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A B S T R A C T   

Increasing the cycle efficiency of Organic Rankine Cycles is an important R&D area. In this study, an effort has 
been made to optimize various parameters related to the axial flow turbine to maximize an ORC’s efficiency. 
First, a numerical model for a small-scale single-stage axial flow turbine was developed and coupled with a 1D 
model of an existing ORC system. Then, a parametric study was undertaken for the system working under various 
turbine inlet conditions, such as turbine pressure ratios and working fluids. An optimization study was under-
taken for the turbine flow profile using a low computational intensity Artificial Neural Network coupled with 
Genetic Algorithm optimization. Investigating the turbine losses revealed that the Mach Number is the most 
influential factor, which depends on the molar mass of the working fluid. Our study revealed that increasing the 
degree of superheat by up to 200% enhanced the turbine and overall cycle efficiency by 11% and 5%, respec-
tively. Increasing the turbine total-to-static pressure ratio from 3 to 10 improved the turbine and cycle efficiency 
by up to 41% and 15%, respectively. Optimizing the turbine’s flow profile enhanced the overall loss coefficient 
by 13.7%, the turbine’s total-to-static efficiency by 5.2%, and the overall cycle efficiency from 8.78% to 9.02%.   

1. Introduction 

Worldwide, the power generation sector contributes to 60% share of 
the global CO2 emissions. The carbon emission causes of global warming 
that led to profound environmental impacts in the last few decades such 
as severe flooding, tsunamis, unbalanced marine ecosystems, higher 
storm surges, and destruction of arable land [1, 2]. Therefore, a mix of 
energy sources is required to meet the ever-growing energy demand with 
far less environmental impact. Medium-grade waste heat sources (150 - 
250◦C) are available in many industrial applications such as reheating 
furnace exhausts, blast furnaces, drying and baking ovens, reheat furnace 
coke ovens, glass melting, cooling water from annealing furnaces, and 
steam boiler exhaust gases [3–7]. These waste heat sources can be used to 
generate useful energy [7]. Although steam-based Rankine cycles are the 
most reliable thermal power generation system, they are thermally less 
efficient if utilizing heat sources below 370◦C. Organic Rankine Cycles 
(ORCs) are a more feasible alternative to utilize medium-grade heat [8]. 
Whereas the efficiency of steam-based Rankine cycles has attained 
maturity, ORCs are still under development, as their performance highly 
depends on heat source temperatures, heat source fluctuations, cycle 
configuration and expander types and their designs [9]. 

The ORCs utilize organic fluids of low boiling temperature and a high 
molecular mass to exploit medium-grade to low-grade heat sources and 
generate mechanical shaft power by expanding the high enthalpy fluid 
produced in the boiler in the expander. Axial flow turbines are widely 
used in ORCs because of their superior reliability, greater scalability 
with pressure ratios, design simplicity, relatively less wear and tear due 
to the reduced moving parts, and minimum vibration [10]. 

Multiple studies investigated the intensification of power conversion 
efficiency of ORCs working at a given heat source temperature by 
employing various working fluids [11]. Many such studies assumed a 
fixed value for the turbine efficiency between (60 - 90 %), primarily 
because of the complication in determining the turbine losses [12–17]. 
Numerous studies investigated the implications of the expander per-
formance in ORCs. Song et al. [18] developed a one-dimensional model 
to correlate the cycle design to the expander efficiency. They concluded 
that the turbine efficiency significantly impacts selecting the working 
fluid and the cycle’s parametric determination [18]. Hung et al. [8] 
observed a significant change in the cyclic efficiency by varying the 
pressure ratio and inlet temperatures in the expander for a given isen-
tropic expansion. White et al. [19] considered the variation of turbine 
efficiency in optimizing the ORC cyclic efficiency. 

There are two main approaches to predict turbine efficiency: direct 
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and indirect approaches. The direct approach consists of a group of in-
dividual losses collated into a loss model [20], while the indirect 
approach employs non-dimensional parameters such as volume ratio, 
size parameter, flow coefficient, and load coefficient [19]. These 
non-dimensional parameters are less reliable for predicting Reynolds 
number effects & fluid thermodynamic behaviour particularly for cases 
where geometric similarity is not maintained with the original test 
profiles or in the case of fluids with lower molecular mass [21]. Soder-
berg’s model was developed in 1949, and one of the first to use the direct 
approach widely accepted [22]. Lazzaretto et al. [23] employed the 
indirect approach to undertake an optimization study to maximize the 
turbine efficiency that considered the volumetric expansion ratio and 
size parameter as performance predictors. Macchi and Perdichizzi 
developed correlations between non-dimensional parameters and Axial 
ORC turbine efficiency based on the direct approach Craig and Cox loss 
model [21]. The Craig and Cox loss model was developed in 1971 and 
validated by many researchers [24, 25], still considered a reliable and 
accurate method for designing modern impulse-bladed axial flow tur-
bines [26, 27]. 

