an

integer number of spacing you return to the same place. Otherwise, the continuous symmetry

of space under translations is broken and similarly for rotation.

Topological materials have become of interest since the 1980s [1] with the discovery that

electrons confined to two dimensions and subject to a strong magnetic field demonstrate an

unexpected type of order. This order is due to the topology of the material and underlies

the quantum Hall effect. The outcome is the possibility of dissipation-less transport and the

emergent of particles with fractional charge. It has also be discovered that topological order

can exist in three-dimensional materials in which the role of the magnetic field is assumed

by spin–orbit coupling, an innate property of all solids [2]. We now refer to these materials

as topological insulators due to their insulating properties in the bulk and exotic metallic

states on their surfaces, or edges. If the edge states [3] for an insulator is found to exist, it

is identified as a topological insulator. The metallic surface states originate from topological
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CHAPTER 1. INTRODUCTION

invariants [60], which are unique numbers that categorise objects and cannot change as long

as a material remains insulating.

Topology [4] is a branch of mathematics that is concerned with objects that are invariant

(do not change) under smooth deformations. A classic everyday example being a doughnut

transforming into a coffee cup. From a topological perspective, these two objects are the same

since the topological invariant (in this case the number of ‘holes’) is the same. An intuitive

illustration displaying why the metallic surfaces exist in topological insulators is shown in

Fig. 1.1 To represent a topological insulator we have a trefoil knot and a closed loop is used

to represent an ordinary insulator [5],[6]. The knot and the loop have different topological

invariants and therefore there are no deformations that would make one become the other.

This includes stretching or twisting the string/wire, without cutting it which is not considered

a deformation. This is in clear contrast to the doughnut/coffee cup situation. The component

of the trefoil knot that is ‘knotted’ is considered to be the electron’s wavefunction as it moves

through momentum space. This knotting is associated with a topological invariant which is

robust as long as the material remains insulating.

Figure 1.1: Topological insulator represented by a trefoil knot (left) and ordinary insulator
represented by a closed loop (right).

The simplest non-trivial topological model is the Su-Schreiffer-Heeger, or SSH model [8],

where each alternating site on the lattice is identical. This model is based on the organic

polymer Polyacetylene [9]. In this thesis, we study multiple applications of this model. We

begin by identifying the basic distinguishing feature of the model - its topological invariant.

We consider a chain of dimers where each dimer (unit cell) contains two different atoms. It

S.Begum, PhD Thesis, Aston University 2021 10



CHAPTER 1. INTRODUCTION

has been found that the topological invariant, Zak-phase [10], which measures the resulting

angle formed when Bloch wave-functions travel around a closed loop once, can determine the

existence of edge states. This was due to the fact that the Zak-phase was found to control the

number of bulk states. In this paper, the authors graphically demonstrated that there were

two missing bulk solutions when the ratio between hopping parameters t1/t2 was less than

the critical ratio (t1/t2)c = 1− 1/M + 1 where M is the number of dimers in the chain. They

concluded that in the large M limit, the number of bulk states was related to the value of

the Zak-phase φk at k = π, since this is the value of wave-number k at which missing states

appeared. The missing states were considered to be edge states localised at the ends of the

chain and were implicitly found once the boundary condition that the wave-function should

disappear at the nearest site outside the chain, at m = M + 1 (where m denotes the lattice

dimer) was imposed. Edge states could only be solved for in the large M limit when the

localisation length was much smaller than the size of the chain. In this limit, the energy of

the edge states was found to approach zero.

Figure 1.2: Infinite chain of the polymer Polyacetylene.

The paper described above considered a chain of dimers which in total has an even number

of sites. We aim to explicitly derive the edge states of an odd number of sites in the lattice.

An explicit expression describing the edge states will demonstrate the topological nature of

the SSH model. Ideally, no such limits should need to be taken to observe edge states, and

therefore, we aim to find a universal solution.

Another popular area of interest regarding topological materials and their special states

S.Begum, PhD Thesis, Aston University 2021 11



CHAPTER 1. INTRODUCTION

is the existence of bound states. This is another unique topological protected characteristic

that can be observed using the SSH model. Bound states occur when a particle’s energy is

lower than the potential, in which case the particle cannot escape the potential well and rocks

back and forth between the turning points. It is commonly discussed that the Chern number

may be used to determine the topological nature of a material. The Chern number [34] is the

two-dimensional take on the one-dimensional Zak-phase and measures the adiabatic evolution

of an electron confined to some energy band. It is a topological invariant and therefore can

be used to identify the topological nature of a material. We propose an alternative approach

to extract the same information of a material via scattering amplitudes [15]-[20]. We predict

that features of the scattering amplitudes, such as singularities, may contain an indication of

topological behaviour. We aim to find the conditions for the existence of bound states [35],

how many can exist and if possible, explicitly derive them. The one-dimensional Levinson’s

theorem [21] can be used to determine the number of bound states and this can be supported

by the sum rule. We also aim to check whether the number of bound states is always an

integer, and if so, we aim to prove the conditions of this.

We also study interacting systems as opposed to the non-interaction scenarios described

above. We consider a 2D system of parallel quantum wires constructed in analogy of the

SSH model. In a one-dimensional lattice, the SSH model is constructed such that each al-

ternating site is identical with two different hopping parameters, to and te. We consider a

two-dimensional system of parallel quantum wires coupled with alternating gaps between each

wire, go and ge. A Luttinger liquid model [22]-[24] can be used to describe the electronic inter-

action in each quantum wire which is essentially a one-dimensional conductor. The motivation

for introducing this is to serve as a replacement for Fermi liquid theory [25]-[28] which fails in

one dimension. In Fermi liquid theory, electronic movement can be described to be ‘cloud-like’

since multiple electrons move in unison dragging one another forward. This cannot be seen

in one-dimension since electronic movement can only be adequately described by scattering

linearly and detached from one another. Therefore, the intra-wire interaction described by

S.Begum, PhD Thesis, Aston University 2021 12



CHAPTER 1. INTRODUCTION

Luttinger liquid theory combined with the inter-wire interaction due to coupling between the

wires, the sliding Luttinger liquid phase is constructed.

The SLL [29],[30] phase is when all degrees of freedom in a system, such as spin and

charge, have zero expectation and their fluctuations are described by power law correlation

functions. In a non-SLL phase, some degrees of freedom are frozen and do not fluctuate. We

aim to analyse whether nearest-neighbour interwire interactions stabilise or destroy the SLL

phase. This can be achieved by calculating analytically the scaling dimensions of the two

most relevant interwire perturbations - charge density wave (CDW) and superconductivity

(SC) [31],[32]. Charge density wave represents the modulation of conduction electron den-

sity coupled with the modulation of lattice atom positions. The modulations are periodic in

nature with a wavelength equal to Fermi wavelength λF and they produce an energy gap at

the Fermi surface at k = kF . The origin of an energy gap in most metal solids is due to

the Fourier component of the lattice potential in which electrons move. The origin of energy

gap in CDW metals is observed to occur when the modulation wavelength of the position

of atoms λatoms is equal to 2λF . As the temperature of CDW metal increases, the electrons

easily overcome the energy gap barrier and become normal metals. The CDW phase is an

example of a non-SLL phase since there is a non-zero value for some density operators. The

superconductive state is observed when certain materials are cooled below their critical tem-

perature resulting in zero resistance. The critical temperature, Tc varies with the individual

material. Because these materials have no electrical resistance, meaning electrons can travel

freely through them, they can carry large amounts of electrical current for long periods of

time without losing energy as heat. We aim to search for a region in which the SLL phase

can be stable with both perturbations, CDW and SC being renormalization group, RG [33],

irrelevant.

S.Begum, PhD Thesis, Aston University 2021 13



CHAPTER 1. INTRODUCTION

1.1 Thesis Outline

The structure of this thesis is as follows. In chapter 4 we analyse a simple lattice of identi-

cal sites. We use the SSH model since it is the simplest non-trivial model to show that the

dispersion relation does show an indication of topology. We analyse the hopping parameters

t1 and t2 and find a critical point at t1 = t2. The Zak-phase is also calculated and is shown

to coincide with this result since φ = 2π when ν = 1 and 0 otherwise. In the same section,

edge states for a chain with an odd number of sites are found. The edge states show that

when t1 < t2, the edge state is exponentially localised at the left boundary, and if t1 > t2 the

edge state is exponentially localised at the right boundary instead. Chapter 5 continues the

discussion of the SSH model where we derive the scattering amplitudes of waves reflecting off

a potential centred on an infinite SSH chain. We do this first for a one-dimensional continuous

chain with a δ-function potential. We define λ as the amplitude to the δ-function potential

and find that the sign of λ determines the presence of the bound state. We find the bound

state and its presence is supported by applying the one-dimensional Levinson’s theorem.

Chapters 6 and 7 focus on calculating the density of states using the scattering matrix

and the continuity equation. The aim is to determine the number of bound states in the case

of nearest-neighbour hopping and once the sum rule is applied, we explicitly show that the

number of bound states depends on the reflection amplitude and the phase of the transmission

amplitude. We repeat these processes in chapters 8 and 9for the SSH model, and demonstrate

that the number of bound states is explicitly an integer. We do this initially for a semi-infinite

system and then an infinite system, and study the universality demonstrated in the expression

giving the number of bound states.

Finally, we conclude with chapter 10 in which we investigate the stability conditions of

the sliding Luttinger liquid phase in a 2D system of parallel quantum wires with alternating

coupling between nearest neighbour wires. We analyse the charge-density wave and super-
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CHAPTER 1. INTRODUCTION

conducting perturbations with respect to their affect on the stability of the SLL phase. We

present an analytical derivation of the CDW and SC scaling dimensions and choose the most

dangerous of the scaling dimensions to analyse for each case. We find the stability region of

the SLL phase with respect to a Luttinger parameter, a relative coupling strength parameter

and a modulation strength parameter. This is done numerically with several plots illustrating

the stability region.

S.Begum, PhD Thesis, Aston University 2021 15



Chapter 2

Non-interacting model

2.1 Topology and the Topological band theory of solids

Topology [7] is a geometrical notion used to categorise objects according to the properties that

are preserved through deformations. An object that does not change under continuous de-

formations (or homeomorphisms) like stretching, bending and twisting (not including tearing

and sticking) is said to be topological. A very well known example is the case of a coffee-cup

and doughnut. Since both have the same number of holes - one, they are considered to be

topologically the same object. A pretzel on the other hand has three holes and regardless of

hard you try, you can never produce a pretzel from a coffee-cup/doughnut since you’d have

to tear two new holes - which breaks a fundamental rule of topology. Therefore, the coffee-

cup/doughnut and pretzel each have a unique and robust hole number which is described

as the topological invariant, and can be used to categorise the object. This is demonstrated

in Fig. 2.1 We have since found that the topological invariant is not restricted to everyday

objects, but can also categorise phases of matter [23].

The band theory of solids [36] is one of the greatest achievements of quantum mechanics

discovered in the 20th century and arises when the free electron model fails. The free electron

model is the simplest way to demonstrate the electronic structure possessed by metals. Al-

though it can be deemed as an oversimplification of the reality, it still is able to describe many

S.Begum, PhD Thesis, Aston University 2021 16



CHAPTER 2. NON-INTERACTING MODEL

Figure 2.1: Torus with topological invariants (left to right) 0, 1 and 2

.

significant properties of metals. The model states that the valence electrons within atoms of

the crystal become conduction electrons and are able to move freely and independently of one

another through the crystal. The model relies on the assumption of constant potential energy

through the solid implying that there are no forces.

Figure 2.2: The periodic potential used to model electrons in a conductor where each ion is
the source of a Coulomb potential.

.

Fig. 2.2 demonstrates that a constant potential energy (dotted line) is not completely

representative of the periodic Coulomb potential which behaves as −1/r at each lattice point,

where r is the distance between ions and a the distance between atoms. This results in a

weakness in the model although the model can still work since on average the potential en-

ergy is constant. Secondly, the model also assumes an impenetrable barrier at the surface.

This conflicts with results from experiments such as the photoelectric effect [37] where we

observe electrons escaping the surface under certain conditions. Moreover, the model consists

of several other gaps in explaining the differences in electrical properties of materials such as

conductors, semiconductors and insulators. As a result, to compensate for the inadequacies

S.Begum, PhD Thesis, Aston University 2021 17



CHAPTER 2. NON-INTERACTING MODEL

of the free electron model, the band theory of solids has been introduced as a more complete

model.

To introduce band theory we first discuss the covalent bond. The description of the energy

structure within a covalent bond begins with two hydrogen atoms spatially separated such

that interaction is zero. The electron in each of the hydrogen atoms is in the same ground

state. The two atoms are then brought closer together such that the wave functions for each

atom overlaps with the other. However, due the exclusion principle [38] the electrons can

no longer remain in the same state and therefore, the original energy level is split into two

different energy levels which depend on the distance between the atoms. We can introduce

more atoms, i.e. four hydrogen atoms brought closer together will form four different energy

levels etc. This is demonstrated in Fig. 2.2 where we can see a symmetrical ‘hump’ between

each atom. In the limit of a large number of atoms N , we can expect multiple energy levels

forming an energy band shown in Fig.2.3.

Figure 2.3: Demonstration of the formation of energy levels due to the distance between (a)
two atoms, (b) four atoms and (c) N atoms.

.

Different energy bands are formed due to the different amount of electrons held in each

energy level. Energy bands can be separated from one and another by energy gaps. The

concepts of energy bands and energy gaps can explain the differences in electrical properties

between conductors and insulators. In a conductor, the conduction band (the available band

after the highest energy band is filled) is only partially filled allowing more energy to be oc-
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cupied. On the contrary, the conduction band of an insulator is completely filled allowing no

room for added energy.

When the interaction between atoms is strong enough for covalent bonding it can lead to

crystals forming. When a crystal is formed, band theory can classify the electronic states of

the crystal by using the special feature of translational symmetry. The translational symme-

try of the electronic states enables us to classify them in terms of their crystal momentum k,

defined in a periodic Brillouin zone [39] in reciprocal space. The Bloch states |Uk〉, defined in a

single unit cell of the crystal, are eigenstates of the Bloch Hamiltonian H(k). The eigenvalues

εk define the energies that collectively form the band structure. An insulating band structure

has an energy gap separating the highest occupied band from the lowest empty band. Lattice

translation symmetries implies H(k+G) = H(k) for reciprocal lattice vectors G. The crystal

momentum is therefore defined in the periodic Brillioun zone, with k = k + G. Thus, an

insulating band structure can be viewed as a mapping from the Brillioun zone to the space of

Bloch Hamiltonians with an energy gap.

2.2 The Hall effect

The motion of charge carriers in magnetic fields has led to many practical discoveries. A

magnetic field can be used to deflect an electron beam allowing us to measure the charge to

mass ratio of the electrons and ions. This is the concept behind the widely used Mass spec-

trometer [40] which is used to measure the masses of isotopes, with applications in chemistry,

archaeology, planetary science and geology. It is found that the period of orbital motion of

any charged particle in a uniform magnetic field is completely independent of the particle’s

velocity. This concept is the basis for cyclotrons and other particle accelerators, in which

high energy collisions are analysed by capturing the curved trajectories of charged particles

in magnetic fields.
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2.3 The Classical Hall effect

The classical Hall effect [41], or simply, the Hall effect occurs when an electric current flows

through a conductor with an applied magnetic field. It has been commonly used to measure

the number density and drift velocities of charge carriers in conductors, the latter being in

the case of a uniform electric field. The electric field can simply be set up by connecting the

terminals of a battery to the conductor. The classical Hall effect has been widely used in

magnetic field sensors which are accurate and inexpensive.

