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Combining multi‑site magnetic 
resonance imaging with machine 
learning predicts survival 
in pediatric brain tumors
James T. Grist1, Stephanie Withey1,2,3, Christopher Bennett1, Heather E. L. Rose1,2, 
Lesley MacPherson4, Adam Oates4, Stephen Powell1, Jan Novak2,5,6, Laurence Abernethy7, 
Barry Pizer8, Simon Bailey9, Steven C. Clifford10, Dipayan Mitra11, Theodoros N. Arvanitis1,2,12, 
Dorothee P. Auer13,14, Shivaram Avula7, Richard Grundy15 & Andrew C. Peet1,2*

Brain tumors represent the highest cause of mortality in the pediatric oncological population. 
Diagnosis is commonly performed with magnetic resonance imaging. Survival biomarkers are 
challenging to identify due to the relatively low numbers of individual tumor types. 69 children with 
biopsy‑confirmed brain tumors were recruited into this study. All participants had perfusion and 
diffusion weighted imaging performed at diagnosis. Imaging data were processed using conventional 
methods, and a Bayesian survival analysis performed. Unsupervised and supervised machine learning 
were performed with the survival features, to determine novel sub‑groups related to survival. Sub‑
group analysis was undertaken to understand differences in imaging features. Survival analysis 
showed that a combination of diffusion and perfusion imaging were able to determine two novel 
sub‑groups of brain tumors with different survival characteristics (p < 0.01), which were subsequently 
classified with high accuracy (98%) by a neural network. Analysis of high‑grade tumors showed a 
marked difference in survival (p = 0.029) between the two clusters with high risk and low risk imaging 
features. This study has developed a novel model of survival for pediatric brain tumors. Tumor 
perfusion plays a key role in determining survival and should be considered as a high priority for future 
imaging protocols.

Brain tumors represent one of the most common causes of pediatric and adult oncological mortality. Particular 
challenges are faced in clinical pediatric oncology research due to the highly heterogeneous nature of pediatric 
tumors, combined with the relative rarity of the disease in the general  population1. Despite this, multi-center 
studies have allowed impressive advances to be made in the understanding of the major types of children’s brain 
tumors and these are starting to change clinical  practice2,3. The majority of studies have relied on analysis of 
tumor tissue; however, medical imaging is becoming increasingly able to probe tissue properties and has the 
advantage that measurements are made directly in vivo. This is particularly important for probing the tissue 
microenvironment since quantities such as perfusion cannot be readily determined in tissue samples. Imaging 
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therefore has the potential to provide new biomarkers of prognosis which can be obtained early and throughout 
the patient journey.

Recently, an increased understanding of pediatric brain tumor biology has enabled more accurate prognos-
tication for individual patients. The findings have largely been based on molecular genetic markers identified in 
tissue. For example, in medulloblastoma, biological subgrouping has shown that WNT subgroup tumors have an 
excellent prognosis whereas group 3 tumors and subsets of SHH tumors have an inferior  outcome4. However, in 
even rarer tumors, such as atypical rhabdoid tumors (ATRT), or midline gliomas, where biopsy derived tissue is 
challenging to acquire, it is more difficult to perform molecular subtyping  studies5. Therefore, clinical studies have 
been more difficult to perform in meaningful numbers for many such rare tumor types, and the small biopsies 
taken may not provide a representative view of the tumor, particularly its microenvironment.

Medical imaging is an important diagnostic aid for brain tumors, since it is non-invasive and can include 
the whole tumor and surrounding tissue. It is also capable of probing the tumor microenvironment in vivo, 
improving our understanding of the in vivo neovascularization and cellularity of the tumor, as well as surround-
ing cerebral tissue through perfusion and diffusion imaging,  respectively6,7. However, as mentioned above for 
biological studies, recruiting large numbers of patients for imaging studies is challenging, and often requires 
large multi-center trials to glean meaningful results. In spite of this, these non-invasive modalities represent 
highly attractive methods to derive crucial information surrounding the diagnosis and progression of tumors.