The degree of superheating and pressure ratio significantly influence 
the turbine performance, hence the overall cycle operation. The 
admission of a working fluid at a high degree of superheating to the 
expander increases the thermodynamic potential across it for a given 
pressure ratio, thus providing theoretically economical solutions to 
improve expander power output [28].Superheating also allows devel-
opment of ORCs with wet working fluids [29]. However, extracting the 
additional thermodynamic potential of superheated fluid depends on the 
fluid flow passage’s losses [30]. Lozza [31] proposed expanding the 
working fluid directly from the saturated condition at the highest 

possible pressure to maximize the power output. It was found that this 
change had minor effects on the variation in turbine efficiency. Yama-
moto et al. [32] carried out a parametric study for ORC utilizing 
HCFC-123 and observed that ORC performance is a strong function of 
the expander’s operation, which led to reselecting the working fluids of 
low latent heat and saturated inlet conditions. Weiß et al. [33] con-
ducted an experimental study on axial and radial inward small scale 
ORC turbines. They reported that in the case of the axial turbine, the 
isentropic efficiency was increased by about 2% when the pressure ratio 
was changed from 16 to 22; on the other hand, operating at pressure 
ratios below 14 showed a decrease in the isentropic efficiency by 8%. 
The steeper change in the isentropic efficiency at low pressure ratio was 
attributed to compression shocks in the convergent-divergent nozzle 
section. 

Although the mean-line design and CFD modeling approaches are 
widely used to predict the performance of axial flow turbines, Artificial 
Neural Network (ANN) is less computationally intensive and more 
reliable if specifically coupled with global optimization. Oyama et al. 
[34] employed ANN to optimize the design of a transonic axial flow 
compressor. Previous studies using ANN for turbine optimization were 
limited to either profile improvement or cycle efficiency [35, 36]. 
Rashidi et al. [37] employed ANN coupled with Swarm of Bees to 
optimize the efficiency of an ORC with regenerative feedwater heaters. 
Meroni et al. [38] optimized ORC cycle efficiency while considering a 
variable turbine efficiency by integrating a one-dimensional turbine 
model with a steady-state thermodynamic cycle model. The authors 
considered mass flow rate, pressure ratio, and turbine parameters as 
independent variables. They concluded that the pressure ratio was more 
impactful on the overall cycle efficiency [38]. Most studies found in the 

Nomenclature 

b Backbone length (m) 
C Fluid velocity(m/s) 
Ca Axial Fluid velocity (m/s) 
CR Contraction ratio 
Dh Hydraulic diameter (m) 
FL Lift Parameter 
G Loss coefficient 
g Universal gas constant (J/mol K) 
ks Equivalent sand grain roughness (µm) 
H Specific Enthalpy (kJ/kg) 
LCm Modified lift coefficient 
lossincr Trailing edge loss increment 
M Mach number 
Machoutisen Outlet isentropic Mach number 
MM Molar mass (g/mol) 
NSaspectrat Aspect ratio loss 
Npi Incidence loss 
Npr Reynolds Number loss 
Npt Trailing edge thickness loss 
Power Work done by turbine (KW) 
P Pressure (Bar) 
Re Reynolds number 
s Pitch (m) 
SS sound speed (m/s) 
T Temperature (◦C) 
te Trailing edge thickness (m) 
thr Throat width (m) 
u Blade velocity (m/s) 
V Relative velocity (m/s) 
Xa1 Annulus loss 
Xpb Profile loss 

Xsb Secondary loss 
ΔXPse Blade back radius loss 
ΔXpm Mach number loss increment 

Greek 
α Metal exit angle (◦) 
η efficiency 
γ Adiabatic gas constant 
µ Dynamic viscosity (kg/m-s) 
φ Flow Coefficient 
Ψ Load Coefficient 
ϱ Density 

Subscript 
a Annulus loss 
B Blade 
det determiner 
Group1 Group 1 loss 
in inlet 
N Nozzle 
p Primary loss 
s Secondary loss 
1 Before nozzle 
2 Between nozzle and blade 
3 After blade 

Abbreviation 
ANN Artificial Neural Network 
CFD Computational Fluid Dynamics 
GA Genetic Algorithm 
GWP Global Warming Potential 
ORC Organic Rankine Cycle  
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literature concerned a single optimized solution with fewer details on 
the influence of individual ORC parameters, specifically for axial flow 
turbines [39]. 

