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A B S T R A C T   

Mild traumatic brain injury (mTBI) poses a considerable burden on healthcare systems. Whilst most patients 
recover quickly, a significant number suffer from sequelae that are not accompanied by measurable structural 
damage. Understanding the neural underpinnings of these debilitating effects and developing a means to detect 
injury, would address an important unmet clinical need. It could inform interventions and help predict prognosis. 
Magnetoencephalography (MEG) affords excellent sensitivity in probing neural function and presents significant 
promise for assessing mTBI, with abnormal neural oscillations being a potential specific biomarker. However, 
growing evidence suggests that neural dynamics are (at least in part) driven by transient, pan-spectral bursting 
and in this paper, we employ this model to investigate mTBI. We applied a Hidden Markov Model to MEG data 
recorded during resting state and a motor task and show that previous findings of diminished intrinsic beta 
amplitude in individuals with mTBI are largely due to the reduced beta band spectral content of bursts, and that 
diminished beta connectivity results from a loss in the temporal coincidence of burst states. In a motor task, mTBI 
results in diminished burst amplitude, altered modulation of burst probability during movement, and a loss in 
connectivity in motor networks. These results suggest that, mechanistically, mTBI disrupts the structural 
framework underlying neural synchrony, which impairs network function. Whilst the damage may be too subtle 
for structural imaging to see, the functional consequences are detectable and persist after injury. Our work shows 
that mTBI impairs the dynamic coordination of neural network activity and proposes a potent new method for 
understanding mTBI.   

1. Introduction: 

With an estimated 27 million annual cases worldwide, traumatic 
brain injury (TBI) causes a substantial burden on health services (James 
et al., 2019). Around 80% of cases are classified as mild traumatic brain 
injury (mTBI or concussion) (Cassidy et al., 2004), which is defined as 
the mostly transient impairment to mental function following a blow to 

the body (usually to the head, face or neck) (McCrory et al., 2017). The 
criteria distinguishing mTBI from moderate or severe types of brain 
injury typically include no or short-lived loss of consciousness (less than 
30 min), post-traumatic amnesia (none or less than 24 h), and Glasgow 
Coma Scale of 13–15 on presentation to the emergency department 
(Carroll et al., 2004). Whilst most individuals with mTBI recover quickly 
and spontaneously, some continue to experience persistent symptoms 
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after an mTBI, including difficulties with concentration, attention, 
memory, confusion, and slowness of thinking. These ‘mild’ symptoms 
can have a severe impact on quality of life. Despite the debilitating 
symptoms, mTBI, by definition, is not associated with demonstrable 
abnormalities on routine imaging with CT or MRI. Yet neurocognitive 
sequelae and symptoms suggest neural dysfunction persists after injury. 
Moreover, there are few predictors of outcome and treatment options 
are limited. Consequently, new objective means to understand the 
neuropathology of mTBI, to prognosticate, and inform intervention, are 
required. 

Electrophysiological imaging provides a potent approach to under
standing the functional consequence and impairment after mTBI. Mag
netoencephalography (MEG) allows for sensitive functional imaging of 
neural activity and dynamics, by measuring the magnetic fields gener
ated by neuronal current flow in the brain. Mathematical modelling of 
these fields yields 3D images of brain electrophysiology, with un
matched non-invasive insight into micro-, meso- and macroscopic neural 
circuits that dynamically form and dissolve to underpin cognition. The 
MEG signal is dominated by ‘neural oscillations’ (rhythmic electrical 
activity generated by neural assemblies) which are traditionally divided 
into canonical frequency bands (delta (1–4 Hz), theta (4–8 Hz), alpha 
(8–13 Hz) beta (13–30 Hz) and gamma (30 + Hz). Abnormalities in 
these signals are an indication of pathology, and several putative atyp
ical oscillatory signatures of mTBI have been reported. 

Much of the literature has focused on “pathological slowing” of 
rhythmic brain activity, including elevated low-frequency power, in 
particular the delta band. For example, Lewine and colleagues reported 
increased delta power in subjects with histories of mild head trauma 
(Lewine et al., 1999). Huang et al. (2014) reported abnormally high 
delta power in around 85% of subjects in a cohort of military veterans 
with mTBI, compared to healthy controls. Increased slow wave power 
has also been observed in cases of sports-related mTBI (Proskovec et al., 
2020). These observations are consistent with animal studies where 
increased slow-wave activity was observed following the controlled in
duction of white-matter lesions (Gloor et al., 1977), suggesting 
abnormal delta is a consequence of white matter damage. In addition to 
slow-wave abnormalities, recent work suggests high-frequency 
dysfunction: for example, Huang and colleagues reported abnormal 
resting-state gamma activity in subjects with combat-related mTBI 
(Huang et al., 2020) and Zhang et al. demonstrated a decrease in beta 
amplitude in mTBI patients (Zhang et al., 2020). These high-frequency 
fingerprints are driven by distinct neurophysiological processes and 
open new routes to understanding the pathology of mTBI. 

The heterogeneity of sequelae of mTBI is thought to be driven by 
diffuse yet subtle white matter damage, particularly around the corpus 
callosum (Aoki et al., 2012), affecting communication between distal, 
functionally specific regions. The degree of communication between 
regions can be tested directly using MEG functional connectivity 
assessment. Functional connectivity is defined as the statistical inter
dependency between functional signals from spatially separate regions; 
for MEG this tends to mean assessment of either coherence, phase syn
chrony, or amplitude envelope correlation, between oscillations in fre
quency bands of interest (O’Neill et al., 2015a). The beta band is of 
particular interest since it appears crucial in the establishment of ca
nonical resting-state networks (Brookes et al., 2011; Hipp et al., 2012) as 
well as the dynamic orchestration of neural activity (Little et al., 2019; 
Sherman et al., 2016). Given the presumed diffuse nature of the dis
ruptions caused by mTBI, the beta band is, therefore, a good candidate to 
assess this brain injury. In support of this, Zhang et al. showed that 
machine learning can classify injured states with high accuracy and that 
beta connectivity was an important feature for classification, showing 
that dysfunctional beta connectivity is an important marker of mTBI 
(Zhang et al., 2020). 

All of the above assumes the “classical” view that oscillatory brain 
function is largely smoothly modulating rhythmic activity– this view is 
impoverished, as paradigm-shifting work now shows that transient, 

dynamic burst states are a fundamental mode of neural functioning (van 
Ede et al., 2018). “Oscillatory” power does not stem from oscillations per 
se, but rather it results, at least in part, from transient events of high 
amplitude activity, the spectral content of which intersects canonical 
frequency ranges, particularly beta band (Jones, 2016; Little et al., 2019; 
Sherman et al., 2016; Zich et al., 2020). When averaging across trials, 
these events sum to give the impression of slowly modulating oscilla
tions - when in fact, for example, apparently sustained beta activity 
around motor events results from pan-spectral bursts whose probability 
of occurrence changes throughout the task (Little et al., 2019; Seedat 
et al., 2020). 

