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Photoconductive antennas deposited onto GaAs substrates that incorporate InAs quantum dots have been recently shown

to efficiently generate both pulsed and CW terahertz radiation. In this Letter, we determine the operational limits

of these antennas, and demonstrate their extreme thermal breakdown tolerance. Implanted quantum dots serve as

free carrier capture sites, thus acting as life-time shorteners, similarly to defects in low-temperature grown substrates.

However, unlike the latter, defect-free quantum-dot structures possess perfect lattice quality, thus not compromising

high carrier mobility and pump intensity stealth. Single gap design quantum dot based photoconductive antennas are

shown to operate under up to 1 W of average pump power (∼1.6 mJcm−2 energy density), which is more than 20 times

higher than the pumping limit of low-temperature grown GaAs based substrates. Conversion efficiency of the quantum

dot based photoconductive antennas does not saturate up to 0.75W of pump power (∼1.1 mJcm−2 energy density).

Such thermal tolerance suggests glowy prospects for the proposed antennas as a perspective candidate for intracavity

optical-to-terahertz converters.

Terahertz (THz) photoconductive antenna (PCA) technol-

ogy, first demonstrated just over 30 years ago1, has matured

into a solid industrial solution, the first choice in pulsed and

CW spectroscopic and imaging systems2–4. Most recent de-

velopments report over 600 µW of output THz power and over

3% optical-to-THz conversion efficiency from a single gap

PCA5. Large area array PCAs were shown to generate even

higher powers, up to several mW6. Alongside these signifi-

cant advances, there is still a great demand for further mini-

tiaturisation of THz time domain spectrometers and imaging

systems. Currently, the larger constituent of such setups is

usually the pump source – a Ti:Sapphire or ultrafast fibre laser.

Recently, we proposed more compact setups that use quan-

tum dot (QD) based compact semiconductor lasers in conjuc-

tion QD based PCAs for generation of both pulsed and CW

THz radiation7–10. Indeed, semiconductor materials incorpo-

rating InAs QDs in bulk GaAs possess all the properties re-

quired for efficient optical-to-THz conversion, such as short

carrier lifetimes enabled by carrier capture into the dots11,

while maintaining high carrier mobility8, unlike low temper-

ature grown materials2. Similar materials were used also as

active media in diode lasers12, laser amplifiers13, or saturable

absorbers14. Employment of these laser pumps in compact

THz setups now looks as native as it can be, due to the natural

matching of the operational wavelength of such lasers with the

permitted states of the wafer9,15. Moreover, these PCAs sup-

port not only resonant pumping with photons possessing the

energy of the QD excited state (but not the ground state!15),

but also operate efficiently under pumps with photon energies

over the GaAs bandgap.

Here, we determine the operational limits of the QD based

PCAs, and outline further research and application directions

towards the development of ultra compact turn-key room tem-

perature operating THz spectroscopy and imaging systems.

The QD-based PCA used in this work consisted of elec-

trodes deposited onto a heterostructured wafer containing self-

assembled QDs. A schematic illustration of the complete

PCA structure is presented in Fig. 1. The wafer was grown

by molecular beam epitaxy in the Stranski-Krastanov regime,

on a semi-insultating GaAs substrate. First, an AlAs/GaAs

multilayer distributed Bragg reflector with overall thickness

FIG. 1. Schematic of the quantum dot based photoconductive an-

tenna (QD-PCA). An AlAs/GaAs distributed Bragg reflector (DBR)

is deposited onto a GaAs substrate, and an active region compris-

ing 25 layers of InAs QDs is grown on top by molecular beam epi-

taxy. A low-temperature-grown GaAs (LT-GaAs) layer covers the

active region, and Ti/Au electrodes are lithographically deposited in

a stripline geometry with a 50 µm gap between them.
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FIG. 2. THz section of the setups for intensity measurement with

Golay cell (a) and coherent characterisation with the PCA (b).

of about 10 µm designed to reflect the pump wavelength cor-

responding to the QD excited state15 was deposited. On top

of it was grown the active medium, comprising 25 layers con-

taining InAs QDs. Each QD layer was capped by a 4 nm to

5 nm thick In0.15Ga0.85As wetting layer and separated by a

35 nm to 36 nm GaAs spacer layer, resulting in a total ac-

tive region thickness of about 1 µm. On top of the active

layer structure, a 30 nm layer of low-temperature-grown GaAs

(LT-GaAs) was grown, to reduce the dark conductivity and

enhance the Ohmic contact between the antenna electrodes

and the wafer. Lastly, 250 nm thick Ti/Au electrodes were

deposited with standard lithographic techniques and further

wet etching. For power measurements, a bowtie electrodes

with 8 µm gap were used, while for coherect characterisation,

stripline-shaped electrodes with a 50 µm were studied.

