
applied  
sciences

Article

Semantic IFC Data Model for Automatic Safety Risk
Identification in Deep Excavation Projects

Yongcheng Zhang 1,* , Xuejiao Xing 2 and Maxwell Fordjour Antwi-Afari 3

����������
�������

Citation: Zhang, Y.; Xing, X.;

Antwi-Afari, M.F. Semantic IFC Data

Model for Automatic Safety Risk

Identification in Deep Excavation

Projects. Appl. Sci. 2021, 11, 9958.

https://doi.org/10.3390/app

11219958

Academic Editor: Diana Kalibatiene

Received: 15 September 2021

Accepted: 22 October 2021

Published: 25 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Management Engineering, Huaiyin Institute of Technology, Huaian 223003, China
2 Department of Construction Management, Huazhong University of Science and Technology,

Wuhan 430074, China; xing021493@163.com
3 Department of Civil Engineering, Aston University, Birmingham B4 7ET, UK; m.antwiafari@aston.ac.uk
* Correspondence: cquzhych@hyit.edu.cn

Abstract: Safety risk identification throughout deep excavation construction is an information-
intensive task, involving construction information scattered in project planning documentation
and dynamic information obtained from different field sensors. However, inefficient information
integration and exchange have been an important obstacle to the development of automatic safety risk
identification in actual applications. This research aims to achieve the requirements for information
integration and exchange by developing a semantic industry foundation classes (IFC) data model
based on a central database of Building Information Modeling (BIM) in dynamic deep excavation
process. Construction information required for risk identification in dynamic deep excavation is
analyzed. The relationships among construction information are identified based on the semantic
IFC data model, involved relationships (i.e., logical relationships and constraints among risk events,
risk factors, construction parameters, and construction phases), and BIM elements. Furthermore, an
automatic safety risk identification approach is presented based on the semantic data model, and it is
tested through a construction risk identification prototype established under the BIM environment.
Results illustrate the effectiveness of the BIM-based central database in accelerating automatic safety
risk identification by linking BIM elements and required construction information corresponding to
the dynamic construction process.

Keywords: safety; risk; BIM; IFC schema; deep excavation

1. Introduction

Deep excavation construction is a dynamic engineering process with typical features
such as time-space and environmental effects, technological complexity, and important
variations depending on site conditions. These features result in increased and uncertain
safety risks throughout the project life cycle, which makes a project prone to casualties,
schedule delays, and cost overruns [1,2]. The safety risk statuses involved in the construc-
tion process are changeable because the total life cycle of a deep excavation project is long
and affected by various dynamic factors. Thus, performing timely safety risk identification
is critical during the preconstruction and construction phases to issue early warnings and
adopt preventive measures for the reduction of safety risk events [3].

Traditionally, risk identification is conducted relying on domain expertise and con-
struction experience, along with huge human, material, and time resources [4]. According
to risk identification outcomes (e.g., reported potential risk events and factors), risk warn-
ings and correction instructions can be presented to guide later construction activities [5].
In this procedure, construction information, which is scattered in a great amount of interre-
lated documentation, must be retrieved and extracted manually. Risk identification in the
deep excavation construction phase needs consider the construction information in project
planning due to the characteristics of temporality, complexity, and dynamics [6]. Presently,
safety risk identification and further risk control in both preconstruction and construction
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phases remain imperfect in the project lifecycle, with the implementation process regarded
as a “black box” in practice [7].

With the development of information technology in the architecture, engineering, and
construction (AEC) industries, building information modeling (BIM) with rich information
has facilitated the acceleration of high-quality construction projects [8]. In this context,
limited risk identification-related assisting platforms that adopt building information
models have been studied [7,9]. Risk reasoning and identification can be supported
to promote decision-making by extracting specific construction information from BIM.
However, existing platforms are generally limited in terms of information integration and
exchange during the automatic safety risk identification of deep excavation in practice. On
the one hand, proprietary geometric modeling kernels and data storage formats which
constitute the semantic interoperability of these platforms with other software applications
can be hampered in practice [10]. On the other hand, inefficient integration of dynamic
construction information on sites and risk-related information on information models
challenge practical risk identification. Existing research efforts mainly concentrate on data
processing and function module design for the development of an assisting platform, with
few focusing on information integration and exchange [11]. The Industry Foundation
Classes (IFC) standard is a popular neutral and open data exchange format for describing
building and construction industry data [12]; thus, it is adopted in this research with the
advantage of information sharing and exchange in practice [9,13].

Compared to the traditional way, this research focuses on the method of automatic
construction risk identification, aiming at the entire deep excavation process. Information
integration and exchange for safety risk identification of deep excavation are explored in
this research to address the above research gap by using a BIM-based central database
linking the dynamic construction process and risk-related information in project planning.
Therefore, this research aims to achieve the requirements for information integration
and exchange by developing a semantic industry foundation classes (IFC) data model
based on a central database of Building Information Modeling (BIM) in the dynamic deep
excavation process. Firstly, safety risks related to deep excavation are analyzed, and
construction information required for risk identification is summarized. Then, a semantic
data model applied IFC definitions is established, identifying the relationships among
required information, involved relationships (i.e., logical relationships and constraints
among risk events, risk factors, construction parameters, and construction phases) arising
during the dynamic construction process, and BIM elements. The latest version of the
IFC standard (i.e., IFC4) is extended to meet the information description requirements.
It is hoped that this study can provide a guidance for automatic risk identification in
construction management.