This evolution in the understanding of neural dynamics shows that 
classical measures of oscillatory amplitude should also be supplemented 
with nascent metrics like “burst likelihood” and “burst duration.” This 
model also offers a novel means of calculating communication and 
connectivity. Seedat et al. used a Hidden Markov Model (HMM) to 
identify bursts and showed that the beta band connectome can be 
explained by the temporal coincidence of bursting (Seedat et al., 2020). 
Using a similar technique, Gascoyne et al. showed that previously re
ported beta abnormalities in schizophrenia can be explained using the 
burst model (Gascoyne et al., 2021). The neurobiological origins of the 
beta burst have been studied through neural modelling (Jones, 2016; 
Sherman et al., 2016), which could provide a deeper understanding of 
the origin of signal abnormalities within the cortex and suggests that 
important features of these transient neural signals can be lost through 
averaging data from many epochs or trials. The use of these methods in 
mTBI would reveal novel information about the neural impairment 
underlying mTBI sequelae. 

In this paper, we analyse MEG recordings in 52 subjects (29 mTBI 
subjects and 23 healthy controls) - a subset (50 subjects) of which was 
previously presented by Zhang et al. - using a burst framework. Zhang 
and colleagues have already shown that there are intrinsic deficiencies 
in both spontaneous beta power and connectivity (Zhang et al., 2020). 
Here, using a HMM approach, we test the hypothesis that the previous 
observation of abnormal beta activity can be explained by deficits in burst 
structure (specifically, low beta burst amplitude). In the same resting-state 
data we hypothesise that abnormalities in connectivity can be explained by 
the lack of temporal coordination between bursts in spatially separate brain 
regions. We further use a machine learning (ML) approach to determine 
the characteristic connections that are disrupted in mTBI and to evaluate 
the utility of burst connectivity measures in ML-based mTBI diagnosis. 
We also present a novel analysis of (unpublished) motor task data ac
quired in the same subjects to test a hypothesis of abnormal connectivity 
during the well-known post-movement beta rebound (PMBR) - a marker 
for interhemispheric recalibration of the motor system, and by exten
sion, an index of corpus callosum integrity (Tewarie et al., 2019). 
Assuming that mTBI disrupts white matter integrity, particularly around 
the corpus callosum, we hypothesise that the coincident bursts in the motor 
cortex which drive the measurable PMBR and connectivity will be in relative 
deficit in mTBI subjects. 

2. Methods 

In total 52 subjects were recruited to the study; 29 mTBI patients and 
23 healthy controls. All subjects underwent two MEG recordings, resting 
state and a motor task. A flow chart showing subject inclusion is given in 
Fig. 1. Groups were matched for age, sex and handedness. All subjects 
gave written informed consent to take part in the study, which had been 
approved by the Research Ethics board of the Hospital for Sick Children, 
Toronto, Canada. All subjects in the mTBI group were scanned within 
90 days of their injury (e.g. acute-subacute phase of injury; 39 ± 21 days 
(mean ± standard deviation (SD)), range: 7–88 days); mTBI subjects had 
undergone investigation by MRI (T1 weighted anatomical, detailed 
acquisition parameters in supplementary materials) and no positive 
clinical indications were found following review by a neuro-radiologist. 
In addition to MEG data acquisition, subjects were assessed for symptom 
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severity using the Sport Concussion Assessment Tool 2 (SCAT2) on the 
day of scanning. The symptom evaluation contained in the SCAT2 bat
tery of assessments asked subjects to subjectively rate the severity of 22 
symptoms which span a range of clinical domains such as somatic (e.g. 
headache, neck pain), cognitive (e.g. feeling “in a fog”, difficulty 
concentrating), emotional and behavioural changes (e.g. more 
emotional, irritability), and sleep disturbance (e.g. drowsiness, Trouble 
falling asleep) (McCrory et al., 2009). 

2.1. Paradigms 

Data were recorded during two separate paradigms: 

Resting-state: Subjects were asked to lie still, with their head in the 
MEG helmet, whilst 300 s of resting-state data were collected. Par
ticipants were in the supine position and were told to keep their eyes 
open. 23 individuals with mTBI (all male, aged 30 ± 7(mean ± SD)) 
were included in the study alongside 20 healthy controls (all male, 
aged 28 ± 5 (mean ± SD)). (These data were previously presented by 
(Zhang et al., 2020)) 
Motor task: We used a stimulus matching task with a 2-alternate 
forced-choice design that requires bilateral motor responses, previ
ously described by Oh and colleagues (Oh et al., 2014). Subjects were 
simultaneously presented with three images – two stimuli on the 
upper left and right of a central fixation point and a third target 
image immediately below the fixation point. The subjects were asked 
to match one of the two stimuli presented in the upper visual field 
with the third target stimulus in the lower field, on either the colour 
or shape dimension, and indicate which of the stimuli matched the 
target by pressing a button with the corresponding left or right hand. 
Stimuli presentations lasted until a response was given (up to a 
maximum of 4 s) with a jittered inter-stimulus interval of 800–1200 
ms. Recordings lasted for 370 trials. 26 individuals with mTBI (all 
male, aged 30 ± 7 years (mean ± SD)) were included in the study 
alongside 22 healthy controls (all male, aged 28 ± 5 (mean ± SD)). 
(These data have not been previously published.) 

2.2. Data collection 

All MEG data were collected using a 151-channel whole-head MEG 
system (CTF, Coquitlam, Vancouver, Canada) operating in a third-order 
gradiometer configuration, at a sampling frequency of 600 Hz. Before 
entering the scanner, three fiducial markers were placed on the subject’s 
head (left and right preauricular and nasion). These coils were energised 
to enable continuous tracking of the head position throughout the scan, 

and consequently, enable estimation of head movement. 

2.3. Pre-processing 

The MEG data were filtered using a 4th order Butterworth band-pass 
filter between 1 and 150 Hz and notch filters at 60 Hz (mains interfer
ence) and 120 Hz (harmonic). The continuous head motion information 
was used to define epochs in which the head position was maintained 
within 5 mm of its starting location, and head velocity was less than 5 
mm/s; other epoch exclusion criteria were: SQUID resets in the MEG 
signal and/or signal discontinuities exceeding +/- 2pT. Each epoch was 
visually assessed for adequate quality by a trained MEG expert. Epochs 
not meeting these criteria were rejected. Independent component 
analysis (ICA) was applied to attenuate ocular (EOG) and cardiac (ECG) 
related artefacts. Identified components were removed manually 
following visual inspection. 

For the Resting-state data, the post-ICA artefact-free recordings were 
segmented into 10 s epochs and only subjects with greater than 200 s (20 
epochs) of clean data were included in the final analyses. The mean and 
standard deviation of available epochs for the resting state paradigm 
was 24.1 ± 0.6 for the mTBI group and 23.9 ± 0.6 for the control group. 

The task data were epoched into 6 s segments; 3 s before and 3 s after 
a button press. Trials containing artefacts, or incorrect responses were 
excluded and only set-shift trials were used. For the task, an average 
(mean ± SD) of 175 ± 49 and 172 ± 33 epochs was included for the 
mTBI and control group respectively. For the mTBI group, this included 
88 ± 29 left button presses and 88 ± 23 right button presses. For the 
control group, there were 87 ± 21 left button presses and 85 ± 19 right 
button presses. There were no significant differences in trial count be
tween groups as assessed by a 2-sided T-test. Note also that reaction time 
did not differ significantly between groups (For left button presses, re
action times were 0.50 ± 0.12 s for controls and 0.55 ± 0.08 for mTBI (p 
= 0.11 using a two-sided T-test). For right button presses, reaction times 
were 0.54 ± 0.10 s for controls and 0.53 ± 0.07 for mTBI (p = 0.82 using 
a 2-sided T-test).) 