A particle with charge q moving with velocity v in a uniform magnetic field B will expe-

rience a force F ;

F = q(v ×B). (2.1)

Without an electric field, free electrons in a conducting material (at room temperature) will

move in random directions. They will obey a characteristic velocity distribution with an

average velocity of zero. An electric field E can be applied by connecting the conductor to a

battery and the electrons will accelerate opposite to the field. The electrons can collide with

the lattice ions within the conductor slowing them down from the increase in kinetic energy

due to the field. The electrons will then acquire a drift velocity, vd on top of their random

velocity. When the magnetic field is applied to a moving charge carrier (such as electrons)

within a conductor, a transverse force is exerted on them pushing them to one side. This

results in a build-up of opposite charge on the other side of the conductor to balance the

magnetic influence. This produces a measurable transverse voltage between the two sides of

the conductor and is know as the Hall effect, after E. H. Hall who discovered it in 1879. The

Hall voltage is given by;

VH =
IB

ned
, (2.2)

where I is the current, B is the magnetic field, n is the density of moving charge carriers, e

is the electron charge and d is the width of the conductor. The transverse resistance (or Hall
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resistance), defined as VH/I is proportional to B/n. This allows the Hall effect to be used

to quantify charge carrier type (electron or hole), density and mobilities of electronic materials.

When the charges pile up on either side of the conductor, the force due to the electrostatic

field increases until it is balanced by the force due to the magnetic field. This can be expressed

as;

qE = qvdB. (2.3)

Then the electrostatic field is,

E =
VH
d
, (2.4)

which gives the drift velocity,

vd =
VH
Bd

. (2.5)

Therefore, it is possible to obtain the drift velocity by measuring the Hall voltage and the

magnetic field.

The Hall effect is considered a conduction phenomenon due to the fact that it is different

for different charge carriers. The Hall voltage has demonstrated to have different polarities

for positive and negative charge carriers. This has led to the study of conduction within

semiconductors and other materials that show both positive and negative charge carriers. A

Hall probe, which is a thin film placed in between two magnetic pole pieces, can be used

to calculate the transverse voltage. The average drift velocity of the moving charge carriers

can be measured by moving the Hall probe at varying speeds until the Hall voltage vanishes,

showing that the charge carriers are now moving irrespective of the magnetic field.

2.4 The Quantum Hall effect

The quantum Hall effect [11]-[14] is a phenomenon demonstrated when electrons are restricted

in a two-dimensional plane with a strong magnetic field. The result of this set-up is that a
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conducting material with defects or impurities will behave as it does without the defects under

these circumstances. It is necessary to distinguish between two different types of quantum

Hall effects that are associated to two related phenomena. They are the integer and fractional

quantum Hall effects. The Hall conductivity (ratio of current-voltage) takes quantised values

and is defined as;

σxy =
e2

2πh̄
ν. (2.6)

ν is a topological invariant that is later recognised as one of the most fundamental numbers

in topological phases of matter, the Chern number. It is defined by the integral of the Berry

curvature over the 2D Brillouin zone, and therefore has close relation to the Berry phase

[42],[43]. The Chern number can interpreted as a winding number since it can be multiplied

by 2π to obtain the Berry phase.

2.4.1 The integer quantum Hall effect

The integer quantum Hall effect is what is conventionally simply referred to as the quantum

Hall effect as it was the first observation of such a phenomenon. We can define the term

”conductivity” as the degree to which a specified material conducts electricity, calculated as

the ratio of the current density in the material to the electric field which causes the flow

of current. Thus, we can define the term ‘resistivity’ as the inverse of conductivity. In the

presence of a magnetic field, the conductivity of a system, σ is given as the matrix,

σ =

 σxx σxy

−σxy σxx

 , (2.7)

and therefore, the resistivity, ρ is

ρ = σ−1 =

 ρxx ρxy

−ρxy ρxx

 . (2.8)

As described above, the system focuses on transverse voltage allowing us to focus our
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attention on the transverse resistivity, given by ρxy. The Hall resistivity is given as,

ρxy =
2πh̄

e2

1

ν
, (2.9)

where ν ∈ Z. The first experiments on this topic were constructed in 1980 by von Klitzing

[44], taking samples from Dorda and Pepper [45].

Figure 2.4: The integer quantum Hall effect performed by Klitzing, 1980

.

The unique feature of the integer quantum Hall effect is that ρxy remains on a plateau

for a range of magnetic field strength, before jumping suddenly to the next plateau. The

value of ν is measured to be an integer to a surprising accuracy. The quantity 2πh̄/e2 is the

‘quantum of resistivity’, or the von Klitzing constant, and has since been used as the standard

for measuring resistivity.

These plateaux occur when the magnetic field takes the value

B =
2πh̄n

νe
=
n

ν
Φ0 (2.10)
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where n is the electron density and Φ0 = 2πh̄/e is the flux quantum. It was found that the

plateaus exist with the quantisation persisting over a range of magnetic fields. Moreover,

it was found that the plateaux also persist in the present of disorder, or impurities. This

is surprising since impurities usually hinder the understanding of the underlying physics of

a system, yet, in the quantum Hall effect, as disorder increases the plateaux become more

prominent rather than less. The fact that ν is such a robust property in the sense that

it remains consistent despite disorder, we can refer to it as a topological invariant. Whilst

we have a plateaux in resistivity, we simultaneously have a plateaux in conductivity. This

means that we have finite, well defined conductivity despite disorder. The conductivity lies

on the surface with the bulk being insulating, which brings us to topological insulators with

conducting edge states.

2.4.2 The fractional quantum Hall effect

In the case of the integer quantum Hall effect, by decreasing the disorder we can observe less

prominent plateaux. However, we can also observe other plateaux emerging but at fractional

values rather than integer. This was found by Tsui and Stormer in 1982 [47] using samples

by Gossard [46]. The resistivities are shown in Fig. 2.5.

Here we observe that the Hall resistivity takes the same form as before, with ν now a

rational number, ν ∈ Q. Some of the more noticeable plateaux occur for ν = 1/3 and 2/5.

These plateaux emerge more and more with the decrease of disorder. Therefore, it seems likely

that in the limit of a perfectly pure sample, we would get an infinite number of plateaux. The

would be illustrated with a straight line for the resistivity as expected in the classical Hall

effect, in which we expect the transverse resistivity to increase linearly with the magnetic field,

B. The fractional quantum Hall requires the we take account the electron-electron interaction

rather than the free electron picture as used in the integer quantum Hall effect. This makes

the problem more complex and richer. The fundamental ideas were suggested by Laughlin

[48], but the topic has been further expanded in many different directions.

S.Begum, PhD Thesis, Aston University 2021 24



CHAPTER 2. NON-INTERACTING MODEL

Figure 2.5: The fractional quantum Hall effect performed by Tsui and Stormer, 1982

.

2.5 Topological Insulators

The previous chapters have paved the way for a more detailed discussion of topological insula-

tors which we will do in this section. Topological insulators are a new state of quantum matter

with an insulating bulk but with surfaces that can conduct electric current. This behaviour

can be described by band theory which says that in the bulk, the Fermi level lies within the

conduction and valence bands. This means that there is an energy gap between the ground

and first excited states of electrons restricting their movement. However, the electronic states

on the surface lie within the bulk energy gap and allow conduction, since the electrons can

move and hence conduct charge.

Unlike other materials where the fragile surface states can be changed by details in the

surface geometry and chemistry, topological insulators are instead predicted to have unusu-

ally robust surface states due to the protection of time-reversal symmetry [50]. These unique

states are protected against all time-reversal-invariant perturbations, such as scattering by
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Figure 2.6: The valence band and conduction band of a topological insulator.

.

non-magnetic impurities, crystalline defects, and distortion of the surface itself, and can lead

to striking quantum phenomena such as quantum spin Hall effect [49]. The robustness of

these properties can revolutionise materials and their applications, such as highly efficient

nano wires or the basis for storing stable bits in a computer. Extracting the electronic and

structural properties of topological insulators is necessary for both understanding the under-

lying physics and the potential applications. We discuss this further in the next section where

we describe a unique topological property, the Berry phase.

2.5.1 Berry/Zak phase and Berry curvature

A Berry phase is a phase angle (between 0 and 2π) that describes how a global phase accu-

mulates as a complex vector is carried around a closed loop in its vector space. Since we are

only interested in phases, we can take these complex vectors to be unit vectors, and we will

typically identify them with the ground state wave-function of some quantum system. We

then consider a gradual change that returns the system to its origin at the end of the loop.

This is sketched in Fig. 2.7, where each state |un〉 beginning at |u0〉 is projected onto the next

state until a loop is formed and the system returns to |uN 〉.
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Figure 2.7: Sketch illustrating states being projected onto each other in ascending order until
a loop is formed.

.

The Berry phase φ is then defined to be;

φ = −i ln 〈u0|u1〉 〈u1|u2〉 ... 〈uN−1|u0〉 (2.11)

= −i ln
N−1∏
i=0

〈ui|ui+1〉 . (2.12)

Taylor expanding and defining λ as a continuous real variable that can take on values of N

brings us to the result;

φ = −i
∮
dλ 〈uλ|∂λuλ〉 . (2.13)

Thus, the Berry phase φ is minus the complex phase of the product of inner products of the

state vectors at neighbouring points around the loop. The integrand in Eq. (2.13) is known

as the Berry connection [51], Aλ given as;

Aλ = i 〈uλ|∂λuλ〉 . (2.14)

When Aλ is integrated in one dimension, we obtain the one-dimensional Berry-phase called

the Zak-phase. The Berry phase itself is not topologically invariant and can take any real

value or change continuously. However, when a certain symmetry is imposed and a suitable

path is considered, the Berry phase can be quantised and give a topological invariant. This

is essential for categorisation of wave-functions.
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An important point to note is that the Berry connection is not gauge-invariant. If we

make a change to the phase of the wave function, uλ, i.e.

|uλ〉 → eiαλ |uλ〉 , (2.15)

where αλ is a continuous real function, and make this substitution into Eq. (2.14), we obtain;

Aλ → Aλ + ∆αλ (2.16)

so the Berry connection changes by a gradient. The Berry phase however, is gauge-invariant

since the integral of ∆αλ depends only on the initial and final points of the path, hence for a

closed path it is zero.

The Berry curvature Ωλ is defined as the Berry phase per unit area in two-dimensional

parameter space, (x, y). We can obtain it by taking the curl of the Berry connection,

Ωλ = ∂xAy − ∂yAx. (2.17)

Like the Berry phase, the curvature is also gauge invariant which can be shown by applying

the same transformation in Eq. (2.15).

2.5.2 Winding Number

Another unique topological feature is the winding number [52] which is an integer representing

the number of times a closed curve travels anti-clockwise around a given point in the plane. It

depends on the orientation of the curve, and is negative if the curve travels around the point

clockwise. In Differential geometry, the winding number is expressed as a line integral of a

differentiable curve. The derivative in polar coordinates, can be given in terms of rectangular
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coordinates as:

dθ =
xdy − ydx
x2 + y2

. (2.18)

Then by the fundamental theorem of calculus [53], we can use that the net change in θ is

equal to the integral of dθ, giving the winding number as:

ν =
1

2π

∮
xdy − ydx
x2 + y2

. (2.19)

2.6 One-dimensional Levinson’s theorem

The Levinson’s theorem is an important theorem in the non-relativistic quantum scattering

theory, giving the relation between the total number of bound states with the phase of the

transmission amplitude. The starting point in the derivation of the one-dimensional Levinson’s

theorem, is the wave equation,

− d2ψ

dx2
+ U(x)ψ = p2ψ, (2.20)

with the boundary ψ(±L) = 0 with distance L much larger than the scale of the real potential,

U . We can define a wavenumber P such that for p ≥ P the effects of the potential are negligible

and the wave-functions behave as those for a system without a potential. We can then count

the number of solutions, N with 0 ≤ p ≤ P given by;

N0 = N + nb, (2.21)

where N0 is the number of states for a system without a potential and nb is the number of

bound states. This shows that the total number of single-particle states is independent of the

presence of potential energy in the Schrödinger equation.
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The scattering waves incident the left, ψL and from the right, ψR

ψL(x→ −∞) = eipx +RLe
−ipx, ψL(x→ +∞) = TLe

ipx (2.22)

ψR(x→ −∞) = TRe
−ipx, ψR(x→ +∞) = e−ipx +RRe

ipx, (2.23)

where R and T are reflection and transmission amplitudes respectively. To define them

uniquely, the convention that p ≥ 0 must be applied. Considering the Wronskians W (a, b) =

ab′ − a′b, we find that W (ψL, ψR) at x→ ±∞ leads to

TL = TR ≡ T. (2.24)

Similarly, W (ψL, ψ
∗
R) leads to

RL
R∗R

= − T

T ∗
. (2.25)

The conservation of flux imposes that

|T |2 + |RL|2 = 1 = |T |2 + |RR|2. (2.26)

If U is symmetric, U(x) = U(−x), then W (ψL(x), ψR(−x)) leads to

RL = RR ≡ R. (2.27)

The asymptotic conditions for p→∞ gives

T (p→∞) = 1 RL(p→∞) = RR(p→∞) = 0. (2.28)

At the threshold, p→ 0

RL(p→ 0) = RR(p→ 0) = −1 T (p→ 0) = 0. (2.29)
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Now we may parametrise T and RL,R accommodating the constraints given above by writing

T = cos θeiτ , (2.30)

RL = i sin θeiτ+iρ, (2.31)

RR = i sin θeiτ−iρ, (2.32)

with real θ, τ and ρ all functions of p. For symmetric potentials, we have ρ = 0. We also

adopt the conventions

θ(∞) = τ(∞) = 0, ρ(0) = 0 (2.33)

such that

− π

2
< θ(p) <

π

2
, p > 0, (2.34)

and the threshold conditions give:

θ(0) = ±1

2
, τ(0) = π(2ν ± 1

2
), (2.35)

where ν is an integer. The aim now is to determine the signs and ν in the equation above in

order to determine the phase τ(0) in terms of bound states of the potential.

We may display the amplitudes T and R in a 2 × 2 scattering matrix, or S matrix acting

on two component vectors (CL, CR) whose entries are the coefficients in the expansion of an

arbitrary solution ψ = (CLψL + CRψR).

S =

 T RR

RL T

 (2.36)

= eiτ

 cos θ ie−iρ sin θ

ieiρ sin θ cos θ,

 (2.37)
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S(∞) =

1 0

0 1

 S(0) =

 0 −1

−1 0

 . (2.38)

The eigenvalues S1,2 for the S matrix and the corresponding eigenvalues ψ1,2 are given

S1 = ei(τ+θ) S2 = ei(τ−θ), (2.39)

ψ1(x→ ±∞) = ei(τ+θ)/2 cos
[
px+

1

2
(±τ ± θ − ρ)

]
, (2.40)

ψ2(x→ ±∞) = ei(τ−θ)/2 sin
[
px+

1

2
(±τ ∓ θ − ρ)

]
. (2.41)

We can observe that ψ1,2 are real functions of x, which in the case of symmetric potentials

and ρ = 0, they become the even and odd parity eigenfunctions of S. Therefore, we can drop

the norming constants and write

ψe(x→ ±∞) = cos (px± E), (2.42)

ψo(x→ ±∞) = sin (px±∆), (2.43)

where the even and odd parity phase shifts, E and ∆ are

E(p) =
1

2
(τ + θ), E(∞) = 0, E(0) = π

(
ν ± 1

2

)
, (2.44)

∆(p) =
1

2
(τ − θ), ∆(∞) = 0, ∆(0) = πν. (2.45)

2.6.1 Even parity solutions

For states in a system without a potential with E = 0 in Eq. (2.44), the boundary conditions

ψ(±L) = 0 imposes the constraint pnL = π(n + 1
2), with n = 0, 1, 2 . . . Then we can choose

P = π(N + 1
2L), which gives the number of states with 0 ≤ p ≤ P as N e

0 = (N + 1). For

systems with a potential with E 6= 0 the boundary condition imposes

pnL+ E(pn) = π
(
n+

1

2

)
. (2.46)
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The number of states with 0 ≤ p ≤ P is N e = (N − N e
min) + 1, where nemin is the lowest

possible values of n. Then Eq. (2.21) yields neb = nemin for the number neb of even parity bound

states. We can observe that when L → ∞, pn with any finite n, hence, pmin in particular

tends to zero. Thus, we can replace E(pn)→ E(0) = π(ν ± 1
2), which leads to

peminL = π(nemin +
1

2
− ν ∓ 1

2
). (2.47)

The asymptotic form of ψe ensures that pmin cannot be zero since the wave-function would

be independent of x, therefore, p > 0 and Eq. (2.47) entails nemin = (ν + 1
2 ±

1
2), pmin = π/L.