2. Literature Review
2.1. Construction Risk Identification-Related Assisting Platforms

In the AEC industry, various platforms have been studied and applied to support
risk identification and management for promoting decision-making. Zhang et al. pro-
posed a BIM platform that can prevent fall-related accidents by reporting safety measures
in advance. In this manner, automated hazard identification and safety checking in the
construction process can be realized [4]. Ding et al. established an ontology-based method-
ology for construction risk knowledge management through an information model, taking
advantage of semantic web technology [5]. Moreover, a limited number of existing studies
have explored the potential of software applications for safety risk identification and con-
trol in deep excavation-related fields. Zhou et al. proposed a BIM-based 4D model as an
integrated tool to present the real-time visualization safety status of related components
under changing conditions [7]. Zhang et al. presented an approach integrating the BIM
and the expert system to improve the efficiency of the traditional risk identification process
in tunnel construction. The approach enabled knowledge sharing between clients and
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experts [9]. Kiviniemi et al. proposed a 4D information model, integrating safety activities
to support the generation of construction planning [14].

The above previous studies prove the potential of assisting platforms (especially,
adopting building information models or deep learning-based method) in facilitating
automatic risk identification in deep excavation projects [15]. However, these previous
studies on assisting platforms are often based on proprietary geometric modeling kernels
and data storage formats, which hinder their semantic interoperability with other software
applications (e.g., BIM design software) [10,11]. Furthermore, when applied to practical
risk identification, the integration of construction information on dynamic sites and other
risk-related information in different forms remains a challenge. Existing research mainly
concentrates on data processing methodologies and the function module design of system
applications. Studies focusing on the information integration and exchange of assisting
platforms are limited. The development of automatic safety risk identification application
in dynamic deep excavation is hampered in practice.

2.2. Application of IFC to the AEC Industry with Extension

IFC, as an ISO standard, is a popular, neutral, and open data exchange format for
describing construction information [12]. In theory, based on IFC and information de-
livery standards, different software packages with good IFC interfaces can seamlessly
conduct information sharing and exchange. In some construction fields, the latest version
of the IFC standard (named IFC4 or IFC2x4) cannot meet information requirements. Thus,
the IFC standard should be extended to meet specific project targets to ensure that the
required engineering information is captured adequately and completely from certain
system applications [16,17]. Based on the engineering characteristics of certain projects,
efforts of IFC extension have been implemented in various fields (e.g., bridge [13,18], tun-
nel [19,20]), mainly focusing on construction management [21,22], cost estimation [23,24],
seismic components [25], and design change management [26].

Extant review suggests that the IFC data model with extension can be potentially
used as a formalized data format to support decision-making in various fields. On the one
hand, it can be used to facilitate effective semantic interoperability with other software
applications through IFC-based neutral interfaces [11]. On the other hand, the information
integration and exchange of practical engineering conditions and IFC-based software
applications can be ensured [21]. Thus, IFC is adopted in this research to support automatic
safety risk identification and promote decision-making in the deep excavation field, thereby
achieving the requirements for information integration and exchange. Based on an IFC data
model, this research aims to integrate all risk-related construction information elements and
involved relationships (i.e., logical relationships and constraints among risk events, risk
factors, construction parameters, and construction phases) that arise during the dynamic
construction process. In this procedure, relevant extension work is developed because the
current IFC4 standard is limited to meet the above expression requirements.

3. Research Approach

Aiming at the automatic risk identification of deep excavation, this research proposes a
BIM-based central database, using IFC definitions, to express the risk identification-related
information and involved relationships to fill the research gap on information integration
and exchange. Furthermore, a safety risk identification approach focusing on the entire
deep excavation process is presented. For a systematic and clear process to achieve the
above objective, this research adopts the design science research approach, which is a
practical multidisciplinary research method applied to various domains [27]. As shown
in Figure 1, the process based on the design science research approach incorporates five
stages. The motivation of this research is created by reviewing the decision-making for
risk identification of the deep excavation process and related assisting platforms (i.e.,
Stage 1). Then, the research objective is the realization of information integration and
exchange for the automatic safety risk identification of the entire deep excavation process
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using a BIM-based central database (i.e., Stage 2). An IFC data model is established by
summarizing the information requirements of safety risk identification and completing
necessary IFC extension work (i.e., Stage 3). The automatic safety risk identification
approach focusing on the entire deep excavation process is presented based on this IFC
data model (i.e., Stage 4). Finally, a prototype system for risk identification is designed,
and a case study is conducted. In comparison with the manual safety risk identification
results, the performance evaluation of the IFC-based safety risk identification is completed
(i.e., Stage 5). In the following sections, Stages 3–5 of the research are explained in detail.
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4. IFC Data Model for Supporting Safety Risk Identification in Deep Excavation
4.1. Information Requirements for Safety Risk Identification in Deep Excavation

Obtaining the required construction information comprehensively is important to
ensure efficient safety risk identification and management. In consideration of the research
objective, an information requirement model for safety risk identification (involving infor-
mation, such as the title of risk events, risk factors, and specific construction parameters
contributing to risk factors) should be established first. In this manner, the required con-
struction information corresponding to certain safety risks, which is one of the critical
premises of conducting automatic risk identification, can be determined.