Diffusion imaging is available on every major commercial MRI scanner and is routinely used to assess brain 
 tumors8. Apparent diffusion coefficient (ADC) maps represent the speed of water motion in the tissue and this 
correlated cellularity. Perfusion imaging is often acquired either with dynamic susceptibility contrast (DSC) or 
arterial spin labelling (ASL)  techniques9,10. DSC imaging is undertaken through the introduction of an exogene-
ous contrast agent containing gadolinium, and the passage of this bolus through the cerebral vasculature is rapidly 
imaged and post-processed to form quantitative cerebral blood volume and flow  maps11. ASL is an approach for 
measuring cerebral perfusion, harnessing the use of radiofrequency tagging of blood in the supplying vessels to 
create blood flow-based image  contrast12. This technique is increasing in popularity due to the removal of the 
need for a gadolinium containing contrast agent bolus, which may be retained within the  brain13.

Studies have shown that diffusion and perfusion imaging are able to discriminate between pediatric tumor 
types in vivo, with high cellularity and perfusion in high grade tumors, and vice versa for low-grade14,15. This data, 
in turn, has informed survival analysis models using traditional methods such as Cox-regression to derive signifi-
cant covariates from imaging  data16. In particular, ADC mean, elevated cerebral blood flow, and image derived 
texture parameters have been found to be significant factors in long-term pediatric brain tumor  survival7,17,18. 
However, studies which combine these imaging techniques are lacking. Moreover, the use of machine learning 
has not been implemented in survival analysis of these data types, despite being so successful in improving 
diagnosis from molecular and imaging data.

In this study we have therefore taken a novel approach to the understanding of risk and survival in pediatric 
brain tumors through combining diffusion and perfusion MRI and combining this with both supervised and 
unsupervised machine learning to determine key imaging derived risk factors and novel prognostic groups.

Methods
Patient recruitment and imaging. 69 participants with suspected brain tumors (medulloblastoma 
(N = 17), pilocytic astrocytoma (N = 22), ependymoma (considered high grade, N = 10), other tumors (N = 20) 
are found in Supplementary Document 1. They were recruited from four clinical sites in the United Kingdom 
(Study approved by regional ethics committee, ethics reference: 04/MRE04/41, Birmingham Children’s Hos-
pital, Newcastle Royal Victoria Infirmary, Queen’s Medical Centre, Alder Hey Children’s Hospital, Liverpool). 
Parents/guardians of participants gave informed consent for their child to be recruited to this study. All meth-
ods were performed in accordance with the relevant guidelines and regulations. Recruitment took place been 
2009 and 2017. Participants underwent MRI, protocol discussed below, before treatment. Diagnosis was con-
firmed on tissue samples obtained by surgery performed for clinical reasons. In summary there were 37 com-
plete resections, 17 incomplete resections, 1 open biopsy and 10 stereotactic biopsies with information missing 
on 4 patients. Further treatment was undertaken according to the clinical needs of the patient as determined by 
the local tumor board supported by national guidelines and external opinions where appropriate. Radiotherapy 
tended to be used in the more aggressive tumors and older children, chemotherapy was widely used and tended 
to be more intensive in younger children with aggressive tumors. Since the study included many different tumor 
types, stages and patient ages, the treatments varied widely and was tailored to the patient’s need. The results of 
the study were not used in any way to determine or alter treatment. The median age of the cohort at diagnosis 
was 8 years (range 16 days to 17.6 years). The distribution in Chang stage adapted for use across tumor types was 
39 M0, 5 M1, 9 M2, 4 M3, 12 unknown. Diagnoses were made according to the WHO Classification in use at 
the time of diagnosis and the cohort composition mirrors that found nationally. Tumors were assigned to high- 
(3&4) and low-grade (1&2) groups. The median follow-up time for the cohort was 4.4 years. Full cohort details 
can be found in supplementary document 1.