Our final results are therefore

ν = neb −
1

2
∓ 1

2
, E(0) = π(neb −

1

2
). (2.48)

2.6.2 Odd parity solutions

For systems without a potential with ∆ = 0 in Eq. (2.43) satisfy pnL = πn, n = 1, 2, 3, . . . ,

so we choose P = πN . Then the number of states with 0 ≤ p ≤ P is no0 = N . Systems with

a potential obey

pnL+ ∆(pn) = πn (2.49)

and No = (N − nomin + 1) where nomin and pomin are the lowest allowed values for each. Then

the number nob of odd parity bound states, nob = No
0 −No = n0

min − 1. Then we can replace

∆(pmin) by ∆(0) = πν, which gives

pominL = π(nomin)− ν. (2.50)

For the same reasons as with the even parity case, we find that pomin > 0, leading to nomin =

(ν + 1) and pomin = π/L. Our final result is therefore

ν = nob , ∆(0) = πnob . (2.51)

S.Begum, PhD Thesis, Aston University 2021 33



CHAPTER 2. NON-INTERACTING MODEL

Collecting our results, we have

E(0)/π = (τ(0) + θ(0))/2π = neb −
1

2
= ν ± 1

2
, (2.52)

∆(0)/π = (τ(0)− θ(0))/2π = nob = ν. (2.53)

For the total number of bound states, we have

nb ≡ neb + nob = 2ν +
1

2
± 1

2
. (2.54)

Since the upper (lower) signs apply for nb is odd (even), this implies nob = neb − 1 (nob = neb).

Therefore, our final results are:

nb is odd:

ν =
1

2
(nb − 1), θ(0) =

1

2
π, τ(0) = π

(
nb −

1

2

)
; (2.55)

nb is even:

ν =
1

2
nb, θ(0) = −1

2
π, τ(0) = π

(
nb −

1

2

)
. (2.56)
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Chapter 3

Topological aspects in strongly

correlated systems

3.1 Fermi Liquid theory

Fermi liquid theory is a model that considers weakly interacting quasi-particles occupying

states near the Fermi surface. The Fermi surface is the surface in reciprocal space that sepa-

rates the fermionic occupied states from unoccupied states at zero temperature. The theory is

based on the assumption that near the Fermi surface the gas particles are able to gain energy

and weakly interact with one another as liquids.

When particles are added in a non-interacting system, the first particle fills the lowest

energy state with each additional particle taking on a higher energy state. If these particles

are fermions, the Pauli exclusion principle will ensure that two or more particles cannot oc-

cupy the same state. At zero temperature, the level at which states have been occupied is

the Fermi level or Fermi energy, εF . Then if we introduce temperature, T (T << εF ) there

will be a small probability that the particles will be able to gain energy and jump energy

levels. This is only near the Fermi energy as the temperature should not be high enough for

particles to jump drastically. Therefore the shift in the particles’ energies are by the order of

S.Begum, PhD Thesis, Aston University 2021 35



CHAPTER 3. TOPOLOGICAL ASPECTS IN STRONGLY CORRELATED SYSTEMS

temperature. The particles in this system are therefore called quasi-particles [54] since they

are excited with small energy enabling them to move, collide with and drag other particles

along, rather than acting independently.

The rate at which collisions can occur around the Fermi level is given as

1

τ
= α

( T
εF

)2
(3.1)

Here τ is the mean free time which is the average time in between two collisions and α is the

coupling constant between two particles which describes how strong the collisions are between

particles. Therefore, the LHS is the rate at which particles collide and the RHS describes

the scattering of particles from collisions. The restriction that particles can shift in energy,

momentum and velocity only around the Fermi level ensures that there are not many particles

that are able to be scattered. As a result, the rate of collisions and scattering is low. There-

fore, Fermi liquids can be described as non-interacting or weakly interacting particles due to

the suppressed scattering between them. In contrast, a Fermi gas has a scattering rate of 0

since in this model there is no interaction. When temperature is increased, a Fermi gas model

becomes like a Fermi liquid model due to the increase in scattering, and therefore interaction

between electrons. As a result, the cloud-like, or quasi-particle description of electrons is

introduced for systems with interaction which would otherwise be simply referred to as a free

electron model in the absence of interaction.

Since there are many constraints that need to be satisfied for energy and momentum for

multiple interacting particles, this description is not suitable for one-dimension in which there

are far fewer constraints due the restriction of dimensionality. In one-dimension, particles

can only move linearly and detached from other particles which contrary to the description

of ‘cloud-like’ movement in Fermi liquid theory.
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3.2 Renormalization Group Theory

The subject of renormalization group (RG) theory refers to a systematic investigation of the

changes a physical system undergoes whilst viewed at different scales. As the scale changes,

the system at one scale will be seen to contain self-similar copies of itself when viewed at a

smaller scales with different parameters describing the components of the system.

To describe the macroscopic behavior of a physical system that is undergoing an RG trans-

formation, a relevant observable A is required. If the magnitude of A seems to be increasing

as the length scale of the system goes from small to large, then A is said to RG relevant.

Otherwise, if A appears to be decreasing it is said to be RG irrelevant. The third case in

which it neither appears to be increasing or decreasing, it is said to RG marginal.

The process begins with the statistical mechanics of a system described by some Hamil-

tonian H. Equilibrium properties can then be determined by the partition function

Z =
∑
X

e−βH =
∑
X

e−S , (3.2)

where X denotes all configurations and the action S = βH. In general, the action contains

degrees of freedom for wavevectors up to some cutoff Λ, which is of the order of the dimensions

of the Brillouin zone. The aim is to obtain and ‘effective action’ containing only the physical

most relevant degrees of freedom. In standard phase transition situations, this is the vicinity

and the cutoff is defined with respect to this surface. This can be achieved by proceeding as

follows:

1. Starting from a cutoff-dependent action S(Λ) one eliminates all degrees of freedom

between Λ and Λ/s, where s is a scale factor larger than 1. This gives rise to a new action

S′(Λ′ = Λ/s).
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2. One performs a ‘scale change’ k → sk. This reinforces the cutoff to its original value

and a new action S′(Λ) is obtained.

3. One chooses a value of s infinitesimally close to 1: s = 1+ε, where ε << 1, and performs

the first two steps iteratively. This then gives rise to differential equations for the couplings

which can be integrated until all irrelevant degrees of freedom have been eliminated. This

idea of deriving scaling laws to observe only relevant degrees of freedom allows us to reduce

a complex interacting system to an effective model described by only a few parameters.

3.3 Luttinger Liquid Theory

A Luttinger liquid is a model describing interacting fermions (more specifically, electrons) in

a one-dimensional conductor, such as quantum wires, and is necessary when the Fermi liquid

model breaks down. The system is described to be strongly correlated due to the restriction

in dimension which increases the probability of interaction. Since particle-hole excitations are

bosonic in character, bosonization which is an effective field theory that focuses on low-energy

excitations is applied. In this case, Luttinger bosons are considered elementary excitations

resulting in density waves, or fluctuations in liquid density.

3.3.1 Bosonization

Much like in the theory of Fermi liquids, we focus our attention only at the vicinity of the

Fermi energy since all other regions are irrelevant or unoccupied. The dispersion law can be

reduced to two straight lines near points around the Fermi energy. As a result, there can be

two branches of particles, one branch of particles moving to the right with momentum q and

the other to the left with momentum −q. This is a description of the non-interacting model

[55],[56]. The Hamiltonian density for the Luttinger model is given as:

H = −ivF [ψ†R∂xψR − ψ
†
L∂xψL] (3.3)
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where ψR and ψL denote states for right moving and left moving particles respectively. We

can introduce the density operator to describe the interaction between particles:

nR(x) = ψ†R(x)ψR(x), (3.4)

which obeys the fundamental relation:

[nR−q, nRq] =
qL

2π
. (3.5)

This is the commutation relation between the density operator at q and −q and is shown

to anti-commute with qL
2π . Since for bosons the commutation relation is 1, we can re-scale

by writing the operators in another way. We introduce the following boson creation and

annihilation operators for q > 0

b†Rq = (2π/qL)1/2nRq (3.6)

bRq = (2π/qL)1/2nR−q (3.7)

which obey the Bose commutation relations, [bRq, b
†
Rq] = 1. Applying these operators to

the Hamiltonian gives

HR =
1

2∂n/∂µ

∫
dxnR(x)2 (3.8)

in position space, and

=
πh̄vF
L

[
N2
R +

∑
q>0

b†RqbRq

]
(3.9)

in momentum space. It is useful to express the chiral density in terms of a chiral phase

operator,

nR(x) = ∂xφR(x)/(2π). (3.10)
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In terms of φR the commutation relation Eq. (3.5) becomes:

[∂xφR(x)

2π
, φR(x′)

]
= iδ(x− x′). (3.11)

This suggests that ∂xφR(x) and φR(x) are canonically conjugate variables similar to x and p

in fundamental quantum mechanics. This allows us to write the Lagrangian, typically written

as L = pq̇ −H(p, q), but now as:

L = − 1

4π
∂xφ[∂tφR + vF∂xφR]. (3.12)
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Chapter 4

One-dimensional Topological

Insulators: The SSH model

The Su-Schreiffer-Heeger model (or simply the SSH) is the simplest model to demonstrate

non-trivial topology. An SSH lattice model consists of each alternating site to be identical

with two different hopping parameters. Due to its simplicity, it has been applied in literature

as a starting point for determining the existence of edge states.

For the SSH every other site of the lattice is identical. To distinguish between the two dif-

ferent sites, we will label them as odd and even. The hopping parameters to and te represent

the probability of a particle moving between these sites. Though the arrangement of hopping

parameters and sites is irrelevant initially, once set it is essential that the arrangement is kept

consistent for the calculations ahead.

Considering nearest-neighbour hopping only, we can construct a Hamiltonian as:

Ĥ = −to
∑
n

[ĉ†2n−1ĉ2n + ĉ†2nĉ2n−1]− te
∑
n

[ĉ†2nĉ2n+1 + ĉ†2n+1ĉ2n] (4.1)
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Figure 4.1: One-dimensional SSH lattice with alternating identical sites

Using the ground state:

|ψ〉 =
∑
j

ψj ĉ
†
j |0〉 , (4.2)

we can obtain the wave-functions for odd and even sites as:

− toψj−1 − teψj+1 = εψj , j = 2n+ 1 (4.3)

− toψj+1 − teψj−1 = εψj , j = 2n (4.4)

Since we have a periodic potential, we can use the Bloch waves to find the eigenenergies ε:

ψj = eikjUok , j = 2n+ 1 (4.5)

ψj = eikjU ek , j = 2n (4.6)

then the Schrödinger equation becomes:

Ĥ =

 0 −toeik − tee−ik

−toe−ik − teeik 0


U ek
Uok

 =

ε 0

0 ε


U ek
Uok

 , (4.7)

with eigenenergy

ε± = ±
√
t2o + t2e + 2tote cos 2k, (4.8)
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and eigenvectors

Uk =

 1

±
√

t̄k
tk

 =
1√
2

 1

±e−iφ(k)

 (4.9)

where tk = toe
ik + tee

−ik.

The energy bands described in Eq. (4.8) are shown in Fig. 4.2. From this figure, we

Figure 4.2: Energy bands for the SSH model

can see that at to = te the energy bands touch indicating a flow of electrons and therefore,

conduction.

4.1 Zak-Phase

We can define the complex number, tk, as tk = |tk|eiφ(k). The ratio of t1/t2 can determine

whether tk circles the origin or not. The Zak-phase, which describes the closed path the

particle takes in momentum space, is defined as;

Z = i

∮
dk

〈
Uk

∣∣∣∣ ∂∂kUk
〉
. (4.10)

Substituting the eigenvectors in Eq. (4.9) into Eq. (4.10), we obtain the Zak-phase as;

Z =

∮
dk
dφ

dk
= 0, π (4.11)
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The Zak-phase is π times the winding number of the curve tk around the origin, and is

therefore, zero if the curve does not enclose the origin.

4.2 Winding number

Using the complex logarithm function;

ln(tk) = ln(|tk|eiarg(tk)) = ln |tk|+ iarg(tk), (4.12)

the winding number of the closed contour, tk around the origin is given as;

ν =
1

2πi

∮
dk

d

dk
ln(tk) (4.13)

Substituting tk = toe
ik + tee

−ik, we have;

ν = −1 +
1

2πi

∮
dk

e2ik

te/to + e2ik
(4.14)

Using the substitution z = e2ik,

ν = −1 +
1

2πi

∮
dz

z + te/to
. (4.15)

To solve this integral, we calculate the residue at z = −te/to;

ν = −1 + lim
z→− te

to

z − (− te
to

)

z + te
to

= 0. (4.16)

Therefore, the winding number of tk is trivially 0 when the point z =
∣∣∣ teto ∣∣∣ lies inside the

unit circle, i.e. to > te, and has the topologically non-trivial value of −1 otherwise (to < te).

Since the winding number represents the number of times the vector encircles the origin in

the counter-clockwise direction, we will neglect the minus sign. Fig. 4.3 demonstrates the

different values for winding number depending on the relationship between to and te. We can
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Figure 4.3: (left to right) topological transition from trivial to non-trivial winding number
.

.

see that when to > te, tk does not enclose the origin, hence the topologically trivial winding

number of 0. On the other hand, when to < te, tk does enclose the origin, hence the topo-

logically non-trivial winding number of an integer (in this case 1). This transition occurs at

to = te in which tk only touches the origin. In Fig. 4.2, we saw that when to = te we have

a gap-less state, i.e. the gap between the bands closes, which is an indication of conduction

due to topology.

As discussed in the previous section, the Zak-phase is given as 2π times the winding

number. Therefore, we can observe that in the trivial case, Z = 0, and in the non-trivial case

when ν = 1, we have Z = 2π.

4.3 Bulk states and Edge states

In this section we will derive the bulk states which exist for the finite SSH model. Boundary

conditions can be imposed to obtain a lattice of finite sites. By restricting the SSH to a finite

lattice of an odd number of sites, we can observe the appearance of edge states.

We can imagine two sub-lattices, one with M even sites only and the other with M + 1

odd sites only, resulting in a total of 2M + 1 sites. We obtained the eigenfunctions in Eq’s.

