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SUMMARY: Lean construction and construction automation are two of the important efforts to improve the 

performance of the construction industry. However, apart from a small number of scholarly articles and 

implementation prototypes, the lean and digital construction movements seem to be largely running independent 

of each other. This paper aims at exploring those connections between Visual Management (VM), a fundamental 

information management strategy in lean construction, and emerging technologies, demonstrating the synergy 

between the two concepts over potential implementation scenarios and establishing their conceptual connections 

in construction. Consequently, the hypothesis of the paper is there is a significant synergy between emerging 

technologies (construction automation) and visual/sensory information management strategies (Visual 

Management) in lean construction. The hypothesis is explored by (i) discussing how emerging technologies can 

support conventional VM tools and techniques and (ii) presenting a conceptual architecture to integrate emerging 

technologies, such as the Internet of Things, Augmented Reality, context aware and mobile computing, the use of 

drones and quadcopters, auto identification (AutoID) systems and laser scanning, to support lean construction 

and VM on construction sites. Futuristic scenarios for the implementation of the context-aware VM in application 

areas such as production control, production levelling, quality control, project planning and control, plant 

maintenance and safety control are examined from a lean construction perspective, alongside the presentation of 

a higher-level implementation architecture to integrate various VM and emerging technology components to 

support the implementation in a holistic picture. The use of such scenario based approach was found useful in 

summarising the technology components, their interconnections and possible implementation areas in relation 

with VM. This paper demonstrates how the integration of conventional and IT based visual management 

approaches is within reach and holds the potential to enhance the construction and maintenance phase of complex, 

large-scale construction projects by reviewing the synergies between operational VM concepts and IT.  
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1. INTRODUCTION 

Starting from the late 1930s, an alternative and more dynamic production mind-set to mitigate the weaknesses of 

mass production and ultimately to catch up with their Western competitors has been successfully developed at 

Toyota Corporation in Japan out of several constraints and necessities (Fujimoto, 1999).  The constant growth of 

Toyota was essentially attributed to this production mind-set. Therefore, it has increasingly been a subject of 

interest to scholars and practitioners for more than 40 years (Holweg, 2007). Due to its clear focus on the reduction 

of production wastes and maximizing resource utilization, the production system at Toyota was broadly dubbed 

as the lean production system (Womack et al, 1990). With its many components, the lean production mind-set has 

been spreading from the automotive industry to many other industries such as healthcare, services, construction 

and IT (Koskela, 1992, Bowen and Youngdahl, 1998, Poppendieck and Poppendieck, 2003, Poksinska, 2010). The 

reflections of the lean production system on the construction industry have been discussed under the term “lean 

construction” since the early 1990s (Salem et al, 2005).  

One of the fundamental elements of the lean production system is Visual Management (VM) (Liker, 2004). VM 

is a management strategy that emphasises using sensory information systems to increase process transparency or 

the communication ability of process elements (Tezel et al, 2015). VM and its tools are used to realize, 

communicate and coordinate the lean production system’s targets in the workplace (Galsworth, 2005). Many of 

the operational information needs are addressed within the VM strategy. For instance, the lean idea of pull-based 

production (as opposed to the “push” in mass production) is realized and coordinated in the field by the exchange 

of a certain amount of simple cards or artefacts, called kanbans (Monden, 1998). To limit work-in-progress and to 

better control production rates, production is not allowed without the exchange of a kanban card as a production 

signal and a demand from the succeeding work unit. When the management issues a certain amount of kanban 

cards to the work units by the planned production rate (or takt rate), the control of the production at the operational 

level becomes more transparent and is self-executed by the workforce. Kanban cards are one of the reflections of 

the VM strategy on the lean production system.  

Recently, IT tools have been actively used to collect construction field data to support lean construction and VM 

(Barbosa et al. 2013, Kirchbach et al, 2014). Also, while keeping their core purpose intact, some of the 

conventional VM tools and lean construction techniques have been successfully converted into IT-based 

prototypes (Sacks et al, 2010a, Dave et al, 2014). In those prototypes, information visualization interfaces (often 

BIM models) are displayed on large touch-screens in the field and supported by a lean construction engine (i.e. a 

virtual kanban system linked the Last Planner System by Ballard (2000)) connected to the existing main-servers 

and ERP systems. Although useful, those prototypes do not fully illustrate the extensive potential in the combined 

use of lean construction techniques and emerging IT systems. 

