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Abstract
Niosomes are increasingly explored for enhancing drug penetration and retention in ocular tissues for both posterior and 
anterior eye delivery. They have been employed in encapsulating both hydrophilic and hydrophobic drugs, but their use is 
still plagued with challenges of stability and poor entrapment efficiency particularly with hydrophilic drugs. As a result, focus 
is on understanding the parameters that affect their stability and their optimization for improved results. Pilocarpine hydro-
chloride (HCl), a hydrophilic drug is used in the management of intraocular pressure in glaucoma. We aimed at optimizing 
pilocarpine HCl niosomes and evaluating the effect of sonication on its stability-indicating properties such as particle size, 
polydispersity index (PDI), zeta potential and entrapment efficiency. Pilocarpine niosomes were prepared by ether injection 
method. Composition concentrations were varied and the effects of these variations on niosomal properties were evaluated. 
The effects of sonication on niosomes were determined by sonicating optimized drug-loaded formulations for 30 min and 
60 min. Tween 60 was confirmed to be more suitable over Span 60 for encapsulating hydrophilic drugs, resulting in the high-
est entrapment efficiency (EE) and better polydispersity and particle size indices. Optimum sonication duration as a process 
variable was determined to be 30 min which increased EE from 24.5% to 42% and zeta potential from (−)14.39 ± 8.55 mV 
to (−)18.92 ± 7.53 mV. In addition to selecting the appropriate surfactants and varying product composition concentrations, 
optimizing sonication parameters can be used to fine-tune niosomal properties to those most desirable for extended eye 
retainment and maintenance of long term stability.
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Introduction

Optimum drug delivery to the eye is especially difficult as 
the eye possesses intrinsic anatomical and physiological 
properties that pose barriers. There is therefore the problem 
of poor bioavailability and an associated need for frequent 
administrations to achieve and maintain optimum ocular 
concentrations. Pilocarpine hydrochloride is used for manag-
ing intraocular pressure (IOP) in the treatment of glaucoma. 
It is a miotic drug that acts as a muscarinic agonist, causing 

ciliary muscle contraction that opens up the trabecular mesh-
work which allows aqueous humour drainage and a resultant 
reduction in IOP (Jain and Verma 2020). It is hydrophilic in 
nature and its use as a conventional eye drop is faced with 
the challenges highlighted prior, leading to short retention 
times, low bioavailability and reduced efficacy (Keipert et al. 
1996). It is currently available in other dosage forms as oral 
tablets, ocular inserts, which are associated with limitations 
such as poor bioavailability and invasiveness due to inserts.

In solving the above problems, many different formula-
tion strategies are being explored to improve drug solubility, 
precorneal absorption and retention time in the eye. Nanomi-
celles, microemulsions, in situ gels and liposomes are some 
nanotechnology-based systems that have been investigated 
for pilocarpine delivery (Anumolu et al. 2009; Cholkar 
et al. 2013; Naveh et al. 1994). Of note are niosomes which 
serve as nanocarriers and are fundamentally composed of 
amphiphilic non-ionic surfactants with a polar head and a 
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non-polar tail, lipids like cholesterol, a hydration medium 
and other additives (Bhardwaj et al. 2020). They are formed 
as a result of partitioning upon tensile interactions of the 
aqueous solution and the lipophilic tails of the amphiphi-
lic non-ionic surfactants, causing the tails to associate and 
leaving the polar hydrophilic heads pointing outwards in 
contact with the aqueous phase (Seleci et al. 2016). It is 
able to achieve localized controlled and sustained release 
in addition to protection of the drug from degradation by 
metabolic enzymes resident in the eye (Sahoo et al. 2014). 
Because it is a lipid vesicular system, absorption is increased 
and reduced systemic drainage results in longer drug contact 
time, and therefore bioavailability is improved compared to 
conventional drug solutions (Sahoo et al. 2014).

Different classes of surfactants have been used in the 
preparation of niosomes. Their properties—size, structure, 
hydrophilic/lipophilic balance (HLB) value and physical 
state, and phase transition temperature (Tc)—as well as the 
concentrations in which they are used, influence vesicle size, 
polydispersity index (PDI) encapsulation efficiency, charge 
and stability (Bnyan et al. 2018). Cholesterol interacts with 
the hydrophobic alkyl end of the surfactant producing an 
increase in vesicle transition temperature and alteration of 
bilayer fluidity which stabilizes the membrane (Chen et al. 
2019). Cholesterol affects the vesicle’s permeability and 
drug release, membrane rigidity, encapsulation efficiency, 
toxicity and stability (Bhardwaj et al. 2020).

Size reduction is beneficial for preventing ocular irritation 
and inflammation, enhancing pharmacokinetics/drug bio-
distribution by increased surface area to volume ratio, pro-
moting intracellular delivery and increasing retention time 
(Prabhu et al. 2010; Nowroozi et al. 2018). Several methods 
for modifying size reduction to meet desired parameters 
exist. They include sonication (bath and probe), microfluidi-
zation, high-pressure homogenization and extrusion through 
filters (Uchegbu and Vyas 1998). Sonication is the applica-
tion of sound energy to a liquid containing particles and 
has been known for its effects on lipid membranes to pro-
duce nano-sized vesicles (Essa 2010). Frequencies greater 
than 20 Hz are usually used so it is referred to “ultrasonica-
tion”. It is a commonly used method for effectual creation 
of smaller unilamellar vesicles from larger multilamellar 
vesicles in a lamellar dispersion (Zasadzinski et al.2011).