S.Begum, PhD Thesis, Aston University 2021 45



CHAPTER 4. ONE-DIMENSIONAL TOPOLOGICAL INSULATORS: THE SSH MODEL

(4.3) and (4.4) where we re-label j as 2j to emphasise it is even:

toψ2j−1 + teψ2j+1 = εψ2j , j = 1, ...,M (4.17)

teψ2j−2 + toψ2j = εψ2j−1, j = 1, ...,M + 1 (4.18)

We can restrict the lattice to a finite system by introducing the boundary conditions such

that the wave-function is 0 at sites j = 0 and j = 2M + 2:

ψ0 = ψ2M+2 = 0. (4.19)

The eigenfunctions are also labelled by a wave vector, k and can be represented by a linear

combination of two plane waves travelling left and right:

ψk,2j = eke
ikj + e−ke

−ikj (4.20)

ψk,2j−1 = oke
ikj + o−ke

−ikj , (4.21)

where the coefficients ek and ok are the amplitudes of the waves and satisfy the equations:

tkok = εkek (4.22)

t̄kek = εkok, (4.23)

with tk = to + tee
ik = |tk|eiφk .

Solving for eigen-energies εk we obtain the dispersion describing two bands:

ε±k = ±|tk|. (4.24)

Inserting the boundary condition ψ(0) = 0 into Eq. (4.20) we obtain:

e−k = −ek. (4.25)
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Eq. (4.25) allows us to derive the bulk states:

ψb±k,2j = Ak sin kj, (4.26)

ψb±k,2j−1 = ±Ak sin(kj − φk), (4.27)

Which once normalised, we find:

Ak =
1√

M + 1
. (4.28)

The second boundary condition ψ2M+2 = 0 leads to the quantisation of the wave vector:

sin k(M + 1) = 0,

k =
πn

M + 1
, n = 1, ...,M.

(4.29)

This quantisation suggests that there are M solutions in each of the bulk states, resulting in

a total of 2M bulk solutions labelled by k. However, since we initially began with 2M + 1

degrees of freedom, we can suggest that there is an extra solution at the edge of the lattice

- an edge state. An educated guess tells us that we can try to find this edge state by taking

ε = 0. One way to solve Eq.’s (4.26) and (4.27) for the edge states, is to take one to be zero,

and observe the movement of the wave on the other. In other words, we can set ψ2j = 0, and

observe only ψ2j−1. Doing so, we obtain:

− to
te
ψ2j−1 = ψ2j+1. (4.30)

The solution to the recurrence relation can be solved to give the edge state as:

ψe2j−1 = N0

(
− to
te

)j
, ψe2j = 0, N e =

[(− to
te

)2 − (− to
te

)2(M+2)

1− (− to
te

)2

]−1/2
. (4.31)

When to < te, the edge state will have a maximum value when j = 1 and will exponentially

decrease as j increases. Therefore, we can say that the edge state is exponentially localised at

the left boundary, and the plane wave will travel from left to right. If to > te, the maximum
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value that the edge state can take is at j = M+1 which decreases exponentially as j decreases.

Therefore, we have the reflected wave instead (travelling right to left) since the edge state will

now be exponentially localised at the right boundary.

4.4 Chapter summary

We used the SSH model to demonstrate unique topological behaviour. The topological tran-

sition from trivial to non-trivial behaviour is at to = te. We observed that there is an edge

state which is localised at the left boundary and occurred when to < te. If this ratio is flipped,

the edge state will move to the right boundary.
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Chapter 5

Scattering Amplitudes for

one-dimensional systems

Topological insulators can exist due to different protected states. In previous chapters, we

have discussed topologically protected states due to edge states far from the bulk in the en-

ergy gap. There can also be protected states in the bulk due to the nature of a potential

which restricts a particle’s motion such that it is localised in one region - we call these bound

states. In this section we discuss bound states for topologically non-trivial perturbation by

calculating reflection/transmission coefficients. As opposed to the conventional route [60] of

calculating the Chern number from the Hamiltonian in order to determine the topological na-

ture of a material, we propose another method involving calculating scattering amplitudes to

extract the same information. For a one-dimensional model we devise a method to calculate

the Zak-phase from the scattering amplitude. We propose a criterion that takes a material

and calculates the scattering amplitude allowing us to determine its topologically trivial (or

non-trivial) nature.
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5.1 Scattering amplitudes for a continuous chain

To begin with, we will develop the protocol of finding bound states by analysing scattering

amplitudes for a one-dimensional infinite continuous chain. In this model, the chain will be

uniform and identical everywhere, with the exception of a δ-potential in exactly the centre

of the chain acting as a barrier for incoming and outgoing waves.To observe scattering states

with momentum k, we consider a potential much smaller than the wave-length of the system.

As a result, we may choose a delta-function potential since it can be used to approximate

the function on the small scale with a relevant coefficient. The Schrödinger equation for the

model is;

− d2

dx2
ψ(x) + λδ(x)ψ(x) = εψ(x), (5.1)

where λ is the amplitude of the δ-function potential and ε is the energy of the model. To

find scattering amplitudes, more precisely, the reflection coefficient, we will send plane waves

eikx from both left and right hand sides of the chain and observe the scattering behaviour

demonstrated. For now, we may consider only incoming waves from the left to simplify

calculation. Since waves incoming from the left are identical to waves incoming from the

right, the scattering behavior is also identical. Therefore, the scattering states on the left are

given by;

ψSL(x) = eikx + rke
−ikx (5.2)

and on the right,

ψSR(x) = tke
ikx, (5.3)

where k is the complex wave-vector restricted in the upper half plane (k = k+ i0)and rk,

tk are the reflection and transmission coefficients. To solve Eq. (5.1), we impose the following

boundary conditions;
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ψL(0) = ψR(0), ψ′R(0)− ψ′L(0) = −λψ(0). (5.4)

Applying these boundary conditions to Eq.’s (5.2) and (5.3), we obtain,

tk = 1 + rk, (5.5)

rk = − λ

2ik + λ
. (5.6)

The standard energy ε for a plane wave solution to the Schrödinger equation is ε = k2.

Therefore the singularity is

λ = −2ik = −2i
√
ε. (5.7)

The square root,
√
ε can be analytically continued in the upper half plane to give i

√
ε.

Therefore, λ is instead now positive;

λ = 2
√
ε, (5.8)

as expected for the potential to take the form of a ‘well’ as required for a bound state.

Therefore, the wave-functions taking the form eikx, become;

ψBL (x) =
√

2ε
1
4
0 e
−i(i√ε0) =

√
2ε

1
4
0 e
√
ε0x, (5.9)

ψBR (x) =
√

2ε
1
4
0 e

i(i
√
ε0) =

√
2ε

1
4
0 e
−√ε0x, (5.10)

where ε0 is the energy of the bound state. We can observe that the wave-functions expo-

nentially decay on either side of the potential. They are localised about the potential, with

the highest probability of positioning right next to the potential which then decays to 0 as we

move away from the potential.
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5.2 Bound states for a continuous chain

We have just seen that bound states may be derived through the scattering amplitudes of a

system. However, information about the presence of bound states can also be found through

the total charge of the system. This can lead to explicitly quantifying the number of bound

states. The total charge at zero temperature is given by;

∫ kF

0

dk

2π

∫ ∞
−∞

dx
∣∣ψS(x)

∣∣2 +

∫ ∞
−∞

dx
∣∣ψB(x)

∣∣2, (5.11)

where kF is the Fermi momentum and ψS(x) and ψB(x) are the scattering and bound states

respectively.

Inserting our arbitrary scattering and bound states from the previous section and sub-

tracting an unperturbed state eikx to compensate for any divergent terms, we have

∫ kF

0

dk

2π

{∫ 0

−∞
dx
[
1+|rk|2 + r̄ke

2ikx+rke
−2ikx−

∣∣∣eikx∣∣∣2]+

∫ ∞
0

dx
[
|tk|2−

∣∣∣eikx∣∣∣2]}+1, (5.12)

since |tk|2 = 1− |rk|2 using Eq.’s (5.5) and (5.6) and the bound states integrate to give 1.

The integral in Eq. (5.12) reduces to;

∫ kF

0

dk

2π

∫ 0

−∞
dx2

[
r̄ke

2ikx + rke
−2ikx

]
(5.13)

Due to symmetry, we are able to combine terms under one integral and have chosen −∞ to

0. We have also now accounted for our earlier simplification of choosing waves only incoming

from the left by introducing a factor of 2 such that we have waves incoming from the left and

right. Integrating over x, integral becomes;

∫ kF

0

dk

π

[ r̄k
2ik̄
− rk

2ik
+ lim
x→−∞

rk
2ik̄

e−2ikx
]
. (5.14)

Since k = k + i0, the limit goes to zero and we are left with;
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λ

2πi

∫ kF

0
dk
[ 1

(k + i0)(2ik + λ)
− 1

(k − i0)(−2ik + λ)

]
. (5.15)

Using the following definition:

1

k + i0
= P

1

k
− iπδ(k), (5.16)

we have:

λ

2πi

∫ kF

0
dk
[P
k

−4ik

4k2 + λ2
− iπδ(k)

2λ

4k2 + λ2

]
(5.17)

for λ > 0.

Computing the two terms separately, we have:

λ

2πi

∫ kF

0
dk
[P
k

−4ik

4k2 + λ2

]
=
−λ
2π

P

∫ kF

0
dk

1

(k + iλ/2)(k − iλ/2)
. (5.18)

=
−2λ

π

1

2λ
arctan

2kF
λ
, (5.19)

where we have treated the principal value integral as a regular integral since there are no

singularities.

The second term in Eq. (5.17) gives,

∫ kF

0
dk
−λ2δ(k)

4k2 + λ2
=

1

2
[1− 2θ(kF )] =

−1

2
(5.20)

since kF > 0. Combining our results, we obtain:

−1

π
arctan

2kF
λ
− 1

2
=
−1

π

π

2
− 1

2
= −1, (5.21)

in the limit λ→ 0.

We can finally conclude that in the presence of the bound state which only has the con-

tribution ‘+1’, the total charge is 0 and −1 otherwise.
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5.3 Scattering amplitudes for Bravais lattice

We now repeat our steps in section 5.1 for a one-dimensional simple lattice with identical

sites j and a repeating hopping amplitude, 1. For simplicity, we begin with particle hopping

to nearest-neighbour sites only. To observe the scattering behaviour of this model, we will

deform the lattice by placing an impurity, λ at the origin. The Schrödinger equation is:

− 1

2
(ψj+1 + ψj−1) = (εk − λδ0j)ψj , (5.22)

where εk is the energy with wave vector, k. For lattice sites greater than j = 1 and less than

j = −1, i.e. |j| ≥ 1, we have:

− 1

2
(ψj+1 + ψj−1) = εkψj . (5.23)

We can seek solutions in the form:

ψj = aeikj + be−ikj , (5.24)

with arbitrary coefficients, a and b to obtain the bulk energy,

εk = − cos k (5.25)

The scattering behaviour around the impurity, λ can be given by the following three wave-

functions;

(εk − λ)ψ0 = −1

2
(ψ1 + ψ−1), (5.26)

εkψ1 = −1

2
(ψ0 + ψ2), (5.27)

εkψ−1 = −1

2
(ψ0 + ψ−2). (5.28)
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Using the definitions:

ψj≥1 = tke
ikj , (5.29)

ψj≤−1 = eikj + rke
−ikj , (5.30)

where tk and rk are the transmission and reflection amplitudes respectively, we obtain the

relations:

ψ0 = tk = 1 + rk, rk =
−λ

λ− i sin k
, tk =

sin k

sin k + iλ
(5.31)

To find bound states, we can observe that rk has poles at the following:

λ = i sin k0 for λ > 0, (5.32)

λ = −i sin k0 for λ < 0. (5.33)

Therefore, we find the wave-vector of the bound state, k0 with the corresponding energy, ε0

and bound states:

for λ > 0,

k0 = arcsin (−iλ) = π + i arcsinhλ (5.34)

ε0 =
√

1 + λ2 (5.35)

ψR = eik0j = ei(π+i arcsinhλ)j = (−1)je− arcsinhλj (5.36)

ψL = e−ik0j = e−i(π+i arcsinhλ)j = (−1)jearcsinhλj (5.37)

For λ < 0,

k0 = i arcsinhλ (5.38)
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Figure 5.1: The wavefunction for λ > 0 represents scattering states oscillating around the
impurity and then behaving as free-particles at ±∞.

ε0 = −
√

1 + λ2 (5.39)

ψR = eik0j = ei(i arcsinhλ)j = e− arcsinhλj (5.40)

ψL = e−ik0j = e−i(arcsinhλ)j = earcsinhλj . (5.41)

The phase of the transmission amplitude, τ(k) is given as:

τk = arctan
λ

sin k
(5.42)

which in the limk→0, τ(0) = π/2.

Applying the one-dimensional Levinson’s theorem which states that:

τ(0) = π
(
nb −

1

2

)
, (5.43)
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Figure 5.2: The wavefunction for λ < 0 is the bound state that we are looking for. It is shown
to be localised about the centre and then exponentially decaying far from the origin.

where nb is the number of bound states, gives:

nb =
τ(0)

π
+

1

2
= 1, (5.44)

which coincides with our result in section 5.1 where we also found one bound state. We

can see here that tuning the parameter λ leads to the band-gap either closing/opening, and

therefore, the absence/presence of the bound state. For λ < 0 the bound state is present and

it is absent otherwise.

5.4 Scattering amplitudes for the SSH Model

In this section, we will implement the procedure devised in the previous section on the SSH

Model. However, we will slightly alter the model by inserting an impurity, such as the delta

function, in the centre of the chain, j = 0. We imagine two sub-lattices, A and B, which

define the wave-function:

ψj =

Aj
Bj

 (5.45)
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.

As before, we consider nearest-neighbour hopping only, therefore, the Schrödinger equa-

tions for lattice sites with hopping amplitudes τ1 and τ2 at j ≤ −1 are given:

−εAj = τ1Bj−1 + τ2Bj

−εBj = τ2Aj + τ1Aj+1,

(5.46)

and for j ≥ 1:

−εAj = τ2Bj + τ1Bj+1

−εBj = τ1Aj−1 + τ2Aj ,

(5.47)

and for j = 0:

− εA0 = τ1(B1 +B−1). (5.48)

The bulk waves, |j| ≥ 1 can be defined as plane waves, ψj = Uke
ikj with wave vector, k.

This gives, for j ≤ 1,

εk τ̄k

τk εk

Uk = 0, (5.49)

and for j ≥ 1, εk τk

τ̄k εk

Uk = 0, (5.50)

where,

ε2
k = |τ |2 = τ2

1 + τ2
2 + 2τ1τ2 cos k, (5.51)

τ = τ2 + τ1e
ik. (5.52)
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Then solving for eigen-functions, Uk, we obtain the wave-functions:

ψj≤1(εk) = α

 εk

−τ

 eikj + β

 εk

−τ̄

 e−ikj (5.53)

and

ψj≥1(εk) = γ

 εk

−τ̄

 eikj + δ

 εk

−τ

 e−ikj (5.54)

with coefficients α, β, γ and δ. Since normalisation ensures that the amplitude of the incoming

waves should be 1, and we are interested in scattering behaviour of the wave-functions due to

the δ-function potential, we have

ψj≤1(εk) =

 εk

−τ

 eikj + rk

 εk

−τ̄

 e−ikj (5.55)

and

ψj≥1(εk) = tk

 εk

−τ̄

 , (5.56)

where rk and tk are the reflection and transmission amplitudes respectively.

To derive rk and tk , we first define wave-functions nearest to the impurity.