As shown in Table 1, in this research, safety risk categories—considered as the
safety risk knowledge source—include technical risks, geological risks, and environmental
risks [2,6]. Other risk categories—such as risks derived from mechanical equipment failure,
mishandling, or poor organization, which are indirectly related to construction safety
management of deep excavation—are excluded in the first research stage.
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Table 1. Objective risk categories related to construction safety management of deep excavation

Risk Category Description Examples

1. Technical risk Risks caused by project characteristics, such as
adopted construction technologies or methods.

Sand boiling at the bottom of the pit;
Ground heave of the pit bottom.

2. Geological risk
Risks caused by harmful geological or underground
water conditions, such as caves, water capsules, and

poisonous gases.

Leakage of poisonous gas;
Water and mud gushing due to water capsules.

3. Environmental risk

Risks related to environmental destruction within
the scope of construction influence, such as damage

to surrounding buildings, structures, and
underground pipelines.

Cracking, slopping, or collapsing of surrounding
buildings (or structures);

Leakage or fracture of underground pipelines.

In response to the above safety risk categories, risk identification rules with cor-
responding risk factors should be established for risk identification. Traditionally, risk
identification rules and involved risk factors are often contained in the following three
sources [10,28]: (a) empirical knowledge collected from design specifications and construc-
tion manuals, (b) theoretical knowledge obtained from statistical models in research papers,
and (c) implicit knowledge of domain experts. The risk factors involved in the risk identi-
fication rules are often contributed by specific construction parameters corresponding to
different construction states. Thus, in this research, the identified risk factors are described
by different construction parameters. The following three steps are applied in accordance
with previous studies to obtain a detailed list of risk identification rules with specific
risk factors [28,29]. In practice, the first two steps are applicable to risk events with clear
definitions and mechanisms, and the third step can be used on those with uncertainties.

• Step 1: Safety risk events are defined by reviewing the construction documents,
through which related engineering terms can also be determined.

• Step 2: Based on the reliability analysis theory, limit state functions can be established
to analyze the safety risk events that can be solved with analytic models or by parsing
empirical formulas. Risk factors can then be obtained from the independent variables
of the limit state functions. For safety risk events where the analytical models are inap-
plicable, simulation models can be established using appropriate numerical methods,
such that the risk factors can be obtained from the parameters of the models.

• Step 3: Additional engineering expertise and practices are required to identify uncer-
tain risk factors.

• An information requirement model aiming at safety risk identification in deep excava-
tion is established (Figure 2).

As shown in Figure 2, the safety risk “Collapse of the retaining system” is presented
as an example to illustrate the modeling principles of this information requirement model:

1. This model consists of three layers: risk event, risk factor, and construction parameter.
Different factor combinations can result in different safety risk events. Each risk factor
is contributed by multi construction parameters.

2. The safety risk events considered in this model are stepwise reclassified based on the
adopted construction methods, supporting systems, the three objective risk categories
listed above (i.e., technical, geological, and environmental risks), and a risk list of a
specific risk category.

3. This research classifies the risk factors into two types: (a) static influential factors,
which refer to construction information that can be obtained directly from design
documentation before the construction operation stage (i.e., construction design,
hydrogeological, and circumjacent environment factors); and (b) dynamic influential
factors, which refer to construction information that can be obtained by monitoring
concrete construction activities during the construction operation stage (i.e., human
behavior, mechanical equipment, and working environment factors).
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4. Automatic risk identification is realized by defining construction parameters as vari-
ous discontinuous value ranges, which correspond to different certainty factors during
the risk reasoning stage. Some construction parameters are defined as ‘Yes’ or ‘No’.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 22 
 

 
Figure 2. Information requirement model for safety risk identification in deep excavation. 

As shown in Figure 2, the safety risk “Collapse of the retaining system” is presented 
as an example to illustrate the modeling principles of this information requirement model: 
1. This model consists of three layers: risk event, risk factor, and construction parame-

ter. Different factor combinations can result in different safety risk events. Each risk 
factor is contributed by multi construction parameters. 

2. The safety risk events considered in this model are stepwise reclassified based on the 
adopted construction methods, supporting systems, the three objective risk catego-
ries listed above (i.e., technical, geological, and environmental risks), and a risk list 
of a specific risk category. 

3. This research classifies the risk factors into two types: (a) static influential factors, 
which refer to construction information that can be obtained directly from design 
documentation before the construction operation stage (i.e., construction design, hy-
drogeological, and circumjacent environment factors); and (b) dynamic influential 
factors, which refer to construction information that can be obtained by monitoring 
concrete construction activities during the construction operation stage (i.e., human 
behavior, mechanical equipment, and working environment factors). 