Although previous studies highlighted the importance of considering 
the variation of the turbine efficiency on ORC performance, the influ-
ence of the actual axial flow turbine’s efficiency on the cyclic perfor-
mance in small-scale ORC is yet to be understood [40]. Furthermore, 
most studies have studied turbine efficiency or cycle efficiency, but not 
simultaneously [35, 36]. Therefore, the present study aims to envisage 
the cause of the turbine efficiency losses in the small-scale axial flow 
turbines and their impact on ORC performance. The objectives of the 
study are: (i) employing the direct loss model of Craig and Cox to imitate 
a small scale axial flow turbine and integrate it with a 1D model of an 
existing Rankine cycle, (ii) understanding the influence of turbine inlet 
flow conditions and total-to-static stage pressure ratio on the turbine and 
cyclic performance utilizing low, medium and high temperature organic 
fluids, and (iii) employing ANN deep learning modelling coupled with 
generic algorithm (GA) global optimization to optimize the turbine flow 
path and study its influence on the ORC performance. 

The range of parametric analysis and employing an objective, 
computationally efficient predictive model coupled with a global opti-
mizer are the critical contribution of this study. Multiple variations 
considered explain the relationship between turbine efficiency and 
working fluid parameters, using a direct-loss approach, rather than 
conventionally used indirectly loss correlations [21, 41]. It enabled 
studying the impact of basic thermodynamic working fluid parameters 
like sound speed, isentropic enthalpy drop and molar mass. The use of 
ANNs trained by a direct loss model also demonstrates the loss 
compromise at the less significant moving blade efficiency to improve 
the more significant nozzle efficiency, hence improve overall turbine 
isentropic efficiency. This ANN integrated approach for turbine opti-
mization allows a new methodology for cycle level analysis. 

2. Materials and methods 

2.1. Working fluids 

Six working fluids were investigated: Pentafluoropropane (R245fa), 
Isobutane (R600), 2,3,3,3-Tetrafluoropropene (R1234yf), 1,3,3,3-Tetra-
fluoropropene isomers (R1234ze(E), R1234ze(Z)), and trans-1-chloro- 
3,3,3-trifluoropropene R1233zd(E). R245fa and R600 are the most 
popular fluids for low-to-medium-grade heat with relatively high spe-
cific power throughput owing to their low saturation temperature [42, 
43]. They were considered by the study as baseline fluids. R1234yf and 
R1234ze isomers are emerging alternatives to alleviate the environ-
mental impacts of the existing organic fluids [44]. R1233zd(E) is a 
drop-in replacement for R245fa with lower Global Warming Potential 
(GWP) [45]. 

2.2. Turbine losses modeling 

In this study, Craig and Cox’s model was employed to determine the 
performance of an existing axial flow turbine [20]. Craig and Cox 
developed a graphical correlation based on profile and secondary losses 
obtained from linear cascade tests, mainly derived from testing with 
compressed air. This was supplemented by loss corelations from previ-
ous efforts focused on specific annulus losses [46–49]. The detailed 
description of Craig & Cox model and the developed. Numerical corre-
lations are provided in Supporting Information. 

The model determines two groups of losses: group-1 that includes the 
nozzle’s primary loss, nozzle’s secondary loss, nozzle’s annulus loss, 
blade’s primary loss, blade’s secondary loss, and blade’s annulus loss; 
group-2 that includes nozzle gland leakage loss, balance hole loss, rotor 
tip leakage loss, lacing wire loss, wetness loss, disc windage loss, and 
partial admission loss. This study concentrated on group-1 losses to 
determine the aerodynamic efficiency associated with the flow path 

design. Equations 1-5 present the breakdown of nozzles and blades’ 
primary, secondary, and annulus losses based on Craig and Cox’s maps 
fitting [20]. 

GpN = XpbN×NprN×NpiN×NptN + lossincrN + ΔXPseN + ΔXpmN (1)  

GsN = NprN × NSaspectratN × XsbN (2)  

GpB = XpbB × NprB × NptB + lossincrB + ΔXPseB + ΔXpmB (3)  

GsB = NprB × NSaspectratB × XsbB (4)  

Ga = Xa1 (5) 

The Profile losses due to the flow deviation (XpbN, XpbB), Rey-
nold’s number losses account for wall friction (NprN, NprB), incidence loss 
(NpiN, NpiB), and trailing edge thickness loss for the nozzle and blade 
(NptN, NptB) are combined to evaluate the nozzle and blade primary 
losses expressed by GpN and GpB. lossincrN and lossincrB define the 
additional loss increment due to trailing edge loss for the nozzle and 
blade. Profile losses due to blade back radius were considered by ΔXPseN 
and ΔXPseB. ΔXpmN and ΔXpmB factor additional losses for supersonic 
flow with convergent blading. The combined secondary loss factors 
(GsN and GsB) are a function of the secondary loss factors (XsbN and 
XsbB) and secondary loss due to aspect ratio (NSaspectratN and NSaspectratB). 
The total auxiliary loss (Ga) is a function of annulus loss Xa1. Equations 
6-7 show the blade losses [20]: 