A1 = tkεke
ik

B1 = −tkτ̄keik

A−1 = εk(e
−ik + rke

ik)

B−1 = −τke−ik − rkτ̄keik,

(5.57)
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which can be reduced to:

−εkB−1 = τ2A−1 + τ1A0

−εkB1 = τ2A1 + τ1A0

−εkA0 = τ1(B1 +B−1).

(5.58)

Finally, we obtain:

tk =
A0

εk
= 1 + rk (5.59)

and

rk = − τ2
2 − τ2

1

τ2
2 − τ2

1 − 2iτ1τ2 sin k
= − 1− τ2

(1− τeik)(1 + τe−ik)
, (5.60)

where the RHS is obtained by defining τ = τ1/τ2. Then

tk =
2τ sin k

2τ sin k + i(1− τ2)
. (5.61)

Analysing the poles in the upper imaginary plane for the reflection amplitude, we find for

τ < 1

τ = −eik0 , k0 = π − i ln τ, (5.62)

ε0 ≡ ε(k0) = 0 (5.63)

ψR = eik0j = ei(π−i ln τ)j = (−1)jeln τj , (5.64)

ψL = e−ik0j = e−i(π−i ln τ)j = (−1)je− ln τj . (5.65)

and for τ > 1,

τ = e−ik0 , k0 = i ln τ, (5.66)

ε2
0 = 2τ2

2 (1 + τ2). (5.67)

ψR = eik0j = ei(i ln τ)j = e− ln τj , (5.68)
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Figure 5.3: The wavefunction for τ < 1 is the scattering state oscillating about the origin and
fading to zero at ±∞.

ψL = e−ik0j = e−i(i ln τ)j = eln τj . (5.69)

We can confirm that there is indeed one bound state by checking with the Levinson’s

theorem once again. The phase of the transmission amplitude tk, τk is

τk = arctan
1− τ2

2τ sin k
, (5.70)

which in the limk→0, τ(0) = π/2. Using the Levinson’s theorem we once again find the number

of bound states, nb = 1.

5.5 Chapter summary

We first defined the explicit nature of the bound state using scattering amplitudes. We

observed that the single bound state found is localised around the potential with the wave-

functions exponentially decaying away from the centre of the chain (placement of potential).

The total charge is also calculated and is found to be 0 for λ < 0 in the case that a bound
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Figure 5.4: The wavefunction for τ > 1 is the bound state that we are looking for. It is shown
to be localised about the centre and then exponentially decaying far from the origin.

state is present, and −1 otherwise. We also confirmed that there is only one bound state

present for a Bravais lattice by repeating the steps for the continuous chain. Finally we were

able to find the bound state for the SSH model which is present for τ > 1.

S.Begum, PhD Thesis, Aston University 2021 62



Chapter 6

Density of states via the S-Matrix

In this section we obtain the number of bound states though the density of states of the

system. We define the density of states as the total states available in the system for a given

eigen-energy, ε. To obtain the bound states, we begin with defining the Scattering Matrix (or

S-Matrix) [57] which is a 2x2 matrix that describes the outgoing waves of a one-dimensional

system with a centred potential, in terms of the incoming waves. We can also write the am-

plitudes of the waves to the left side of the potential in terms of those on the right side, which

defines the T-matrix. It can be thought of as the effective potential which is the potential

that is modified due to multiple scattering. Since we work in a one-dimensional system, the

wave in both the left and right sides of the potential has two components, one moving to the

right and one moving to the left, therefore the T-matrix is also a 2x2 matrix.

The phase of these amplitudes, in particular, the transmission amplitude, can give infor-

mation about the number of bound states in our system. This is in combination with the sum

rule, or alternatively as we have also seen, with the one-dimensional Levinson’s theorem. We

also define properties of the S-matrix such as unitarity and time reversal symmetry (TRS)

which contributes significantly to quantifying bound states.
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6.1 General reduction to T-Matrix

To begin with we define the density of states (or DoS) which describes the number of states

available in a system for a given eigen-energy ε:

ν(ε) =
∑
n

δ(ε− εn) = Tr δ(ε−H), (6.1)

with Hamiltonian H = H0 +V , where H0 is the Hamiltonian of the unperturbed system. The

Green’s functions which represent the response to the δ-function,

GR =
1

ε+ i0−H
, GA =

1

ε− i0−H
, GR0 =

1

ε+ i0−H0
, GR0 =

1

ε− i0−H0
, (6.2)

where GR and GA are retarded and advanced Green’s functions respectively, can be used to

re-write the DoS:

ν(ε) = − 1

2πi
Tr
(
GR −GA

)
. (6.3)

The following is true for either retarded or advances Green’s functions:

G−1 = G−1
0 − V = [1− V G0]G−1

0

G = G0[1− V G0]−1 = G0 +G0V G

(6.4)

and

G = G0

∞∑
n=0

(V G0)n = G0 +G0TG0, T = V

∞∑
n=0

(G0V )n = V [1−G0V ]−1. (6.5)

The excess DoS, δν = ν − ν0, can be written as:

δν = − 1

2πi
Tr
(
GR0 T

RGR0 −GA0 TAGA0
)
. (6.6)

We can first deal with the retarded contribution:

Tr
(
GR0 T

RGR0
)

= −Tr
dGR0
dε

TR = −Tr
dGR0
dε

V
∞∑
n=0

(GR0 V )n (6.7)
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= − d

dε
Tr
∞∑
n=0

1

n
(GR0 V )n =

d

dε
Tr ln [1−GR0 V ]. (6.8)

This leads to,

δν = − 1

2πi

d

dε
Tr ln (1−GA0 V )(1−GR0 V )

−1
. (6.9)

We can manipulate the inverse as an infinite series like so:

(1−GA0 V )(1−GR0 V )−1 = 1 + ∆G0T, (6.10)

where T = TR but this subscript is not important since T -matrix is not singular such that

both T and TR can be multiplied by their inverses to give the identity matrix, and

∆G0 = GR0 −GA0 = −2πiδ(ε−H0). (6.11)

We can immediately obtain,

δν = − 1

2πi

d

dε
Tr ln [1− 2πiδ(ε−H0)T ]. (6.12)

Expanding log and taking Tr in the basis of plane waves with wave-vector ki,

Tr[δ(ε−H0)T ]n =

∫
dnk 〈k1| δ(ε−H0)T |k2〉 ... 〈n1| δ(ε−H0)T |k1〉 (6.13)

=

∫
dnlδ(ε− εk1) 〈k1|T |k2〉 ...δ(ε− εkn1 ) 〈kn−1|T |k1〉 (6.14)

= (ν0(ε)/2)n
∑
σ

〈σ1k|T |σ2k〉 ... 〈σn−1k|T |σ1k〉 = (ν0(ε)/2)n tr tn, (6.15)

where σ = ±1, vector k = k(ε) is the solution of he equation ε(k) = ε which we assume to

have two solutions, σk, and Tr is the trace summing over all energies. We also define,

ν0(ε) = 1/π|v(ε)| = (1/π)dk(ε)/dε (6.16)
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with v(ε) being velocity at energy ε.

As we can see, the T -matrix is needed on-shell only, i.e. we only need to find its matrix

elements between two states with fixed energy ε. Little trace is taken over this small space

since we now have fixed energy:

δν =
1

2πi

d

dε
tr ln [1− iπν0(ε)t], tσσ′ = 〈σk(ε)|T

∣∣σ′k(ε)
〉
. (6.17)

6.1.1 Meaning of T-Matrix

Any eigenstate of the Hamiltonian H is built from the unperturbed state (eigenstates of the

Hamiltonian H0) as:

|ψ〉 = [1 +GR0 T
R] |ψ0〉 . (6.18)

Taking plane wave with momentum k ≡ k(ε) as an eigenstate of H0, we can build a scattering

state:

|ψ〉 = [1 +GR0 T
R] |k〉 , 〈x|k〉 = eikx. (6.19)

In x-representation we have:

〈x|ψ〉 = eikx +

∫
dx′GR0 (x− x′)

〈
x′
∣∣TR |k〉 . (6.20)

We can find asymptotic behaviour of solutions at x→ ±∞. Since only poles can give a finite

result to the spectrum εp can be linearised around the points ε = εp making the contributions

to the integral:

GR0 (x− x′) =

∫
dp

2π

eip(x−x
′)

ε+ i0− εp
=
πν0(ε)

2π

∫
dε

eiε(x−x
′)

ε+ i0− εp
(6.21)

=
2πiν0(ε)

2
eiεp(x−x′) = −iπν0(ε)eik(ε)|x−x′|, (6.22)
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in the limit x → ±∞. Here k(ε) is the solution of ε = εk corresponding to the right-moving

wave, i.e. the point with

v(ε) =
dε

dk

∣∣∣
ε=εk

> 0. (6.23)

For the waves incoming from the left for x→ +∞:

〈x|ψ〉 = eikx − iπν0e
ikx

∫
dx′e−ikx

′ 〈
x′
∣∣TR |k〉 = eikx − iπν0e

ikx 〈k|TR |k〉 , (6.24)

and for x→ −∞:

〈x|ψ〉 = eikx − iπν0e
−ikx

∫
dx′eikx

′ 〈
x′
∣∣TR |k〉 = eikx − iπν0e

−ikx 〈−k|TR |k〉 . (6.25)

Therefore, scattering amplitudes for right-moving (incoming from the left) waves are:

t = 1− iπν0 〈k|TR |k〉 ,

r = −iπν0 〈−k|TR |k〉 .
(6.26)

Repeating similar calculation for left-moving (incoming from the right), we can find similar

scattering amplitudes:

t′ = 1− iπν0 〈−k|TR |−k〉 ,

r′ = −iπν0 〈k|TR |−k〉 .
(6.27)

We can define on-shell S-matrix:

Sσσ′ = δσσ′ − iπν0 〈σk|TR
∣∣σ′k〉 , (6.28)

S =

t r′

r t′

 , (6.29)
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and the required result becomes:

δν(ε) =
1

2πi

d

dε
tr lnS. (6.30)

6.1.2 S-matrix properties

The S-matrix is unitary due to the fact that probabilities are conserved across the scattering

process,

S†S = 1. (6.31)

Time reversal symmetry (TRS) i.e. the complex conjugate of an eigenfunction is also an

eigenfunction, means:

ST = σ1Sσ1. (6.32)

For a TRS situation:

δν(ε) =
1

π

dθ

dε
, (6.33)

where θ is the phase of the transmission amplitude.

6.2 Chapter summary

We derived the excess density of states in terms of the transfer matrix. This allowed us to

then define the s-matrix, or scattering matrix, and write the excess density of states in terms

of it. The s-matrix is useful since it contains the reflection and transmission amplitudes which

can describe the nature of the topology of the system.
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Density of states via the continuity

equation

In this section, we will present an alternative approach to Levinson’s theorem in order to

determine the bound states of a system. We will do this by exploiting the continuity equation

[59] and expressing the total number of states

∫ +∞

−∞
dx|ψε(x)|2 (7.1)

in terms of asymptotic behaviour, i.e. in terms of reflection and transmission amplitudes.

In operator form the continuity equation is written as:

∂tn̂(x, t) + ∂xĵ(x, t) = 0, (7.2)

where

n̂(x, t) = eiĤtn̂(x)e−iĤt, n̂(x) = δ(x− x̂), (7.3)

ĵ(x, t) = eiĤtĵ(x)e−iĤt, ĵ(x) =
1

2
[v̂δ(x− x̂) + δ(x− x̂)v̂]. (7.4)
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Taking matrix elements,

〈ε| n̂(x, t)
∣∣ε′〉 = e−i(ε

′−ε)tψ̄ε(x)ψε′(x), (7.5)

〈ε| ĵ(x, t)
∣∣ε′〉 = e−i(ε

′−ε)tjεε′(x), (7.6)

jεε′(x) =
−i
2

[ψ̄ε(x)∂xψε′(x)− ∂xψ̄ε(x)ψε′(x)], (7.7)

where we assume unit particle mass. The continuity equation for matrix elements can be

found as:

∂t 〈ε| n̂(x, t)
∣∣ε′〉+ ∂x 〈ε| ĵ(x, t)

∣∣ε′〉 = 0. (7.8)

Therefore, it is solved to be:

ψ̄ε(x)ψε′(x) = − i

ε′ − ε
∂xjεε′(x), (7.9)

and can be integrated between two distance points ±L/2 that are outside of the scattering

region, ∫ L/2

−L/2
dxψ̄ε(x)ψε′(x) = − i

ε′ − ε
[jεε′(L/2)− jεε′(−L/2)]. (7.10)

The waves incoming from the left are:

jεε′(x→ +∞) = k+t̄εtε′e
2ik−x, (7.11)

jεε′(x→ −∞) = k+[e2ik−x − r̄εrε′e−2ik−x] + k−[r̄εe
2ik+x − rε′e−2ik+x]; (7.12)

which we obtain by substituting ψR = tke
ikx and ψL = eikx+rke

−ikx into Eq. (7.7). Similarly,

from the right:

j′εε′(x→ −∞) = −k+t̄εtε′e
−2ik−x, (7.13)

j′εε′(x→ +∞) = −k+[e−2ik−x − r̄εrε′e2ik−x]− k−[r̄εe
−2ik+x − rε′e2ik+x]; (7.14)
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where

k± =
1

2
[k(ε′)± k(ε)]. (7.15)

To take the limit ε′ − ε = ω → 0, we take Eq. (7.10) and substitute Eq’s. (7.11), (7.12) to

find:

∫ L/2

−L/2
dxψ̄ε(x)ψε′(x) = − i

ε′ − ε

[
k+t̄εtε′e

ik−L − k+[e−ik−L − r̄εrε′eik−L]

− k−[r̄εe
−ik+L − rε′eik+L]

]
. (7.16)

Using ε = k(ε)2/2 gives

i

ε′ − ε
=

i
1
2(k2(ε′)− k2(ε))

=
i

2k+k−
. (7.17)

Therefore, we get

∫ L/2

−L/2
dxψ̄ε(x)ψε′(x) = − i

2

[ t̄εtε′
k−

eik−L − 1

k−
[e−ik−L − r̄εrε′eik−L]−

1

k+
[r̄εe

−ik+L − rε′eik+L]
]
. (7.18)

Now to take the limits. Since we are taking the limit ε′ − ε→ 0, the result for k+ becomes

k+ =
1

2
(k(ε′) + k(ε)) ≈ k(ε). (7.19)

For k−, we take into account the exponential, and expand for small k− which gives

lim
ε′→ε

eik−L

k−
≈ 1

k−
+ iL, (7.20)

and

lim
ε′→ε

e−ik−L

k−
≈ 1

k−
− iL. (7.21)
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Using the results, we get

∫ L/2

−L/2
dxψ̄ε(x)ψε′(x) = − i

2

[
t̄ε

( 1

k−
+ iL

)
tε′ −

1

k−
+ iL

+ r̄ε

( 1

k−
+ iL

)
rε′ −

1

k

(
r̄e−ikL − reikL

)]
(7.22)

= − i
2

[
t̄ε

( 1

k−
+ iL

)
tε′ −

1

k−
+ iL + r̄ε

( 1

k−
+ iL

)
rε′
]

+
1

2ik

(
reikL − r̄e−ikL

)
. (7.23)

Looking only at the iL terms, the result is

− i

2

[
t̄iLt+ iL+ r̄iLr

]
=
L

2

[
t̄t+ 1 + r̄r

]
= L, (7.24)

since t̄t+ r̄r = |t|2 + |r|2 = 1. Now looking at the 1/k− terms and writing ε′ = ε+ ω gives

− i

2k−

[
t̄εtε+ω + r̄εrε+ω − 1

]
= − i

2

[
2
(
t̄εtε+ω + r̄εrε+ω − 1

)
kε+ω − kε

]
. (7.25)

Since this vanishes as ω → 0, L’Hopital’s rule must be applied to give

− i lim
ω→0

[(
t̄εtε+ω + r̄εrε+ω − 1

)
kε+ω − kε

]
= −i

[
∂ω

(
t̄εtε+ω + r̄εrε+ω − 1

)
∂ω

(
kε+ω − kε

) ]
(7.26)

= −i

[
t̄ε∂ωtε+ω + r̄ε∂ωrε+ω

∂ωkε+ω

]
. (7.27)

Now since ω → 0, an expansion about ε can be taken such that

∂ωtε+ω ≈ ∂ω
(
t(ε) + ω∂εt(ε)

)
= ∂εt(ε). (7.28)

This can be substituted in to give

− i

[
t̄ε∂ωtε+ω + r̄ε∂ωrε+ω

∂ωkε+ω

]
= −i

[
t̄ε∂εtε + r̄ε∂εrε

∂εkε

]
, (7.29)
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therefore since

dε

dk

d

dε
=

d

dk
= ∂k, (7.30)

we get

− i

[
t̄ε∂εtε + r̄ε∂εrε

∂εkε

]
= −i

(
t̄ε∂ktε + r̄ε∂krε

)
. (7.31)

Combining this together we get

∫ L/2

−L/2
dxψ̄ε(x)ψε′(x)→

∫ L/2

−L/2
dx|ψε(x)|2 (7.32)

= L− i
(
t̄ε∂ktε + r̄ε∂krε

)
+

1

2ik

(
reikL − r̄e−ikL

)
(7.33)

for waves incoming from the left.

