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Abstract: Recovery of optical phases using direct intensity detection methods is an ill-posed
problem and some prior information is required to regularize it. In the case of multi-mode fibers,
the known structure of eigenmodes is used to recover optical field and find mode decomposition
by measuring intensity distribution. Here we demonstrate numerically and experimentally a
mode decomposition technique that outperforms the fastest previously published method in terms
of the number of modes while showing the same decomposition speed. This technique improves
signal-to-noise ratio by 10 dB for a 3-mode fiber and by 7.5 dB for a 5-mode fiber.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further
distribution of this work must maintain attribution to the author(s) and the published article’s title, journal
citation, and DOI.

1. Introduction

Recent renewed interest in multi-mode fibers (MMFs) and, in particular, in few-mode fibers
(FMFs) is dominated by their potential in telecommunications, however, their features are equally
important for a wide range of applications. In contrast to conventional single-mode fiber (SMF),
FMFs and MMFs provide larger mode areas allowing nonlinearity suppression and damage
threshold improvement for high-power laser systems and amplifiers [1,2]. Such fibers open
up new ways of imaging [3], including starlight [4], sensing [5], and fundamental studies of
novel nonlinear dynamics [6] including optical beam self-cleaning [7], spatiotemporal solitons
[8] and ultrafast characterization methods [9,10]. Moreover, an unrelenting capacity increase
of the contemporary telecommunication systems dictate using novel tools and principles of
signal transmission to seize this demand [11]. Spatial mode-division multiplexing is one of the
popular approaches to improve the capacity of optical links especially by using FMFs that can
significantly increase communication capacity compared to SMF without a drastic complexity
of signal processing [12]. However, all of these applications require beam characterization not
only in terms of beam divergence (M2 parameter), but also in terms of waveguide eigenmodes
amplitudes and phases. This characterization is also known as mode decomposition (MD)
problem. Recovery of a signal from the measured intensity is an attractive approach with various
applications ranging from imaging to telecommunications. However, direct detection-based MD
methods are usually computationally-intensive and/or capable of recovering few modes only.

Some of the existing MD methods require a reference beam. Digital holography [13,14] and
multi-lane light conversion [15] methods are both in this method group. The main drawback of
these methods is the requirement of a coherent laser source in the receiver part of the system that
limits potential applicability. Those methods that do not require a reference beam can be divided
into iterative and non-iterative algorithms. Iterative methods like Gerchberg–Saxton technique
[16], line-search [17], and stochastic parallel gradient descent [18] show high accuracy and speed.
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However, these methods are vitally sensitive to initial conditions and can be looped at a local
minimum.

On the other hand, non-iterative MD methods include machine learning methods [19–24] and
fractional Fourier system [25]. Machine learning MD algorithms outperform iterative methods in
the decomposition speed with a price of high-performance computer requirements, long training
times, and poor performance in cases with more than five spatial modes. Recently, a novel
non-iterative method, based on dividing inherently non-linear MD problem into a cumbersome
linear part and a simple non-linear part, was proposed [26]. This algorithm was based on
near-field (NF) MD and allowed to decompose up to 100,000 multi-mode distributions per
second for three-, five-, and eight-mode fibers; along with maximum 27-mode decomposition in
noiseless case.

Here we propose a significant improvement of the algorithm presented in [26] in terms of
the decomposition accuracy by using far-field (FF) and near-far-field (NFF) MD techniques. In
addition to the accuracy boost, both techniques allowed a boost in the maximum number of modes
decomposed to up to 46 modes for FF method and up to 49 modes for NFF method. In addition,
all three possible MD technique variants based on the NF, FF, and NFF decomposition techniques
are compared in terms of their accuracy, number of decomposed modes and computational
complexity. Moreover, we experimentally verify proposed FF method using a 5-mode fiber and a
21 dB signal-to-noise ratio. We expect the developed technique to find many applications from
ultra-fast fiber imaging to laser beam characterization.