4. Automatic risk identification is realized by defining construction parameters as var-
ious discontinuous value ranges, which correspond to different certainty factors dur-
ing the risk reasoning stage. Some construction parameters are defined as ‘Yes’ or 
‘No’. 

Ri
sk

 ev
en

t l
ay

er
Ri

sk
 fa

ct
or

 la
ye

r
Co

ns
tr

uc
tio

n 
pa

ra
m

et
er

 la
ye

r

Safety risks of deep excavation

Cover-cut method risksOpen-cut method risks

Construction methods

……

Technical risks Geological risks Environmental risks

Three objective risk categories

Collapse of the 
retaining system

Ground heave of 
the pit bottom

Sand boiling in the 
bottom of the pit ……

Risk list of this risk category

Working 
environment factors

Construction 
design factors

Hydrogeological 
factors

Circumjacent 
environment factors

Human behavior 
factors

Mechanical 
equipment factors

Diaphram wall risks Sheet pile enclosure risks Free standing wall risks ……

Supporting systems

So
il 

pr
op

er
ty

 o
f t

he
 p

it 
bo

tto
m

If 
th

er
e 

is 
so

ft 
gr

ou
nd

If 
th

er
e 

is 
co

nf
in

ed
 

w
at

er

…
…

Is
 th

e 
re

ta
in

in
g 

w
al

l 
em

be
dd

ed
 in

 th
e r

oc
k

Ra
tio

 o
f r

et
ai

ni
ng

 w
al

l 
pe

ne
tra

tio
n(

D
/H

)

Jo
in

ts 
pr

op
er

ty
 o

f t
he

 
re

ta
in

in
g 

w
al

l

…
…

 T
im

el
in

es
s o

f s
et

tin
g 

up
 b

ra
ci

ng

Is
 th

er
e 

he
ap

in
g 

lo
ad

in
g 

ar
ou

nd
 th

e 
pi

t

Yes No ……

Static factors Dynamic factors

Figure 2. Information requirement model for safety risk identification in deep excavation.

4.2. Expression Framework of the Information Requirement Model in IFC Form

Corresponding construction parameters must be extracted from different information
elements in the IFC files to identify the risk factors of related safety risks for risk reasoning.
Based on the expression methods of IFC4 for describing construction information, an
IFC expression framework, which meets the information requirement model, should be
designed. In this research, the IFC expression framework consists of four information ele-
ments (design, construction, environment, and derived), which correspond to construction
parameters reflecting six specific risk factors (Table 2). For simplicity, each information
element and its subtypes are assigned with a unique mark in the brackets.

The IFC expression framework of risk information for safety risk identification is
shown in Figure 3. The corresponding construction parameters must be extracted from
different information elements of IFC files to identify the risk factors of related safety
risks for risk reasoning. The following subsection illustrates the expression rules of four
information elements in IFC form. Especially, the current IFC4 cannot meet the above
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requirements of information description of the deep excavation field. Hence, extending the
IFC4 to guarantee the integrity of the required information of the IFC files is recommended.

Table 2. Four information elements involved in the IFC expression framework

Information Element Reflected Risk Factor
Category Subtype Description

1. Design information
(I-1)

1. Construction design
factors

1. Structure component
information (I-1-1)

The structure components that are
relevant to construction risk

identification of deep excavation
engineering.

2. Product type information
(I-1-2)

The functional categories and systems of
the components.

3. Spatial structure
information (I-1-3) The spatial level of the components.

2. Construction
information

(I-2)

1. Human behavior factors
2. Mechanical equipment

factors
3. Working environment

factors

1. Dynamic construction
information (I-2-1)

It chronologically records the
accomplished construction tasks, which

may vary over time.
2. Schedule information

(I-2-2)
The time points for acquiring the

dynamic construction information
3. Resource information

(I-2-3)
The construction information required

for representing the schedule.

3. Environment
information

(I-3)

1. Hydrogeological factors
2. Circumjacent

environment factors

1. Hydrogeological condition
information (I-3-1)

The hydrogeological condition of deep
excavation engineering.

2. Surrounding building and
structure information

(I-3-2)

The surrounding building and structure
condition within the scope of

construction influence.

3. Underground pipeline
information (I-3-3)

The underground pipeline condition
within the scope of construction

influence.

4. Derived information
(I-4)

(No certain risk factor
categories) /

Information obtained by evaluating the
data collected from the other three parts

using mathematical methods.
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4.3. IFC Expression of Four Information Elements with Necessary Extension
4.3.1. IFC Expression of the Design Information (I-1)

Figure 4 shows the main structural components in deep excavation, which are clas-
sified into different categories and systems (e.g., enclosure, wai purlin, and machinery
parts, support (the temporary structure), dewatering, and monitoring systems) according
to their typical engineering characteristics. In the following context, the enclosure, the
wai purlin, and the supporting system are emphasized to show the IFC expression of the
design information (I-1), focusing on its primary and secondary components.
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1. IFC expression of the structure component information (I-1-1)

