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Data Analytics Diffusion in the UK Renewable Energy Sector: An 
Innovation Perspective 

Abstract  

We introduce the BDA dynamics and explore the associated applications in renewable energy sector 

with a focus on data-driven innovation. Our study draws on the exponential growth of renewable 

energy initiatives over the last decades and on the paucity of literature to illustrate the use of BDA in 

the energy industry. We conduct a qualitative field study in the UK with stakeholder interviews and 

analyse our results using thematic analysis. Our findings indicate that no matter if the importance of 

the energy sector for 'people's well-being, industrial competitiveness, and societal advancement, old 

fashioned approaches to analytics for organisational processes are currently applied widely within the 

energy sector. These are triggered by resistance to change and insufficient organisational knowledge 

about BDA, hindering innovation opportunities. Furthermore, for energy organisations to integrate 

BDA approaches, they need to deal with challenges such as training employees on BDA and the 

associated costs. Overall, our study provides insights from practitioners about adopting BDA 

innovations in the renewable energy sector to inform decision-makers and provide recommendations 

for future research.  
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1 Introduction 

Over the last years, there has been significant attention by scholars and practitioners to Big Data (BD) 

and analytics (BDA) (Wang et al., 2016; Gunasekaran et al., 2017; Batistic and Van der Laken, 2019; 

Papadopoulos et al., 2021). Sena et al. (2019) define BD as "large volumes of data extracted from a 

number of sources including documents, social media and sensors among others" (p. 219). BD is 

described using the terms volume, variety and velocity (Chen et al., 2014; Wang et al., 2016): a host 

of data, which is unstructured, large in volume, continually flowing and requires subjective analysis 

techniques such as machine learning (ML) (Davenport, 2014). BDA has to do with the "ability to gain 

insight from data by applying statistics, mathematics, econometrics, simulations, optimisations, or 

other techniques to help business organisations make better decisions" (Wang et al., 2016, p. 99). 

The popularity of BDA is because of the advancement of technology infrastructure, which accelerates 

the growth rate of data. IDC (2018) has predicted that the global data volume will increase to 175 

Zettabytes by 2025, showcasing an overall increase of 430% and an average yearly increase of 61%. 

The increase in data propensity, properly managed, can lead to critical insights guiding informed 

business decisions. The utilisation of these insights is encapsulated through the term Business 



Intelligence and Analytics (BI&A) (Chen et al., 2012). Therefore, incorporating analytics into an 

organisations' strategy is becoming the norm in modern business operations. Data-driven innovations 

can enable the development of new industries, processes, and products (Akter et al., 2020; Wamba et 

al., 2017) and bring social and economic benefits for industries and societies (Kusiak 2009; Sorescu 

2017) while they transform the service systems (Akter et al. 2019). 

Data is highly prevalent within the energy sector through sensors, wireless transmission, network 

communication, and cloud communication (Zhou et al., 2016), which are fundamental to energy 

companies' survival. There is, hence, a need for BDA in the energy sector to increase its sustainability 

(Akter et al., 2019, 2020; Wamba et al., 2017) and identify areas of opportunity for managers. As the 

levels of fossil fuels left at a global expense are diminishing and the renewables' share of electricity 

generation increasing by 3.8% between 2017 and 2019 (GOV, 2019), the demand for technologies and 

analytics is evidently flourishing.  

Literature concerning the use of BDA within the energy sector has mentioned its use in tackling 

different challenges in the industry, such as power generation side management, renewable energy 

management, demand-side management (DSM) and smart grid (SG) optimisation (Altin et al., 2010; 

Escobedo et al., 2017; Ceci et al., 2014; Ericsson, 2014). BDA, therefore, has positive impacts on the 

generation, distribution and optimisation of renewable energy sources. Data-driven innovations were 

used to induce a behavioural change of electricity users in reducing their energy usage (Jetzek et al., 

2014), improvement of reliability of energy simulation outputs in residential buildings (Causone et al., 

2019), and development of sustainable urbanism (Bibri 2018; Bibri and Krogstie 2020).  

However, there are few, if any, studies that investigate the challenges associated with BDA for the 

energy sector.  Such studies discuss issues as adequate storage and management of energy BD, the 

most cohesive analysis techniques for unstructured energy data types, how to turn the data into 

practical insights that can improve daily operations of renewable energy firms, and how to prevent 

risk with regards to consumer data privacy (Zhou et al., 2016). Therefore, there is a need for studies 

investigating in detail how BDA is diffused in renewable energy organisations. Hence, our research 

question is: How is data-driven innovation diffused through BDA opportunities within renewable 

energy organisations? To answer our research question, we embarked on a qualitative field study 

conducting semi-structured interviews with experts. We provided evidence on the implications of 

data-driven innovation aspects and the associated impact of adopting data analytics systems in 

renewable energy companies.  

The paper structure is as follows: Sections 2 and 3 introduce the prior research and the background of 

the study, Section 4 provides the research design of the field study, while Section 5 outlines the study's 



main results. Ultimately, Section 6 discusses the findings and Section 7 elaborates on the conclusions 

and limitations of the study.   

2 Prior Research  

Big Data (BD) can be defined as an enormous dataset that cannot undergo standardised management 

and processing using normalised IT tools in an optimised time frame (Chen et al., 2014). According to 

Sagiroglu and Sinanc (2013), BD has the following characteristics the 3 Vs: Variety, Volume, and 

Velocity. Data retrieved from various sources can fall under structured, semi-structured, and 

unstructured terms. Khan et al. (2016) further mention that structured data has predefined fields that 

allow for seamless categorisation, formed through either human or machine generation – it is the 

method of storage and characterisation that defines this variance. Unstructured data has no 

predefined schema to its data model, which causes additional complexity, existing in the form of 

audio, video and weather data, for example. Semi-structured data does not allow for direct 

categorisation but incorporates tags, which separate the data elements (Gunther et al., 2017). The 

remainder of this section gives an overview of the prior research and the background of the study. 

3 Big Data Management 

Advancement in information systems has produced mass data sources, which leads to an exponential 

increase in the volume of data. Meaning data storage and analysis cannot be conducted through 

traditional techniques. Due to the induced velocity, it is essential to capitalise on data immediately 

after it reaches possession by the organisation or individual. Otherwise, data that is stored for 

extended periods of time with no use becomes an adverse asset to an organisation (Sagiroglu and 

Sinanc, 2013). With these characteristics in place, opportunities and problems arise. BD Management 

alongside BDA are the processes taken by organisations to propel their effectiveness in leveraging said 

data. 

To fully capitalise on the 7V's, it is in the best interests of data users to collect the BD-set effectively, 

utilising less hardware and software requirements (Chen et al., 2014b). A significant challenge for 

companies is data management, which provides effective foundations for the Data Analytics process. 

It can be observed that effective data management is achieved when said BD-set is seamlessly 

accessible, harnesses categorised data and is correctly secured (Oussous et al., 2018). The main 

processes underlying data management are storing data securely; cleaning data, ensuring reliability 

and consistency; aggregating data for organisation and further credibility. During this procedure, role-

based access would be asserted to distributed endpoints (Mikalef et al., 2013, Spanaki et al., 2021, 

Karafili et al., 2018).  