A major challenge that continually hinders progress in 
the clinical application of niosomes is the issue of their 
stability. As such, extensive research has gone into inves-
tigating formulation and process parameters that influence 
stability, evaluating niosomal characteristics such as par-
ticle size, polydispersity index, zeta potential, and entrap-
ment efficiency, which are often indicative of the relatively 
unchanged nature of a formulation (Seleci et al. 2016; Chen 
et al. 2019). Formulations containing charge inducers that 
ensure adequate electrostatic repulsion between vesicles to 

prevent aggregation, have shown promise (Bhardwaj et al. 
2020). Since the composition and manufacturing process 
affect product properties, a successful optimization of these 
parameters give great promise for finally arriving at nio-
somal formulations that maintain optimum characteristics 
throughout the cycle of preparation, movement, storage and 
final use. We will attempt to shed more light on how sonica-
tion in the formulation process could play an important role 
in optimizing pilocarpine hydrochloride niosomal properties 
that affect their bioavailability and stability. In this work, we 
formulate, optimize and evaluate the characteristics of pilo-
carpine hydrochloride-loaded niosomes prepared by ether 
injection method and determine the effect of sonication time 
on the above properties.

Materials

Methanol 99.8% (Fisher Scientific, UK), pilocarpine hydro-
chloride (HCl) (Sigma Aldrich, Brazil), deionized water, 
sodium chloride (Sigma Aldrich, Switzerland), potassium 
chloride (Sigma Aldrich, Spain), sodium hydrogen dibasic 
phosphate (Sigma Aldrich), potassium dihydrogen phos-
phate (Fisher Scientific, UK), Tween 60 from (CRODA, 
UK), Span 60 (CRODA, UK), cholesterol (Sigma Aldrich, 
USA), diethyl ether 99.7% (Sigma Aldrich, Germany), etha-
nol 99.8% (Fisher Scientific, UK). All reagents used were 
of analytical grade.

Methods

Reverse‑phase HPLC method validation

An Agilent Technologies 1220 Infinity II LC system was 
used in pilocarpine HCl quantification based on a method 
developed by Fan et al. (1996) and outlined by El Deeb et al. 
(2006). The mobile phase was a mixture of solution A, con-
taining 13.5 mL phosphoric acid, 3 mL trimethylamine and 
983.5 mL deionized water, and solution B as methanol in 
a ratio of 98:2. A standard Gemini® 5 μm C18 110A LC 
column 150 × 4.6 mm was used under ambient experimental 
conditions (18–21 °C). Flow rate was set at 1.5 mL/min and 
injection volume was 20μL. The UV absorbance wavelength 
of pilocarpine hydrochloride was determined to be 215 nm 
and as such, UV detection was done at this wavelength. Vali-
dation was carried out according to ICH guidelines Q2R1 
(2005) over a linearity range of 7.8125–500 µg/mL with 
coefficient of variation r2 = 0.9999. The method was pre-
cise with repeatability giving 1.1% RSD; mean % recovery 
ranging from 78.38 to 103.93%; and limits of detection and 
quantification at 0.158 μg/mL and 0.528 μg/mL respectively. 
All but one of the mean recovery RSD% values were under 
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the acceptable 15% upper limit for pharmaceutical analysis 
(Iyire et al. 2018). Recovery at the lowest concentration in 
the range gave the lowest recovery, informing the use of 
the indirect method for quantifying the amount of pilocar-
pine hydrochloride entrapped in the niosomes.

Compatibility studies

Compatibility studies between pilocarpine hydrochloride 
and cholesterol were previously done in the lab using FTIR 
and DSC and the data are already published by Alyami et al. 
(2020). DSC thermograms and FTIR spectra obtained estab-
lished the absence of drug-excipient interactions or potential 
for incompatibilities in the formulation.

Preparation of niosomes

Niosomes were prepared by ether injection method as 
described by Ravalika and Krishna (2017) with slight modi-
fications. Composition ratios are shown in Table 1. Ethanol 
was used instead of methanol and the drug was dissolved 
in the aqueous phase (phosphate buffer) as it was insolu-
ble in the organic solvents at the quantities used. Briefly, 
the surfactant(s) together with cholesterol were accurately 
weighed into a beaker. A mixture of 2 mL ethanol and 6 mL 
diethyl ether was added to the beaker and gently agitated to 
facilitate dissolution. The beaker was covered with parafilm 
to reduce solvent evaporation to the barest minimum. Upon 
complete dissolution, the solution was withdrawn using a 
syringe fitted with a 23G needle. To a sample vial contain-
ing 40 mg pilocarpine HCl dissolved in 10 mL phosphate 
buffer previously warmed to and maintained at 60–62 °C in 
a water bath, the solution was slowly injected at 0.8 mL/min 
while magnetically stirring at 100 rpm. Care was taken to 
ensure the solution was injected into the phosphate buffer 
and not above it. The resulting suspension was continually 

stirred for 45 min to allow for solvent evaporation and a well 
dispersed suspension.

Characterisation of niosomes

Visual inspection and morphology

The formulated suspensions were inspected for their physi-
cal appearance and colour. Redispersed niosomal suspension 
was viewed on a glass slide under a Carl Zeiss Analytical 
Microscope (Germany) using Axiovision software through 
lenses × 10, × 40 and × 100. The viewing was adjusted to 
acquire as clear an image as possible which was captured 
by an attached camera.

Particle size, polydispersity index (PDI) and zeta potential

These parameters were evaluated according to a procedure 
adopted from Sankhyan and Pawar (2013). Particle size and 
PDI were determined using dynamic light scattering (DLS) 
technique in a Brookhaven Zetasizer, model Nanobrook 
90plus zeta (USA) with BIC particle solutions software. 
Electrophoretic light scattering (ELS) technique in the same 
zetasizer was used to determine zeta potential at a tempera-
ture of 25 °C.

Entrapment efficiency

This was carried out as described by Verma et al. (2019) 
with slight modifications. 1 mL of the niosomal suspension 
was measured into a 1.5 mL capacity Eppendorf tube and 
placed in a cooling centrifuge, Prism R model from Lab-
net International Inc. (USA), ensuring proper centrifuge 
balance. The centrifugation parameters were set at 4 °C, 
11,000 × g force and run time of 1 h. After centrifugation, 
the supernatant was carefully drawn up into appropriately 
labelled containers and the separated pellets were washed. 
Washing was done by adding 1 mL of pH 7.4 phosphate 

Table 1   Niosomal for-
mulation compositions 
showing concentration of 
drug, surfactant(s) and choles-
terol used

Formulation Tween 60(mg) Span 60(mg) Cholesterol(mg) Pilocar-
pine HCl 
(mg)

K1 100 – 100 40
K2 – 100 100 40
K3 50 50 100 40
K4 50 – 100 40
K5 – 50 100 40
K6 25 25 100 40
K7 100 – 50 40
K8 – 100 50 40
K9 50 50 50 40
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buffer to the solute in the tube and mixing. The mixture 
was centrifuged for another 1 h and all the supernatant was 
carefully collected and stored in foil-wrapped sample vials 
to protect pilocarpine HCl from light degradation.