The imaging protocol for all participants was performed either at 3 or 1.5 T and included standard anatomical 
imaging  (T1-weighted pre- and post-contrast and  T2-weighted) as well as diffusion and dynamic susceptibility 
contrast imaging covering the tumor volume (imaging sequence details found in Supplementary Table 1). Addi-
tional clinical data (age at diagnosis and gender) were also collected for analysis. During the data acquisition 
period a national protocol was in place for both conventional MRI and the advanced imaging analyzed here, 
some variability in acquisition sequence and parameters was allowed within the  protocol19.
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Image post‑processing and analysis. Apparent diffusion coefficient (ADC) maps were calculated from 
diffusion weighted imaging (DWI) using a linear fit between the two b-value images in Matlab (The Mathworks, 
MA, 2018a), voxels were fit after the exclusion of noise voxels (any voxel less than a signal to noise ratio of 5 was 
excluded). DSC time-course data were processed using conventional methods to provide uncorrected cerebral 
blood volume (uCBV) maps, with a leakage correction undertaken to produce corrected cerebral blood volume 
(cCBV) and K2  maps20.

T2-weighted imaging and ADC maps were registered to the first DSC volume with SPM12 (UCL), using a 
non-linear spatial transform with mutual information. Regions of interest (ROI) segmenting the tumor volume 
were drawn on the  T2-weighted  imaging21 after viewing the whole available image set, large cysts and peri-
tumoral oedema were excluded.

Image analysis was performed in Matlab (2018b, The Mathworks, MA), with the image mean, standard 
deviation, skewness, and kurtosis were calculated on a volume by volume basis for ADC and UCBV/CCBV/K2 
maps for regions of interest and the whole brain as previously  described21. Briefly, a binary whole brain mask 
calculated and eroded by 3 voxels to remove any signals outside of the head. The whole brain mask included 
the tumor. Tumor volume  (cm3) was calculated from the  T2 ROI masks drawn by S.W. (A clinical physicist with 
more than 15 years of experience in neuroimaging and trained by a consultant pediatric radiologist with 17 years 
experience L.M., Grist et al.21), a random sample of 17 cases had ROIs reviewed by A.O. a consultant pediatric 
radiologist with 7 years of experience. The list of imaging features are found in the supplementary materials. 
Regions of interest were also drawn in normal appearing deep grey and white matter for each participant to 
calculate average diffusion and perfusion measures in normal appearing tissue by J.G. (A physicist with more 
than 5 years of experience in neuroimaging). Each ROI contained at least 50 voxels. Medulloblastoma Chang 
stage was derived from radiological reports and lumbar puncture fluid information, other tumors were given a 
stage using an equivalent definition.

Histological and genetic analysis. Histological (including MiB1, Ki67, Glial fibrillary acidic protein 
(GFAP), INI-1, Isocitrate dehydrogenase-1 (IDH-1), Neuron specific enolase (NSE), S-100, BAF47, BRAF 
fusions, P53) and genetic data (MYC status and medulloblastoma sub-type), where available, were collected 
from local sites and are found in Supplementary Document 1.

Medulloblastomas were analyzed for histological type, subgroup, and MYC and MYCN amplification status 
were determined by protocols established at Newcastle  University22–24. Medulloblastoma histology was centrally 
reviewed at the Royal Victoria Infirmary. Data are summarized in Supplementary Document 1.

Statistical analysis. All statistical analyses were performed in R (3.6.1) with significance defined at p < 0.05, 
and Bonferroni correction for multiple comparisons used where appropriate.

The data processing pipeline used in this study is summarized in Fig. 1.

Univariate statistical analysis. Data normality was assessed using a Shapiro–Wilk test. Subsequently, 
differences in clinical and imaging features between high- and low-grade tumors were assessed using unpaired 
t-tests or Mann–Whitney U tests, where appropriate. Area under the ROC curve (AUC) values were calculated 
for each imaging feature for high/low grade discrimination. Differences in high-/low- risk (defined below) par-
ticipants were assessed using unpaired two-tailed t-tests or Mann–Whitney U test, depending on data normality. 
A chi squared test was performed to assess for differences in cohort characteristics including surgical resection 
rates between high and low risk clusters (described below).