According to IFC standard, attributes of each object entity and assigned values are
expressed through a specific property set. Extension based on property set is used to de-
scribe the primary components in deep excavation. Primary components can be described
by entities defined in the architecture domain of IFC4 to ensure the compatibility and
interoperability of the extended IFC model [30]. New property sets involving construction
parameters for safety risk identification are incorporated into these objects as an exten-
sion. In this research, for example, the geometric representations of IfcBeam, IfcColumn,
IfcPile, and IfcWall described in IFC4 are respectively adopted to present the primary
components of the inner support and purlin, the column and diagonal bracing, the pile and
waterproof curtain, and the underground continuous wall in deep excavation. Moreover,
extended property sets (i.e., Pset_SoldierPile (describing the pile and waterproof curtain),
Pset_DiaphramWall (describing the underground continuous wall), and Pset_InnerSupport
(describing the inner support)) are created based on practical component characteristics.
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Figure 5 shows the extension of the pile entity (IfcPile) as an example. Relationship
entities, such as IfcRelDefinedByProperties or IfcRelDefinedByType can be utilized to
establish the relationships between IfcPile and its associated property sets (including the
existing sets and the extended Pset_SoldierPile). In correspondence with construction
parameters related to risk factors, the properties contained in the extended property set
Pset_SoldierPile are shown in Table 3.
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Table 3. Property set extension of IfcPile

Entity Property Set Contained Properties Data Type

IfcPile Pset_SoldierPile

Entering-rock condition IfcBoolean
Depth ratio IfcReal

Occlusion condition IfcBoolean
Diameter IfcReal

Water-sealing measure IfcBoolean

Secondary components can be expressed by instantiating the IfcProxy entity objects
for good compatibility and ease of operation. For example, in deep excavation, soil nails
and anchor bolts can be expressed using user-defined model interfaces provided by the
IFC [31].

2. IFC expression of the product type information (I-1-2)

Product type information (I-1-2) can be expressed as shown in Figure 6, with corre-
sponding product type entities extended. These extended entities can be related to structure
components using relationship entity IfcRelDefinesByType.

3. IFC expression of the spatial structure information (I-1-3)

The IFC4 standard divides the space of building engineering into four spatial levels
(i.e., IfcSite, IfcBuilding, IfcBuildingStorey, and IfcSpace) from the top down. Considering
the above space division method and the special engineering characteristics of deep ex-
cavation projects, this study divides the deep excavation space into three levels: IfcSite,
IfcExcavationPartitionZone, and IfcSupportingLayer (Figure 7).
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4. Relationship expression between structure components

When creating an IFC model for the construction risk identification of deep excava-
tion projects, the actual construction conditions (i.e., construction methods, supporting
principles, engineering characteristics, and working conditions) should be considered and
addressed. In this manner, the model can express the entity relationships between different
physical components reasonably. For example, in deep excavation projects, crown beams
are used to maintain the integrity of the supporting system. The crown beams and concrete
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support are constructed during the same stage. Thus, the crown beams are associated with
the reinforced concrete support using the IfcRelConnectsElements entity.

5. Relationship expression between structural components and their spatial levels

In IFC4, any entity can only be assigned to a certain level of spatial structure to ensure
that the relationships between them are explicit. Their connections are established using
IfcRelContainedInSpatialStructure. Figure 8 illustrates some essential relationships in deep
excavation engineering.
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4.3.2. IFC Expression of the Construction Information (I-2)

The construction phase of a deep excavation project is often a long-term and complex
process, which consists of various tasks to be completed by multi- and subcontractors. In
this phase, various construction information can be involved, such as quantity, schedule,
resource, cost, site layout, safety management, and quality evaluation [32,33]. IFC descrip-
tion studies on this construction information can be found in the literature [23,24,34,35].
Considering the purpose of realizing automatic safety risk identification of the entire deep
excavation, this study mainly focuses on the schedule, resource, and quality evaluation of
the construction process, which are construction information related to safety risk factors.

The IFC expression of construction information (I-2) is briefly described in Figure 9.
Dynamic construction information (I-2-1) refers to information that may change as the
construction stage varies (e.g., the quality evaluation of concrete pouring) [32]. Schedule
information (I-2-2) represents the relevant time information in I-2-1, which is expressed
using the IfcWorkSchedule entity. Resource information (I-2-3) is expressed using the
IfcResource entity.
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4.3.3. IFC Expression of the Environment Information (I-3)

IfcGeographicElement is a new entity in IFC4. It represents the features of typical
geographical elements within a landscape [31]. In this research, environment information
(I-3) is expressed using IFC extension based on entity type, introducing new subclass IFC
entities with relevant properties (Figure 10).
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4.3.4. IFC Expression of the Derived Information (I-4)

Some parameters cannot be obtained directly from the object entities, but calculations
based on other information parts can be performed. For example, cover–span ratio is
obtained via equation H/D (H is the covering soil depth, and D is the tunnel diameter).
The calculation process is performed during the late risk identification stage through the
safety risk identification platform using corresponding mathematical models; thus, the
derived information (I-4) is ignored in the IFC model.
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4.4. Information Integration Using the IFC Data Model