2.4. Data analysis 

Following collection and pre-processing, the data analysis pipeline 
was similar to that introduced by Seedat et al. (2020). 

2.4.1. Source localisation 
We characterised brain activity at 78 cortical regions (Gong et al., 

2009) defined according to the Automated Anatomical Labelling Atlas 
(AAL) (Tzourio-Mazoyer et al., 2002). To this end, we used a linearly 
constrained minimum variance (LCMV) beamformer (Van Veen et al., 
1997) implemented in FieldTrip (Oostenveld et al., 2011), which esti
mates electrophysiological activity at a predefined location/orientation 
in the brain, whilst minimising contributions from all other sources 
(both in the brain and environmental interference). These estimates are 
known as virtual sensor time series. A single virtual sensor was placed at 
the centre of mass of each of the 78 AAL regions. A single shell head 
model (Nolte, 2003) was used to construct the forward solution for each 
participant by co-registering the MEG sensor locations onto an 
anatomical T1-weighted, age-appropriate MRI template (MNI152) using 
SPM12 through FieldTrip. A common spatial filter was computed for 
each region, using all artefact-free trials to generate a covariance matrix. 
The covariance matrix was regularised with 5% Tikhonov regularisa
tion. The beamformer was applied to reconstruct the broadband time 
series for the centroid of each of the AAL regions. Sources were projected 
to the dominant orientation by taking the eigenvector of the source 
covariance with the largest eigenvalue (Sekihara et al., 2004). The 
reconstructed virtual time series were frequency filtered between 1 and 
48 Hz. The resulting data comprise 78 regional electrophysiological time 
courses, per subject. 

One significant challenge in MEG connectivity estimation is that the 

Fig. 1. Patient enrolment flow chart.  
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ill-posed nature of the MEG inverse problem causes “leakage” of signal 
between virtual sensors at separate locations (Brookes et al., 2012). This 
leakage manifests as a zero-time lag linear summation of activity from 
other regions and, for this reason, orthogonalisation of virtual sensors 
before connectivity calculation results in a marked reduction of leakage, 
albeit at the cost of true zero-phase-lag connectivity (O’Neill et al., 
2015a). Here, we employed a multivariate symmetric orthogonalisation 
(Colclough et al., 2015) involving two steps: First, a set of orthonormal 
time-courses that are closest to the virtual sensor data, and for which 
there is a simple analytic solution, is found. Second, the solution is 
finessed by iteratively adjusting the lengths of the orthogonal vectors 
until the solution is as close as possible to the uncorrected time courses. 
The resulting data contain the 78 orthogonalised virtual sensor time 
series. Following application of this procedure, the time courses were 
downsampled to a 100 Hz sampling rate, mean centred, and variance 
normalised. 

2.4.2. Hidden Markov Model: 
All 78 regional time courses for each subject were processed inde

pendently using a univariate time-delay embedded HMM. The details of 
the HMM have been described extensively in previous papers and will 
not be repeated here. Briefly, the HMM assumes that a series of mutually 
exclusive hidden “states” governs each electrophysiological time course. 
This means that for every brain region, each time point is associated 
with a single state. The sequence is Markovian (meaning that the state 
modelled is dependent only on the state immediately preceding it). In its 
simplest form, the HMM might describe each state by a Gaussian dis
tribution, from which the MEG data are extracted. If at some time point 
t, the observed MEG data are most likely drawn from the Gaussian 
describing state 1, then state 1 would be assigned to time point t. Here, 
distinct from a simple Gaussian observation model, we used an HMM 
with time-delay embedding (Vidaurre et al., 2018) where each state is 
characterised by a different autocovariance pattern defined over a 
specified time window (of duration 230 ms). These state autocovariance 
patterns contain the spectral information of the signal when a particular 
state is active and consequently states are derived based upon specific 
repeating spectro-temporal patterns of activity. Previous work has 
shown that using the HMM in this way enables accurate identification of 
the pattern associated with the pan-spectral bursts that underlie the beta 
oscillatory signal (Seedat et al., 2020). 

The HMM was applied as in Seedat et al. (Seedat et al., 2020). Spe
cifically, model inference was undertaken using a variational Bayesian 
method. For each of the 78 time courses, we assumed 3 states, and so the 
model output was a set of 3 time courses representing the probability of 
each state being active over all time. To identify which of the three states 
corresponded to pan-spectral bursts (henceforth termed the “burst 
state”), we measured the correlation between the state probability and 
the amplitude of beta oscillations (defined by the application of a 
(Morlet-based) continuous wavelet transform to the regional time 
course and extracting those values corresponding to the 13–30 Hz fre
quency band). The state whose probability time course correlated 
highest with the beta envelope was taken as the burst state while the 
remaining 2 states were defined to be non-burst states. The probability 
time courses for each state were subsequently binarised by assuming 
that if the probability exceeded two thirds, then the given state had been 
entered. These binary time courses enabled the identification of bursts 
and post-hoc analysis allowed measurements such as burst (and non- 
burst) state duration, burst amplitude, and coincidence. This method 
was applied to each of the 78 time courses independently, for all subjects 
and tasks. 

2.4.3. Summary metrics for resting-state data: 
For the resting-state data, we aimed to use the HMM output to 

investigate whether the previously observed (Zhang et al., 2020) beta 
deficits in power and connectivity could be explained in terms of our 
burst framework. We calculated the following features from the HMM 

output:  

• Burst amplitude: The maximum value of the beta envelope during 
each visit to the burst state.  

• Total burst time: The proportion of time spent in the burst state 
throughout the resting state recording. (Calculated as the total time 
burst state was active, divided by the total experimental duration.)  

• Burst duration: The average time spent in the burst state, on each 
visit.  

• Burst count: The number of visits to the burst state per second, 
calculated by counting the total number of visits in a recording and 
dividing by the total length of the recording.  

• Functional connectivity. Here we define functional connectivity as 
the temporal coincidence between bursts in two regions. Burst 
coincidence between regions i and j was measured using the Jaccard 
index, Ji,j – a ratio of the intersection over the union of two binary 
state time-courses. This yields a value between 0 and 1; 1 means 
perfect coincidence; 0 means no coincidence. Mathematically, Ji,j =
∑Nt

t (Bi
t ∧ Bj

t)/
∑Nt

t (Bi
t ∨ Bj

t) , where Bi
t indicates whether the burst 

state was occupied in region i at time point t (1 indicating burst, 
0 indicating non-burst). Nt is the number of samples, and ∧ and ∨ are 
the logical AND and OR operators respectively. 