While the procedures and challenges of BDA were explained, more detail is also required on the 

opportunities and challenges that firms face when adopting BDA. According to Watson (2014), BDA 

can be harnessed using: descriptive analytics and predictive analytics. These are detailed in this section 

alongside organisational adoption characteristics.  

Descriptive Analytics: Watson (2014) mentions that descriptive analytics are at the core of Business 

Intelligence (BI). These use reporting, dashboards and data visualisation to generate intel for an 

organisation based on past data. Agreeing and adding to this, Sivarajah et al. (2017) suggest that 

descriptive analytics scrutinises data, allowing for reporting and defining the current business state. 

The authors mention that the end-users are required to utilise said dashboards, connecting the 

insights with the relevant decision-making processes, hence ensuring the business perspective is 

ascertained. Sivarajah et al. (2017) state that most BDA is descriptive, hence exploratory, and requires 

businesses to use statistical methods to identify patterns.  

Predictive Analytics: This analytics method concerns constructing statistical models to generate 

sufficient forecasts as an enabler of querying possibilities in the future (Sivarajah et al., 2017). Khanra 

et al. (2020) also state that predictive analytics also incorporate empirical models aiming to create 

empirical pre-distinctions and methods of judging the prediction quality harnessing predictive power, 

for example. Gandomi and Haider (2015) further suggest that predictive analytics can be categorised 

into moving averages, aiming to investigate historical patterns in the outcome and extrapolate this for 

the future; linear regression, aiming to seek the dependency between the outcome and explanatory 

variable. Therefore, this approach roots for statistical significance heavily, resulting in knowledge-

heavy associated tasks, meaning organisations need to ensure sufficient operatives to use statistical 

techniques.  

BD and BDA tools effectively enhance traceability, optimisation, forecasting, classification, and 

clustering. Lavalle et al. (2011), a heavily cited journal in the analytics space, comprises a survey of 

3000 executives, managers and analysts across 30 industries and 100 countries on BDA adoption at 

their organisations. Their survey's findings highlighted that 50% of respondents found that analytics 

was a top priority for their organisation, alongside more than 20% saying they were under intense 

pressure to adopt analytics. Kwon et al. (2014) suggest that a firm's competence to maintain high-

quality corporate data positively influences its affinity to adopt BDA. The article suggests that 

organisations who have previously utilised internal organisational data may oppose adopting BDA, 

contrary to firms who heavily rely on external source data, such as environmental data, which are 

more likely to adopt BDA. Wang et al. (2018) indicate that maximising business value from data 

analytics capabilities can be achieved through sufficient speed to insight. Gupta and George (2016) 



have highlighted the importance of BD-specific technical and managerial skills in organisations. They 

have argued that effective use of BD and BDA in addition to hardware and software investments, 

collecting hordes of data, and having access to sophisticated technology, requires a shift in 

organisational management and implementation of a data-driven culture where insights are extracted 

from data are valued and acted upon.  

Benefits achieved from firms of different sizes and different sectors do not differ. The security risk, 

therefore, shows industrial prevalence between Raguseo (2018) and theoretically through Bello-Orgaz 

et al. (2016) and Tankard (2012), where Agrawal and Srikant (2000) provide an effective way to 

harness a data mining strategy securely. Similarly, Ramanathan et al. (2017) research the adoption of 

business analytics and the impact that technology has on business performance.  

Dremel et al. (2020) studied the link between effective applications of BDA and associated 

organisational preconditions. They argue that besides organisational resources and capabilities for 

DBA essential for the effective use of BDA, organisations must also know to generate business value 

through BDA. Mikalef et al. (2019) also investigated the configurations of resources and contextual 

factors that lead to BDA investments' performance gains. Using complexity theory, they argued that 

one of the significant obstacles in BDA adoption is attributed to 'organisations' failure to realise 

performance gains. Mikalef et al. (2020) also explored how different inertial forces during big data 

analytics deployments hinder the emergence of dynamic capabilities. They argued that one of the 

main issues in BDA projects is related to governance. They highlighted that resource orchestration 

mechanisms to handle individual-group-industry dynamics are essential to leveraging resources into 

value.    

Albeit concentrating on a different industry, the study of Schoenherr and Speier-Pero (2015) also 

endeavours to investigate the adoption and usage of Data Science and BD within the Supply Chain 

Management sector – surveying 531 professionals in the space. The resultant data compiled these 

individuals into one of three usage groups:  no current use but plans for the future; to some extent. 

This is a similar approach taken by Lavalle et al. (2011), who provide a three-tiered model in their 

study, highlighted previously. Across the three categories, Schoenherr and Speier-Pero (2015) found 

that security issues, lack of data and the ability to find data, which is useful during predictive analysis, 

were the most prominent barriers. Therefore, organisations that had not adopted BDA were more 

likely to verify that security issues were the prominent reason not yet to adopt BDA. This study focuses 

heavily on exploratory data science; however, it still shows cohesion with the other studies critiqued 

in this review. Kwon et al. (2014) mention that firms that heavily utilise external source data in their 



operations, such as environmental data, are more likely to incorporate BDA into their strategies. The 

following section provides an overview of the diffusion of BDA in the energy sector. 

4 Diffusion of BDA in the Energy Sector  

There is a growing awareness among stakeholders that opportunities brought by BD are shifting the 

paradigms of the energy sector, particularly in terms of methods of energy production and the pattern 

of energy consumption (Zhou et al., 2016). A common theme among the papers looking at data 

analytics within the renewable energy sector is the focus on smart grid (SG) optimisation, which aims 

to utilise the large volume of energy data and integrate the information from assorted sources, for 

instance: weather, consumer information and geographical data (Hu and Vasilakos, 2016). According 

to Diamantoulakis et al. (2015), an SG allows for biflow of power and data between the source and 

sink (suppliers and customers) to allow for power flow optimisation with regards to economic 

efficiency, reliability and sustainability. The systems used in SG's consist of consumers home 

participation through energy management systems, smart metering, and demand response (DR) 

algorithms. These systems accumulate data through sensory nodes; hence load classification (LC), 

through data mining, can be used to distinguish load patterns and categorise accordingly, then using 

predictive analytics and ML to abide by real-time data dispersal. With sensors acquiring mass data on 

a real-time basis, the variety and volume of the data can be excessive; however, Jeffery et al. (2006) 

confirm the use of Extensible receptor Stream Processing (ESP) to automate the mitigation of 

erroneous data.  

Although Alahakoon and Yu (2016) do not delve into the enhancement of DR through BDA, the authors 

mention smart metering and the use of load forecasting, which would assist LC, similar to 

Diamantoulakis et al. (2015). Additionally, Alahakoon and Yu (2016) endeavour to cluster analysis from 

alternate smart metering devices, attain information on average energy consumptions and changes in 

day-to-day readings, allowing for more structured forecasting. In terms of practical implications, Balac 

et al. (2013) research energy consumption using a Time Series Approach, which detects anomalies in 

the energy models from the offset. This research builds a direct relationship with Diamantoulakis et 

al. (2015); Alahakoon and Yu (2016) highlight clustering to remove erroneous data from energy 

profiles.  