2. Methods

To solve the MD problem, it is required to determine the weighting factors Ck = Akexp(iϕk) at
which a given intensity distribution is observed at the fiber end facet (near-field) or at the infinite
distance from the fiber end facet (far-field). The inference of amplitudes and phases based on the
intensity distribution is a non-linear problem that can be solved with different approaches. In the
previous article, we presented a fast MD method in few-mode fibers, which is based on dividing
of the problem into a cumbersome linear part and a simple non-linear part [26]. The presented
method makes it possible to determine the coefficients based on the intensity distribution in the
near field:

PNF(x, y) =
⟨︁
|E(x, y)|2

⟩︁
=

⟨︄|︁|︁|︁|︁|︁∑︂
k

CkΨk(x, y)

|︁|︁|︁|︁|︁2
⟩︄

, (1)

where PNF(x, y) is the intensity distribution in the near field, and Ψk is the near field distribution
of kth eigenmode of the fiber.

However, the presented method makes it possible to perform MD only up to the complex
conjugation of the weight coefficients, since it is based on the analysis of the intensity distribution
in the near field. The near-field (NF) technique requires the use of a rather bulky 4-f system
(Fig. 1(a)) to magnify and project the NF distribution onto the image sensor. In this paper,
we present a development of the method that allows either the use of a much more compact
experimental FF image capture system (Fig. 1(b)) or the use of both near and far-field (NFF)
methods (Fig. 1(c)) to determine the true values of the mode coefficients, rather than only the
complex conjugations.

Far-field measurements are more convenient both because of the compactness of the optical
image capturing system and the possibility to easily scale the image resolution. In the case
of NF intensity distribution capturing, an increase in the resolution requires an increase in the
magnification of the 4-f lens system, which leads to the proportional scaling of the experimental
scheme. Thus, to obtain a magnification factor of 67 for the NF capturing scheme, we used
a 4-f system with focal lengths of 4.5 mm and 300 mm, which led to an experimental setup
overall length of more than 600 mm. To obtain a higher magnification and, accordingly, a larger
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Fig. 1. Experimental setups for capturing a) near-field intensity distribution, b) far-field
distribution and c) both near and far-field intensity distributions.

image size, it is necessary to further increase the focal length of a long-focus lens, which leads
to an almost inapplicable length of the experimental setup. In the case of the FF capturing, the
magnification coefficient of 67 can be obtained with the length of the free-space beam path of 5
mm, and to obtain a magnification factor of 200, only a length of 15 mm is required. To solve the
problem of the FF MD, it is required, as in [26], to calculate the matrix of pairwise products of
the fiber eigenmodes. First of all, we calculate the FF distribution for each of the fiber modes
and their pairwise products. The FF distribution Φ̃(ξ, η) can be calculated as the 2D Fourier
transform of the NF distribution:

Φ̃(ξ, η) = F (Ψ(x, y)) =
1

2π

∬
Ψ(x, y) exp(−iξx − iηy)dxdy, (2)

We can rewrite the Eq. (1) for the FF distribution:

P(x, y) =

⟨︄|︁|︁|︁|︁|︁∑︂
k

CkΦ̃k(x, y)

|︁|︁|︁|︁|︁2
⟩︄

, (3)

where P(x, y) is the FF intensity distribution.
In FF case, either a purely real distribution (for centrally symmetric modes) or a purely

imaginary (for centrally antisymmetric modes) is observed in the FF. When calculating the matrix
of pairwise products of eigenmodes, we "turn" the phase of the purely imaginary FF modes by an
angle of π/2 to bring them to purely real distributions:{︄

Φ(ξ, η) = Φ̃(ξ, η), if Φ̃(ξ, η) = Φ̃(−ξ,−η),
Φ(ξ, η) = Φ̃(ξ, η) · exp(iπ/2), if Φ̃(ξ, η) = −Φ̃(−ξ,−η).

(4)

In what follows, we will take this rotation of π/2 into account when calculating the phases of
the eigenmodes. We also need to calculate the matrix of pairwise products of eigenmodes for the
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FF distribution TFF:

TFF =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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(5)

Here the upper index (m) corresponds to the mth pixel of the image of eigenmode. Figure 2
shows the distributions of the TFF matrix components for 5-mode fiber. Each image corresponds to
one column of matrix TFF . Each image is a point-wise product of the corresponding eigenmodes,
and the column of the TFF matrix is obtained by rearranging these M by M distributions into M2

by 1 vector. The same rearranging is then applied to the intensity distribution to obtain vector P.