The quantity of total supernatant recovered was deter-
mined by measurement after which the supernatant was 
filtered and analyzed using an Agilent Technologies 1220 
Infinity II LC HPLC system to determine the amount of 
free unencapsulated drug. Indirect determination of EE was 
carried using Eq. (1):

Statistical analysis

GraphPad Prism software, version 8.4.3 from GraphPad 
(USA) was used in the statistical analysis of results obtained. 
Data was compared using one-way analysis of variance 
(ANOVA) and two-way ANOVA followed by Tukey or 
Sidak post-test as indicated. Differences with p < 0.05 were 
considered significant. All particle sizes, PDI and zeta 
potentials were taken in repetitions (n = 6) and were pre-
sented as mean ± standard deviation.

Results

Visual inspection and morphology

The formulated niosomal suspensions were milky/cloudy 
with a well dispersed fluid consistency. The formulations 
containing Span 60 were observed to be cloudier than those 
with Tween 60. On standing, a greater separation of the Span 
60 niosomal suspension was observed, with the settling of 
vesicles at the bottom of the vial and a clear aqueous phase 
above. Tween 60 niosomes did not show the same degree of 
separation as the supernatant above remained significantly 
cloudy (Fig. 1).

Nisosomes formed were spherical (Fig. 2D), correspond-
ing with other studies in which Span 60 and Tween 60 were 
used (Junyaprasert et al. 2012). Vesicles were unilamellar 
as is characteristic of niosomes formed by ether injection 
method. Span 60 niosomes were seen as ‘densely’ packed 
aggregates with a few disperse vesicles and having a greater 
proportion of visibly larger lamellar vesicles compared 
with Tween 60. For some Span 60 containing formula-
tions as seen in Fig. 2A, incompletely formed vesicles were 
observed.

Elongated vesicles and tubules were observed in some 
Span 60 formulations, Fig. 2B, as has also been reported by 

(1)
Total drug − Free drug

Total drug
× 100

Barakat et al. (2014), Marwa et al. (2013) and Rangasamy 
et al. (2008). The formulations containing Tween 60 were 
composed of smaller spherical disperse unilamellar vesicles, 
with some showing small crystal-like structures (Fig. 2C).

Particle size and polydispersity index

Tween 60 produced particle sizes generally smaller 
than those of Span 60. K2 had the largest size at 
1,229.87 ± 277.24 nm and was significantly larger than 
other formulations, p < 0.0001 (Table 2). The correspond-
ing K1 formulation containing Tween 60 had smaller sizes 
of 516.69 ± 30.22 nm. K4 (Tween 60:cholesterol, 0.5:1) 
was the smallest in size at 318.90 ± 26.97 nm, which was 
significantly different compared with other formulations 
p ≤ 0.0220.

Increased surfactant concentrations gave mostly larger 
sized vesicles for both Span 60 and Tween 60 niosomes, 
with Span 60’s influence being more significant, p < 0.0001 
(Table 2). Similarly, for corresponding concentrations of 
both surfactants, lower cholesterol concentrations in the 
composition ratio produced smaller sized niosomes. Upon 
drug loading, formulations containing Span 60 registered 
increase in particle size (p ˂0.0001, two-way ANOVA, 
Sidak’s post-test), presented in Table 3.

The PDI for all the blank formulations ranged from 0.16 
to as high as 2.52 (Table 2), although this high value was 
seen only in formulation K8. Other formulations had accept-
able PDIs from 0.16 to 0.51 indicating a homogenous disper-
sion (Rehman et al. 2018). K8 with 2.52 translated to a dis-
persion lacking homogeneity as seen by the distribution of 
particle sizes, some of which are up to twice the size of the 
lowest size recorded. Tween 60 formulations had the low-
est values and it can be said that smaller particle sizes gave 

Fig. 1   Visual observation of niosomal formulations K5 (0.5:1, Span 
60:cholesterol) and K4 (0.5:1, Tween 60:cholesterol) on standing
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better PDI (Kaur et al. 2016). For both the Tween 60 and 
Span 60 singly composed formulations, higher surfactant 
concentrations gave lower PDIs, an observation in line with 
that made by Sharma et al. (2016). By an analysis using 
one-way ANOVA followed by Tukey post-test, K8 showed 
significant differences (p ≤ 0.0002) from the other formu-
lations. Following drug loading, Span-only niosomes were 

seen to have generally higher PDIs, only running as low as 
0.76 which is typically not considered desirable (Table 3).

Zeta potential

In this study, Tween 60 containing formulations had lower 
values (p < 0.0001, one-way ANOVA followed by Tukey 
post-test) than their counterpart Span 60 vesicles. As 

Fig. 2   Micrographs of drug 
loaded formulations A 
(K8) × 100 showing malformed 
niosomes, B (K2) drug-
loaded × 100 showing tubules, 
C (K4) blank × 40 showing 
crystal structure, and D (K4) 
blank × 10 showing well formed 
niosomes

Table 2   Summary of particle 
size analysis and PDI for blank 
niosomes

All formulations gave homogenous dispersions except K8 (Span 60:cholesterol, 1:0.5) with a PDI greater 
than 0.7 showing statistically significant differences (p < 0.0001) by one-way ANOVA. Data is presented as 
mean of six determinations ± standard deviation
* 0.05; 0.01 to 0.05 - Significant
** ≤ 0.01; 0.001 to 0.01 – Very significant
***  ≤ 0.001; 0.0001 to 0.001 – Extremely significant
****  ≤ 0.0001 – Extremely significant