Figure 1.  Data processing pipeline used in this study.
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After unsupervised clustering (described below), further Mann–Whitney U tests were performed to assess 
for differences in imaging features between low grade tumors in low and high-risk categories, and between alive 
high-grade tumors in low- and high-risk categories.

Survival and correlation analysis. Univariate Cox-regression was performed with each individual imag-
ing feature, clinical data, and tumor grade used to assess survival hazard coefficients. Tumor grade and type were 
not used in the analysis detailed below.

Iterative Bayesian survival analysis was undertaken using the iterative BMAsurv package in R using fivefold 
stratified cross validation to determine the posterior probabilities and coefficients of the top 5 imaging features 
that best describe the survival  data25. Iterative analysis including up to 15 data features in combination at any 
one time.

Unsupervised and supervised machine learning. K means clustering was performed with the imaging 
features from Bayesian survival analysis, with the optimal number of clusters determined from the largest aver-
age silhouette width. Groups were clustered into high and low risk groups, and subsequently used for further 
Kaplan–Meier analysis to assess for differences in survival between clusters.

Supervised machine learning using the aforementioned Bayesian features was used to predict high/low 
risk groupings using the Orange toolbox (Orange) in Python (3.6), with Random Forest, a single layer Neural 
Network, and a support vector machine used. Validation of classifiers was performed using tenfold stratified 
cross-validation.

Clinical and imaging data were subset into Whole Brain (WB), and Region of Interest (ROI) features, and 
tumor volume and used for supervised learning. Principal component analysis was used to reduce data dimen-
sionality with 95% of data variance or N-1 (where N is the size of the smallest group) used. The top 5 Bayesian 
features were also used as input into the classifiers, with no further principal component analysis performed. 
Classifier performance was determined from the classifier accuracy (% correctly classified cases) and F-statistic.

Results
A total of 69 patients were analyzed in this study with 33 imaging features, including tumor volume, derived per 
patient. Example tumor anatomical, diffusion, and perfusion imaging can be seen in Fig. 2. The survival curve 
for the whole cohort is seen in Fig. 3A, showing 75% overall survival at 5 years from diagnosis.

Diffusion and perfusion imaging can detect differences between tumor grade. Univariate sta-
tistical analysis showed significant differences in both whole brain and ROI imaging features between all high 
and low-grade tumors (feature with highest AUC = ADC mean (0.82) range: 0.63–0.82) full results detailed in 
supplementary Table 2. Comparative normal appearing grey and white matter imaging results are detailed in 
Supplementary Tables 3.

Perfusion imaging plays a key role in assessing survival in pediatric brain tumors. Whole cohort 
univariate cox regression revealed a number of imaging features with significantly elevated hazard ratios (HR), 
for example Uncorrected CBV ROI mean (HR 3.1, Confidence Intervals (CI) 1.5–6.6, p = 0.003), full results 
detailed in Table 1.

Bayesian analysis revealed the 5 most likely features to predict survival (probability that the feature coef-
ficient is greater than 0, posterior coefficient) to be uCBV ROI mean (96%, 0.85), K2 ROI mean (39%, -0.17), 
uCBV whole brain mean (40%, 0.3), tumor volume (27%, 0.05), and ADC ROI kurtosis (20%, 0.02). Full results 
detailed in Table 2.

Unsupervised clustering detects distinct groups with significantly different survival and imag‑
ing characteristics. Using the Bayesian imaging features, k means clustering revealed two distinct clusters, 
shown in Fig. 3B, which when combined with Kaplan–Meier analysis revealed a significant difference between 
a high and low risk population (see Fig. 3C, p = 0.0015—overall survival for high and low risk = 55% and 90%, 
respectively). Cox regression revealed an elevated Hazard Ratio (HR 5.6, confidence intervals 1.6–20.1, p < 0.001) 
for the high-risk cluster, relative to the low-risk cluster.