Based on the IFC expression of different construction information illustrated above,
an IFC data model has been established to integrate these information elements for the
safety risk identification of deep excavation (Figure 11). Some relationship entities and
inheritance relationships are used to relate different information elements. For example,
I-2-2 and I-2-3 are linked using IfcRelAssignsToProcess, I-1-1 and I-2-2 are connected using
IfcRelAssignsToProcess, and I-1-1 and I-1-3 are associated through IfcRelContainedInSpa-
tialStructure.
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5. Application and Evaluation of the IFC Data Model in the Automatic Safety Risk
Identification of Deep Excavation
5.1. Workflow of the Automatic Safety Risk Identification Focusing on the Entire Deep
Excavation Process

An IFC data model-based approach is proposed in this research to realize automatic
safety risk identification focusing on the entire deep excavation process, which can be
divided into five steps.

1. After establishing a deep excavation information model meeting the level of details
for risk identification (i.e., meeting the information requirements according to the IFC
data model), a complete IFC file can be produced and input into the established risk
identification system application based on IFC.

2. Users can select a certain construction phase for safety risk identification. Then, a list with
construction information requirements that reflect the dynamic construction condition
on site is correspondingly generated by the risk identification system application.
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3. In accordance with the information requirement list, necessary dynamic construction
parameters (which can be obtained from field sensors and monitoring databases) are
input based on the real-time construction states.

4. Based on risk identification rules, the risk identification system application retrieves
and extracts required construction parameters from the IFC file and information
requirement list. Then, the exported engineering parameters are converted into
extensible markup language for risk reasoning.

5. Thereafter, the risk identification system application outputs the results, which mainly
consist of two parts (selected by users): (1) identified safety risk events, which have
high possibilities of occurrence, and (2) similar risk cases.

With the above process, safety risks in deep excavation projects can be identified
automatically, aiming at the entire deep excavation process. Risk identification in the
preconstruction stage is unrelated to the dynamic construction condition, which can be
automatically conducted by the risk identification platform based on the IFC data model
without dynamic information input.

5.2. Prototype System for Safety Risk Identification Based on the IFC Data Model

The safety risk identification of deep excavation according to the workflow above
is realized by establishing a CRIS prototype based on the IFC data model [28]. The
CRIS mainly contains three function modules: knowledge base management, information
retrieval, and risk identification.

1. Knowledge base management module

The core function of this function module is to act as a risk identification knowledge
base. Its main functions include fact, rule, and case base management. They are designed
mainly to collect, store, and represent safety risk identification knowledge (e.g., risk knowl-
edge facts, risk identification rules, and construction risk cases). Risk knowledge facts are
the knowledge base for conducting risk identification. According to our previous work [36],
eight essential parts of risk knowledge are involved in the fact base. Risk knowledge, such
as ‘safety risk’, ‘risk factor’, and ‘construction parameter’, which are closely related to the
risk reasoning and identification results, are mainly managed based on the information re-
quirement model. Table 4 shows related risk knowledge aiming at the risk of ‘surrounding
structure cracking’, which is described as an example.

Table 4. Main risk knowledge parts in the fact base

Risk Knowledge Part Description

1. Construction method The construction methods adopted in deep excavation projects
2. Supporting system The supporting system adopted in deep excavation projects

3. Safety risk Potential safety risks of certain construction methods using different supporting systems
4. Risk factor Risk factors leading to potential safety risks

5. Construction parameters Construction parameters leading to risk factors
6. Risk grade Severity of a risk

7. Risk consequence Expression of the outcomes of a risk
8. Risk prevention measurement Expression of prevention measurements to certain risks

2. Information retrieval module

Based on the IFC data model, the information retrieval module retrieves and extracts
construction parameters required for safety risk identification from IFC files [21]. Its
main functions include information depth management, IFC retrieval, and construction
information management.

3. Risk reasoning module

The risk reasoning module reasons safety risks involved in the construction process.
It is operated in conjunction with the rule-based reasoning method, and its main functions
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include reasoning algorithm management, reasoning, and reasoning result output. The
risk reasoning rules are stored in the rule base of the CRIS. The reasoning method for
identifying potential safety risks is briefly illustrated as follows:

CF(e) = ∑n
i=1 vi × CF(ei). (1)

CF(h) = CF(h, e)× CF(e), when, CF(e) ≥ λ (2)

where CF(ei) represents the certainty factor of certain value of a rule premise, vi is the
weight factor of a rule premise to a certain risk, CF(e) is the certainty factor of rule premises
of a certain risk, λ is the threshold of the rule, CF(h, e) is the rule certainty factor, and CF(h)
is the conclusion certainty factor.