The work of Tannahill and Jamshidi (2014) also seeks to utilise clustering in the protocol; however, 

utilising photovoltaic (PV) device data rather than SG optimisation. To achieve clustering, the 

researchers utilise the MATLAB toolkit to construct scripts – to conclude, the authors suggest 

investigating the use of cloud storage to generate models for more massive datasets. Overall, it is 

evident that researchers are investigating the optimisation of SGs through effective data analytics. 



This topic shows significant potential to deliver improvements in practice. However, research into end-

to-end data analytics models within the renewable energy space has not endeavoured. It is essential 

to advance the understanding of which organisations are currently harnessing the advantages of 

effective data analytics for optimising SGS and the obstacles they face. 

This article addresses that gap by providing evidence about the implications of challenges and 

opportunities and their impact on adopting data analytics systems in renewable energy companies.  

5 Diffusion of Big Data Analytics – A Conceptual Framework 

 

The conceptual framework applied in this study will allow data interpretation and underlying effects 

of BDA adoption to be revealed, further highlighted by Grant and Osanloo (2014) as one of the most 

critical aspects of the research process.  

There have been some frameworks developed in the literature. Alahakoon and Yu (2016) provide the 

framework designed by C3 energy to manage and optimise energy data using artificial intelligence (AI) 

whilst addressing data-mining techniques that can be employed within the industry. A common theme 

among existing studies is demand forecasting for renewable technologies to ensure effective delivery 

models. Diamantoulakis et al. (2015) show that demand response (DR) is directly coordinated with 

SG's, hence stating that the DR algorithm's success depends on demand, price, load, and renewable 

energy forecasting, which has led to the construction of signal processing methodologies.  

The Technology Acceptance Model (TAM) constructed by Davis (1985) profiles the chances of 

technology adoption as the potential adopter's perception and attitude of said technology influencing 

the organisation. This model is built using the adopter's expectations – how easy the technology is to 

use and the potential usefulness. Davis (1985) mentions that the perceived ease of adoption is directly 

related to the usefulness, as the perception of usefulness comes as a subsequent attitude to the 

adoption of the technology.  

The Diffusion of Innovations (DOI) theory, compiled by Rogers (2003), showcases the process of an 

innovation being communicated to provide people knowledge of the innovation. The social system 

acting around the adopters/ non-adopters and the adoption process which organisations take is 

described. The theory defines an innovation-decision process consisting of Knowledge, Persuasion, 

Decision, Implementation and Confirmation. The Persuasion stage is particularly interesting, providing 

the five attributes of organisations' perceptions to innovations: Relative Advantage, Compatibility, 

Complexity, Trialability and Observability (Rogers, 2003). Similarly, the DOI theory considers the 

usefulness of the innovation as the 'Relative Advantage' characteristic to the TAM model. However, 



unlike the TAM, the model does not directly relate to the 'ease of use'. However, it can be incorporated 

into the 'Compatibility' and 'Complexity' perceptions. 

The impact of data-driven innovation in operations and supply chain management fields has been a 

topic in various studies (Lee 2018). The innovations cycle, as described by Lee (2018), includes three 

key areas in improving existing processes in operations by a) using BD tools and methods, b) leveraging 

insights and value propositions through expansive usage or incorporating historical data, and c) 

allowing companies to create new processes or business models to serve customers in new ways.  

Data-driven approaches triggered in operation management often appear in value propositions and 

business model innovation opportunities (Akter et al., 2019; Manyika et al., 2011; Wamba et al., 2017). 

Data and information products can provide multiple operations and supply chain management 

opportunities with a strong focus on innovation outcomes (Spanaki et al., 2018). However, there are 

multiple challenges in the diffusion of innovative data-driven approaches, requiring multidisciplinary 

approaches and methods sothat already existing theories can be extended towards this direction. 

The DOI theory will be used as a lens for this research due to elevated scalability and broader nature 

– analysis will be optimised and heavily aligning to BDA being adopted by organisations. With a 

multitude of variables in adoption rates of BDA, further insights can potentially be gained through the 

use of the DOI. This is the case even though the simplicity of the TAM model would allow for more 

streamlined analysis and reflection. 

To utilise Rogers (2003) work effectively, relevant elements of the 'Diffusion of Innovations' are 

utilised to construct this framework below. Concerning the aim and objectives, the priority for this 

research is to find the reasons for adoption; hence, these factors, given in Appendix 2A, have been 

selected for this framework, depicted in Figure 1.  

Diffusion of 

Innovations 

(DOI)  

Aspects Interview Question 

Rate of 

Adoption 

Relative advantage 
What are the perceived advantages and disadvantages that 

can arise during BDA incorporation? 

Compatibility Is BDA suitable for analysis in the renewable energy sector? 

Complexity 
What is the difficulty of incorporating BDA? What are the 

challenges? 

Trialability Would a trial period be deemed as an incentive for adoption? 



Innovation decision Who makes such decisions at the organisation? 

Internal 

characteristics 

Centralisation 

Does the limitation of power to a few individuals in the 

organisation impact the likelihood of BDA adoption due to the 

increased/decreased innovativeness? 

Size 
What differences are there in the likelihood to adopt BDA 

based on assorted sizes of organisations? 

Figure 1 – Conceptual framework 

The following methodology is derived from exploring the reasoning behind the BDA adoption of 

organisations in the renewable energy sector. A data collection section is included in order to justify 

the reasoning for the study approach, followed by the sampling strategy, interview design, the method 

of data analysis and ethical considerations taken during this research process.   

6 Research Design 

This research follows the tenets of qualitative research. Our aim was to provide a detailed 

interpretation and a realistic perspective (Miles and Huberman, 1994; Denzin and Lincoln, 2013; Bell 

et al., 2019) to study how BDA is diffused in renewable energy organisations. 

We followed a field study approach. A field study approach allows for the entire scope of a study to 

be ascertained (Merriam, 1998; 2002). Field research allows the researcher to observe or interview 

multiple participants in their natural setting – this, therefore, means that a broader range of 

comprehensive perspectives is gained through varying sources, however convergent to the same topic 

area (Babbie, 2013). The field study approach has been used by Huberman (1990), showcasing 

credibility, where assorted individuals from different organisations in the renewable energy space act 

as participants representing the organisation where they have a key management role. Whereas 

attaining conceptual justifications can be a challenge of the field study method (Aggarwal et al. 2013), 

a field study approach aligns with the research questions where a full range of organisations are 

investigated, enabling a broader view of the adoption rates of BDA across the renewable energy 

sector. Following a qualitative approach, we conducted interviews (King, 2014) with the view to delve 

into questions as to how and why a participant has a specific view based on the surrounding context.  



7 Interview Design 

Data were gathered through semi-structured interviews. They are used to prompt responses through 

questions, to obtain more effective dialogue (Edwards and Holland, 2013), allowing for real-world 

research capabilities (Gillham, 2000). With the open-ended questions, a reduced number of questions 

are asked, enabling the participant to fully endeavour their viewpoints and experiences with reduced 

friction (Turner, 2010).  