Lean construction, as a process focused approach, and emerging IT tools have the potential to transform and 

facilitate construction operations. However, conceptual works discussing the connections between conventional 

VM and lean construction techniques, and emerging technologies for the construction industry is still very limited. 

Apart from a small number of scholarly articles and implementation prototypes, the lean and digital construction 

movements seem to be largely running independent of each other. This paper aims at exploring those connections 

between VM in lean construction and emerging IT systems. This is done by (i) discussing how emerging 

technologies can support conventional VM tools and techniques and (ii) presenting a conceptual architecture to 

integrate emerging technologies, such as the Internet of Things, Augmented Reality, context aware and mobile 

computing, the use of drones and quadcopters, auto identification (AutoID) systems and laser scanning, after a 

detailed review of the existing VM systems and related technologies. Futuristic scenarios of the implementation 

of the context-aware VM in application areas such as production control, production levelling, quality control, 

project planning and control, plant maintenance and safety control are discussed from a lean construction 

perspective. Also, the relations and synergies between VM and emerging IT systems have been illustrated. The 

focus of the paper is mainly limited to the construction and maintenance phase of complex, large-scale construction 

projects. 

2. VISUAL MANAGEMENT AND VISUAL TOOLS 

Like many other lean production concepts, the literature on VM and its tools is mostly directed to practitioners 

with an emphasis on “how” rather than “what” (Saurin et al, 2012). It is partly due to their intuitive design features 
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and relative simplicity in the way they function. VM is essentially an information management strategy in the lean 

production system with its many peculiar visual tools used in different managerial efforts, such as production 

management, health and safety management, quality management, workplace management, human-resources 

management etc (Suzaki, 1993, Liff and Posey, 2004, Parry and Turner, 2006).  The direct effect of the adoption 

of the VM strategy is an increase in the communication ability of process elements or process transparency 

(Formoso et al, 2002). An increased process transparency can lead to a greater consistency in production outputs 

(both process times and process end-products), simplification and coherence in decision making and production 

control, increased work coordination, easier identification of problems and deviations, stimulation of contacts 

among work units and broadened employee engagement and autonomy (Moser and Dos Santos, 2003).  

VM is realized through its visual tools and there are four distinctive characteristics of those VM tools (Greif, 1991, 

Suzaki, 1993, Galsworth, 2005); (i) the information in VM tools are presented to create information fields in the 

workplace from which people can freely pull information in a self-service fashion, (ii) the information need is 

determined ahead of time to prevent information deficiencies (pre-emptive approach), (iii) information display is 

integrated into process elements (space, machinery, equipment, components, materials, tools, gadgets etc.), in the 

direct interface between the operator and the process element (not in a file or server far from the production field), 

and (iv) the communication is simple and relies little or none on verbal or textual information. Galsworth (1997) 

further classifies VM tools as:  

 Visual indicator; just displays information and listening to its message depends solely on people’s 

initiatives (i.e. safety signs), 

 Visual signal: grabs attention through signals and expects people to listen to the message. The 

consequences of not listening to its message can be serious (i.e. traffic signs), 

 Visual control: limits, regulates and guides human response in terms size, direction, quantity, 

timing etc. The human control of disobedience to the message is very minimal (i.e. traffic lanes or 

kanban cards), 

 Visual guarantee: explicitly warns people of or totally controls/blocks critical cases. The human 

control of disobedience is practically none (i.e. automatic crane stoppages under adverse weather 

conditions). Those systems prevent human mistakes from turning into defects. They are sometimes 

called poke-yoke systems. 