Blank formulation Particle size (nm) 
(mean ± SD)

Polydispersity index 
(mean ± SD)

K1; Tween 1: Chol 1 516.69 ± 30.22 0.21 ± 0.14
K2; Span 1: Chol 1 1229.87 ± 277.24 0.16 ± 0.12
K3; Tween 0.5/Span 0.5: Chol 1 556.56 ± 76.73 0.23 ± 0.21
K4; Tween 0.5: Chol 1 318.90 ± 26.97 0.36 ± 0.08
K5; Span 0.5: Chol 1 819.87 ± 232.99 0.51 ± 0.69
K6; Tween 0.25/Span 0.25: Chol 1 730.73 ± 91.69 0.47 ± 0.18
K7; Tween 1: Chol 0.5 484.49 ± 15.00 0.28 ± 0.18
K8; Span 1: Chol 0.5 535.15 ± 125.84 2.52 ± 1.88****
K9; Tween 0.5/Span 0.5: Chol 0.5 844.22 ± 112.79 0.24 ± 0.15
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shown in Table 3, K2 (Span 60:cholesterol, 1:1) recorded 
the highest zeta potential of − 54.66 ± 4.26 mV, while K8 
(Span 60:cholesterol, 1:0.5) had a slightly lower value of 
− 41.36 ± 5.76 mV and K5 (Span 60:cholesterol, 0.5:1) gave 
− 26.68 ± 10.93 mV, just about half that of K2's. This same 
trend was observed in the Tween 60 containing formulations 
with K1 giving zeta values of − 24.16 ± 3.38 mV, K7 giv-
ing − 13.06 ± 2.66 mV, and K4 giving − 10.61 ± 3.59 mV.

Zeta potential was seen to increase (more negative) with 
an increase in surfactant ratio in Span 60 formulations from 
− 22.68 ± 8.2 mV in K5 to − 54.66 ± 4.26 mV in K2. Tween 
60 as well as the co-surfactant formulations followed the 
same trend. For the surfactant combinations, K3 with equal 
surfactant:cholesterol ratio gave the highest zeta value of 
− 33.13 ± 10.71 mV, while K9 with half the cholesterol con-
centration giving a slightly lower − 26.19 ± 8.37 mV and 
K6 with half the surfactant concentration giving the lowest 
value at − 22.68 ± 8.2 mV. These results are a seemingly 
good demonstration of the effects of different surfactant 
types as has been described by other researchers (Bnyan 
et al. 2018). Summarily, K2 showed statistically signifi-
cant differences in zeta potential value (p ≤ 0.001, one-way 
ANOVA followed by Tukey test) compared to other formu-
lations except K8 where there was no significant difference 
(p > 0.05), which is understandable as it had the same Span 
60 concentration as K2.

Entrapment efficiency

K1 containing equal Tween 60 and cholesterol gave the high-
est EE% of 34% compared with K2 having Span 60 which 
gave 21.9%, Table 3. EE was seen to increase for Tween 60 
formulations from 20.6% in K4 to 34% in K1 as surfactant 
concentration increased, translating to a larger aqueous 
space so more drug uptake. The co-surfactant formulations 

followed the same trend as K3 with a higher total surfactant 
concentration produced a slightly higher EE, 26.5% than 
K6, 24.2%.

Comparing K1 and K7, K2 and K8 and K3 and K9 to 
demonstrate the effect of cholesterol concentration, the 
higher cholesterol containing formulations all gave higher 
EE. With half the cholesterol concentration, formulations K7 
with Tween 60, K9 combining Span 60 and Tween 60 and 
K8 with Span 60 gave EE of 24.2%, 23% and 18.3% respec-
tively. The effect of increase in cholesterol concentration 
was clearly observed when comparing K1 and K7, where 
K1 having the higher concentration gave an EE of 34% and 
K7 gave 24.2%.

In these experiments, as with results obtained by Palozza 
et al. in (2006) using β-carotene niosomes, EE did not cor-
relate with size particularly with Tween 60 formulations as 
K1 with the smallest size had a higher EE than K2 with a 
much larger size. However, the size and EE for K2 and K5 
containing Span 60 did  correlate, with the larger K5 show-
ing the higher EE.

Effects of sonication on niosomal properties

K7 containing Tween 60 was chosen to evaluate the effect 
of sonication on the niosomal dispersion because it gave 
good cumulative properties in terms of particle size, poly-
dispersity index and zeta potential. For good comparability, 
K8 containing the same concentrations of cholesterol and 
surfactant, in this case Span 60 was also chosen. This was 
to determine any possible influence the type of surfactant 
would have on the effect of sonication.

Sonication was carried out using a Fisherbrand bath 
sonicator and the sample vial was placed in an ice bath to 
maintain a cool temperature as the process usually results in 
generation of heat. This process was described by Mavaddati 
et al. (2015) as they investigated its effects on the physical 

Table 3   Summary of particle size analysis, PDI, zeta potential (data 
is presented as mean ± SD for 6 determinations) and entrapment 
efficiency for pilocarpine HCl-loaded niosomes. K2 (Span 60:cho-

lesterol, 1:1) showed statistically significant differences (****; 
p < 0.0001, one-way ANOVA) in zeta potential compared with other 
formulations except K8 (Span 60:cholesterol, 1:0.5)

PDI for K2 was also significantly larger than other formulations except K5 (Span 60:cholesterol, 0.5:1) (p < 0.0007)

Drug loaded Formulation Particle size (mean ± SD) Polydispersity 
index (mean ± SD)

Zeta Potential (mV) 
(mean ± SD)