5.3. Safety Risk Identification Using the CRIS Prototype

The effectiveness of the IFC data model-based safety risk identification approach is
evaluated by conducting a case study in the background of a typical deep excavation
project, using the CRIS prototype. It is a commercial building construction engineering
in Zhengzhou, China, with an 18-storey upper structure and a 2-storey substructure. The
excavation depth of this building project measures up to 10.5 m. Soil nailing walls and
pile anchors are utilized as a combined bracing system, and a light-well-point system is
adopted as the dewatering method. When the opencut method is adopted, the deep exca-
vation process can be divided into six phases: (1) preconstruction, (2) retaining structure
establishment, (3) foundation treatment and dewatering, (4) foundation pit excavation,
(5) main structure construction, and (6) foundation pit backfill. In this case study, safety
risk identification in the foundation pit excavation phase is emphasized. The workflow of
the safety risk identification process using the CRIS prototype is shown in Figure 12.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 22 
 

 
Figure 12. Workflow of the safety risk identification using CRIS. 

• IFC file generation 
Based on the input construction plan and the IFC data model, a basic deep excavation 

information model was established in Revit™. The primary structure components, such 
as retaining piles and enclosing purlins, were expressed by entity objects defined in IFC4. 
For the subordinate components—such as soil nails, anchor bolts, and dewatering wells—
their relevant component families with specific attributes were created. Then, these com-
ponent families were added to the project file to express the corresponding subordinate 
components. The correctness and completeness of the required information defined above 
were identified, and the necessary custom property sets were introduced into the model 
by deriving the IFC file from Revit™ and importing it into ArchiCAD™. Then, necessary 
custom property sets were added to corresponding primary structural components to out-
put a complete IFC file based on the IFC data model. When the IFC file was input into the 
CRIS prototype, a new project record was created. 
• Risk identification and result output 

After choosing the foundation pit excavation phase, a potential safety risk list was 
created in accordance with the construction methods adopted in this project. The infor-
mation involved in the list contained potential safety risk events, related factors, and re-
quired construction parameters. Based on the potential safety risk list, the required con-
struction parameters were extracted from the IFC files. Moreover, relevant construction 
parameters were input by users according to the dynamic construction sites and infor-
mation requirement list output by the CRIS prototype. Then, the system initiated the 
safety risk reasoning and identification process. Figure 13 takes soil flow in the bottom of 
the foundation pit as an example to illustrate the output results. 

Figure 12. Workflow of the safety risk identification using CRIS.



Appl. Sci. 2021, 11, 9958 16 of 20

• IFC file generation

Based on the input construction plan and the IFC data model, a basic deep excava-
tion information model was established in Revit™. The primary structure components,
such as retaining piles and enclosing purlins, were expressed by entity objects defined in
IFC4. For the subordinate components—such as soil nails, anchor bolts, and dewatering
wells—their relevant component families with specific attributes were created. Then, these
component families were added to the project file to express the corresponding subordinate
components. The correctness and completeness of the required information defined above
were identified, and the necessary custom property sets were introduced into the model
by deriving the IFC file from Revit™ and importing it into ArchiCAD™. Then, necessary
custom property sets were added to corresponding primary structural components to
output a complete IFC file based on the IFC data model. When the IFC file was input into
the CRIS prototype, a new project record was created.

• Risk identification and result output

After choosing the foundation pit excavation phase, a potential safety risk list was
created in accordance with the construction methods adopted in this project. The informa-
tion involved in the list contained potential safety risk events, related factors, and required
construction parameters. Based on the potential safety risk list, the required construction
parameters were extracted from the IFC files. Moreover, relevant construction parameters
were input by users according to the dynamic construction sites and information require-
ment list output by the CRIS prototype. Then, the system initiated the safety risk reasoning
and identification process. Figure 13 takes soil flow in the bottom of the foundation pit as
an example to illustrate the output results.
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2. Weak stratum reinforcement of the bottom of the foundation pit; 
3. Lower the water head difference between the inside and outside of a foundation pit. 

Figure 13. Safety risk identification results from the CRIS prototype (safety risk of soil flow in the
bottom of the foundation pit).
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5.4. Evaluation of the IFC-Based Safety Risk Identification

The effectiveness of the results generated from the CRIS prototype was evaluated by
performing a manual safety risk identification seminar. Two experts and three engineering
practitioners with rich domain experiences from the Center for Virtual, Safe, and Auto-
mated Construction of Hubei Province were invited to identify the potential safety risks
in this project. Considering the construction information in the foundation pit excavation
phase, the participants conducted safety risk identification based on construction draw-
ings, construction plans, risk management guidelines, and other documentation. After a
two-hour evaluation and discussion, the identification results—and associated suggestions,
which are shown in Table 5—were given by the seminar.

Table 5. Manual safety risk identification results and associated suggestions (partial)

Basic Project Information

Project name Deep excavation project of financial building,
Zhengdong New District. Excavation depth 10.5 m

Bracing method Soil nailing wall and pile- anchor combined bracing
system Dewatering method Light-well-point

dewatering system
Potential risk list

1

Risk name Soil flow in the bottom of foundation pit Risk grade II

Risk factors

1. Soil property of the bottom of the foundation pit:
2. Entering-rock state of the retaining structure;
3. Ratio of penetration (D/H) of the retaining structure;
4. Water head difference between the inside and outside of a foundation pit;
5. Weak stratum reinforcement state;
6. Soil thickness.

Risk results 1. Sudden occurence of the risk;
2. Soil damage and injuries.

