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The blood-brain barrier (BBB) and the blood-tumour barrier (BTB) represent insidious 

obstacles for the delivery of anti-cancer agents to solid brain tumours, not only because 

of their morphological features, but also due to the presence of the drug efflux transporter 

breast cancer resistant protein (BCRP), localised at both the BBB and BTB. This efflux 

transporter restricts the permeation of anti-cancer agents across both barriers leading to 

suboptimal concentrations of drugs at the intended site of action.  

This work examined 13 naturally occurring phytochemicals, which were screened for 

their dual ability to modulate the efflux function of BCRP in addition to their anti-cancer 

properties in human LN229 glioblastoma cells, namely: (i) inhibition of cellular migration; 

(ii) activation of apoptosis; (iii) reactive oxygen species (ROS) production and (iv) 

activation of caspase pathways. Phytochemicals displayed minimal cytotoxicity, were 

able to modulate BCRP which led to enhancing the permeability of the fluorescent probe 

substrate H33342, in addition to inhibiting cellular migration. Hesperetin and baicalin 

displayed the optimal modulatory potential and demonstrated a similar ability to generate 

ROS and activate Caspase-3/7 when compared to the anti-cancer agents methotrexate 

and temozolomide. Subsequently, hesperetin was progressed as the optimal candidate, 

and its ability to permeate across the BBB was confirmed after conducting a permeability 

study using an in-vitro primary porcine brain microvascular endothelial cell (PBMEC) 

BBB model. We demonstrated that hesperetin was highly permeable across the BBB, 

can modulate the efflux function of BCRP and overall enhance the apparent permeability 

(Papp) of mitoxantrone and methotrexate. Thereafter, we assessed the impact of shear 

stress fashioned by laminal flow on the morphology of PBMEC using a Quasi Vivo 600® 

perfusion system. The results displayed a significant increase in Transepithelial 

Electrical Resistance (TEER) values, improved formation of zonula occludens-1 (ZO-1), 

and higher expression of efflux transporter proteins, suggesting the formation of a better 

in-vitro BBB model with hesperetin still being highly permeable across the barrier further 

confirming its ability to bypass the BBB and reach the BTB. This work highlights the anti-

cancer and BCRP modulatory capabilities of phytochemicals as well as the ability of 

hesperetin to bypass the BBB.  
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 Cancer biology and pharmacology 

 

The term ‘cancer’ can be defined as a group of cells that grow at an uncontrollable 

rate disregarding tenets of cell division. In healthy mammals, cells are subjected 

to many signals that direct them to either divide, differentiate or die. Cancer cells, 

however, are immune to these signals and consequently grow and proliferate 

uncontrollably. If cancer cells are allowed to grow and spread uncontrolled, the 

consequences can be deadly. Approximately 90% of cancer related mortalities 

are due to the dispersion of cancerous cells across the body, a process termed 

metastasis (Emuss, 2006). Tumours can be benign or malignant with malignant 

tumours being larger in size (> 3 cm) and capable of spreading at a  greater rate 

than benign tumours (Shields et al., 2017).   

 

The cell cycle is normally stringently controlled by various regulatory pathways 

therefore, it is not surprising that genes responsible for cell cycle regulation are 

often found mis-regulated and mutated in cancers (Table 1.1) (Collins et al., 

1997, Malumbres and Barbacid, 2009, Kastan and Bartek, 2004). Genes where 

a mutation leads to a gain or an increased level in function which results in 

malignancies, are called protooncogenes and typically encode for growth 

promoting proteins. Genes that lead to a reduced or loss in function, typically 

result in malignancies and are termed tumour suppressor genes, encoding 

negative regulation of growth (De Vita and Lawrence, 2011). 
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Table 1.1 Examples of gene mutations in cancer 

Gene Protein Function Alteration in 

cancer 

CCND1,2,3 D cyclins Positive regulator of CDK4/6 Overexpressed 

CCNE1 Cyclin E1 Positive regulator for CDK2 Overexpressed, 

deregulated 

RB1 pRb Repress E2f transcription Mutated, deleted 

TP53 p53 Check points, apoptosis Mutated, deleted 

MTBP MDM-2 Inhibitor of p53 Overexpressed 

CDKN2A p14 Arf,a Activator of p53 Mutated, deleted 

ATM ATM Checkpoints, repair Mutated, deleted 

 

Table adapted from (De Vita and Lawrence, 2011) 

 

 

Hanahan and Weinberg (2000) suggested that there are six hallmarks of cancer 

that, when combined together, result in a malignant growth (Figure 1.1). These 

were updated a decade later to include 4 additional emerging hallmarks (Figure 

1.2). Each of these physiological deviations obtained during tumour development 

signifies a complication in the anti-cancer defence mechanism. While cancers 

arising from different tissues have some differences, it is assumed that most, if 

not all human cancers share these ten hallmarks (Hanahan and Weinberg, 2000, 

Hanahan and Weinberg, 2011). 

Cancer cells have a high rate of proliferation and cell growth, consequently, they 

require a high level of amino acids, lipids, nucleotides, and energy. To fulfil that 

high demand of energy levels, oxidative phosphorylation and glycolysis are 

promoted which leads to an increase in the production of ATP. This insures the 

survival of cancer cells (Tennant et al., 2009). 

Cancer cells not only need glucose to produce energy, but also utilise it under 

hypoxic conditions to regulate various pathways that affect cancer progression. 
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One of these pathways include metabolic adaptation. Cancer cells undergo 

metabolic adaptation when the tumour microenvironment is derived of any 

oxygen supply (hypoxic conditions), and therefore glucose transport genes such 

as GLUT1 and GLUT3 are promoted. As a result of metabolic adaption, an 

increase in reactive oxygen species (ROS) production occurs which can activate 

hypoxia inducible factors (HIFs), which play an essential role in cancer initiation, 

proliferation and growth (Dang et al., 2008, Bertout et al., 2008). This metabolic 

imbalance and the pro-oxidative state of cancer cells is supported and maintained 

by many changes in the cellular metabolic activity, oncogenic alteration and as a 

result, the loss of the functions of tumour suppressor genes such as p53 

(Pelicano et al., 2004). 

 

 

 
Figure 1.1 Six hallmarks of cancer 

The six hallmarks are: (i) evading cell death (apoptosis); (ii) self-sufficiency in 
growth signals; (iii) insensitivity to anti-growth signals; (iv) tissue invasion and 
metastasis; (v) sustained angiogenesis and (vi) unlimited replicative power 
(Hanahan and Weinberg, 2000) 
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Figure 1.2 Emerging cancer hallmarks  

The 4 additional hallmarks that were later updated are, (i) avoiding immune 
destruction, (ii) tumour promoting inflammation, (iii) genome instability and 
mutation and (iv) deregulation of cellular energetics (Hanahan and Weinberg, 
2011). 
 

 

 

 

Persistent intrinsic oxidative stress is one of the main features of cancer cells. 

Excessive ROS generation was reported in in-vitro cancer models such as breast 

and ovarian cancer, melanoma, pancreatic carcinoma, and neuroblastoma, 

where an increase in hydrogen peroxide has been reported when compared to 

healthy tissue (Szatrowski and Nathan, 1991, Liou and Storz, 2010). 

Cellular ROS can be generally divided into two main categories: (i) ROS 

generation as a biproduct of biological processes such as mitochondrial oxidative 

metabolism (Finkel, 2011, Grivennikova and Vinogradov, 2013); (ii) intentional 

ROS generation as a cellular response or cell defence mechanism to xenobiotics, 

bacterial invasion and cytokines (Starkov, 2008, Zakki et al., 2018).   
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ROS at appropriate levels has been shown to play an integral role in the 

modulation of numerous physiologic responses as part of regulating cells 

signalling (Schieber and Chandel, 2014, Liu et al., 2008). Within the normal 

threshold of ROS in healthy cells, ROS acts as a signal for peroxide mediated 

oxidation of protein cysteine residues which can trigger cell proliferation 

(Schieber and Chandel, 2014). In addition, it mediates DNA repair by inducing 

p53 (Liu et al., 2008). However, if production of ROS exceeds that threshold and 

is no longer controlled by the redox homeostasis, oxidative DNA damage can 

occur which leads to cells death.  

 

An increase in intracellular ROS levels, in addition to a flawed antioxidant system, 

can lead to the rise of pathological conditions (Rhee, 2006) such as cancer 

(Dhillon et al., 2014), inflammation (Nijland et al., 2014) heart disease (Dhar and 

Prasad, 2014) and diabetes (Rehman et al., 2014). Increased ROS production 

within the cell leads to the depolarisation of the mitochondria which releases 

cytochrome C. Normally, cytochrome C contributes to the synthesis of ATP, 

however when the cell receives an apoptotic signal, cytochrome C is released 

into the cytosol which triggers cell death.  This process involves the induction of 

caspase-9 which stimulates nucleotide binding to APAF-1 (apoptotic protein 

activation factor 1), that results in the activation of caspase (NavaneethaKrishnan 

et al., 2018). Increased ROS levels have also been associated with the mediated 

cleavage of caspase-3 via triggering caspase-8 (Redza-Dutordoir and Averill-

Bates, 2016). In cancer cells, ROS generation elevates the rate of mutagenicity 

and leads to chromosomal instability, DNA base pairs damage and hence 

promotes cancer progression (Radisky et al., 2005, Samper et al., 2003). 

Oxidative stress also plays a role in inactivation of apoptotic proteins by 

upregulating anti-apoptotic genes such as BcL-2 (McCubrey et al., 2007). 

Additionally, ROS generation in cancer cells can participate in the metastatic 

process by stimulating the cells to invade surrounding healthy tissue, form new 

blood vessels (angiogenesis) and eventually migrate to new locations (Mori et al., 

2004, Coussens and Werb, 1996). 
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Apoptosis is an orchestrated and well organised process that occurs in 

pathological and physiological conditions (Wong, 2011). In cancer, there is an 

imbalance between cell proliferation and cell death, with cells that otherwise are 

due to undergo apoptosis, fail to receive an appropriate cascade signal and 

develop the ability to evade the apoptosis regulatory process (Wong, 2011). 

TP53, which codes for p53, is one of the most studied tumour suppressor genes 

due to its ability to regulate cellular metabolism, transcriptional processes, 

genomic stability, proliferation, autophagy, and apoptosis (McCubrey et al., 2007, 

Budanov, 2014). In normal cells, p53 can increase the expression of various 

antioxidant genes such as the tumour protein p53-inducible nuclear protein 1 

(TP53INP1), TP53-induced glycolysis and apoptosis regulator (TIGAR) (Cano et 

al., 2009, Sablina et al., 2005). In p53 depleted cancer cells, there is an absence 

of p53 dependant antioxidant regulators which leads to a surge in oxidative stress 

within the cells permitting ROS build-up. 

p53 mutation is one of the most common genetic abnormalities in cancer patients 

and is regarded as a hallmark of cancer (Kumar and Pandey, 2013), with a 

mutated p53 protein leading to triggering of apoptosis in addition to lack of cell 

proliferation control.  

Three key biochemical changes occur during apoptosis, namely: (i) DNA and 

protein break down, (ii) activation of caspases and (iii) membrane changes and 

recognition by phagocytic cells (Wong, 2011). Early in the apoptotic process, 

phosphatidylserine (PS), present in the inner layer of the cell membrane, 

undergoes reorientation to the outer layers of the cell membrane allowing for its 

recognition by macrophages which lead to phagocytosis. Thereafter, DNA break 

down takes places where 50-300 kilobase pieces are formed (Vaux and Silke, 

2003). Afterwards, endonucleases cleave the inter-nucleosomal DNA into 

multiple 180 to 200 base pair fragments (Vaux and Silke, 2003, McCarthy and 

Evan, 1998). 
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Morphologically, the presence of chromatin condensation and nuclear 

fragmentation are considered hallmarks of apoptosis. This is usually 

accompanied by rounding up of the cell, refutation of pseudopods and pyknosis 

(Kroemer et al., 2009). The cell membrane remains intact throughout the 

apoptotic process, however, in the later stages of apoptosis, loss of cell 

membrane integrity and membrane blebbing takes place; a process ending with 

phagocytes consuming the cell before apoptotic bodies emerge (Ziegler and 

Groscurth, 2004, Kroemer et al., 2009, Wong, 2011). 

 

 

 Caspases: the executioners of apoptosis  
 
 
Caspases are cysteine proteases that are synthetised as inactive proenzymes 

known as procaspases, with a pro-domain N-terminal and two subunits, one large 

and one small (Cohen, 1997). There are 14 members of the caspases family, 11 

of which are found in humans and are divided into 3 subfamilies (Table 1.2) 

(Friedlander, 2003). A process that is characteristic to apoptosis is the activation 

of caspases. Caspases are a group of cysteine protease enzymes when 

activated, the N-terminal is cleaved and a heterodimer is formed from the small 

and the large subunits (Fan et al., 2005). Active caspases cleave vital proteins 

and nuclear cytoskeleton as well as activating DNase which further breaks down 

nuclear DNA (Lavrik, 2005, Shalini et al., 2015). 

 

Table 1.2 Subfamily members of the caspase family 

Subfamily Role Caspase members 

I Apoptosis activator 2, 8, 9, 10 

II Apoptosis executioner 3, 6, 7 

III Inflammatory mediator 1, 4, 5, 11, 12, 13, 14 

 

Table adapted from (Fan et al., 2005) 
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A feature of malignant tumours is their ability to initiate a unique, multi-stage 

biological phenomenon known as the “metastatic cascade” where cell invasion is 

a major trigger and a critical factor for additional cancer progression and 

metastasis in the surrounding and/or distant tissue and organs (Krakhmal et al., 

2015, van Zijl et al., 2011). 

 

Cellular migration requires the formation of cytoplasmatic lamellipodia and 

filopodia extensions which are controlled by actin filaments.  These are used to 

promote polarized morphology. At the ends of the lamellipodia, cells are 

connected to the extracellular matrix trough the actin cytoskeleton network and 

this allowed anchorage of the cytoplasmatic extensions. A consequence of this 

is the ability to drag the cell body (Le Clainche and Carlier, 2008).   

 

Metastasis is a term used to describe the spread of cancer cells form the 

originating or primary tumour site to neighbouring tissue and distant organs 

(Tarin, 2011, Chambers et al., 2002). Cancer metastases is considered the main 

cause of cancer related mortalities which is estimated to be at 90% (Chaffer and 

Weinberg, 2011). For metastasis to occur, cancer cells must first detach from the 

originating tumour site, enter the circulatory and lymphatic systems, avoid 

immune attack, extravasate at a distant capillary network and then invade and 

divide in new organs (Welch and Hurst, 2019, Bacac and Stamenkovic, 2008). 

Metastatic cancer cells have the ability to create a microenvironment that enables 

proliferation and angiogenesis, which results in the formation of malignant 

secondary tumours (Lazebnik, 2010, Seyfried et al., 2014). 

 
 

 
The National Cancer Institute (NCI) classifies cancers based on the type of tissue 

from which the cancer originates (histological) or by the site (organ) which the 

cancer first appears (NCI, 2021).  

 

There are six major histological origins: 
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i) Carcinomas are cancers that arise from epithelial tissue and can 

appear in the breast, prostate, lung, and colon. They account for more 

than 80% of reported cancer cases.  

 

ii) Sarcomas arise from connective tissue such as bones, cartilages, fat 

and muscles. Sarcomas usually occur in youngers individuals, 

examples include, fibrosarcoma, chondrosarcoma and osteogenic 

sarcoma. 

 

iii) Myeloma is a cancer that originates in plasma cells of bone marrow. 

 

iv) Leukaemia refers to liquid cancers and usually begins in the bone 

marrow.  

 

v) Lymphoma is the type of cancer that develops in the glands or nodules 

of the lymph system, lymphomas are known as solid cancers and can 

occur in specific organs such as the stomach or the brain. 

  

vi) Mixed origin cancers are those that arise from more than one tissue 

such as carcinosarcoma, teratocarcinoma and mixed mesodermal 

tumour.  

 
 

 Cancers of the central nervous system  

 

Worldwide, 250,000 cases of brain and CNS tumours are diagnosed every year, 

this makes up 3% of all cancer cases (Miranda-Filho et al., 2016). CNS cancers 

are ranked as the 8th overall cause of death in the UK (Parrish et al., 2015), and 

have had an increased incidence of 39% since the 1990s. They are the leading 

cause of cancer death in men under 40 years old and women under 20 years old 

(Siegel et al., 2020). In the UK, 30 cases of brain and other CNS tumours are 

diagnosed every day with a reported mortality rate of approximately 52% for 

malignant brain tumours.  
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Gliomas are divided into 4 grades: (i) Grade 1 are slow growing, unlikely to 

spread and can be cured with surgical removal; (ii) Grade 2 are less likely to 

metastasis but more likely to re-occur after treatment; (iii) Grade 3 have a rapid 

rate of proliferating cells and can rapidly grow; (iv) Grade 4 cells have a high 

proliferation rate as well as the presence of blood vessel growth and areas of 

necrotic cells, in addition to being highly likely to metastasise.  

The most aggressive and most common is grade 4, which is also known as 

glioblastoma multiforme (GBM). These tumours have garnered significant 

attention given that most patients with GBM die within 12 month of diagnosis 

(Holland, 2000).  

The main mode of treatment for GBM has remained unchanged for decades, 

commencing with surgical removal of the tumour mass, followed by radiotherapy 

and chemotherapy (Holland, 2000, Abbruzzese et al., 2017). Assuming all of the 

tumour tissue was surgically removed and followed up with radiation and 

chemotherapy, the survival rate of the patient can extends by up to 15 month and 

a 5-year survival rate from diagnosis of less than 5% (Abbruzzese et al., 2017). 

Variations exist in the types of gliomas, and this is dictated by the molecular 

phenotype (Table 1.3). CNS tumours exist and are location specific, for example, 

meningiomas (tumour of the meninges), schwannomas (benign tumours similar 

to meningiomas), medulloblastomas (found near the midline of the cerebellum) 

and craniopharyngiomas (benign tumours at the base of the brain) (Behin et al., 

2003, Cohen and Weller, 2007, Louis et al., 2016) (Figure 1.3). 
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Figure 1.3 Location of different types of brain tumour 

Location and types of CNS tumours include (UH, 2018). 
 
 
 
 

Table 1.3 Classification of CNS tumours grades I,II,III and IV based on the 
molecular phenotype (Louis et al., 2016) 

Grade  WHO grades of select CNS tumours 

I Pilocytic astrocytoma, subependymoma giant cell astrocytoma, 

subependymoma, myxopapillary ependymoma, angiocentric glioma, 

choroid plexus papilloma, gangliocytoma, ganglioglioma, schwannoma, 

neurofibroma, perineurioma, meningioma, spindle cell oncocytoma, 

pituicytoma, granular cell tumour, craniopharyngioma, pineocytoma and 

haemangioblastoma.  

II Ependymoma, pleomorphic xanthoastrocytoma, choroid glioma pf third 

ventricle, atypical choroid plexus papilloma, central neurocytoma, extra 

ventricular neurocytoma, cerebellar liponeurocytoma, atypical meningioma 

and papillary tumour of the pineal region.  

III Anaplastic pleomorphic xanthoastrocytoma, anaplastic ependymoma, 

choroid plexus carcinoma, anaplastic ganglioglioma, pineal parenchymal 
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tumour of the intermediate deafferentation, papillary tumour of the pineal 

region, anaplastic meningioma and haemangiopericytoma 

IV Glioblastoma IDH-wildtype, glioblastoma IDH-mutant, diffuse midline 

glioma H3K27M-mutant, pineoblastoma, medulloblastoma, 

medulloepithelioma, CNS embryonal tumour, atypical teratoid tumour and 

malignant peripheral nerve sheath tumour MPNST. 

 
 
The most common type of primary brain cancer originates from glial cells and are 

termed glioblastoma multiform (GBM). Glial cells include microglia, astrocytes 

and oligodendrocyte lineage cells and they make up a large portion of the human 

brain (Jäkel and Dimou, 2017). Similar to other cancers, GBM is thought to arise 

from stem cells, more precisely from precursor cells that otherwise create glia 

and neurons (Zong et al., 2012). The standard treatment for GBM is typically 

surgical resection, followed by radiotherapy and finally a treatment with an 

alkylating agent such as temozolomide.  

Furthermore, the highly malignant nature of glioblastomas is mainly a result of 

the excessive cell proliferation and invasion of surrounding brain tissue, in 

addition to suppression of any immune anti-tumour response. Tumour invasion 

to surrounding tissues occurs where neoplastic cells initiate migration while 

adhering to the extracellular matrix (ECM) starting at the primary tumour site. 

These cells then degrade the ECM through the secretion of proteolytic enzymes 

such as matrix metalloproteinases (MMPs) and then invade normal tissue 

(Demuth, T. and Berens, M.E. 2004; Singh, R.D. et al., 2010).  

 
 

 Drug delivery to brain tumours  

 
Generally, the number of hydrogen bond donors and the ability of a compound to 

form hydrogen bonds can significantly impact their ability to penetrate into the 

CNS. Moderately lipophilic molecules are thought to cross the BBB through 

passive diffusion (Pajouhesh and Lenz, 2005). Molecules with high polarity are 

poor CNS agents unless they undergo active transport to penetrate the CNS. The 
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size of molecules, ionisation and molecular flexibility are other factors that affect 

transport of compounds across the BBB (Mouritsen and Jørgensen, 1998). 

 
In 1997, Christopher Lipinski assessed the physicochemical characteristics of 

clinical drug candidates and proposed the ‘rule of 5’ that could predict the 

possibility of compounds to permeate through the BBB (Lipinski et al., 1997). The 

rule of five noted that in order for molecules to permeate across the BBB, they 

should possess the following key properties: (i) a molecular mass less than 500 

Da; (ii) high lipophilicity with octanol-water partition coefficient (log P) less than 5; 

(iii) 5 or less hydrogen donating bonds; (iv) 10 or less hydrogen accepting bonds 

(Mikitsh and Chacko, 2014). Unfortunately, some chemotherapeutic agents, do 

not fall within this category and so drug delivery of chemotherapeutic agents 

requires a strategy to overcome this problem and be able to achieve clinically 

relevant drug concentration levels at the tumour site.  

 

Since brain tumours are essentially located within the brain parenchyma, any 

systemically administered chemotherapeutic agents will have to permeate across 

the BBB and BTB in order to reach their target tumour site, hence limiting 

xenobiotic entry. The scarcity of effective CNS cancer therapeutics is often a 

result of poor delivery into CNS tissue as a result of the BBB and the BTB 

(Ganipineni et al., 2018, Arvanitis et al., 2020a). 

 

 

 

The BBB was first described in the late 19th century by Paul Ehrlich, a German 

scientist who injected mice with a trypan blue dye and identified that the dye had 

stained all tissues except for the spinal cord and the brain. Later Edwin Codman 

conducted an experiment where trypan blue was injected into the cerebrospinal 

fluid and observed brain tissue staining only (Goldmann, 1912, Haseloff et al., 

2005). These two experiments lead to the concept that the brain and other body 

organs were in distinct compartments separated by a barrier (Friedemann, 1942).  
 

The BBB consists of cerebral endothelial cells, astrocyte end feet, pericytes, 

neurons and extracellular matrix. These together make up the neurovascular unit 
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(NVU) (Bagchi et al., 2019). Each component of the NVU is mutually connected 

to each other forming a highly efficient system that regulates cerebral blood flow. 

Each element of the NVU plays a distinct active role to maintain brain 

homeostasis (Bagchi et al., 2019) (Figure 1.4).  
 

Neurons are known as the pacemaker of the neurovascular unit (Banerjee and 

Bhat, 2007), because of their highly sophisticated function where they are 

capable of detecting the smallest changes in nutrients and oxygen supply and in 

response send electrical and chemical messages to the vessels in order to return 

to normal physiological conditions, thus influencing the vasculature and blood 

supply to the adjoining areas (Figley and Stroman, 2011). 

 

At first, the role of astrocytes was unknown, however, it was later demonstrated 

that astrocytes are incredibly versatile within the NVU, and possess the ability to 

communicate with both the neurons and blood vessels simultaneously (López-

Bayghen and Ortega, 2011, Santello et al., 2012). It has been also reported that 

astrocytes have an effect on the formation of tight and adhesion junctions in the 

BBB and hence regulate the tightness of the barrier itself in addition to 

upregulating the expression of a range of transporters and enzymes within 

endothelial cells (Haseloff et al., 2005).  

Pericytes are embedded within the basement membrane that covers 30% of the 

endothelium, and given their close contact to endothelial cells, they play a 

significant role in their development and maturation (Sá-Pereira et al., 2012). 

Much like astrocytes, the role of pericytes was unknown as they were considered 

as simple support cells (Armulik et al., 2010). However, it was displayed that they 

secrete adhesion molecules and growth factors as a response to ATP increase 

(Kawamura et al., 2003). Pericytes are also essential in controlling blood vessel 

proliferation, formation and are able to control the diameter of blood vessels to 

help modulate cerebral blood flow (Di Pietro et al., 2002, Peppiatt et al., 2006). 
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Figure 1.4 The neurovascular unit 

The basement membrane surrounds the endothelial cells and embeds the 
pericytes. Endothelial cells are connected through tight junctions. Astrocyte end 
feet are connected with the endothelial cells (Delsing et al., 2020) 
 
 

 

The BBB is formed primarily of microvascular endothelial cells that are tightly 

fused together and form a tight continuous lipid layer that heavily restricts free 

diffusion of drugs into the brain (Emanueli et al., 2003, Duchemin et al., 2012).  

Key to the barrier function of the BBB is the presence of proteins termed ‘tight-

junction’ proteins, which primarily serve to restrict paracellular diffusion of drugs 

between adjacent endothelial cells. Tight junctions (TJ) are formed by link zones 

between cells, in which the intercellular cleft is sealed. TJ are controlled and 

maintained by the expression of a range of proteins such as occludins, claudins 

and junctional adhesion molecules (JAM) (Figure 1.5).   
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Figure 1.5 Endothelial tight junction and adhesion junction structure 

Occludins and claudin proteins are the main components of TJs, ZO-1, -2, and -
3 provide structural basis for the assembly of TJs. AJs and JAMS take part in the 
formation and maintenance of TJs (Derada Troletti et al., 2016) 
 
 
 
 

 

 

Under pathological conditions such as epilepsy, multiple sclerosis, AIDS, 

dementia and stroke, the performance and organisation of the BBB can be 

disturbed (de Vries et al., 2012, van Tellingen et al., 2015). This is also the case 

with brain cancers (Abbott et al., 2006). Changes in the barrier triggered by the 

presence of the tumour is not linked to tumour size, type or location and is 

different within every single neoplasm (van Tellingen et al., 2015). In low grade 

gliomas, the morphology and function of the BTB remains mostly intact and 

resemble that of the BBB. However, in high grade gliomas, as confirmed by MRI 

(Dhermain et al., 2010), there are major alterations of the normal vasculature of 

the BTB. 
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The BTB is a visibly distinctive barrier from the BBB and is formed by tumour 

capillaries. It is composed of three separate microvessel populations: (i) non-

fenestrated and continuous much like normal brain capillaries; (ii) capillaries 

enclosing inter-endothelial gaps (iii) fenestrated and continues capillaries 

(Groothuis, 2000, Schlageter et al., 1999, van Tellingen et al., 2015). Much like 

the BBB, endothelial cells of the BTB express drug efflux transporters from the 

ABC family such as ABCG2/BCRP (Aronica et al., 2005, Iorio et al., 2016) and 

ABCB1/P-gp (Lin et al., 2014), as well as other ABC efflux transporters (Arvanitis 

et al., 2020a, Bronger et al., 2005). 

 

The BTB is considered a leaky barrier and is characterised by pericyte disruption, 

loss of neuronal connection and loss of astrocyte end feet (Dubois et al., 2014). 

In addition, tight junction proteins and stem cell derived pericytes are 

downregulated and pericyte cell coverage is disrupted (Dubois et al., 2014, 

Achrol et al., 2019, Cheng et al., 2013). This is indicated by the detection of 

peripheral monocytes and T-cell subpopulation in brain tumours suggesting the 

permeability of the neurovascular unit to circulating cells (Achrol et al., 2019). 

Moreover, the disruption in BBB permeability is evident by the detection of 

circulating  brain tumour markers and the higher drug accumulation within brain 

tumours in comparison with unaltered brains (Arvanitis et al., 2020a). Despite 

these observations, the BTB maintains critical features of the BBB including the 

expression of active efflux transporters in endothelial and tumour cells (van 

Tellingen et al., 2015). It is worth noting that an intact BBB can be present in 

advanced glioblastoma cases displaying a variety of efflux transporters that 

restrict permeation of anti-cancer agents (Arvanitis et al., 2020a, van Tellingen et 

al., 2015, Sarkaria et al., 2018). Consequently, in both low-grade and high-grade  

glioblastomas, the BBB and the BTB form an arduous obstacle in brain tumour 

treatment by preventing the delivery of appropriate quantities of possibly effective 

chemotherapeutic agents (Juillerat-Jeanneret, 2008, Korfel and Thiel, 2007). 
 

 

In order for adequate amounts of chemotherapeutic agents to reach the 

sight of the tumour, bypassing the BBB is a prerequisite (Kim et al., 2018). The 
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primary function of the BBB is maintaining the homeostasis of the CNS by 

restricting the permeation of ions, molecules, fluids and cells between the blood 

and the brain, in addition to providing the brain with nutrients. The BBB also acts 

as a xenobiotic barrier through the presence of a significant network of membrane 

localised uptake/efflux transporter proteins responsible for the carried-mediated 

transport of molecules (Abbott, 2005). 

 

Two key pathways exist through which molecules are able to permeate across 

the BBB, namely transcellular pathways and paracellular pathways (Figure 1.5), 

both of which are primarily passive diffusion pathways. The paracellular route 

refers to movement of molecular across the endothelium by passing through 

intercellular spaces located between adjacent cells. In the BBB, this route is 

considered an essential and unique phenotype for the BBB as molecular diffusion 

is strictly controlled by TJs, which play a key role in regulating permeability across 

the BBB, whilst also maintaining the polarity of receptors and enzymes on the 

luminal and abluminal membrane domains (Banik et al., 2010).   

In contrast, transcellular pathways allow passage of small lipophilic molecules 

across the lipid bilayer of the endothelial cells and is primarily a pathway for 

lipophilic, non-polar molecules (Pardridge, 2002). 

 

Transcytosis refers to the transport of macromolecules from the apical to the 

basolateral side of the cell. This process takes place in different cells including 

endothelial cells and neurons (Pulgar, 2019). There are two types of transcytosis 

in the brain, receptor mediated transcytosis and adsorptive mediated transcytosis 

(Figure 1.6). Receptor mediated transcytosis (RMT) are specific receptors in the 

lumen of endothelial cells and are responsible for the transport of specific ligands. 

This is the main mechanism through which molecules such as insulin and 

transferrin are transported across the BBB (Abbott, 2013).  
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Figure 1.6 Transport pathways in the blood-brain barrier 

(1) Paracellular aqueous pathway through which limited amount of water-soluble 
molecule can diffuse. (2) transcellular lipophilic pathway through which lipid 
soluble molecules diffuse across the BBB. (3) protein transporters pathway is 
responsible for diffusion of glucose, purine bases, amino acids, chlorine and other 
substances. (4) receptor mediated transcytosis that transport insulin, transferrin 
and certain proteins. (5) adsorptive transcytosis transports poorly absorbed 
proteins such as albumin. (6) Efflux transporters (Brazil, 2017) 
 

 

Adsorptive mediated transcytosis (AMT) is responsible for transport of molecules 

that are polycationic in nature such as neuropeptides, proteins, and large 

therapeutic molecules.  For these molecules,  binding to anionic molecules at the 

surface of the cell is critical for their resultant transportation and passage across 

the endothelia through vesicular systems (Patel and Patel, 2017).  

 

The BBB also contains an insidious network of membrane bound transporter 

proteins which are responsible for the active efflux or active uptake of molecules 

across the BBB through an energy-mediated (hydrolysis of ATP) process.  

Typical examples of these can be found in the membrane bound transporter 

proteins P-glycoprotein (P-gp/ABCB1), breast cancer resistant protein 

(BCRP/ABCG2), multi-drug resistant proteins (MRP-1, -4, -5 and -6) and organic 

anion transporting poly peptides (OATP2). For the transport of larger molecular, 

a carrier mediated transport pathway also exists for transport of nutrients into the 

brain such as amino acid large transporter LAT-1, glucose transporter GLUT-1, 
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monocarboxylic acid transporter MCT-1 and sodium coupled nucleoside 

transporter (CNT2) (Pardridge, 2002). 