Further univariate analysis of each cluster showed significant differences in a number of imaging features, 
for example elevated ADC kurtosis in high vs low risk clusters (10.1 ± 5.3 vs 4.3 ± 1.8, p < 0.001, respectively). A 
combination of both high- and low-grade tumors were found in both clusters, all other results detailed in Table 3.

The patient characteristics, split by risk cluster, is provided in Supplementary document 1. From this data, 
there was no significant difference between the low- and high-risk clusters in age at diagnosis (low-risk cluster 
mean age 7.3 years, high-risk cluster mean age 9 years, Mann–Whitney test p > 0.05), extent of surgical resec-
tion (complete macroscopic resection 18 cases in low-risk cluster, 19 cases in high-risk cluster, chi squared test, 
p > 0.05) or presence of metastatic disease (low-risk: focal 21 versus metastatic 7; high-risk: 18 focal versus 11 
metastatic; chi squared test p > 0.05). However, the low-risk cluster contained a greater proportion of low-grade 
tumors (23 low-grade, 10 high-grade) than the high-risk cluster (7 low-grade; 26 high-grade), chi squared test 
p < 0.05. Whilst detailed data was not collected on adjuvant treatment with radiotherapy and chemotherapy, 
national treatment guidelines would have dictated that the high-risk cluster would in general have received more 
intense treatment regimens due to their generally higher grade.
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Supervised machine learning can be used to distinguish between high/low risk clusters. Super-
vised machine learning using imaging features showed that the Bayesian features combined with a single layer 
neural network, after stratified tenfold cross validation, provided the most accurate classification of high- and 
low-risk patients (accuracy = 98%, F-statistic = 0.98). Classifier accuracy ranged from 90 (logistic regression) to 
98% (single layer neural network).

There is a distinct difference in survival between high‑ and low‑ risk high‑grade tumors. Kaplan–
Meier analysis of high-grade tumors in the high and low risk clusters revealed a significant difference in survival 
(p < 0.05) with a hazard ratio of 7 (0.9–53 lower and upper bounds, respectively). The Kaplan–Meier curves for 
high grade tumors in both clusters can be seen in Fig. 3D. There was no detectable difference in survival between 
the high- and low- risk groups within the low-grade tumors (p > 0.05). Imaging of example cases by risk and 
grade given in Fig. 4.

Qualitative sub-group analysis of histology and genetics between low- and high-risk medulloblastomas 
revealed no significant differences between MYC amplification or groupings. The high-risk cluster exhibited a 
trend toward having a larger number of high Chang stage Medulloblastomas (M3 = 6, M2 = 4, M1 = 3) in com-
parison to the low-risk cluster (M2 = 1, M1 = 1, M0 = 2)—data shown in supplementary document 1.

Discussion
This study has shown the power of combining diffusion and perfusion imaging with machine learning to predict 
survival risk in a mixed cohort of pediatric brain tumors. A handful of studies have previously looked at assessing 
survival with one of the aforementioned imaging  techniques14,16,27; however, here we have shown the utility of 
combined diffusion-perfusion measures to provide advanced modelling of survival. The univariate results assess-
ing low/high grade suggested a number of key diffusion and perfusion features for the discrimination between 

Figure 2.  Example  T2 weighted, diffusion, and perfusion imaging of Ependymoma (A–C respectively), 
Pilocytic astrocytoma (D–F, respectively), choroid plexus carcinoma (F–H respectively) and a Glioblastoma 
(I–K, respectively). Tumor regions are highlighted with white arrows.
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groups, however most had a poor AUC. Therefore, this represented an ideal situation for the use of machine 
learning to combine these features to provide highly accurate classifiers to solve this challenge.