Measures
1. Entering-rock of the retaining structure;
2. Weak stratum reinforcement of the bottom of the foundation pit;
3. Lower the water head difference between the inside and outside of a foundation pit.

2

Risk name Soil flow in the bottom of the foundation pit Risk grade II

Risk factors
1. Soil property of the inside and outside of a foundation pit;
2. Water head difference between the inside and outside of a foundation pit;
3. Watertightness of the retaining structure.

Risk results

1. An asymptotic behavior;
2. Formation of caves behind the retaining structure;
3. Soil subsidence in the lateral of the foundation pit;
4. Movement of the retaining structure wall to the lateral of the foundation pit;
5. Instability and failure of the supporting structure.

Measures
1. Add waterproof curtain;
2. Weak stratum reinforcement of the outside of a foundation pit;
3. Lower the water head difference between the inside and outside of a foundation pit.

A comparison of the risk identification processes of the CRIS prototype and the
seminar is shown in Table 6. Considering the main shortcomings of the traditional risk
identification method (e.g., time and manpower consuming, comprehensiveness of identi-
fied risks, and subjectivity in risk-related information expression) and engineering practice,
the effectiveness of the CRIS prototype is demonstrated from the following aspects: (1) the
time- and manpower-saving process; (2) the accurate result by identifying more potential
safety risks; and (3) the objective assessment with more related risk information.



Appl. Sci. 2021, 11, 9958 18 of 20

Table 6. Comparison of the safety risk identification process between the CRIS prototype and the seminar

Comparing Points Manual Risk Identification Risk Identification Based on CRIS

1. Consumption of time Two hours Ten minutes

2. Consumption of
manpower Five domain experts One user (any community)

3. Identified risk types

Five types
Notes:

1. The result list was determined through
expert discussion.

2. Contained subjective factors
3. Risks with greater probabilities were

identified.

Eight types
Notes:

1. The result was automatically generated by the system.
2. Calculated based on internal rules

3. Potential risks and their concrete probabilities were
identified at the same time, including all risks identified

by experts,
4. All the five types of safety risks identified by experts

have been included in the list through the CRIS. The
other three types of output through the CRIS have

relatively low-risk probabilities while requiring
attention to take necessary measurements.

4. Risk information
expression form

Included contents
Risk name, risk grade, risk factors, risk

result measures
Notes:

1. Based on experts’ knowledge and
experiments

2. Contained subjective factors
3. Not systematic

Included contents
Risk type, risk name, risk reliability, risk factors, risk

results, measures, risk site expression
Notes:

1. Based on the internal knowledge base
2. Will not change along with the subjective factor

3. Knowledge systematization

6. Conclusions

This research presents the development of a BIM-based central database, which aims to
enable information integration and exchange between the dynamic deep excavation process
and construction information in project planning documentation to support automatic
safety risk identification. In this process, the required construction information elements
and involved relationships (i.e., logical relationships and constraints among risk events,
risk factors, construction parameters, and construction phases) arising during the dynamic
construction process are examined and integrated. The IFC definition used in this research
acts as an important role in the central database establishment by meeting the information
expression requirements. An automatic risk identification approach is proposed based
on the IFC data model. Accordingly, a CRIS prototype is developed and tested under the
BIM environment. The effectiveness of the BIM-based central database in accelerating
automatic safety risk identification is illustrated by linking BIM elements and required
construction information corresponding to the dynamic construction process. Furthermore,
the IFC standard presented in this research can be used as the data storage standard
for field sensors and monitoring databases in future applications. Moreover, BIM-based
visualization can be supported through the IFC-based risk identification assisting platform,
and the research output can be utilized to facilitate decision-making for the promotion of
safety risk management in deep excavation.

6.1. Innovation

Comparing with the research documents of safety management based on BIM [37–39],
it is the first time focusing on the information integration and exchange for the safety risk
identification of deep excavation construction based on IFC in this research work. This
research presents an approach of automatic construction risk identification aiming at the
entire deep excavation process, based on the extended IFC model. A system prototype
for risk identification is established and a practical deep excavation project is taken as the
testing background. Results illustrate the effectiveness of the IFC data model in accelerating
automatic safety risk identification by supporting the information integration and exchange
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between the dynamic deep excavation process and the established building information
models. Decision making for taking timely risk control measures can be assisted, which
then promotes safety risk management in deep excavation projects.

6.2. Limitations and Future Work

There are some limitations to be addressed in future research in this area. Safety
risks of deep excavation projects vary (i.e., technical, geological, environment, equipment,
behavioral, and management). This research mainly focused on the first three types. The
proposed IFC data model can be expanded in the future to cover more risk types and
accelerate the application of related assisting platforms in extended fields. Additionally, for
typical risk (e.g., geological risks), comprehensive risk factors (including soils composition
heterogeneity and surveying uncertainty) and corresponding risk identification rules
should be identified. Risk identification application with more practical project cases
should be conducted to evaluate and improve the IFC data model and the IFC-based
risk identification approach. In addition to the adoption of the IFC data model, risk
identification-related assisting platforms should also optimize reasoning algorithms and
function implementations further to enable the most valid application in the future.
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