% EE using 
free drug

K1; Tween 1: Chol 1 294.37 ± 14.73 0.09 ± 0.07 − 24.16 ± 3.38 34.0
K2; Span 1: Chol 1 1124.61 ± 389.28 2.43 ± 1.73*** − 54.66 ± 4.26**** 21.9
K3; Tween 0.5/Span 0.5: Chol 1 520.76 ± 37.01 0.25 ± 0.27 − 33.13 ± 10.71 26.5
K4; Tween 0.5: Chol 1 335.42 ± 18.23 0.17 ± 0.06 − 10.61 ± 3.59 20.6
K5; Span 0.5: Chol 1 1644.92 ± 254.23 1.69 ± 1.20 − 26.68 ± 10.93 25.1
K6; Tween 0.25/Span 0.25: Chol 1 713.77 ± 94.11 0.28 ± 0.15 − 22.68 ± 8.20 24.2
K7; Tween 1: Chol 0.5 433.41 ± 41.58 0.07 ± 0.03 − 13.06 ± 2.66 24.2
K8; Span 1: Chol 0.5 1007.81 ± 178.95 0.76 ± 1.00 − 41.36 ± 5.76 18.3
K9; Tween 0.5/Span 0.5: Chol 0.5 1054.69 ± 157.68 0.25 ± 0.09 − 26.19 ± 8.37 23.0
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character of niosomes of dexamethasone. It is based on the 
principle of generation and oscillation of formed bubbles 
i.e., cavitation in liquids by ultrasound mechanical waves. 
Application of a frequency of resonant size leads to the non-
linear oscillation and eventual collapse of bubbles with sizes 
near those of the frequency applied. The collapse results in 
generation of extremely high temperatures, shock waves and 
high pressures. Larger vesicles are then randomly but uni-
formly broken down by the ultrasonic high energy to small 
discoid fragments which fold up to form thermodynamically 
stable vesicles.

Visual inspection and morphology

For both formulations, the separation of solvent and solute 
phases was more evident and marked by a sediment below 
and a clear phosphate buffer solution above. Large unilamel-
lar vesicles were produced for both formulations as earlier 
noted. Especially for K8 containing Span 60, longer soni-
cation time and the associated particle size reduction led 
to the vesicles becoming more discrete. K7 with Tween 60 
also behaved in this way but to a lesser degree that could be 
observed. De et al. (2018) made similar observations after 
probe sonicating niosomes of temozolomide.

Particle size and polydispersity index (PDI)

Particle sizes generally reduced after sonication with a 
more significant decrease after 60 min for both Span 60 
and Tween 60 formulations (Table 4). With no sonica-
tion, K7a containing Tween 60 had an average size of 
338.74 ± 14.37 nm only reducing slightly after 30 min of 
sonication (K7b) to 334.94 ± 19.80 nm. After 60 min (K7c), 
there was a more noticeable decrease in particle size to 
270.35 ± 17.21 nm. For K8a, with no sonication, average 
size was 1,900.54 ± 610 nm. After 30 min of sonication 
(K8b), there was a decrease to 1,308.55 ± 310.90 nm and 
sonication for 60 min (K8c) resulted in a 75.6% decrease 

in size to 462.89 ± 42.47 nm. The difference in size of K8a 
and K8b from the other formulations and between them-
selves was statistically significant (p < 0.0001, by two-way 
ANOVA followed by Tukey test). There was no statisti-
cally significant difference between K8c and K7a, b and 
c (p > 0.05) as the sizes were close in range as shown in 
Table 4.

As shown in Table 4 above, there was not much change 
in the PDI of the K7 through the sonication process. For 
K8 containing Span 60, the PDI was seen to consistently 
reduce in value from 0.41 with no sonication (K8a) to 
0.27 60 min after sonication (K8c). Although changes in 
PDI values can be seen, they were not considered statisti-
cally significant (p > 0.05, one-way ANOVA followed by 
Tukey test).

Zeta potential

As previously determined in non-sonicated drug-loaded 
vesicles, the Span 60 containing formulation had a higher 
(more negative) zeta potential than its Tween 60 counter-
part. For K8, zeta potential consistently increased from 
-33.34 mV at 0 min of sonication to − 43.94 mV at 30 min 
to − 51.49 at 60 min, Table 4. Tween 60 containing K7 
showed an increase in zeta potential from − 14.39 mV prior 
to sonicating to − 18.92 mV after 30 min. It remained 
significantly unchanged after 60  min at a potential of 
− 17.78 mV.

Entrapment efficiency

For K7, EE was seen to increase from 26.5% at no sonication 
to 42.7% after sonicating for 30 min, Table 4. On further 
sonication up to 60 min as seen with K7c, EE reduced to 
35.8%. For K8 a decrease from 23% before sonication to 
20% after 30 min of sonication, followed by a statistically 
insignificant increase to 21.6% after 60 min was observed.

Table 4   Effects of sonication 
on niosomal character from 
0-60 min

Data presented as mean ± SD where indicated are for 6 determinations. K8a and b showed statistically sig-
nificant differences (****; p < 0.0001, two-way ANOVA)

Formulation Particle size (nm) (mean ± SD) Polydisper-
sity index 
(mean ± SD)

Zeta poten-
tial (mV) 
(mean ± SD)

%EE using 
free drug

K7a No sonication 338.74 ± 14.37 0.18 ± 0.05 − 14.39 ± 8.55 26.5
K7b 30 min 334.94 ± 19.80 0.18 ± 0.02 − 18.92 ± 7.53 42.7
K7c 60 min 270.35 ± 17.21 0.20 ± 0.11 − 17.78 ± 7.62 35.8
K8a No sonication 1900.54 ± 610.39**** 0.41 ± 0.52 − 33.34 ± 12.91 23.0
K8b 30 min 1308.55 ± 310.90**** 0.30 ± 0.07 − 43.94 ± 12.68 20.6
K8c 60 min 462.89 ± 42.47 0.27 ± 0.08 − 51.49 ± 6.10 21.6
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Discussion

Effect of Surfactant and cholesterol concentration 
on niosomal properties

The use of pilocarpine HCl is a long-standing therapeutic 
strategy in the management of open-angle glaucoma and 
acute angle-closure glaucoma. As a hydrophilic drug, the 
corneal epithelium being lipophilic is the major barrier to 
its permeation after topical administration, retarding the 
passage of up to 90% of administered drug (Loftsson et al. 
2008). It is still most widely available as conventional oph-
thalmic solutions for topical administration in drops, as well 
as suspensions and gel-based formulations. The fundamental 
challenges with these dosage forms are the associated poor 
ocular retention, limited precorneal absorption and loss due 
to nasolacrimal drainage, necessitating the need for frequent 
administrations which negatively affect patient compliance 
and ultimately, treatment outcomes (Gaudana et al. 2009). 
Niosomes have shown great potential for addressing these 
challenges in ocular delivery due to the nature of their struc-
ture and composition which offers the advantage of being 
biodegradable, biocompatible and non-immunogenic (Sahoo 
et al. 2014).