GGroup1N =
GpN + GsN + Ga

200
(6)  

GGroup1B =

GpB + GsB + Ga ×

(
C2

3
V2

3

)

200
(7) 

Group 1 losses for the nozzle and blade are the summation of GGroup1N 
and GGroup1B. The incidence losses (NpiN and NpiB) were not considered in 
this study. 

2.3. Cycle modelling & assumptions 

The T-S diagram and Basic components of the superheated ORC cycle 
are shown as in Fig. 1(a) and 1(b) respectively. An industrial boiler’s flue 
gas stack was considered as the heat source. The heat source stack mean 
temperature of 170◦C was considered [50]. The heat input QIn to the 
Boiler was stated as in equation 9. QOut is the rejected heat from the 
system by a water-cooled surface condenser and operates at 30◦C mean 
temperature, as shown in equation 11. Work done (WIn) and efficiency 
(ηT) of the turbine were quantified using equations 8 and 10. Cycle ef-
ficiency was quantified as in equation 12. 

WIn =
ṁ × (P1 − P7)

ηP
(8)  

QIn = − ṁ(h4 − h1) (9)  

ηT = (1 −
(
GGroup1N + GGroup1B

)
(10)  

QOut = ṁ(h5 − h7) (11)  

ηCycle =
WT − WP

QIn
=

ṁ × ((h4 − h5) − (h1 − h7 ))

QIn
(12) 

The study was limited to subcritical cycles. The heat source and sink 
temperatures were assumed as constant. Pinch point for the heat source 
was considered as 10◦C [51, 52]. The pinch point for the heat sink was 
considered as 5◦C [53]. As the turbine was assumed to operate at the 
design point, off design losses were ignored. Profile trailing edge 
thickness was maintained as 0.3mm, considering limitations within the 
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Fig. 1. (a) T-S diagram of superheated ORC for R245fa, (b) components of a superheated ORC  

Fig. 2. The architecture of Artificial Neural Network  

Fig. 3. The layout of an optimization procedure  
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manufacturing process. Gearbox and Generator losses were ignored 
[54]. Although the feed pump efficiency was assumed as 70%. The work 
done by the pump was ignored for determining cycle efficiency, as it was 
negligible compared to the turbine work [55]. 

2.4. Deep learning and optimization 

Using conventional modeling approaches to optimize the turbine 
design is computationally intensive. The interrelated parameters that 
are strongly correlated to the turbine design are the aerodynamic losses, 
pressure ratio, flow coefficient, stage-loading coefficient, blade velocity, 
exit angles across the flow path, enthalpy drops across the turbine, and 
Mach numbers. Therefore, a black-box model based on ANN was 
developed to correlate the turbine design parameters and the overall 
cycle efficiency, which subsequently coupled with a GA to optimize the 
turbine design globally. Fig. 2 shows the connection between the input, 
hidden, and output layers of the ANN. Fig. 3 presents the integration 
between ANN and GA. 

In this study, 210 trials were generated from the developed 3D flow 
path model and employed to develop the neural network; 70% of the 
data points were used to train the neural network, 15% were used to 
internally validate the neural network evolution to halt the training 
when generalization stopped improving, while the remaining 15% were 
used to verify the developed neural network independency. A dropout 
rate of 0.8 was utilized, which provided a good balance between refining 
the existing population and allowing new variants. The network 
comprised 70 neurons in the hidden layer, exceeding the number of 
individual non-linear terms in the loss model to avoid underfitting the 
function. While previous studies used a trial and error method to 
determine the number of neurons, which was time-consuming and relied 
on operator experience [56], this study considered many neurons, as 
neural networks did not suffer from over-specifying the problem. A 
unipolar log-sigmoid activation function was chosen for the hidden layer 
owing to its robustness [57]. Bayesian Regularization algorithm was 
employed to train the network due to its robustness for quantitative 
studies, demonstrating the highest correlation coefficient between pre-
dicted and actual data sets [58]. The GA was employed to determine the 
global optimal design parameters of the axial flow turbine within the 
predefined constraints (Table 1). 