Fig. 2. Components of matrix TFF , representing pairwise products of far-field of eigenmodes
of 5-mode fiber. The upper indices s and c stand for two different orthogonal degenerate
sub-modes of non-centrally-symmetrical modes.

The dependency of matrix TFF condition number on the number of fiber eigenmodes is shown
in Fig. 3.

In comparison to the T matrix for the near field distribution (see [26]) there is no sharp
increment in the region around 10 modes. This is due to the fact that unlike the near-field matrix
T the columns of the TFF matrix which are composed of LP11 and LP12 modes do not match
exactly (see Fig. 4). Such a lack of symmetry positively affects the problem numerical solution,
as the TFF is well-conditioned. The phase recovery method is generally similar to the technique
described in [26]. We first rewrite the Eq. (3) in the linear form using Eq. (5) and solve the linear
problem:

TFF · z = P, (6)
Here P is the intensity distribution in the FF rearranged into a M2 by 1 vector, TFF is the

matrix of pairwise products of the far-field of eigenmodes.
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Fig. 3. Condition number of matrix TFF calculated for a various number of modes with
M=128.

Fig. 4. Non-coinciding components of matrix TFF , related to modes LP11 and LP12 and
their discrepancy.

For combinations of eigenmodes including either only centrally symmetric or only centrally
antisymmetric modes, we obtain:

zn =
CkC∗

j + CjC∗
k

2
k, j = 1..N, n = 1..N(N + 1)/2. (7)

or zn = AkAjcos(ϕk − ϕj).
For combinations of eigenmodes including one centrally antisymmetric mode, we get:

zn =
CkC∗

j − CjC∗
k

2i
k, j = 1..N, n = 1..N(N + 1)/2. (8)

or zn = AkAjsin(ϕk − ϕj), since we have multiplied the central antisymmetric modes by exp(iπ/2).
Including the above mentioned relations, one can represent the vector z as a matrix Z. To do this,
we numerate the vector z along the main diagonal first, and then along the columns of the lower
triangular matrix Z:

Z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1 0 · · · 0

zN+1 z2 0

zN+2 z2N z3
. . .

...
... z2N+1

...
. . . 0

z2N−1 · · · · · · zN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Z1,1 0 · · · 0

Z2,1 Z2,2 0

Z3,1 Z3,2 Z3,3
. . .

...
...

...
...

. . . 0

ZN,1 ZN,2 · · · ZN,N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (9)
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And, for example, for 5-mode fiber we can obtain the matrix Z as following:

Z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A2
1 0 0 0 0

A1A2sin(ϕ2) A2
2 0 0 0

A1A3sin(ϕ3) A2A3cos(ϕ2 − ϕ3) A2
3 0 0

A1A4cos(ϕ4) A2A4sin(ϕ2 − ϕ4) A3A4sin(ϕ3 − ϕ4) A2
4 0

A1A5cos(ϕ5) A2A5sin(ϕ2 − ϕ5) A3A5sin(ϕ3 − ϕ5) A4A5cos(ϕ4 − ϕ5) A2
5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10)

We can also obtain the general relations between the amplitudes, phases and the matrix
eigenvalues as following:

Ak =
√︁

Zk,k, k = 1..N,

cos(ϕk) =
Zk,1

A1Ak
, if Φ̃1(ξ, η)Φ̃k(ξ, η) = Φ̃1(−ξ,−η)Φ̃k(−ξ,−η),

sin(ϕk) =
Zk,1

A1Ak
, if Φ̃1(ξ, η)Φ̃k(ξ, η) = −Φ̃1(−ξ,−η)Φ̃k(−ξ,−η).

(11)

To determine the sign of the phase when taking the arcsine or arccosine, we use the second
column of the matrix Z . It should be noted that we use only the first 3N − 3 components of the
vector z for calculating mode weights. For a number of modes N>3, it means that we do not need
to calculate the product of full matrix T−1 with the intensity vector P. We need to calculate only
the product of the first 3N − 3 rows of this matrix with the intensity vector. Thus, based on the
FF intensity distribution, we calculate the vector z, using the Eq. (6) by multiplying the pseudo
inverse matrix of pairwise products of eigenmodes by the vector of intensity. Then using this
vector z we calculate the amplitudes and phases of the modes using Eqs. (9) and (11).