In all experiments, the pump beam was focused with a

25 mm lens, resulting in a spot diameter of around 30 µm
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FIG. 3. (a) Emitted THz power by a bow-tie QD-PCA as function of

the applied bias voltage. The average optical pump power is 1 W at

the λ = 800nm wavelength. (b) Emitted THz power as function of

the average optical pump power, for varying bias voltages. Dashed

lines represent quadratic and solid lined show linear fits, respectively.

measured as 1/e2 power decay. We used an easily accessi-

ble 800 nm wavelength from a femtosecond Ti:Sapphire laser,

delivering up to 1.5 W of average power in 120 fs pulses with

an 80 MHz repetition rate. The electrodes were electrically

biased, and the pump beam was modulated with a mechani-

cal chopper, to allow lock-in detection of the generated THz

power. The optical pump intensity was controlled by two

polarisers. The emitted THz radiation from the QD-PCA

was pre-collimated by a mechanically attached hyperhemi-

spherical Si lens, and guided to the detector by two off-axis

parabolic mirrors (Fig. 2).

In the first set of experiments, the relative THz power

was measured by a Golay-cell detector. Both pump in-

tensity and bias voltage dependences were characterised.

The results of this characherisation are presented in Fig. 3.

We observe that the QD-PCAs allow pumping with inten-

sities up to 1.1 W (156 kWcm−2) biased at 20 V, with-

out reaching thermal breakdown. This exceeds both previ-

ously demonstrated results of 300 mW8 (42 kWcm−2) and

700 mW10 (99 kWcm−2), for PCAs of similar type, and is

about 20 times higher than the typical limits of conventional

LT-GaAs based single gap PCAs16. Both bias voltage and

pump intensity dependences are superlinear, and can be de-

cently traced with quadratic fits. However, at higher power

intensities, regardless the applied bias, the trend comes to a

saturation (Fig. 3 (b)) . Carrier screening effect17, Joule heat-

ing of the substrate18,19, or carrier concentration reaching its

maximum – any combination of these factors can be the rea-

son for such saturation.

A coherent detection scheme was used to analyse the emis-

sion spectrum of the QD-PCA. The setup comprises a THz

time-domain spectroscopy system, where a commercial LT-

GaAs PCA (Teravil Ltd.) is used as the detector. The results

of coherent measurement are shown in Fig. 4. Similarly to

the Golay cell measured power dependence, the amplidude of

the THz pulse first grows linearly with the pump power and

saturates at intensities above 500 mW. The other noticeable

effect is the pulse duration shortening from 2.3 ps to 1.7 ps,

outlined in the inset of Fig. 4(a). Such pulse contraction is ex-

plained by the carrier lifetime duration at higher pump powers,

reported earlier11,14, and carrier screening effects of different

nature17,20,21. Broadening of the corresponding signal spectra,

shown in Fig. 4(b), is another evidence of this effect.

Thus, QD based PCAs not only withstand significant pump

intensities reaching ∼1600 µJcm−2, but also operate effi-

ciently, converting optical pump into the THz signal, with

some signs of saturation revealed only at pump powers above

0.7 W, which is 15 times higher than typical single gap PCAs

available to date. Moreover, this signal increases in bandwidth

with growing pump power. Such thermal tolerances, together

with the demonstrated saturation behaviour, opens a new path-

way for the further development of compact setups. In an in-

tracavity arrangement, these QD-PCAs could not only gener-

ate THz radiation employing all the intracavity laser power –

typically hundreds of times higher than laser output – but also

serve as an extra saturable absorber in the cavity while still

maintaining lasing, owing to their saturation characteristics.

In this Letter, we have broadened the known operational
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FIG. 4. (a) Time-domain traces detected from a QD-PCA at different

optical pump powers (shifted vertically for improve readability). The

inset shows the amplitude and duration of the THz pulses as function

of pump power. (b) Corresponding spectra calculated from the time-

domain signals, shown in logarithmic scale.

limits of the QD-based PCAs by showing their successful

operation at pump powers exceeding 1 W, corresponding to

a ∼1.6 mJcm−2 energy density. The conversion efficiency

starts saturating at pump powers over 0.7 W (∼1.1 mJcm−2

energy density). This extremely high operational tolerance

allows us to propose intracavity placement of the QD based

PCAs into the cavity of compact semiconductor lasers. Upon

such layout, QD-based PCAs will employ the pump power

contained inside the laser cavity and serve as additional sat-

urable absorbers, while generating coherent pulsed broadband

THz signals. Erbium QDs in GaAs bulk demonstrated un-

precedented conversion efficiency of 0.2% due to superradi-

ance effect in very homogenius nanostructures22, suggesting

that further tailoring of growth conditions to achieve higher

homogeneity, can potentially lead to similar effect. This ap-

proach will allow even more efficient and compact room tem-

perature operating THz setups than those demonstrated to

date.
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