We followed a 'purposeful' approach to sampling (Patton, 2005; Suri, 2011) to increase credibility and 

ensure data sufficiency. Patton (2002) mentions that purposeful sampling entails the need to 

strategically deliberate, reaping the most remarkable result from a limited number of individuals in a 

sample – convenience, time, and cost are factors that should not be prioritised comparison. Delving 

further into the strategy encompassed in this research, Palinkas et al. (2013) mention using a stratified 

purposeful method to measure the major variations in the space, allowing for core similarities to be 

exposed during analysis.  

We conducted eight semi-structured interviews within the renewable energy sector, representing the 

views of 8 organisations within the field. Most candidates hold postgraduate qualifications and 

experience in the field, which provides credibility in their responses. The duration of the interviews 

was 1 hour on average. The individuals shown in Table 1 represent the sector because of the range of 

job roles the participants have (e.g., consultants, analysts and directors). Table 1 also shows the 

varying functions of the renewable energy sector the participants reside in and the size of the 

organisation they are working in. Through studying these individuals, a quality-intensive study in the 

renewable energy sector is confirmed. The confidentiality of the discussions and the participants' 

anonymity was explicitly stated and agreed to by each participant. The theoretical underpinning of 

the questions was the 'Diffusion of Innovations' (Rogers, 2003). The theory explains the rate at which 

individuals in a space proceed to harness changes in technology, arguing that 'diffusion' allows for 

innovation to have conversed throughout a system. Interviews were transcribed ad verbatim. 

Table 1 - Interviewee sample characteristics 

Participant Profile Organisational Information 

Participant Job Role 
Years in 

Industry 
Function 

Size 

(employees) 

P1 Senior Technical Consultant 9 
Renewables 

Consultancy 
1,001–5,000 

P2 PV Performance Analyst 5 Solar 501-1000 

P3 Associate Director 11 Energy Efficiency 51-200 



P4 
Renewable Energy Modeller & 

Analyst 
9 

Wind, Solar, Hydro, 

Hybrid 
10,001+ 

P5 Developer 2 Energy Efficiency 11-50 

P6 Head of Production Operations 8 Fuel Cell / EV 11-50 

P7 Data Analyst 2 Solar 11-50 

P8 Senior Controls Engineer 5 EV / Solar 10,001+ 

 

8 Thematic Analysis 

We applied thematic analysis to analyse the interview data, allowing for themes to arise from the 

interview data (Boyatzis, 2009). The arising themes can reflect the context and allow for further means 

of inference (Marvasti et al., 2012). The thematic analysis used was deductive (Braun and Clarke, 

2006), where a theory-based approach is capacitated (Boyatzis, 2009) – therefore heavily aligning to 

the theoretical basis, that is, 'Diffusions of 'Innovations'.  

We followed the following steps in conducting the thematic analysis (Braun and Clarke, 2006): 

1. Familiarisation with the data 

2. Generating initial codes 

3. Searching for themes 

4. Reviewing themes 

5. Defining and naming themes 

6. Producing the report 
The coding process followed a hybrid mode of NVivo and manual processes (Bazeley & Jackson, 2013) 

where codes, themes, and meanings were extracted after the transcription of the interview data. After 

the themes had been outlined, following the 'conclusion drawing' stage (Miles and Huberman, 1994), 

a reiteration of the results with the literature review progress –consolidates and enforces any themes 

across the study took place.  

9 Research Findings and Analysis 

 The procedure recommended by Braun and Clarke (2006) and also suggested by other qualitative 

studies (Marvasti et al., 2012; Patton, 2005; Boyatzis, 2009) is followed in this research. In utilising the 

'Diffusions of Innovations' theory, by Roger (2003), the main thematic clusters which arise from the 

interviews in conjunction with the responses are: 

a) Perceived benefits of BDA to the energy sector 

b) Alignment of BDA tools to organisational strategy  

https://www.ge.com/renewableenergy


c) Challenges of BDA incorporation 

The three thematic directions mentioned outline the structure of the chapter and provide insight into 

the interview data and the field study results. The respective participants provided views of renewable 

energy organisations through questions regarding the diffusion of BDA in the organisational processes 

and the challenges and opportunities arising from integrating such tools. 

10 Benefits of BDA to the energy sector 

This theme is closely related to the 'Relative Advantage' perceived attribute arising through the 

'Diffusion of Innovations' theory. Relative advantage is associated with the degree to which an 

innovation is considered better than the prior approach (Rogers, 2003). The subthemes identified are 

introduced in Table 2, along with their frequency throughout the interviews. 

Table 2: Perceived benefits of BDA in the energy sector 

Sub-Themes Interviewee  Example Quotes 

More informed 

business 

decisions  

P2, P3, P4, P5 

and P8 

"Data analytics is important as firms have a huge amount of 
data and firms 'don't use It properly. Good BDA can result in 
quicker and better decisions by looking at trends and patterns 
in the large datasets" (P3) 
 

Trends and 

forecasts for 

profiles 

P1, P2, P4 

and P6 

"A company in the renewable energy space is not different to 
any other company – they need to have a strategic business 
model and act in a competitive market" (P4) 
 

Investment 

analysis 
P2, P4 and P7 

"With the rise of energy storage, it is very useful …. generating 
better reports for better investing opportunities." (P2) 
 
"It helps predict performance RE projects and gives confidence 
to investors on how their investments are going to go, based 
on the generation, so definitely at my organisation it is very 
helpful and does align" (P1) 

More effective 

pricing 
P2 and P7 

"With the rise of energy storage, it is very useful to see 
whether energy prices will be stagnant and when prices will 
rise in order to know when to sell etc., generating better 
reports for better investing opportunities." (P2) 

Utilising real-

time data 
P5 and P8 

"You can be more proactive and dynamic in your feedback 
cycle, so you have an issue, you can get an idea of what the 
issue is, before it happens, using feed analytics." (P8) 
 

Energy supply 

and demand 
P2  

"With the rise of energy storage, it is very useful to see 
whether energy prices will be stagnant and when prices will 
rise in order to know when to sell etc.…" (P2) 



Peak loading 

calculations 
P6 

"With renewables, because you 'don't have the typical, reliable 
generation, as 'you're dependent on things like the sun or the 
wind, understanding the likelihood of power available at any 
time is critical to being able to make it reliable in the first 
place" (P6) 

High-quality 

data retrieval 
P1 

"In an Energy firm, measuring data and the quality of data is 
high, so Data Analytics would be useful in acquiring historical 
data – backdating a lot more using the traditional energy 
data" (P1) 

Improved 

metering 

through insights 

P3 

"If 'you're a solar energy firm and monitoring solar energy 
data through metering – you can look at the different types of 
solar panels, their specifications and also performance 
characteristics such as degradation and yield" (P3) 

 

Overall, it is possible to notice the importance managers are giving BDA for decision-making. The most 

highly frequent benefits stated by the are related to more informed business decisions and the 

development of trends and forecasts, enabling organisations to understand more about the market 

and implement improvements. Different interviews also mention investment analysis, more effective 

pricing, and the availability of real-time data as interesting applications of BDA implementation. Less 

frequent but still relevant benefits are associated with particular activities that provide valuable 

information about the situation, including the balance of supply and demand of energy, peak loading 

calculations, high-quality data retrieval and enhanced insights obtained from metering.  