Interestingly, the majority of parameters predicting survival were from the perfusion imaging which is not 
currently part of routine clinical practice in many centers. DWI has become a standard method for investigating 
childhood brain tumors and low ADC is seen as being a marker for higher cellularity and grade which would 
be associated with poorer survival. The current study substantiates this but shows that DSC-MRI may be an 
even better modality for predicting survival. The importance of the vessel leakiness parameter K in survival 
prediction also implies that DSC-MRI may have advantages in survival prediction beyond that available from 
methods which do not include the injection of contrast agent such as ASL. Furthermore, for medulloblastomas, 
clustering demonstrated a reasonable separation of high (M1 to M3) from low (M0) Chang  stage28 tumors 

Figure 3.  (A) Overall survival curve for the cohort, (B) K Means clustering survival results showing two 
distinct clusters, (C) Kaplan–Meier curve for the two clusters showing a significant difference in survival, 1 = 
High risk, 2 = Low risk, (D) Kaplan–Meier curves for high-grade low-risk (green) and high-risk (red) patients 
showing a significant difference in survival from imaging at diagnosis.

Table 1.  Cox regression results.

Feature Beta Hazard ratio 95% confidence interval Significance

CBV ROI uncorrected mean 1.13 3.1 1.5–6.6 p = 0.003

CBV uncorrected standard deviation − 1.12 0.33 0.11–0.99 p = 0.05

K2 ROI mean − 2.02 0.13 0.03–0.63 p = 0.011

CBV uncorrected whole brain mean 1.12 3.02 1.06–8.91 p = 0.04

Table 2.  Bayesian survival results.

Feature Probability (%) Posterior coefficient

Tumor volume 27 0.05

CBV ROI uncorrected mean 96 0.85

K2 ROI mean 39 − 0.17

ADC ROI Kurtosis 20 0.02

CBV uncorrected WB mean 40 0.3
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suggesting that these imaging features identify some properties in the primary tumor which are associated with 
metastatic potential.

There are a number of clinical risk factors which are commonly used to stratify treatment and it is important 
to consider the new imaging risk classification with these. The size of the cohort and relatively low number of 
events precluded a formal survival analysis with multiple risk factors. However, there was no significant difference 
in age, presence of metastatic disease or complete resection rate between the high- and low-risk imaging groups 
implying that the new imaging risk stratification will add value to these well-known risk factors. There was a 
significantly greater proportion of high-grade tumors in the high-risk imaging group as we would expect but the 
split is far from complete and a separate analysis of high-grade tumors showed a difference in survival between 
the high- and low-risk imaging groups showing added value beyond grade. Survival will be affected by treatment 
received and we did not systematically acquire information on radiotherapy and chemotherapy. However, on 
average the higher-risk imaging group will have received more intense treatment due to its greater proportion of 
high-grade tumors and so whilst adjuvant treatment is a confounder in the survival analysis, it will have acted to 
reduce the effect size thereby further increasing confidence in the robustness of the imaging risk classification.

The unsupervised machine learning identified two groups of tumors which did not correspond to any obvious 
non-imaging tumor characteristics. The credibility of these groups as being distinct entities was substantiated by 
the high accuracy (up to 98% on cross validation) with which the tumors could be assigned to the correct group 

Table 3.  Low and high-risk cluster group features.

Feature Low risk High risk Signficance

Male: female 16:19 19:15 N/A

Low: high grade 23:12 7:27 N/A

Censored: events 32:3 20:14 N/A

Tumor volume  (cm3) 2.3 + 2.8 5.6 ± 7.0 p = 0.015

ROI ADC Kurtosis 4.3 + 1.8 10.1 + 5.3 p < 0.001

ROI ADC Skewness 0.1 ± 1.0 2.1 ± 1.0 p < 0.001

ROI K2 mean  (min−1) 0.0018 ± 0.0027 − 0.005 ± 0.002 p < 0.001

ROI CBV uncorrected standard deviation (mL 100  g−1  min−1) 1.44 + 0.74 0.88 ± 0.42 p < 0.001

K2 whole brain standard deviation  (min−1) 0.03 ± 0.02 0.019 + 0.008 p = 0.007

CBV corrected whole brain mean (mL 100  g−1  min−1) 1.14 + 0.27 1.29 ± 0.26 p < 0.02