 

 

 
Despite the BTB being a leakier barrier, studies have shown that it displays 

heterogonous drug permeability where, the centre of the tumour demonstrates 

higher leakiness in comparison with the adjoining brain microenvironment and 

the peritumoral area (Arvanitis et al., 2020b). This was shown in a malignant 

murine glioma model where dasatinib distribution was heterogeneous in the 

tumour lesion and was higher than that of the surround brain tissue (Agarwal et 

al., 2012). Further, low molecular weight compounds administered systemically 

in brain metastasis mouse models have shown irregular distribution within the 

tumour tissue (Lyle et al., 2016). Moreover, the permeability of 14C-paclitaxel and 
14C-doxorubicin was assessed across the BTB in brain tumour metastasis mice 

models and demonstrated that 89% of the lesions displayed a heterogeneous 

BTB permeability, with drug uptake generally greater than that in normal brain 

tissue yet, drug concentrations reached cytotoxic levels in less than 10% of the 

metastatic models examined (Lockman et al., 2010). 
 

Circulating drugs are exposed to multiple barriers imposed by the NVU, namely 

reduced transcytosis, reduced paracellular transport of hydrophilic compounds 

and efflux transporters that inhibit the passage of lipophilic molecules across the 

BTB (Banks, 2016). Many of these circulating drugs have an affinity to ABC 

transporters which are often responsible for reducing the uptake of drugs across 

the BBB (Seelig, 2007, Nałȩcz, 2016, Carmeliet and Jain, 2011). Evolving 

insights into the BBB/BTB structure and function, have granted novel approaches 

to overcome the limitations they impose and enhance drug delivery to brain 

tumours. Some invasive approaches include, intrathecal and intraventricular 

injections (Groothuis, 2000, Beauchesne, 2010), implantation of wafer and 

microchips (Bregy et al., 2013, Chowdhary et al., 2015) and convection enhanced 

delivery by direct injection (Zhou et al., 2017b, Lonser et al., 2015).  
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Another popular approach to overcome multi drug resistance MDR at the 

BBB/BTB is through overcoming efflux pumps. Studies conducted pre-clinically 

have focused on the co-administration of the chemotherapeutic agent with a 

transporter inhibitor. This approach has shown a significant enhancement in 

chemotherapeutic agent concentration within the brain. This was evident by a 

1.5-fold increase of temozolomide when co-administered with elacridar, a BCRP 

and P-gp inhibitor, in mice (de Gooijer et al., 2018). The increased recognition of 

the role ABC transporters play in BBB and brain tumour drug permeability 

suggests the need for more potent, more specific inhibitors that can target 

specific transporters and improve cancer cell drug uptake (Robey et al., 2018, 

Kim et al., 2018, Lin et al., 2014).  
 

  The ABC family of efflux transporters 

 
Active transport of molecules across barriers refers to the movement of 

molecules against a concentration gradient and often requires the energy 

released from ATP hydrolysis in order to shuttle molecules across the cell 

membrane.  Many therapeutic agents are transported into the brain and extruded 

out of the brain through active transport. Multiple efflux transporters such as ATP-

binding cassette (ABC) transporters and influx transporters such as peptide 

transports, nucleoside transporters, organic cation transporters and (Sanchez-

Covarrubias et al., 2014) have been identified in the BBB and the BTB (Table 

1.4).  

 

 
Table 1.4 Examples of influx transporters and substrates 

Transporter Substrate 

Energy transport system 

GLUT-1 D-Glucose 
MCT-1 L-Lactose 

CRT Creatine 
Amino acid transport system 

LAT-1 Large neutral amino acids 
CAT-1 Cationic amino acids 
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xCT L-Cystine/L-Glutamine 
Organic anion transport system  
Oatp14 Thyroid hormones 
OCTN2 Carnitine 

Nucleoside transport system 

CNT2 Nucleosides  
  

 

  Adapted from (Ohrsuki et al., 2003).  
 
 

 

The ABC superfamily of drug transporters are amongst the largest and the most 

abundantly expressed transporter proteins found in prokaryotes (Sanchez-

Covarrubias et al., 2014). The ABC family is subdivided into 7 subfamilies (ABCA-

ABCG) and consists of 49 genes in total (Dréan et al., 2018). The ABC family has 

many functions which include, peptide transport and maintenance of the lipid 

bilayer. However, the most notable and widely studied role is their contribution in 

the development of the MDR phenotypes (Dean et al., 2001).  

 

ABC transporters are either expressed as ‘full’ (Figure 1.7) or ‘half’ (Figure 1.8) 

transporters with full transporters having two transmembrane domains (TMD) and 

two nucleotide binding domains (NBD) and half transporters having only one of 

each. The ABC transporters are thought to undergo homodimerization in order to 

become functional (Dréan et al., 2018, Hyde et al., 1990, Dean et al., 2001). 

 

All members of the ABC family exhibit two primary structural motifs, namely 

‘Walker A’, a phosphate binding loop and ‘Walker B’ magnesium binding loop. 

Besides these two motifs, three other motifs are found in the ABC cassette, the 

‘LSGGQ’ motif is specific to ABC transporters, ‘the switch region’ which attach to 

water molecules for hydrolysis and the Q-motif found between walker A and 

walker B and interacts with gamma phosphates through water bond formation. 

Walker A, walker B and the Q-motif make up the nucleotide binding site (Zhou, 

2008, Higgins, 2001). In order to transport molecules across a cell membrane, 
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ABC transporters utilise energy from ATP hydrolysis in order to function (You and 

Morris, 2006).   

 

The reasoning behind the ability of the ABC transporters to bind to a variety of 

structurally unrelated compounds and molecules is still unclear. However, two 

theories have come to light as possible explanations. The first theory claims that, 

when the transporter is facing inwards, the binding pocket of the transporter has 

a higher affinity to substrates. The binding of the transporter to the substrate leads 

to a conformational change leading the transporter to face outwards resulting in 

a reduced affinity to the substrate and hence the efflux of the substrate into the 

extracellular matrix. This theory is termed the “altering access model” (Clay, 

2013). The second theory describes how the dimerization of the NBD after ATP 

hydrolysis causes a switch in the binding pocket from facing inward to facing 

outward. This inversion leads to a conformational change in the transporter 

leading to a reduced affinity to the substrate and its efflux. This theory is known 

as the “ATP-switch model” (Higgins and Linton, 2004). 

 

Examples of members of the ABC family of transporters include:  

 
ABCA: plays an essential role in cholesterol transport across the plasma 

membrane. Mutations in ABCA1 leads to individuals developing dyslipidaemia 

(M. et al., 2001).  

 

ABCB: consists of 11 members and are known to transport many molecules such 

as drugs, peptides and intracellular heme/iron (Sanchez-Covarrubias et al., 

2014). ABCB11 also known as bile salt export pump (BSEP) is responsible for 

the production and transport of hydrophobic bile salts such as taurine which is 

located in the liver. Consequently, it plays a major role in homeostasis of hepatic 

bile acids and regulation of biliary lipid secretion (Hayashi and Sugiyama, 2013) 

mutations in ABCB11 are associated hepatomegaly and pruritus (Chiang, 2013). 

The most widely researched and reported on member of this family is ABCB1 or 

P-glycoprotein (P-gp) and is known to be a major contributor in MDR which 

responsible for efflux of drugs (Sanchez-Covarrubias et al., 2014). P-glycoprotein 

(P-gp) was the first member of the ABC transporter family to be identified in 
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Chinese hamster ovaries (Juliano and Ling, 1976), and since then many studies 

identified a wide range of other efflux transporters that play a critical role in drug 

delivery across the BBB (Löscher and Potschka, 2005, Amin, 2013, Chung et al., 

2016).  

 

ABCC: consists of 13 members. They play role in signal transduction, toxin 

secretion and ion transport (M. et al., 2001). Mutations in the members of the 

ABCC subfamily can result in a range of pathophysiological consists such as 

hypoglycaemia (Fournet et al., 2001), cystic fibrosis (Cohen and Prince, 2012) 

and Dubin-Johnson syndrome (Wada et al., 1998). A major contributor towards 

the MDR phenotype from the ABCC family is MRP-1 (Sanchez-Covarrubias et 

al., 2014).  

 

ABCD: has 4 members which are all half transporters. They function in the 

transport of very long chain fatty acids (Wanders et al., 2007). Mutations in this 

subfamily are linked with impairment in vision, cognition and hearing (Cappa et 

al., 2011).  

 

ABCE and ABCF: are the least characterised of all the subfamilies with one 

known member of the ABCE family known as OABP protein and is known to play 

a role in identifying oligodenylate synthesis that takes place due to viral infections 

(Tian et al., 2012).   

 

ABCG: subfamily has 6 members, ABCG1, ABCG5 and ABCG8 play a role in 

sterol transport (Tama and A., 2000).  ABCG2 also known as BCRP plays a key 

role in the MDR phenotype and takes part in the efflux of wide range of diverse 

therapeutic agents.   

 

The most pharmacologically relevant ABC transporters are P-gp, BCRP and 

MRP-1. These are expressed in the apical side of cells in the brain, liver and 

intestine (Alvarez et al., 2010). The action of the transporters is initiated by 

interaction of the binding site with a certain substrate, which induces a 

conformational change that is transmitted to the binding domain where ATP 

binding activates. ATP binding leads to changes in the positioning and affinity of 
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the substrate binding site and thereby the substrate is discharged at the 

extracellular side of the cell (Higgins, 2001).  

 

Figure 1.7 A typical structure of an ABC transporter 

 

 

 
 
ABC transporters are often associated with the aggressive nature of cancer 

progression, in part due to their ability to efflux chemotherapeutic agents and 

hence imparting a MDR phenotype, however irregularities in ABC transporter 

expression and function can also play a role in cancer progression beyond MDR 

(Muriithi, 2020).  

 

Studies have reported that the dysregulated ABC protein expression is often 

linked to an aggressive tumour prototype as measured by tumour stage, size and 

the possibility of metastasis (Scotto, 2003). Even though the irregularities in ABC 

protein expression can merely be a consequence of genetic alterations that 

accompany tumour formation, the possibility that these proteins play a pro-

tumour role cannot be ignored (Muriithi, 2020).  

 

More commonly, ABC transporters have been implicated in MDR phenotypes, 

hindering intracellular accumulation of anti-cancer agents, and leading to tumour 

progression and growth. The overexpression of P-gp, BCRP and MRP-1 has 

been directly associated with poor prognosis in glioblastoma patients (Balça-Silva 

Structure of a typical ABC transporter includes transmembrane binding 
domains (TMD) and nucleotide binding domains (NBD). The functioning 
transporter consists of repeated units of TMD-NBD (Dermauw and Van 
Leeuwen, 2014) 
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et al., 2017, Balça-Silva et al., 2019, Matias et al., 2018). In breast cancer, 

overexpression of ABCC11 was associated with an aggressive tumour subtype 

(Yamada et al., 2013). It was also reported that overexpression of ABCC4 was 

associated with MYCN gene amplification which lead to the spread of the tumour, 

more importantly it was noted that its expression in primary untreated 

neuroblastomas was linked to reduced overall survival (Huynh et al., 2012). 

 

Cancer cells are known to propagate outside the original tumour site in a process 

termed “invasion”, with ABC transporters being partly implicated. A study 

reported that ABCB5 aided in the invasion of colorectal cancer in-vivo and in-vitro 

(Guo et al., 2018). It was also reported that in melanomas, MRP-1 was linked to 

the invasion and metastasis of the cancer when compared to tumours that didn’t 

express MRP-1 (Landreville et al., 2011). In the U251 glioblastoma cell line, it 

was shown that downregulation of BCRP was correlated with reduced invasion 

and metastasis (Gong et al., 2014). Likewise, when comparing the effect of P-gp 

on the progression of breast cancer, it was reported that expression of P-gp in 

breast cancer cells in axillary nodes resulted in an increase in metastasis when 

compared to cells that lacked P-gp (Schneider et al., 2001). 

 

The ability of cancer cells to evade apoptosis is essential to their persistent 

proliferation and survival (Hanahan and Weinberg, 2000), combined with the fact 

that majority of chemotherapeutic agents are cytostatic, cancer cells that evade 

apoptosis are resistant to treatment hence contributing to MDR (Muriithi, 2020).  

 

 

 
Breast Cancer Resistance Protein was first identified in the breast cancer cell line 

MCF-7/AdrVp. Despite the absence of MRP and P-gp in these cells, the limited 

permeability of rhodamine 123 and adriamycin suggested the presence of a new 

transporter protein (Chen et al., 1990, Lee et al., 1997). This transporter was later 

termed as ‘breast cancer resistant protein’ (BCRP) (Doyle et al., 1998).  BCRP 

has a molecular weight of 72 KDa, 655 amino acids, and is a half transporter 

(Figure 1.7) with the C-terminal and N-terminal located on the intracellular side of 

plasma membrane (Doyle et al., 1998).  
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Figure 1.8 The structure of breast cancer resistance protein (BCRP) 

BCRP a half transporter comprising of one transmembrane binding (TMD) and 
one nucleotide binding domain (NMD), comprised of 6 trans-membrane spanning 
regions (Austin Doyle and Ross, 2003). 
 

 

 

In order for BCRP to act as an efflux transporter, it is believed that it undergoes 

homodimerization or heterodimerization (Graf et al., 2003, Austin Doyle and 

Ross, 2003, Shigeta et al., 2010). BCRP has been reported to be expressed in 

various tissue sanctuary sites, such as the placenta, gastrointestinal tract, 

testicles, heart, liver and brain (Sanchez-Covarrubias et al., 2014, Meissner et 

al., 2006, Cooray et al., 2004a).  

 

Within the brain, BCRP is expressed in the luminal region of the endothelial cells 

of the BBB in addition to astrocytes and microglia (Gloria et al., 2007). Based on 

mRNA analysis, BCRP was found to be expressed in higher quantities in the BBB 

than P-gp and MRP-1 (Eisenblätter et al., 2003). Later studies employing 

quantitative proteomics have reported an absolute protein abundance of 

transporter proteins at the BBB and have stated that BCRP (8.14 fmol/µg protein) 

and P-pg (6.06 fmol/µg protein) are the most abundant transporter proteins at the 

human BBB (Uchida et al., 2011).  

 

BCRP has a primary protective function in human physiology by restricting 

access of therapeutic agents as well as some endogenous substrate molecules 

(Oostendorp et al., 2009, Chen et al., 2003). The overexpression of certain ABC 

transporters was found to increase MDR, which significantly influences failure of 
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chemotherapy (Sun et al., 2012), with BCRP being prominent in accounting for 

the multidrug resistance phenotype in humans (Dean et al., 2001, Roundhill et 

al., 2015). 

BCRP has a wide range of chemotherapeutic substrates such as mitoxantrone, 

irinotecan, imatinib, doxorubicin, methotrexate and SN-38 (Cooray et al., 2004b). 

Mitoxantrone resistant colon cancer cell line was found to overexpress BCRP and 

hence its resistant to mitoxantrone (Miyata et al., 1999). Many other cell lines that 

overexpress BCRP, such as glioblastoma, fibrosarcoma, non-small cell lung 

cancer and gastric carcinoma were found to also be drug resistant (Ross et al., 

1999). In-vitro, it was reported that the resistance of human ovarian cancer cell 

line IGROV1 to type-1 topoisomerase inhibitor topotecan was a direct corelation 

to the over expression of BCRP in the cell line (Maliepaard et al., 1999), in 

addition, its overexpression in gastric carcinoma cell line (EPG85-257RNOV) and 

glioblastoma cell line (SF295/MX) rendered them refractory to mitoxantrone 

therapy (Robey et al., 2001a). Furthermore, in MCF7 cell line, over expression of 

BCRP lead to resistance to both methotrexate and mitoxantrone (Volk et al., 

2002).  

Within animal studies, a direct correlation has been demonstrated between 

methotrexate resistance and the expression of BCRP at the BBB (Li et al., 2013). 

In addition, the distribution of methotrexate when used in the treatment of CNS 

lymphoma was very limited, with only 5% of the drug crossing the BBB (Zhu et 

al., 2009). Also, in patients with high grade gliomas, cerebral penetration of 

methotrexate was shown to be very low (Blakeley et al., 2009). Furthermore, 

brain uptake for mitoxantrone was shown to increase by 3-fold when co-

administered with a BCRP and a P-gp inhibitor in mice, demonstrating that BCRP 

plays a critical role in limiting the permeability of mitoxantrone across the BBB 

(Cisternino et al., 2004).  

 

 

 

Developing strategies to modulate efflux transporter activity have been promoted 

by the increasing awareness of the influence these transporters have on CNS 

drug delivery (Arvanitis et al., 2020a, Löscher and Potschka, 2005). Mechanisms 

to inhibit efflux transporters at the BBB/BTB include approaches such as the use 
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of direct inhibitors and transcriptional modulation (Banik et al., 2010).  Over the 

last two decades, developing agents that modulate the action of P-gp have been 

the primary focus of many studies attempting to reverse the MDR phenotype. 

First generation inhibitors of P-gp include verapamil, cyclosporine A, quinidine, 

yohimbine and tamoxifen. These agents failed to clinically translate to successful 

modulators due to their poor specificity and binding proprieties which required 

administering these agents in high doses which lead to non-specific binding and 

major systemic toxicities (Ferry et al., 1996)  

 

Second generation inhibitors include dexverapamil, valspodar and dexniguldipine 

(Fardel et al., 1993, Kolitz et al., 2010, Summers et al., 2004). These agents 

displayed a greater inhibitory effect on transporter proteins with reduced toxicity. 

However, these agents still demonstrated limitations, such as inhibition of the 

metabolism of chemotherapeutic agents when administered concurrently leading 

to accumulation of the chemotherapy in the blood and systemic toxicity. For 

instance, valspodar reduces the hepatic metabolism of vinblastine and paclitaxel 

through inhibition of CYP 3A4, leading to increased concentration of the cytotoxic 

agents in the blood (Bates et al., 2004). In a similar fashion, a study in patients 

with solid tumours demonstrated that combined administration of paclitaxel and 

biricodar resulted in a significant decrease in paclitaxel clearance, as a result of 

biricodar interfering with paclitaxel’s metabolism (Rowinsky et al., 1998).  

 

More recently third generation inhibitors such as tariquidar, mitotane, elacridar 

and zosuquidar were found to be clinically effective with less toxicity when 

compared to previous generations (Leitner et al., 2011). However, later clinical 

trials showed that these inhibitors possessed major toxicities and had low survival 

benefits (Dash et al., 2017).  

 

More recently, attention has turned towards modulation of BCRP. An extract from 

the fermentation broth of Aspergillus fumigatus, fumitremorgin C (FTC), was the 

first discovered BCRP inhibitor, but failed to translate clinically due to its severe 

neurotoxicity profile (Hirsch et al., 2009). Thereafter, 42 derivatives from FTC 

were later developed with only two of those (Ko143 and Ko132) showing 

promising results. These were however discontinued clinically due to their 
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cytotoxicity (Pick et al., 2011).  Many tyrosine kinase inhibitors (TKI) such as 

gefitinib has been reported as inhibitors of the efflux function of BCRP (Leggas 

et al., 2006, Stewart et al., 2004). However, exposing cells to gefitinib lead to an 

increase in the expression of BCRP, and an increased resistance to anti-cancer 

agent SN-38 when administered concurrently, proposing that gefitinib is a BCRP 

substrate (Azzariti et al., 2010).  Another TKI, sunitinib, was found to modulate 

BCRP mediated efflux function (Shukla et al., 2009a).  

 

Despite research highlighting some current inhibitors of BCRP, their poor 

specificity and cytotoxicity remain a major limiting factor in their clinical translation 

(Tang et al., 2012, Pick et al., 2011, Hirsch et al., 2009). There is still a need for 

effective BCRP inhibitors that are safe, effective and are able to modulate the 

efflux action of BCRP. 

 

More recently, a group of naturally occurring phytochemicals have come to light 

as BCRP modulators. These have garnered great attention due to their effectivity 

and safety as ABC transporter modulators in addition to their other health 

benefits.  

 

 Natural product phytochemicals  

 

Phytochemicals are naturally occurring chemicals in foods that are widely 

consumed within the diet of mammals. A major category of phytochemicals are 

flavonoids, which are found naturally in fruits, vegetables, and herbs (Table 1.5). 

flavonoids fall into the food category and are deemed tolerable with reported daily 

exposure through dietary intake  exceeding 1 gram (Pick et al., 2011, Perez-

Vizcaino and Fraga, 2018).  Over 6500 chemicals have been identified as 

belonging to the general category of flavonoids (Panche et al., 2016, Rashid et 

al., 2019).  

 

Flavonoids structurally consist of aromatic rings A and C and a heterocyclic 

benzene ring B (Figure 1.9). They are categorised into subgroups based on the 

position of the attached substitution (Rx).  
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Figure 1.9 Basic structure of flavonoids 

Flavonoids consist of ring A and B which are aromatic rings and ring C which 
links rings A and B together. Based on the positions of substitutions (Rx) and 
hydroxylation, flavonoids are divided into 7 subgroups (Dwivedi et al., 2017).  
 
 
 
Table 1.5 Examples of flavonoids and food source 

  

 
 

Group Example Food source 
Flavonols Quercertin, Kaempferol, 

Myicetin, Querctagetin 
Blueberry, black tea, 
leek, yellow onion, 
cherry, apple, tomato, 
curly kale. 

Flavones Chrysin, lubeolin, 
tangeretin, tricetin, 
sinensetin, apigenin, 
nobiletin 

Celery, parsley, 
capsicum. 

Flavanones Hesperetin, naringenin, 
eridodicytol, 
dihydrofisten 

Orange juice, lemon 
juice, grapefruit juice. 

Flavanols Taxifolin, silibinin, 
silymarin, pinobaskin 

Cocoa, chocolates, 
cocoa drinks. 

Catechins (-) Epicatechin, (+) 
catechin gallocatechin, 
epigallocatechin, 
epigallocatechin 3-
gallate 

Beans, apricot, peach, 
red wine, grapes, 
cherry, chocolate 

Isoflavones Daidzein, Genisten, 
glycitein 

Soybean, tofu, legumes 

Anthocyanins Petunidin, malvidin, 
peonidin, cyanidin, 
delphinindin. 

Red berries, purple 
grapes, rhubarb plum, 
red cabbage, 
strawberries 

Some examples of flavonoids and their presence in food. Table adapted and 
modified from (Lakhanpal and Ral, 2007) 
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Studying the structure and function of BCRP and its substrates have revealed 

insights into the mechanisms underlining BCRP-mediated multidrug resistance 

in cancer and healthy tissue. The interaction of flavonoids with BCRP appear to 

resemble those shown in the interaction of flavonoids with P-gp (Conseil et al., 

1998, Boumendjel et al., 2001) where flavonoids interact with the C-terminal 

region of the NBD. That said, two mechanisms of action have been proposed for 

the ability of flavonoids to inhibit BCRP, binding to either the nucleotide binding 

domain or the transmembrane domain substrate binding sites (Figure 1.8) 

(Alvarez et al., 2010, Pulido et al., 2006, Bock et al., 2000). 

 

Flavonoids such as quercetin, genistein, naringenin and kaempferol were shown 

to competitively inhibit the action of BCRP and bind with stronger affinity to the 

transporter (Katayama et al., 2007, Di Pietro et al., 2002, Zhang and Morris, 2003, 

Walgren et al., 2000). On the other hand, other studies have demonstrated that 

quercetin, benzo-a-pyrene and kaempferol are known to inhibit BCRP by binding 

to the ATP binding site and hence lead to the inactivation of the transporter (Yarla 

and Ganapaty, 2013b, Guohua et al., 2011, Wang, 2007). 

 

The known BCRP inhibitors Ko143 (Ozvegy-Laczka et al., 2005) and FTC 

(Özvegy et al., 2001, Robey et al., 2001b) were shown to modulate BCRP by 

inhibiting its ATPase activity, however, flavone derivatives were shown to 

increase the activity of ATPase much like mitoxantrone, suggesting the presence 

of a large poly-specific drug binding site in BCRP much akin to those 

demonstrated in P-gp and MRP-1 (Ozvegy-Laczka et al., 2005). 

 

Additionally, variation in the substitutions in flavonoids (Figure 1.8) play a key role 

in their ability to modulate BCRP. A study reported that the presence of hydroxyl 

and hydrophobic substitutions rendered flavones such as luteolin and apigenin 

more effective in the inhibition of drug efflux function of BCRP compared to other  
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classes of flavonoids, with a hydroxyl substitution at position 5 in ring-A resulting 

in the best inhibitory effect. In addition, the presence of hydrophobic substitutions 

at positions 6’ and 7’ correlated with a higher binding affinity with BCRP (Ahmed-

Belkacem et al., 2005a). 

 

Furthermore, pharmacophore calculations suggested hydrophobic groups in 

position 4’ in aromatic ring B and the presence of hydrogen bond acceptors in 

positions 5’ and 7’ play a critical role in the ability of flavonoids to modulate the 

action of BCRP (Fang et al., 2016). In addition, the occurrence of a 2,3-double 

bond in ring C, ring B branched at position 2, hydroxylation at position 5 and 

absence of hydroxylation at position 3 all seem to be critical for potent BCRP 

inhibition (Morris and Zhang, 2006). 

 

Genetic polymorphisms of BCRP play a major role in the ability for flavonoids and 

substrates to bind. Phenylalanine at position 439 (Phe 439), found in the internal 

cavity of BCRP in the NBD is a critical factor in the binding affinity of flavonoids 

to BCRP. Biochanin-a, chrysin, naringenin and diosimin modulate BCRP through 

the formation of a non-covalent bond between the aromatic ring in these 

flavonoids and Phe 439 which is present in the substrates binding pocket (Fan et 

al., 2019). Furthermore, arginine at position 482 (Arg 482) in BCRP has been 

shown to have a major role in the substrate selection process for BCRP (Noguchi 

et al., 2009). Arg 482 with a positive charge has an effect on the interaction 

between BCRP and its drug substrates and consequently the carboxyl group at 

the transmembrane binding site that is in close juxtaposition to Arg 482 seems to 

take part in the substrate binding pocket interface of BCRP (Ejendal et al., 2006, 

Hazai and Bikádi, 2008, Li et al., 2007).  

 

The most well studied mutations in BCRP occur when arginine 482 (R482), is 

replaced with threonine (R482T) or glycine (R482G) (Breedveld et al., 2006, 

Honjo et al., 2001, Robey et al., 2001b). The MCF7 and S1-M1-80 cell lines were 

identified to have mutation of the 482 amino acid, these mutations were 

associated with overexpression of BCRP. Furthermore, they were reported to be 

highly resistant to mitoxantrone and doxorubicin in addition to the efflux of 

rhodamine and anthracycline resistance (Volk et al., 2002, Honjo et al., 2001). 



 

B.A.M. Elbakary, PhD Thesis, Aston University 2021. 50 

Additionally, variants of the amino acid 482 lead to lack of affinity to methotrexate 

in MCF cells and at the same time increased mitoxantrone resistance (Li et al., 

2007, Ozvegy et al., 2002, Volk et al., 2002).  

 

The inhibitory effect of BCRP by flavonoids was also suggested to be result of 

the parent compound rather than their metabolites. For example, genistein was 

shown to be transported unchanged by BCRP (Imai et al., 2004a) whilst naringin 

and phoridzin had no effect on the efflux action of BCRP. However, their aglycon 

counterparts were found to be strong inhibitors in MCF cells suggesting that the 

presence of the sugar moity significantly affects the BCRP inhibitory activity of 

flavonoids (Zhang et al., 2004b).  

 

 

Naturally occurring phytochemicals have been reported on as having numerous 

anti-cancer properties such as inhibiting cell migration and invasion, inducing 

apoptosis, and participating in cancer cell cycle arrest (Yahfoufi et al., 2018, 

Gorlach et al., 2015, Perez-Vizcaino and Fraga, 2018, Kopustinskiene et al., 

2020). In addition, studies have shown that conjugated metabolites of flavonoids 

possess anti-inflammatory activates (Zhang et al., 2004b, Perez-Vizcaino and 

Fraga, 2018), angiogenic properties and anti-oxidative action (Harada et al., 

1999, Xiao et al., 2011).  

 
Overproduction of reactive oxygen species (ROS) occurs when the homeostatic 

balance between anti-oxidant defence and pro-oxidant activities is compromised, 

thus leading to free radical accumulation (Rodríguez-García et al., 2019). 

Flavonoids have  dual abilities as anti-oxidants and pro-oxidants (Link et al., 

2010, Hadi et al., 2000), both of which are involved in their anti-cancer properties 

(Oliveira-Marques et al., 2009, Valko et al., 2007). In addition, they increase 

expression of tumour suppressor TP53 and cell death regulator protein Bax and 

downregulate apoptosis suppressor gene BcL-2 (Zhang et al., 2015b, Abotaleb 

et al., 2018). Subsequently, this supresses cancer cell proliferation, migration and 

activates apoptosis (Shen et al., 2010, Liskova et al., 2020). 
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Flavonoids are also able to exhibit their anti-oxidant ability by scavenging of free 

radicals through hydrogen atom donation which results in inactivation of the free 

radical (Nijveldt et al., 2001). The arrangement of the functional groups in the 

flavonoids’ structure can also influence their antioxidant ability (Heim et al., 2002). 

The presence of a hydroxyl substitution in ring B is crucial for ROS scavenging, 

however, A- and C- ring substitutions have small impact on the ROS scavenging 

rate (Procházková et al., 2011).  Flavonoids’ ability as anti-oxidants has also been 

proposed to be due to the redox activity of phenolic hydroxyl groups such as 

those found in catechol moieties which are easily oxidized (Chobot and Hadacek, 

2011).  

 

Furthermore, flavonoids can exhibit their antioxidant abilities by supressing pro-

oxidative enzymes and stimulating phase II detoxification enzymes (Youn et al., 

2006). In-vitro studies have also demonstrated that the glycosylation of the 3-OH 

group strongly inhibits the flavonoids ability to scavenge ROS (Burda and 

Oleszek, 2001, Taubert et al., 2003) where the aglycon hesperetin was a better 

anti-oxidant than its glycoside counterpart hesperidin  and baicalin was better 

than baicalein (Rice-Evans et al., 1996, Procházková et al., 2011).  

 

Additionally, flavonoids can exhibit their anti-oxidant abilities by activating anti-

oxidant enzymes (Ferrali et al., 1997), chelating metals such as copper and iron 

and thereby removing spontaneous factors available for the formation of free 

radicals (Ferrali et al., 1997). They also inhibit oxidases (Cos et al., 1998) such 

as xanthine oxidase  and protein kinase C (Hanasaki et al., 1994, Procházková 

et al., 2011) and enhance anti-oxidant proprieties of low molecular weight 

antioxidants (Yeh et al., 2005) 

 

Numerous reports have also demonstrated the pro-oxidants properties of 

flavonoids, under certain conditions, where the number of hydroxyl group 

substitution is directly proportional to their pro-oxidant abilities (Haenen et al., 

1997). More specifically, hydroxyl groups present in ring B where shown to 

significantly increase their ability to produce ROS (Heim et al., 2002, Hanasaki et 

al., 1994). Flavonoids are also able to reduce Cu2+  to Cu+ and induce  free 

radicals formation as a result (Cao et al., 1997). This is particularly important in 
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cancer cells, where Cu2+ has been reported to increase cancer cell proliferation 

and tumour growth (Wang et al., 2010a). In addition, the reduction of oxygen to 

a superoxide anion as well as reduction of Fe3+ to Fe2+  contributes to this 

phenomena (Procházková et al., 2011).  

 

Within cancer cells, reports have also demonstrated how flavonoids can act as 

pro-oxidants by inhibiting enzymes involved in cell growth, proliferation and 

mobility, such as phosphatidylinositol 3-kinase PI3K (Abotaleb et al., 2018), 

protein kinase B (Neagu et al., 2019) as well as inhibiting epidermal growth factor 

receptor proteins (Rodríguez-García et al., 2019).The pro-oxidant ability of 

flavonoids can be associated with their anti-oxidant feature where, the formed 

compound after flavonoids ROS scavenging is a highly reactive flavonoid 

phenoxyl (Bayrakçeken et al., 2003) which is subjected to additional oxidation 

yielding more stable compounds such as quinones (Hernández et al., 2009, 

Awad et al., 2002). The pro-oxidant proprieties of naringenin, naringin and 

apigenin were attributed to the formation of phenoxyl radicals which oxidize 

NADPH that leads to increase in oxygen uptake and formation of a highly reactive 

superoxide (Chan et al., 1999, Galati et al., 2002, Galati et al., 1999). 

 

  Cellular models of the glioblastoma  

 
As researchers begin to better understand the complex interaction between 

gliomas and their surrounding micro-environment, a transition away from 

xenograft tumour models towards nonimmunogenic in-vitro models is now at the 

forefront of preliminary GBM research. This is a result of their ability to mimic 

many in-vivo GBM characteristics as well as the high throughput nature of in-vitro 

models. A variety of in-vitro cellular models exist that replicate GBM in-vitro. The 

subsequent sections will briefly highlight some common examples. 

 
 

 

 
This malignant glioma cell line was established by Ponten and collages in 1975 

(Ponten, 1975) from a 75 year old patient. This cell line has been extensively 

used over the last 40 years in in-vitro and xenograft models (Radaelli et al., 2009, 
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Husain et al., 1998). It is capable of mimicking many immunohistochemical and 

histological features of human GBM as well as mimicking changes in tumour 

suppressor genes and oncogenic pathways (Wen and Kesari, 2008, Candolfi et 

al., 2007). Moreover, the tumour cells showed high level of cellular proliferation 

and expression, with 19 of the known ABC transporters reported to be expressed. 