3. Results and discussion 

3.1. Predictive models verification 

The results predicted by numerical Craig and Cox and ANN black-box 
models were benchmarked against their actual values measured during 
the steady operation of an existing 450 kW axial-flow impulse back- 
pressure steam turbine manufactured by IB Turbo – India (Fig. 4). The 
turbine consisted of 40 stationary nozzles along with 221 moving blades. 
The nozzle exit metal angle was maintained as 20◦. The moving blade 
metal inlet and exit angles was machined at 22.5◦ and 19◦ to the 
tangential axis. The nozzles had mean pitch, height, throat width and 

exit area of 12.4 mm, 42.7 mm, 40.6 mm and 64.1 mm2 respectively. 
The turbine mean diameter is 336.55 mm, operated at 9000 rpm, inte-
grated with an alternator through a gearbox. The Turbine was rated for 
6.38 kg/sec of mass flow rate, steam inlet conditions up to 15 Kg/cm2 

and 330◦C, while steam exhaust pressure was limited to maximum of 9 
Kg/cm2. Total-to-static turbine efficiency was modelled to within 3% 
deviation using the Craig and Cox loss model, meaning good agreement 
with the actual values at multiple load points, as in Table 2. 

3.2. Effect of turbine inlet temperature 

To study the influence of the inlet temperature on the turbine and 
cycle performances, the loss models were incorporated into a 1D model 
for a superheated ORC cycle, shown in Fig. 1. The turbine inlet tem-
perature was between 110◦C and 160◦C to ensure that the working 
fluids are in superheated condition. Turbine inlet and outlet pressure 
were maintained at 15 Kg/cm2 and 4 Kg/cm2, respectively. As shown in 
Fig. 5a, total-to-static turbine efficiency showed an improvement in all 
fluids except for R600. The improvement in turbine efficiency for 
R245fa, R1233zd(E), R1234ze(Z), R1234ze(E) and R1234yf were 
11.1%, 11.7%, 8.4%, 4.1% and 3.8% respectively. The combined effect 
of the increased inlet fluid enthalpy and variable turbine efficiency 
increased the power output by up to 36% (Fig. 5b). Using R245fa, 
R1233zd(E) and R1234ze(Z) working fluids demonstrated improved 
cycle efficiency, whereas R1234yf, R1234ze(E), and R600 demonstrated 
a reduction in cycle efficiency with increased superheat (Fig. 5c). 
R245fa, R1233zd(E) and R1234ze(Z) experienced the least drop in in-
ternal energy across the turbine, which was noted by their lowest power 
output, as shown in Fig. 5b. The low outlet isentropic Mach numbers, by 
up to 8% for these fluids, led to a lower isentropic heat drop (Fig. 5d). 

Furthermore, the U/C2 ratios observed for R245fa, R1233zd(E) and 
R1234ze(Z) were on average 18% higher than those for other fluids 
(Fig. 5e). On the other hand, the flow coefficients were lowest for these 3 
fluids, as shown in Fig. 5f, which is well-aligned with the literature [59]. 
From the results, it can be concluded that using a multistage, higher 
rotational speed, or a larger diameter turbine is highly recommended for 
R600, R1234yf, and R1234ze(E) to maximize turbine efficiency for such 
fluids. 

To understand the contradicting trend of turbine efficiency for R600 
fluid, the breakdown of individual losses was investigated. The overall 
turbine loss consists of the primary and secondary losses for the nozzles 
and blades. Fig. 6 shows the distribution of the loss factors for all 
working fluids into the turbine stage for all fluids within the temperature 
range of 110 - 160 ◦C. The primary blade loss in R600 increased by 6.1%, 
compared to 1.7%, 1.48%, 2.62%, 2.59%, and 2.6% for R245fa, 
R1233zd(E), R1234ze(Z), R1234yf, and R1234ze(E), respectively. This 
can be attributed to the moving blade profile, the fluid velocity, the high 
enthalpy drops, and the low molar mass. 

The moving blade has a slightly converging flow path across its 
length, limiting the velocity drop across the profile (Fig. 7). At super-
sonic flow, the converging fluid path results in a further increase in 
velocity. Thus, while all other fluids operated at subsonic or transonic 
conditions, R600 operated at supersonic conditions, as the convergent 
flow path compounded the fluid velocity. 

As fluid velocity was higher for R600, the fluid experienced higher 
localized velocities at the suction surface. The incremental profile loss 
generated was applicable for Mach numbers higher than 0.7 and pitch- 
to-suction surface ratios lower than 0.7 [20]. The enthalpy drop across 
the turbine is relatively higher in the case of R600. The enthalpy drop is 
a function of internal energy. The drop in internal energy across the 
investigated turbine was 77.6 Joules for R600; while R245fa, R1233zd 
(E), R1234ze(E), R1234ze(Z), and R1234yf, the internal energy drop 
was 33.4, 33.5, 39.7, 37.2, and 38.9 Joules, respectively. It meant a 
greater magnitude of conversion from internal to kinetic energy, 
maintaining the fluid at supersonic conditions and resulting in propor-
tionately greater Mach number loss. 