The analysis of only the NF or only the FF does not allow one to unambiguously reconstruct
the phases of the modes, since there is phase transformation that leaves the intensity distribution
unchanged. In the case of the near field, this is a complex conjugation of the weights (changing
the signs of all phases to opposite ones): ϕnew

k = −ϕk , and for the FF, this is the replacement of
the phase sign with the opposite one for centrally symmetric modes (for example, LP21 or LP02):
ϕnew

k = −ϕk and transformation ϕnew
k = π − ϕk for non-centrally antisymmetric (for example LP11

or LP31): {︄
ϕnew

k = −ϕk, if Φ̃(ξ, η) = Φ̃(−ξ,−η),
ϕnew

k = π − ϕk, if Φ̃(ξ, η) = −Φ̃(−ξ,−η).
(12)

The phase transformations, which conserve the intensity distribution, are different for the
NF and FF. This means that knowing both NF and FF distributions allow to calculate the
phases exactly, and not only up to complex conjugation (as in the case of the near field) or
transformation (12), as in the case of the FF. Therefore, if both FF and NF intensity distributions
are measured, then one can decompose mode weights up to a constant phase shift, not only to an
intensity-conserving transformation. Figure 5 shows how NF and FF intensity distributions look
like for different sets of weights that show either the same NF intensity distribution or the same
FF intensity distribution.

A complete MD can be approached either by calculating the cosine value of the second mode
by using NF decomposition and then applying FF MD or it can be done by combining NF and FF
matrices in one system of equations. The first approach is just a simple extension of the presented
FF method and has the same accuracy as the FF MD method. The second approach requires
complex-value calculations which increases the complexity of the method, leading to higher time
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Fig. 5. NF and FF intensity distributions before and after weight transformation that
conserves either NF or FF intensity distribution.

consumption and accuracy. To do this we simply combine both NF and FF systems of equations
and just make a change of variables as simple as:

zn = CkC∗
j k, j = 1..N, n = 1..N2. (13)

In this case, we cannot combine CkC∗
j and C∗

kCj as there is no symmetry in matrix T anymore.
In the NFF case we use complex-valued pseudo inverse T−1 matrix to calculate the complex-
valued z vector. Mode amplitudes and phases are then calculated similarly to (11), but cosine
values are proportional to real parts of the corresponding values of matrix Z and sine values are
proportional to imaginary parts of the corresponding values of matrix Z.

3. Results

The MD based on the FF analysis shows better results in the noiseless case compared to the NF
case in terms of the decomposition accuracy. In addition, the method works up to 46 modes in
the noiseless decomposition (Fig. 6) leading to a significant increase in comparison to 27 mode
decomposition for the NF case [26].

Fig. 6. Noiseless MD for 46-mode fiber. True FF intensity (a), reconstructed FF intensity
(b), their discrepancy (c), and true and reconstructed weights (d).
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For 48-mode fiber noiseless decomposition is performed with some errors, but the most of the
weights are still determined with a high accuracy (Fig. 7). So, in principle, the proposed method
can be applied for the FF MD in up to 46-mode fiber. The effect of the noise presence on the
accuracy of the proposed MD algorithm has also been studied using following error metrics:

ϵA =
| |Arecov − Atrue | |

| |Atrue | |
, ϵφ =

max(ϕrecov
i − ϕtrue

i )

2π
, ϵC =

| |Crecov − Ctrue | |

| |Ctrue | |
. (14)

Fig. 7. Noiseless MD in 48-mode fiber. True FF intensity (a), reconstructed FF intensity
(b), their discrepancy (c), and true and reconstructed weights (d).

The amplitude error ϵA represents the normalized amplitude error, the phase error ϵφ shows
the maximum phase error across phases of all modes normalized by 2π, and the total error ϵC
represents the normalized complex-valued weights error. The latter error includes both amplitude
and phase errors. To calculate the accuracy of the presented algorithm we performed multiple
decompositions for random sets of mode weights. For FF MD we chose amplitudes from a
continuous uniform distribution: Atrue

1..N U(0, 1). To avoid the ambiguity in the MD we chose the
phase of the second mode from a continuous uniform distribution ϕtrue

2 U(−π/2, π/2) and all
other phase coefficients ϕtrue

3..N U(0, 2π). Then we calculated the true FF intensity corresponding
to each set of weights. We added Gaussian noise, and used this noisy intensity distribution to
recover mode weights using our algorithm. Based on the recovered weights we calculated error
metrics. Figure 8 shows examples of noisy MD using our algorithm.