The most frequently stated benefit identified in the interviews was that 'More informed business 

decisions' can arise through the use of BDA. Because of the power of BDA, the capacity to analyse and 

operationalise information can support efficient and effective decisions for different stakeholders 

involved (Zhou et al., 2016). For instance, P4 specifically suggests: "BDA can be used in the HR function, 

for analysis and selection of the best candidates". This aligns with the findings from Halper (2014), 

who states that through 'Better business decisions', operations can be improved. This also indirectly 

agrees with Raguseo (2018) study, which highlighted that improved products and employee 

productivity were results of introducing business analytics. Therefore, the findings of this research 

stress the importance of BDA to improve decision-making, which supports the findings from Awudu 

et al. (2020) in the renewable energy sector.  

Bose (2009) mention the importance of 'Understanding customers' as a significant benefit of BDA 

stemming from their study. Although the aspect does not resemble the sub-themes identified at first 

glance, it is important to unpack the meaning. The author mentions that through the use of retention 

analysis, it is possible to identify trends that can have a richer picture of customers and their profiles. 

Indeed, Zhou et al. (2016) argue that BDA can help monitor and forecast demand analysis, customer 



engagement, targeted marketing, and optimise and understand energy consumption. Looking at the 

findings in Table 2, half of the participants highlight the importance of BDA to develop trends and 

forecasts, allowing them to have more accurate profiles. Particularly, P2 and P4 showcase knowledge 

of concrete BDA adoption characteristics. 

Bose (2009) also suggests that 'Usage of organisational data' is a relevant advantage. The sub-themes 

'Investment analysis', 'More effective 'pricing' and 'Improved metering through insights' account for 

it because these represent applications in which organisational data has been used to deliver actions. 

For instance, in the smart-grid operation, price forecasting can be a significant challenge that can be 

addressed using BDA (Yousefi et al., 2019), and BDA has shown the potential to support these 

activities. Hence, P2, P3, P4 and P7 arise as individuals who align to Bose's different advantages (2009).  

The data managed by BDA has enormous potential for energy companies. For instance, 

Diamantoulakis et al. (2015) suggested that SG's can undergo optimisation with the use of better 

insights. Similarly, Kotu and Deshpande (2014) state 'utilisation of sensor data', which involves the use 

of real-time data, can be valuable for managing supply and demand. Additionally, Sharmila et al. 

(2019) propose the optimised distribution of energy resources through the use of machine learning 

and BDA. Bearing in mind the inconsistency of power generation, P5 and P8 confirm that utilising real-

time data can be significantly beneficial in the renewables sector.  

Finlay (2014) suggests 'Provides a scalable format' and 'Consistency of predictions' as other relevant 

benefits of BDA use. These aspects can be associated with the sub-theme 'High-quality data retrieval', 

voiced by P1. This could be due to the technical background of P1, coming from the consultancy 

industry, where these extremities are comparatively persistent.  

Therefore, across the board, it is deemed prevalent that the knowledge about the benefits of BDA 

exists throughout the renewables sector, with the results of this paper aligning heavily with current 

literature. However, further knowledge dispersion in the sector could be beneficial in driving BDA to 

extend the reach of some of the advantages identified.  

11 Alignment of BDA tools to organisational strategy  

With all organisations subject to the incorporation of BDA to their organisations, it can be said that a 

faddist approach is being taken, according to Mortenson et al. (2015). With P2 and P7 showcasing a 

more neutral outlook, it can be said that the organisations seemed to acquire a middle-ground 

between the faddist and isolationist approaches – deemed necessary for leveraging adoption 

(Mortenson et al., 2015). Extracting from Kwon et al. (2014), it seems that organisations in the 

renewables sector aim to maintain high-quality corporate data, ensuring an easier adoption. On the 



other hand, the misalignment between BDA and the organisational strategy can generate issues for 

organisations. For instance, P7 was uncertain about the alignment of BDA to their organisation, which 

was reflected in the comment that when low-cost assets and devices are bought, insufficient data can 

be retrieved. This, therefore, has an adverse effect on BDA due to the inconsistency of data. 

Lavalle et al. (2011) found that 50% of respondents said BDA was a top priority at their organisation 

through analysing individuals from various industries. This paper suggests that in the renewable 

energy industry, BDA can be considered important, as the majority of participants agree on the top 

priority of BDA. The reasoning is that the renewable energy sector is increasingly becoming 

accustomed to modern technologies in improving business performance. Additionally, survival in the 

energy sector requires the capacity to evolve and adapt to technological changes. The view of P8 

confirms this view as "…renewable energy firms are nimble and more tech-savvy, younger, that is the 

impression I get at this organisation. So, they are more used to building their resources from the 

ground up, using the latest technology available".  

However, even with the capabilities of organisations in this sector, complete adoption is a pending 

challenge. Our results found that only P4 and P8 are fully transformed hence accustomed to BDA, even 

when most companies are trying to align their strategies to BDA. However, even with the capabilities 

of organisations in this sector, complete adoption is a pending challenge. Our results found that only 

P4 and P8 are fully transformed hence accustomed to BDA, even when most companies are trying to 

align their strategies to BDA. The use of Python seemed attractive to some of the participants, which 

supports the idea of Diamantoulakis et al. (2015), suggesting the optimisation of smart grids using 

predictive analytics and ML, which harnesses Python coding. Further knowledge of how Python can 

be effective for renewable energy organisations dealing with smart grids should be delivered.  

Coming from an engineering background, P6 and P8 agree with Tannahill and Jamshidi (2014), who 

use MATLAB to construct their scripts for PV optimisation. The authors utilise this due to inclined 

clustering, also endeavoured by Diamantoulakis et al. (2015) and, Alahakoon and Yu (2016). In this 

respect, it should be in the best interests of organisations in the solar industry to incorporate clustering 

to improve their PV devices. A summarising table for the sub-themes and quotes of the findings is 

presented in Table 3 below. 

Table 3: Sub-Themes and Example quotes for the integration of BDA in the business strategy. 