For the waves incoming from the right, we have

∫ L/2

−L/2
dxψ̄ε(x)ψε′(x) = − i

2k+k−

[
− k+[e−ik−L − r̄εrε′eik−L]

− k−[r̄εe
−ik+L − rε′eik+L]−

(
− k+t̄εtε′e

ik−L
)]
, (7.34)

using Eq’s. (7.13) and (7.14).

By performing the same expansion as above, we get

∫ L/2

−L/2
dxψ̄ε(x)ψε′(x) = − i

2

[
− 1

k−
+ iL+ r̄εrε′

( 1

k−
+ iL

)
− 1

k+
[r̄εe

−ik+L − rε′eik+L] + t̄εtε′
( 1

k−
+ iL

)]
. (7.35)

As before, the 1/k+ terms as ε′ → ε become

− i

2

[ 1

k+
[rε′e

ik+L − r̄εe−ik+L]
]

=
1

2ik
[reikL − r̄e−ikL]. (7.36)
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Similarly, the iL terms become

− i

2

[
iL(1 + r̄εrε′ + t̄εtε′)

]
= L. (7.37)

For the 1/k− terms, they are the same as above, so L’Hopitals rule can be applied and the

same manipulations can be used by taking the limit ε′ → ε to give

− i

2

[ 1

k−
(−1 + r̄εrε′ + t̄εtε′

]
= −i

(
t̄∂kt+ r̄∂kr

)
. (7.38)

Since these waves move in a different direction, primes must be included for the reflection

and transmission coefficient, and wave-functions. Subsequently, the final result is

∫ L/2

−L/2
dxψ̄′ε(x)ψ′ε′(x)→

∫ L/2

−L/2
dx
∣∣ψ′ε(x)

∣∣2 = L−
(
t̄′∂kt

′ + r̄′∂r′
)

+
1

2ik
(r′eikL − r̄′e−ikL). (7.39)

Finally, we re-state our results for clarity:

∫ L/2

−L/2
dx|ψε(x)|2 = L− i

(
t̄ε∂ktε + r̄ε∂krε

)
+

1

2ik

(
reikL − r̄e−ikL

)
(7.40)

∫ L/2

−L/2
dx
∣∣ψ′ε(x)

∣∣2 = L−
(
t̄′∂kt

′ + r̄′∂r′
)

+
1

2ik
(r′eikL − r̄′e−ikL). (7.41)

Since we are going to integrate over k later and L is a large parameter, contributions from

k ≥ L−1 will be suppressed, and for a function of k we have:

1

k
eikL → iπδ(k). (7.42)
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This gives us the final result:

∫ L/2

−L/2
[|ψε(x)|2 +

∣∣ψ′ε(x)
∣∣2]dx− 2L (7.43)

= −i(r̄∂kr + t̄∂kt+ r̄′∂kr
′ + t̄′∂kt

′) +
π

2
(r0 + r̄0 + r′0 + r̄′0)δ(k). (7.44)

Here index 0 represents ε = 0 or (k = 0). Since ψ
(0)
ε (x) = eikx and ψ′ε(x) = e−ikx, the LHS

∫ L/2

−L/2
[|ψε(x)|2 +

∣∣ψ′ε(x)
∣∣2]dx− 2L =

∫ L/2

−L/2
[
∣∣∣ψ(0)
ε (x)

∣∣∣2 +
∣∣∣ψ′(0)
ε (x)

∣∣∣2]dx− 2L, (7.45)

has the finite limit when L =∞. This limit, δnk, can be written as:

δnk = −i(r̄∂kr + t̄∂kt+ r̄′∂kr
′ + t̄′∂kt

′) +
π

2
(r0 + r̄0 + r′0 + r̄′0)δ(k) (7.46)

where

r̄∂kr + t̄∂kt+ r̄′∂kr
′ + t̄′∂kt

′ = tr Ŝ†k∂kŜk = ∂k ln det Ŝk. (7.47)

Notation det Ŝk = e2iδk reduces the formula above to:

δnk = −i∂k ln e2iδk + +
π

2
(r0 + r̄0 + r′0 + r̄′0)δ(k) (7.48)

= 2∂kδk +
π

2
(r0 + r̄0 + r′0 + r̄′0)δ(k). (7.49)

We also use the relation r(k) = r̄(−k) which means that r0 ≡ r(k = 0) is real:

δnk = 2∂kδk + π(r0 + r′0)δ(k). (7.50)

The sum rule, which can give us the total number of bound states;

∫ ∞
∞

dx
[ nb∑
n=1

|ψn(x)|2 +

∫ ∞
0

dk

2π
(|ψε(x)|2 +

∣∣ψ′ε(x)
∣∣2)
]

(7.51)

= nb +

∫ ∞
∞

dx

∫ ∞
0

dk

2π

(∣∣∣ψ(0)
ε (x)

∣∣∣2 +
∣∣∣ψ′(0)
ε (x)

∣∣∣2), (7.52)
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becomes

nb =
1

2π
[δk=0 − δk=∞]− 1

4
(r0 + r′0). (7.53)

If there is time reversal symmetry, the phase of the determinant is equal to the phase of

the transmission amplitude:

δk=0 = θt(k), t(k) =
√
Tke

iθ(k), (7.54)

and the number of bound states:

nb =
1

π
[θt(k = 0)− θt(k =∞)]− 1

4
(r0 + r′0). (7.55)

7.1 Application to the continuous Schrödinger equation with

δ-function potential

The scattering amplitudes amplitudes derived in section 6.1 are

rk =
−λ

λ+ 2ik
, tk =

2k

2k − iλ
. (7.56)

We can define:

θt(k = 0) =
π

2
signλ, θt(k =∞) = 0 (7.57)

r(k = 0) = r′(k = 0) = −1 (7.58)

where Eq. (7.58) holds due to time reversal symmetry, then this leads to:

nb =
1

2
[signλ+ 1] (7.59)
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7.2 Chapter summary

The continuity equation is exploited to give useful insight on the possible bound states of a

system. In the asymptotic limit, the sum rule was reduced to a simple expression giving the

number of bound states in terms of the reflection amplitude and the phase of the transmission

amplitude. This was applied to the one-dimensional continuous Schrödinger equation with a

δ-function potential, and it was found that the number of bound states is 1 if the amplitude

λ = +1.
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Chapter 8

Bound states for Bravais lattice

with arbitrary hopping

In this section we aim to derive the number of bound states for arbitrary, or long-range

hopping in which particles may jump beyond nearest-neighbour sites. This is done for the

Bravais (or, simple) lattice in which all lattice sites are identical. The Hamiltonian is given

as,

Ĥ = Ĥ0 + V̂ , (8.1)

where

Ĥ0 =
∑
x,x′

tx−x′ |x〉
〈
x′
∣∣ , tx−x′ = tx′−x = t̄x−x′ , (8.2)

V̂ =
∑
x

|x〉 〈x| . (8.3)

We set the condition that the perturbation exists near the edge, i.e. Vx→∞ = 0. The current

operator on a link is found from

ĵx+1/2 = −∂tN̂x, N̂x =
∑
l≤x
|l〉 〈l| . (8.4)

ĵx+1/2 = −i[Ĥ,Nx] = −i[Ĥ0, Nx] = i
∑
l≤x<r

tr−l

[
|l〉 〈r| − 〈r|l〉

]
(8.5)
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with matrix element

〈ε| ĵx+1/2

∣∣ε′〉 = i
∑
l≤x<r

tr−l[〈ε|l〉
〈
r
∣∣ε′〉− 〈ε|r〉 〈l∣∣ε′〉]. (8.6)

The continuity equation

iω 〈ε| N̂x |ε+ ω〉 = 〈ε| ĵx+1/2 |ε+ ω〉 (8.7)

in the limit ω → 0 becomes

〈ε| ĵx+1/2 |ε〉 = 0 (8.8)

and

〈ε| N̂
∣∣ε′〉 = −i 〈ε| ĵx+1/2∂ε |ε〉 , (8.9)

where

〈ε| ĵx+1/2∂ε |ε〉 = i
∑
l≤x<r

tr−l

[
〈ε|l〉 ∂ε 〈r|ε〉 − 〈ε|r〉 ∂ε 〈l|ε〉

]
(8.10)

and Eq. (8.9) has been adapted from Eq.’s (7.40) and (7.41).

8.1 Total number of states

For a simple lattice with one site per unit cell,

〈x|ε〉 =
∑
i

aie
ikix, (8.11)

where ki = ki(ε) is a root of εk = ε,

ai = ak=ki(ε), εk = 2

∞∑
d=1

td cos kd. (8.12)
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Using Eq. (8.8), we find that Ji,j = δijvi. To prove this we define

jε ≡ 〈ε| ĵξ |ε〉 =
∑
i,j

Ji,j āiaj , ξ ≡ x+ 1/2 (8.13)

where

Ji,j = i
∑
l≤x<r

tr−l

[
eikil+ikjr − eikir+ikj l

]
. (8.14)

Using notation ∑
l≤x<r

=

∞∑
d=1

d−1∑
y=−(d−1)

, (8.15)

where r − l = d, r + l = 2x+ 1 + y.

Ji,j = −2e−ikij(x+1/2)
∞∑
d=1

td sin
ki + kj

2
d

d−1∑
y=−(d−1)

e−ikijy/2 (8.16)

= −2e−ikij(x+1/2)

sin kij/2

∞∑
d=1

td sin
ki + kj

2
d sin

kij
2
d, (8.17)

where kij = ki − kj .

If i 6= j,

∞∑
d=1

td sin
ki + kj

2
d sin

ki − kj
2

d =
1

2

∞∑
d=1

td[cos kjd− cos kid] =
1

4
[ε(kj)− ε(ki)]

=
ε− ε

4
= 0

(8.18)

If i = j, then using L’Hopital’s rule

sin kijd/2

sin kij/2
→ d (8.19)

Ji,j = −2

∞∑
d=1

tdd sin kid =
∂ε(ki)

∂ki
= vi. (8.20)

Therefore, we find that

Ji,j = δijvi, (8.21)
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and

jε =
∑
i

vi|ai|2 = 0. (8.22)

From Eq. (8.9), we can obtain the total number of states by starting with

〈ε| ĵξ∂ε |ε〉 = i
∑
l≤x<r

tr−l

[
eikil+ikjr

(
∂εaj +

ir

vj
aj

)
− eikir+ikj l

(
∂εaj +

il

vj
aj

)]
āi, (8.23)

= āiJij

(
∂εaj +

iξ

vj
aj

)
+ δJij āiaj , (8.24)

where Eq. (8.24) is obtained by substituting 2r = 2x+ 1 + y + d into Eq. (8.23) and

δJij = −e
−i2k−ξ

vj

∑
d,y

td

[
y sin k−y sin k+d+ cos k−y cos k+d

]
(8.25)

and k± = 1
2(ki± kj). The substitution of r leads to the convenient separation of the diagonal

term and off-diagonal term given as the first and second term respectively of Eq. (8.24).

Calculating, we find

δJij =


i = j, − 1

vi

∑
d d

2td cos kd = 1
2∂εvi

i 6= j, − 1
2 sin k−

e−2ik−ξ.

(8.26)

Gathering all terms we have

〈ε| ĵξ∂ε |ε〉 =
∑
i

āi

[
iξ + vi∂ε +

1

2
∂εvi

]
ai −

∑
i 6=j

e−ikijξ

2 sin kij/2
āiaj , (8.27)

where kij = ki − kj , ξ = x+ 1/2→∞.
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This diagonal contribution for ai = |ai|eiφi becomes

1

2
∂εjε + i

(
ξ + vi∂εφi

)
|ai|2 = i

(
ξ + vi∂εφi

)
|ai|2 (8.28)

since jε = 0.

The off-diagonal contribution is important only at the extremal point v(ε) = 0 where

degeneracy ki(ε) = kj(ε) for some i and j. The off-diagonal term is

− 1

2∆kµ

[
e−i2∆kµξā(kµ + 0)a(kµ − 0)− ei2∆kµξā(kµ − 0)a(kµ + 0)

]
, (8.29)

where

∆kµ =
√

2mµ|ε− εµ| = k − kµ > 0 ε ≈ εµ ±
(k − kµ)2

2mµ
(8.30)

with mass, m.

There should not be any divergence as ε→∞ more than the linear term which has already

been obtained in the diagonal contribution. Therefore, the following must hold:

ā(kµ + 0)a(kµ − 0) = ā(kµ − 0)a(kµ + 0) = Aµ. (8.31)

This means that Aµ is real, |a(k)| is continuous and φ(k) jumps as kµ where φ(k) is the

phase of a(k). The contribution becomes

− sin 2∆kµε

∆kµ
Aµ →

ε→∞
−π

2
δ(k − kµ)Aµ. (8.32)

The extra 1
2 takes into account that both k = kµ ±

√
2ωµ|ε− εµ| correspond to the same

energy ε, and to avoid double counting which k is allowed to be at both sides of kµ, we need

this 1
2 .
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The final result for Nx(ε) = 〈ε| N̂x |ε〉:

Nx(ε) =
∑
i

(x+
1

2
+ vi∂εφi)|ai|2 +

π

2

∑
µ

δ(k − kµ)Aµ. (8.33)

8.2 Quantification of bound states

There is one maximum and one minimum in the 2π interval. Due to TRS, the dispersion

εk = ε−k with periodicity εk+2π = εk, is symmetric (even function) with respect to two

inversion centres: εk = ε−k and εk+π = επ−k. One maximum and one minimum is only

possible for kµ = 0, π. And since we have only two roots of εk = ε, we identify one as

incoming and one outgoing momentum.

jε =
∑
i

vi|ai|2 = |v|[|aout|2 −
∣∣a2
in

∣∣] = 0. (8.34)

We can assume that the minimum is at k = 0, and the maximum is at k = π. Integrating

over all states we get

Nx =

∫ π

−π

dk

π
[(x+

1

2
+ ∂kφ)|ak|2 +

π

2
[A0δ(k) +Aπδ(k − π)]], (8.35)

where we used vi∂ε = ∂
∂ki

.