It is also suggested that high passages after the establishment of the cell line 

leads to loss of ABC transporter protein expression (Dréan et al., 2018). 

 

 

 
This model was established from a 44 year old female by Ponten in 1975 (Ponten, 

1975). Despite major differences that exist between human GBM and the U87 

cell model such as having more homogenous, leaky vessels and less invasive 

non-diffusive growth pattern (de Vries et al., 2009), the U87 model has been 

utilised in assessing GBM angiogenesis and tumour angiogenic therapy (Radaelli 

et al., 2009). U87 cell line was reported to express P-gp and BCRP (Wijaya et al., 

2017, Gil-Martins et al., 2020). 

 
 

 
The C6 rat glioma model is the one most commonly used in neuro-oncology in 

the study of low grade and high grade gliomas (Giakoumettis et al., 2018).  

This model was established by injecting adult Wistar-Furth rats with a 

carcinogenic chemical known was methylnitrosourea  (Benda et al., 1968). C6 

display a similar diffusive infiltrating invasion pattern to human GBM such as 

nuclear polymorphism, foci of tumour necrosis and high miotic index (Chicoine 

and Silbergeld, 1995, Doblas et al., 2010, Gieryng et al., 2017). As well as having 

the ability to invade and migrate in a similar fashion to that of human xenografts 

(Giakoumettis et al., 2018). 

 

However, a key histological difference when compared to human GBM is the lack 

of expression of glial fibrillary acidic protein GFAP which is a main component of 

astrocytes within the CNS (Chou et al., 2003). The expression of the tumour 

suppressor genes p53 and PTEN are also reported to be minimal compared to 
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human GBM (Asai et al., 1994). In addition, the cells were reported to loss their 

invasive nature and grow in an encapsulated mode when transplanted in Wister 

rats (San-Galli et al., 1989).  

 

 

 

The LN229 model was established from a 60 year old female in 1979 (Diserens 

et al., 1981). The cells are reported to express mutated p53 and PTEN in a similar 

fashion to human GBM (Ishii et al., 1999). LN229 cells were reported to have the 

highest migration speed when compared to U251 and U87 models (Diao et al., 

2019). Immunoblot studies confirmed a 2-fold higher expression of BCRP in the 

nucleus of the cells compared to cytoplasmic extract, which suggested a possible 

secondary efflux site (Bhatia, 2013). P-gp, MRP-1 and MRP-2 were reportedly 

expressed in LN229 although in a lesser amount than BCRP (Bhatia, 2013, 

Bhatia et al., 2012). The LN229 model has been used to study apoptosis in 

addition to cellular migration and invasion (Zhang et al., 2009, Liu et al., 2014, 

Wang et al., 2018).  

 
 

 In-vitro models of the blood-brain barrier 

Many models for in-vitro BBB research have been developed and characterised 

over the last four decades to study BBB biology and drug transport. However, 

none of the models used behave exactly the same and hence irregularities in the 

outcome and the lack of a consciences on a gold standard model (Helms et al., 

2016). Small variabilities such as different laboratory condition and different 

providers impose a challenge in obtaining a well-defined view of the benefits and 

drawback of BBB in-vitro models. The following sections highlight some 

commonly used in-vitro BBB models. 

 

 
 Human origin models 

 

Human BBB models have been used in in-vitro research for over 15 years. The 

most widely used immortalised human BBB model is the hCMEC/D3 cell line 
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(Poller et al., 2008, Ohtsuki et al., 2013). This cell line has been extensively 

characterised compared to other models. hCMEC/D3 possess essential 

endothelial markers such as CD34, CD31, CD40 and von Willenbrand factor. In 

addition, this cell line expresses TJ proteins and efflux transporters such as P-gp 

and BCRP (Weksler et al., 2013, Poller et al., 2008, Vu et al., 2009). 

 

However, the expression of claudin-5, an important member of tight junction 

protein, has been reported to be low when compared to microvessels in-vivo 

(Urich et al., 2012). In addition, hCMEC/D3 monolayers demonstrated low 

transepithelial electrical resistance (TEER) values of 30-50 Ω.cm2, which is 

significantly below the in-vivo TEER of approximately 1000 Ω.cm2 and making 

them less suited for drug transporter studies (Weksler et al., 2005, Weksler et al., 

2013, Biemans et al., 2017).  

Another human cell line used in BBB research is the endothelial progenitor cells 

(EPC) which is derived from bone marrow or the umbilical cord. These cells were 

shown to express tight junction proteins ZO-1 and claudin-5. In addition, they 

expressed transporters such as GLUT-1, P-gp and BCRP. Much like hCMEC/D3 

cells, the limitation of the model is their low TEER values < 60 Ω.cm2. However, 

an elevation In TEER values was reported when cocultured with Bovine pericytes 

(Helms et al., 2016, Ponio et al., 2014).  

 

  Rodent origin models 
 

Rat brain endothelial cell lines were first isolated and established in 1994 (Roux 

et al., 1994). Rat endothelial cells express many drug efflux transporters such as 

P-gp and BCRP (Qosa et al., 2015) and proteins that are specific to BBB 

characteristics, such as tight junction proteins ZO-1 and occludin (Watanabe et 

al., 2013). Extensively used rat cell lines in BBB drug permeability studies include 

bEND.3, bEND.5, GP8 and GPNT (Olesen and Leonardi, 2003).  A further widely 

used rat model is the TR-CSFB model, which was optimised for permeability and 

transport studies. However, these cells are known to form leaky barriers (TEER: 

~90 Ω.cm2) and require growth at lower temperatures (Kitazawa et al., 2001, 

Hosoya et al., 2004). 

 



 

B.A.M. Elbakary, PhD Thesis, Aston University 2021. 56 

  Bovine based models 
 

Bovine endothelial models such as the BBEC-117 (Sobue et al., 1999) and SV-

BEC (Durieu-Trautmann et al., 1991) have been widely used as in-vitro BBB 

models. Bovine monolayers have a reported TEER value of 120-130 Ω.cm2 

(Gaillard and de Boer, 2000) and  have been used in drug transport and 

permeability studies (Ahmed-Belkacem et al., 2005a, Valdameri et al., 2011). 

Bovine models have been reported to being subpar in regards to transport activity 

and barrier tightness as well as lack of functional activity of ABC transporters 

(Hakkarainen et al., 2014, Anfuso et al., 2014). Bovine models are not frequently 

used in BBB models due to labour intensive extraction of primary cells and 

irregularities in reproducibility (Helms et al., 2016) as well as risk of infection of 

the cells with Creutzfeldt-Jakob or obtaining cells from a cow infected with mad 

cow disease. 

 

 Porcine based models 
 

The immortalised porcine brain endothelial cell line PBMEC/C12 was developed 

in 1996 (Teifel and Friedl, 1996) and has been successfully used in numerous 

studies to assess small molecular transport, gene/protein expression and 

endothelial cell surface receptor studies (Kaur and Badhan, 2017, Helms et al., 

2016, Torok et al., 2003, Franke, 2000, Lauer et al., 2004). 

 

PBMEC/C12 cells demonstrated key BBB characteristics such as restrictive 

paracellular pathways, expression of tight junctions such as ZO-1, and 

expression of efflux transporters such as BCRP and P-gp. The reported TEER 

values were in the region of 80-100 W.cm2 and are enhanced by supplementing 

the cells with fibronectin (Patabendige et al., 2013, Neuhaus et al., 2006). 

 

Immortalised cell lines have been an integral part of in-vitro research since the 

20th century, providing a powerful tool for applications such as studying 

cytotoxicity, drug metabolism, drug permeability, gene functions and producing 

vaccines and antibodies (Kaur and Dufour, 2012). However, there are limitations 

associated with using immortalised cell lines such as genetic and phenotypic 



 

B.A.M. Elbakary, PhD Thesis, Aston University 2021. 57 

alterations from the originating tissue  with an increase passage number (Pan et 

al., 2009). Furthermore, following prolonged periods of time, immortalised cell 

lines are prone to contamination (Lorsch et al., 2014). In contrast to primary 

porcine cells, the PBMEC/C12 cell line lose their morphological and phenotypical 

features as well as important biological in-vivo markers compared to  the 

originating primary cells (Pan et al., 2009).  

 

Although immortalised BBB models are broadly used for in-vitro studies, they lack 

many BBB features and demonstrated comparatively low TEER values to human 

BBB cellular monolayer resistance. However, a novel BBB in-vitro model has 

gained traction from the isolation of brain microvascular endothelial cells directly 

from recently slaughtered pigs, resulting in high yield of endothelial cells with 

excellent monolayer formation and high resistance to drug permeation 

(Patabendige et al., 2013, Pardridge, 2005).  

 

 

 

The first complete reported method for the isolation of primary porcine brain 

microvascular endothelial cells (PBMEC) was based on an isolation and 

extraction method used for extracting primary rat endothelial cells (Bowman et 

al., 1981, Franke, 2000). This method was later modified to provide a detailed 

method for isolation (Patabendige et al., 2013). The primary PBMEC model was 

developed due to the ease and convenience of obtaining pigs brains, higher yield 

of cells when compared to rat brain hemispheres and the ability of endothelial 

cells to retain their BBB phenotype characteristics when compared to primary 

bovine and rat cells. It has been reported that PBMEC grown in non-contact co-

cultures with astrocytes was critical for the development of BBB characteristics 

(Rubin et al., 1991).  However it was later demonstrated that growing the cells in 

an astrocyte conditioned media (ACM) in addition to adding BBB forming 

additives such as hydrocortisone and cAMP would yield a robust BBB in-vitro 

model suitable for drug permeability studies (Skinner et al., 2009, Gaillard et al., 

2001, Patabendige et al., 2013, Hoheisel et al., 1998, Thomsen et al., 2015). The 

high TEER values reported for PBMEC, in excess of 800 W.cm2, correspond to a 

restrictive model and reported low permeability of small molecules with sucrose 
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permeability ranging between 0.2-8 x10-6 cm/s (Patabendige et al., 2013, 

Lohmann et al., 2002, Franke et al., 1999) 

 

PBMEC were confirmed by western blot and PCR to express tight junction such 

as ZO-1 and ZO-2 (Huwyler et al., 1996, Matthes et al., 2011, Schulze et al., 

1997), Claudin-5 (Rempe et al., 2014, Kröll et al., 2009) and occludin (Rempe et 

al., 2014, Malina et al., 2009). Furthermore, a range of ABC efflux transporters 

have been identified within the model, which includes P-gp, BCRP, MRP-1 and 

MRP-4 (Lemmen et al., 2013, Parlow et al., 2009, Matthes et al., 2011).  

 

The well-defined expression of tight junctions and efflux transporters makes this 

an excellent model for drug permeation studies across the BBB (Helms et al., 

2016) as well as the model of choice to introduce continuous impedance TEER 

analysis due to the consistency of reported TEER values (Benson et al., 2013). 

 

  Limitations of current BBB cell culture models  

 
The endothelial microenvironment is coordinated through a variety of complicated 

chemical and mechanical signalling which makes the accomplishment of 

physiological endothelial phenotype in the laboratory a challenging task (Abaci et 

al., 2015, James and Allen, 2018). Systematic explorations of complex biological 

operations entail in-vitro models that mimic in-vivo interactions such as interstitial 

blood flow and intracellular communication, A feature that is missing in many in-

vitro BBB models. Many of the main elements of the in-vivo vasculature are 

relevant for tissue engineering, regenerative medicine, and vascular biology, 

these include hemodynamic shear stress, the extracellular matrix and 

interactions between multiple cell types (Srigunapalan et al., 2011).  

 

Modern in-vitro BBB models do not account for the role of shear stress, as a result 

of it being considered to have a negligible effect to the extracellular 

microenvironment, cellular morphology, and characteristics. An argument was 

made by Di and Kerns (Di and Kerns, 2015) which suggested that shear stress 

is insignificant since blood flow in the brain capillaries is very low, additionally, 

Difficulties in determining optimal cell culture conditions, conceptualising,  
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developing and scaling up flow-based cell models, has made them an 

unattractive option of in-vitro BBB research. These claims were later contested 

by studies that illustrated the importance of shear stress in replicating the in-vivo 

microenvironment as well as providing easy to set up flow models that replicate 

the homeostatic state of the brain and other organs (Elbakary and Badhan, 2020, 

Mazzei et al., 2010, Chien, 2006, Abaci et al., 2015, Wang et al., 2017) 

 

 

 

Shear stress is a mechanical force that cells experience due to blood flow and 

interstitial fluid flow which produces frictional potencies. It plays essential roles in 

maintaining homeostasis and cellular remodelling (Chiu and Chien, 2011). 

Moreover, shear stress caused by laminal flow, is one of the key regulators of the 

endothelial phenotype and barrier integrity exhibited to have a fundamental role 

in the formation of distinctive phenotypes (Abaci et al., 2015). 

 

Endothelial cells act in response to shear stress by altering intracellular signalling, 

gene and protein expression (Chien, 2007). Mechanical forces acting on the 

vessel wall incorporate those of normal and circumferential stresses, both of 

which are caused by the activity of pressure and shear stress that acts parallel to 

the luminal surface of the vessels due to flow (Figure 1.10) (Nerem, 1993). 

Circumference pressure acts along the vessel wall boundary to cause stretching, 

while shear stress acts parallel to the cell surface and is a consequence of fluid 

viscosity and the velocity gradient amid adjacent layers of flowing fluid (Nerem, 

1993, Chien, 2007). 
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Figure 1.10 Normal stress compared to shear stress 

Schematic illustration showing the generation of shear stress by blood flow 
(parallel) and the generation of normal stress (perpendicular) (Chien, 2006). 
 

In the brain, microvascular capillaries typically are 10 µm in diameter and 

experience a flow rate of 6-12 nL/min which equates to 10-20 dynes/cm2 (Wong 

et al., 2013). In the local endothelium, normal and abnormal (disturbed) blood 

flow patterns induce different responses (Kaisar et al., 2017).  Shear stress is 

determined using (Equation 1) which illustrates that shear stress is directly 

proportional to flow and indirectly proportion to the radius of capillaries i.e. 

narrower capillaries produce higher shear stress (Redmond, 1995). 

 

(1) 

 

 

where SS is shear stress, µ is viscosity (mPa.s), Q is flow rate (mL/s), R is 

capillary radius (cm). 

 

Areas where flow has been disturbed become pathological, in that the balance 

between pro- and anti-angiogenic/pro- and anti-inflammatory states is no longer 

present leading to the occurrences of pathophysiological states such as ischemic 

stroke (Balaguru et al., 2016). Studies have demonstrated that intraluminal flow 

has a vital part in the development and maintenance of BBB in-vitro and in-vivo 

phenotypes (Desai  et al., 2002, Stanness et al., 2020). 

 

SS=4µQ/pr3     
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 Hollow fibre models  

 
Tissue culture on hollow fibres were first developed by Kanazek et al (Knazek et 

al., 1972). The model was later modified by Janirgo et al. and there after by 

Cucullo et al  (Janigro et al., 1999, Cucullo et al., 2002). The hollow fibre system 

consists of a polycarbonate hollow fibre chamber which is sealed by a glass 

bottom and a removable acrylic top (Figure 1.11). The hollow fibre is connected 

to a media reservoir through gas permeable tubing which allows the exchange of 

O2 and CO2. This is connected to a pumping system that can generate a media 

flow rate of up to 50 mL/min (Cucullo et al., 2002).  

An advantage of this system is the negligible extravasation of proteins, 

expression of ion channels and efflux transporters. However, drawbacks of this 

model include the requirement for a high seeding density during the initial set up 

of the system and the lack of visual observation of the intraluminal compartments 

to evaluate morphological and phenotypical changes in the endothelium. In 

addition, the system is not designed for high throughput screening and is 

technically challenging (Naik and Cucullo. L, 2012, Sivandzade and Cucullo, 

2018) 

 

The only BBB cell model to have been studied using this system is the PBMEC1/2 

system. Cells grown in this system demonstrated higher viability compared to 

models grown under static conditions and was less permeable to FITC-dextran 

compared to that in a non-flow model. The highest flow rate the cells were 

subjected to was reported to be 14 mL/min. No TEER values were reported in  

this study (Neuhaus et al., 2006), however, another study reported TEER values 

of < 250 Ω.cm2 (Cucullo et al., 2013). 
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Figure 1.11 Hollow fibre BBB model using PBMEC1/2 

The hollow fibre cartridge where PBMEC1/2 cells are seeded is connected by 
gas permeable tubing to a reservoir media bottle. Media is circulated by a 
pumping system with a maximum flow rate of 50 mL/min. Rat C6 cells were 
seeded in the extra capillary space (ECS) (Neuhaus et al., 2006). 
 
 
 

 Microfluidic platforms  

 
Microfluidic systems are a type of three dimensional in-vitro models consisting of 

an ‘organ-on-a chip’ device constructed from polydimethylsiloxane (PDMS) 

channels moulded using a photo-defined master mould and a porous tissue 

culture substrate which is then sealed between two channel networks (Figure 

1.12) (Esch et al., 2012). The benefits of this system in BBB modelling is having 

realistic dimensions and allows for the observing the cells in a 3D engineered 

physiological microenvironment by exposing the endothelium to physiological 

flow (Griep et al., 2013, Booth and Kim. H, 2012). Drawbacks of this model 

involve limited scalability, requiring high technical skills and equipment to achieve 

the model, in addition to the lack of quantification of critical BBB parameters such 

as TEER and selective permeability (Gastfriend et al., 2018). 

A study using bEND.3 mouse brain cells showed a significant improvement in 

TEER values when cells were exposed to 0.0223 dynes/cm2 with a reported 

TEER value of 140 Ω.cm2 in comparison to 15 Ω.cm2 when cells were grown 

under static conditions (Booth and Kim. H, 2012). Another study using human 
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hCMEC/D3 cells were exposed for 3 days to flow rate of 5.8 dynes/cm2 and 

demonstrated 3 fold increase in TEER values from 37 Ω.cm2 to 120 Ω.cm2 (Griep 

et al., 2013). 

 

 
Figure 1.12 Schematic representation of a microfluidic based model 

A microfluidic model made up of, a pump connected to the inlet of the channel to 
allow for the passage of media beneath the cells. The cells are seeded on a 
porous cell culture substrate and is sandwiched between two PDMS channels 
(Sivandzade and Cucullo, 2018). 
 

 Perfusion based interconnected chamber 
 
Recently, a novel cell culture flow-based chamber technology was developed and 

commercialised (Vozz, 2008, Iori et al., 2012), the QuasiVivoâ system (Kirstall, 

Sheffield, UK).  The QuasiVivoâ system utilises a flow model that is able to 

simulate blood flow between different cell culture chambers which represent 

tissues (Elbakary and Badhan, 2020, Haycock, 2014). There are 3 QuasiVivoâ 

models, the QV 500, 600 and 900.  

 

The QV500 system consists of 10 mm deep, 15 mm in width and can hold up to  

2 mL in volume (Figure 1.13). The chambers are suitable for surface culture 

models such as cells grown on coverslips but cannot house cell culture insert 

systems. The QV500 system was used by other groups to assess the benefit of  

dynamic media flow within an interconnected systems of chambers with differing 

cell lines such as pericytes, astrocytes and endothelial cells (Miranda-Azpiazu et 

al., 2018). 
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Figure 1.13 The Quasi vivo® 500 system 

An experimental set up of the QV500 system inside an incubator displaying a 
peristaltic pump, media reservoir, chambers were coverslips are places (Azimi et 
al., 2020) 
 
 

 

The QV600 system has chambers that are 22 mm deep, 15 mm in width and can 

hold up to 4 mL in volume (Figure 1.14). This system can be utilised using 

coverslips and 24-well inserts and can be used to establish a liquid/liquid 

interface (LLI) and air/liquid interface (ALI) (Sbrana and Ahluwalia, 2012). The 

system has a reservoir bottle where media exchange takes place and a peristatic 

pump that can be housed in an incubator. The QV600 has been utilised with 

permeable insert systems. For example an increase in barrier tightness 

(measured by TEER) was noted when using the QV600 ALI to develop an in-vitro 

pulmonary model cultured using NHBE on semi-permeable inserts (Chandorkar 

et al., 2017).  
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Figure 1.14 The Quasi vivo® 600 system 

The QV600 model showing a peristatic pump, a reservoir bottle, an outlet for 
O2/CO2 exchange with a filter attached, a 2 mL chamber and connectors.  
 

 

Recently, a number of groups have utilised the QV600 system with cellular barrier 

models such as the intestinal epithelial cells (Caco-2) and pulmonary cells 

(NHBE, SAE) to assess the impact of shear stress produced by laminal flow on 

cellular viability, barrier proprieties and increased barrier tightness to better 

enhance in-vitro models and their suitability for drug permeability and toxicity 

testing by optimizing the microenvironment (Elbakary and Badhan, 2020, Giusti 

et al., 2014, Chandorkar et al., 2017). 
 
 

 Thesis aims and objectives  

 

The overall aim of this thesis is to enhance drug delivery to brain tumours by 

overcoming MDR resulting due to the presence of BCRP in the BBB and the BTB 

as well as assess the duality of phytocompounds as BCRP modulators and anti-

cancer agents. For this we commenced with the tumour site rather than the BBB, 

where we aimed to assess the dual ability of phytochemicals to modulate the 
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efflux action of BCRP and the anti-cancer proprieties they might exhibit in LN229 

human glioblastoma cells. Upon completing the first stage we then assessed the 

ability of optimal flavonoids to modulate the action of BCRP at the BBB. Once 

this stage was accomplished, we then utilised shear stress in the form of laminal 

flow to enhance BBB characteristics and increase barrier tightness that is to 

assess the permeability of optimal flavonoids across a more restrictive barrier.  

To realise those aims, the overall objectives were: 

 

 Chapter 2: 

 

• To assess the cytotoxicity of phytochemicals and anti-cancer agents 

• To assess the ability of phytochemicals to modulate the efflux action of 

BCRP  

• To assess the effect of phytochemicals to modulate the expression of 

BCRP  

• To assess the effect of phytochemicals on cellular migration  

• To assess the effect of flavonoids and anti-cancer agents on reactive 

oxygen species generation  

• To assess the effect of flavonoids and anti-cancer agents on the activation 

of caspases  

 

Chapter 3:  

 

• To optimise collagen culture surface coating using PBMEC/C12 cells  

• To develop and characterise an in-vitro BBB model using primary porcine 

brain cells 

• To assess the cytotoxicity of hesperetin, methotrexate and mitoxantrone 

within primary porcine brain cells 

• To demonstrate the efflux function of BCRP using the substrates 

methotrexate and mitoxantrone  

• To assess the permeability of hesperetin across the BBB model 

• To demonstrate the ability of hesperetin to modulate the efflux action of 

BCRP and enhance drug permeation across the BBB  
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Chapter 4:  

 

• To create a blood brain barrier model using PBMEC grown in 24-well 

inserts for use in the QV600 chamber 

• To determine the optimal flow rate suitable for PBMEC growth   

• To examine the effect of shear stress on cell proliferation  

• To examine the effect of shear stress on TEER values  

• To examine the effect of shear stress on ZO-1 tight junction protein 

expression 

• To assess the permeability of mitoxantrone and hesperetin across the 

BBB model, following exposure to shear stress    
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Chapter 2  
 

Phytochemical mediated 
modulation of breast cancer 
resistance protein in human 

glioblastoma cells 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Elements of this chapter have been submitted for publication as follows: 

 
Elbakary, B. and R. K. S. Badhan (2021). " Phytochemical mediated modulation of 
breast cancer resistance protein in human glioblastoma cells." Brain research 
 

Manuscript under review: submitted 11/02/21 
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 Background  

Gliomas are a common type of tumour occurring in the brain and spinal column 

and can be classified by their originating cell location. Gliomas contribute to about 

78% of all malignant tumours (Louis et al., 2007), with glioblastoma multiforme 

being the most frequent and malignant type. According to the World Health 

Organisation (Gaillard, 2021), 80% of these tumours are grade 4 and 5 which is 

considered  high grade tumours. Glioblastomas are a form of aggressive brain 

tumour which often presents with poor prognosis and a median survival time of 

less than 1.5 years (Rock et al., 2012, Ohka et al., 2012, Thakkar et al., 2014, 

Santos et al., 2011).  

Brain tumours among other CNS illnesses remain difficult to treat due to the 

inability of many therapeutic agents to obtain efficacious concentrations in the 

brain. Partly that’s because of active efflux transporters that limit blood to brain 

drug uptake. The impact of the limitations imposed by BBB and BTB on CNS 

indicated drug discovery/development pathways is clearly illustrated by the fact 

that it takes longer to develop CNS-indicated drugs (15 years) compared to non-

CNS indicated drugs (7-9 years) with a higher failure rate in clinical sitting 

(Alvarez et al., 2010). 

Glioblastoma, much like other malignancies, occur due to the uncontrollable cell 

proliferation, cell migration, invasion and infiltration to neighbouring tissue (Achrol 

et al., 2019, Demuth and Berens, 2004, Singh et al., 2010). 

Furthermore, the presence of active efflux transporters on the apical and 

basolateral membrane of the BBB and the BTB can significantly hinder drug 

transport into the brain (Stieger and Gao, 2015, On and Miller, 2014).  

The overexpression of ABC transporters, primarily BCRP and P-gp, has been 

reported in solid tumours and in drug-naïve tumours, where the originating tissue 

showed little to no expression of the transporters, with irregularities in the 

expression of ABC transporters related to more aggressive tumour phenotype 

(Scotto, 2003, Muriithi, 2020). This suggests that ABC transporters play a vital 

role in cancer progression beyond MDR and is contributor towards poor 
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prognosis (Wijaya et al., 2017, Ginguené et al., 2010).  In some cases, the tumour 

compromises the integrity of the BBB and forms a heterogenous vasculature 

known as the blood tumour barrier (BTB). The BTB has numerous distinct 

characteristics such as non-fenestrated capillaries, ununiform permeability and 

expression of efflux transporters  (Arvanitis et al., 2020a) These impose major 

obstacles for drug delivery targeting GBM (Groothuis, 2000, Schlageter et al., 

1999). 

 

Current chemotherapeutics routinely used for treatment of GBM alone or in 

combination with radiotherapy (Stupp et al., 2007) have low efficacy because 

most tumours are resistant to multimodality approaches and multiple anti-cancer 

agents, none of which are considered curative (Weller et al., 2015, van Tellingen 

et al., 2015, Gomez-Zepeda et al., 2019). Despite agents such as temozolomide 

being widely used clinically, it has been reported that at least 50% of patients are 

refractory to it as a solo agent, with the remaining requiring additional modes of 

therapy such as temozolomide with radiotherapy, resulting in an improved overall 

mean survival rates (Johnson and O'Neill, 2012).  There is an urgent need to 

improve the efficacy of anti-cancer agents rather than devising new ones. One 

recent approach to overcome the limited permeability of anti-cancer agents at the 

BBB and the BTB is to modulate the efflux functions of members of the ABC 

family of transporters that take part in the MDR phenotype such as BCRP (Mao 

and Unadkat, 2015, Ni et al., 2010, M. F. Gonçalves et al., 2020) 

 

A common concern with more recent transporter inhibitors has been their toxicity 

profile and poor specificity which have resulted in clinical failure (Gimenez-

Bonafe et al., 2008).  Therefore, there is a need to identity and develop newer 

inhibitors or modulators of both drug transporters and their regulatory elements, 

to enable a broad approach to the modulation of the transport function at CNS 

barriers. 

 

One potential group of candidate compounds which are often perceived as being 

‘safe’ are natural product derived phytochemicals, commonly from the flavonoids 

group, which have demonstrated an ability to modulate the expression and 
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function of xenobiotic clearance pathways (Cooray et al., 2004b, Imai et al., 

2004a, Ahmed-Belkacem et al., 2007, Pick et al., 2011, Valdameri et al., 2012). 

 

Several flavones, flavonols and flavanones were reported to possess potent anti-

tumour activity (Edenharder et al., 1993), with these properties being associated 

with their ability to induce ROS production (Hadi et al., 2000), induce apoptosis 

(Abotaleb et al., 2018), participate in cell cycle arrest and supress cancer invasion 

(Rodríguez-García et al., 2019). Similar activities have been demonstrated with 

all flavonoid groups (Braganhol et al., 2006, Nguyen et al., 2004, Santos et al., 

2011, Lin et al., 2008, Shen et al., 2010, Wang et al., 2010c). Furthermore, a 

variety of flavonoids demonstrate pro-oxidative properties, in contrast to their 

activity as antioxidants, inducing cancer cell death often by increasing ROS 

production (Gibellini et al., 2010, Sharma et al., 2007b, Kachadourian and Day, 

2006, Jeong et al., 2009, Lee et al., 2010, Hattori et al., 2009, Matsuzawa and 

Ichijo, 2008).  

 

Combining phytochemicals with well-known anticancer agents in-vitro and in-vivo 

has been shown to exhibit promising results. For example, combining genistein 

with cisplatin was able to significantly reduce cancer cell proliferation and induce 

apoptosis in BxPC-3 pancreatic tumour xerographs (Mohammad et al., 2006). In 

laryngeal cancer cells HeP-2 using a combination of cisplatin and quercetin lead 

to an increased induction of apoptosis within the cells via ROS production and 

activation of caspases-8 and 9 (Sharma et al., 2005). Similarly, in MCF-7 breast 

cancer cells, combining doxorubicin with quercetin distinctly reduced cancer cell 

migration, and reduced cancer cell proliferation. In addition, quercetin was able 

to reduce unwanted cytotoxic effects to healthy normal cells (Staedler et al., 

2011).  

 

Moreover, current clinical trials have displayed the safety and efficacy of 

phytochemicals either solely as anti-cancer agents (Fantini et al., 2015) or in 

combination with a chemotherapeutic agent (Saldanha and Tollefsbol, 2011, 

Gupta et al., 2013, Kanwar et al., 2012). Breast cancer patients undergoing 

radiotherapy were administered ECGC 400 mg orally three times a day. 

Compared to patients undergoing radiotherapy alone, the results showed 
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reduced serum level of VEGF and HGF, in addition to supressed activation of 

MMP-9 and MMP-3 (Zhang et al., 2012). Indeed, within the in-vitro glioblastoma 

cell models such as LN229, flavonoids have been shown to modulate BCRP 

functional transporter activity and trigger apoptosis pathways (Sharma et al., 

2007a, Siegelin et al., 2009, Gibellini et al., 2010, Kachadourian and Day, 2006, 

Jeong et al., 2009, Lee et al., 2010, Hattori et al., 2009, Matsuzawa and Ichijo, 

2008).   

 

The phytocompounds were selected for this experimental study based on reports 

that demonstrated the compounds’ anti-cancer properties and/or modulatory 

action of ABC efflux transporters and/or ability to permeate across in-vitro BBB 

models since chemotherapeutic agents must first bypass the BBB in order to 

reach the tumour site (Table 2.1). In addition, previous work by our group have 

demonstrated the potential for flavonoids to modulate BCRP functional 

transporter activity at the BBB and blood-CSF-barrier (Kaur and Badhan, 2017). 