Fig. 8. Examples of MD with SNR = 10 dB.
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We consider a total error ϵC of less than 0.1 as acceptable. So later we refer to this value when
we calculate the SNR value necessary to achieve such an accuracy. However, even if ϵC>0.1
but less than 0.2-0.3, the recovered weights lay close to their true values. Figure 9 shows how
these errors depend on the signal to noise ratio and the number of modes. Each point is averaged
over 5000 decompositions. Decomposition is performed by processing 100x100 FF intensity
distributions.

Fig. 9. Amplitude, phase, and net errors depending on the noise level in the input image
and the number of modes for FF only decomposition. Errors are in dB and color-coded,
level lines corresponding to a certain level of error are shown and labeled in the figures.
Error metrics are calculated for an image size of 100x100 pixels.

The method can be applicable for the MD with an accuracy of 0.1 in 3-mode fiber when SNR
is better than 15 dB, in 5-mode fiber for the SNR>22.5 dB and in the 6-mode fiber when the SNR
is better than 32 dB. For the 8-mode fiber only amplitudes can be determined with an accuracy of
0.1 when the SNR is better than 25 dB, and for the 10-mode fiber the SNR better than 33 dB is
required to determine amplitudes with the same accuracy. This results in a superior performance
compared to our previously published MD algorithm based on the decomposition of the NF
intensity distribution.

To calculate the accuracy of the NFF method we chose amplitudes from Atrue
1..N U(0, 1) and

phases from ϕtrue
3..N U(0, 2π) as this method allows decomposing mode weights without any

Fig. 10. Noiseless MD for 49-mode fiber. True FF intensity (a), reconstructed FF intensity
(b), their discrepancy (c), and true and reconstructed weights (d).
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ambiguity. In a noiseless case, the NFF method can perform MD for 49-mode fibers (Fig. 10).
This method is also better in the presence of noise. Figure 11 shows how decomposition errors
depend on the SNR and the number of modes. This graph was obtained with the same metrics as
theFig. 9.

Fig. 11. Amplitude, phase, and net errors for NFF decomposition depending on the noise
level in the input image and the number of modes. Error metrics are calculated for an image
size of 100x100 pixels.

This method can be applicable for the MD with an accuracy of 0.1 for 3-mode fiber when the
SNR is better than 10 dB, in 5-mode fiber for the SNR>19 dB, and for the 6-mode fiber when the
SNR is better than 31 dB. For 8-mode fiber only amplitudes can be determined with an accuracy
of 0.1 when the SNR is better than 25 dB, and for the 10-mode fiber the SNR better than 32 dB is
required to determine amplitudes with the same accuracy. Thus, the desired accuracy of 0.1 is
achieved with 3 dB lower SNR for 3- and 5-mode fibers when using NFF intensity technique
than when using only FF intensity distribution.

4. Computational complexity

One of the universal metrics of the computational complexity of algorithms is the number of
multiplications used. In this section, we calculate the number of multiplications for our algorithms.
The MD method based on the FF analysis consists of the multiplication of pseudo inverse of the
matrix of pairwise products of eigenmodes with the vector of intensity. For intensity image of
size M by M and the number of modes N, one needs to calculate the product of the first 3N − 3
rows of the size of matrix T−1

FF with the intensity vector. So, the linear part of our algorithm
requires Qlin = 3M2(N − 1) multiplications.