Table. 1 shows the commonly used conventional VM tools with their visualization elements and reflections on the 

construction industry. 
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TABLE. 1: Conventional Visual Management systems used in production and construction 

VM 

tools/systems 

Definition Visualisation elements Production 

management 

references 

Construction 

management 

references 

General remarks 

Poka-Yokes Electro-mechanical systems used either to warn 

people of or to physically block/control 

mistakes to increase process quality, overall 

safety and to decrease production set-up times 

Warning poka-yoke systems 

are realised by integrated 

sensory information to warn 

people of process mistakes 

before they turn into defects 

of any sort.  Control poka-

yokes are more automatic than 

visual. 

Shingo (1986), 

Saurin et al 

(2012) 

Dos Santos and 

Powell (1999), 

Tommelein 

(2008). 

Despite its potential, a scarcely researched topic in 

construction.  It is highly related to integrating 

information and control poka-yoke systems onto 

construction components, materials, equipment, tools and 

machinery. 

Kanban 

system 

A visual control system used to signal a demand 

(i.e. material, production, maintenance or safety 

checks etc.) from the preceding work unit in a 

“pull” fashion. Simple artefacts, such as cards or 

tokens, are generally employed to realise those 

signals. 

Kanban signals generally 

indicate the required work 

type (production, maintenance 

etc), where the work is 

required, when the work is 

required, by whom the work 

is required. 

Monden (1998), 

Xanthopoulos et 

al (2015) 

Jang and Kim 

(2007), Ko and 

Kuo (2015) 

Many successful kanban implementation cases in 

construction can be found in the literature. Alongside 

production, kanban has also been used to communicate 

safety information on construction sites 

Heijunka 

boards 

Visual boards that are used to level demand and 

to control variability in production, material, 

equipment use. It is often integrated with the 

kanban system. 

The demanded material, 

equipment etc type, demand 

volume or quantity, demand 

rate or interval and demand 

location are generally shown 

on heijunka boards. An 

operator levels those 

demands. 

Coleman and 

Vaghefi (1994), 

Hüttmeir et al 

(2009) 

Barbosa et al 

(2013), Emuze 

and Saurin 

(2015), 

Some successful examples of on-site concrete production 

levelling and equipment demand levelling using heijunka 

boards in construction can be found in the literature.  

Andon 

system 

Audio-visual signalling boards used to take the 

attention of supervisors to a possible or actual 

disruption (i.e. quality, safety, information need 

etc) in a production activity. Those disruptions 

are often the subjects of continuous 

improvement efforts.  

The location and status of 

production disruptions (i.e. 

about to happen or already 

happened) are generally 

communicated. 

Bamber and 

Dale (2000), 

Womack et al 

(2009) 

Kemmer et al. 

(2006), Ko and 

Kuo (2015). 

Andon examples in construction are mostly from high-rise 

building construction sites. 
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Project 

production 

control 

systems 

Production plans and actual production status 

are visually communicated. There are also state-

of-the-art construction production control and 

coordination boards that are used to visually 

link the Last Planner plans to work teams. 

Generally, planned and actual 

production tasks, durations, 

times, locations, production 

work units and production 

rates, required production 

flow elements like 

information, material, 

workforce are visualized.  

Arditi et al 

(2001), Maylor 

(2001) 

Seppänen et al 

(2010), Brady 

(2014) 

In the construction industry, there are both conventional 

Gantt charts, location based control systems (i.e. Line of 

Balance charts) and state of the art visual control systems 

that link the Last Planner System plans with site tasks . 

The Last 

Planner 

System  

The Last Planner is a collaborative construction 

planning and control system. 

The Last Planner meetings 

contain visual post-it boards 

for planning efforts, showing 

different work units and their 

work dates, locations and 

work durations, what was 

promised and what was 

actually achieved, and a 

visual/tabular constraint 

analysis structure. 

 Ballard (2000), 

Formoso and 

Moura (2009) 

The Last Planner System can be applied both in the design 

and construction phase. 

The A3 

methodology 

A systematic and visual summary of a process, 

often times the continuous improvement 

process, or the PDCA cycle, on an A3 sheet 

A problem, its root causes and 

its solution is visually 

described. 

Liker (2004), 

Shook (2008) 

Parrish et al 

(2009), Carillo 

et al (2013) 

The A3 methodology should not only be confined to 

continuous improvement. It can be applied to different 

processes that need a focused communication (i.e. quality 

control of concrete).  