Since |ak|2 = 1
2 (because jε = |v|[|aout|2 −

∣∣a2
in

∣∣] = 0 and due to normalisation |aout|2 +∣∣a2
in

∣∣ = 1),

Nx = x+
1

2
+

∆φ

2π
+

1

2
(A0 +Aπ). (8.36)

We have

A0 = ā(+0)a(−0) = ā(−0)a(+0) = r0|a0|2, (8.37)

Aπ = ā(π + 0)a(π − 0) = ā(π − 0)a(π + 0) = rπ|aπ|2 (8.38)
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with r0 = ±1 and rπ = ±1. Finally,

−Nb =
1

2
+

∆φ

2π
+

1

4
(r0 + rπ). (8.39)

∆φ is a change of the smooth part of the function φk. The total change

∆tφ = ∆φ+
∑
µ

δµφ, δµφ = φ(kµ + 0)− φ(kµ − 0) (8.40)

is the sum of smooth and jump contributions. And since rµ = eiδµφ = ±1,

δµφ =
1− rµ

2
π + 2πNµ. (8.41)

Then:

−Nb =
1

2
+

∆tφ

2π
− 1

2π

∑
µ

[π
2

(1− rµ) + 2πNµ

]
+

1

4

∑
µ

rµ (8.42)

=
∆tφ

2π
+
r0 + rπ

2
− (N0 +Nπ). (8.43)

Since solutions are periodic with respect to k → k + 2π, the total change ∆tφ = 2π/int, and

(r0 + rπ)/2 = 0,±1, we have integer on the RHS.

8.3 Chapter summary

We applied the continuity equation to an infinite system with arbitrary hopping in order to

derive the total number of bound states. Using the fact that current in state |ε〉 is 0, and

the relationship between the total number of states and the current, we explicitly derived the

total number of states, Nx(ε). The degenerate points at k = 0, π led to the total number of

states depending on a phase and the reflection coefficients. Finally, periodicity allowed us to

show that the number of bound states is always an integer.
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Chapter 9

Bound states for the SSH model

with arbitrary hopping

In this section we calculate the number of bound states for the SSH model with arbitrary

hopping as opposed to previous sections in which we focused on nearest-neighbour hopping

only.

9.1 The semi-infinite chain

We simplify the model by considering time reversal invariant momenta (or, TRIM) only. This

means ε−k = εk+2nπ, and therefore k = 0, π. The total number of states adapted from Eq.

(8.33) is

N ε
x =

∑
i

(
x+

1

2
+ vi∂εφk|ai|2 +

π

2

∑
µ

δµrµ|aµ|2
)
. (9.1)

Since a wavefunction is defined up to a phase, we can always choose ak<0 real,

ak<0 =
1√
2
, ak>0 =

eiφ
r
k

√
2

=
rk√

2
. (9.2)

Then
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N ε
x = x+

1

2
+

1

2
v∂εφ

r
k +

π

4

∑
µ

δµrµ, (9.3)

and

Nx =

∫ π

0

dk

π
N ε
x = x+

1

2
+

∆φr
2π

+
1

4

∑
µ

rµ, (9.4)

where

∆φrµ = φrµ+0 − φrµ−0, rµ = ei∆φµ = ±1, (9.5)

∆φrµ =


∆φr0 = φrk=+0 − φrk=−0

∆φrπ φrk=π+0 − φrk=π−0

(9.6)

and since

ak+2π = ak =⇒ ei∆φr = r0rπ. (9.7)

r0rπ = 1, =⇒ ∆φr = 2nπ =⇒ −Nb =
∆φr
2π

+
1 + ρ

2
= int, (9.8)

since r0 = rπ = ρ = ±1.

r0rπ = −1 =⇒ ∆φr = (2n+ 1)π =⇒ −Nb =
∆φr
2π

+
1

2
= int. (9.9)

This is similar to the result for topological insulators:

rµ = ±1 =⇒ ψµx →


cos kµx

sin kµx

, (9.10)

where µ is analogous to εk for odd/even parities in the case of topological insulators.

9.2 The infinite chain

For an infinite chain, waves can propagate towards ±∞, contrary to a semi-infinite system

which is only half of the picture. In this case, we must consider scattering amplitudes for

S.Begum, PhD Thesis, Aston University 2021 86



CHAPTER 9. BOUND STATES FOR THE SSH MODEL WITH ARBITRARY HOPPING

both sides of the origin. The total number of states for an infinite system

N̂xx′ =
∑

x′<S≤x
|s, α〉 〈s, α| (9.11)

where α is the index for left and right incoming waves. Adapting from the semi-infinite system

we have

N ε
x =

∑
α

= 〈ε, α| N̂xx′ |ε, α〉 = −i
∑
α

(
〈ε, α| ĵx+ 1

2
|ε, α〉 − 〈ε, α| ĵx′+ 1

2
|ε, α〉

)
. (9.12)

Using the previously derived scattering matrix for this system,

Ŝ =

r t

t r

 , ŜŜ† = 1, Ŝ = ŜT (TRS), (9.13)

N ε
xx′ = 2(x− x′) + v

[
∂ε(φr + φr′)R+ 2∂εφtT

]
+
π

2

∑
µ

δµ(rµ + r′µ) (9.14)

= 2(x− x′)− iv tr Ŝ†∂εŜ +
π

2

∑
µ

δµ(rµ + r′µ) (9.15)

= 2(x− x′) + v∂εχ+
π

2

∑
µ

δµ(rµ + r′µ), (9.16)

where det Ŝ = eiχ. The excess density of states is

δνε = v∂εχ = ∂kχ for εmin < ε < εmax. (9.17)

The excess charge, or −Nb:

−Nb =

∫ π

0

dk

2π
δνε =

∆χ

2π
+

1

4

∑
µ

δµ(rµ + r′µ). (9.18)
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Taking into account the periodicity in k-space, we have

ei∆χ = r0rπr
′
0r
′
π

(
≡

k∏
µ=1

rµ

)
(9.19)

k∏
µ=1

rµ = 1 =⇒ ∆χ = 2nπ, (9.20)

k∏
µ=1

rµ = −1 =⇒ ∆χ = (2n+ 1)π. (9.21)

9.3 The SSH model

The solution

~ψεx = ~ake
ikx + ~a−ke

−ikx for ~ψx =

 Ax

Bx+ 1
2
,

 (9.22)

where A-sites are labelled by an integer x, and B-sites are sitting at half-integers. This nota-

tion is used to keep x→ x+ 1 periodicity and, hence, k → k + 2π periodicity.

Our results for the total number of sites are easily generalised for ai → ~ai:

N ε
x = (x+

1

2
)
∑
i

~a†i~ai +
∑
i

∂φi
∂ki

~a†i~ai +
π

2

∑
µ

rµ~a
†
µ~aµ. (9.23)

Like before, we assume that we have only two solutions ε(k) = ε, and as a result, only two

zero-velocity momenta 0 and π. Vectors ~ai = ~a(k = ki(ε)) = ~ak=ki(ε) are solutions of

ĥk~ak = εk~ak, ĥk =

 0 −τk

−τ̄k 0

 , τk = τeik/2 + e−ik/2, ε2
k = |τk|2. (9.24)

Integrating

Nx =

∫ π

0

dk

π
N εk
x , (9.25)
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and summing over two bands,

Nx = 2
(
x+

1

2

)
+

∫
dk

2π
∂k

(
φ+
k φ
−
k

)
+

1

4

∑
µ

δµ(rµ + r′µ), (9.26)

= 2x+ 1 +
∆φ+ + ∆φ−

2π
+

1

4

∑
µ

δµ(rµ + r′µ). (9.27)

Here φ± are phases ~ak
±:

~ak
± = a±k

~U±k ,
~U±k =

1√
2

eiθk
∓1

 , (9.28)

where

a±k =
∣∣a±k ∣∣eiχ±k =

1√
2
eiχ
±
k , τk = |τk|eiθk , φ±k = χ±k + θk. (9.29)

−Nb = 1 +
∆φ+ + ∆φ−

2π
+

1

4
(r+

0 + r+
π + r−0 + r−π ), (9.30)

where r±µ are reflection amplitudes in upper (+) and lower (−) bands.

The total excess can be written as

+Nb = +N+
b +N−b −

∆θ

π
, (9.31)

where

N±b =
1

2
+

∆χ±

2π
+

1

4
(r±0 + r±π ) (9.32)

are contributions from the reflection amplitudes including phase and coefficients at 0 and π.

This is considered non-universal since it depends on the type of disorder present in the system.

The −∆θ
π term in Eq. (9.31)is the universal additional contribution arising from the spinor

~U±k which is defined far from the origin and depends on the bulk solution only.
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Since ~ak+2π = ~ak,

~ak+2π =

r+
0 r

+
π e

i∆χ+
0

0 r−0 r
−
π e

i∆χ−

 (−σ̂3)~ak = ±~ak. (9.33)

Therefore, r±0 r
±
π e

i∆χ± = ±1 for both bands. Finally, the phase of the reflection coefficients

are

ei∆χ
±

= ±r±0 r
±
π =⇒ ∆χ± =


2nπ

(2n+ 1)π,

(9.34)

depending on r±µ .

9.4 Chapter summary

We observed that the total number of bound states for an infinite SSH chain depended on the

change of two phases. Since the total number of states must be an integer, we find that these

two phases are also integers. The bulk solutions located far from the origin led to spinors with

a universal phase, ∆θ/π. The reflection amplitudes however, led to the phase ∆χ±/2π which

depended on the disorder located at the origin, and therefore was identified as non-universal.
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Chapter 10

Strongly correlated 1D systems:

The Sliding Luttinger Liquid

In this section we will consider a system of parallel quantum wires separated by gaps of al-

ternating size. Since quantum wires are an example of a one-dimensional conductor, we use

the Luttinger Liquid model to describe interacting fermions within each wire. The system is

constructed in analogy of the one-dimensional SSH model, however, we also introduce inter-

wire interaction due to the multi-wire construction. Therefore, the system will have a total

of two dimensions, one being the intrawire interaction between particles and the other being

interwire interaction. This added feature of interwire interaction leads to the sliding effect

such that the electronic movement within one wire affects those that are in coupled neigh-

bouring wires. This is referred to as the sliding Luttinger liquid (SLL) phase. However, due to

coupling between the wires the SLL phase can be unstable. The charge-density wave (CDW)

perturbation occurs when electrons collectively move carrying charge in wave-like behaviour.

This charge density can be modulated resulting in periodic distortion, or ‘bumps’ of charge

and therefore, is one such source of instability of the SLL phase. Another is the supercon-

ducting (SC) phase due to the interwire interaction. In this phase charge moves completely

free with zero resistance.
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In the following sections, we analyse the parameters under which these two phases desta-

bilise the SLL phase. We define the Luttinger matrix, K̂ which we use to express the scaling

dimensions of both CDW and SC phases. These scaling dimensions are then used to map out

a stability region for the SLL phase.

10.1 The Luttinger model

In the following analysis, we once again consider the motion of electrons as quasi-particles

since Luttinger bosons cannot tunnel between chains. This is because we consider a spin-

gapped system where spin degrees of freedom are suppressed, and therefore, single particle

tunnelling is also suppressed. The system of N parallel quantum wires can be described by

the standard bosonized Lagrangian

L =
1

4π

[
∂tϕ∂xθ +

1

2
∂xθ

TVθ∂xθ +
1

2
∂xϕ

TVϕ∂xϕ

]
(10.1)

where θ = {θ1, θ2, ..., θN} and ϕ = {ϕ1, ϕ2, ..., ϕN} are fields which represent the current

ji = 1
π∂xθi and density δρi = 1

π∂xϕi fluctuations. The matrices V̂ϕ and V̂θ are tri-diagonal.

We will only analyze the commonly accepted model that includes only a density-density

interaction, therefore, the current-current interaction V̂θ = 1 in Eq. (10.1). As a result, the

density-density interaction matrix takes the form,

V̂φ =



1 + g go 0 0 . . . 0 0

g0 1 + g ge 0 . . . 0 0

0 ge 1 + g ge . . . 0 0

0 0 go 1 + g . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . go 1 + g


(10.2)

with g = 2π(g4 + g2) where g4 and g2 are forward and back scattering amplitudes. In
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the off diagonal entries, go and ge are labels to differentiate between wires that follow gaps of

different size.

It is convenient to define a Luttinger matrix K̂ which is a generalisation of the Luttinger

parameter K of a single channel, independent of the number i of the wire, i.e. all the wires

are identical. All scaling dimensions can be expressed using this single matrix K̂ since it

provides information on the relevance of the perturbations, and therefore on the stability of

the region of the SLL phase. In this case, the K̂ matrix is the solution of the matrix equation

K̂V̂φK̂ = 1̂, i.e. the square root of the interaction matrix K̂ = V̂φ
−1/2

.

10.2 Eigenfunctions of the interaction matrix

In order to find K̂ we need to know the eigenvalues λ and eigenvectors ψ of the matrix V̂φ.

We repeat identical steps from chapter 5 and therefore omit repeated explanation where it is

unnecessary. We can imagine two groups of wires, one with M even wires only and the other

with M + 1 odd wires only, resulting in a total of 2M + 1 wires. Then the eigenfunctions are,

goψ2j−1 + geψ2j+1 = εψ2j , j = 1, ...,M (10.3)

geψ2j−2 + goψ2j = εψ2j−1, j = 1, ...,M + 1 (10.4)

where we define ε = λ− (1 + g). To create a finite system the boundary condition is imposed

ψ0 = ψ2M+2 = 0 (10.5)

and acts on the second eigenfunction. The edge states developing at the edge of the system

could be governed by open boundary conditions, much like the standard SSH model under

standard conditions. We are concerned with the bulk states of this system and we will later

show that the presence of edge states does not effect the bulk properties of a couple chained
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model. We find eigenfunctions

ψk,2j = eke
ikj + e−ke

−ikj (10.6)

ψk,2j−1 = oke
ikj + o−ke

−ikj , (10.7)

where k is the wave vector and the coefficients ek and ok satisfy

gkok = εkek (10.8)

ḡkek = εkok, (10.9)

with gk = go + gee
ik = |gk|eiφk .

Using these equation we find eigenenergies εk

ε±k = ±|gk|. (10.10)

Inserting the boundary condition ψ(0) = 0 into Eq. (10.6) we obtain:

e−k = −ek. (10.11)

The normalised bulk states obtained using Eq. (10.11)

ψb±k,2j =
1√

M + 1
sin kj, (10.12)

ψb±k,2j−1 = ± 1√
M + 1

sin(kj − φk), (10.13)

with k quantised to be

k =
πn

M + 1
, n = 1, ...,M. (10.14)

due to the second boundary condition ψ2M+2 = 0.
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There are therefore 2M bulk solutions labelled by k and one more solution at ε = 0, since

there are 2M + 1 solutions all-together. We identify this as an edge state which is localised

at the left boundary

ψe2j−1 = N0

(
− go
ge

)j
, ψe2j = 0, N0 =

[(−go
ge

)2 − (−go
ge

)2(M+2)

1− (−go
ge

)2

]−1/2
. (10.15)

When g0 < ge the edge state is exponentially localised at the left boundary, and if go > ge

the edge state is exponentially localised at the right boundary.

As mentioned previously K̂ = V̂
−1/2
θ . The diagonalization of the interaction matrix allows

us to obtain the Luttinger matrix in the form

K̂ij = K[
∑
k,σ=±

Λ
−1/2
k,σ ψσk (i)ψσk (j) + ψ0(i)ψ0(j)] (10.16)

where we used the eigenvalues

λk,± =
1

K2
Λk,± = ±|gk|+1 + g (10.17)

and

λ0 = 1 + g ≡ K−2, (10.18)

and the corresponding eigenvectors ψ±k (i) and ψ0(i).

