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Analogue artificial neural networks are widely considered as promising computational models that more closely
imitate the information processing capabilities of the human brain compared to digital neural networks. The
significant computation power and the much reduced power consumption per operation make the analogue im-
plementation of neural networks very attractive. There is an active research on artificial neural networks (ANNs)
implementation using both analogue photonic and electronic hardware [1–4]. However, compared to digital re-
alisations the conventional analogue systems are more sensitive to the noise that is inevitably present in practical
implementations [2, 3]. Noise properties in ANNs have been studied both in the electronic and photonic domains.
However, photonic ANNs are much less investigated compared to the electronic implementations, for which some
training techniques have been proposed to enhance ANNs robustness against noise [1, 4].

In this work we examine photonic ANNs and demonstrate that some known methods proposed to train noise-
resilient electronic ANNs are not optimal for photonic implementations. More specifically, we reveal that the noise
injection combined with the gradient clipping training approach which is shown to be effective in electronic-based
hardware, is not efficient against the noise in the photonic domain. We also examine the performance of feed-
forward neural networks (FNNs) and also explore how the noise propagation through recurrent neural networks
(RNNs) can be adopted to reduce detrimental impact of noise.
Finally, we propose and optimised noise injection training method for analogue photonic ANNs. Both a Multi-
layer Perceptron (MLP) and a RNN have been trained on MINIST dataset using two approaches to noise injection,
using analogue photonic noise features described in [5]. In the first one, the weight Wl of layer l is drawn from
a Gaussian distribution N(Wl ;Wl

0,σ
2
N,lI). The noise is reference to the range of representable weights, σ2

N,l =

η(W l
max −W l

min). The values W l
max and W l

min are obtained based on the statistics of the weights. The hyper-
parameter η is a coefficient characterising the noise and the range of the weight values is reduced by clipping
them to the interval [W l

min;W l
max]. The second noise injection training method that we study, defines the weight W l

of layer l from a Gaussian distribution N(Wl ;0,σ2I).
In Table. 1 the performance of the two networks trained using both methods are illustrated. For these results an
optimisation process has been carried out to find different optimal values of the parameters η and σ2. Comparison
to the performance of the model without noise injection during training, used as a baseline, makes it clear that
the feed-forward nature of the MLP improves its resilience to noise, and that noise injection always upgrades this
resilience. For the case of the MLP, it is shown that the best obtained accuracy is 89.3 % for η = 8×10−4, in the
case of the weight clipping approach, and 89.5 % for σ2 = 10−5 when using the alternative approach. It is seen
that the performance achieved by these two methods is quite similar. In the case of the RNN we demonstrate that
the second approach achieves a better performance than the weight clipping method, as the achieved accuracies
are 85.6% and 83.5%, respectively.

Table 1: Performance of a RNN on MINIST trained using different methods while suffering from analog non-idealities caused
by pothonic noise.

Method MLP best accuracy values (%) RNN best accuracy values (%)
Gaussian Noise Injection with Weight
Clipping 89.3 (η = 8×10−4) 83.5 (η = 1×10−3)

Gaussian Noise Injection 89.5 (σ2 = 1×10−5) 85.6 (σ2 = 2×10−3)
Standard Training 89 45.5

In conclusion, we demonstrate that noise injection is a promising technique that makes photonic analogue ANNs
more resilient to noise. Nevertheless, further optimisation is required in order to make it an efficient method for
different types of network architectures and hardware implementations.
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