2.4.4. Machine learning analysis of burst coincidence connectomes 
The burst coincidence connectomes derived from the resting state 

recordings were further analysed using a machine learning pipeline with 
the aim of determining their utility in distinguishing subjects with mTBI 
from healthy subjects. The pipeline included Recursive Random Forest 
Feature Selection (rRF-FS) and binary classification using a support 
vector machine (SVM) model. All possible, unique connections between 
the 78 regions of the AAL atlas ((78x77)/2 = 3003 connections) were 
used as input features. Using 10-fold cross-validation to evaluate clas
sification performance, the rRF-FS was used to select the most important 
connections via a variable importance threshold, and consensus voting 
procedure (See (Zhang et al., 2020; Zhang et al., 2016) for more details), 
before SVM classification. Model performance was measured via the 
mean area under the receiver operating characteristic curve (ROC-AUC) 
after each cross-validation iteration. The statistical significance of the 
SVM model was tested by repeating the SVM training and classification 
100 times, randomly permuting the sample group labels. Making use of 
the excellent interpretability of Random Forest Feature Selection, we 
assessed whether the chosen connections are among those driving the 
global reduction in burst connectivity. 

2.4.5. Summary metrics for task data: 
For the task data, we used a similar approach, again measuring burst 

characteristics and connectivity, but this time in the context of task 
timing and the well-known beta band features (the movement-related 
beta decrease (MRBD) and the post-movement beta rebound (PMBR)). 
We calculated the following:  

• Burst probability time courses: For a single region, binary burst 
time courses were reshaped into a matrix of time (within a trial) by 
the number of trials. For each trial timepoint, we assessed the 
probability (across trials) that a burst occurred. This was calculated 
as simply the sum of the total number of trials showing a burst at time 
t, divided by the total number of trials. These probability time 
courses were calculated within each subject and then averaged 
across subjects. We expected to see a decrease in burst probability 
during movement (corresponding to the MRBD) and an increase on 
movement cessation (delineating the PMBR).  

• Burst statistics during PMBR window: The PMBR window was 
defined from 0.45 s to 0.85 s relative to the button press (Pfurtsch
eller et al., 1996). For each trial in every subject, burst amplitude and 
duration were calculated for each burst which fell within, began, or 
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ended during the PMBR window. These values were averaged within 
each trial, and subsequently across trials and subjects.  

• Burst coincidence time courses: The time evolution of the burst 
coincidence was generated by expanding on the Jaccard index 
method. For every pair of regions, the binary burst time courses for 
both regions were reshaped into a matrix of time within a trial, by the 
number of trials. The Jaccard index was then calculated for each time 
point, t, within a trial (i.e. rather than calculating the Jaccard index 
over all time as was done above in the functional connectivity sec
tion, we calculated it over all trials for each time point within a trial). 
This enabled us to define a time course of burst coincidence 
probability. 

2.5. Statistical testing: 

2.5.1. Resting-state data 
The resting-state HMM yielded 78 values of burst amplitude, non- 

burst amplitude, and total burst time. To avoid a-priori assumptions 
on the brain regions or connections implicated in mTBI (which may 
differ between subjects depending on the nature of the injury) we 
collapsed these metrics across all regions/connections. This left a single 
global mean value for each metric. We then computed the difference 
between groups (mTBI and controls) and assessed statistical significance 
using a non-parametric Wilcoxon rank-sum test, corrected for multiple 
comparisons across the three measures using the Benjamini-Hochberg 
procedure (Benjamini and Hochberg, 1995). This enabled direct 
testing of the hypothesis that previous findings of abnormal beta activity 
can be explained by abnormalities in burst amplitude. 

Independently, our connectivity analyses generated 3003 values of 
connectivity (i.e. one value for each connection, between all possible 
pairs of the 78 AAL regions). Again, to avoid a-priori assumptions on the 
most prominent connections affected by mTBI, values were collapsed 
across all connections, and the global mean connectivity was calculated. 
This was done for all subjects and a Wilcoxon rank-sum test was used to 
test significance. This allowed us to test the hypothesis that abnormalities 
in connectivity can be explained by a lack of coordination between bursts in 
spatially separate brain regions. 

2.5.2. Motor task data 
For the task paradigm, we first focused on the PMBR as this has been 

shown to be a sensitive marker of network communication and con
nectivity. We set out to test the hypothesis that interhemispheric con
nectivity would be disrupted in mTBI (i.e. by damage to white matter 
tracts in the corpus callosum). Specifically, we expected burst structure 
to be deficient during the PMBR, manifesting in changes of the burst 
features as well as synchrony between bursts. 

We calculated the mean burst probability and burst amplitude during 
the PMBR. This was done separately for the left and right motor cortices, 
and left button press and right button press – yielding a total of 8 
measurements. For completeness, we also measured the overall modu
lation of burst probability (i.e. the difference in burst probability be
tween the PMBR and the MRBD windows). In all cases, a Wilcoxon rank- 
sum test was used to test for significant differences between groups (p <
0.05) and FDR correction was used to correct for multiple comparisons 
across the 12 separate tests (left/right cortex; left/right button press; 3 
separate metrics). This allowed for testing of the hypothesis that the 
bursts which drive the measurable PMBR will be altered in individuals with 
mTBI. 

To test our hypothesis that connectivity between motor regions during 
the PMBR will be diminished in the patient cohort, the group difference in 
the mean connectivity between the left and right motor cortices during 
the PMBR window was calculated, and statistical significance was 
assigned using a Wilcoxon rank-sum test. Here, an average was calcu
lated over both trial conditions. 

2.5.3. Relationship with symptoms 
Finally, the relationships between symptom severity – as measured 

via the SCAT2 – and MEG derived metrics (global burst amplitude, and 
burst connectivity) in the resting state, were assessed using Spearman 
correlation. We reasoned that burst amplitude and connectivity might 
have a monotonically decreasing relationship with symptom severity (i. 
e., those with more severe symptoms would have diminished burst 
amplitude and connectivity). To test this, within the mTBI group only, we 
calculated the correlation of symptom severity and MEG measures. P <
0.05 and FDR correction was used to determine statistical significance. 
The association between symptom severity and the mean connectivity of 
the connections selected via the rRF-FS procedure was also measured 
using Spearman correlation, to determine whether the subset of features 
would show a stronger relationship than the whole brain measure of 
connectivity. In addition, we also tested the same correlation across the 
combined group of subjects (i.e., patients and controls). Note that this 
combined measure doesn’t suggest a relationship between symptoms 
and MEG measures at an individual level. Rather, a significant correla
tion would be likely to be driven solely by a group difference. For this 
reason, the combined Spearman correlations were only used to support 
the group observations described above. 

3. Results 

3.1. Spontaneous beta bursts are abnormal in mTBI 

Fig. 2 shows the burst statistics captured during the resting state 
recording. In Fig. 2a, the upper panel shows the spatial distribution of 
beta amplitude during the bursts identified by the HMM. In agreement 
with previous work (Seedat et al., 2020), in control subjects the ampli
tude is maximal over the posterior frontal and parietal lobe, in particular 
the sensorimotor cortices. This amplitude appears diminished in the 
mTBI group although the spatial pattern is similar. The lower panel of 
Fig. 2a shows beta amplitude during the non-burst states. Here, the 
overall amplitude is much lower (as expected) and the spatial pattern is 
no longer apparent. Fig. 2b shows the corresponding spatial distribu
tions of the differences in the burst (upper plot) and non-burst (lower 
plot) beta amplitude between the two groups. 