Table 1 
Turbine optimization constraints for Genetic Algorithm  

Parameter Lower constraint Upper constraint 

Speed (in RPM) [59] 2000 7000 
Hub diameter [59] 0.1 0.7 
Degree of reaction [60] 0.0 0.5 
Nozzle exit angle [61] 12 20 
Nozzle throat [62] 0.003 0.01 
Blade throat[62] 0.002 0.01 
Nozzle pitch [63] 0.01 0.04 
Blade pitch [63] 0.015 0.04 
Nozzle backbone length [20] 0.02 0.1 
Blade backbone length [20] 0.02 0.1  
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Generally, it is not uncommon to operate in the supersonic regime 
because of their low molar mass; this was more significant in R600 due 
to its relatively lower molar mass of 58.12 g/mol. The molar mass of 
R245fa, R1233zd(E), R1234ze(E), R1234ze(Z) and R1234yf are 134.04, 
130.5, 114.04, 114.04, and 114.0 g/mol, respectively [39]. The corre-
lation between these factors is shown in equations 13 and 14. 

M =
u
c

(13)  

c =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

γT
R

MM

√

(14) 

R and MM denote the universal gas constant and the molar mass of 
the fluid. 

Contradictory to the consensus that superheating causing a loss in 
ORC efficiency [12-16, 64], it was observed that superheating of the 
working fluid could lead to improved cycle efficiency when used with 
high molecular mass fluids converging blade profiles and subsonic fluid 
velocities. The turbine efficiency varied between 66 and 83% (Fig. 5a). 
This revealed that the working fluid properties and the turbine’s design 
configuration are interrelated. Thus, it reflects the importance of 
considering the loss model at the component and cycle levels. 

3.3. Effect of turbine pressure ratio 

The effect of varying the pressure ratio on the turbine’s efficiency 
was investigated by varying the turbine inlet pressure ratio between 3 
and 10. The turbine inlet temperature was maintained constant at 140 
◦C. The additional enthalpy drop across the turbine led to a more 
effective temperature drop (Fig. 8). Although the turbine efficiency 
demonstrated a significant improvement up to a pressure ratio of 6, the 
benefits were less significant beyond that, as shown in Fig. 9. The power 
generated at pressure ratios above 6 was at limited efficiency (Fig. 10). 
For R600, increasing the pressure ratio reduces the turbine efficiency, as 
the energy losses in the form of heat are relatively higher when 
compared to other fluids. Such heat losses are primarily due to the high 
flow speed over the turbine blades, which is the work-producing 

element in the turbine due to its low molar mass, leading to super-
sonic flow. Fig. 11 demonstrated improvement in cycle efficiency in all 
cases by increasing the pressure ratio. 

Interestingly, the breakdown of the losses shows a significant in-
crease in total losses beyond the pressure ratio of 6 (Fig. 12). Whereas a 
proportional increase of loss coefficient of about 4.5 was observed per 
unit increase in pressure ratio for the nozzle primary losses, the blade 
primary losses demonstrated an exponential two-fold increase beyond 
the pressure ratio of 6, as shown in Fig.s 13 and 14, respectively. On the 
other hand, the change of the secondary losses is marginal with the 
pressure ratio (Fig.s 15 and 16). 

Detailed investigation of the primary losses demonstrated a direct 
relationship between the fluid velocity and primary loss coefficients, as 
shown in Fig. 17 and 18. The Mach number loss was observed to be the 
most influential on the turbine efficiency. A 44% increase in the nozzle 
outlet isentropic numbers led to a corresponding 275% increase in the 
nozzle primary loss coefficient, which indicating conventional profiles 
experience difficulty undertaking a high expansion ratio [21]; therefore, 
multistage turbines could be considered for higher pressure ratios, as 
suggested by Meroni et al. [39]. The additional profile increment loss 
was a component of the nozzle primary loss, which occurred for values 
of blade exit isentropic Mach numbers beyond 1.2 [20]. 