The cloudy appearance of formulated niosomes was 
typical and consistent with reports by Shah et al. (2020). 
Clear differences in the degree of separation on standing 
can be attributed to the intrinsic physical character of the 
surfactants. Span 60 being more hydrophobic (HLB value 
of 4.7) than Tween 60 (HLB value of 14.9) would exhibit 
less interaction with the aqueous phase. It is well known that 
the method of preparation influences the type of resulting 
niosomes. The unilamellar vesicles obtained were consist-
ent with the results obtained by Marwa et al. (2013) who 
formulated diclofenac sodium niosomes using ether injection 
method. As suggested by Uchegbu and Vyas (1998), incom-
pletely formed bilayers could be the effect of residual etha-
nol from the formulation process which causes an additional 
phase transition, thus affecting membrane rigidity. It could 
also be attributed to the formulation having a higher ratio of 
cholesterol which is known to have great impact on bilayer 
integrity. Crystals observed in Tween 60 formulations could 
be cholesterol or Tween 60; determining this conclusively 
will require other characterization techniques that show the 
interaction among various niosomal constituents like Fourier 
transform infrared spectroscopy (FTIR), X-ray diffraction 
analysis or differential scanning calorimetry (DSC) (Van-
kayala et al. 2018; Taymouri and Varshosaz 2016; Ruckmani 
and Sankar 2010).

Particle sizes contrasted with those previously obtained 
by Yoshioka et al. (1994) and a number of other research-
ers (Ghafelehbashi et al. 2019; Nowroozi et al. 2018). They 

had established that the surfactant with a higher HLB value 
and larger head group resulted in vesicles of larger sizes, 
with those of Tween 60 (14.7) being greater than Span 60 
(4.7). Results obtained here where Span 60 formed larger 
sized niosomes than Tween 60 have however also been noted 
by Junyaprasert et al. (2012) with niosomes of ellagic acid, 
Bayindir and Yuksel (2010) with paclitaxel, and Ruckmani 
and Sankar (2010) with zidovudine. In their study with 
Tween 80 and Span 80, Nadzir et al. (2017) showed that 
lower HLB values of surfactants composition could indeed 
result in larger sized niosomes. Basiri et al. (2017) noted that 
increased Span 60 in the surfactant ratio of Span 60:Tween 
60 combination increased particle size; on the contrary the 
formulation with the highest total quantity of surfactant as 
well as highest Tween 60 ratio in the experiment gave the 
smallest vesicles. This was said to be influenced by the larger 
hydrophilic head group and high HLB value of Tween 60, 
while the larger sizes were as a result of Span 60 being more 
hydrophobic and having a higher critical packing param-
eter (CPP) than Tween 60. Generally, higher concentrations 
of both components gave larger sized vesicles. Gugleva 
et al. (2019) made the same observations with niosomes 
of doxycycline, as well as Taymouri and Varshosaz (2016) 
with carvedilol nano-niosomes. According to Gugleva et al. 
(2019), increased surfactant concentration would occupy a 
larger membrane area together with the aryl chain leading 
to chain distortion, increased membrane fluidity and vesicle 
size.

Changes in cholesterol concentrations seemed to have 
more impact on particle size than changes in surfactant 
concentrations, as well as more effect on Span 60 formula-
tions than Tween 60 formulations similar to observations 
made by Akbari et al. (2015) and Nowroozi et al. (2018). 
This was attributed to the hydrophilicity of Tween 60 and 
the increase in cholesterol being insufficient in affecting the 
hydrophobicity of the bilayer. Comparing formulations with 
combined and single surfactant(s), the effect of surfactant 
type can be clearly seen. For the three groups of cholesterol 
concentrations, all the Tween 60 containing formulations 
had the smallest particle sizes, the co-surfactant formula-
tions were larger and the Span 60 only formulations had the 
largest sizes. This is similar to the observations made by 
Naderinezhad et al. (2017).

Drug loading would ideally cause an increase in particle 
size as depicted by most of the Span 60 formulations which 
is in line with results that have been reported by various 
authors (Kaur et al. 2016; Taymouri and Varshosaz 2016). 
It is due to space taken up by the added drug molecules after 
drug loading, although others have also recorded no change 
in particle size due to drug loading (Tavano et al. 2013). 
In contrast, a slight decrease for Tween 60 formulations 
was observed with K1 although exhibiting the highest EE 
showing a reduction in particle size. A possible reason for 
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this is that despite pilocarpine hydrochloride being a hydro-
philic drug and preferentially entrapped in the aqueous core, 
some of the drug could be deposited in the hydrophobic 
bilayer as a result of hydrophobic/hydrophobic interactions 
between the drug, cholesterol and surfactants as explained 
by Ghafelehbashi et al. (2019) in the niosomal encapsula-
tion of cephalexin. Studies conducted by García-Manrique 
et al. (2020) corroborated these findings when they showed 
that hydrophilic drugs sometimes interact with the lipid 
bilayer membrane and the drug is incorporated there lead-
ing to reduced surfactant curvature and a consequent reduc-
tion in vesicle size. Similar results were reported by Tavano 
et al. (2013) with doxorubicin niosomes where particle size 
reduced after drug loading which was attributed to elec-
trostatic attractions between the drug and bilayer causing 
increased vesicle cohesion, a closely packed membrane con-
figuration and increased membrane curvature. Akbari et al. 
(2013) with ciprofloxacin-loaded nano-niosomes, and Lu 
et al. (2019) also noted the same reduction in size.