These compounds were not reported to have been screened in the LN229 human 

glioblastoma cell line pervious nor did their effect on the expression of ABC efflux 

transports in that cell line. Further, availability and affordability of the 

phytochemicals was also considered.  
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Table 2.1 phytochemicals reported anti-cancer proprieties, blood brain barrier permeability and   interaction with members 
of the ABC efflux transporter family  

phytocompound  
Anti-cancer 
proprieties 

 
Cancer cell line 

 
Reported BBB 
permeability 

(AB flux) 

 
Interaction with ABC 

transporters 

Hesperetin Induce cell cycle 
arrest,  
 Apoptosis 
(Sambantham et al., 
2013),  inhibit 
proliferation (Ersoz et 
al., 2019) 
 

MCF-7(Choi, 2007) 
C6 (Ersoz et al., 2019) 
PC-3 (Sambantham et 
al., 2013) 
SiHa (Alshatwi, 2012) 
 

J 5.75 ± 0.4 nmol/min/mg 
protein in Caco-2 
monolayer using 500 µM of 
the compound (Kobayashi 
et al., 2008) 

BCRP substrate (Brand et 
al., 2011) 
BCRP inhibitor (Morris and 
Zhang, 2006) 
P-gp inhibitor (Morris and 
Zhang, 2006) 

Rutin Reduce tumour 
growth, 
Induce apoptosis and 
cell cycle arrest (Chen 
et al., 2013, 
Ganeshpurkar and 
Saluja, 2017, Caparica 
et al., 2020) 

LAN-5 (Chen et al., 
2013) 
C6 (da Silva et al., 
2020) 
786-O (Caparica et al., 
2020) 
 

Papp 0.05 x 10-6  ± 0.03 
cm/s in Caco-2 monolayer 
using 100 µM of the 
compound (Yang et al., 
2014) 

P-gp inhibitor (Mohana et 
al., 2016) 
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Quercetin Reduces cell 
proliferation and 
Induces of Cell death 
(Lu et al., 2006, Chen 
et al., 2004) 

HL-60 (Kang and 
Liang, 1997) 
HT-29, HepG2,PC-3 
(Pan et al., 2018) 

65.54% permeable across 
BMVEC monolayer model 
(Ren et al., 2010) 
Papp 147.7 ±20.8 nm/s 
across ECV304 monolayer 
(Youdim et al., 2004a) 
Papp  2.02 x 10-6 ± 0.38 cm/s 
in Caco-2 monolayer using 
100 µM  of the compound 
(Yang et al., 2014) 

P-gp Substrate (Wang et 
al., 2005b) 
BCRP substrate (Sesink et 
al., 2005) 
BCRP inhibitor (Yoshikawa 
et al., 2004, Cooray et al., 
2004a) 
BCRP inducer (Ebert et al., 
2006) 

Estrone NR NR NR BCRP inhibitor (Kaur and 
Badhan, 2017) 

Baicalin Induces Apoptosis 
(Chen et al., 2001, Yu 
et al., 2015, Shieh et 
al., 2006), reduces 
migration (Gao et al., 
2017a, Duan et al., 
2019) 
Inhibits metastasis 
(Zhou et al., 2017a)  

LNCaP, JCA-1 (Chen 
et al., 2001) 
HePG2, SMMC-7721 
(Yu et al., 2015) 
 

Pe 0.0455 x 10-6  cm/s 
when tested in artificial 
PAMPA BBB model using 
200 µM of the compound 
(Tarragó et al., 2008) 
Papp 3.89 x 10-6  ± 0.48 
cm/s in Caco-2 monolayer 
using 23.7 µM of the 
compound (Li et al., 2012) 

BCRP inhibitor (Kalapos-
Kovács et al., 2015a) 
MRP-2 inhibitor (Akao et 
al., 2007, Li et al., 2012) 
 

Curcumin Apoptosis, 
suppression of cell 
proliferation, invasion, 
and migration (Anand 
et al., 2008, 

HepG2 (Fan et al., 
2014, Cao et al., 2008) 
A549 (Liu et al., 2017, 
Chen, 2009) 
HT29 (Sharma, 2009) 

NR BCRP inhibitor (Shukla et 
al., 2009b) 
MDR-3 inhibitor (Wen et al., 
2019) 
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Kunnumakkara et al., 
2017) 

HeLa (Cai et al., 2012, 
Shang et al., 2016) 

Naringin Inhibit cell 
proliferation, 
chemosensitizer, 
Induce Apoptosis 
(Erdogan et al., 2018, 
Memariani et al., 2020, 
Ghanbari-Movahed et 
al., 2021, Camargo et 
al., 2012) 

HT-29 (Krajka-Kuźniak 
et al., 2017) 
PC-3 (Erdogan et al., 
2018) 
 

NR P-gp inhibitor (Mohana et 
al., 2016) 

Naringenin reduce Cell migration,  
Induce Apoptosis 
(Chang et al., 2017, 
Shi et al., 2021, 
Memariani et al., 
2020) 

A549 (Chang et al., 
2017) 
TCC (Ghanbari-
Movahed et al., 2021) 

NR P-gp inhibitor (de Castro et 
al., 2007, de Castro et al., 
2008) 
BCRP inhibitor (Ahmed-
Belkacem et al., 2005b, 
Takahata et al., 2008) 

Hesperidin  Induce apoptosis, 
reduce angiogenesis, 
chemoresistance, 
metastasis (Aggarwal 
et al., 2020, Ahmadi 
and Shadboorestan, 
2016) 

HePG2 
(Banjerdpongchai et al., 
2016) 
HeLa (Wang et al., 
2015) 

Papp 3.78 x 10-6  ± 0.32 
cm/s in Caco-2 monolayer 
using 50 µM of the 
compound (Yang et al., 
2014) 

P-gp inhibitor (Mohana et 
al., 2016) 

α -Naphthoflavone Induces apoptosis (Yu 
et al., 2019) 

MCF-7 (Merchant et al., 
1993) 

NR P-gp inhibitor  (Datta et al., 
2015) 
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Chemosensitizer 
(Datta et al., 2015) 

Biochanin A Induce apoptosis, 
inhibit cell migration (Li 
et al., 2018b, 
Bhardwaj et al., 2014, 
Szliszka et al., 2013, 
Jain et al., 2015) 

PANC1(Bhardwaj et al., 
2014) 
A549 (Li et al., 2018b) 

NR P-gp inhibitor (Zhang and 
Morris, 2003) 
BCRP inhibitor (Zhang et 
al., 2004a, Pick et al., 2011) 

Benzo (a) pyrene Carcinogenic  
Tumorigenic (Gelboin, 
1980, Goyal et al., 
2010) 

WHCO-1 (Dzobo et al., 
2018) 
MCF-7, HePG2 
(Hockley et al., 2006) 

NR NR 

Fisetin Induce apoptosis 
Inhibit invasion and 
migration and cell 
proliferation (Imran et 
al., 2021, Mukhtar et 
al., 2016, Mukhtar et 
al., 2015) 

HT-29 (Suh et al., 
2009) 
U266 (Jang et al., 
2012) 
BT549 (Li et al., 2018a) 
PANC1 (Jia et al., 
2019) 

NR BCRP inhibitor (Yarla and 
Ganapaty, 2013a) 
P-gp inhibitor (Mohana et 
al., 2016) 

 

NR: Not Reported.
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 Aims and objectives 

 

Given the ability of flavonoids to initiate apoptosis and attenuate the functional 

activity of BCRP at the BBB and within glioblastoma cells, our aim for this chapter 

was to examine the impact of flavonoids on BCRP functional transporter activity 

and expression in LN229 cells and their dual role as apoptosis and reactive 

oxygen species inducing agents. To achieve the aims for this chapter, the overall 

objectives were to utilise the LN229 GBM cellular model: 

 

• To assess the cytotoxicity of phytochemicals and anti-cancer agents 

• To assess the ability of phytochemicals to modulate the efflux action of 

BCRP  

• To assess the effect of phytochemicals to modulate the expression of 

BCRP  

• To assess the effect of phytochemicals on cellular migration  

• To assess the effect of flavonoids and anti-cancer agents on reactive 

oxygen species generation  

• To assess the effect of flavonoids and anti-cancer agents on the activation 

of caspases  
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  Materials  

Dulbecco's modified essential media with 4.5 g/L glucose (DMEM),  Antibiotic-

Antimycotic® were obtained from Biosera (Sussex, UK); Ko143, RIPA lysis buffer 

system, Tris Buffered Saline with Tween 20 (TBST) 20X were obtained from 

Santa Cruz Biotechnology (Texas, USA);  TruPAGE TM Precast gels 4-8%; 

TruPAGE™ TEA-Tricine SDS Running Buffer, TruPAGE™ TEA-Tricine SDS 

transfer buffer were obtained from Sigma-Aldrich (UK); monoclonal ABCG2 

antibody (BXP-21) (#sc-58222) and β-actin C4 HRP (#sc-47778) were obtained 

from  Santa Cruz Biotechnology (Texas, USA), goat anti-mouse IgG (H+L) 

secondary antibody (#62-6520) was obtained from Thermofisher (Oxford, UK); 

curcumin was obtained from Cayman Chemicals (Cambridge, UK); and all other 

chemicals were sourced from Sigma (Dorset, UK) and are HPLC grade. 

For this chapter, the following modulators/flavonoids were considered α-

naphthoflavone; baicalin; benzo-a-pyrene; biochanin A; curcumin; estrone; 

fisetin; hesperidin; hesperetin; naringin; naringenin; quercetin and rutin.  Stock 

solutions of all test compounds were prepared in dimethyl sulfoxide (DMSO) and 

stored at −80 °C until use. 

 

 Methods 

 

 
  

The immortalised human glioblastoma cell line LN229 (ATCC: CRL-2611) were 

cultured in media containing 1% FBS, 1% v/v antibiotic-antimycotic and DMEM. 

Cells were seeded in an uncoated T75 flask and grown for 4-5 days until 

confluency. Thereafter, 1 mL 0.25% w/v trypsin-EDTA was added to the flask for 

3 minutes and then neutralised with an equal amount of growth media.  The cell 

suspension was then placed into T25 flasks, 24-well and 96-well plates for further 

experiments.  
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In order to assess the impact of the phytochemicals of interest on cellular viability 

and determine the 50% cellular growth inhibitory concentration (IC50), a MTT 

assay was conducted.  A sterile stock solution of MTT was prepared by dissolving 

5 mg/mL MTT powder in DMSO and stored at -20 °C. This was diluted to a 

working concentration (1:10) in sterile serum free growth media on the day of 

experiment. In each well of the 96-well plates, 50,000 LN229 cells were seeded 

and incubated for 24 hours at 37 °C, 5% CO2. The cells were treated with a 6-

fold concentration range of modulators (0.001-100 µM) and were incubated for 

an additional 24 hours. The media was subsequently removed, and the cells were 

washed with pre-warmed PBS. The cells were incubated with MTT working 

solution (0.5 mg/mL) in the dark for 4 hours. Thereafter, the MTT solution was 

removed, and the formed purple formazan crystals were dissolved using 100 

µL/well DMSO. After gentle shaking for 15 minutes, the absorbance was 

measured at 362 nm and the percentage viability calculated according to 

equation (2). 

 

%	#$%%&%'(	)*'+*%*,- = !"	$%&'(%$)*+	,)	-(+$-+.	*+//&
!"	$%&'(%$)*+	,)	*')-('/	*+//& 	× 	100       (2)     

 

 

To assess the impact of modulators on BCRP functional activity, changes in the 

intracellular accumulation of the BCRP fluorescent substrate, Hoescht-33342 

(H33342), were assessed in the presence and absence of the modulators (Kaur 

and Badhan, 2015, Kaur and Badhan, 2017). Into each well of 96-well plates, 

50,000 LN229 cells were seeded and incubated for 24 hours at 37 °C and 5% 

CO2.  Cells were then pre-incubated with phytochemicals over a 6-fold 

concentration range of flavonoids, 0.001-100 µM, for 1 hour. Thereafter the cells 

were incubated for an additional 1 hour with identical phytochemicals 

concentrations in addition to 10 µM H33342. The media was then removed, and 

the cells were washed twice with ice cold PBS, 20 µL of PBS was added to each 

well before being frozen at -80 °C for 20 minutes. The cells were then removed 
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from the clear plate into a black 96-well plate by scraping. The fluorescence of 

H33342 was measured (Tecan Spark 10M®) at an excitation and emission 

wavelength of 360 nm and 489 nm respectively.  

 
 

This assay was conducted to examine the effect of the flavonoids on the cellular 

migration properties of LN229 cells (Sharma et al., 2007b, Jonkman et al., 2014). 

Into each well of a 24-well plate, 70,000 LN229 cells were seeded and incubated 

for 24 hours (at least 90% confluence). The cells were subsequently incubated 

for an additional 24 hours in serum free growth media (Sharma et al., 2007b, 

Jonkman et al., 2014). Thereafter, vertical and horizontal scratches were made 

in the middle of each well using a 20 µL pipette tip. The cells were then washed 

with pre-warmed PBS to remove any cell debris. Based on the results of the MTT 

assay, a non-toxic concentration of each flavonoid was incubated in addition to 

untreated wells within the incubation chamber of an optimal imaging microscope 

capable of automated looped imagery of each well (Cell-IQ®) (CM Technologies, 

Finland). Images were captured every 30 minutes for a 24-hour period. The 

percentage of wound closure was calculated using the Cell-IQ® analyser™ 

software according to the differences between initially scratched area and new 

closure area following the incubation period.  In order to compare effectiveness, 

a minimum cut-off of 50% inhibition of cellular migration was utilised.  

 

 

 

Western blotting was carried to the assess the effect of the phytochemicals on 

the expression of BCRP in LN229 cells. LN229 cells were seeded into T25 flasks 

at a density of 50,000 cells/flask to achieve 80% confluence. The cells were then 

incubated with the phytochemicals at a concentration of 50 µM for a further 24 

hours. Thereafter, the flasks were washed with ice cold PBS and removed from 

the surface of the flask using a cell scraper. The cells suspension was centrifuged 

at 3000 rpm (Hettich MIKRO 200) for 5 minutes at 4 °C. The supernatant was 

then discarded, and the pellet was resuspended with 50 µL of RIPA buffer and 
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homogenised three times by passing through a 29G needle at 4 °C. The lysed 

cell suspension was centrifugated at 13,500 rpm for 25 minutes at 4 °C.  The total 

protein in each sample was determined using Thermo scientific Pierce® 

Microplate BCA Protein Assay Kit.  Thereafter, 40 µg of protein from each 

flavonoid exposed sample was prepared for SDS-PAGE by the addition of 2.5 µL 

LDS 4X sample buffer, 1 µL DTT 10X sample reducer to a final total volume of 

30 µL with sterile filtered water. The samples were heated at 70 °C for 10 minutes 

before being transferred into wells of a TruPAGE TM Precast SDS-PAGE gel (4-8 

%). 

 

A Bio-Rad Mini Trans-Blot® system was used for electrophoresis and run using a 

TruPAGE™ TEA-Tricine SDS Running Buffer (1:50) at 180 V for at least 40 

minutes or until the blue dye approached the end of the cassette. Thereafter, the 

gel was washed with ultrapure water and placed on to a PVDF membrane for 

protein blotting. The PVDF membrane was pre-activated prior to use, in methanol 

for 10 minutes and soaked in transfer TruPAGE™ TEA-Tricine SDS 

transfer Buffer 20X (1:50 dilution) with 20% methanol. The membrane was then 

submerged within the cassette into the gel tank with ice cold transfer buffer and 

blotting commenced at 50 V for 2 hours and 45 minutes. The membrane was 

then washed with ultrapure water and exposed to Ponceau stain (0.1% w/v 

Ponceau S in 5% v/v acetic acid) for one minute to allow for the visualisation of 

the transferred proteins on the membrane. The membrane was then washed with 

TBST for 15 minutes until the dye was removed, followed by blocking in 5% w/v 

skimmed powdered milk blocking buffer for 6 hours. 

 

Thereafter, the membrane was incubated with the monoclonal ABCG2 antibody 

(BXP-21) (1:200 dilution) overnight at 4 °C.  The blots were then washed three 

times for 5 minutes each in TBST, before being incubated with goat anti-mouse 

IgG (H+L) secondary antibody (1:15000 dilution) for 2 hours. The membrane was 

subsequently washed three times in TBST buffer for 5 minutes each time, before 

being incubated with Clarity™ Western ECL Substrate for 1 minute. Thereafter, 

the membrane was placed on transparent film and transferred to a developing 

cassette then developed using a CL-X PosureTM X-ray film. Following 

visualisation, membranes were stripped using a mild stripping agent (glycine  
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15 g, SDS 1 g, Tween-20 10 mL, ultrapure water up to 1 L) (Abcam, 2020) and 

subsequently blocked for 3 hours at room temperature in 10% w/v skimmed 

powdered milk blocking buffer before being incubated with β-actin C4 HRP 

(1:8000 dilution) for 1 hour at room temperature and developed and visualised as 

described above.  

 

 
 

To assess the potential for optimal flavonoids to activate ROS pathways in LN229 

cells, 25,000 cells/well were seeded into a 96-well black clear bottom plates and 

allowed to attach for 24 hours. To detect intracellular ROS production, a 

fluorescent probe 2',7’-dichlorofluorescin diacetate (DCF-DA) cellular ROS 

Detection assay kit (Ab113851, Abcam Cambridge, UK) was utilised.  Once DCF-

DA diffuses into the cell, it undergoes deacetylated by esterase to a non-

fluorescent compound. ROS has the ability to oxidize this non-fluorescent 

compound to a highly fluorescent 2’ 7’ dicholoroflouresciene (DCF).  

 

The cells were washed with 1X buffer and treated with 25 µM DCF-DA and 

incubated for 45 minutes at 37 °C, 5% CO2. Thereafter, the cells were treated 

with the selected optimal flavonoids and control anti-cancer agents methotrexate 

and temozolomide all at 10 µM, 100 µM and 500 µM, for 2 hours. The 

fluorescence of DCF was then detected (Tecan Spark 10M®) at an excitation and 

emission wavelengths of 485 nm and 535 nm respectively. The increase in 

fluorescence intensity was used to assess the generation of net intracellular ROS 

when compared to control (un-treated cells). 

 

 

In order to assess the ability of the flavonoids to activate apoptosis in LN229 cells, 

the detection of caspase activity was assessed using a fluorescence Caspase-

3/7 assay kit (Cayman Chemicals, 10009135, USA). This assay kit utilises a 

specific substrate, N-Ac-DEVD-N’-MC-R110, which can be cleaved by active 

caspase-3 or caspase-7, to generates a product which is highly fluorescent, and 
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can be detected at an excitation and emission wavelengths of 485 and 535 nm, 

respectively.  

 

LN229 cells were seeded at a 40,000 cells/well into a 96-well plate and incubated 

for 24 hours.  Thereafter the cells were treated with selected optimal flavonoids 

and control anti-cancer agents methotrexate and temozolomide, all at 10 µM and 

100 µM for 4 hours. The plate was subsequently centrifuged at 800 g for 5 

minutes and the media was aspirated, followed by addition of 200 µL/well of 

assay buffer.  The plate was then centrifuged for further 5 minutes at 800 g, 

before the supernatant was removed and 100 µL/well of cell lysis buffer was 

added and then incubated under gentle shaking at room temperature for 30 

minutes. Thereafter, the plate was centrifuge for an additional 10 minutes at 800 

g followed by the transfer of 90 µL into the corresponding wells of a black 96-well 

plate. Into each well, 10 µL of assay buffer and 100µL of the caspase-3/7 

substrate solution were also added. The plate was then incubated for 90 minutes 

at 37 °C, 5% CO2. The resulting florescence of the cleaved DEVD substrate was 

measured at an excitation and emission wavelengths of 485 nm and 535 nm 

respectively (Tecan Spark 10M®). 

 

 Statistical Analysis 

All data is presented as mean ± standard deviation, with experiments being 

conducted in at least 3 replicate independent experiment unless otherwise stated. 

Where appropriate, statistical analyses was performed in GraphPad Prism 9 (La 

Jolla, California, USA), with t-tests and one-way ANOVA used to determine 

differences between the mean values. A significance p-value of <0.05 was 

considered as statistically significant. 

 
 
 
 
 
 



 

B.A.M. Elbakary, PhD Thesis, Aston University 2021. 84 

 Results 

 

 
 

In order to investigate the cellular toxicity towards LN229 cells, a MTT cytotoxicity 

assay was conducted across a 6-fold concentration (0.001-100 µM) range of the 

modulators for 24 hours. All the modulators displayed limited toxicity up to 100 

µM, with an IC50 determined only for biochanin A (113.4 µM [CI: 64.39-199.8 µM]) 

and benzo-a-pyrene (40.2 µM [CI: 18.03-87.94 µM]) (Figure 2.1).  

 

 

To further investigate the cytotoxicity of the anti-cancer agents methotrexate and 

temozolomide as a baselines for comparison, LN229 cells were exposed to a 6- 

fold concentration range, 0.001-100 μM, of anti-cancer agents for 24 hours 

(Figure 2.2). Temozolomide demonstrated an IC50, 302.3 μM [CI: 165.9-708.6 

μM] and methotrexate demonstrated IC50, 639.7 μM [CI: 460.8-881].  
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Figure 2.1 Cellular 
cytotoxicity of modulators 
of BCRP in LN229 cells. 

Cells were seeded and grown 
on 96 well plate for 24 hrs prior 
to exposure to modulators 
over a concentration range of 
0.001-100 µM for 24 hours. 
Thereafter, 20 µL/well (0.5 
mg/mL) of MTT was added 
into each well and the plate 
was incubated for 4 hours. The 
media was aspired and a 100 
µL/well of DMSO was added 
before absorbance was 
measured for each well at 570 
nm. 
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Figure 2.1 Cellular 
cytotoxicity of modulators 
of BCRP in LN229 cells 
(Cont.) 

Cells were seeded and grown 
on 96 well plate for 24 hrs 
prior to exposure to 
modulators over a 
concentration range of 0.001-
100 µM for 24 hours. 
Thereafter, 20 µL/well (0.5 
mg/mL) of MTT was added 
into each well and the plate 
was incubated for 4 hours. 
The media was aspired and a 
100 µL/well of DMSO was 
added before absorbance 
was measured for each well 
at 570 nm. 
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Figure 2.2 Cellular cytotoxicity of methotrexate and temozolomide in 
LN229  

Cells were seeded and grown on 96 well plate for 24 hours prior to exposure to 
anti-cancer agents over concentration range of 0.001-1000 µM for 24 hours. 
subsequently, 20 µl/ well (0.5 mg/mL) of MTT was added and the plates were 
incubated for 24 hours. The media was aspired and 100 µL/well of DMSO was 
added before absorbance was measured for each well at 570 nm. 
 

 

 

 

To assess the ability of the modulators to inhibit BCRP efflux function in LN229 

cells, the intracellular accumulation of H33342, a fluorescent BCRP probe 

substrate, was assessed in the absence and presence of modulators across 6 

fold concentration range, (0.001-100 µM) (Figure 2.3). Estrone, naringin, α-

naphthoflavone demonstrated no significant increase in intracellular H33342 at 

all concentrations studied. Biochanin-a and the non-flavonoid carcinogen benzo-

a-pyrene demonstrated statistically significant increases at 100 µM only (P ≤ 

0.001). Using the commercially available BCRP modulator Ko143 demonstrated 

a statically significant increase (1.5-1.55-fold) in intracellular accumulation of 

H33342 over concentration range (1,10 µM). The greatest increase in H33342 

intracellular accumulation was demonstrated with baicalin (1.8-2.2-fold) and 

hesperetin (2.5-2.8-fold) over the range of (1-100 µM) (Figure 2.3).  
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Figure 2.3 H33342 accumulation assay for BCRP function in LN229 cells. 

Cells were grown in 96-well plates for 24 hours prior to incubation and 
subsequently washed with pre-warmed PBS prior to being pre-incubated for 1 
hour with BCRP modulators over a concentration range of 0.001- 100 µM in blank 
media. Thereafter the cells were incubated with the same modulator 
concentrations in addition to 10 µM H33342  for 1 hour. The cells were washed 
with cold PBS and stored in -80°C for 20 minutes. Thereafter, the cells were 
moved to an opaque bottom plate and fluorescence was measured on a multi-
plate reader at excitation and emission wavelengths 355 nm and 460 nm 
respectively. Statistical significance was conducted relative to control.  * P≤ 0.05, 
** P ≤ 0.01, *** P ≤ 0.001 and **** P ≤ 0.0001. 
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H33342 accumulation assay for BCRP function in LN229 cells (cont). 

Cells were grown in 96-well plates for 24 hours prior to incubation and 
subsequently washed with pre-warmed PBS prior to being pre-incubated for 1 
hour with BCRP modulators over a concentration range of 0.001- 100 µM in blank 
media. Thereafter the cells were incubated with the same modulator 
concentrations in addition to 10 µM H33342  for 1 hour. The cells were washed 
with cold PBS and stored in -80°C for 20 minutes. Thereafter, the cells were 
moved to an opaque bottom plate and fluorescence was measured on a multi-
plate reader at excitation and emission wavelengths 355 nm and 460 nm 
respectively. Statistical significance was conducted relative to control.  * P≤ 0.05, 
** P ≤ 0.01, *** P ≤ 0.001 and **** P ≤ 0.0001. 
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H33342 accumulation assay for BCRP function in LN229 cells (cont). 

Cells were grown in 96-well plates for 24 hours prior to incubation and 
subsequently washed with pre-warmed PBS prior to being pre-incubated for 1 
hour with BCRP modulators over a concentration range of 0.001- 100 µM in blank 
media. Thereafter the cells were incubated with the same modulator 
concentrations in addition to 10 µM H33342  for 1 hour. The cells were washed 
with cold PBS and stored in -80°C for 20 minutes. Thereafter, the cells were 
moved to an opaque bottom plate and fluorescence was measured on a multi-
plate reader at excitation and emission wavelengths 355 nm and 460 nm 
respectively. Statistical significance was conducted relative to control.  * P≤ 0.05, 
** P ≤ 0.01, *** P ≤ 0.001 and **** P ≤ 0.0001. 
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H33342 accumulation assay for BCRP function in LN229 cells (cont). 

Cells were grown in 96-well plates for 24 hours prior to incubation and 
subsequently washed with pre-warmed PBS prior to being pre-incubated for 1 
hour with BCRP modulators over a concentration range of 0.001- 100 µM in blank 
media. Thereafter the cells were incubated with the same modulator 
concentrations in addition to 10 µM H33342  for 1 hour. The cells were washed 
with cold PBS and stored in -80°C for 20 minutes. Thereafter, the cells were 
moved to an opaque bottom plate and fluorescence was measured on a multi-
plate reader at excitation and emission wavelengths 355 nm and 460 nm 
respectively. Statistical significance was conducted relative to control.  * P≤ 0.05, 
** P ≤ 0.01, *** P ≤ 0.001 and **** P ≤ 0.0001. 
 
 

 
 

In order to examine the ability of the modulators to inhibit cellular migration of 

human glioblastoma cells LN229, a wound healing assay was conducted where 

the migration of cells within a scratch was quantified over 24 hours in the 

presence of 50 µM of the modulators (Figure 2.4). Incubation with all modulators 

resulted in a statistically significant decreases in cellular migration compared to 

control (P ≤ 0.0001), except for naringin, naringenin and rutin (Figure 2.4A).  
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Biochanin-a and curcumin demonstrated < 2% migration following 24 hours with 

the overall order of migration (Figure 2.4A) being: untreated > naringin > rutin > 

naringenin > hesperidin > quercetin > fisetin > estrone > benzo-a-pyrene > 

baicalin > α-naphthoflavone >  hesperetin >curcumin > biochanin-a (Figure 2.4 A 

and B).  

 
Figure 2.4 Cellular migration assay 

(A) percentage closure of LN229 cells following scratches made to the plate 
surface.  Cells were incubated with serum free media containing 50 µM of the 
modulators for 24 hours within a Cell-IQ incubator. Automated looped images 
were taken prior to incubation and after 24 hours of incubation with the horizonal 
dashed line represent a 50% closure cut-off. A: untreated; B: α-naphthoflavone; 
C: baicalin; D: benzo-a-pyrene; E: biochanin A; F: curcumin; G: estrone; H: 
fisetin; I: hesperidin; J: hesperetin; K: naringin; L: naringenin; M: quercetin; N: 
rutin. Statistical significance was conducted relative to control (A). ** P ≤ 0.01 and 
**** P ≤ 0.0001.  
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Cellular migration assay(cont.) 
(B) images of the wound at 0 and 24 hours of LN229 cells following scratches 
made to the plate surface.  Cells were incubated with serum free media 
containing 50 µM of the modulators for 24 hours within a Cell-IQ incubator. 
Automated looped images were taken prior to incubation A: untreated; B: α-
naphthoflavone; C: baicalin; D: benzo-a-pyrene; E: biochanin A; F: curcumin; G: 
estrone; H: fisetin; I: hesperidin; J: hesperetin; K: naringin; L: naringenin; M: 
quercetin; N: rutin.  
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To assess the impact of modulators on BCRP protein expression, LN229 cells 

were incubated with 50 µM modulators for 24 hours and western blot analysis 

was conducted (Figure 2.5). Hesperetin demonstrated the highest statistically 

significant downregulation in BCRP protein expression, -2.56 ± 0.45-fold (P ≤ 

0.0001), followed by curcumin -0.65 ± 0.1-fold (P ≤ 0.01) and biochanin A -1.4 ±  

0.01-fold (Figure 2.6). All the other modulators lead to an increase in the 

expression of BCRP in the following order: rutin > quercetin > benzo-a-pyrene > 

fisetin > naringenin > baicalin > naringin > α-naphthoflavone > estrone > 

hesperidin (Figure 2.6). 

 

Based upon the studies so far, baicalin and hesperetin were selected as optimal 

modulators for further experiments  
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Figure 2.5 Changes on BCRP expression after 24-hour incubation with the modulators 

Cells were seeded in T25 flasks and incubated with 50 µM of the modulators once confluent for 24 hours. cells protein extraction was 
conducted using RIPA buffer. 40 µg of the protein was loaded on a 4%-8% SDS PAGE gel to separate the bands, the gel was then 
transferred to a PVDF membrane and incubated with BXP21 (Santa Cruz,USA) for 24 hours at 4 C, then incubated with mouse anti-
rabbit IgG (Themofisher,UK). ECL (Bio-RAD, UK) detection was conducted. Control presents the absence of modulators. 
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Figure 2.6 Fold change in BCRP expression 

Cells were seeded in T25 flasks and incubated with 50 µM of the modulators 
once confluent for 24 hours. cells protein extraction was conducted using RIPA 
buffer. 40 µg of the protein was loaded on a 4%-8% SDS PAGE gel to separate 
the bands, the gel was then transferred to a PVDF membrane and incubated with 
BXP21 (Santa Cruz,USA) for 24 hours at 4 °C, then incubated with mouse anti-
rabbit IgG (Themofisher,UK). ECL (Bio-RAD, UK) detection was conducted. 
Significant difference in protein expression is shown relative to control. * P ≤ 0.05; 
** P ≤ 0.01; *** P ≤ 0.001; **** P ≤ 0.0001 
 

 
 
 
 
 

 



 

 97 

 

 
In order to assess the ability of baicalin and hesperetin, and current therapeutic 

anti-cancer agents methotrexate and temozolomide to activate ROS pathways in 

human glioblastoma LN229 cells, a ROS assay was conducted at 10 µM, 100 µM 

and 500 µM of each compound.  Methotrexate 10 µM resulted in the largest ROS 

detection, 5.16 ± 2.44-fold with both modulators demonstrated at least a 3-fold 

increase (all statistically significant) in ROS production when compared to 

untreated cells (Figure 2.7). 

 

 
Figure 2.7 Radical oxygen species detection assay 

LN229 cells were grown in 96-well plates for 24 hours prior to being washed with 
1X buffer. The cells were treated with 25 µM DCF-DA and incubated for 45 
minutes. Thereafter, the cells were treated with baicalin, hesperetin, 
methotrexate and temozolomide (10 µM, 100 µM, 500 µM) for 1 hour. DCF-DA 
fluorescence was measured at excitation and emission 485 nm and 535 nm. 
Results are presented normalised against untreated cells. * P ≤ 0.05; ** P ≤ 0.01; 
*** P ≤ 0.001; **** P ≤ 0.0001. 
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The activation of caspase 3 and 7 is known to be the functional endpoint of the 

apoptotic cascade and hence are used as a marker for apoptosis. A caspase-3/7 

fluorometric assay was utilised to assess activation of apoptosis pathways 

through the cleavage of N-Ac-DEVD-N’-MC-R11 to a fluorescent product. 

Flavonoid modulators resulted in an excess of a 9-fold increase in caspase 

activity compared to control at both 10 µM and 100 µM (Figure 2.8).  Furthermore, 

temozolomide demonstrated an approximately 8-fold increase and methotrexate 

10.5-12 fold increase at both 10 µM and 100 µM (Figure 2.8).   

 

Both flavonoids demonstrated a statistically significant increase in caspase 

activity when compared to untreated cells (P < 0.0001). Furthermore, a 

statistically significant (P < 0.01) higher caspase activity (compared to untreated 

control), was noted for hesperetin 100 µM (10.23 ± 0.37 fold) and baicalin 10 µM 

(11.12 ± 1.51 fold) than temozolomide at 10 µM (7.91 ± 0.53 fold) and 100 µM 

(8.24 ± 0.32 fold) (Figure 2.8).   
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Figure 2.8 Caspase-3/7 assay 

LN229 cells were seeded in 96 well plates for 24 hours followed by incubation 
with 10 µM and 100 µM of each compound (baicalin, hesperetin, methotrexate 
and temozolomide) for 4 hours. The resulting N-Ac-DEVD-N’-MC-R110 parent 
was cleaved by cellular Caspases to a fluorescent product, detected at an 
excitation and emission 485 nm and 535 nm. Results are presented normalised 
against untreated cells.  * P ≤ 0.05; ** P ≤ 0.01; *** P ≤ 0.001; **** P ≤ 0.0001. 
 
  



 

 100 

 Discussion 

 

Increasing evidence now suggests that flavonoids may play a role as modulators 

of BCRP, potentially leading to an enhancing intracellular accumulation of 

substrate molecules (Dei et al., 2019, Fan et al., 2019, Imai et al., 2004b, 

Kalapos-Kovács et al., 2015b, Kaur and Badhan, 2015, Kaur and Badhan, 2017, 

Mao and Unadkat, 2015, Peña-Solórzano et al., 2017, Pick et al., 2011, Santos 

et al., 2015, Sowndhararajan et al., 2017, Tiwari et al., 2011, Toyoda et al., 2019, 

Xu et al., 2018). In the context of brain cancers, the localisation of BCRP and 

other ABC transporters at the BBB and BTB offer a novel target to enhance 

intracellular accumulation of anti-cancer agents. Previously, we demonstrated 

the impact of flavonoids on the modulation of BCRP at the BBB (Kaur and 

Badhan, 2017) and blood-CSF-barrier (Kaur and Badhan, 2015).  In this chapter 

we examined the potential of flavonoids to modulate BCRP function in human 

glioblastoma LN229 cells, in addition to examining the role of flavonoids in 

initiating ROS-production, activation of Caspase apoptosis cascade and 

hindering cellular migration, as potential adjunct agents in oncology.  