Sub-Themes Example Quotes 

Alignment of BDA tools 
to organisational 
strategy 

"I would say that our company strategy is definitely to try and use BDA as 
we go, but there is no defined objective that specifically encompasses 
BDA for improvement." (P7) 
 



"Yeah so what we say is that data analytics is embedded in our company 
strategy, it is part of our DNA" "…" it is essential to our development 
strategy and how we deliver our services to clients" (P3) 
 
"Yes, they see it as a huge potential. They look at the implementation of 
BDA as a long journey. So, not disruptive innovation but incremental 
innovation ." (P4) 
 
"Frankly, if you want to be competitive in this environment, you have got 
to have the edge" (P8) 
 
"Data analytics is something that can really change your business model 
and 'it's a matter of reflecting on the revolutionary aspect for many 
companies" (P4) 
 

Resultant Tools (e.g., 
Excel 
Bespoke 
Python 
MathWorks – MATLAB  
SQL 
VBA 
Tableau) 

"We do a lot of work in Excel because it is relatively simple, compared to 
Tableau, and clients are used to using Excel so 'it is useful for workbooks 
to share with clients"." (P3) 
 
"We only use mostly Excel, more recently, not really using but we have 
been exploring the benefits of BI software, more specifically Microsoft 
Power BI. I think it was mostly explored in terms of data visualisations for 
certain graphs during decision making and showing to senior 
management" (P2) 
 
"MathWorks, using the basic software, to do some large-scale BDA, which 
is critical as you have to have the capability in it, so the guys need to 
know what they are doing in writing the program" (P6) 
 
"We are using Python, but less for analysis, and more for data munging 
and handling the large amounts of data. Certainly, we are using some 
open-source software to do some basic PV modelling formulas in order to 
speed up the analysis" (P7) 
 
"I wanted to clarify that Excel is the most used tool in the solar industry, 
and still is, and the main reason behind this is the flexibility and the use of 
data manipulation… if you are a small business, you want quick, accurate 
answers, so Excel comes in handy" (P7) 
 
"We use Tableau quite a lot; we have a whole team of Tableau trained 
consultants who use them for ad-hoc data analysis developing, specific 
dashboard for clients." (P3) 
 
"We use a couple of different types; we use JupyterHub for Python and 
Github for more developing. I personally use a lot of MATLAB" (P8) 

 

12 Challenges of BDA incorporation 

The use of organisational data is an interesting aspect because research has identified a struggle 

between gathering data and operationalising it. Wang et al. (2018) mentioned the importance of 



turning raw data into manageable and useful information, but our findings highlight the problems 

caused by the lack of those capabilities. Organisations know they have data at their disposal which 

can be utilised to their benefit but struggle to use it properly, as expressed by P3: "…firms have a huge 

amount of data and do not use it properly." This finding supports Chen and Zhang's (2014) statements, 

who argue that organisations can go to the extent of deleting useful data due to insufficient storage 

and analysis knowledge. Finlay (2014) suggests that 'Data can be unstructured', and Zhou et al. (2016) 

mentions the complexity of data integration and sharing, aligning with the 'Flexibility with data variety' 

sub-theme. P1, who voiced this challenge, coming from a consultancy background, is heavily involved 

in retrieving and making sense of said data for clients. Albeit, this is also agreed extensively throughout 

literature, an example being Wu et al. (2014) and Fan et al. (2014), who collectively state that having 

various fields for the same function can lead to domain errors during aggregation of multiple sources. 

Lavalle et al. (2011) propose a three-tiered model of BDA capabilities. Based on this model and the 

tools and perceptions stemming from the analysis, Table 4 is produced. All organisations in this study 

outlined multiple barriers hindering the adoption of BDA. The primary challenges in the renewables 

sector given in Halper (2013) and Bose (2009) are the 'Lack of skills' and 'Organising to execute', along 

with the lack of professionals of BDA and energy management available (Zhou et al., 2016). These 

aspects heavily align with the findings in this study, where several participants mentioned that 

'Educating employees' was the most dominant barrier alongside 'Cost'. An example of that was 

presented by P3, who confirmed that they are facing difficulties currently. Similarly, the findings agree 

with the study performed by Raguseo (2018), in which out of 200 organisations, one of the most 

prominent reasons preventing the adoption of BDA was minimal IT expertise. 

Table 4: Challenges of BDA incorporation in the energy sector 

Sub-themes Interviewee  Example Quotes 

Educating 

employees 

P2, P3, P6 

and P8 

"That is the biggest hole, insufficient knowledge, however that 
was a few years ago" (P8) 
 
"…it takes time to learn these new skillsets" (P3) 

Cost 
P2, P3, P5 

and P6 

"…there’s also time and expense,… and if you can’t see the 
value of it then you won’t want to spend that time and money.” 
(P3) 
 
“Cost… in any industry… unless you have specialists working in, 
but we’re quite a small company, and we don’t have a team 
dedicated to doing data analysis tasks. So yeah, it is expensive 
to do – in order to harness something like tableau, that is a very 
expensive package.” (P5) 



Alignment to 

strategy 

P2, P3 and 

P4 

“The challenge is to understand that BDA is not just cosmetics, 
you don’t just add numbers and say, ‘we are doing BDA’, BDA 
can really change at the core any business…” (P4) 

Resistance to 

Change  
P3 and P4 “…and if you can’t see the value of it then you won’t want to 

spend that time and money.” (P3) 

Flexibility with 

data variety  
P1 and P6  

“The team took our feedback and worked on it, and they have 
something similar they now use where they go over the basics, 
and one-point source of information with FAQ’s and that has 
helped a lot.”(P8) 
 
“…we deal with different technologies, and they have different 
measuring equipment. It, therefore, needs to be flexible in 
dealing with different types of data and different types of data 
sources” (P1) 
 
“Consistency of data is something which is needed for data 
science, one reason we don’t have data science here because 
data coming from different data loggers all in a different 
format, getting it into the same format so you can run analysis 
is a challenge” (P7) 

Lack of 

standards 
P7 

“…there is a lack of standards in the renewable energy space 
since it’s been built from the ground up. Growing industry, 
which requires more standards” (P7) 
 
“…. there is the lack of standards in data hardware; one of the 
things we face is that we have 200 plants over the world that 
have their own monitoring system, data loggers, through 
individual communication protocols” (P7) 

Lack of 

performance 

indicators 

P7 
“Buying cost-effective assets may be a problem to run 
optimisation of the asset as if you buy cheap plants, you won’t 
have the best hardware” (P7) 

Variety of 

software 

available 

P2 and P7 
“…another problem is the lack of performance indicators when 
one person is talking about the same performance indicator, 
they might end up with different value, as there are not distinct 
calculating methods” (P7) 

 

To overcome the relative difficulty of BDA tasks, 'Trialability' can be an important factor. It can improve 

adoption rates – a key theme being 'Utilising training manuals and FAQs'. This suggestion is also 

provided in Halper (2014), who states the co-creation of centres of excellence (COE) to converge 

organisational knowledge.  

Further, P1, for the first theme, mentioned: "…setting up training manuals, as in organisations 

information should not just be left with one person. The information should be delivered from one 



person to another in case of a handover." This shows that adopters need to have sufficient information 

on the technology for relatively large organisations, as mentioned by P8.  

P4 mentions the requirement to align and integrate BDA to the strategy fully. Bose (2009) mentions 

the challenge of 'Insufficient business case or organisational buy-in', which is also displayed in the 

results of this paper, as some participants mentioned that 'Alignment to strategy' is a barrier to BDA 

adoption. This is particularly interesting because all of the participants said that their organisation is 

currently aligning BDA to their strategies, where P2 and P7 responded in a neutral manner. P2 was a 

participant who also suggested said challenge; however, a distinct relationship cannot be formed. This 

is a relevant finding because it shows that even though organisations acknowledge the importance 

and value of BDA, they struggle to align it to strategy successfully. 

Additionally, the results from Kotu and Deshpande (2014) are associated with the challenge' resistance 

to change' through mentioning 'Organisational culture' as a challenge. Kotu and Deshpande (2014) go 

on to mention that the changes in cultural aspects incrementally resonate throughout the business. 