The nonlinear part consists of calculating square roots, arc-cosine, and cosine functions which
are not taken into account as these operations can be performed by using lookup tables. The only
operation that requires multiplication is{︄

cos(ϕk) =
Zk,1
A1Ak

, if Φ̃(ξ, η) = Φ̃(−ξ,−η),
sin(ϕk) =

Zk,1
A1Ak

, if Φ̃(ξ, η) = −Φ̃(−ξ,−η).
(15)

for each of the N-1 phase coefficients. Here we have 2 multiplications and 2 divisions, so for
the nonlinear part of our algorithm we have Qnln(N, M) = 4(N − 1) multiplications. The total
number of multiplications for the FF method is, therefore:

QFF(N, M) = Qlin + Qnln = 3M2(N − 1) + 4(N − 1) = (3M2 + 4)(N − 1). (16)

As 3M2>>4 in every practical case, QFF ≈ 3M2(N − 1) a good approximation.
To compare the computational complexity with the best CNN-based MD algorithm presented

before [24] we need to calculate the complexity of the VGG-16-like CNN that was used for
MD. The adaptation of the VGG-16 convolutional neural network that was used for the MD
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problem consists of 13 convolutional layers (CL) and 2 fully connected (FC) layers. The number
of convolutional filters and sizes of layers is shown in Table 1.

Table 1. Structure of a VGG-16-like CNN used for MD in [24]

Block 1 2 3 4 5 6 7

Number of layers 2 2 3 3 3 1 1

Image size M × M M
2 × M

2
M
4 × M

4
M
8 × M

8
M
16 × M

16 1 × 1 1 × 1

Number of filters 64 128 256 512 512 1024 2N-1

The VGG-16-like CNN consists of Nc = 13 convolutional layers. Each convolutional filter is
of 3x3 pixels size. So, the number of multiplications per 1 convolution is n = 9. Padding: same
was used on each convolutional layer. So, the number of convolutions per layer is the number of
pixels on this layer. For a layer of size M by M pixels, it is M2 convolutions.

The total number of multiplications needed during propagation through Nc = 13 convolutional
layers is

QCL =

Nc∑︂
i=1

nM2
i Ci, (17)

where Mi is the size of i-th layer and Ci is the number of convolutional filters applied at i-th layer.
The total number of multiplications per 1 FC layer is the product of the number of nodes in the
previous layer and the number of nodes in the current layer. So, for the first FC layer with F1
elements, it is defined as

Q(1)
FC = M2

13C13 · F1. (18)
The second FC layer is of size F2 = 2N − 1, so the total number of multiplications for the

second layer is
Q(2)

FC = F1 · F2 = F1(2N − 1). (19)
Then to recover phases from the cosine values the CNN-based method requires the calculation

of intensity distributions for each set of possible phase values and then compare them to the true
intensity distribution. For each of the N − 1 cosine values, there are 2 possible phase values that
correspond to this cosine value, so the total 2N−1 intensity calculations are needed. Each intensity
calculation consists of (2N − 1)M2 multiplications as each of M2 pixels for each of N modes
must be multiplied by its amplitude (N multiplications) and phase (N − 1 multiplications) values.
So, the total number of multiplications for deriving phase coefficients from their cosine values is

Qφ = 2N−1 · (2N − 1)M2. (20)

This leads to the total number of multiplications per 1 MD using CNN:

QCNN = QCL + QFC + Qφ =

=

13∑︂
i=1

9M2
i Ci +M2

13C13 · F1 + F1 · F2 + 2N−1 · (2N − 1)M2 =

= 2430 · M2 + 2048 · M2 + 1024 · (2N − 1) + 2N−1 · (2N − 1)M2 =

= M2 · (4478 + 2N−1 · (2N − 1)) + 1 − 24 · (2N − 1).

(21)

An approximation of the above equation can be given by

QCNN ≈ M2 · (4478 + 2N−1 · (2N − 1)). (22)

The NFF MD method requires multiplications of complex values. Each multiplication of
complex-valued numbers requires 4 multiplications of real-value numbers. Moreover, the number



Research Article Vol. 29, No. 22 / 25 Oct 2021 / Optics Express 36780

of pixels is doubled as we analyze both NF and FF intensity distributions. Therefore, for the
complete MD algorithm the number of multiplications is

QNFF(N, M) ≈ 24M2(N − 1). (23)

Figure 12 shows how the performance gain depends on the number of modes. The NFF MD
algorithm requires 8 times more multiplications than the FF only method, but it benefits from
both higher accuracy and ability to recover phase coefficients unambiguously (not only up to
transformation (12)) which is the main advantage in comparison to CNN-based MD algorithm
that does not allow to completely decompose phases [24].

Fig. 12. The ratio between the numbers of multiplications needed for a single-mode
decomposition using the CNN algorithm and the proposed algorithm.