 

 

 

13 modulators were screened for their cytotoxicity towards LN229 across a 6-fold 

log-concentration range.  The majority of modulators displayed limited toxicity up 

to 150 µM, with biochanin-a and the non-flavonoid carcinogen benzo-a-pyrene 

displaying a cell viability IC50 of ≤ 150 µM (Figure 2.1). Previous studies have 

utilised biochanin-a at concentrations below the calculated IC50 in LN229 cells 

(Habicht et al., 2014). Furthermore, benzo-a-pyrene is a known polyaromatic 

carcinogen and used as a positive control and has been reported to demonstrate 

an IC50 of ~10 µM in human brain microvascular endothelial cells (Jeong et al., 

2019). The lack of significant cellular toxicity for most flavonoids concurs with the 

typical concentrations reported for many flavonoids within the brain, namely ~50 

µM (Peng et al., 1998, Youdim et al., 2003, Youdim et al., 2004b). Toxicity of the 

anti-cancer compounds towards the LN229 cells, were not what was expected. 

With reported IC50 values (Figure 2.2) slightly higher than those reported in other 
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cancer cell lines. This might be due mutated p53 and PTEN that is resembles 

human GBM reported to be expressed in the LN229 cells line (Ishii et al., 1999). 

This would suggest that the LN229 cells might have been obtained from a high-

grade glioblastoma However, there are no reports or additional information from 

ATCC to support that claim.  

 

 

 
The fluorescent BCRP probe substrate H33342 was used as a tool to assess 

BCRP efflux function in the presence of modulators.  Our results demonstrated a 

range of responses over a phytochemical concentration range of 0.001-100 µM, 

with the greatest increase in H33342 intracellular accumulation demonstrated 

with baicalin (1.8-2.2-fold) and hesperetin (2.5-2.8-fold) over the range of 1-100 

µM which was more than that demonstrated by the commercially available BCRP 

modulator Ko143 (1.5-fold) across 1-10 µM (Figure 2.3). Both baicalin and 

hesperetin have been previously demonstrated to inhibit BCRP efflux at a low 

IC50 of < 50 µM (Cooray et al., 2004b, Kalapos-Kovács et al., 2015b, 

Sowndhararajan et al., 2017).  The exact mechanism of this interaction is thought 

to occur at the level of the cytosolic ATPase element of the transporter (Peña-

Solórzano et al., 2017) or the transmembrane binding sites (Fan et al., 2019). 

 

 
A main feature of glioblastomas are their ability to invade their surrounding 

microenvironment, migrate and metastasise (Johansen et al., 2016). 

Moreover, BCRP plays a role In the ability of cancer cells to migrate where, BCRP 

was reported to regulate the transport of active substrates such as extracellular 

matrix adhesion molecules which are critical for the ability of cancer cells’ 

migration and invasion  (Lye et al., 2019). It has been demonstrated that 

pharmacological modulation BCRP reduces migration in U251 stem cells glioma 

(Gong et al., 2014) and PANC-1 pancreatic cancer cells (Wang et al., 2010b). 

 

The majority of modulators demonstrated an ability to hinder cellular migration 

with fisetin, estrone, benzo-a-pyrene, baicalin, hesperetin, curcumin and 
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biochanin-A demonstrating a 50% or greater inhibition of migration at 

concentration 50 µM (Figure 2.4). Previous reports have highlighted a similar 

ability to modulate metastasis in different tumour cell lines for fisetin and curcumin 

(Ham et al., 2015), baicalin (Gao et al., 2017b, Zhu et al., 2018a), hesperetin 

(Zhang et al., 2017) and biochanin A (Zhao et al., 2018). This inhibitory 

mechanism is thought to occurs through inhibition of the activity of 

metalloproteases such as MMP-2 and MMP-9, previously elucidated for baicalin 

(Wang et al., 2010c, Zhu et al., 2018b) and hesperetin (Mao et al., 2017, Demuth 

and Berens, 2004, Singh et al., 2010, Santos et al., 2015).  

 

 

In order to further assess the effect of the modulators on the expression of BCRP 

in LN229 cells, western blot was conducted following incubating LN229 cells for 

24 hours with 50 µM flavonoids (Figure 2.5). Hesperetin demonstrated the largest 

down regulation in BCRP expression, -2.56 ± 0.45-fold (P ≤ 0.0001), followed by 

curcumin and biochanin-A (Figure 2.6). The remaining modulators increased the 

expression of BCRP.  

The transcriptional regulation of BCRP, as with many ABC transporters, is 

thought to be governed by a range of nuclear hormone receptors (Wang and 

Negishi, 2003, Xu et al., 2005) and the interference of these signalling pathways 

under physiological and pathophysiological conditions provides a new approach 

to modulate BCRP function at the CNS barriers (Mahringer and Fricker, 2010, 

Hartz and Bauer, 2011, Bauer et al., 2006). Many members of the nuclear 

receptor superfamily are known to regulate drug transporters this includes the 

pregnane-X-receptor (PXR), the constitutive androstane receptor (CAR) and the 

aryl hydrocarbon receptor (AhR) (Jacob et al., 2011, Xu et al., 2005, Dauchy et 

al., 2008b, Granberg et al., 2003). The regulation of many of the transporter 

proteins is controlled by endogenous and exogenous compounds, some of which 

are thought to be flavonoids, which act to activate the receptors and subsequently 

leads to changes in transporter gene and protein expression (Mahringer and 

Fricker, 2010, Hartz and Bauer, 2011, Bauer et al., 2006).  
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Based on the cellular toxicity, accumulation, migration assay, and Western blot, 

baicalin and hesperetin were selected as two candidates to take forward, in part 

due to their lower cellular toxicity, significant increase in intracellular H33342 

accumulation, inhibition effects on cellular migration and downregulation of 

BCRP, when compared to other modulators. 

 
 

 
Whilst many flavonoids are known to modulate ABC transporter function, their 

role as potential anti-cancer agents, namely metastatic inhibitors and apoptosis 

inducers were further investigated using a ROS production assay and caspase- 

activation assay. Flavonoids are well known as free radical scavengers, but also 

demonstrated to function as pro-oxidatives leading to cytotoxicity, possibly due 

to the generation of ROS and leading to induction of apoptosis (Miura et al., 1998, 

Kuntz et al., 1999). With a disproportional increase in intracellular ROS, cancer 

cell cycle arrest, senescence and apoptosis will often follow. This often is a result 

of opening of mitochondrial permeability transition pores which releases 

cytochrome-c and thereby causing the activation of caspase. The switch to pro-

oxidant behaviour can often occurs under certain conditions, such as high 

concentrations of transition metal ions, an alkali pH environment and the 

presence of oxygen molecules (Blokhina et al., 2003). When assessing the 

impact of flavonoids and anti-cancer agents to enhance intracellular ROS, we 

demonstrated that methotrexate 10 µM caused a significant increase in ROS 

(5.16 ± 2.44-fold) with all other modulators demonstrated at least a 3-fold 

increase (all statistically significant) in ROS production when compared to 

untreated cells (Figure 2.7). 

 

Reports have indicated baicalin as possessing pro-oxidant properties in both 

human glioma and breast cancer cells (Gao et al., 2016, Zhu et al., 2018b), 

possibly with a role for endogenous copper (or other transition metals), controlling 

its pro-oxidant properties and modulation of cell growth (Liu et al., 2019).  It has 

been reported that  baicalin is capable of forming a complex with intracellular 

copper which is then able to initiate the redox cycling to increase ROS production 

and mitochondrial-dependent apoptosis cell death (Liu et al., 2019).  Additionally, 
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it has been demonstrated that flavonoids which include a structural phenol B ring 

are capable of forming phenoxyl radicals which can then oxidise NADH and 

leading to free radical oxygen activation (Chan et al., 1999). 

 

 Ability of hesperetin and baicalin to activate caspase pathways 
 

Programmed cell death (apoptosis) is responsible for vital biological functions 

such as elimination of unwanted damaged cells and maintenance of 

homeostasis. Irregularities in occurrence of apoptosis plays a part in tumour 

formation, progression and developing anticancer drug resistance (Ziegler and 

Groscurth, 2004, Ghobrial et al., 2005). Subsequently, triggering apoptosis  has 

emerged a primary means in cancer drug development (Goldar et al., 2015). One 

of the mechanisms through which cellular apoptosis can be mediated is through 

the caspase’s family of specific cysteine proteases, which are otherwise inactive 

within the cytosol. Upon activation, they play a primary role in the cellular 

apoptosis process and are an attractive target for glioblastoma treatments (Fulda, 

2018). Flavonoids have been demonstrated to activate the caspase molecular 

pathways in human glioblastoma cells (Das et al., 2009, Kong et al., 2019, Souza 

et al., 2018, Ghobrial et al., 2005) 

 

The active caspase-3/7 substrate, N-Ac-DEVD-N’-MC-R110, was utilised given 

its ability, upon cleavage by caspase enzymes, to yield a fluorescent compound 

capable of being detected. Different caspases have distinctive but overlapping 

cleavage sights, for example caspase -3/7 have the same cleavage sight where 

cleavage occurs after the second Asp (Asp-Glu-Val-Asp). The cleavage of 

caspase-3/7 is a functional end point for the apoptosis process (Ghavami et al., 

2009). Baicalin and hesperetin were subsequently assessed for the impact on 

this pathway at 10 µM and 100 µM (Figure 2.8). At both concentrations, a 9-fold 

increase in caspase activity was observed compared to control at both 10 µM 

and 100 µM (Figure 2.8) in addition to increases in activity for both temozolomide 

and methotrexate.   
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Flavonoids have been reported on as having pro-apoptotic properties in-vitro 

(Braganhol et al., 2006, Nguyen et al., 2004) as well as temozolomide in U251 

cells (Li et al., 2015) and methotrexate in RIE-1 (Papaconstantinou et al., 2001).  

 

In-vitro, baicalin has been shown to reduce cell proliferation of myeloma cell lines 

(NCI-H929 and U266), lymphoma cell lines (NCEB1) and lymphatic leukaemia 

cell lines (HL-60 and THP-1) (Kumagai et al., 2007). In addition, studies have 

reported its apoptotic effects in T24 human bladder cancer (Lin et al., 2013) A549 

lung cancer cell line (JJ et al., 2017) and HeLa cervical cancer cells (Yong et al., 

2015). Moreover, baicalin was shown to activate caspase-3 in U937 lymphoma 

cell line, however, the study showed that the baicalin’s effect was concentration 

dependent where, a high dose of baicalin has to be used in order to produce the 

desired apoptotic effect (Zakki et al., 2018), the same study also reported that 

baicalin was able to supress anti-oxidant enzymes and increase ROS generation 

(Zakki et al., 2018). In a further study, conducted in human osteosarcoma cells, 

baicalin was able to initiate substantial generation of ROS and was able to induce 

apoptosis through the activation of caspase -3 and -9 and inhibition of BcL-2 

proteins responsible for regulation of cell death (Wan and Ouyang, 2017). 

 

Previous research reported that hesperetin can induce apoptosis in rats with 

colon cancer (Aranganathan and Nalini, 2013), as well as in in-vitro cancer 

models such as  HT-29 colorectal adenocarcinoma cells (Rajamanickam et al., 

2012), gastric cancer  (Zhang et al., 2015a), MCF-7 breast cancer cell line (Palit 

et al., 2015), PC-3 prostate cancer cell line (Sambantham et al., 2013) and SiHa 

cervical tumour  cell lines (Alshatwi, 2012). Furthermore, hesperetin was shown 

to trigger apoptosis by increasing ROS generation in SGC-7901human gastric 

cancer cell lines (Zhang et al., 2015b).   

 

Much like baicalin, hesperetin also inhibited BcL-2 and induced caspase-3, 

caspase-9 (Green and Kroemer, 2004, Chen and Lesnefsky, 2011) and caspase-

7 (Palit et al., 2015). The apoptotic action of hesperetin in various cell lines 

involves the formation of an oxidant/antioxidant imbalance as hesperetin possess 

both pro-oxidative and anti-oxidant proprieties (Haidari et al., 2009), such that it 
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is able to reduce activities of anti-oxidants such as superoxide dismutase (SOD) 

and catalase  (Zhang et al., 2015b, Sivagami et al., 2012). 

 

 Conclusion 

 
To conclude, the expression of the efflux transporter BCRP at the BTB in 

glioblastoma is a major contributor in MDR, which results in sub-optimal 

concentration of anti-cancer drugs at the tumour site. In this study, we screened 

13 phytochemicals in human glioblastoma cells LN229 for their cytotoxicity, ability 

to modulate the efflux function and expression of BCRP and reduce cancer cell 

migration.  

 

Based on the results obtained, we have identified two optimal flavonoids 

hesperetin and baicalin and have demonstrated their ability to modulate the 

action and expression of BCRP as well as pro-oxidant and apoptosis inducing 

proprieties within LN229 glioblastoma cell line.  

 

This chapter highlights the potential for these two flavonoids to be further 

investigated as pro-oxidant agents alone or in combination with existing 

anticancer agents susceptible to BCRP efflux at the BBB and/or BTB. In the 

following chapter, hesperetin was selected as the optimal flavonoid to assess its 

ability to permeate across an in-vitro BBB model and modulate the efflux action 

of BCRP at the BBB and therefore enhance the permeability of anti-cancer 

substrate drugs methotrexate and mitoxantrone.  
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Chapter 3  

 
Enhancing the permeability of anti-

cancer agents across an in-vitro 
BBB model by modulation of BCRP 

using hesperetin 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Elements of this chapter have been published in the following 
manuscripts: 

 
Elbakary, B. and R. K. S. Badhan (2020). "A dynamic perfusion based blood-

brain barrier model for cytotoxicity testing and drug permeation." Scientific 
Reports 10(1): 1-12. 

 
 
Elbakary, B. and R. K. S. Badhan (2021). " Phytochemical mediated modulation of 
breast cancer resistance protein in human glioblastoma cells." Brain Research 

submitted 11/02/21 
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 Background 

 
The blood brain barrier (BBB) constitutes a significant obstacle to drug delivery 

for brain tumours, primarily as a result of the presence of tight junctions localised 

between the cells of the BBB endothelium which renders the intercellular 

endothelial space shut (Gomez-Zepeda et al., 2019, Brazil, 2017).  

This is further augmented by the presence of ABC efflux transporters, such as 

BCRP, which plays a major role in the MDR phenotype (Tiwari et al., 2011). 

BCRP has been shown to play a significant role in limiting the penetration of many 

structurally unrelated anti-cancer agents such as methotrexate, mitoxantrone, 

doxorubicin and topotecan amongst others (Ni et al., 2010, Wijnholds et al., 2000, 

Cisternino et al., 2004, Breedveld et al., 2005, Toyoda et al., 2019). With 

glioblastoma reported to be the deadliest form of brain cancer (Tan et al., 2020), 

permeation of anti-cancer drugs across the BBB becomes a critical pre-requisite 

for successful drug delivery to gliomas. 

 

The role of BCRP in limiting brain delivery of anticancer agents has been 

extensively demonstrated. For example, the correlation between the expression 

of BCRP and poor response to 5-fluorouracil has been reported in breast cancer 

patients (Burger et al., 2003, Yuan et al., 2008). In non-small cell lung cancer 

patients, the expression of BCRP was also reported to be linked with resistance 

to platinum-based chemotherapeutic agent vinorelbine and poor survival (Yoh et 

al., 2004).  

 

Regarding glioblastoma, the expression of BCRP at the BTB as well as the BBB 

has been reported to corelate with poor response to GBM therapy  (Mao and 

Unadkat, 2005, Wang et al., 2019). Wild type BCRP knockout mice with 

oncogene induced glioblastoma were found to demonstrate an up to 3-fold 

increase in the concentration of dasatinib in the core of the tumour upon its 

dissection (Agarwal et al., 2012). Moreover, gefitinib permeability across the BBB 

was found to be hindered by the presence of BCRP in-vitro in MDCK II cells as 

well as in-vivo in mice (Agarwal et al., 2010). Furthermore, vandetanib 

penetration across the BBB and into mice brains was shown to be limited by the 

expression of BCRP (Minocha et al., 2012). 
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Modulation and inhibition of BCRP was proposed to overcome its efflux function 

and increase permeability of substrates across the BBB (Mao and Unadkat, 2015, 

Ni et al., 2010). Many BCRP modulators have come to light as inhibitors of BCRP 

efflux function. These include fumitremorgin C (FTC) (Rabindran and LM, 2000), 

GF120918 (Duan and You, 2009, Suzuki and Watanabe, 2019) and Ko143 (Giri 

et al., 2008). However, their cytotoxicity and lack of selectivity limits their 

widespread clinical use (Zhang et al., 2004b).  

 

Interest in naturally occurring phytochemicals has increased over the past 

decade, due to their potent anti-cancer activities (Prakash et al., 2013) and ability 

to modulate the efflux function of BCRP (Zhang et al., 2004c, Gao et al., 2017b, 

An and Morris, 2010). Studies have demonstrated the effect of various 

phytochemicals in modulating BCRP (Kaur and Badhan, 2017). This is 

achievable at low concentrations, such as biochanin-a, benzoflavone, and 

chrysin at 30 µM, were able to inhibit BCRP in breast cancer cell line MCF-7 and 

increase influx of mitoxantrone. In the same cell line, hesperetin, quercetin and 

resveratrol were also able to increase intracellular accumulation of mitoxantrone 

by inhibiting BCRP (Cooray et al., 2004b, Pick et al., 2011). In human leukaemia 

cells line K-562, naringenin and genistein have also shown to modulate efflux 

function of BCRP (Imai et al., 2004a). Moreover, quercetin and curcumin where 

found to modulate the function of BCRP and down regulate its expression in 

porcine microvascular endothelial cell line (Kaur and Badhan, 2017) 

 

Methotrexate is used in treating primary CNS lymphoma and glioblastoma (Zhu 

et al., 2009, Sane et al., 2014). Methotrexate formally known as amethopterin is 

a folate derivative that is used in lower doses to manage autoimmune diseases 

such as rheumatoid arthritis and psoriasis. It is administered at higher doses to 

treat a number cancers such as  head and neck, brain, breast, lung and bladder 

cancer (Sane et al., 2014). Studies have shown that methotrexate has limited 

distribution into the brain where rodent brain interstitial fluid was assessed for 

accumulation using brain micro-dialysis with a brain-to-plasma ratio of 0.051 ± 

0.32 (Devineni et al., 1996). A similar study was performed in humans which 

displayed an even lower brain-to-plasma methotrexate ratio, 0.032 ±0.094 
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(Blakeley et al., 2009). A primary cause of the limited distribution into the brain is 

the role of BCRP in effluxing methotrexate (Sane et al., 2014, Agarwal et al., 

2010). An additional often used treatment for tumours is mitoxantrone. 

Mitoxantrone is a type II topoisomerase inhibitor that is used in regiments to treat 

acute myeloid leukaemia, breast cancer, non-Hodgkin’s lymphoma, and liver 

cancer. In addition, its used as a TRAIL sensitising agent in glioblastoma cell 

lines (Senbabaoglu et al., 2016, Taylor et al., 2011). Mitoxantrone is a known  be 

a BCRP substrate (Nakanishi and Ross, 2012, Özvegy et al., 2001) and 

resistance to mitoxantrone has been strongly corelated to the efflux function of 

BCRP (Doyle et al., 1998, Higgins, 1995, Miyata et al., 1999). 

 

In this chapter, temozolomide was replaced with mitoxantrone due to conflicting 

studies reporting on the effect of BCRP as a contributor to MDR towards 

temozolomide where, knockdown of BCRP did not have an effect on the 

sensitivity of temozolomide (Wijaya et al., 2017), while others stated that BCRP 

was a contributor in reducing temozolomides sensitivity in treating glioblastoma 

(Chua et al., 2008, Bleau et al., 2009). In addition, HPLC detection issue were 

encountered during the method development for temozolomide which is 

suspected to be due to compound degradation (Kapçak and Şatana Kara, 2018). 

Further, it was decided to focus on one optimal flavonoid, hesperetin, as it 

displayed stronger abilities in modulating the expression of BCRP at the BTB.  

 
 Aims and objectives 

 
Utilising results from the previous chapter, the focus of this study was on 

hesperetin and its ability to modulate BCRP efflux function in a BBB in-vitro 

model.  The aims were to assess the ability of hesperetin to permeate across the 

BBB, in addition to modulating the efflux function of BCRP in an in-vitro BBB 

model. Subsequently, our goal was to enhance the transport of methotrexate and 

mitoxantrone across the BBB. 

  
In order to achieve those aims, the objectives were to: 

 

• Optimise collagen culture surface coating using PBMEC/C12 cells  
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• Develop and characterise an in-vitro BBB model using primary porcine brain 

cells 

• Assess the cytotoxicity of hesperetin, methotrexate and mitoxantrone within 

primary porcine brain cells 

• Demonstrate the efflux function of BCRP using the substrates methotrexate 

and mitoxantrone  

• Assess the permeability of hesperetin across the BBB model 

• Demonstrate the ability of hesperetin to modulate the efflux action of BCRP 

and enhance drug permeation across the BBB  

 
 Materials 

 
Dulbecco's modified essential media with 4.5 g/L glucose (DMEM), minimum 

essential media (MEM), phenol red free DMEM 4.5 g/L, new born calf serum 

(NCS), foetal bovine serum (FBS), Leibovitz-15 (L-15), Hams F12, Antibiotic-

Antimycotic® were obtained from Biosera (Sussex, UK); Rat tail-1 collagen 1 g 

solution and plasma derived bovine serum (PDBS) (Firstlink, UK); Ko143 was 

obtained from Santa Cruz Biotechnology (Texas, USA); HEPES buffer solution 

and 0.25% trypsin-EDTA were obtained from (Gibco, UK); bovine collagen type-

1 50 µg/mL was obtained from (Thermo fisher, UK); ZO-1 1A12 monoclonal anti-

body, goat anti-mouse IgG H+L: super clonal secondary antibody were obtained 

from (Thermofisher, UK); Phalloidin-iFluor 488 reagent (ab176753) was obtained 

from (Abcam, UK); Thincerts® were obtained from Greiner Bio-One (Stonehouse, 
UK); all other chemicals were sourced from Sigma (Dorset, UK) and are HPLC 

grade. Stock solutions of all test compounds were prepared in dimethyl sulfoxide 

(DMSO) and stored at -20°C until use. 

 

 Methods 

 

 
 Culture of C6 rat astrocytes 

C6 rat astrocytes are typically used to obtain astrocyte conditioned media (ACM) 

utilised in the development of the PBMEC system (Patabendige et al., 2013).  C6 

cells were obtained from Cell Line Services (Germany). Cryopreserved cells were 
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thawed and resuspended in a T75 flask containing media prepared from Hams 

F12:DMEM (50:50), 7.5% v/v new-born calf serum, 5 µg/mL transferrin, 0.5 U/mL 

heparin, 0.5% v/v antibiotic/antimycotic and 7 mM L-glutamine.  

The cells were grown in an uncoated T75 flask at 37 °C, 5% CO2 for 3 days. At 

80% confluency, the cells were washed with calcium and magnesium free PBS, 

followed by the addition of 2 mL 0.25% w/v trypsin-EDTA for 5 minutes. 

Thereafter, the cell suspension was resuspended in 10 mL C6 media and 

centrifuged for 5 minutes at 1500 rpm, 4 °C. The resultant cell pellet was then 

resuspended in C6 media and split into two T75 flasks. The used media  from the 

C6 cells was aspirated, changed daily and filtered through a 0.22 µm filter and 

stored at 4 °C and used within one week of collection. The media obtained is 

termed astrocyte conditioned media (ACM). 

 

 Culture of immortalised PBMEC/C12 
 
 
Cells, in-vivo, are not packed tightly together to form tissues, rather the majority 

of the tissue volume is made up of a meshwork of proteins called the extracellular 

matrix (ECM). The ECM is made up of proteins such as collagen, fibronectin, 

elastin and laminin which are secreted by fibroblasts (Lodish et al., 2000). These 

function to support the cellular cytoskeleton and facilitate cellular communication 

as well as regulate cell growth and proliferation (Frantz et al., 2010). Collagen is 

the most abundant protein in mammals making up 25% of the total protein mass 

(Alberts et al., 2002) and its use in tissue culture pertains to its function to support 

cellular growth, proliferation and differentiation (Heino, 2007, Kleinman et al., 

1981). The type of culture surface coating greatly affects cell behaviour and the 

response observed is reliant on both cell culture type and coating used as a 

substrate (Kleinman et al., 1987, Frantz et al., 2010).  

 

Herein, we aimed to assess the impact of species-specific collagen to develop 

an optimal in-vitro BBB model, using the rapidly growing immortalised 

PBMEC/C12 model, prior to utilising primary cells. PBMEC/C12 cells were 

obtained from Dr. M. Teifel  (institute  fur  Biochnemie, Tenchische Hochschule 

Darmstadt, Germany). A T75 flask was coated with 1% w/v gelatine and cells 

seeded and grown in C6 growth media: ACM media (1:1). Cells achieved 
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confluency within 3-5 days post seeding. At 90% confluency, cells were washed 

with calcium and magnesium  free  PBS  and  2  mL  0.25% w/v trypsin-EDTA  

was added  to  the  flask  and  placed  in  the  incubator  for  5  minutes  thereafter  

the  cell suspension was placed in 10 mL fresh media and centrifuged for 5 

minutes at 1500 rpm, 4 °C. The formed cell pellet was then resuspended in 1 mL 

media and counted using a haemocytometer for seeding in 24-well inserts.  

 

 

 The impact of species-specific collagen on the formation of a 
robust BBB model 
 
 
In order to assess the impact of species-specific collagen on barrier formation, 

50,000 PBMEC/C1-2 were seeded into 24-well inserts coated with a combination 

of bovine collagen (50 µg/mL) and fibronectin (7.5 µg/ml) or rat tail collagen (200 

µL/mL) and fibronectin (7.5 µg/mL).  PBMEC/C12 media is made up of a 50:50 

C6 media and ACM was supplemented with 1 µg/mL fibronectin to enhance 

attachment. The transepithelial electrical resistance (TEER) was measured for 5 

days using a chopstick electrode (STX2) and voltmeter (EVOM) (World  Precision  

Instrument).  The TEER was calculated according to equation (3): 

 

TEER Values (Ω. cm2) = (R Cell monolayer – R Blank insert) x SA   (3) 

 

Where SA  is the surface  area  of  the  permeable  insert  (cm2),  R Cell  monolayer 

is  the resistance across  permeable  insert  with  cells (Ω) and R Blank insert is the 

resistance across coated insert without cells.  

 

 

 

Porcine brain endothelial cells were isolated according to the methods reported 

by (Cantrill et al., 2012, Patabendige et al., 2013) with adaptations (Elbakary and 

Badhan, 2020, Kaur and Badhan, 2017). Porcine brain hemispheres were 

obtained from a local abattoir (Long Compton, Oxford, UK) within 30 minutes of 

slaughter and transported on ice cold Leibovitz-15 (L-15) media supplemented 

with 1% v/v penicillin and streptomycin. Hemispheres were placed into a sterile 
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beaker containing PBS with 1% v/v penicillin and streptomycin and washed to 

remove the meninges, blood vessels, choroid plexus and capillaries. The white 

matter was removed, and the grey matter excised and placed into a sterile beaker 

containing MEM supplemented with 10 mM HEPES and 1% v/v penicillin and 

streptomycin. The grey matter was chopped into smaller pieces using a sterile 

scalpel and passed through a 50 mL syringe into a T75 flask containing 50 mL 

MEM supplemented with 10 mM HEPES and 1% v/v penicillin and streptomycin.  

 

Thereafter 15 mL of the tissue suspension was transferred into a 40 mL Dounce 

tissue homogeniser containing 25 mL MEM supplemented with 10 mM HEPES 

and 1% v/v penicillin and streptomycin. The tissue suspension was homogenised 

with a loose (“A”) pestle gently for 15 strokes, followed by 15 strokes using the 

tight (“B”) pestle. Thereafter, tissue homogenates were transferred into a sterile 

T175 flask and the process was repeated for the remaining tissue suspension.  

The collected tissue homogenate was subsequently filtered through a 150 μm 

nylon mesh (Plastok Limited, UK), the collected filtrate was then filtered again 

through a 60 μm nylon mesh and filters were kept separately.  The filters were 

placed into a petri dish containing 80 mL of digest mix consisting of M199 media 

containing DNase I (2108 U/mg); trypsin (211 U/mg); collagenase (223 U/mg) 

(Worthington Biochemical, NJ, USA); 10% v/v FCS and 1% v/v penicillin and 

streptomycin. Petri dishes were labelled as 150s and 60s and incubated at 37 °C 

for 1 hour on an orbital shaker at 150 rpm. Thereafter the filters were carefully 

washed, and the digest mix moved to 50 mL centrifuge tubes and centrifuged at 

4 °C for 5 minutes at 5000 rpm, before being suspended in fresh MEM 

supplemented with 1% v/v penicillin and streptomycin and 10 mM HEPES. This 

process was repeated three times before the pellets were resuspended in 

cryopreservation media (10% v/v DMSO and 90% v/v FCS) for long-term storage 

in liquid nitrogen and labelled as ‘150s’, suitable for gene/protein 

expression/functional activity, and ‘60s’ suitable for drug permeability studies.  
 

 

 

A T75 flask was coated with bovine collagen (50 μg/mL) prior to addition of cells 

from a thawed ‘150s or 60s’. Thawed cells were suspended in full PBMEC media: 
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phenol red free DMEM, 10% v/v plasma derived bovine serum (PBDS), 1% v/v 

antibiotic-antimycotic, 125 μg/mL heparin and  1% v/v L-glutamine. Cells were 

grown for 2 days before the addition of 4 μg/mL puromycin for 2 days, to eradicate 

pericyte contamination. Thereafter, PBMEC cells were maintained in ACM 

collected from the growth of rat C6 astrocytes (See Section 3.4.1.1), in a 1:1 

(PBMEC:ACM), until confluence (8–10 days post seeding) and are referred to as 

passage 0. Following trypsinisation, PBMEC cells were subsequently seeded on 

24 well, 96 well coated with bovine collagen (50 μg/mL) to contact further 

experiments. 

 
 

 

Following trypsinisation, PBMEC cells were subsequently seeded at a density of 

80 x103 cells/cm2 into 1.12 cm2 permeable inserts (Greiner BioOne transparent 

ThinCerts® 12 well) coated with bovine collagen (50 μg/mL) and fibronectin (7.5 

μg/ mL) and maintained in PBMEC:ACM and considered as passage 1.  

Barrier integrity and formation was assessed through the determination of TEER, 

which was measured every 2 days using a chop-stick electrode (World Precision 

Instruments STX2). Tight-junction formation was enhanced through the addition 

of 250 μM cAMP, 17.5 μM RO 20–1724 and 550 nM hydrocortisone 24-hours 

prior to the initiation of an assay, with TEER values used to assess barrier 

integrity (Patabendige et al., 2013). The media was changed on the day a TEER 

measurement was carried out and measured every two days up to 10 days post 

seeding. Monolayer formation was monitored by measuring the TEER using a 

chopstick electrode (STX2) and voltammeter (EVOM) (World Precision 

Instrument) TEER was calculated according to equation (3).  

 

Control measurements were made using filters without cells (blank filter). The 

PBMEC model is considered suitable for transport/permeability assays when  

TEER > 400 Ω.cm2 is achieved (Patabendige et al., 2013, Yang et al., 2017, 

Gaillard and de Boer, 2000). 
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 Immunostaining detection of ZO-1 and F-actin in PBMECs in-vitro 

BBB model 

 

On the day peak TEER value was recorded typically 24 hours following the 

addition of barrier additives, the bottoms of the inserts were carefully pealed and 

washed with cold PBS and fixed in cold paraformaldehyde 4% w/v for 10 minutes. 

Thereafter the inserts were prepared for ZO-1 or F-actin visualisation.  

Zona oclaudin-1 (ZO-1) is a tight junction protein used to determine the integrity 

of BBB in-vitro models (Cantrill et al., 2012, Patabendige et al., 2013). In addition 

to using TEER measurements and lucifer yellow leakage in order to assess the 

barrier integrity, tight junction protein ZO-1 was visualised when peak TEER 

values were observed.  