One-Point 

Lessons 

(OPL) 

OPLs are one-page sheets that visually train 

people on a changed procedure, new ways of 

doing things, modified workplace structure, 

revised standards etc. They are brief SOPs. 

They are effective on-the-job training tools 

Highly visual descriptions are 

presented with photos and 

sketches on a sheet of paper. 

Huntzinger 

(2002), Chen 

and Meng 

(2010) 

 A scarcely researched VM tool in construction. 

Internal 

marketing 

tools 

(Posters, 

slogans etc.) 

Visual elements used to underline desired 

behaviours, convey a message, affect 

perceptions, support change initiatives, best 

practices etc,, similar to  a marketing campaign. 

Visually rich and attractive 

slogans, posters, mascots etc. 

Liff and Posey 

(2004), 

Galsworth 

(2005) 

Sui Pheng and 

Hui Ming 

(1997), Tezel et 

al (2015) 

Generally used for safety purposes in construction. 
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Standard 

operating 

procedures 

(SOP) 

Instructions describing the optimum steps to 

accomplish a work task. 

Visualizing standard 

operating procedures 

containing information like 

work sequences, production 

rates and work-in-progress 

levels. 

 

Greif (1991), De 

Treville et al 

(2005) 

Nakagawa 

(2005), Mariz 

et al (2012). 

 

Visual 

performance 

boards 

Key performance indicators (KPIs) of work 

teams and workplace in general are shared in 

special areas that are sometimes called obeya 

rooms or performance areas for greater coverage 

Target versus actual 

performance figures are 

shown together. Deviations 

are highlighted clearly. Ways 

to mitigate those deviations 

are discussed and shown to 

set a base for continuous 

improvement efforts. 

Suzaki (1993), 

Kattman et al 

(2012). 

Salem et al. 

(2005), Tezel et 

al (2015) 

Team meetings are held around those performance boards 

(or in obeya rooms) to focus and trigger discussions.  

5S A systematic workplace structuring and 

housekeeping methodology, which refers to an 

acronym for the “sorting”, “setting-in-order”, 

“sweeping”, “standardizing” and “sustaining” 

steps 

Visual information of 

workplace elements (space, 

machinery, equipment, tools. 

gadgets, materials, personnel) 

on “what “, “where”,  

“when”, “who” and “ how 

many”.  Visual cleaning 

instructions, basic health and 

safety checks and preventive 

equipment/machinery 

maintenance checks. 

Osada (1991), 

Hirano (1995) 

Mastroianni 

and 

Abdelhamid 

(2003), 

Johansen and 

Walter (2007) 

The conventional 5S is hard to sustain, due to the highly 

mobile and dynamic nature of construction sites. 
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A key limitation in the existing (conventional) VM deployments within the construction industry has been that 

they are designed primarily to deliver pre-programmed information, without extensively catering for the user 

context and the dynamic site conditions. This could lead to a mismatch between what an application can deliver 

and end-users’ real information requirements. In contrast to the existing static and pre-programmed VM 

information provisioning, construction information flows are highly dynamic and incorporate multiple 

perspectives of project team members. In that sense, the value of a VM system is in its ability to deliver the right 

information to the right person at the right time, on an as-needed basis (Suzaki, 1993, Monden, 1998, Ortiz and 

Park, 2011) to support lean construction efforts. 

Many challenges in current construction processes in highly engineered and complex projects arise from poor 

access to the right information at the right time to support critical decision making, resulting in a lack of co-

ordination and poor communications (Son et al, 2008). Construction drawings and operational data are often held 

in an unstructured format and in disparate platforms (e.g. 2D CAD drawings, hand sketches of as-built conditions, 

3D models, building photographs, satellite imagery, spread sheets, laser point clouds indicating as-built 

information). Such information is often difficult to access or manage, resulting in considerable time spent on 

accessing and retrieving relevant information. Despite recent technological improvements, managing a seamless 

information flow between multiple stakeholders involved in a construction project is still a challenge. Construction 

work is often characterized by errors, rework, lack of understanding of the project and processes, and conflicts. 