Thus, the proposed techniques require orders of magnitude less multiplications than the best
CNN-based MD algorithm presented to date.

5. Experimental verification

We experimentally tested the FF algorithm for a 5-mode fiber. We assembled an experimental
setup shown in Fig. 1(b). We used a piece of SM2000 fiber and a laser with a central wavelength
of 1060 nm. This fiber supports 5 modes at the laser operating wavelength. The corresponding V
number of the fiber at the specified wavelength is 3.91. A lens with a focal length of 4.5 mm was
used to convert NF distribution at the fiber facet to the FF distribution on the camera. We used a
polarizer beyond the lens to select only one polarization. The output intensity distribution after
the lens was captured by a CCD camera Ximea mq013rg-e2. The digital decomposition speed
was much higher than the speed of the camera (60 frames per second) and to test the accuracy
and performance of the algorithm without limitations of camera speed, a series of images was
recorded and then processed. The complex mode structure was achieved by bending and twisting
the FMF.

During the pre-processing each picture was cropped to size of 400x400 and the average
background intensity was subtracted. The background intensity was measured as a captured
intensity distribution far outside the main beam region where the intensity of the main beam
is guaranteed to be less than one thousandth of the maximum intensity of the main beam. The
noise intensity was measured as a variance of the background intensity. The captured intensity
distribution, the background intensity distribution and the histogram of the background are shown
in Fig. 13.
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Fig. 13. a) Measured intensity, b) Measured intensity far outside of the main beam region
or background and c) Background intensity histogram

The calculated SNR value was of approximately 21 dB. We believe that two main sources
of noise are present in our case: the light scattered by optical elements and the temperature
noise of the camera. To find the center of the beam profile we captured 100 images and guessed
some initial values of coordinates of the center as well as the scaling factor of the image. Then
we calculated eigenmodes corresponding to these guessed parameters, then performed MD,
then reconstructed intensity patterns from these recovered mode weights and finally calculated
the mean correlation between measured and reconstructed intensity distributions. Then we
numerically optimized the 3 free parameters (coordinates of the center and scaling factor)
to maximize mean correlation across all these 100 images. The numerical optimization was
performed by Nelder-Mead (simplex) method. The optimized parameters were then used for
processing all other experimentally captured intensity distributions. Then the MD algorithm
was applied to each intensity distribution. The acquired weights were used to reconstruct the
intensity using the known FF distributions and finally the accuracy of MD was analyzed by
calculating correlation between the measured and reconstructed intensity distributions. Figure 14
shows examples of captured far field distributions, reconstructed intensities, discrepancies, and
corresponding correlations.

Fig. 14. Examples of the experimental MD if 5-mode fiber.

Figure 15 shows the correlation for the whole series of images captured and processed by FF
algorithm. The mean decomposition time was 52 µs. The correlation is above 0.95 for the whole
series of captured intensity distributions.
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Fig. 15. Correlation between captured and reconstructed intensity distributions for a series
of images of FF distribution in 5-mode fiber.

6. Conclusion

We developed an intensity-only MD technique based on FF and NFF analysis which is superior
compared to the fastest previously published MD algorithm in terms of both number of modes
in noiseless case and noise sustainability for MD in the presence of noise. Compared to the
best previous results, the number of modes in noiseless case increased from 27 to 46 for FF
analysis only and 49 in case of using both FF and NF (NFF). Importantly, we demonstrate a
substantial improvement of performance in the presence of noise: the SNR needed for MD with
a full error of 0.1 decreased from 20 dB to 15 dB (FF) or 10 dB (NFF) for 3-mode fiber; from 30
dB to 22.5 dB (FF) or 19 dB (NFF) for 5-mode fiber. The NFF also benefits from the ability to
completely decompose phase weights of higher modes relative to the fundamental mode. And
another advantage of the FF technique is the use of simplified optical scheme compared to NF
and NFF methods, that does not only decreases the number of required optical components but
also increases the setup compactness what is crucial for the in field applications. The rigorous
analysis of computational complexity is provided, and it has shown that the presented algorithm
requires orders of magnitude less multiplications than a comparable machine learning-based MD
technique. The developed progress in intensity-only MD is another step towards fully passive
phase-sensitive multi-mode receivers.
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