We can write the equation for the inverse Luttinger liquid matrix

(K̂−1)ij = K[
∑
k,σ=±

Λ
1/2
k,σψ

σ
k (i)ψσk (j) + ψ0(i)ψ0(j)]. (10.19)

We are trying to identify the case when the SLL phase is stable with respect to two processes:

formation of CDW and SC states. In order to do this, we must ensure that the relevant
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processes are RG irrelevant. The scaling dimensions of couplings between wires i and j are

∆CDW
ij = K̂ii + K̂jj − 2K̂ij (10.20)

and

∆SC
ij = (K̂−1)ii + (K̂−1)jj − 2(K̂−1)ij (10.21)

for the processes responsible for the CDW and SC phases formation respectively. We will

only consider the most dangerous among them, corresponding to neighbouring wires, so that

j = i+ 1.

10.3 Bulk scaling dimensions

To obtain the scaling dimensions for each perturbation, we first substitute the known eigen-

values and eigenfunctions into Eq.’s (10.16) and (10.19) to obtain K̂ values and then into

Eq.’s (10.20) and (10.21). This leads to two CDW scaling dimensions given as

∆CDW
e = 2K

∫ π

0

dk

π

[
λ
− 1

2
+ sin2 φ

2
+ λ

− 1
2
− cos2 φ

2

]
(10.22)

∆CDW
o = 2K

∫ π

0

dk

π

[
λ
− 1

2
+ sin2 φ− k

2
+ λ

− 1
2
− cos2 φ− k

2

]
(10.23)

and similarly two SC scaling dimensions given as

∆SC
e = 2K

∫ π

0

dk

π

[
λ

1
2
+ sin2 φ

2
+ λ

1
2
− cos2 φ

2

]
(10.24)

∆SC
o = 2K

∫ π

0

dk

π

[
λ

1
2
+ sin2 φ− k

2
+ λ

1
2
− cos2 φ− k

2

]
(10.25)

These equations for the scaling dimensions are located in the bulk far from the edges in the

limit M → ∞. Since we have two wires, odd and even, we also have two eigenfunctions

leading to two CDW scaling dimensions and SC dimensions.
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For convenience, we will now introduce two inter-channel parameters (instead of go,e =

g̃ ±∆) α = 2g̃
1+g and β = ∆

g̃ , where α is the relative strength of the inter-channel interaction

and β is the relative strength of asymmetry, or modulation. The Luttinger parameter, K and

α can both vary between 0 and 1. Although in principle, β varies between −1 and 1, due to

the symmetry below we can see that the range can also be reduced to 0 and 1. Now we can

introduce the relations

λ±k = 1± α
√

cos2
k

2
+ β2 sin2 k

2
(10.26)

cosφk =
cos2 k

2 − β sin2 k
2√

cos2 k
2 + β2 sin2 k

2

cos(φk − k) =
cos2 k

2 + β sin2 k
2√

cos2 k
2 + β2 sin2 k

2

sinφk =
cos k2 sin k

2 (1 + β)√
cos2 k

2 + β2 sin2 k
2

(10.27)

From each pair of scaling dimensions, we choose only the more dangerous to obtain results

for K−1
CDW and KSC . We observe that due to the inequalities: λ+

k > λ−k and cos(φk − k) >

cos(φk), Eq.’s (10.22) and (10.25) are more dangerous (smaller) for β > 0 and therefore, must

be considered. As a result, we obtain equations for the scaling dimensions which are even in

β, allowing it to be sufficient to consider β varying between 0 and 1. Finally, we represent

scaling dimensions in the form

∆CDW = 2
K

KCDW (α, β)
, ∆SC = 2

KSC(α, β)

K
(10.28)

CDW = R†iLi · L
†
jRj , SC = RiLi ·R†jL

†
j
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K−1
CDW =

∫ π
2

0

dk

π

[
1√

1 + αr

(
1− cos2 k − |β|sin2 k

r

)
+

1√
1− αr

(
1 +

cos2 k − |β|sin2 k

r

)]
(10.29)

KSC =

∫ π
2

0

dk

π

[
1√

1 + αr

(
1− cos2 k + |β|sin2 k

r

)
+

1√
1− αr

(
1 +

cos2 k + |β|sin2 k

r

)]
(10.30)

where r =
√

cos2 k + β2 sin2 k.

10.4 Stability region of the SLL phase

The scaling dimensions Eq. (10.28) for CDW and SC phases are RG irrelevant if both are

larger than 2. It therefore must be that the intrawire Luttinger parameter K satisfies the

condition

KSC > K > KCDW . (10.31)

It follows that the above inequality can be satisfied if the product of integrals defined in

Eq.’s (10.29) and (10.30) is greater than 1:

∏
≡ KSCK

−1
CDW > 1. (10.32)

The inequality (10.31) allows us to easily find the stability region of the SLL phase.

Fig. 10.1 shows the product of the integrals Eq. (10.32) in 3D as a function of the two

parameters α and β. In addition, a plane is drawn on top to show where the product exceeds
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Figure 10.1: A 3D plot of the product Eq. (10.32), labelled 1 crossed by the flat surface
labelled 2.

S.Begum, PhD Thesis, Aston University 2021 99



CHAPTER 10. STRONGLY CORRELATED 1D SYSTEMS: THE SLIDING
LUTTINGER LIQUID

1. As we can see in the α − β plane, the section above 1 shows the area where K values

satisfying the inequality Eq. (10.32) can be found. At these values of (α, β), we can find the

value of K such that both processes CDW and SC are RG irrelevant and the SLL phase is

stable. Fig. 10.2 shows this area from a view from above.

Figure 10.2: A 3D plot of the product Eq. (10.32) crossed by the flat surface labelled 1 and
2 respectively - as seen from above. The region of stability of the SLL phase is clearly seen.

We can see that the stability regions (shaded) is roughly a right-angled triangle with

catheti of approximately 0.5 along both α and β axes. In order to estimate the values of

which the Luttinger parameter K ensures that the SLL phase remains stable with respect to

the formation of CDW and SC phases, we can also plot K−1
CDW (α, β) and KSC(α, β) against

one another shown in Fig. 10.3.

The inequality (10.31) can be satisfied if the surface 1 (KSC(α, β)) lies above the surface 2

K−1
CDW (α, β), and the desirable K values lie in-between these two surfaces. One can see from

Fig. 10.3 that the maximal span from 0.5 to 0.65 of the allowed K values is at α = 1 and

S.Begum, PhD Thesis, Aston University 2021 100



CHAPTER 10. STRONGLY CORRELATED 1D SYSTEMS: THE SLIDING
LUTTINGER LIQUID

Figure 10.3: A 3D plot of the functions KSC(α, β) and K−1
CDW (α, β) labelled by 1 and 2

respectively.

β = 0. Then the span gradually narrows and goes to 0 with the increasing β or decreasing α.

The inverse of the inequality Eq. (10.31) can give us the counter perspective, when the

CDW and SC perturbations are relevant. We can see that KSC(α, β) and K−1
CDW (α, β) are

both equal to 1 at α = 0, i.e.
∏

= 1. This means that the span of allowed values of K reduces

to 0 and the SLL phase is marginally stable only in the point K = 1. There is a stripe of

stability going from the stability triangle along the α axis up to this point. The stripe cannot

be seen in Figs. 10.1 and 10.2 since it is so narrow. On the other hand Eq. (10.30) diverges

at α→ 1. This shows that there is also a very narrow stripe of stability parallel to the β axis

along α = 1. This behaviour can be illustrated by plotting the characteristic product
∏

as a

function of of α in Fig. 10.4.

The curve labelled 1 corresponds to β = 0 and is always greater than 1. This curve grows

slowly within the stability stripe and then more rapidly after reaching the triangle before

diverging at α→ 1. At β = 0.3 the curve labelled 2 first goes down below 1 (instability) and
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Figure 10.4: The plot of the product
∏

as a function of the parameter α for three values of
the modulation parameter β; (1)-β = 0, (2)-β = 0.3 and (3)-β = 0.8.

S.Begum, PhD Thesis, Aston University 2021 102



CHAPTER 10. STRONGLY CORRELATED 1D SYSTEMS: THE SLIDING
LUTTINGER LIQUID

only at α = 0.85 crosses the level 1.0 and enters the stability region. At most β = 0.8 the

SLL phase is almost always unstable, except for a narrow region at α→ 1. The limit |β|= 1

describes a system with either ge or go being equal to zero. In this case, our system changes

into an array of pairs of quantum wires, decoupled with one another, but coupled within each

pair.

10.5 Chapter summary

We showed that there was an edge state localised on the left boundary when go < ge, and

moved to the right when this ratio was flipped. The Luttinger matrix allowed us to present

the relevant scaling dimensions for the CDW and SC perturbations. We showed that the sta-

bility region for the SLL phase depended on inter-channel parameters α, β and the Luttinger

parameter K. The widest stability region is demonstrated to exist for strong coupling α, weak

modulation β and Luttinger parameter K ∈ [0.5− 0.6].
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Conclusions and Future work

11.1 The non-interacting model

To summarise, in section 4 we studied the SSH model since it’s the simplest non-trivial

topological model. We found that the ratio between hopping parameters t1 and t2 determined

when a gap-less system may occur. No sign of topology could be observed when t1 < t2 or

t1 > t2, it was specifically at t1 = t2 that the bands touched, indicating that this was a

critical point demonstrating the topological transition through the winding number. This

was confirmed in section 4.2 when the topological transition was observed. We saw that when

t1 > t2, tk did not enclose the origin resulting in a trivial winding number of 0. However,

when t1 = t2 we saw that tk touched the origin, and when t1 < t2 it enclosed the origin

resulting in a topologically non-trivial number of 1. The Zak-phase coincided with this result

since we found that φ = 2π when ν = 1 and 0 otherwise.

We then proceeded to construct edge states for a chain with an odd number of sites. The

boundary condition that the wave-function should disappear at the nearest site outside the

chain, ψ2M+2 = 0 led to the quantisation of the wave vector k from which we found 2M bulk

solutions. Since we initially started with 2M + 1 degrees of freedom, we can infer that the

missing solution is not present in the bulk but the edge instead - an edge state. We solve

for the edge state by taking ε = 0 and setting ψ2j = 0. We found that the ratio t1 < t2

played a significant role in the localisation of the edge state. When t1 < t2, the edge state
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is exponentially localised at the left boundary, and if t1 > t2 the edge state is exponentially

localised at the right boundary instead. Therefore we were able to explicitly define the edge

state in the case of a chain of an odd number of sites.

Section 5 continued the discussion of special states for the SSH model focusing on scat-

tering amplitudes as opposed to calculating the Zak phase to find the edge states. Here,

we instead derive the scattering amplitudes of waves reflecting off a potential centred on an

infinite chain. We did this first for a one-dimensional continuous chain with a δ-function po-

tential. We found exponentially decaying bound states localised on either side of the potential.

We then proceeded to find the total charge of the same system which we found to be 0 in the

presence of the bound state and −1 otherwise. These steps were taken to devise the protocol

for the one-dimensional SSH lattice, therefore, we then had to adapt our continuous model

to a one-dimensional simple lattice before moving to the SSH lattice. We defined λ as the

amplitude to the δ-function potential and found that the sign of λ determined the presence

of the bound state. There were two poles found of reflection amplitude, rk depending on the

sign of λ. In the case that λ > 0 we found oscillating states on either side of the potential and

identified these as scattering states. In contrast, when λ < 0, we found purely exponentially

decaying states on either side of the potential and identified this as a bound state. This was

supported by applying the one-dimensional Levinson’s theorem which uses the phase of the

transmission amplitude to determine the number of bound states, which was found to be 1.

These steps were then repeated for the SSH model where we similarly found one bound state

using the Levinson’s theorem.

We then considered two different approaches to calculate the number of bound states in

sections 6 and 7. In the first approach, the density of states was calculated in terms of Green’s

functions leading to the explicit derivation of the s-matrix elements, namely; the reflection

and transmission amplitudes of the system. Thus, we found the relationship between the

density of states and the s-matrix. For the other approach, we used the continuity equation
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to find the density of states. Applying the sum rule, we obtained the number of bound states

given in terms of reflection amplitude and the phase of the transmission amplitude. We then

tested this on the continuous Schrödinger equation with a δ-function potential and found that

the number of bound states is 1 if the amplitude λ = ±1.

In chapters 8 and 9, we studied bound states for systems with arbitrary hopping as op-

posed to nearest-neighbour hopping, which we previously discussed. We did this by once

again exploiting the continuity equation and found the total number of states for first the

Bravais lattice, and then the SSH lattice. The number of bound states is found to be exactly

an integer and depends on the reflection coefficient at degenerate points k = 0, π and the

total phase. For the SSH, we first began with a semi-infinite chain showing similar results

to that of a Bravais lattice. The reflection coefficient took values rµ = ±1 which showed

similarities to the case of topological insulators, and therefore suggests non-trivial behaviour.

For an infinite chain, we derived the number of bound states once again depending on the

reflection coefficient at k = 0, π, only there were two bands arising due the spinor involved

in the SSH model. There was also a phase which also depended on the reflection coefficient.

All terms depending on the reflection coefficient were identified to be non-universal since they

were uniquely defined by the disorder placed at the origin. The number of bound states also

contained another phase term which came from bulk solutions, and therefore was identified

as the universal contribution.

11.2 The interacting model

We discussed the interacting model in section 10 in which we studied the sliding Luttinger

liquid. We investigated the stability conditions of the SLL phase in a 2D system of parallel

quantum wires with alternating coupling between nearest neighbor wires. We took the den-

sity–density interaction into account as the principle coupling mechanism between the wires

and neglected the current–current interaction. We analysed the CDW and SC perturbations
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with respect to their affect on the stability of the SLL phase. We introduced a Luttinger

parameter, K, an interwire coupling strength parameter, α and a modulation strength pa-

rameter, β all between 0 and 1 to represent these perturbations. Using re-normalisation group

analysis, we presented an analytical derivation of the CDW and SC scaling dimensions. We

obtained four scaling dimensions in total; an odd and an even for both perturbations. This

occurred due to the odd/even label given to distinguish the wires, which consequently led to

an odd/even wave-function for each perturbation. We chose the most dangerous of the scaling

dimensions for each case, i.e. ∆ < 2 and disregarded the others as irrelevant since they led to

stable scaling dimensions.

We observed from the α− β parameter space that there is a region of stability where the

processes, CDW and SC, are RG irrelevant. The region of stability exists at any value of the

relative coupling strength α from 0 to 1. We observed this in Fig. 10.1 where the product

KSC/KCDW > 1. However, a weak modulation β causes an instability at small α. This can

also indicate that disorder of inter-wire couplings can cause an instability of the SLL phase

which is otherwise stable. At strong coupling for α close to 1 we found a considerably broad

stability region within the α− β space. Correspondingly, the widest span of the values of the

Luttinger parameter K ensuring stability is between 0.5− 0.65 for α = 1 and β = 0.

11.3 Future work

This research could lead to many different avenues in the development of our understanding

of topological materials and their unique properties. The next step would be to adapt our

framework for the one-dimensional topological insulators to two-dimensions. The addition

in dimensionality would change the model such that we would now have surface states, or

edge states, unlike the previously exponentially decaying bound states. This generalisation

to 2D would allow us to understand how the properties of reflection amplitudes relate to the

presence or absence of edge states. As we know, topological insulators exist due to conduct-

ing surface states, so this generalisation would also allow us to identify a topological insulator.
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