 

Following fixing, the cells were washed three times with cold PBS and 

permeabilised using 0.02% w/v saponin for 10 minutes, followed by an additional 

cycle of washing with PBS. The cells were then blocked in 6% v/v goat serum 

overnight. Thereafter, inserts were incubated with ZO-1 primary antibody (ZO-1 

1A12 monoclonal) prepared in blocking buffer of 1% v/v goat serum (1:100 PBS) 

and incubated overnight at 4 ºC. The inserts were then washed with cold PBS 

three times prior to being incubated with secondary antibody (0.5 µg/mL goat 

anti-mouse IgG H+L super clonal secondary Alexa 488) for 2 hours on an orbital 

shaker (150 rpm) at room temperature. Cells were then washed with PBS and 

mounted on a coverslip using Flouroshield (containing DAPI). ZO-1 Tight junction 

formation was assessed using an upright confocal microscope Leica SP5 TCS II 

MP (Leica microscope systems (UK) Ltd, Milton Keynes, UK) using a 40x oil 

immersion lens. The images were obtained with an argon laser at 494 nm and a 

helium neon laser for DAPI visualisation at 461 nm.  

 

F-actin was visualised to ensure that the in-vitro model possessed an appropriate  

cytoskeleton formation which is essential for cell stability, cell proliferation and 

morphogenesis  (Dominguez and Holmes, 2011). Following fixing, the cells were 

washed with cold PBS three times and permeabilised for 10 minutes using 0.2% 

w/v saponin. Thereafter, the inserts were washed with ice cold PBS 3 times; the 



 

 117 

inserts were then blocked in 1% w/v BSA for 1 hour then washed three times with 

ice cold PBS. The cells were then incubated with Phallodin-iFluor 488 (1:50) for 

20 minutes. The inserts where then washed and mounted on microscope slides 

using Flouroshield (containing DAPI). F-actin filaments were assessed using 

upright confocal microscope Leica SP5 TCS II MP (Leica microscope systems 

(UK) Ltd, Milton Keynes, UK) using a 40x oil immersion lens. The images were 

obtained with an argon laser at 517 nm and a helium neon laser for DAPI 

visualisation at 493 nm.  

 

 

 
The cellular toxicity of hesperetin, methotrexate and mitoxantrone were assed 

using a MTT assay, as previously detailed in Section 2.4.2.  

 
 

24 hours following the addition of barrier forming additives (See Section 3.4.4), a 

transport assay was conducted to determine the ability of methotrexate, 

mitoxantrone and hesperetin to permeate across the developed in-vitro BBB 

model. 50 μM methotrexate was prepared in serum free PBMEC media 

containing 25 mM HEPES and added to the apical (for AB flux) or basolateral (for 

BA flux) compartments with sampling taking place from the opposite 

compartment. Samples (100 μL) were withdrawn at intervals between 15–90 

minutes and replaced with an equal amount fresh pre-warmed serum free 

PBMEC media containing 25 mM HEPES. Each sample was placed in a 2 mL 

HPLC autosampler amber vial and stored at 4 ºC until the end of the assay. 

Methotrexate concentrations were analysed using HPLC-UV detection (Agilent 

1200 series) (detailed in the subsequent section). The apparent permeability 

(Papp) was calculated using equation (4):  

Papp = !"/!$ %!	'	()         (4) 

where dQ/dt represents the amount of drug permeated per unit time, calculated 

from the regression line of time points of sampling; C0 the initial drug 
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concentration in the donor compartment; A (cm2) is the insert surface area (1.12 

cm2).  Efflux ratios were calculated according to equation (5): 

*+ = 	
-"##$%

-"##%$
.            (5) 

where Papp BA is the apparent permeability form basolateral to apical, and Papp AB 

is the apparent permeability form apical to basolateral.  

This method was used to assess the permeability of 50 μM mitoxantrone and 50 

μM hesperetin: 

(i) Mitoxantrone: samples detected using a fluorescent plate reader (Tecan Spark 

10M®) with an excitation wavelength of 488 nm and an emission wavelength of 

670 nm.  

(ii) Hesperetin: samples detected using UV-HPLC detection (Agilent 1200 series). 

 Lucifer yellow permeability assay  
 

Lucifer yellow (LY) is a fluorescent dye routinely used  as a marker to assess the 

formation of monolayers and barrier integrity since it is transported paracellularly 

(Zhao et al., 2019b, Yang et al., 2017). PBEMC were grown on inserts and were 

incubated with 100 μM Lucifer yellow (LY) prepared in serum free media with 

added 25mM HEPES. Samples for LY measurements were transferred into an 

opaque plate and fluorescence was measured at excitation and emission 

wavelength 428 nm and 540 nm respectively using fluorescent multiplate reader 

(Tecan spark 10M®). The percentage transfer of LY was determined using 

equation (6): 

%	Lucifer	yellow	transported	 = 	100	x	(1 −	+FG	HIJKLI$MNIL +FG	IOPQIL) )  (6) 

where RFU basolateral is the relative fluorescence measurements of the sample 

taken from the basolateral side, RFU apical is the relative fluorescence 

measurement taken from the apical side.  

Inserts with LY transport exceeding 1% were excluded from further experiments.  
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 HPLC-UV detection of hesperetin   

 
An isocratic HPLC method was utilised for the HPLC-UV detection of hesperetin 

(Arya et al., 2015). HPLC analysis was conducting using a 1200 Infinity II LC 

Agilent system. Analysis of hesperetin was performed using a reversed phase 

C18 column 150 x 4.6 mm (Phenomenex, UK) with a mobile phase consisting of 

(45:55:0.1) acetonitrile: water: acetic acid with a flowrate of 1 mL/min at 25 ºC, 

injection sample volume 20 µL/sample and UV detection wavelength of 288 nm. 

Samples were examined over a concentration range of 0.1-50 µM. The method 

was validated by evaluating limit of detection (LOD) (Equation 7) and limit of 

quantification (LOQ) (Equation 8). A calibration curve for hesperetin was 

developed over the concentration range of 0.1-50 µM, which was used to 

determine linearity. The standards were prepared in quadruplicate and r2 was 

determined using the calibration curve generated from running this standard.  

 

RST = 3.3	(σS)    (7) 

RS" = 10	(σS)   (8) 

 

where σ is the standard deviation and S is the slope of the calibration curve.  

 

A linear regression analysis was conducted with the standards to calculate the 

standard deviation and the slope.  

 

 HPLC-UV detection for methotrexate  

 

An isocratic HPLC method was utilised for the HPLC-UV detection of 

methotrexate (Karami et al., 2019). Analysis of methotrexate was conducted 

using reversed phase C18 column 150 x 4.6 mm (Phenomenex, UK) with a 

mobile phase consisting of 89:11 50 mM acetate buffer: acetonitrile.  The mobile 

phase was acidified using HCl to obtain a final pH of 3.6 before it was filtered 

using a 0.4 µm filter. The flow rate was fixed at 1.5 mL/min, with an injection 

volume of 40 µL/sample and UV-detection spectrum at 307 nm. Samples were 
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examined over a concentration range of 0.1-50 µM. The method was validated 

by evaluating limit of detection (LOD) (Equation 7) and limit of quantification 

(LOQ) (Equation 8). A calibration curve for methotrexate was developed over the 

concentration range of 0.1-50 µM, which was used to determine linearity. The 

standards were prepared in quadruplicate and r2 was determined using the 

calibration curve generated from running this standard.  

 

 

A fluorescent multi-plate reader was used for detection of mitoxantrone due to 

the unavailability of a UV-visible light detector (over 400 nm). Mitoxantrone was 

detected using a fluorescent multi-plate reader (Tecan spark 10 M®) at an 

excitation wavelength of 607 nm and emission wavelength of 684 nm. A 

calibration curve for mitoxantrone was developed over the concentration range 

of 0.1- 50 µM, which was used to determine linearity. The standards were 

prepared in quadruplicates and r2 was determined from the calibration curve 

obtained from running the standard.  
 

 Statistical analysis  

 
All data is presented as mean and standard deviation, with experiments being 

conducted in at least 3 replicate independent experiment unless otherwise stated. 

Where appropriate, statistical analyses were performed in GraphPad Prism 9 (La 

Jolla, California, USA), with t-tests used to determine differences between the 

mean values. A significance p-value of <0.05 was considered as statistically 

significant. 

 

 Results 

 

 
To assess the impact of species-specific ECM (rat or bovine collagen) on barrier 

formation, PBMEC/C12 cells were grown on permeable inserts coated with either 

rat or bovine collagen and their effect on TEER values determined.  
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The use of bovine collagen coated inserts resulted in higher TEER values 

throughout the study when compared to rat tail collagen coated inserts (Figure 

3.1). The peak TEER occurring on day 3 post seeding, with a 1.8-fold higher 

mean TEER for cells grown on bovine collagen (Bovine: 46.5 Ω.cm2 ± 2.1 Ω.cm2; 

Rat: 26 Ω.cm2± 5.6 Ω.cm2) (P < 0.0001). 

 
Figure 3.1 TEER measurements following growth of PBMEC1/2 on 
permeable cell culture inserts 

50,000 PBMEC C1/2 cells were seeded on either bovine 50 µg/mL and 
fibronectin 7.5 µg/mL coated inserts (black) or rat tail collagen 200 µg/mL and 
fibronectin 7.5 µg/mL coated inserts (red). TEER values were measured every 
day for five days. Symbols represent the mean measurement for each day (n=12 
inserts in 4 independent experiments for each day). Vertical lines indicate the 
standard deviation (SD). Statistical analysis compared the TEER at day 3 (peak) 
(**** P < 0.0001) and paired t-tests for each day (** P < 0.01 for all days). 
 
 

 

 
Based on the results obtained from the previous section, the culturing method for 

PBMECs was adapted to grow cells on bovine coated (50 µg/mL) plastic 

surfaces. Following addition of puromycin (4 µg/mL) to the culturing media to 

remove pericyte contamination (Figure 3.2A), a confluent robust layer formed by 

day 10 (Figure 3.2B). 
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Figure 3.2 Morphology of PBEMC cultured on bovine collagen coated 
plasticware 

PBEMCs were grown in a T75 flask coated with 50 µg/mL bovine collagen and 
incubated for 10 days at 37 °C, 5% CO2. (A) PBMECs on day 2 using x10 prior 
to treatment with perimycin lens (B) confluent PBMECs on day 10 using x40 
lens.  
 

 

 

The formation of a PBMEC monolayers, when grown on 12-well permeable 

inserts, was assessed by measuring TEER values every other day post-seeding. 

TEER values demonstrated a steady increase after the addition of barrier forming 

additives on day 2 post seeding (Figure 3.3). TEER values peaked to a maximum 

of 1428.56 ± 270.4 Ω.cm2 on day 4  (P ≤ 0.0001) when compared to TEER values 

on day 2 (61.89 ± 6.8 Ω.cm2). Transport studies were conducted on the day of 

the highest recorded TEER (Day 4). 
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Figure 3.3 TEER measurement of PBMECs on 12 well permeable insert 

80,000 cells were seeded on permeable cell culture inserts (12-well, 1.12 cm2) 
coated with bovine collagen (50 μg/mL) and fibronectin (7.5 μg/mL). The arrow 
indicates the day barrier forming agents (250 μM cAMP, 17.5 μM RO 20–1724 
and 550 nM hydrocortisone) were added. Statistical analysis compares TEER 
at day 2 to all other data points. ****P ≤ 0.0001. Red circles indicate the mean 
measurement for each day (n=12 inserts in 4 independent experiments for each 
day). Black lines indicate the standard deviation (SD).  
 
 

 Lucifer yellow permeability assay  
 

To assess the formation of a suitable cellular monolayer, the paracellular 

permeability marker lucifer yellow (LY) was used. Coated inserts lacking cells 

displayed a lucifer yellow permeability of 97% ± 2.6% (P < 0.0001), while insets 

seeded with PBMEC displayed an average of  0.88% ± 0.17% LY permeation 

(Figure 3.4).  
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Figure 3.4 Lucifer yellow permeability assay 

80,000 PMBECs were seeded in 12-well inserts. On day 4 post seeding, LY 
assay was conducted. Leakage of 100 µM LY across PBMEC was assessed over 
15-90 minutes assay. LY fluorescence was detected in the samples using Tecan 
spark 10M®). Vertical black lines represent the standard deviation.  
Unpaired t-test analysis was conducted between the mean measurements of the 
blank inserts and the inserts containing a monolayer of cells (**** < P 0.0001). 

 
 

 

 Immunocytochemistry of tight junction protein ZO-1 and F-actin 

 

The expression of the tight junction protein ZO-1 was assessed using 

immunostaining of PBMEC grown on permeable inserts (Figure 3.5). Confocal 

laser microscopy was used to validate clear presence of ZO-1 in PBMEC in-vitro 

BBB model. Furthermore, to assess the integrity of PBMEC cytoskeleton, the 

expression of filamentous F-actin was validated using immunostaining of PBMEC 

grown on permeable inserts (Figure 3.6).  



 

 125 

 

 

 

 

 

Figure 3.5 ZO1 Immunocytochemistry images for PBMEC 

PBMECs were grown on permeable inserts, following adding the barrier enhancing additives on day 4, the pealed inserts were 

stained for (A) ZO-1, (B) DAPI, and (C) merged. Images were taken using Lecia SP5TCS II MP confocal microscope 
 

A B C 
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Figure 3.6 F-Actin Immunocytochemistry images for PBMEC 

PBMECs were grown on permeable inserts, following adding the barrier enhancing additives on day 4, the pealed inserts were 

stained for (A) F-actin, (B) DAPI, and (C) merged. Images were taken using Lecia SP5TCS II MP confocal microscope 

A B C 
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 Cellular toxicity of methotrexate towards PBMEC 
 
In order to determine the level of cytotoxicity of methotrexate and determine IC50 

for further studies, a MTT cytotoxicity assay was conducted in PBMEC across a 

6-fold concentration range, 0.001-100 µM. The IC50 was calculated to be 138.6 

µM (CI: 99.47-193.1) (Figure 3.7). 

 
Figure 3.7 Cellular toxicity of methotrexate 

50,000 cells were seeded in a 96 well plate and incubated until confluent. PBMEC 
were then incubated with methotrexate, 0.001-100 μM, for 24 hours. PBMEC 
were washed with PBS and incubated with MTT (0.5 mg/mL) for 4 hours. 
Thereafter, DMSO (100 μL/well) was added and absorbance was measured at 
570 nm. Data is presented from 8 replicates per experiment repeated in three 
independent experiments. Vertical black lines indicate the standard deviation. 
Shaded dashed lines indicate confidence interval of regression line. 
 

 

 Cellular cytotoxicity of mitoxantrone 
 
In order to determine the level of cytotoxicity of mitoxantrone and determine IC50 

for further studies, a MTT toxicity assay was conducted using PBMEC across a 

6-fold concentration range, 0.001-100 µM.  The IC50 was  determined to be 243.3 

µM (CI: 141.3-496.5) (Figure 3.8). 
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Figure 3.8 Cellular toxicity of mitoxantrone 

50,000 cells were seeded in a 96 well plate and incubated until confluent. PBMEC 
were then incubated with mitoxantrone, 0.001-100 μM, for 24 hours. PBMEC 
were washed with PBS and incubated with MTT (0.5 mg/mL) for 4 hours. 
Thereafter, DMSO (100 μL/well) was added and absorbance was measured at 
570 nm. Data is presented from 8 replicates per experiment repeated in three 
independent experiments. Vertical black lines indicate the standard deviation. 
Shaded dashed lines indicate confidence interval of regression line. 
 

 

 Cellular cytotoxicity of hesperetin  
 
In order to determine the level of cytotoxicity of hesperetin and determine IC50 for 

further studies, a MTT toxicity assay was conducted using PBMEC across a 6-

fold concentration range, 0.001-100 µM.  The IC50 was  determined to be 298.9 

µM (CI:  200.2 -  494.2) (Figure 3.9). 
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Figure 3.9 Cellular toxicity of hesperetin 

50,000 cells were seeded in a 96 well plate and incubated until confluent. PBMEC 
were then incubated with hesperetin, 0.001-100 μM, for 24 hours. PBMEC were 
washed with PBS and incubated with MTT (0.5 mg/mL) for 4 hours. Thereafter, 
DMSO (100 μL/well) was added and absorbance was measured at 570 nm. Data 
is presented from 8 replicates per experiment repeated in three independent 
experiments. Vertical black lines indicate the standard deviation. Shaded dashed 
lines indicate confidence interval of regression line. 
 

 Cellular toxicity of methotrexate in the presence of hesperetin  
 

In order to assess the impact of hesperetin on altering the cellular toxicity of 

methotrexate at the BBB, using the PBMEC model, cellular toxicity was 

determined using this combination. A MTT assay was conducted using a fixed 

hesperetin concentration 50 μM, with 3 concentrations of methotrexate (1, 10 and 

100 μM) (Figure 3.10). The percentage cellular viability obtained for each 

concentration was high,  97.5% ± 1.4% (1 μM), 90.01% ± 1.3% (10 μM) and 

84.4% ± 2.3% (100 μM). No statistically significant differences were determined 

with control. 
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Figure 3.10 Cellular cytotoxicity of methotrexate in combination with 
hesperetin 

Methotrexate (1, 10, 100 μM) was added to the cells, in combination with 50 μM 
hesperetin per each concentration and incubated with 24 hours at 37 ºC, 5% CO2.  
PBMECs were washed with PBS and incubated with MTT (0.5 mg/mL) for 4 
hours. Thereafter, DMSO (100 μL/well) was added and absorbance was 
measured at 570 nm. Black vertical lines indicate the standard deviation. ns: no 
significant difference between samples (One-way ANOVA) and no significant 
difference between each concentration and control (Paired t-test). 
 
 
 

 Cytotoxicity of mitoxantrone in combination with hesperetin  
 
In order to assess the impact of hesperetin on altering the cellular toxicity of 

mitoxantrone at the BBB, using the PBMEC model, cellular toxicity was 

determined using this combination. A MTT assay was conducted using a fixed 

hesperetin concentration 50 μM, with 3 concentrations of mitoxantrone (1, 10 and 

100 μM) (Figure 3.11). The percentage cellular viability obtained for each 

concentration was high,  90.5% ± 1.1%, (1 μM), 87.4% ± 1.3 (10 μM) and 80.3% 

± 2.4%  (100 μM). No statistically significant differences were determined with 

control. 
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Figure 3.11 Cellular cytotoxicity mitoxantrone in combination with 
hesperetin 

Mitoxantrone (1, 10, 100 μM) was added to the cells, in combination with 50 μM 
hesperetin per each concentration and incubated with 24 hours at 37 ºC, 5% CO2.  
PBMECs were washed with PBS and incubated with MTT (0.5 mg/mL) for 4 
hours. Thereafter, DMSO (100 μL/well) was added and absorbance was 
measured at 570 nm. Black vertical lines indicate the standard deviation. ns: no 
significant difference between samples (One-way ANOVA) and no significant 
different between each concentration and control (Paired t-test). 
 
 

 

An isocratic HPLC method was utilised in order to allow the detection of 

hesperetin during cellular permeability assays. Samples were prepared from a 

hesperetin stock solution (10 mM) in PBS containing 25 mM HEPES. Hesperetin 

was detected at a constant retention time of 3.4 minutes (Figure 3.12) with a 

solvent front peak appearing at 1.4 minutes.  
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Figure 3.12 HPLC chromatogram for hesperetin 

Hesperetin was detected with a retention time 3.4 minutes using reversed 
phase C18 column and a mobile phase containing 45:44:0.1 acetonitrile: water: 
acetic acid at 1 mL/min flow rate.  

 

In order to account for system precision, 6 injections from the same hesperetin 

stock solution were analysed and the peak area was calculated (Table 3.1). The 

standard deviation was 0.19 and the relative standard deviation was less than 

1% indicating that the system precision is within an acceptable range.  For 

method precision, 6 samples were prepared from the same stock solution and 

analysed (Table 3.1).  The relative standard deviation was less than 1% indicating 

that the method precision is within an acceptable range.  

 
Table 3.1 System precision and method precision for UV-HPLC detection 
of hesperetin 

System precision Method precision 
Injection number AUC (mAU) Vial number AUC (mAU) 

1 110.7 1 111.4 
2 110.6 2 111.5 
3 110.5 3 111.2 
4 110.5 4 111.4 
5 110.6 5 111.4 
6 110.1 6 109.9 

Mean 110.55 Mean 111.4 
SD 0.19 SD 0.61 

% RSD 0.17 % RSD 0.55 
 

 

hesperetin 

Solvent front 
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The linearity of the HPLC method used for detection of hesperetin was 

determined by formulating a calibration curve using concentration range 0.09 µM- 

50 µM (Figure 3.13). The area under the curve (AUC) was linearly regressed 

under the concentration range used. The correlation coefficient (r2) was 0.9995, 

the slope and intercept were 0.2772 mAU.µM and 5.334 mAU respectively. The 

LOD and LOQ were found to be 0.91 µM and 0.93 µM respectively. 

 

Figure 3.13 HPLC linearity calibration plot for hesperetin 

A HPLC calibration curve for the detection of hesperetin. A concentration range 
of 0.09-50 µM was prepared in PBS containing 25 mM HEPES. The HPLC was 
injected with a volume of 20 µL of each concentration and the AUC was obtained. 
LOD and LOQ were calculated using regression analysis. 

 

 

An isocratic HPLC method was utilised for the detection of methotrexate. 

Samples were prepared in PBS containing 25 mM HEPES from a 5 mM stock 

solution. Methotrexate was detected at a constant retention time of 5.7 minutes 

(Figure 3.14) with a solvent from peak appearing at 1.4 minutes. 
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Figure 3.14 HPLC chromatogram for methotrexate 

Methotrexate was detected with a retention time 5.7 minutes using reversed 
phase C18 column and a mobile phase containing 89:11 acetate buffer: water 
(pH= 3.6) at a constant 1.5 mL/min flow rate. 

 

In order to account for system precision, 6 injections from the same methotrexate 

stock solution were analysed and the peak area was calculated (Table 3.2). The 

relative standard deviation was less than 1% indicating that the system precision 

is within an acceptable range. For method precision, 6 samples were prepared 

from the same stock solution and analysed (Table 3.2).  the standard deviation 

was 0.3 and the relative standard deviation was less than 1% indicating that the 

method precision is within an acceptable range.  

Table 3.2 System precision and method precision for UV-HPLC detection 
of methotrexate 

System precision Method precision 
Injection number AUC (mAU) Vial number AUC (mAU) 

1 68 1 67.8 
2 68.1 2 68 
3 67.9 3 68 
4 67.8 4 68.4 
5 68 5 68.6 
6 68 6 68 

Mean 68 Mean 68 
SD 0.10 SD 0.30 

%RSD 0.15 %RSD 0.44 
 

 

 

=====================================================================
Acq. Operator   : Carlo                          Seq. Line :   1
Acq. Instrument : Instrument 1                    Location : Vial 1
Injection Date  : 22/11/2018 11:22:49                  Inj :   1
                                                Inj Volume : 50.000 µl
Acq. Method     : C:\CHEM32\1\TEMP\AESEQ\MTX_CALBRATION_1 2018-11-22 11-21-21\METHOTREXATE_
                  BASMA.M
Last changed    : 22/11/2018 11:21:21 by Carlo
Analysis Method : C:\CARLO HPLC\METHODS\CC_END.M
Last changed    : 05/11/2020 19:58:11 by Carlo Curti
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=====================================================================
                         Area Percent Report                         
=====================================================================
 
Sorted By             :      Signal
Multiplier:                   :      1.0000
Dilution:                     :      1.0000
Use Multiplier & Dilution Factor with ISTDs
 
 
Signal 1: FLD1 A, Ex=230, Em=460
 
 
Signal 2: VWD1 A, Wavelength=307 nm
 
Peak RetTime Type  Width     Area      Height     Area  
  #   [min]        [min]   [mAU*s]     [mAU]        %
----|-------|----|-------|----------|----------|--------|
   1   1.370 VV    0.1217   24.22555    2.78027   1.0440
   2   5.713 BB    0.1757 2296.26099  201.93509  98.9560
 
Totals :                  2320.48653  204.71536
 
 
=====================================================================
                          *** End of Report ***

Data File C:\CHEM32\1\TEMP\AESEQ\MTX_CALBRATION_1 2018-11-22 11-21-21\001-0101.D
Sample Name: 50

Instrument 1 09/11/2020 13:09:59 Carlo Curti Page 1 of 1

Methotrexate 

Solvent front 
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The linearity of the HPLC method used for detection of methotrexate was 

determined by formulating a calibration curve using concentration range 0.09 µM- 

50 µM (Figure 3.15). The area under the curve (AUC) was linearly regressed 

under the concentration range used. The correlation coefficient (r2) was 0.9998, 

the slope and intercept were 0.2178 mAU.µM and 3.976 mAU respectively. The 

LOD and LOQ were found to be 2.03 µM and 2.7 µM respectively (Figure 3.15). 

 

 
Figure 3.15 HPLC linearity calibration plot for methotrexate 

A HPLC calibration curve for the detection of methotrexate. A concentration 
range of 0.09-50 µM was prepared in PBS containing 25 mM HEPES. The HPLC 
was injected with a volume of 40 µL of each concentration was and the AUC was 
obtained. LOD and LOQ were calculated using regression analysis. 

 

 
 
Mitoxantrone was detected in the samples using a fluorescence multiplate reader 

at excitation and emission 607 nm and 684 nm respectively. Mitoxantrone 

samples, 0.09–50 µM, were prepared in PBS containing 5 mM HESPES from a 

10 mM stock. The correlation coefficient (r2) was 0.9880, the slope and intercept 

were 14.61 RFU.µM and 266.8 RFU respectively. LOD is and LOQ were 

calculated using regression analysis (Figure 3.16).  
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Figure 3.16 Fluorescence detection linearity calibration plot for 
mitoxantrone 

A fluorescence detection calibration curve for the detection of mitoxantrone, 0.09-
50 µM, prepared in PBS  containing 25 mM HEPES. 100 µL samples were placed 
into a well sample of a black 96-well plate and the fluorescence measured at an 
excitation wavelength of 607 nm and emission wavelength of 684 using Tecan 
Spark 10M® multiplate reader. 

 

 

 

The results obtained from the previous chapter demonstrated the ability of 

hesperetin to modulate the efflux action of BCRP in LN229 cells. Herein, the 

ability of hesperetin to permeate through the BBB was first assessed. Secondly, 

its ability to modulate the efflux function of BCRP in a PBMECs in-vitro BBB 

model was evaluated and subsequently compared the permeability of 

methotrexate and mitoxantrone in the presence and absence of hesperetin.  
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 Methotrexate permeability across an in-vitro BBB model 
 
The permeability of methotrexate was assessed across an in-vitro PBMEC BBB 

model (Figure 3.17). The flux of methotrexate from the apical to basolateral 

direction (AB) Papp AB was determined with an apparent permeability of  

1.05 x10-6 cm/s ± 2.72x10-6 cm/s with a basolateral to apical (BA) Papp BA apparent 

permeability of 1.64 x10-6 cm/s ± 2.05 x10-6 cm/s, resulting in an efflux ratio of 

1.6. 
 

 
Figure 3.17 The permeability of methotrexate across an in-vitro BBB 
model established with PBMEC grown on permeable inserts 

80,000 PBMECs were seeded onto 12-well permeable inserts. On day 3 post 
seeding, barrier forming additives were added to the media. Transport of 
methotrexate, 50 µM, across the formed monolayer was evaluated by 
determining the flux from apical to basolateral (AB) (black) and basolateral to 
apical (BA) (red). Methotrexate was detected using UV-HPLC.  Each data point 
represents the mean measurement for each day (n=16 inserts in 4 independent 
experiments for each day).  
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 Hesperetin permeability across an in-vitro BBB model 
 

The permeability of hesperetin was assessed across an in-vitro PBMEC BBB 

model (Figure 3.18). The flux of methotrexate from the apical to basolateral 

direction (AB) (Papp AB) was determined with an apparent permeability of  

4.68 x10-6 cm/s ± 5.6 x10-7 cm/s with a basolateral to apical (BA) (Papp BA) 

apparent permeability of 4.59 x10-6 cm/s ± 4.73 x10-7 cm/s, resulting in an efflux 

ratio of 0.98. 

 

 
Figure 3.18 The permeability of hesperetin across an in-vitro BBB model 
established with PBMEC grown on permeable inserts 

80,000 PBMECs were seeded onto 12-well permeable inserts. On day 3 post 
seeding, barrier forming additives were added to the media. Transport of 
hesperetin, 50 µM, across the formed monolayer was evaluated by determining 
the flux from apical to basolateral (AB) (black) and basolateral to apical (BA) (red). 
Hesperetin was detected using UV-HPLC.  Each data point represents the mean 
measurement for each day (n=12 inserts in 4 independent experiments for each 
day). 
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 Assessing the impact of hesperetin on the modulating the 
permeability of methotrexate across an in-vitro BBB model. 
 
In order to assess the ability of hesperetin to modulate the flux of methotrexate 

across an in-vitro BBB model, PBMECs were incubated with 50 µM hesperetin 

30 minutes prior to incubation with methotrexate. The inclusion of hesperetin 

resulted in an increased AB flux of methotrexate with an apparent permeability 

(Papp AB) of 2.85 x 10-6 cm/s ± 1.35 x10-7 cm/s and basolateral to apical flux (Papp 

BA) of 2.43 x10-6 cm/s ± 5.5 x10-7 cm/s (Figure 3.19). The efflux ratio for the 

transport of methotrexate in the presence of hesperetin was 0.85.  

 

 
Figure 3.19 The permeability of methotrexate across an in-vitro BBB 
model established with PBMEC grown on permeable inserts 

80,000 PBMECs were seeded onto 12-well permeable inserts. On day 3 post 
seeding, barrier forming additives were added to the media. Transport of 
methotrexate, 50 µM, across the formed monolayer was evaluated by 
determining the flux from apical to basolateral (AB) (black) and basolateral to 
apical (BA) (red).  Inserts were pre-incubated with hesperetin 50 µM prior to the 
addition of methotrexate. The study was conducted in the presence of both 
methotrexate and hesperetin.  Methotrexate was detected using HPLC-UV.  Each 
data point represents the mean measurement for each day (n=16 inserts in 4 
independent experiments for each day). 
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 Mitoxantrone permeability across an in-vitro BBB model 
 

The permeability of mitoxantrone was assessed across an in-vitro PBMEC BBB 

model (Figure 3.20). The flux of mitoxantrone from the apical to basolateral 

direction (AB) Papp AB was determined with an apparent permeability of  

1.59 x10-7 cm/s ± 3.5 x10-8 cm/s with a basolateral to apical (BA) Papp BA apparent 

permeability of 7.11 x10-7 cm/s ± 1.8 x 10-8 cm/s, resulting in an efflux ratio of 

4.47. 
 

 
Figure 3.20 The permeability of mitoxantrone across an in-vitro BBB 
model established with PBMEC grown on permeable inserts 

80,000 PBMECs were seeded onto 12-well permeable inserts. On day 3 post 
seeding, barrier forming additives were added to the media. Transport of 
mitoxantrone, 50 µM, across the formed monolayer was evaluated by 
determining the flux from apical to basolateral (AB) (black) and basolateral to 
apical (BA) (red). Mitoxantrone was detected using fluorescence detection.  Each 
data point represents the mean measurement for each day (n=12 inserts in 4 
independent experiments for each day). * P < 0.05; *** P < 0.001. 
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 Assessing the impact of hesperetin on the modulating the 
permeability of mitoxantrone across an in-vitro BBB model 
 
In order to assess the ability of hesperetin to modulate the flux of mitoxantrone 

across an in-vitro BBB model, PBMECs were incubated with 50 µM hesperetin 

30 minutes prior to incubation with mitoxantrone. The inclusion of hesperetin 

resulted in an increased AB flux of mitoxantrone with an apparent permeability 

(Papp AB) of 3.7 x10-7 cm/s ± 3.36 x10-8 cm/s and basolateral to apical flux (Papp BA) 

of 4.79 x10-7 cm/s  ± 2.3 x 10-8 cm/s. (Figure 3.21). The efflux ratio for the 

transport of mitoxantrone in the presence of hesperetin was 1.29.  
 

 
Figure 3.21 The permeability of mitoxantrone across an in-vitro BBB 
model established with PBMEC grown on permeable insert, in the 
presence of hesperetin 

80,000 PBMECs were seeded onto 12-well permeable inserts. On day 3 post 
seeding, barrier forming additives were added to the media. Transport of 
mitoxantrone, 50 µM, across the formed monolayer was evaluated by 
determining the flux from apical to basolateral (AB) (black) and basolateral to 
apical (BA) (red).  Inserts were pre-incubated with hesperetin 50 µM prior to the 
addition of mitoxantrone. The study was conducted in the presence of both 
mitoxantrone and hesperetin.  Mitoxantrone was detected using fluorescence 
detection.  Each data point represents the mean measurement for each day 
(n=12 inserts in 4 independent experiments for each day). 
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 Changes in the basolateral to apical flux of anti-cancer agents in 
the presence of hesperetin 
 
In the presence of hesperetin, methotrexate Papp BA was 2.43 x10-6 ± 5.5 x10-6  

cm/s and in absence of hesperetin the reported Papp BA was 1.64 x10-6 ±  

2.05 x10-7 cm/s, resulting in the demonstrated increase in Papp BA for methotrexate 

was 48% (Figure 3.22A). However, the reported ER of methotrexate in the 

presence and absence of hesperetin were 0.85 and 1.6 respectively (* P ≤ 0.05) 

(Figure 3.22.B), an overall reduction in ER by 46.9%.  