P4 confirmed the existence of this challenge – this could be due to coming from a large organisation, 

where the process of change is executed over an increased period of time.  

A sub-theme of 'Disruptive changes to operations' arose in the 'Trialability' theme, where most 

participants highlighted said challenge. Based on this, it is evident that sufficient knowledge of 

implementation exists in the renewable energy sector.  

13 Discussion 

To cohere with the organisational characteristics dimension of the ‘Diffusion of Innovations’ theory, 

we investigated the characteristics of the decision-making processes and the structure of the relevant 

department at the respective organisations. In doing so, we explored the various views which exist for 

a renewable energy organisation and the associated decisions to adopt BDA effectively.  

Table 5 shows whether the renewable energy organisation has adopted advanced analytics in 

conjunction with the number of stakeholders which are required to make decisions. The ‘Diffusions of 

Innovations’ theory suggests that ‘Centralisation’ is negatively related to an organisation's 

innovativeness – with power being concentrated to fewer individuals, the leaders have insufficient 

positioning to be able to suggest relevant innovations to meet the needs of the organisation. 

Therefore, analysing the table (Table 5) shows that the number of decision-makers is relatively 

proportional to the organisation's size. For reference, Table 1 bases ‘advanced analytics’ as complete 

incorporation of BDA. 

Table 5 - Decision makers against the adoption of advanced analytics and organisation size 



Interviewee No. of Decision-
makers  

Organisational 
Size 

(No. employees) 

Renewable energy 
specialisation 

BDA adoption 
decision 

P1 15 1,001–5,000 Renewables 
Consultancy 

Yes 

P2 4 501-1000 Solar No 

P3 4 51-200 Energy Efficiency Yes 

P4 30 10,001+ Wind, Solar, Hydro, 
Hybrid 

Yes 

P5 1 11-50 Energy Efficiency No 

P6 2 11-50 Fuel Cell / EV No 

P7 5 11-50 Solar No 

P8 36 10,001+ EV / Solar Yes 

Further, based on this, it can be correlated that the fewer decision-makers in an organisation lead to 

a reduction of BDA adoption taking place, hence less innovation. Using examples of P1, P4 and P8, 

37.5% of the sample all carry a relatively larger number of decision-makers, spreading the need for 

knowledgeable decisions to be made whilst incorporating BDA.  In the case of P3, a company that 

utilises BDA does not align with this notion, with 4decision-makers at the organisation. From Table 5 

we also observe that those decisions are not relevant to the specialisation of the organisation in the 

renewable energy sector, although a few differences in the perceptions for BDA were identified during 

the interviews. 

14 Research implications 

According to the literature, big data and operational analytics tools and techniques have become very 

popular in OR communities over the past two decades. Operations research, as a field devoted to 

decision-making analytics via optimisation, modelling and statistics (Hazen et al. 2018), has benefited 

the most from the advances of big data discourse. During the last few year big data analytics and OR 

disciplines have become more and more intertwined and are moving forward hand in hand. Recent 

trend in scholarly academic publications shows that with the increase in application of big data 

analytics for decision making, the interest in Operations Research has decreased. The advances in big 

data analytics have provided numerous opportunities for OR scholars (De Coninck, 2017).  

Findings from the literature have outlined several potential advantages of BDA analytics for the 

renewable energy sector (Zhou et al., 2016) and made great strides on smart-grid optimisation (Hu 

and Vasilakos, 2016; Diamantoulakis et al., 2015). Less attention, however, has been placed on end-

to-end data analytics models for the implementation of BDA in the sector. More empirical evidence in 

the sector is necessary to account for managers' perceptions to support the successful 

implementation of BDA.  

https://www.ge.com/renewableenergy


Rogers (2003) outlined five aspects affecting the adoption rate of innovations: complexity, trialability, 

observability, relative advantage, and compatibility. This section links the findings from this research 

to provide insights using the case of eight renewable energy companies about BDA implementation in 

the sector 

The primary finding obtained from the analysis highlights the paramount importance of 'Relative 

Advantage' from the DOI theory (Rogers, 2003). The different cases showed that the majority of 

organisations feel that incorporating BDA can return better business decisions, with different potential 

benefits aligned with previous research (Raguseo, 2018; Halper, 2014). For the renewables sector, 

several participants mentioned the importance of improved business decisions and the theme of 

'Trends and forecasts for profiles' as advantages. These were highlighted due to the mass volume of 

data retrieved through the devices, collecting 'real-time data' which is retrieved through the devices, 

and collecting 'real-time data' mentioned by participants P5 and P8. Sun et al. (2020) argue that 

relative advantage is reflected in improved business opportunities, customer service and 

competitiveness. Looking at the benefits outlined in this research, the themes extracted provide 

evidence about the potential value of BDA to improve the company's practices, gain understanding 

about the customers and enhance business decisions. Hence, this research found that relative 

advantage significantly impacts managers' interest in adopting BDA, which aligns with previous 

research findings (Baig et al., 2019). 

Regarding the 'Compatibility' attribute of the DOI theory, all participants mentioned that BDA did align 

with their strategy and showed interest in pursuing BDA integration to support their operations. 

Nevertheless, just a couple of participants are involved in fully integrated companies. This is reflected 

in their current practices. For instance, the majority of participants mentioned that they are still 

accustomed to using Excel for their analytics. It can be said that organisations in this space need to 

apply BDA to their company's core to incorporate the technology fully. Hence, companies have to be 

aware of the potential challenges of misalignment between strategy and BDA. Concerns about 

infrastructure, such as the quality of assets and devices, could have an adverse effect on BDA due to 

data inconsistency. This finding agrees with the results from Sun et al. (2018), who highlights the 

importance of considering ‘compatibility’ as an antecedent for BDA implementation.   

Complexity has been stated as an important element affecting the adoption rate of BDA in previous 

literature (Sun et al., 2018; Baig et al., 2019). Our findings align with those because when mentioning 

the capital required to incorporate BDA, it is imperative in this study to ascertain the challenges which 

conformed to the 'Complexity' attribute. 'Cost' and 'Educating employees' equally attained several 

responses from the sample. No other sources found the 'Cost' to be a significant factor in the 



literature, but it makes sense because of the investment needed before ripping benefits. However, 

'Educating employees' boded with other studies such as Raguseo (2018) and Halper (2014), proving 

margin for grounding. Hence, this result helps to configure the perception of organisations in the 

renewables sector on BDA adoption. 

By investigating the 'Trialability' attribute, it was evident that incorporating trials of technologies 

would improve their adoption process instead of findings from Sun et al. (2018). Although their finding 

suggests ‘Trialability’ is of low priority for scholars and practitioners, the analysis presented here 

concludes that organisations within the renewables sector perceive that trialability mitigates 

'Disruptive changes to operations' and can be improved through 'Utilising training manuals and FAQs', 

which is supported by Halper (2014). Halper (2014) states that centres of excellence (COE) allow for 

improved organisational knowledge; however, including BDA as a catalyst to a strategy is not enough 

to reap benefits. Actionable processes should have ensued, which are heavily dependent on BDA. By 

ensuring a sufficient trial period, it is possible to mitigate the disruption of business operations, hence 

perform sufficient integration of BDA. With such a large amount of data available to organisations in 

the renewable energy space, it is required to use tools more advanced than Excel. This finding, 

therefore, proves to be ancillary to the objectives of this research – rather than solely exposing the 

perceptions of organisations. 