All the investigated fluids, except R600, the moving blade outlet 
isentropic Mach number demonstrated subsonic fluid velocities up to the 
pressure ratio of 6. A further increase in pressure ratio led to the oper-
ation in the transonic regime. It was observed that increasing the pres-
sure ratio from 3 to 6 led to an average increase of the blade primary loss 
coefficient by 172% (3.8 units). Increasing the pressure ratio from 6 to 9 
increased the blade primary loss coefficient by 191% (11.5 units). 
Pressure ratios between 3 and 5 demonstrated a reduction in fluid ve-
locity, indicating that the given turbine was best configured for a pres-
sure ratio of 5 for these fluids. On the contrary, R600 demonstrated an 
increase in total loss coefficient across the entire range of pressure ratio; 
this is due to the higher moving blade primary and secondary losses 
resulted from the higher working fluid velocity at the moving blades. 
These characteristics are shown in Fig.s 18 and 19. 

Fig. 4. Pictorial view of the simulated steam turbine operates in a rice mill firm at Karnal, India (permission granted for image)  

Table 2 
Modelling verification results  

Thermodynamic parameters Experimental data Craig & cox model ANN 
Load 1 Load 2 Load 3 Load 1 Load 2 Load 3 Load 1 Load 2 Load 3 

INPUT Inlet Pressure (Kg/cm2) 10.5 14.4 9.44 10.5 14.4 9.44 10.5 14.4 9.44 
Inlet temperature (◦C) 296 311 295 296 311 295 296 311 295 
Outlet Pressure (Kg/cm2) 7.8 8.7 6.6 7.8 8.7 6.6 7.8 8.7 6.6 
Mass Flow rate (Kg/cm2) 6.11 3.32 5.36 6.11 3.32 5.36 6.11 3.32 5.36 

Total-to-static stage efficiency (%) 89.76 90.12 86.44 92.46 92.68 89.38 88.5 89.41 87.17 

Static enthalpy after Nozzle (KJ/kg) 2981 2957 2980 2971 2950 2967 2972 2952 2967 
Pressure after nozzle (Kg/cm2) 8.12 9.1 6.88 8.101 9.1 6.87 7.86 8.7 6.6 
Stagnation enthalpy after stage (KJ/kg) 2979 2951 2965 2968 2947 2962 2975 2952 2964 
Exit temperature (◦C) 263.25 252 258.1 252.9 250.5 253.8 261.7 252.4 254.8 
Power output corrected for gearbox and generator efficiency (KW) 396 372 407 408.4 381 419.3 391 368 410  
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3.4. Flow path optimization 

The GA was coupled with the ANN turbine model to determine the 
optimal profile geometry to maximize the turbine’s total-to-static effi-
ciency. Given that R1234ze(Z) demonstrated a good total-to-static effi-
ciency for both boundary condition changes (Fig. 5a and Fig. 9), it was 
considered for optimization. The optimized flow geometrical parame-
ters were verified against the Craig and Cox loss model, as shown in 
table 3. 

It was observed that the optimized profile resulted in a 13.7% 
improvement in nozzle efficiency at the expense of an 18.9% drop in 
blade efficiency. As the flow path developed was that of a highly 
impulse-loaded machine, the algorithm achieved 5.14% higher stage 
efficiency (Table 4) by compromising blade efficiency for nozzle effi-
ciency. The algorithm increased the degree of reaction, which led to a 
more evenly distributed enthalpy drop across the nozzle and the moving 

blade that led to a 2.6% reduction to nozzle exit velocity (C2) (Table 3). 
This, in turn, resulted in additional performance gains due to the lower 
flow coefficient and an optimized coefficient. 

The backbone radius ratio loss was a function of the pitch to back-
bone radius ratio. Decreasing the pitch and increasing the backbone 
length achieved an 8.6% improvement in backbone radius ratio loss. 
Reduced trailing edge thickness led to a 66% and 28% reduction in the 
trailing edge thickness increment loss, respectively (lossincrN, los-
sincrB). The nozzle exit angle (α2) was optimized to reduce the axial 
component of velocity (Ca2) and associated losses. The backbone radius 
ratio loss, trailing edge thickness increment loss (lossincrN, lossincrB) 
and axial component nozzle exit velocity (Ca2) were factors of the pri-
mary loss (GpN, GpB). The optimized blade profile led to a 1% 
improvement in overall cycle efficiency (Table 3). 

The optimized solutions and original solution furnished in Table 4 
were in good agreement with the Smith chart. The Smith chart correlates 

Fig. 5. Influence of inlet temperature on: (a) total to static efficiency, (b) power output, (c) cycle efficiency, (d) relative stage outlet isentropic Mach number, (e) U/ 
C2 ratio, and (f) flow coefficient 
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the turbine efficiency to the flow coefficient (φ) and load coefficient 
(Ψ) [65]. The optimization achieved a 5.2% improvement in 
total-to-static efficiency. This study showed that the optimized 
geometrical parameters reduced the flow coefficient (φ) to maximise 
efficiency, which is in agreement with Turner et al. [65]. Table 5 pre-
sents the range of independent variables demonstrating the 98th 

percentile results for the best total-to-static efficiency. 