 

In the presence and absence of hesperetin, the reported Papp BA of mitoxantrone 

was 0.5 x 10-6 ± 2.3 x 10-8 cm/s and 0.7 x 10-6 ± 1.8 x 10-8 cm/s (*P ≤ 0.05) 

respectively (Figure 3.22A). The demonstrated reduction in Papp BA was 32.6%. 

The reported ER in the presence and absence of hesperetin were 1.29 and 4.47 

respectively (*** P ≤ 0.001) (Figure 3.22B), which is an overall reduction of ER by 

71.1%. 

 
 

Figure 3.22 The apparent permeability (A) and efflux ratio (B) of 
methotrexate and me mitoxantrone in the absence and presence of 
hesperetin 

(A) Apparent permeability of methotrexate (black, white) and mitoxantrone (grey, 
red) In the presence and absence of hesperetin. (B) the efflux ratio of 
methotrexate (black, white) and hesperetin (yellow, red) in the presence and 
absence of hesperetin. * P ≤ 0.05, ** P ≤ 0.01 and *** P ≤ 0.001. 
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 Discussion 

 

Glioblastomas are a common form of primary brain tumours which are known to 

affect 0.02% of the global population which constitutes to approximately 1.6 

million cases (Hanif and Muzaffar, 2017, Ersoz et al., 2019). Glioblastomas are 

considered rare, however, due to poor survival rates they represent a critical 

public health issue (Zhang et al., 2020). The standard treatment for glioblastoma 

is usually surgical removal of the tumour mass followed by chemotherapy 

treatment and/or radiotherapy. Yet, with a survival rate of less than 15 month, it’s 

clear that the current treatment regimens are not efficient enough (Bi and 

Beroukhim, 2014).  

 

Methotrexate has been used as a part of the treatment regime for  glioblastoma 

(Zhu et al., 2009, Sane et al., 2014) with studies reporting its limited distribution 

into the brain due to the role of BCRP at the BBB and BTB hindering access to 

GBM (Sane et al., 2014, Agarwal et al., 2010, Devineni et al., 1996).  On the other 

hand, mitoxantrone has been used in the treatment of glioblastoma (Ferroli and 

Broggi, 2006) and as a TRAIL sensitising agent in GBM (Senbabaoglu et al., 

2016). With studies corelating its MDR to the efflux function of BCRP (Doyle et 

al., 1998, Higgins, 1995, Miyata et al., 1999). 

 

Key to delivery of anticancer agents to gliomas, is the permeation across the 

BBB. Many anti-cancer agents such as mitoxantrone and methotrexate amongst 

others have limited permeability across the BBB due to the presence of ABC 

efflux transporters such as BCRP (Ni et al., 2010, Wijnholds et al., 2000, 

Cisternino et al., 2004, Breedveld et al., 2005, Toyoda et al., 2019). Breast cancer 

resistance protein (BCRP) itself is known to bind to and restrict the permeability 

of many CNS active anti-cancer agents, which leads to lowered therapeutic 

concentrations at the intended target (Dei et al., 2019). However, flavonoids from 

the phytochemicals group of chemicals, have emerged as potential novel agents 

possessing the ability to modulate the efflux function of BCRP and other ABC 

transporters (Kaur and Badhan, 2017, Zhang et al., 2004c, Gao et al., 2017b, An 

and Morris, 2010). 
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The results obtained from the previous chapter identified the ability of hesperetin 

to modulate the expression and function of BCRP in LN229 cells, in addition to 

hindering cellular migration, inducing ROS and activating Caspase-3/7 pathways. 

For this chapter we aimed to develop an in-vitro blood brain barrier model using 

primary PBMEC and asses the ability of hesperetin to permeate across the BBB 

model and to modulate the action of BCRP efflux transporter function to enhance 

the permeability of the anti-cancer agents methotrexate and mitoxantrone across 

the BBB. 
  

 

The effects of using an appropriate extra cellular matrix as a coating surface on 

endothelial cell biology and integrity, cell adhesion and the cellular cytoskeleton 

have been well established (Carey et al., 2012, Levy-Mishali et al., 2009, Aurand 

et al., 2012, Antoine et al., 2014). 

 

Reports have noted that the extraction process of the collagen from an animal 

tissue affects the composition of fibrils of the collagen and subsequently would 

affect the interaction of cells with it when grown in-vitro (Kreger et al., 2010, 

Antoine et al., 2014). Type-1 rat tail collagen is a minimally crosslinked collagen 

usually sourced from tendons and is usually extracted by acid solubilisation 

(Antoine et al., 2014), while for highly crosslinked collagens from bovine and 

porcine, sourced from the dermis, the extraction process entails a mixture of 

neutral salt solution with proteolytic digestion (Walters and Stegemann, 2014, 

Parenteau-Bareil et al., 2010).  

Therefore, we decided to assess the impact of species-specific collagen using 

immortalised PBMEC/C12 cells, in order to conclude differences in TEER values 

under type-1 bovine collagen and  type-1 rat-tail collagen.  PBMEC/C12 cells 

were used rather than PBMEC for their rapid growth for initial screening. The 

results demonstrated that the use of bovine collagen resulted in higher TEER 

values throughout the study with a 1.8-fold higher mean TEER values for cells 



 

 145 

grown on bovine coated inserts (P < 0.0001) (Figure 3.1).  Based on these 

studies, we adopted type-1 bovine collagen for all future studies when using the 

primary PBMEC cell model. 

 

 
 
There is no consensus on a single best cellular model for use within in-vitro BBB 

research. A variety of cell lines are being utilised as BBB in-vitro models such as 

human cerebral cell line (hCMEC/D3) (Weksler et al., 2013), mouse models 

(bEND.5,b.END.3) (Schuhmann and Fluri, 2017) and bovine models (BCEC) 

(Helms et al., 2016). However, these produce suboptimal TEER values < 300 

Ω.cm2 (based on 12-well measurements) when the goal is to study drug transport 

(Weksler et al., 2013). Models such as IPSC-derived cells (Workman and 

Svendsen, 2020) can produce TEER values up to 3000 Ω.cm2, but the 

reproducibility of the model is poor due to the nature of stem cells and being cost 

ineffective (Gorecka et al., 2019, Liang and Zhang, 2013) 

 

Primary porcine brain microvascular endothelial cells (PBMEC) have been 

characterised and used in BBB in-vitro research for a number of years (Cantrill et 

al., 2012, Abbott, 2005, Patabendige et al., 2013, Elbakary and Badhan, 2020). 

The key benefits of using primary porcine cells are affordability, high yield, and 

maintenance of morphological and cellular characteristics after extraction 

(Patabendige et al., 2013). Pig brains are relatively easy to obtain shortly 

following slaughter, as they are a biproduct of the meat industry, therefore there 

is no need for a specialised animal breeding facility. In addition, porcine 

endothelial cells can retain crucial BBB feature after isolation and the rate of loss 

of BBB phenotypes is less than that of bovine or rodent (Deli et al., 2005). They 

can produce a tight BBB model with high TEER values (~800 Ω.cm2 ) based on 

12-well insert measurements (Patabendige et al., 2013).  Furthermore, the 

anatomy, genome and physiology of pigs reflect more closely to human than 

many established laboratory animals (Walters et al., 2011).  

 

PBMEC were isolated from brain hemispheres following a detailed method that 

was reported in (Patabendige et al., 2013). Cells were grown in bovine coated 
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flasks (50 µg/mL) and started growing in cluster formation (Figure 3.2.A), 

becoming confluent within 8-10 days (Figure 3.2.B).  The barrier integrity was 

enhanced by adding 250 μM CPT-cAMP, 17.5 μM RO20-1724 and 500 nM of 

hydrocortisone on day 3 post seeding which results in a spike in TEER values 

from 61.89 Ω.cm2 ± 6.8 Ω.cm2  to 1428.56 Ω.cm2 ± 270.4 Ω.cm2 (Figure 3.3).  

 

CMT-cAMP enhances intracellular cAMP which is known to enhance cell 

differentiation in different cell types (Tilling et al., 1998, Patabendige et al., 2013). 

The use of cAMP for this model is based on its use in a bovine model which 

resulted in enhancement in monolayer formation (Rubin et al., 1991). 

Furthermore, the addition of hydrocortisone is known to improve and sustain 

barrier tightness (Hoheisel et al., 1998, Förster et al., 2008) and is utilised by cell 

lines such as hCMEC/D3 cells to enhance barrier formation and increase TEER 

value (Weksler et al., 2013).  When combined with growing cells in a 50:50 

mixture of ACM, parodies the native endothelial/astrocyte basement membrane 

microenvironment (Haseloff et al., 2005). 

 

The highest TEER value obtained was 1428.6 Ω.cm2± 270.4 Ω.cm2 (Figure 3.3), 

which was higher than those reported by Patabendige et al. (Patabendige et al., 

2013), ~800 Ω.cm2. This may be a result of the use of bovine collagen due to the 

phylogenetic similarities sus scrofa have with bos taurus rather than rattus 

(Tejedor et al., 2011). However, there is a paucity in published studies comparing 

the interaction of porcine cells with bovine collagen.  

Nevertheless, using bovine collagen rather than rat tail collagen, significantly 

enhanced BBB formation and represents a novel extra cellular matrix enhancing 

cell proliferation, adhesion and polarity (Lu et al., 2011, Yue, 2014). To ensure 

barrier integrity and formation of tight junctions, the permeation of LY across the 

monolayer was used as a further marker and was detected at less than 1% 

(Figure 3.4). LY is routinely used as a paracellular permeability marker in testing 

barrier integrity and proper monolayer formation (Zhao et al., 2019b).  

 

We stained for tight junction protein ZO-1 on day 4, 24-hours following addition 

of barrier forming additives, and peak TEER value was recorded (Figure 3.5).  

We demonstrated complete cell-to-cell tight junction formation, which supports 
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the increase in TEER that was recorded. To ensure that actin is present within 

the cytoskeleton of the cells, we stained for F-actin (Figure 3.6). F-actin is a 

significant protein for maintenance of cell function and morphology (Dominguez 

and Holmes, 2011). The presence of F-actin is merely a confirmation of healthy 

viable morphologically correct cells which in turns would form a robust in-vitro 

BBB model.   

 

 

 

In order to carry out transport studies, cellular toxicity studies were conducted to 

identity a non-toxic concentration range of hesperetin, methotrexate and 

mitoxantrone for use in the PBMEC model. Over the concentration range studied 

hesperetin displayed limited cellular toxicity, with the highest concentration (100 

µM) displaying 78% viability (Figure 3.9). Methotrexate demonstrated a greater 

degree of toxicity, where 100 µM exposure resulted in 64% cellular viability and 

an IC50 value of 138.6 µM (CI: 99.47-193.1) (Figure 3.7). Mitoxantrone 

demonstrated a higher IC50 of 243.3 µM (CI: 141.3- 496.5) (Figure 3.8). 

 

Previous reports have demonstrated limited toxicity of methotrexate at higher 

concentrations than those used in our studies, for example exposure to human 

renal cells to 100 µM of methotrexate after 24 hour exposure in serum free media 

resulted in ~80% viability (Caetano-Pinto et al., 2017). Whereas hesperetin has 

been reported to demonstrated an IC50 of 592 μM in human lymphoid cancer cells 

and IC50 of 500 μM in human myeloid cancer cells after 24 hours exposure (Sak, 

2014). Mitoxantrone was reported to have an IC50 of 139 μM when exposed to 

MCF-7 across a concentration range of 0-1000 μM for 24 hours (An and Morris, 

2010). 

 

In order in conduct further permeability studies using hesperetin in combination 

with methotrexate and mitoxantrone, the cytotoxic effects of the combinations on 

PBMEC were assessed. Methotrexate at 1,10 and 100 µM, was combined with 

50 µM hesperetin (Figure 3.10) with the viability remaining at 80.4% ± 2.3% at 

the highest methotrexate concentration. Mitoxantrone displayed similar toxicity 
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profile when combined with hesperetin (Figure 3.11), with cellular viability at 

70.3% ± 2.4% at 100 µM mitoxantrone.  

 

The combination of hesperetin with each anti-cancer agents resulted in slight 

changes in cellular viability, but this was not statistically significant. This may be 

due to the low concentrations used in the assays and consequently, their 

cytotoxic effect wasn’t fully realised. Additionally, this might suggest that 

hesperetin does not hinder the toxicity of the anti-cancer compounds at the BBB 

when it inhibits BCRP. Moreover, this would also suggest that hesperetin, much 

like other phytochemicals, has the ability to preserve normal healthy BBB cellular 

viability in the presence of anti-cancer agents, possibly due to the inherent anti-

oxidant properties (Xiao et al., 2011, Ren et al., 2003, Perez-Vizcaino and Fraga, 

2018).  

 

 

 

Hesperetin has been demonstrated to modulate the efflux action of BCRP (Zhang 

et al., 2004c). When combining hesperetin with two anti-cancer agents that were 

reported to be effluxed by BCRP, namely methotrexate (Breedveld et al., 2004) 

and mitoxantrone (Mahringer et al., 2009). Here forth the aim was to enhance the 

permeability of these compound across the PBMEC in-vitro BBB model.   

 

The results demonstrated that hesperetin was able to permeate across the in-

vitro BBB model with reported Papp AB of 4.68 x10-6 cm/s ± 5.6 x10-7 cm/s and  

Papp BA of 4.59 x10-6 cm/s ± 4.73 x 10-7 cm/s (Figure 3.18).  

 

It is important to note that hesperetin has a high reported AB flux with a reported 

Papp AB value of 4.68 x10-6 cm/s ± 5.6 x10-7 cm/s (Figure 3.18), which is 29.4-fold 

higher than that of mitoxantrone (Figure 3.20) and 4.5-fold higher than that of 

methotrexate (Figure 3.17). The reported ER of hesperetin is 0.98, which is in 

line with other flavonoids which have been reported to have demonstrated an ER 

ranging over 0.8-1.5 (Shen et al., 2015, Youdim et al., 2004a, Fang et al., 2017).  

Furthermore, Papp values of more than or equal 5 x 10-6 cm/s indicate a high 
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permeability compound (Volpe et al., 2008) suggesting that hesperetin 

undergoes transcellular passive diffusion as it is the case of many flavonoid 

aglycons  (Nait Chabane et al., 2009, Nielsen et al., 2006, Shen et al., 2015). 

Other studies have also reported the permeability of hesperetin across the BBB 

in-vivo in rats brains when 50 mg/kg was administered intravenously (Tung-Hu 

and Mei-Chun, 2004).  
 

On the other hand, methotrexate demonstrated a lower AB flux and higher BA 

flux, with an efflux ratio of 1.6 (Figure 3.17). This is in line with a study reporting 

the ER of methotrexate in MDCK canine cells, ER=1.8, with a reported Papp AB of  

0.11 x10-6 cm/s ± 0.02 x10-6 cm/s and Papp BA of 0.2 x10-6 cm/s ± 0.02 x10-6 cm/s 

(Wang et al., 2005a). Under the combination of methotrexate with hesperetin, the 

resultant AB flux of methotrexate increased by1.8-fold, with a 1.9-fold reduction 

of ER was reported (Figure 3.22).  

 

The change in AB and BA flux may, in part, be due to the modulatory effect 

hesperetin on BCRP (Kaur and Badhan, 2017, Kaur and Badhan, 2015), in 

addition to its ability to modulate the action and downregulate the expression of 

BCRP in LN229 glioblastoma cells as demonstrated in the previous chapter.  

A study reported that hesperetin 30 µM had the greatest inhibitory effect when 

tested in MCF-7 cells and produced results similar to that of ko 143 10 µM but 

with far less toxicity(Cooray et al., 2004b).  Furthermore, hesperetin was able to 

modulate the action of BCRP in porcine cells PBMEC C1/2 cells at a 

concentration 1 µM and increase the intracellular accumulation of BCRP 

fluorescent substrate H33342 (Kaur and Badhan, 2017). 
 

When the apparent permeability of mitoxantrone was assessed in the PBMEC 

BBB model, the reported Papp AB was 1.59 x10-7 cm/s ± 3.5 x10-8 cm/s and Papp BA 

was 7.11 x10-7 cm/s ± 1.8 x10-8 cm/s (Figure 3.20). This suggests that 

mitoxantrone is a low permeability compound with a reported ER of 4.47. This is 

consistent with studies that reported the mitoxantrone was a low permeability 

compound with an Papp AB  of 0.49 x10-7  ± 0.3 x10-7 cm/s and  Papp BA = 1.04  x10-

8 ± 0.37 x10-8 cm/s with an efflux ratio of 2.19 assessed in Caco-2 cells (Li et al., 

2017). Furthermore, an ER of 2.65 was reported using MDCK canine cells, with 
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a reported Papp AB of 2.14   ×10−7 ± 0.81 ×10−7 cm/s and a Papp BA of 5.68  ×10−7 

± 0.86 ×10−7 cm/s   (An and Morris, 2010).  

 

When combining mitoxantrone with hesperetin, the reported AB flux increased by 

3.5-fold (Figure 3.21) and BA flux reduced by 1.5-fold in the presence of 

hesperetin, with a concomitant reduction in ER of 3.5-fold reduction (Figure 3.22) 

This is in accordance with a study that successfully utilised hesperetin amongst 

other flavonoids to enhance permeability of mitoxantrone in MCF-7 breast cancer 

cells (Zhang et al., 2004b). 

 

To summarise, we developed a primary PBMEC BBB in-vitro model which was 

validated as a model suitable for drug permeability studies by the recorded high 

TEER values, less than 1% LY leakage and the presence of tight junction protein 

ZO-1.  

 

Using this model, we were able to assess the ability of hesperetin to permeate 

across an in-vitro BBB model as well as its ability to modulate the efflux function 

of BCRP expressed in PBMECs and subsequently enhance the permeability of 

BCRP substrate anti-cancer agents methotrexate and mitoxantrone. combining 

hesperetin with methotrexate lead to a 2.7-fold increase in AB flux. More notably, 

combining hesperetin with mitoxantrone lead to a 3.5-fold increase in AB flux and 

a 1.5-fold decrease in BA flux.  
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 Conclusion: 

 
To conclude, in this chapter hesperetin was used as a BCRP modulator in in-vitro 

PBMECs BBB model to enhance the permeability of BCRP substrate anti-cancer 

agents methotrexate and mitoxantrone. Our results demonstrated that hesperetin 

was able to permeate across an in-vitro BBB model, and was able to modulate 

the efflux action of BCRP and significantly increase the AB flux of both 

methotrexate and mitoxantrone and decrease the BA flux of mitoxantrone.  

Hesperetin is therefore a potentially viable candidate for use in further studies, in 

combination with BCRP substrate anti-cancer agents and may enhance 

intracellular brain and GBM update of anti-cancer agents. 
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Chapter 4  

 
A dynamic perfusion-based in-vitro 

model to enhance BBB 
characteristics 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This chapter has been published in the following manuscript: 
 

Elbakary, B. and R. K. S. Badhan (2020). "A dynamic perfusion based blood-
brain barrier model for cytotoxicity testing and drug permeation." Scientific 

Reports 10(1): 1-12.  
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 Background: 

 

The blood-brain barrier (BBB) represents a restrictive barrier for the delivery of 

therapeutic agents for a wide range of central nervous system (CNS) disorders.  

Penetration through the restrictive brain microvascular endothelial cell barrier is 

often hindered by the presence of a network of intra-cellular tight junction 

proteins, in addition to a network of membrane localised active transporter 

proteins and enzymatic metabolism processes. 

 

The development and maintenance of an appropriate restrictive in-vitro BBB 

model is critical when assessing the potential for small molecule transport.  

Despite the rise in the use of in-vivo models for assessing BBB structure and 

function, in-vitro models are still widely used and have been developed from a 

range of species.  However, a consensus on the most appropriate cellular system 

has still not been achieved, particularly in the context of assessing drug 

permeation and inherent barrier properties.  

 

For example, the human immortalised hCMEC/D3 cells, when grown in co-culture 

with astrocytes, yields low TEER values of approximately 140 Ω.cm2 (Hatherell 

et al., 2011) and those from primary endothelial cells from rodents yield TEER 

values of approximately 300 Ω.cm2 (Abbott et al., 2010). Higher TEER values 

have been obtained with stem cell-based systems (iPSC-derived endothelial 

cells) and neuronal progenitor cells, when exposed to chemical treatment to 

promote BBB formation, resulting in values of 3000-4000 Ω.cm2 (Lippmann et al., 

2015), however, these often require specialised and costly methods to culture.  

Although human brain tissue derived in-vitro BBB models are ideal for BBB 

studies, the lack of appropriate monolayer formation and reproducibility in-vitro 

has led to other cellular models being attractive options.  

 

The use of a porcine primary cell culture system, PBMEC, reporting high TEER 

without the need for co-culture with astrocytes, are a potentially viable high purity, 

high resistance and reproducible in-vitro blood brain barrier model (Cantrill et al., 

2012, Patabendige et al., 2013, Kaur and Badhan, 2017, Elbakary and Badhan, 

2020).  
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However, a critical feature of the BBB endothelium missing in many current in-

vitro models, is the exposure of cells to laminar shear stress. Shear stress is an 

indirect force caused by flow of blood across the surface of endothelial cells. This 

flow modulates upregulation/downregulation of genes, and that in turn impacts 

BBB characteristics and functions (Cucullo et al., 2011).  

 

When comparing gene analysis results from human brain microvascular 

endothelial cells (HBMEC) grown under static (traditional flask culture methods) 

and dynamic perfusion conditions (under constant media flow) have shown 

elevated RNA levels of tight junction proteins such as claudin-3, cadherins and 

zonula occludens-1 (ZO-1) under dynamic conditions (Schnittler, 1998). The 

importance of this response to shear stress is very evident in the structural 

integrity and tightness of the endothelial vascular bed. Endothelial cells cultured 

under flow formed a much tighter barrier (TEER » 700 W.cm2) in comparison to 

its static counterpart (TEER »100 W.Cm2). The ‘tightness’ of the barrier also 

affects its selectivity and consequently affects permeation of drug molecules 

(Cucullo et al., 2011). 

 

Brain endothelial cells are exposed to rapid blood perfusion (750 mL/min) to 

which they act in response by cellular re-alignment in the direction of the flow, 

rearrangement of cell fibres, in addition to functional remodelling (Ando and 

Yamamoto, 2009) and increased life span and proliferation (Cucullo et al., 2011, 

Di and Kerns, 2015). Further, there is an underrated mechanical stimulus that 

also affects endothelial cells in the brain, that stimulus is shear stress (Cucullo et 

al., 2011).  

 

Gene array analysis of key tight junction proteins showed that expression of 

proteins such as occludin, claudin-5 and cadherin-1 in flow models were 

upregulated compared to static models (Wong et al., 2013). Exposure to shear 

stress also increased the RNA expression levels of a range of ABC transporter 

proteins such as ABCB1, ABCC2, and ABCC5 (Doan et al., 2002) and CYPP450 

enzymes such as CYP1, CYP2 and CYP3 families (Dauchy et al., 2008a). 

Furthermore, shear stress also enhances response of pro-inflammatory stimuli 

by facilitating endothelial-leukocyte cross talk and T-lymphocyte migration by 
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upregulating expression levels of ICAM-1, VCAM-1 and PECAM-1 (Wong, 2007, 

Steiner et al., 2010).  Furthermore, shear stress stimulates the endothelial 

expression of ion channels and specialised transport systems such glucose 

transporter family (GLUT-1, GLUT-2, GLUT-3 and GLUT-5), Acetyl-CoA 

transporter (SLC33A1) and organic anions and cations transporters amongst 

many others (Cucullo et al., 2011). 

 

Modern dynamic cell culture in-vitro models can mimic the physiological 

interactions between tissues connected by bloodstream. These models have 

immense capabilities as they enable studies on specific organ-organ and tissue 

interactions. A range of approaches have been used to simulate shear stress 

across brain endothelial cells, from microfluidic systems (Wang et al., 2017, 

Brown et al., 2015) to hollow fibre constructs (Neuhaus et al., 2006). 

 

Recently, a novel cell culture flow-based chamber technology was developed and 

commercialised (Vozzi et al., 2008, Sbrana and Ahluwalia, 2012) this technology 

is called the QuasiVivoâ system (Kirstall, Sheffield, UK).  The QuasiVivoâ system 

utilises a flow model that is able to simulate blood flow between different cell 

culture chambers which represent tissues (Haycock, 2014). 

 

This novel perfusion cell culture system was designed to be used alongside 

permeable inserts (QV600 and QV900) often developed with in-vitro barrier 

models such as the lung (Chandorkar et al., 2017) and the  BBB (Elbakary and 

Badhan, 2020) and, for the first time, allowed direct modelling of the impact of 

perfusion on cell differentiation and barrier formation. The QV600 system allows 

for the application of various flow rates depending on the cell type which provides 

the cells with a constant nutrient return (Mazzei et al., 2010). The QV600 system 

consists of 1) PDSM chamber that is  15 mm in width and can hold up to 4 mL 

liquid, 2) connectors through which the chambers are linked, 3) a reservoir bottle 

that can hold up to 30 mL of media, 4) a peristaltic pump that can be housed in 

the incubator  (Figure 1.13). 

 

The advantages of using QV600 as opposed to other dynamic  in-vitro cell culture 

models are:  
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• Continuous use of media across all cell cultures  

• Easy to run and set up 

• Easy to clean (can be autoclave up to 3 times) 

• Steady level of liquid within the chamber- no risk of cells drying. 

 

 

The QV600 was successfully used in the development of in-vitro organ models. 

A 3D lung model to study fungal infection was developed using QV600. This study 

demonstrated that growing normal human bronchial cells NHBE under an air-

liquid interface (ALI) resulted in a significant increase in mucous production on 

day 7 in the perfusion model compared to day 21 under static conditions 

(Chandorkar et al., 2017).  

Furthermore, the QV600 system was used with epithelial Caco-2 cells. The 

results displayed an enhancement  of barrier integrity which was validated by an 

increase in the expression of tight junction protein ZO-1 as well as an increase in 

the reported TEER values 1800 Ω.cm2 after growing the cells under static 

conditions for 20 days flowed by a 48 hour exposure to flow  (Giusti et al., 2014).  
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 Aims and objectives 

 

The aim for this chapter was to assess the effect of shear stress on the in-vitro 

PBMEC BBB model cellular morphology and characteristics following the 

application of laminal flow using the QV600 system. 

 

In order to attain these aims, the objectives were to: 

• Create a blood brain barrier model using PBMEC grown in 24-well inserts 

for use in the QV600 chamber 

• Determine the optimal flow rate suitable for PBMEC growth   

• Examine the effect of shear stress on cell proliferation  

• Examine the effect of shear stress on TEER values  

• Examine the effect of shear stress on ZO-1 tight junction protein 

expression 

• Assess the permeability of mitoxantrone and hesperetin across the BBB 

model, following exposure to shear stress    
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 Materials:  

See section 3.3 for a list of materials. The Quasi Vivo® chamber, connectors and 

the peristaltic pump were obtained from Kirkstall (Rotherham, UK); all other 

chemicals were sourced from Sigma (Dorset, UK). 

Stock solutions of all test compounds were prepared in dimethyl sulfoxide 

(DMSO) and stored at -20°C until use. 

 

 Methods 

In order to examine the effect shear stress on the characteristics of an in-vitro 

BBB model, PBMEC were grown in permeable inserts and subjected to low and 

high shear stress in the form of laminal flow.  

 

 
 
The PBMEC model was isolated as described in Section 3.4.2. 

 

 
 

The PBMEC model was developed as described in Section 3.4.4. Here, we 

uitlised 24 well/0.33 cm2 permeable inserts (Greiner BioOne transparent 

ThinCerts® 24 well), a lower seeding density 3x104 cells/cm2 was used to 

accommodate the small size of the inserts used within the QV600 chambers.  

 

 
 

To model dynamic perfusion of media within the cell culturing environment, the 

QV600 interconnected chamber system was utilised. This allows for the use of 

permeable inserts and coverslips within chambers. The QV600 consists of 

chambers, a media reservoir, a peristaltic pump and associated tubing 

connectors (Figure 4.1A). In order to utilise permeable inserts, the media level 

within each chamber was raised by increasing the height of the reservoir bottle 

by 5 cm with luer-locks sealing the upper chambers (Figure 4.1B). Prior to use, 
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the QV600 system was sterilised by submerging in 70% v/v ethanol for 24 hours, 

followed by exposed to UV light for 6 hours and flushed for 1 hour with PBS 

supplemented with 1% v/v penicillin and streptomycin. 

 

Each peristaltic pump provided two independent channels, which were used with 

3 chambers each. To assess shear stress, we considered flow rates within a 

range of 0-600 µL/min (0-11.0 x10-6 Pa or 0-110 x10-6 dyne/cm2) or flow speed 

of 0-1.69 x10-6 m/s, with sheer stress (Pa) and flow speed (m/s) as described by 

(Miranda-Azpiazu et al 2018). 

 

 

 

 

 
 

Figure 4.1 Diagrammatical representation of the QuasiVivo® 600 

(A) The setup of the QV600 in the incubator showing peristatic pump, a raised 
reservoir bottle, two interconnected chambers were 24-well insets are fitted; (B) 
A schematic representation of the exposure to the raised coverslips to the flow 
compared to the bottom of a 24-well permeable insert.  
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Circular cover slips (13 mm) were coated with bovine collagen (50 µg/mL) and 

fibronectin (7.5 µg/mL) prior to seeding with 3 x104 cells (from passage 1) and 

grown in 24-well plates in PBMEC:ACM.  On day 3, coverslips were carefully 

transferred to QV600 chambers and raised by 10.5 mm using an inverted 

standing insert (Millicell, 12 mm insert) (Figure 4.1B), to match the height of the 

permeable insert membrane when seated within the QV600 chamber (Figure 

4.1A). 

 

Following optimisation of initial flow rates, cells were subjected to flow at 275 

µL/min and 550 µL/min for 48 hours. The choice of the flow rate was based on 

previous  findings that endothelial cells can withstand flow rates over 300 µL/min 

(Miranda-Azpiazu et al., 2018) 

 

Thereafter, cell morphology was assessed using light microscopy followed by 

assessment of tight junction formation through immunocytochemistry. Coverslips 

were washed with ice cold PBS three times and fixed in 4% w/v 

paraformaldehyde for 10 minutes. The coverslips were then washed three times 

with PBS and cells permeabilised using 0.02% w/v saponin for 10 minutes 

followed by a further cycle of washing in PBS three times. 

 

Cells were subsequently blocked with 6% v/v goat serum (Sigma, UK) for 5 hours, 

prior to incubation with the ZO-1 primary antibody (ZO-1 1A12 monoclonal) 

prepared in blocking buffer at a 1:100 dilution overnight at 4 °C. Thereafter, the 

coverslips were washed three times with ice cold PBS followed by the addition of 

the secondary antibody (0.5 µg/ml goat anti-mouse IgG H+L superclonal 

secondary Alexa 488®) for 2 hours at room temperature. The cells were then 

washed with ice cold PBS three times and mounted on a microscope slides using 

Fluoroshield (containing DAPI). Tight junction formation was subsequently 

assessed using an upright confocal microscope (Leica SP5 TCS II MP) and 

visualised with a 40× oil immersion objective. Images were acquired with an 

argon laser at 494 nm and a helium–neon laser to visualise DAPI at 461 nm. 
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In order to assess the impact of shear stress on the viability of the cells, a 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was 

conducted using PBMEC grown on cover slips that were subjected to laminar 

flow for 48 hours (at an optimal flow rate determined previously) and under static 

conditions. Thereafter, the coverslips were placed in 24-well plates and washed 

once with pre-warmed PBS prior to being incubated with 0.5 mg/mL MTT for 4 

hours at 37 °C, 5% CO2. The resulting formazan crystals were dissolved in DMSO 

(100 µL/coverslip) for 15 minutes, before being transferred to a clear 96 well plate 

and with the UV-absorbance of the formazan crystals measured at 570 nm 

(Tecan Spark 10M®). 

 
 

PBMEC grown on 24-well permeable inserts intended for use in the QV600, were 

first seeded and grown on inserts under static conditions, within 24-well plates, 

and grown for 3 days prior to transfer into the QV600 chambers (n=20 inserts in 

total over 5 independent experiments). An acceptable monolayer formation under 

static and shear stress was determined using the TEER value (EVOM, World 

Precision Instruments, USA) and corrected for background resistance (coated 

inserts without cells) and by the surface area of the insert (0.33 cm2). TEER was 

assessed by transferring the inserts into 24-well plates for TEER measurement, 

before returning to the QV600 chambers. Furthermore, tight junction formation 

was assessed using immunocytochemical methods as described previously in 

Section 3.4.4.1. 

 

 

 

PBMECs were grown on permeable inserts and exposed to high flow (550 

µL/min) for 48 hours using the QV600.  Thereafter, inserts were removed and 

placed into a 24-well cell culture plate.  Mitoxantrone (50 µM) was prepared in 

serum free PBMEC media containing 25 mM HEPES and added to the apical (AB 
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flux) or basolateral (BA flux) compartments with sampling taking place from the 

opposite compartment, which contained serum free PBMEC media containing 25 

mM HEPES.   