Rapid and convenient access to relevant construction information, through improved awareness of user context 

can lead to significant cost and time savings due to the accuracy and immediacy with which relevant project 

information can be made available. 

It is particularly challenging to extract that value and maintain this information flow on large, complex construction 

sites where multiple trades work in different locations around the end product (constructed identity), under 

different constraints. The main construction-site based information requirements from the construction production 

planning and control perspective are shown in Table. 2 (Dave et al, 2014). 

TABLE. 2: Construction information requirements for planning and control 
Information Requirements Information System Commonly Used Techniques/Technologies 

Material Estimation, Inventory, Procurement Enterprise Resource Planning (ERP) systems 

Equipment Asset management, resource booking, plant hire 

(externally) 

 

ERP systems 

Manpower Human Resource Management, Subcontractor’s 

payroll, ad-hoc 

 

In most cases ad-hoc site based communication 

Space Project Plans, Drawings and 

Building Information Models 

Currently no systems cater to the need of space 

management for project execution 

Design/Specs Design models (BIM, i.e. Architectural, Structural, 

MEP), Drawings, Tendering and Estimating, 

building regulations such as local or national 

authorities 

BIM systems and Tendering and Estimation 

systems. Project extranets. 

Predecessor A production management system Currently an ad-hoc verbal communication 

system, or through 

the Last Planner System’s collaborative 

“huddle” meetings 

External Conditions Weather forecast engines, safety management 

system 

These are indicative /predictive systems, but 

their integration to the production system at the 

task level may still be beneficial. 
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A VM system could gain through integrating the information requirements with the elements of interactivity and 

contextual awareness (e.g. user role, user location, engagement in specific tasks, areas of responsibility). This can 

be achieved by increasing the automation level of a VM system. However, the degree of automation in VM 

deployments has relatively been low with a distinctive reliance on human interaction with simple, low-cost, 

cognitive methods (e.g. colour coding or shadowing) and artefacts (e.g. cards or signal lights) in the physical world 

(Hirano, 1995, Galsworh, 2005, Tezel et al, 2015). This may to some extend be due to the lean production system’s 

cautious approach to IT that manifests itself in the lean doctrine of using only proven (value adding) technology 

(Sacks et al, 2010a). However, emerging technologies, which have continuously been better integrating with each 

other, hold the potential to overcome some of the limitations of the current VM deployments. The critical 

parameters for an enhanced VM system are; (i) better contextual awareness and dynamic information display 

within complex, on-site information flows (Sacks et al, 2010b), (ii) timeliness/immediacy in control (shorter and 

automated information feedback) (Kirchbach et al, 2014) and (iii) locating visual (sensory) information closer to 

process elements, not only on the site office boards but also preferably on the workforce, equipment, machinery, 

plant and space itself (ubiquity) (Formoso et al, 2002). Moreover, an IT enhanced VM system can potentially 

support data collection from the workforce (two-way communication) and be better integrated with stakeholders’ 

(e.g. suppliers, clients, partners, designers, local authorities, professional bodies etc.) existing IT systems to 

maintain the information flow thorough those stakeholders as well. In the subsequent sections, the potential of 

emerging technologies to enhance VM in lean construction efforts is discussed under the light of a proposed IT 

architecture conceptualised for large, complex construction projects.  

3. TECHNOLOGY REVIEW 

3.1 Building Information Modelling 

In recent years, the use of parametric modelling based Building Information Models (BIM) and their potential to 

work as a single repository of building data throughout the project life-cycle has been well recognised (Azhar, 

2011, Bryde et al, 2013). The advent of multidimensional models (nD BIM) facilitates the extension of the use of 

BIM models over the project life-cycle. However, the practical use of BIM and nD visualisation beyond the design 

stage is still limited (Yabuki, 2010). Data and information contained within visual building models can be used to 

support critical decision-making and to develop standardised VM interfaces; visual construction models open to 

various data modifications. The parametric, machine-readable BIM models also enable deeper integration of 

visualised models with other emerging technologies for further data manipulation and enhanced possibilities. For 

instance, with the integration of a physics engine layer, BIM models can be turned into interactive games that are 

used to visually train people on the issues such as safety, quality and the motives of Lean Construction itself 

(Rüppel and Schatz, 2011). The discussion in this section will be limited to the possible use of BIM systems in 

connection with Lean Construction support and VM in the construction and facilities management phases as there 

is a significant positive synergy between lean construction and the use of BIM (Sacks et al, 2010a, Eastman et al, 

2011).  