In Fig. 2c, the violin plots show the distribution (across subjects) of 
whole-brain burst and non-burst amplitudes; the plot on the left shows 
burst amplitude; the plot on the right shows the amplitude during the 
non-burst periods. Note that, in agreement with our hypothesis, during 
bursts, there is a significant (p = 0.0165; Wilcoxon sum rank test) drop 
in amplitude for patients relative to controls. However, here there is no 
such measurable difference in the non-burst windows. This demon
strates an important point: in (Zhang et al., 2020) the authors showed 
diminished resting-state beta amplitude; here we extend this finding to 
show that this reduction is driven largely by the spectral content of the 
bursts, and specifically that the amplitude of the beta component is 
reduced. Results have been collapsed across all brain regions and each of 
the black data points represents a different subject. Burst amplitude was 
also significantly correlated with symptom severity when measured 
across the whole cohort (combining patients and controls) (Spearman R 
= − 0.399, p = 0.0088) (Fig. 2e. Fig. 2d contains violin plots showing 
the average time spent in the burst state. Note that there is no significant 
difference between patients and controls; further suggesting that the 
beta deficit in patients stems from a reduction in burst amplitude and not 
a reduction in the number or density of occurrence of the bursts. Finally, 
Fig. 2e shows a scatter plot of global burst amplitude versus SCAT-2 
symptom severity. Spearman correlation for the combined data points 
(patients and controls) gave R = -0.399; p = 0.0088, which is likely 
driven by the difference between groups. However, for the patients only, 
we found no evidence (R = -0.189; p = 0.387, Spearman Correlation) of 
a direct correlation between global burst amplitude and symptom 
severity. Note that we also tested the correlation between our burst 
metric and a more traditional approach to measuring beta amplitude. In 
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the latter, a Morlet-wavelet transform was applied to the beamformer 
reconstructed data and values corresponding to the canonical beta band 
(13–30 Hz) were extracted to obtain the amplitude envelope. The mean 
envelope value was then computed (over the entire experimental 
duration) and averaged across brain regions. We found a significant 
correlation (R = 0.93; p = 5x10-20; Pearson correlation) between burst 
amplitude and beta amplitude (over all time), demonstrating clearly that 
the traditional beta metric (collapsed over all time) is at least partly 
driven by the beta amplitude during the burst windows (which only 
account for ~ 30% of the overall experimental duration). 

Fig. 3 shows the results of functional connectivity assessment in 
resting-state data. Fig. 3a shows connectome matrices calculated via 
assessment of burst coincidence in patients (upper left panel) and con
trols (lower left panel). The corresponding upper and lower right panels 
show the spatial distribution of the 5% of connections (i.e. the 
3003*0.05 ~ 150 connections) with the highest Jaccard index, plotted 
on a glass brain. The result for controls mirrors previous findings (both 
calculated using burst coincidence (Seedat et al., 2020) and the more 
widely used amplitude correlation metrics (Hunt et al., 2016)); the 
largest connectivity tends to be found between homologous regions of 
the occipital, motor, sensory, and posterior parietal cortices. Interest
ingly, the overall connectivity pattern was maintained in patients, but 
the absolute values of connectivity are diminished. 

Fig. 3b shows the spatial signature of the differences in connectivity 
between patients and controls. Here we plot the 2% of connections with 

the highest differences between groups. The spatial signature shows that 
the largest resting-state connectivity differences are between posterior 
parietal regions. Note again that these findings extend previous work; 
Zhang et al. demonstrated using ‘classical’ methods that beta connec
tivity is diminished in mTBI. Here, using the same data, we show that 
these differences can be explained by assessment of burst coincidence 
between brain regions. 

This effect is formalised in the violin plot in Fig. 3c. Here, each data 
point represents the mean strength of all connections in a single subject, 
and we note that connectivity is diminished significantly (p = 0.031; 
Wilcoxon rank sum test) in the mTBI group relative to controls. A sig
nificant correlation between symptom severity and global burst con
nectivity was also found (correlation derived using data from the mTBI 
group and controls) further verifying this measure (Spearman R = -0.39; 
p = 0.01). However, when taking into account individuals with mTBI 
only, the correlation with symptomology was not significant (Spearman 
R = -0.327; p = 0.128). See the supplementary materials for a scatter 
plot of global burst connectivity against severity. 

The glass brain plot in Fig. 3d shows the connections which most 
accurately separate patients and controls, as selected using the data- 
driven rRF-FS approach. The violin plot shows the mean connectivity 
over the selected features (connections) for each subject. Note that the 
separation between the groups is greatly improved compared to the 
global measure, as would be expected from this type of ML approach. 
Interestingly, many of the connections which distinguish patients are 

Fig. 2. Resting-state burst statistics. a) The 
upper panel shows the spatial distribution of 
beta amplitude during bursts. The lower 
panel shows beta amplitude in the non-burst 
windows. In both cases, patients are shown 
on the left and controls on the right. b) 
Spatial signature of the differences in beta 
amplitude during bursts (top) and non-burst 
periods (bottom) (i.e. the difference be
tween patients and controls, left and right in 
a) respectively) c) The left panel shows 
average burst amplitude, the right panel 
shows beta amplitude in the non-burst states, 
demonstrating no significant difference be
tween patients and controls. In both cases, 
results are collapsed across 78 brain regions 
and each data point represents an individual 
subject. Note that burst beta amplitude is 
significantly (p = 0.016; Wilcoxon sum rank 
test) diminished in patients. d) Violin plot 
showing the average time spent in the burst 
state (no significant difference between 
groups) e) Scatter plot of global burst 
amplitude versus SCAT-2 symptom severity. 
Spearman correlation for the combined data 
points (patients and controls) gave R =

-0.399; p = 0.0088. For the patients only, we 
found R = -0.189; p = 0.387.   
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interhemispheric, potentially implicating damage in the corpus cal
losum. The average ROC-AUC classification accuracy across the ten 
cross-validation folds was 0.98 with a SD of 0.08. Finally, we measured a 
significant correlation between symptom severity and the average burst 
coincidence of the rRF-FS features; for the combined mTBI and control 
groups we found (R = -0.72; p = 8x10-8; Spearman Correlation). How
ever, we note that this is influenced by the ML approach which yields 
features that best differentiate the groups and might therefore inflate the 
value of the calculated Spearman correlation. More interestingly, we 
found that for the mTBI group only, there was a significant correlation 
between connectivity and symptom severity (R = -0.45; p = 0.03; 
Spearman Correlation) which could not have been driven by the ML 
approach. A scatter plot of symptom severity against rRF-FS selected 
burst connectivity is shown in Fig. 3e. 

3.2. MTBI disrupts the dynamic neural repertoire of the motor system 

Fig. 4 shows burst statistics during the motor task. Note that the task 
contained both left and right finger movements and these have been 
analysed separately. We also examine effects in both contra- and ipsi
lateral cortices. (Statistical analyses employed FDR correction to ac
count for multiple comparisons). Fig. 4a shows the temporal evolution of 
burst probability throughout the task. The upper two plots show burst 
probability in the left motor cortex, for left (left) and right (right) button 
presses. The lower two plots show burst probability in the right motor 
cortex, for right (left) and left (right) button presses. In all cases, the 
green trace shows the patients and the blue trace shows healthy controls. 
The solid lines show the mean across subjects and the shaded regions 
show the standard error across subjects. Notice that a characteristic 
response is seen in both regions and all conditions, whereby the burst 

probability is diminished during the movement itself (i.e. around time t 
= 0) and is enhanced immediately following the movement. Previous 
work (Little et al., 2019) has shown that this change represents the basis 
of the MRBD and PMBR. There does appear to be a systematic effect in 
the contralateral cortex whereby the modulation of the burst probability 
is lower in patients. 