 

Samples were taken at intervals between 15-90 minutes and replaced with equal 

amount fresh warm serum free PBMEC media containing 25 mM HEPES.  

Mitoxantrone concentrations were analysed using a fluorescent plate reader 

(Tecan Spark 10M®) at an excitation wavelength of 488 nm and emission 

wavelength of 670 nm. The apparent permeability (Papp) was calculated (Equation 

4, see Section 3.4.5).  

 

 

 

PBMECs were grown on permeable inserts and exposed to high flow (550 

µL/min) for 48 hours using the QV600.  Thereafter, inserts were removed and 

placed into a 24-well cell culture plate.  hesperetin (50 µM) was prepared in serum 

free PBMEC media containing 25 mM HEPES and added to the apical (AB flux) 

or basolateral (BA flux) compartments with sampling taking place from the 

opposite compartment, which contained serum free PBMEC media containing 25 

mM HEPES.   

 

The hesperetin transport assay and subsequent detection was detailed in 

Sections 3.4.6.1 and 3.6.8.2. 

 

 Statistical analysis 

 

All data is presented as mean ± standard deviation, with experiments being 

conducted in at least replicate independent experiment unless otherwise stated. 

Where appropriate, statistical analyses was performed in Graphpad Prism (La 

Jolla, California, USA), with t-tests used to determine differences between the 

mean values. A significance p-value of <0.05 was considered as statistically 

significant  
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 Results 

 

 

In order to identify optimal sheer stress for use with PBMECs, coverslips were 

raised and exposed to low (275 µL/min) and high (550 µL/min) flow rates and 

compared to matching coverslips grown under static conditions and subsequently 

stained for ZO-1.  Under static conditions, limited cell-to-cell ZO-1 formation is 

evident (Figure 4.2).  When the flow rate was applied at low (275 µL/min) (Figure 

4.3) and high (550 µL/min) (Figure 4.4), cellular reorganisation was evident with 

the cell-to-cell ZO-1 protein formation.  However, the translocation of ZO-1 to the 

cytoplasm was also evident under low and high flow rates.  
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Figure 4.2 Immunocytochemistry images obtained following ZO-1 staining under static conditions on coverslips 

PBMEC grown on collagen (50 µg/mL) and fibronectin (7.5 µg/mL) coated coverslips under static conditions  Images were taken using 
a Leica SP5 TCS II MP confocal microscope. (A) for DAPI, (B) for ZO-1 and (C) for merged. Yellow arrows indicate formation of tight 
junctions. 
 

  

 A                                               B                                               C  
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Figure 4.3 Immunocytochemistry images obtained following ZO-1 staining following exposure to low flow rate on 
coverslips 

PBMECs grown on bovine collagen (50 µg/mL) and fibronectin (7.5 µg/mL) coated coverslips. PBMEC exposed to low flow (275 
µL/min) for 48 hours in the QV600 system. (A) for DAPI, (B) for ZO-1 and (C) for merged . Images were taken using a Leica SP5 TCS 
II MP confocal microscope. The white arrow indicates the direction of flow and the  yellow arrows indicate formation of tight junctions. 
 
  

 A                                                       B                                            C  
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Figure 4.4 Immunocytochemistry images obtained following ZO-1 staining following exposure to high flow rate on 
coverslips 

PBMECs grown on bovine collagen (50 µg/mL) and fibronectin (7.5 µg/mL) coated coverslips. PBMEC were exposed to  high flow 
(550 µL/min) for 48 hours using the QV600.  (A) for DAPI, (B) for ZO-1 and (C) for merged. Images were taken using a Leica SP5 
TCS II MP confocal microscope. The white arrow indicates the direction of flow and yellow arrows indicate formation of tight junctions.  
 

  

 A                                                 B                                           C  
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To assess the impact of shear stress on PBMEC cellular viability, high flow (550 

µL/min) was applied for 96 hours and cellular viability of PBMECs (grown on 

raised coverslips) was assessed using a MTT cellular viability assay. The 

presence of high flow for 4 days did not reduce the viability of PBMEC cells, with 

a nominal, but significant (P < 0.05) increase in viability for dynamic shear stress 

(Figure 4.5). 
 

 
Figure 4.5 Cellular viability of PBMECs grown in static and dynamic 
conditions 

Cellular viability of PBMEC grown on coverslips under static media and dynamic 
high flow (550 µL/min) for 96 hours, using a MTT assay.  Dynamic results were 
normalised to the mean of the static results. n=9 coverslips in 3 independent 
experiment. * P ≤ 0.05. 
 

 

 

To investigate the formation of a high resistance barrier, the TEER from 

monolayers of ‘60s’ grown on semi-permeable inserts (24-well, 0.33 cm2) were 

determined under static conditions and under dynamic shear stress.   

 



 

 168 

To assess whether shear stress is capable of inducing barrier formation, PBMEC 

were grown on semi-permeable inserts and subjected to flow at 550 µL/min, 

without the addition of any barrier forming additives. At 4 days post-seeding, 

inserts exposed to flow demonstrated a significantly higher TEER (35.7 Ω.cm2 ± 

5.1 Ω.cm2) compared by those maintained in static culture conditions (21 Ω.cm2 

± 1.5 Ω.cm2) (P ≤ 0.001), which was maintained through to day 7 post seeding 

(Figure 4.6A). 

 

To further assess the ability of shear stress to induce barrier formation, static and 

dynamic inserts were exposed to endothelial tight junction inducing agents on 

day 3 post seeding for 24 hours only. On day 4, TEER values significantly 

increased under both static media, to 306.3 Ω.cm2 ± 41.9 Ω.cm2, and dynamic 

flow to 448.1 Ω.cm2 ± 11.3 Ω.cm2 (P ≤ 0.0001), which was maintained to day 7 

(Figure 4.6B). 
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Figure 4.6 TEER measurements under static and dynamic conditions 

TEER measured following growth of  PBMEC cells on permeable cell culture 
inserts (24-well, 0.33 cm2) under static and dynamic (550 µL/min) conditions.  
TEER of PBMEC were measured when grown on permeable inserts in the (A) 
absence and (B) presence of barrier forming additives.  * P ≤ 0.05, ** P ≤ 0.01, 
*** P ≤ 0.001 and **** P ≤ 0.0001. n=12 in replicates of 3 in 4 independent 
experiments. 
 

A 

B 
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The expression of the tight junction protein ZO-1 was assessed using 

immunocytochemistry on semi-permeable inserts maintained in either static 

media or exposed to shear stress (550 µL/min).  In the absence (Figure 4.7) and 

presence (Figure 4.8 and 4.9) of shear stress, cellular labelling with ZO-1 

antibody demonstrated the ability of PBMECs to form tight junctions.  Under static 

conditions (Figure 4.7), the cellular morphology was indiscriminately organised 

with a discontinuous serrated pattern. However, under shear stress, linear 

realignment of the PBMECs was particularly visible following 24-hours (Figure 

4.8) and 48-hours (Figure 4.9) of shear stress exposure and was largely localised 

to the intracellular junctions of cells, with limited discontinuous tight junction 

formation. 
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Figure 4.7 Immunocytochemistry images obtained following ZO-1 staining under static conditions in inserts 

Immunocytochemistry images obtained following PBMEC staining for (A) DAPI, (B) ZO-1 and (C) merged. PBMECs  were grown on 
permeable inserts under static media conditions. Images were taken using a Leica SP5 TCS II MP confocal microscope. The yellow 
arrows indicate disrupted tight junction. 
 

 A                                                      B                                                     C  
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Figure 4.8 Immunocytochemistry images obtained following ZO-1 staining following exposure to high flow in inserts for 24 
hours 

Immunocytochemistry images obtained following PBMEC staining for (A) DAPI, (B) ZO-1 and (C) merged.  PBMECs  were grown on 
permeable inserts under high flow (550 µL/min) for 24 hours using the QV600.  Images were taken using a Leica SP5 TCS II MP 
confocal microscope. The white arrow indicates the direction of flow; and the yellow arrows indicate disrupted tight junction. 
 

  

 A                                                      B                                                     C  
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Figure 4.9 Immunocytochemistry images obtained following ZO-1 staining following exposure to high flow in inserts for 48 
hours 

Immunocytochemistry images obtained following PBMEC staining for (A) DAPI, (B) ZO-1 and (C) merged. .  PBMECs were grown on 
permeable inserts under high flow  (550 µL/min) for 48 hours using the QV600.  Images were taken using a Leica SP5 TCS II MP 
confocal microscope. The white arrow indicates the direction of flow; and the yellow arrows indicate disrupted tight junction. 
 

 A                                                      B                                                        C  
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Furthermore, the ZO-1 junctional intensity was significantly higher following 48-

hours exposure to flow (1.52 ± 0.11 fold) than in static control (P ≤ 0.05). In 

addition, there was a statistically significant greater junctional intensity at 48-

hours when compared to 24-hours exposure (1.12 ± 0.18 fold) (P ≤ 0.05) (Figure 

4.10). 
 

 

 
Figure 4.10 ZO-1 junctional fluorescence intensity 

ZO-1 junctional fluorescence intensity as quantified by junctional regions and 
when normalised to static controls. * P < 0.05. 
 

 

 

 

To demonstrate the functional impact of dynamic media flow on BBB properties, 

the permeability of the anti-cancer agent mitoxantrone was assessed across 

PBMECs grown on permeable inserts, in the absence (Figure 4.11A) and 

presence of flow (Figure 4.11B).   
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When compared to static conditions, the impact of shear stress resulted in a 

significant increase in the cumulative amount transported in the BA direction 

(Figure 4.11B) when compared to the AB direction (Figure 4.11A).  In the absence 

of flow, Papp AB was 0.84 x10-6 cm/s ± 0.16 x10-6 cm/s and Papp BA was 1.35 x10-6 

cm/s ± 0.23 x10-6 cm/s, resulting in an efflux ratio of 1.6.   

 

However, under the exposure of flow, there was a significant increase in efflux 

ratio to 3.6 with a significantly reduced Papp AB (0.48 x10-6 cm/s ± 0.09 x10-6 cm/s) 

(P ≤ 0.01) and significantly increased Papp BA (1.74 x10-6 cm/s ± 0.08 x10-6 cm/s) 

(P ≤ 0.05), (Figure 4.11C).  
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Figure 4.11 Mitoxantrone flux across PBMEC grown on permeable insets 

Mitoxantrone transport in apical-to-basolateral (AB) (circles) or basolateral-to-apical (BA) (squares) under (A) static media or (B) when 
exposed to high flow (550 µL/min) for 48 hours with associated apparent membrane permeability (Papp) values in the AB or BA 
directions (C). * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001 and **** P ≤ 0.0001. n = 16 for static and dynamic, in 4 independent experiments 
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To further confirm the ability of hesperetin to permeate across a physiologically 

relevant in-vitro BBB model, its permeability was assessed in the perfusion based 

PBMEC in-vitro model (Figure 4.12).  When compared to static conditions, the 

impact of shear stress resulted in an increase in the cumulative amount 

transported in the BA direction (Figure 4.12B) when compared to the AB direction 

(Figure 4.12A).  In the absence of flow, Papp AB was 4.67 x10-6 cm/s ± 1 x10-7 cm/s 

and Papp BA was 7.19 x10-6 cm/s ± 2 x10-7 cm/s, which resulted in an efflux ratio 

of 1.53.   

 

However, under the exposure of flow, there was a slight but insignificant increase 

in efflux ratio to 1.54 with increased Papp AB  of 4.89 x10-6 cm/s ± 1 x10-7 cm/s and 

Papp BA of 7.57 x10-6 cm/s ± 4 x10-7 cm/s (Figure 4.12C) .   
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Figure 4.12 Hesperetin flux across PBMEC grown on permeable inserts 

 

Hesperetin transport in apical-to-basolateral (AB) (circles) or basolateral-to-apical (BA) (squares) under (A) static media or (B) when 
exposed to high flow (550 µL/min) for 48 hours. with associated apparent membrane permeability (Papp) values in the AB or BA 
directions (C). n = 16 for static and dynamic, in 4 independent experiments. * P ≤ 0.05, ** P ≤ 0.01 and  *** P ≤ 0.001. 
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 Discussion 

The development and maintenance of an in-vitro BBB model is critical when 

assessing the potential for small molecule transport, with the ability to form a 

coherent and robust barrier being paramount. Critical to the establishment of 

models, is the maintenance of appropriate in-vitro culturing conditions.  

A key component to the formation of the BBB in-vivo, is the presence of 

circumferential stress on the walls of the brain microvasculature, which plays an 

important role in the morphology and functional capacity of endothelial cells, 

along with governing signalling and transport processes within the neurovascular 

unit (Chien, 2007, Johnson et al., 2011, Conway and Schwartz, 2012, Krizanac-

Bengez et al., 2004, Cucullo et al., 2011). The average shear stress within the 

arterial circulation is 4–30 dyne cm2 and 1–4 dyne cm2 in the venous circulation 

(Wong et al., 2013). BBB models which have incorporated laminar shear stress 

have demonstrated the lowest permeability to sucrose and mannitol tracers, 

highlighting the critical role that laminar shear plays in stimulating a stable BBB 

phenotype (Santaguida et al., 2006, Stanness et al., 1997). 

Given the low TEER and complexity in culturing approaches, we adopted the use 

of a primary porcine brain microvascular endothelial cell culture system (PBMEC) 

reporting high TEER without the need for co-culture with astrocytes (Kaur and 

Badhan, 2017, Patabendige et al., 2013, Cantrill et al., 2012). 

 

We first aimed to assess the impact of shear stress on PBMEC when grown on 

coverslips and evaluated both changes in cellular morphology along with cellular 

viability. The location of the coverslip within the QV600 chamber is critical when 

assessing the impact of sheer stress on cellular viability, given that there is at 

least a 200 to 300-fold decrease in sheer stress when approaching the base of 

the chamber (Mazzei et al., 2010). Furthermore, the use of permeable inserts to 

develop a BBB monolayer places the cell layer within the vicinity of the chamber 

inlet/outlet (Wilkinson, 2017). To this end, PBMEC were seeded on coverslips 
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and raised to the equivalent height of the filter membrane of the permeable inserts 

(Figure 4.1B), prior to exposure to low (275 μL/min) and high (550 μL/min) flow 

rates.  

The impact of sheer stress on PBMECs morphology was evident at both low and 

high flow rates, with significant reorientation under flow in addition to improved 

clarity of cell-to-cell tight junction formation (Figure 4.3 and 4.4) when compared 

to cells grown under static conditions (Figure 4.2). 

Given that PBMEC have not been previously used within the QV system, the 

present study attempted to first identify an appropriate flow rate for use within 

PBMECs. Drawing on work conducted previously by Miranda-Azpiazu et al., we 

selected a flow rate of 550 μL/min to assess cellular viability. Miranda-Azpiazu et 

al. utilised a maximum flow rate of 300 μL/min and suggested higher flow rates 

are sustainable for endothelial cells within the same perfusion-based system we 

used. Furthermore, the flow rates chosen were within the range suggested to 

ensure laminar flow within the perfusion system (Mazzei et al., 2010). This would 

mimic the haemodynamic flow and forces within the broad linear regions of the 

endothelial structure as opposed to the branched regions where non-

linear/disturbed flow would be more apparent (Chiu and Chien, 2011). Given that 

morphological alterations were evident under both low and high flow rates (Figure 

4.3 and 4.4) we focussed upon the high flow rate (550 µL/min) for a comparison 

of cellular viability between static and dynamic conditions.  

This higher flow rate did not adversely affect cellular viability, but rather resulted 

in a 28.2 % increase (P = 0.031)  in viability when exposed for 4 days to high flow 

(Figure 4.5). The increase in viability reported herein was not to the same extent 

as those reported by Mazzei et al., > 50% increase, who utilised astrocytes 

cultured on coverslips and exposed to flow within the QV500 system without 

raising the height of the coverslips to achieve more representative shear stress 

(Mazzei et al., 2010).  
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Having established that higher flow rates can sustain the growth of PBMEC within 

the QV600 system, we next assessed the impact of sheer stress on barrier 

formulation when PBEMC were grown on permeable inserts. A benefit of the 

PBMEC system is the reproducible nature of the high TEER small vessels 

isolated from fresh porcine hemispheres (Patabendige et al., 2013, Cantrill et al., 

2012, Kaur and Badhan, 2017) which can reach in excess of 800 Ω.cm2 (in 1.1 

cm2, 12-well permeable inserts).  

In the absence of barrier forming additives, sheer stress resulted in a statistically 

significant (P < 0.05) increase in TEER throughout the study period of 7 days, 

when compared to inserts grown under static conditions (Figure 4.6A). A peak 

TEER of 35.7 Ω.cm2 ± 5.1 Ω.cm2 was determined when compared to that of static 

conditions, 21 Ω.cm2 ± 1.5 Ω.cm2 (P ≤ 0.001) highlighting the positive impact 

shear stress had on barrier formation, despite the absence of media 

supplementation.  

With the addition of supplementation, we noted a 12.8-fold increase in peak 

TEER under shear stress when compared to its absence, with TEER under shear 

stress significantly higher from day 5 onwards (Figure 4.6B). The peak TEER 

under flow, 448.1 Ω.cm
2 ± 11.3 Ω.cm

2
, is higher than those conducted in other 

cells lines (Daniels et al., 2013, Abbott, 2013, Lippmann et al., 2015). However, 

it should be noted that the QV600 accepts only 24-well multiplate inserts with a 

surface area of 0.33 cm
2
. PBMECs established in the previous chapter as well 

as by other groups typically utilise 12-well multiplate inserts (1.1 cm
2
) (Cantrill et 

al., 2012, Patabendige et al., 2013). 

In the QV600, the insert is used in such a way that the flow of media attempts to 

mimic human brain interstitial flow, reported to be <500 µL/min in human brain 

(Faghih and Sharp, 2018, Hladky and Barrand, 2014). The role of sheer stress 

under these conditions are difficult to conceptualise. However, it is known that 

shear stress can exert a mechanism strain and pressure effect on cells, impacting 

upon cell differentiation and growth (Gayer and Basson, 2009, Diresta et al., 
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2005, Sun et al., 2013). With flow in the basolateral side of the membrane , the 

porous nature of the membrane would allow this pressure differential, which 

would enhance both the transfer of small molecules such as oxygen and CO2 in 

addition to providing physical forces to the cell monolayer (Pörtner et al., 2005). 

This is critical as increased dissolved CO2 concentrations (Kimura, 1996, Gray et 

al., 1996) can reduce the intracellular pH and thereby affect cell metabolism 

(Madshus, 1988), in addition to high levels of dissolved CO2 reducing cellular 

growth rates (Pattison et al., 2000, Dezengotita et al., 1998). 

Furthermore, the increase in TEER may also be a direct result of the 

rearrangement of cellular morphology of the cells, which is commonplace and the 

defining feature of laminar flow within the vascular network. For example, within 

athlorsclerotic-prone regions of the endothelia, there is a strong correlation with 

the failure of endothelial cells to elongate and align (Davies et al., 1997, Davies, 

2009, Nerem, 1981, Flaherty et al., 1972, Wang et al., 2013). A similar increase 

in TEER was noted by others when using the QV600 to develop an in-vitro 

pulmonary model cultured on permeable inserts (Chandorkar et al., 2017).  

To examine morphological changes under flow, permeable inserts were 

subsequently assessed for the formation and localisation of tight junction protein 

marker ZO-1. Under static conditions, the localisation of ZO-1 was presented with 

a discontinuous pattern of formation (Figure 4.7). In the presence of shear stress, 

clear realignment of the cells was evident, with more pronounced TJ formation 

after 48-hours (Figure 4.9) rather than 24-hours (Figure 4.8) of exposure of shear 

stress. The fluorescent intensity of the junction protein expression was further 

assessed and demonstrated that 48 hours of exposure yielded statistically 

significant (P ≤ 0.05) higher levels of ZO-1 when compared to static PBMEC 

(Figure 4.10). Further, the solidity of the tight junctions was greater at 48-hours 

compared to 24-hours when compared to static conditions (P ≤ 0.05). Although 

the decrease in solidity at 24-hours, may be a result of realignment of junctional 

morphology (Figure 4.6). This increasing expression of tight junction markers has 

been previously demonstrated, albeit under higher shear stress in alternative 

hollow-system bioreactors (Cucullo et al., 2011, Garcia-Polite et al., 2017) and in 

QV500.  
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In the scope of developing a BBB, the use of permeable inserts allows for the 

monitoring of monolayer formation and small molecular transport. To assess the 

impact of shear stress on these processes, we assess the permeation of the anti-

cancer agent mitoxantrone across PBMEC grown under static and shear stress-

exposed inserts. mitoxantrone undergoes active transport partly through ACBG2 

and ABCB1 (Ross et al., 1999, Morrow et al., 2006) and is classified as a low 

permeability compound (Volpe et al., 2008) 

Under static conditions, the resultant apparent permeability in the BA direction, 

when compared to the AB direction, (i.e. the efflux ratio) was 1.6-fold greater and 

statistically significant (P < 0.05) suggesting an active efflux process (Figure 

4.11A) However, in the presence of shear stress, this increased to 3.6-fold  

(Figure 4.11B) with a concomitant reduction in Papp AB suggesting a tighter barrier 

formation limiting mitoxantrone flux (Figure 4.11C). 

To further assess the impact of shear stress on the permeability of molecules, we 

assessed the permeability of hesperetin in this system. The changes noted in the 

absence and presence of shear stress were small but significant. A 4.7% 

decrease (** P ≤ 0.01) was recorded for A to B flux and 5.3% decrease (* P ≤ 

0.05) in B to A flux after exposure of the model to flow (Figure 4.12C).  

The insignificant changes obtained when assessing permeability of hesperetin in 

static and dynamic models may be due to the fact that hesperetin is a high 

permeability compound, and static PBMEC in-vitro blood brain barrier model 

produces a restrictive model and hence there wasn’t a significant change in flux 

or efflux. This further confirms the claim made in the previous chapter regarding 

the ability of hesperetin to permeate across the BBB since it was able to permeate 

across a more restrictive barrier formed as result of exposure to shear stress.  

To summarise, in the present study we applied the PBMEC model system 

(Patabendige et al., 2013) within the Kirkstall QuasiVivo® (Mazzei et al., 2010) 

interconnected chambers system QV600 (Figure 1.13) which can accommodate 

both cells grown on coverslips (13 mm diameter) and permeable inserts (24-well 
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plate, 13 mm diameter) in an attempt to determine whether the impact of localised 

perfusion on PBMECs would enhance barrier formation, as measured by the 

TEER (Patabendige et al., 2013, Nakagawa et al., 2007, Nakagawa et al., 

2009).The presence of hemodynamic shear stress is an important element within 

endothelial cells which is absent in cells cultured on inserts under static 

conditions and contributes to the polarisation of the brain endothelium structure 

as well as governing the expression and localisation of drug transporter systems 

(Björnmalm et al., 2016).  

The QV600 chambers are connected in series or parallel, with perfusion within 

all chambers from a central perfusion pump (Figure 4.1A). The key advantage is 

the rapid perfusion of media and oxygen transport. Whist the QuasiVivo® system 

has been used by other groups to assess the benefit of dynamic media flow within 

an interconnected system of chambers with different cell cultures (Miranda-

Azpiazu et al., 2018) its use with BBB cell types grown on permeable inserts has 

been limited, particularly with high TEER primary origin cell lines.  

Furthermore, whilst the use of human origin cells in microfluidic systems has 

gained traction, these remain a novel and niche research tool (Wang et al., 2017, 

Brown et al., 2015) which often fail to represent macroscale environments and 

make it difficult for research with established techniques, such as permeable 

insert barrier systems, to easily adopt such systems (Cucullo et al., 2011). 

 

 Conclusion 

To conclude, for the first time we have demonstrated the impact of the novel 

application of sheer stress to an easy to isolate, cost-effective and highly 

reproducible TEER BBB model derived from porcine brain micro- vascular 

endothelial cells (PBMEC) when grown on routinely utilised permeable inserts 

culturing system. The use of this well-established culturing approach provides an 

ability to incorporate, with ease, BBB in-vitro models into the commercially 

available QuasiVivo® perfusion system platform without the necessary 

complications of other perfusion-based systems, such as microfluidic platforms. 
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Microfluidic systems have gained some traction but still remain a niche research 

tool for perfusion based cell culture systems, given that the vast majority of 

research groups working on barrier models are still using permeable-inserts such 

as Transwell® systems (Ohshima et al., 2019, Bayir et al., 2019, Zhao et al., 

2019a, Puech et al., 2018, Oda et al., 2018) for assessment of the impact of 

perfusion on the functional activity of barrier due to commercial availability, high-

throughput potential and ease of use. Several well documented challenges and 

limitations have been reported with micro- fluidics systems, for example the lack 

of standardised parameters and critical experiment factors such as: (i) the use of 

an appropriate shear stress; (ii) defining an appropriate TEER cut-off for 

monolayer formation, which are typically low (<250 Ω.cm2) (Tang et al., 2018, 

Deosarkar et al., 2015) and (iii) appropriate application of paracellular 

permeability markers (Gastfriend et al., 2018, Helms et al., 2016, Musafargani et 

al., 2020). 

These limitations make comparison to well established BBB models such as, 

permeable insert models challenging. Further, the well cited scalability issues and 

specialised microfluidics fabrication equipment severely limit the use and 

validation of such models across the wider scientific community (Musafargani et 

al., 2020) In comparison, the proposed model system we implemented is 

commercially available and well validated, utilising existing and well-established 

permeable insert systems for barrier formation. Further, using a simplistic 

PBMEC system from porcine hemispheres, we were able to demonstrate 

significantly higher TEER in traditional inserts in addition to enhanced TEER 

using a commercially available perfusion system, with the benefits of being 

reproducible and requiring little technical knowledge when compared to 

microfluidic systems.  

The novelty herein is the fact that we have, for the first time, highlighted the 

application of the easy to isolate and cost-effective PBMEC BBB model within the 

QuasiVivo® system, which for the first time demonstrated a resultant impact on 

TEER and BBB phenotype enhancement. Further, we demonstrated higher 

TEER values in the absence or presence of perfusion, when compared to other 

microfluidic systems employing rodent or human derived BBB models, alongside 
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further demonstrated the functional consequence of shear stress on small-

molecule transport. Our results highlight an apparent change in both cellular 

morphology and enhanced barrier formation, providing a valuable research tool 

to assess both the neurotoxicity of molecules at the BBB but also their 

permeability across widely utilised permeable insert-based BBB monolayer 

systems.  
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Chapter 5  

 
Conclusions and future work 
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 Conclusion  

 
The overall aim of this work was to enhance permeability and drug delivery of 

anti-cancer agents into brain tumours by modulating the action of BCRP at the 

BBB and the BTB using phytochemical modulators, in addition to assessing the 

anti-cancer proprieties of phytochemicals as possible adjunct therapy with 

routinely used anti-cancer agents. 

 

The theory behind the order of the work presented within this thesis was to 

commence from the tumour site and progress towards the BBB. This was based 

on previous studies conducted by our group demonstrating that some 

phytochemicals are permeable across the BBB. Our goal was to screen 

phytocompounds for their anti-cancer proprieties and their ability to modulate 

BCRP expressed in the GMB in-vitro cell culture model LN229 cells, before 

examining their permeability through the BBB and their ability to modulate BCRP 

in the BBB and hence enhance the permeability of BCRP substrate anti-cancer 

drugs. 

 

In Chapter 2, a total of 13 modulators were assessed and screened, for the first 

time,  for their cytotoxicity and ability to modulate the efflux function of BCRP, in 

addition to their ability to reduce LN229 cellular migration and their effects on the 

expression of BCRP in LN229 cells. Based on the results obtained, two 

candidates were selected for further investigation, namely hesperetin and 

baicalin. Further studies assessed their ability to activate apoptosis through ROS 

production and the activation of caspase pathways, with both methotrexate and 

temozolomide used as reference compounds.  

 

Our findings highlighted that both hesperetin and baicalin were able to increase 

ROS production and activate caspase -3/7 in addition to their ability to modulate 

BCRP efflux function.  Furthermore, we demonstrated the action of hesperetin in 

downregulating the expression of BCRP in LN229 cells.  

 

Based on the findings we observed in the second chapter, we selected hesperetin 

for further testing using the primary PBMECs in-vitro BBB model. In Chapter 3, 
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we were able to develop an in-vitro BBB model using PBMECs.  This model 

possessed BBB characteristics comparable to published studies and achieved 

comparable TEER values along with the presence of ZO-1 tight junction proteins 

and F-actin expression. We demonstrated, for the first time, the ability of 

hesperetin to permeate across the PBMEC BBB model in addition to the 

permeability of methotrexate and mitoxantrone. Further, the impact of hesperetin 

in modulating BCRP at the BBB was demonstrated by an increase in both 

methotrexate and mitoxantrone Papp AB flux and reduced Papp BA flux when studied 

in combination with hesperetin.  

 

In order to provide more evidence on the ability of hesperetin to permeate across 

the BBB, in Chapter 4 we developed a more realistic perfusion based PBMEC in-

vitro BBB model which was determined to be a more restrictive model, displaying 

better BBB characteristics when compared to BBB models grown in static 

conditions. The impact of shear stress on the PBMEC in-vitro BBB model was 

assessed where, the cells responded to the flow by rearranging and changing in 

morphology. In addition, higher TEER values were recorded, and ZO-1 was 

formed with fewer interruptions which indicates the formation of a more restrictive 

model. Next, we assessed the permeability of hesperetin and mitoxantrone 

across the perfusion-based model compared to a static counterpart. In these 

studies, hesperetin demonstrated higher permeabilities when compared to those 

reported under static conditions, however, the permeability of mitoxantrone was 

significantly reduced.  

 

Limitations of this study were (I) using porcine cells instead of human cells to 

create a BBB model and (II) differences in transporter expression due to 

homologic differences between pigs and humans. This might become a 

hindrance when extrapolating the data obtained for human pharmacokinetics 

studies. That said, primary human brain cells are difficult to obtain and 

characterise, in addition, commercially available human cell lines express low 

TEER values (<250 Ω.cm2) and wouldn’t have been suitable for small molecule 

drug transport studies. Moreover, similar to human brain endothelial cells, BCRP 

in PBMECs was reported to be the most abundant efflux transporter. (III) some 

of the anti-cancer compounds and phytochemicals that were used might interact 
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with other efflux transporters expressed in the cells that we utilised mainly P-gp. 

Nevertheless, in both PBMECs and LN229 cells, BCRP is more abundantly 

expressed than p-gp, therefore, the compounds used were likely to interact with 

BCRP over p-gp. However, in future studies using a P-gp modulator such as 

verapamil should be taken in consideration to ensure that any compounds used 

would only interact with BCRP. (IV) utilising a 2D cancer cell line. Using patient 

derived primary tumour cells in a 3D culture would have been a better 

representation of human in-vitro solid tumours. Still, using 2D cell lines remain a 

necessary preliminary step for screening of novel compounds before proceeding 

to using patient derived tumour cells and 3D culture as these more technically 

challenging and time consuming to optimise.  

 

To summarise, this thesis has identified hesperetin as being a viable candidate 

phytochemical agent which possess both pro-oxidant properties towards LN229 

human glioblastoma cells, in addition to being capable of inhibiting BCRP. It 

therefore represents a viable dual-purpose candidate for further studies to assess 

its impact on GBM in-vivo in conjunction with anti-cancer agents. 

.  

 

 

 

 

 Future work 

 

Whilst we examined some flavonoids, future work should examine other groups 

of flavonoids, more specifically phenolic acids and stilbenes for their modulatory 

effect on BCRP as well as P-gp and MRP-1 which were reported to be expressed 

in LN229 cells and their effect on cell migration and apoptosis. Further, evaluating 

the potential of using two or more flavonoids in combination, would allow for 

multiple avenues to explore such as the ability to modulate a range of drug 

transporter proteins and their resultant synergistic and/or antagonistic effects 

towards therapeutic interventions in oncology.  
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In Chapter 3, we explored the role of the ECM in enhancing barrier formation.  

This should further explore the impact and causes of bovine-specific ECM on in-

vitro cell growth and characteristics. However, due to the commercial 

unavailability of medical grade porcine collagen, a method could be devised to 

extract porcine collagen from porcine skin, in a similar fashion to that routinely 

conducted for rat tail collagen, in order to better assess its effect on BBB model 

formation Additionally, assessing the permeability of other flavonoids that 

displaying optimal anti-cancer properties and BCRP inhibitory effects in LN229 

cells. 

 

Moreover, throughout our cell culture models, we did not consider co-culturing 

with LN229 cells.  Future work should examine combining an in-vitro glioblastoma 

model with the already established PBMEC BBB in-vitro model to examine the 

effect the tumour cells may have on the integrity of the BBB model, and to assess 

the resulting impact on drug permeability across both the BBB and BTB. 

Furthermore, applying shear stress to the in-vitro glioblastoma model alone and 

in combination with the established in-vitro BBB perfusion model would allow an 

opportunity to study the effect of the tumour  formation and progression under an 

optimised extracellular environmental condition.  
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