There are attempts to holistically visualise the flows of construction site information on construction material, 

equipment, manpower, space availability, design, predecessor activities and external/environmental conditions 

through BIM models (Dave et al, 2014). One of the interesting efforts in information visualisation in building 

construction projects is the KanBIM prototype, in which on-site process and product status information are 

visualised on BIM models through the pulls or signals of the user interfaces displaying the maturity of tasks 

planned and the status of work underway within the building construction context (Sacks et al, 2010b, Gurevich 

and Sacks, 2014). Thus, the status of each task (on-going, stopped, having a problem) along with the source of a 

work disruption can be seen at a glance and visually controlled on a BIM model. The system integrates and 

visualises the Last Planner planning system outputs (short-term planning) collecting from and conveying 

information to construction team leaders at the operational level through large LCD touch screens. Although partly 

hampered by software interoperability, functionality and compatibility issues in application, the VisiLean software 

prototype also offers similar, interesting workflow visualisation/simulation opportunities in connection with the 

Last Planner system for highway construction planning and control efforts (Dave et al, 2013). 

Even though very promising, in order to increase system mobility for construction/maintenance projects, the data 

presentation and capturing (human interface at the operational level) in those systems could be realised with mobile 

or wearable computing devices supported by cloud servers, instead of static touch screens. Both systems have 
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limited context awareness, relatively higher dependency on the workforce/human involvement for information 

update (possible latency in control) and are open to wider integration on the software site, for instance with ERP 

systems, external and environmental information (e.g. weather), personnel management, to cover and visualise a 

wider information flow. Moreover, site based and office activities in a construction project should be better 

harmonized with a wider communication interface for production management (Dave et al., 2014).  Shortly, there 

is room for improvement in BIM based information flow visualization and control efforts for large, complex 

construction and maintenance projects in the Lean Construction world.  

In connection with the use of the Line of Balance planning method, which is quite relevant to visually controlling 

repetitive tasks (Kenley and Seppanen, 2010), BIM systems can be used in the visualisation of space-based 

scheduling for construction and maintenance projects. (Jongeling and Olofsson, 2007, Frandson and Tommelein, 

2014). The adoption of such visualisation could also trigger some discussions on the automation of takt (production 

pace) planning and use of cell production units, which are closely related to decreasing work-in-progress in 

building construction projects (Dos Santos et al, 2002). BIM enabled 4D/5D visual simulations for resource, time, 

safety, space, risk and constructability analysis have been adopted in complex building and industrial construction 

projects (Gerber et al, 2010). 4D/5D BIM models are integrated with the Last Planner system and Just-in-Time 

(JIT) based extensive/complex prefabrication efforts (e.g. duct work, mechanical, electrical and plumbing units, 

reinforced concrete panels, cladding, dry wall structures etc.) for higher quality control and coordination in 

building construction projects through the extensive integration of quantity-take offs and parametric models with 

suppliers’ ERP and Computer Numerical Control (CNC) systems (Bhatla and Leite, 2012, Hamdi and Leite, 2012).  