Zeta potential measures particle surface charge. The 
technique employed here was electrophoretic light scat-
tering (ELS) which measures electrophoretic mobility, a 
function of zeta potential. Electrophoretic mobility is the 
velocity of particles moving through an electric field and 
is obtained by determining the frequency change of laser 
light scattered as they move (Wilson et al. 2001). Although 
pilocarpine HCl is a cationic drug, zeta potentials deter-
mined for all formulations regardless of cholesterol con-
centration, surfactant type and concentration were indica-
tive of negatively charged vesicles. This could be due to 
cholesterol which inputs a negative surface charge on the 
vesicle as demonstrated by Farmoudeh et al. (2020) with 
methylene blue-loaded niosomes. They also showed that 
higher cholesterol concentrations resulted in increased zeta 
potential which supports the results obtained here. Manos-
roi et al. (2010) also confirmed the negative charge induc-
ing effect of cholesterol in their study with niosomes of the 
cationic drug gallidermin and attributed it to uneven polar-
ity distribution of cholesterol’s hydroxyl group. Increased 
surfactant ratio saw an increase in electrical conductivity. 
This is in accordance with determinations made by Dukhin 
and Goetz (2006) and Smith and Eastoe (2013) in their 
studies related to conductivity of surfactants in non-polar 
liquids.

The higher negativity of the Span 60 formulations may 
be attributed to ionic dissociation with resultant ionic impu-
rities as suggested by Dukhin and Goetz (2006) and Guo 
et al. (2010). Results by Sadeghi et al. (2020) implicated the 
phosphate buffer as a contributor to the negative charge on 
the particles. They stated that in phosphate buffer, niosomal 
formulations of cationic lysozymes were surrounded by lay-
ers of ‘counter-ions’ with opposite charges to those of the 
niosomes. The implication of these zeta potential values is 

that on long term storage, the Span 60 formulations would 
be expected to show less tendency for aggregation, hence 
greater stability. This is because having higher values, there 
is more electrostatic repulsion and stabilization resulting in 
a lesser tendency for particle aggregation in the colloidal 
system (Seleci et al. 2016; Uchegbu and Vyas 1998). These 
results are supported by those obtained by Gugleva et al. 
(2019) where zeta potentials were negative across board, 
with Span 60 formulations being more negative than equiva-
lent Tween 60 formulations.

Generally, zeta potentials of greater than − 30  mV 
or + 30 mV are said to be acceptable indicators of good sta-
bility (Cho et al. 2013; Khan et al. 2017). Zeta potential and 
associated stability could be improved particularly for the 
Tween 60 formulations by adding a negative charge inducer 
such as dicetyl phosphate (DCP) that has been widely 
applied in niosomal formulations and has been established 
to be effective in improving stability (Okore et al. 2011; 
Sezgin-Bayindir and Yuksel 2012; Nayak et al. 2020).

Low EE values were possibly due to the hydrophilic 
nature of pilocarpine hydrochloride as it is well-established 
that better entrapment efficiency is generally achieved with 
more hydrophobic drugs than hydrophilic drugs (Hashemi 
Dehaghi et al. 2017; Bhardwaj et al. 2020). With the hydro-
philic drug being soluble in the aqueous phase, during vesi-
cle formation the amount of aqueous phase encapsulated 
in the core is much less than that outside the lipid bilayer, 
resulting in lower percentage entrapment compared with 
hydrophobic drugs that have preference for the bilayer (Joshi 
et al. 2020). It is also known that for hydrophilic drugs, the 
Tween series of surfactants give the best entrapment effi-
ciency as seen from work done by Kumar and Rajeshwarrao 
(2011). Tween 60 possesses a larger hydrophilic head with 
long alkyl chain length and hydrophilic drugs are typically 
entrapped in the polar aqueous core, so it enables more solu-
bilization and entrapment of the drug (Naderinezhad et al. 
2017; Manosroi et al. 2003). This was seen in work done by 
Ghafelehbashi et al. (2019) with cephalexin and Gugleva 
et al. (2019) with doxycycline where Tween 60 alone gave 
a higher EE compared with Span 60 alone. Span 60 on the 
other hand although having the same chain length (C18) as 
Tween 60 has a smaller hydrophilic head group so does not 
take up as much of the hydrophilic drug (Bhardwaj et al. 
2020; Wang and Gao 2018). Manosroi et al. (2003) studied 
the characteristics of vesicles formed with various non-ionic 
surfactants and cholesterol mixtures, showing that the Tween 
with a C18 alkyl chain and a higher HLB value gave a better 
EE than the equivalent C18 Span due to a higher hydration 
of the polar head of the Tween. Another reason suggested 
by Gugleva et al. (2019) is that as the surfactant:cholesterol 
molar ratio increased, the cholesterol saturation limit of Span 
60 was reached resulting in bilayer disruption and drug loss. 
For Tween 60 due to its high HLB, this saturation limit was 
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not reached. A number of researchers have noted that the use 
of the most suitable surfactant and cholesterol in a 1:1 ratio 
was desirable in achieving the needed enhanced bilayer com-
pactness and increased entrapment efficiency (Balakrishnan 
et al. 2009; Barakat et al. 2014; Bayindir and Yuksel 2010). 
This was, however, not the case for the Span 60 containing 
counterpart comparing K2 having more surfactant than K5 
but EE of 21.9% and 25.1%, respectively.

Co-surfactant formulations gave better EE than those with 
only Span 60 and were second only to those with Tween 60 
alone, demonstrating well the effect of surfactant combi-
nation. Naderinezhad et al.(2017) had similar results with 
Tween 60, Tween 60/Span 60 combination and Span 60 giv-
ing the highest to lowest EE of doxorubicin and curcumin in 
that order. In our experiments, there was, however, an excep-
tion to this trend in the group containing half the surfactant 
concentration, with K5 containing Span 60 alone having a 
higher EE than the combination but still maintaining a lower 
EE than Tween 60 alone. From results obtained by Barakat 
et al. (2014) combining a hydrophilic and hydrophobic non-
ionic surfactant in niosomal formulations of hydrophilic 
vancomycin hydrochloride, increased EE with co-surfactant 
was as a result of integration into the bilayer structure by 
mainly hydrophobic molecular interactions of the surfactants 
alkyl tails as well as hydrogen bonding between the closely 
packed polar head groups. This resulted in increased hydro-
philicity of the bilayer, hence the increased entrapment of 
hydrophilic vancomycin.