In testing the burst probability during the rebound window, we 
found a significantly diminished likelihood of bursts in contralateral 
cortices (Right motor, left button p = 0.0099*; Left motor, right button 
p = 0.0248*; Wilcoxon Rank Sum test) but not ipsilateral cortex (* in
dicates significance following FDR correction). The overall modulation 
of burst probability – as measured by the difference in probability in the 
rebound and desynchronization time periods – was also significantly 
different in both conditions in the contralateral cortex; (left motor cor
tex, right press: p = 0.024*; right motor cortex, left press: p = 0.0047*; 
Wilcoxon Rank Sum test) In ipsilateral cortex modulation of burst 
probability was not significant following multiple comparison 
correction. 

Fig. 4b shows the amplitude during the HMM identified bursts during 
the rebound window. Here, we find significantly reduced beta burst 
amplitude in both left and right motor cortex during left button presses: 
(left-hand movement; left motor cortex, p = 0.007*. Left-hand move
ment; right motor cortex, p = 0.005*; Wilcoxon Rank Sum test). Similar 
trends were also observed for right-hand button presses but this was only 
significant in the right motor cortex (p = 0.0003*; Wilcoxon Rank Sum 
test). 

Overall, these results support our previous findings shown in Fig. 2, 
demonstrating significantly reduced burst amplitude in the beta fre
quency band. Correlation analysis of symptom severity with burst 
amplitude in the contralateral and ipsilateral motor cortices found no 

Fig. 3. Resting-state functional connectivity. 
a) Resting-state connectome matrices for 
patients (upper panel) and controls (lower 
panel). In both cases, connectivity is calcu
lated via the assessment of burst coincidence 
between regions. The glass brains show the 
spatial structure of the information in the 
corresponding connectome matrices. The red 
lines show 5% of connections with the 
highest functional connectivity value. b) The 
glass brain plot shows the 2% of connections 
with the largest difference between patients 
and controls. c) Whole-brain functional con
nectivity assessment in patients and controls. 
Each data point represents the average con
nectivity across all connections, for a single 
individual (i.e. the overall sum of all of the 
matrix elements in the connectomes shown 
in (a) divided by the number of connections). 
Whole head connectivity – computed via 
assessment of burst coincidence – is signifi
cantly (p = 0.031; Wilcoxon sum rank test) 
diminished in patients. d) Glass brain 
showing the connections selected using 
recursive Random Forest Feature selection 
and violin plot showing the average con
nectivity for those connections in both 
groups. e) Scatter plot showing the relation
ship between symptom severity and burst 
connectivity in the rRF-FS selected connec
tions. Spearman correlation for the combined 
data points gave R = -0.72; p = 8x10-8. 
Spearman correlation for the mTBI group 
only gave R = -0.45; p = 0.03. (For inter
pretation of the references to colour in this 
figure legend, the reader is referred to the 
web version of this article.)   
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significant relationship after correcting for multiple comparisons. 
Fig. 5 shows transient functional network patterns during finger 

movement. Fig. 5a shows the temporal evolution of burst coincidence 
between the left and right primary motor cortex, during the task. The 
green trace shows the patients and the blue trace shows healthy controls. 
In agreement with previous work (O’Neill et al., 2015b), we observe 
lower connectivity during unilateral movement, followed by an increase 
on movement cessation; this supports the theory that the PMBR is a time 
of elevated connectivity between primary cortices and other regions 
(Tewarie et al., 2019), and carries a top-down inhibitory influence. The 
largest difference between patients and controls, in terms of connec
tivity, occurs during the post-movement rebound period. To test this 
statistically, the violin plot on the right-hand side shows connectivity 
estimated during the rebound window, demonstrating a significant (p =
0.021; Wilcoxon rank sum test) reduction. 

Finally, Fig. 5b shows the spatial signature of the dominant (2%) of 
functional connections at 4 selected time points during the task. It is 
interesting to note how this spatial pattern changes considerably during 
the task with posterior parietal and sensorimotor connections, apparent 
at the start, giving way to frontal connectivity, which then, in turn, gives 
way to dominant interhemispheric motor network connectivity during 
the rebound window. The upper set of images in Fig. 5b show the case 
for patients, the middle set for controls, and the lower set show the 
highest (2%) of differences between the two groups. Note that these 
differences map out a clear motor network around the time of the post- 

movement rebound, showing a clear and significant reduction in burst 
coordination within this time window. No significant correlation be
tween symptom severity and PMBR connectivity (between the motor 
cortices) was found (combined groups: R = -0.296; p = 0.043, patients 
only: R = -0.005; p = 0.98; Spearman Correlation. See supplementary 
information for a scatter plot). 

4. Discussion 

MTBI is now recognised as a ‘silent epidemic’ and a serious public 
health concern. A minority, but substantial number, given the high 
incidence of mTBI, suffer from persistent post-concussive symptoms and 
can experience chronic, lifelong deficits that result in reduced quality of 
life. The insidious long term health effects of mTBI are of great concern 
in the world of contact sports, such as rugby and American Football, 
where increasing evidence suggests repeated mTBI and sub-concussive 
blows can precipitate cognitive decline and even neurodegenerative 
disease, such as early-onset dementia. (Costanza et al., 2011; Hume 
et al., 2017; Pearce et al., 2018) 

4.1. A summary of findings: 

Our resting-state findings demonstrated abnormalities in both beta 
burst amplitude and the coincident bursting that mediates connectivity. 
In Fig. 2, results show clearly that the diminishment of beta amplitude in 

Fig. 4. Burst statistics during a motor task. 
a) Time courses showing the probability of 
bursts throughout a button press. The upper 
panel shows the case for the left primary 
motor cortex during a left hand (left) and 
right hand (right) movement. The lower 
panel shows the case for the right primary 
motor cortex during a right hand (left) and 
left hand (right) movement. b) Burst ampli
tude in the beta band during the post- 
movement beta rebound. Left-hand plots 
show contralateral and ipsilateral cortices 
during a left-hand button press. Right-hand 
plots show ipsilateral and contralateral 
cortices during a right-hand button press. * 
indicates statistical significance (p < 0.05*; 
Wilcoxon Rank Sum test) following FDR 
correction for multiple comparisons.   
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patients is not general over all time; rather it is mostly a property of 
bursts. Indeed, when the burst state was active, significant differences 
between patients and controls could be found which were not mirrored 
during non-burst windows; this means that lower beta amplitude is 
occurring, approximately one-third of the time. It is important to note 
that the null result in the non-burst windows does not necessarily imply 
that there is no information of interest outside the bursts; indeed, a more 
subtle analysis, perhaps looking at individual brain regions, may well 
demonstrate significant differences between patients and controls. 
Nevertheless, at least at the whole-brain level, our results suggest that 
the largest difference in beta amplitude between patients and controls 
occurs during the active burst state. Again, using resting-state data, we 
were able to show that the previous findings of reduced connectivity 
(Zhang et al., 2020) – measurements made using amplitude envelope 
correlation – are driven by a drop in burst coordination across the brain 
(see Fig. 3. Whilst we showed that connectivity over the whole brain was 
diminished in mTBI, post hoc analyses suggested that the most affected 
connections were interhemispheric, between regions of polymodal pa
rietal cortices. These regions are well-known foci of sensorimotor inte
gration and contain dense connections with numerous brain areas 
(Whitlock, 2017). We saw a significant correlation between connectivity 
and symptom severity in patients, following the selection of a subset of 
connections using the rRF approach. This demonstrates the utility of this 
data-driven method to determine which connections are most affected. 
This result should be used to inform the hypotheses of future studies, 
potentially leading to stronger results. 