The use of BIM in facilities and operations management is also gaining momentum particularly in locating 

components, facilitating real-time data access, checking maintainability, and automatically creating digital assets 

(Becerik-Gerber et al, 2012). Those efforts can be perceived as eliminating/automating some non-value adding 

activities in facilities management through the use of BIM. Data capturing for BIM models come to fore in 

facilities/operations management and construction site progress tracking.  Commonly used data capturing 

techniques for BIM models in the construction and facilities management phases include laser scanning 

(automated), photogrammetry (automated), barcode and RFID tagging with several affecting parameters (see 

Table. 3) (Volk et al, 2014). The automated systems extract mainly spatial, colour and reflectivity information and 

also require a data-driven object recognition layer for data processing (e.g. shape-based or material-based 

matching) (Tang et al, 2010). Although the current data capturing approaches remain insufficient to accurately 

identify the already-built technical components (i.e. HVAC/MEP systems), their courses, installation dates, 

material layers or composites in facilities/operations management, refurbishment and retrofitting efforts 

(Dickinson et al, 2009), they have been used to facilitate automated construction progress monitoring with 

relatively high accuracy (Su et al, 2006, Golparvar-Fard et al, 2009, Turkan et al, 2012). 

TABLE. 3: Data capturing techniques for BIM models 
Data capturing parameters Laser Scanning Photogrammetry RFID tagging Barcode tagging 

Cost High Medium Medium Low 

Time Medium  Fast Fast Fast 

Level of detail High High Medium Medium 

Influence of size and complexity of the scene High High Low Low 

Influence of environmental conditions 

 

High High Low Low 

Direct Importability into BIM 

 

Yes Yes No No 
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3.2 Context aware systems 

Context is any information characterizing the situation of an entity (person, place or object) – such as location, 

time, activity and the preferences (Dey, 2000). Context-aware computing involves the use of environmental 

characteristics such as the user’s location, time, identity, profile and activity to inform the computing device so 

that it may provide information to the user that is relevant to the current context (Burrell and Gay, 2001). Pashtan 

(2005) described four key partitions of context parameters, including user static context (includes user profile, user 

interests, user preferences), user dynamic context (includes user location, user current task, vicinity to other people 

or objects), network connectivity (includes network characteristics, mobile terminal capabilities, available 

bandwidth and quality of service) and environmental context (includes time of day, noise, weather, etc.). 

Automated context awareness is often realised by the combined used of indoor/outdoor geolocationing, sensor 

networks, identification systems (e.g. RFID tags), image processing (e.g. cameras) and input from external data 

resources (e.g. weather conditions) (Kim, 2013, Lee et al, 2013).  

Awareness of user context can enhance communications and collaboration in the construction industry by 

providing a mechanism to determine whether an information is relevant to a particular context. While the user 

context is often the most well-known context to be considered, it is important to highlight that there are other 

project related entity contexts that may need to be provided for. In this way, it is possible to eliminate distractions 

for mobile workers, related to the volume and level of information. Also, user interaction with the system can be 

reduced by using context as a filtering mechanism to deliver only context relevant information to users. This has 

the potential to increase usability, by decreasing the level of interaction required between the mobile devices and 

the end users (Behzadan et al, 2008a). The advent of cloud computing, which is defined as clusters of distributed 

computers (largely vast data centres and server farms), can provide on-demand resources and services over a 

networked medium (usually the Internet) (Sultan and Bunt-Kokhuis, 2012). Cloud computing offers wider context 

aware data access for mobile construction teams through wireless communication and BIM model visualisation 

(Huerta-Canepa and Lee, 2010, Fathi et al, 2012, Redmond et al, 2012). 

3.3 Mobile computing 

Given the mobile and dynamic nature of construction production work, there is also a need to integrate the 

advances in mobile computing into the work environment to provide a user-friendly and mobile access to 

construction information (Costin et al., 2015). Using commercially available widescreen mobile devices such as 

iPhones/iPads or Google Android based mobile devices, it is now possible to gain access to full design libraries, 

construction documents and zoom in and out of drawings and Virtual Building Models, for the finest detail or a 

broader overview (Hardin and McCool, 2015). Also, mobile Augmented Reality (AR) applications have begun to 

develop for smart phones (Meža et al, 2015). This enables a display of augmented information such as a 3D model, 

overlaid on a live camera view of the mobile device. Users can define virtual tags to identify key locations based 

on their personal interest using commercial applications such as Layar and Wikitude. AR used with mobile devices 

can enable a new kind of interaction with virtual asset models (Meža et al, 2015). Also, wearable computing 

systems (i.e. Google glass or Apple watch), which are physically carried on human beings with significant 

processing powers, have been disseminating rapidly for a greater support for mobile applications. Although 

manually, mobile devices have been used to collect site data to support VM in lean construction efforts as well 

(Barbosa et al, 2013). 