Figure 4.  Example high and low risk, high and low-grade tumors. (A T1 post contrast & B ADC map) high 
risk and (C T1 post contrast & D ADC map) low risk Pilocytic astrocytoma, respectively showing elevated ADC 
skew and kurtosis in the tumor region. (E, F) high risk and (G, H) low risk medulloblastomas, respectively, 
showing increased ADC kurtosis. Tumor regions are highlighted with white arrows.
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by a supervised learner. A number of patients in the high-risk cluster were still alive at the study end although 
some of these, including those from known poor prognostic groups had short follow-up times. Further analysis 
showed that a number of surviving high-risk low-grade tumors had imaging features similar to high grade tumors 
(such as elevated ADC kurtosis and CBV) and were significantly different to low-risk low grade tumors. It will 
be interesting to ascertain the clinical course of these tumors over longer periods of follow-up. Interestingly, it is 
noted that survival risk status was not always associated with tumor grade (for example grade 3 vs 4) or histology, 
and this may point to further underlying tumor heterogeneity within current groupings.

A particular strength of this work is that imaging features with clinical data provide a non-invasive tool that 
can assess risk early in the patient journey. Indeed, the use of a supervised classifier to predict risk category 
allows for the prospective integration of this model into a clinical decision support system—whereby radiological 
analysis of a small number of imaging features can rapidly identify patients that should be considered for inclu-
sion into clinical trials for prospective evaluation and subsequent stratification. The use of in vivo imaging also 
has the advantage that it provides information that cannot be found from analysis of resected tissue, perfusion 
in particular is inherently an in vivo property.

A further strength of this study is the use of multi-site, multi-scanner data—providing reassurance that the 
results are robust to the natural variability that occurs in protocols and scanners within clinical practice. Using 
multiple centers also provided a more statistically powerful study from which clinically relevant results could 
be obtained.

The imaging modalities used in this study are widely available and so data acquisition should be read-
ily achieved in routine clinical practice. The image processing and classification should be made available by 
integration into a clinical decision support tool which are increasingly being  developed29. Indeed, the results 
shown above show that it is possible to stratify patients into high and low risk groups with a trained supervised 
neural network, therefore enabling further real-time decisions to be made with regards to appropriate clinical 
management and inclusion into research trials for novel therapies to aid those with the current worst prognosis.

With the current uncertainty surrounding the use of Gadolinium in clinical practice, and the inability to be 
used in patients with impaired renal function, future work will include the addition of  ASL12, a technique to 
estimate perfusion without the introduction of exogenous contrast agents, as data from this technique has been 
shown to correlate well with DSC cerebral blood  volume30,31.

The main limitation of this study is that it is based on a relatively small heterogeneous cohort treated in a 
diverse manner. The results should be verified in a larger prospective study but it would also be interesting to 
apply the same methodology to specific tumor cohorts treated in a designated manner as part of a clinical treat-
ment trial. The multi-center nature of the study is a strength but presents particular challenges notably with 
regards to variations in scanner protocol which may introduce variability in results. To some extent this was 
mitigated by calculating the ADC values directly from the raw DWI data for all cases and performing a leak-
age correction on the DSC time courses to allow for differences in Gd contrast injection protocols. Regions of 
interest were drawn by hand which could lead to variability but a previous study in children’s brain tumors by 
our consortium has shown good inter-rater consistency for all the ADC histogram  metrics32. Finally, it is noted 
that there are a number of children alive at study end with high-risk tumors and currently limited follow-up. For 
example, a Choroid Plexus Carcinoma with a current follow-up of 1 year and a national average 5-year survival 
rate of 26%26 and a medulloblastoma with less than 3-year follow-up and M3 Chang stage.

In conclusion, this work has demonstrated a highly novel clinical application of advanced survival model-
ling and machine learning to non-invasively stratify patients according to risk. This provides a non-invasive, 
multi-modal MRI approach to determining the malignant nature of a tumor and its potential for poor prognosis. 
Both diffusion and perfusion were found to be important in determining risk, with perfusion contributing to a 
greater extent emphasizing the importance of acquiring perfusion imaging. This work represents an important 
step forward in the use of machine learning to predict survival and paves the way for further clinical studies 
focusing on the successful identification and treatment of high-risk children with brain tumors.
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