4. Conclusion 

This study aimed to envisage the cause of the turbine efficiency 
losses in the small-scale axial flow turbines and their impact on ORC 
performance. The direct loss model of Craig and Cox was employed to 
imitate a small-scale axial flow turbine and integrated it with a 1D model 
of an Organic Rankine cycle. The ANN coupled with GA was utilized to 
optimize the turbine flow path and study its influence on the ORC per-
formance and understand the influence of turbine inlet flow conditions 
and total-to-static stage pressure ratio on the turbine and cyclic per-
formance utilizing a range of organic fluids. The main findings of the 
current study are summarized below: 

Fig. 6. The influence of turbine inlet temperature on the loss coefficients for the studied fluids  

Fig. 7. The converging area of the moving blade section  
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• Considering variations in superheat and pressure ratios, the choice of 
working fluid has a significant impact on cycle design. Higher tem-
perature working fluids, with a higher isentropic drop and lower 
molar mass are less suitable for conventional single-stage turbine 
designs, as they lead to approximately 30% higher fluid velocities, as 
observed in the case of R600.  

• Although superheating led to an increase in Mach number loss and 
blade back radius ratio loss, turbine efficiency improved for most of 
the investigated organic fluids, with a maximum 12.4% improve-
ment in turbine efficiency in the case of R245fa, R1233zd(E), and 
R1234ze(Z). Cycle efficiency demonstrated an improvement in the 

Fig. 8. Exhaust temperature reduction with increasing pressure ratio  

Fig. 9. Variation of total-to-static efficiency with increased pressure ratio  

Fig. 10. Non-linear variation of power output with increased pressure ratio  

Fig. 11. Improvement in cycle efficiency observed with increased pres-
sure ratio 

Fig. 12. Variation of total loss coefficient with pressure ratio  

Fig. 13. Variation of nozzle primary loss coefficient with pressure ratio  
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Fig. 14. Variation of blade primary loss coefficient with pressure ratio  

Fig. 15. Variation of nozzle secondary loss coefficient with pressure ratio  

Fig. 16. Variation of blade secondary loss coefficient with pressure ratio  

Fig. 17. Variation of nozzle outlet isentropic Mach Number with pressure ratio  

Fig. 18. Variation of blade outlet isentropic Mach no. with pressure ratio  

Fig. 19. Variation of blade relative outlet isentropic Mach no. with pres-
sure ratio 
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case of R245fa, R1233zd(E) and R1234ze(Z), which implied that 
superheated ORC cycles could be beneficial but need to account for 
variations in turbine efficiency.  

• Increasing pressure ratios led to an average 38% increase in turbine 
efficiency for R245fa, R1234ze(Z), R1234yf, and R1234ze(E). The 
Mach number of the working fluid, which reached 2.1 at the moving 

blade, was noted as the most influential on the primary losses. 
Moving blade relative velocity above 1.6 led to a drastic increase in 
primary loss, which nullified improvement to turbine efficiency 
achieved by higher pressure ratios.  

• Using deep learning for profile optimization offered a simple and 
computationally efficient approach for optimizing the flow path’s 
design. The optimized flow path showed a 5.2% improvement in 
turbine total-to-static efficiency and a 0.24% improvement in cycle 
efficiency. High percentile results generated by ANNs can be used as 
a good starting point for advanced blade design. 

Consideration of variable turbine efficiency is advisable even for 
preliminary cycle level design studies, particularly for Superheated ORC 
cycles. Direct loss models are preferred to help break down the losses to 
its components. It is recommended to undertake further studies on 
small-scale ORCs with a lower working fluid molar mass employing 
multistage turbines. Further development might be needed to wide-
spread machine learning predictive tools as an alternative to Compu-
tationally intensive CFD modeling in various applications incorporating 
a combined turbine and cycle efficiency optimization. 

Author Contributions  

• Yohan Engineer has contributed to developing the turbine model 
code, completed the results for the paper, developed the initial draft, 
and worked on the revisions. 

• Ahmed Rezk and Abul Kalam Hossain provided guidance and feed-
back on the overall research and manuscript writing as supervisors 
for the project. 

Funding 

This research did not receive any specific grant from funding 
agencies in the public, commercial, or not-for-profit organization. 

Declaration of Competing Interest 

The authors declare that they have no conflict of interest. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.ijft.2021.100119. 

References 

[1] B.K. Bose, Global Warming: Energy, Environmental Pollution, and the Impact of 
Power Electronics, IEEE Industrial Electronics Magazine 4 (1) (2010) 6–17. 
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