In our task data, we probed more specific hypotheses relating to the 
MRBD and PMBR. These effects have been observed in electrophysio
logical imaging data for many years and are one of the most robust 
findings in neuroscience. Recent work (Tewarie et al., 2019) has linked 
the PMBR to enhanced connectivity within a wider network encom
passing primary motor and motor planning regions, with the implication 
that this network provides top-down inhibitory influence to “shut down” 
and recalibrate the motor cortex post-movement. Given the global and 
inter-hemispheric nature of this network, we hypothesised that white 
matter damage might make the PMBR abnormal in mTBI patients. Re
sults supported these hypotheses, showing diminished modulation of 
burst probability, lower amplitude, and a deficit in coincident bursts, 
during the PMBR in patients. Whilst it remains a possibility that this 
effect was due to the way in which the task was performed (e.g., it’s 
conceivable that patients and controls may move differently), there was 
no measurable difference in reaction times between groups and so it’s 
likely that the observed deficit is a fundamental feature of mTBI. 
Interestingly these motor-specific findings did not correlate significantly 
with overall symptom severity, however, this may be because our 
symptom scores are global, and we did not take correlate them with an 
objective assessment of motor function specifically. Previously, mTBI 
sequelae have been demonstrated to include motor deficit (Pearce et al., 
2018), and these findings represent a putative mechanism. 

Fig. 5. Functional connectivity during a 
motor task. a) Time course showing the 
temporal evolution of burst coincidence 
throughout finger movement. Note that burst 
coincidence is significantly (p = 0.021; Wil
coxon rank sum test) less likely during the 
beta rebound window, in patients relative to 
controls. b) The spatial distribution of 
dominant connections at 4 time points dur
ing the task. The upper set shows the case for 
patients. The centre set shows the case for 
controls, and the lower set shows the domi
nant differences. In all cases, the 2% of 
connections with the highest values are 
shown. Notice that during the rebound win
dow, the dominant differences are between 
bilateral motor regions. See the supplemen
tary materials for a video showing the whole 
time evolution of the functional connections.   
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4.2. Mechanistic interpretations: The importance of beta band phenomena 

Despite the unmet clinical need for rapid and reliable biomarkers for 
mTBI, imaging signatures for concussive injuries are difficult to establish 
given the heterogeneity of mechanism, injury, symptoms, and long-term 
outcome. Neurophysiological indices derived from MEG have shown 
significant promise in their sensitivity and specificity in the assessment 
of mTBI. Previous work (Huang et al., 2014) has demonstrated that 
abnormal neural oscillations, particularly in the low-frequency delta 
band, can be used to successfully distinguish mTBI patients from healthy 
controls. More recent works (Huang et al., 2020; Zhang et al., 2020) 
show that higher frequency oscillations (beta and gamma) are reliable 
markers too, as well as emerging measures of electrophysiological dy
namics including functional connectivity. However, these previous 
measures have assumed the ‘classical’ picture that oscillations apparent 
in time-averaged brain signals represent ongoing rhythmic processes. In 
this paper, for the first time, we used the emerging theory of pan-spectral 
bursts – temporally discrete, transient brain dynamics – elucidated using 
a Hidden Markov Model, to further this field and show the multiscale, 
multiterminal impact of a single mTBI on dynamic neural activity. Our 
results, which show intrinsic and spontaneous bursting dynamics in the 
beta range are diminished, suggest that the neuronal assemblies 
responsible for generating transient beta events are affected by mTBI. 
This finding mirrors, in part, recent findings in fMRI which report 
altered dynamics and signal complexity after mTBI (Churchill et al., 
2020). A decrease in burst amplitude might be caused by a reduction in 
excitatory drive from the thalamus (Sherman et al., 2016) which would 
support the notion that long-range connections to the cortex are affected 
by concussive events. Our finding that diminished beta band connec
tivity in mTBI is due to a lack of burst coordination in long-range net
works (at rest and during a task), particularly within inter-hemispheric 
connections in the parietal lobes, could be explained by a variety of 
mechanisms. These could include axonal damage with possible subse
quent Wallerian degeneration, reduced myelination and other forms of 
neurodegeneration affecting neural synchrony. 

Changes in beta band power and disruption of beta band connectivity 
at rest, as well as beta abnormalities during motor tasks, have been re
ported in patients with neurodegenerative disease such as Parkinson’s 
disease (Bosboom et al., 2006; Heinrichs-Graham et al., 2014; McColgan 
et al., 2020; Stoffers et al., 2007). Recent reports on a cohort of subjects 
with repeated sports-related mTBI provide evidence of increased 
inflammation and accumulation of Tau protein (which is thought to 
contribute to the development of neurodegenerative diseases) (Mar
klund et al., 2021). Given the likely connection between mTBI and 
chronic neurodegenerative disease (Gardner and Yaffe, 2015) the beta 
band is of particular relevance to mTBI. This relevance is further implied 
by studies (e.g.(Brookes et al., 2011; Hipp et al., 2012)) demonstrating 
that canonical brain networks – including those associated with sensory/ 
motor function, and the higher order attentional networks – can be 
elucidated via an analysis of beta-band oscillations. These findings are in 
broad agreement with other emerging theories that beta oscillations 
carry top-down inhibitory influence on primary cortices. They also agree 
with a predictive coding model which suggests that beta oscillations 
carry internal forward models (whilst gamma oscillations reflect pre
diction errors) (see e.g. (Bastos et al., 2015; Buschman and Miller, 2007; 
Kopell et al., 2000)). Taken together, we propose that beta band pro
cesses support, and offer a sensitive measure of, long-range communi
cation and connectivity. In mTBI, it is hypothesised that the diffuse 
axonal injury (DAI) (Gazdzinski et al., 2020) and in particular disruption 
of the white matter around the corpus callosum, is one of the main 
drivers of neuropathology. This being the case it is likely that the long- 
range networks (particularly interhemispheric) mediated by beta oscil
lations would be disrupted by injury. It is therefore likely that assess
ment of beta band phenomena would provide a marker of mTBI. Indeed, 
such a marker would reflect the disruption of the connectome (either 
localised coup- and countercoup injury or diffuse injury) which is likely 

to exist in mTBI (Browne et al., 2011; Kirov et al., 2013) but is too subtle 
to be measured reliably using clinically available structural imaging. 
Additionally, mTBI can cause a plethora of neurochemical changes, 
impact neurotransmission and cause long-lasting metabolic impairment 
(see (MacFarlane and Glenn, 2015) for a review), which could disturb 
the effective generation of burst activity. Again, this is measurable using 
functional imaging but will escape detection in structural imaging. An 
important consideration here is time post-injury; neurochemical and 
neurometabolic changes, and their recovery to normal levels, vary in 
time scales, with some hyperacute effects resolving within minutes (e.g. 
K+ ion efflux and altered glutamate levels) and others remaining altered 
for several days (e.g. Ca2+ accumulation) (Churchill et al., 2020; Giza 
and Hovda, 2014; Jamjoom et al., 2021; MacFarlane and Glenn, 2015). 
In the long term, inflammation and glial activation in the subcortical 
white matter but also changes in myelination, Wallerian degeneration, 
or oedema, might disrupt functional connectivity. Longitudinal, multi
modal studies covering time points soon after injury are required to 
produce a clear picture of how electrophysiological signals are altered 
during recovery. 