Cholesterol gave more stability to the bilayer, increas-
ing rigidity and reducing permeability (as Tweens typically 
need cholesterol to form stable vesicles), hence more drug 
is retained in the vesicle (Manosroi et al. 2003). Hashemi 
Dehaghi et  al. (2017) made similar observations with 
hydrophilic dorzolamide-loaded niosomes. Basiri et  al. 
(2017) demonstrated the role of increased concentrations 
of cholesterol in improving EE in niosomes. It was noted 
to do this by increasing the chain order of bilayers in liquid 
state, thereby abolishing the phase transition of the system. 
The conclusion can be drawn thus, that in using the same 
surfactant and cholesterol concentration ratio in K1, it was 
sufficient to increase cohesion of non-polar portions in the 
bilayer thereby inhibiting drug leakage (Di Marzio et al. 
2011). This was particularly observed in the difference in EE 
be Tween K1 and K7 as highlighted above. Similar results 
were obtained by Guinedi et al. (2005) with acetazolamide-
loaded niosomes prepared by reverse-phase evaporation and 
thin film hydration.

Effect of sonication on niosomal properties

It was established that indeed sonication reduced vesicle 
size and that longer durations produced smaller vesicle 
sizes. This is in line with reports on the effect of sonication 

observed by Sezgin-Bayindir and Yuksel (2012) who 
showed that optimum size reduction in their experiment 
was obtained after probe sonication for 60 min. For Tween 
60 niosomes which had a generally lower size range, there 
was overall a smaller degree of size reduction than the Span 
60 formulation. This can be attributed to the fact that the 
Tween 60 formulation had more thermodynamic stability 
and achieved equilibrium quickly with minimal size reduc-
tion compared to the Span 60 formulation (Diskaeva 2018). 
As size reduced, the PDI was also seen to reduce, indicating 
that the dispersion became more homogenous with sonica-
tion. Nowroozi et al. (2018) obtained similar results after 
bath sonication of niosomal formulations prepared with 
Span 60, as well as other studies investigating the effects of 
sonication by Akbari et al. (2013), Pereira-Lachataignerais 
et al.(2006), and Yeo et al. (2019).

Overall, there was more impact on the zeta potential of 
the Span 60 formulation than the Tween 60 formulation. 
This is possibly due to the occurrence of only minimal 
changes in size with the Tween 60 formulation, suggesting 
that there might be some relationship between changes in 
particle size and zeta potential (Shi et al. 2018). Formula-
tion K8's behaviour was explained by Nakatuka et al. (2015) 
stating that smaller particles are more easily affected by sur-
rounding particles and random fluid flow movement in a 
Brownian diffusion effect, hence there is easy collision with 
other particles. Smaller particles therefore have a relatively 
greater surface charge than larger particles. These results 
correspond to those reported when Akbari et al. (2013) that 
determined the effect of increased sonication durations on 
zeta potential, noting an increase in potential with increase 
in time as particle size reduced.

Ultrasonic effects on the lipid membrane result in open-
ing and shutting of niosomes in a process of reformula-
tion explained by Widayanti et al. (2017), so more drug 
is entrapped within the aqueous core with each opening. 
This can account for the increase in EE with K7. Decrease 
after 60 min is similar to what Mavaddati et  al. (2015) 
observed and was probably due to vesicle destruction lead-
ing to drug leakage (Khan et al. 2017; Zhang et al. 2020). 
This trend was also observed by Anbarasan et al. (2013) 
with capecitabine-loaded niosomes. Considering that drug 
loading increased particle size for K8, the reduced EE after 
30 min of sonicating could be as a result of smaller vesicles 
forming similar to observations by Shete et al. (2012). Some 
studies have shown progressive reduction in EE with longer 
sonication times due to reduction in particle size (Nayak 
et al. 2020). However, it was noted that further sonication 
to 60 min slightly increased EE although there was a contin-
ued decrease in size. A possible explanation for this is that 
along with the dispersion gaining thermodynamic stability, 
the bath sonication process also facilitates hydration by the 
aqueous buffer containing pilocarpine HCl so encourages 
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drug entrapment (Mavaddati et al. 2015). A similar effect 
on EE attributed to increased hydration time was noted by 
(Yeo et al. 2019).

The two formulations were observed to exhibit opposite 
trends; the K7 increasing after 30 min and then decreas-
ing after 60 min, and K8 the reverse. A possible reason for 
this can be tied to the characteristics of the surfactants, with 
Span 60 known to form a more cohesive/stable lipid mem-
brane with cholesterol due to its hydrophobicity compared 
to Tween 60, hence would be less likely to be destroyed 
under the same conditions as Tween 60 formed membrane 
(Bagheri et al. 2014).

Conclusion

Tween 60 formulations gave more homogenous dispersions, 
more desirable particle sizes for ocular delivery and bet-
ter EE than Span 60 formulations. Sonication was seen to 
reduce particle size, improve PDI and increase zeta poten-
tial by approximately 28% and EE by 61%, with optimum 
sonication time for this study pegged at 30 min. These 
results are specific to the conditions used in this experi-
ment and cannot be exhaustively and broadly generalized 
as there were no replicates. They, however, suggest that in 
addition to carefully selecting and varying surfactant types 
and concentrations, it is possible to use sonication time as 
a process parameter for formulating optimized niosomes of 
hydrophilic drugs with properties that indicate homogene-
ity, a low propensity for aggregation and high entrapment 
efficiency. Further work would be required to exhaustively 
determine the influence surfactant type has on the effect of 
sonication on entrapment efficiency. This could be useful in 
overcoming stability challenges and maximally exploiting 
niosomes advantages of greater permeability, longer ocular 
retention, and drug protection from metabolic degradation 
over conventional formulations and systems for pilocarpine 
hydrochloride delivery to the eye.
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