While critiquing perceived advantages, it was evident that participant P4 was drawn to believe that 

BDA implementation and advantages are the same for all organisations whilst expressing the 

importance of alignment. When coming from a relatively large organisation of 10,001+ employees, it 

can be said that this viewpoint is derived through the size and willingness of the organisation to use 

BDA for their decision making, aligning to results from Malladi (2013) and Sun et al. (2018), who find 

that the increasing size of the organisation, is positively related to the rate of adoption. Hence, small 

organisations fulfilled a lower degree of innovation, even though there were fewer decision-makers. 

Similarly, larger organisations are more accustomed to uptake BDA into their processes. With 

innovativeness greater at these larger organisations, based on the 'Centralisation' attribute, the larger 

organisations evidently have a greater capital to ensure effective BDA tools. This result suggests that 

the study meets its objective in analysing stakeholders' perceptions and deriving the dynamics 

involved in BDA adoption. 

An interesting item to highlight is the absence of comments related to privacy and security issues 

identified by Raguseo (2018), Zhou et al. (2016), and Schoenherr and Speier-Pero (2015). This research 

did not find risk and security as one of the main barriers to BDA implementation. The subthemes 

identified can be due to the early stage of implementing the organisations involved in the analysis, 



which are more focused on the modifications necessary for implementation rather than looking at the 

risks of implementing the technology. This finding highlights the importance of giving thorough 

information about BDA's implications to inform decision-making from managers.  

Last but not least, as sustainability is becoming more complex, dealing with its challenges are also 

becoming challenging and costly for stakeholders. Big data analytics could be valuable in providing 

understanding and insight for coping with systems that have high levels of complexity and uncertainty. 

Hence, recent literature shows that sustainability is gaining significant attention among OR and 

analytics scholars and practitioners (Dubey et al. 2019; Jable et al. 2018; Zhang et al. 2020). Over the 

last decade, advances in OR and big data analytics solutions research have made a significant 

contribution to understanding and implementing sustainability criteria in various industries. According 

to Gupta et al. (2019),, one of the challenges of dealing with sustainability and implementing circular 

economy in manufacturing and supply chain is the lack of functionalities that can help practitioners 

generate insights for highly complex and integrated sustainability processes. Kristoffersen et al. (2020) 

argue that smart technologies, such as the Internet of Things (IoT) and big data analytics tools and 

techniques, could work as essential enablers and facilitators for the successfull implementation of the 

circular economy. Their study shows that predictive models based on historical and real-time data can 

help circular economy practitioners to deal with the challenges of analysing sustainability criteria in 

organisations.  

Despite the recent advances in this area, findings of this research show that the empirical research in 

this area is still in its infancy; particularly, within the context of the energy sector.   

15 Practical implications 

The findings mentioned bode with the objectives of this research in gaining an overview of the 

perceptions carried through the renewables industry of BDA adoption in their respective functions. At 

the same time, this research provides a set of practical implications for managers: 

• ‘Relative Advantage’ is key for the implementation of BDA in the renewable energy sector – 

Our findings outline different advantages of BDA in the sector related to the improvement of 

practices inside the company, gaining understanding about the customers and enhancing 

business decisions. Managers can use this finding for motivating the investment in BDA and 

harnessing relevant benefits for the company. 

• ‘Compatibility’ has to be carefully considered whilst deciding to implement BDA in the 

renewable energy sector to avoid neglecting ‘complexity’ - The benefits to be had from 

implementing BDA often obscure the complexity of its inherent challenges. Our findings 

suggest it is important to integrate BDA to the core of the business to reap real benefits, given 



that partial or poorly planned implementation can lead to insufficient infrastructure or 

preparation, affecting the inconsistency of data and the effectiveness of BDA. That becomes 

important when considering cost and educating employees are the two most prominent 

perceived barriers to BDA. This result can warn managers about the dangers of limited 

planning when investing in BDA and provide advice about aspects to consider in the 

investment. 

• ‘Trialability’ is an important attribute for BDA in the renewable energy sector - Considering 

the visibility of energy provision and the problems created by operational disruptions, an 

appropriate trial period is essential to integrate BDA fully and successfully. This finding can 

inform managers about the need to integrate a ‘trialability’ period to ensure the organisation 

is ready to deploy BDA and reduce service disruption. 

Overall, our findings can encourage managers in the renewable energy sector to critically evaluate 

their readiness and commitment to implement BDA in their companies. The research has highlighted 

relevant drivers and barriers to consider in order to benefit from the use of BDA in this sector. 

Additionally, this research has delved into the experience and perception of managers regarding BDA 

implementation. The findings highlight the role of alignment between BDA implementation with 

strategy. This can make managers aware of the importance of embedding BDA in the company's core 

structure to ensure a successful implementation in the long term. 

16 Conclusions 

This study has focused on the opportunities and challenges for implementing BDA in the renewable 

energy sector. Using the DOI theory as a lens, this research provides empirical insights to advance 

understanding regarding the implementation of DA in the renewable energy sector through the 

analysis of interviews with practitioners.  

The results highlight clarity and understanding of several of the benefits of DA across the sector. 

Particularly regarding the impact on business decisions and the value for trends and forecasts. 

However, challenges related to appropriate training and education of the workforce, investment cost, 

and integrating this in the organisation's strategy have to be carefully considered by managers to reap 

those benefits. 

This work extends current knowledge on the implementation of BDA in the renewable energy sector. 

However, different limitations need to be presented. Although considering the UK renewable energy 

sector was decided because of its relevance and context, that also complicates generalisability. The 

results of this analysis have to be carefully considered for countries to account for the context and 



regulatory framework. Moreover, although we were careful to gather a meaningful sample of 

participants, the use of purposeful sampling is vulnerable to bias.  

One of the limitations of this research could be attributed to the sample size. Although the sample 

showcased credibility, with the participants, employees of organisations of different sectors, the result 

showed that the alternate perspectives proved hard to adjourn grounding and hence allow to derive 

appropriate propositions. For example, the Solar industry, of which 4 of the organisations were 

members, was the highest in this study. Further benefit could have been retrieved if a single function 

was studied, rather than the sector as a whole. This can also lead to an increase of sampling size, to 

account for the variance in functions in the sample.  

Additionally, with limited previous research studies within this space, forming a discussion section 

proved more difficult due to the misalignment with industries other than the renewables industry. 

Albeit, the results provide strong grounding on the perspectives of BDA adoption within the space, 

hence fully aligning to the aim of this research. 

There are several opportunities for further research. The study of specific sectors rather than the 

whole renewable industry would provide more actionable guidelines based on the context of the 

sector. Further studies could incorporate a 'case study approach as the research methodology 

attempted to acquire a plethora of suitable participants. Finally, the 'Diffusion of Innovations' theory 

by Rogers (2003) proved to carry many facets during analysis, so a more refined model, such as the 

TAM model, could facilitate analysis based on its malleability in the context. 
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