Whilst previous studies in this area (Huang et al., 2020; Zhang et al., 
2020) employ the classical measure of oscillatory amplitude, here we 
chose to employ the “burst” framework. The burst model of beta has 
gained traction in the neuroscientific community in recent years, not 
only as a conceptual model but moreover because it has spawned some 
of the first mathematical models suggesting how beta oscillations might 
be generated physiologically (Sherman et al., 2016). This, therefore, 
affords the possibility that, in time, we can link the putative beta band 
markers of mTBI to a neurophysiological model. One consequence of the 
bursting hypothesis is that beta effects, whilst typically thought to be 
ongoing over all time, only occur for a small percentage of the overall 
duration of a MEG scan. It is with this in mind that we might expect a 
bursting framework to offer a more sensitive measure than classical 
analyses, where the effects sought might become averaged out over 
time. 

4.3. Clinical perspective 

Previous papers have tended to focus on differentiation between 
individuals with mTBI and controls, with recent findings offering be
tween 80 and 100% classification accuracy using ML. In the current 
work, we have also employed an ML approach – applied only to the 
connectivity data – which shows a reasonably high classification accu
racy. This shows that the putative biomarkers of mTBI outlined here 
might also offer diagnostic capability. However, mTBI remains a diag
nosis based on clinical history, patient experience, self-reported symp
toms, and is ultimately delivered by medically qualified clinicians. A 
brain scan, however accurate, that adds nothing other than to confirm 
the diagnosis, is of little practical help when determining a treatment 
pathway. Instead, we would argue that significantly more import lies in 
1) the ability to understand the sequelae of mTBI using hypothesis- 
driven objective assessment and 2) the ability of an imaging modality 
to be able to predict patient outcome or rehabilitation needs. MEG holds 
some promise in this area, but to realise its potential, we must employ 
the most sensitive markers of illness in a multivariate framework. While 
it is difficult to prevent overfitting of classifiers trained on relatively 
small datasets, employing feature selection techniques, such as the 
random forest approach outlined in this study, will be crucial in 
selecting candidate markers and will also aid hypothesis generation for 
future research. The burst deficits shown here could likely be combined 
with classical features and low-frequency observations into a single 
multi-variate biomarker. This may have predictive power to offer cli
nicians new tools in the management of this debilitating problem. 

4.4. Limitations 

There are several limitations to the current study which should be 
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expounded. In terms of methodology, source localisation is impacted by 
the ill-posed nature of the MEG inverse problem. Brain regions, partic
ularly those in close proximity, can exhibit signal leakage which will 
artificially inflate connectivity measures. To mitigate this, we applied 
orthogonalisation which eliminates zero phase lag effects; this is known 
to reduce artefactual connectivity but at the expense of real zero-phase- 
lag interactions (Brookes et al., 2012). This means that, whilst the long- 
range connections that we observe to differ between groups are real, 
there may be other (particularly short-range) connections that have 
been missed in this study due to this methodological limitation. A second 
technical limitation relates to the identification of the beta burst state. 
The method uses a univariate HMM in which three states are identified 
for each brain region. Following this, the state whose temporal occur
rence most strongly correlates with high beta power is designated the 
burst state. This means that, hypothetically, if a brain region was 
dominated by noise, a burst state would still be selected (i.e., as that 
most correlated with the beta envelope, even if that correlation was low) 
and could be meaningless. Related, two regions exhibiting a coincident 
burst may not necessarily be exhibiting a functional connection. This is a 
fundamental limitation of the univariate nature of the method; however, 
we note that this same methodology has been applied successfully in 
previous papers (Gascoyne et al., 2021; Seedat et al., 2020); it is known 
to reliably extract connectome metrics (based on burst coincidence), and 
coincident bursts have been demonstrated to occur during periods of 
increased phase locking. For these reasons, it remains likely that the 
method offers a true picture of oscillatory dynamics and connectomics. 

Additionally, two experimental limitations should be mentioned. 
Firstly, our motor task employed relatively short inter-stimulus in
tervals. The beta rebound is known to last for more than 7 s, and so the 
rebound following a trial will not be given a chance to fully relax before 
the following trial begins (Fry et al., 2016; Pakenham et al., 2020). We 
note that to gain a sufficient signal to noise ratio to characterise these 
effects, a large trial count is desirable; however, maintaining a large trial 
count whilst also allowing the rebound to fully relax between trials 
would lead to an experiment that was too long for patients to tolerate. 
Consequently, the experimental design used, whilst cofounded, is 
practical. A further limitation was the sample size used in our ML 
analysis. Using large numbers of features and a small sample size, it is 
conceivable that overfitting might occur when applying ML techniques 
such as the ones we have presented here. However, high classification 
accuracy does not imply overfitting in every case. As demonstrated in 
previous work which used a similar ML pipeline and sample size (Zhang 
et al., 2017, 2016), the combination of feature reduction and 10-fold 
cross-validation allowed us to train SVMs which correctly classified 
the testing samples. Importantly, there was no information leakage be
tween training and testing samples during 10-fold cross-validation as 
feature selection and reduction was conducted without including the 
testing samples during each of the folds. We are confident that the high 
classification accuracy is representative of what could be achieved in a 
larger study. However, we acknowledge that the relatively small sample 
size studied here remains a limitation and further samples are needed to 
ultimately validate this, and indeed all mTBI MEG findings. Finally, our 
study was limited by the behavioural measures that were acquired. 
Specifically, the SCAT2 is a generic questionnaire-based assessment that 
covers many areas. It remains a useful measure of symptomology but is 
not specific. This is likely why within-group correlations between MEG 
derived metrics were weak (in the case of connectivity), or absent (in all 
other cases). In the task, it is very unlikely that such a broad and general 
symptom score would be likely to correlate with the subtle MEG metrics 
that only relate to a single brain network. In future studies, behaviour 
should be more accurately assessed, potentially using motor specific 
tasks/questionnaires to better assess the relationships between neural 
measures and symptoms. 

5. Conclusion 

Here, for the first time, we show that fundamental and mechanistic 
neural bursting phenomena in the brain are disrupted by a single mTBI 
in the sub-acute phase following injury when structural MRI is normal. 
This dysregulated neural repertoire exists intrinsically and during dy
namic recalibration of the motor system after behavioural output. These 
results point towards a mechanism whereby white matter damage dis
rupts network function; whilst the damage itself may be too subtle for 
structural imaging to see, its functional consequences are accessible 
using MEG. 
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