3.4 Augmented Reality (AR) 

Augmented Reality (AR) is a relatively new form of context-aware interface that allows placing the user in a real 

environment augmented with additional information generated by computer (Barfield, 2015). Using AR-based 

technologies, virtual models of a components of a construction project can be superimposed on display of a real-

world image in real time using different types of display devices such as smart phones, tablet computers, 3D 

stereographic head mounted displays, or wearable computerised glasses. This can support delivery of highly 

specific data and information to users to support site-based workflows and processes. Recent developments in 

mobile processing units, camera quality, different sensors, wireless infrastructure and tracking technology enable 

AR applications to be implemented even in demanding mobile environments such as construction sites (Behzadan 

et al, 2008b, Irizarry et al, 2013). Many of the commercially available Apple and Android smart-phones currently 

support augmented reality applications such as facial recognition, assisted direction and AR tourism, using 
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compass, camera, and GPS system. AEC/FM industry is recognised as the prime candidate for the uptake of the 

AR technology (Chi et al, 2013). Webster (1996) has designed an AR based system to guide construction workers 

in the space frame structure assembly. EU funded STARMATE project focused on supporting technicians working 

on complex maintenance operations and providing hands-on training using equipment in its natural environment 

(Schwald et al, 2001). Schall et al (2009) developed a location-aware handheld augmented reality system to assist 

utilities field-personnel. VTT-based AR4BC project (Woodward et al, 2010) developed a prototype application to 

provide the user with a mobile view of a construction site augmented with BIM on two-way communication. Shen 

et al (2006) and Shen et al (2010) presented a framework to support concurrent collaborative product design among 

members of a multi-disciplinary team by highlighting how AR environments allow multiple users to interact and 

comment, thus achieving higher levels of collaboration. In recent years, the AR technology has also been 

popularised by the launch of XBOX 360, which includes a motion-tracking sensor, capable of tracking gestures 

and user location and body shapes. Different prototype applications have recently been developed using a 

combination of Augmented Reality (using Kinetic sensors) and Virtual Reality glasses to provide users with full 

immersion into virtual environments. 

The combined use of a BIM server with AR engines supported by mobile computers (e.g. the iPad) holds the 

potential for a real-time visual control interface and creating virtual prototyping for operational people in the 

construction and maintenance phases of projects (Golparvar-Fard, 2009, Woodward et al, 2010, Kuula et al, 2012; 

Wang et al, 2013). Those AR systems typically include tracking the user's position and orientation in space, 

calibrating the current position with the position in virtual environment, processing data and merging digital and 

real environment, and displaying AR (Madden, 2011).  Thus, within a working model, the user is able to point its 

mobile or wearable device to an already constructed/being constructed spatial element (e.g. corridor, wall, column, 

floor etc) and visualize on the pad screen the different BIM layers (structural, architectural, MEB and other nD 

layers) and other related information (e.g. cost, schedule, responsible, maintenance and quality requirements) 

corresponding to the pointed space. Supporting processes transparency and ubiquity on the site, the user is able to 

see what is supposed to be in the corresponding geometry according to the BIM model to visually control the 

construction and maintenance. There are several technical challenges for a working prototype.  The system relies 

on precisely tracking the location and orientation of a mobile computing device indoors and/or outdoors. For a 

higher accurate positioning, techniques like using reference images, differential global positioning system, point 

clouding, laser scanning, computer vision, feature based tracking radio frequency identification and Bluetooth 

based micro-location systems can be tested (Saidi et al, 2011). The software interoperability between off-the-shelf 

BIM software and AR engines should also be attained.  

An extension of AR is Spatial Augmented Reality (SAR), in which video-projectors, optical elements, holograms, 

radio frequency tags and other tracking technologies are employed to display graphical information directly onto 

physical objects without requiring the user to carry or wear a graphical display (Carmigniani et al, 2011). The 

developments in mini project models (e.g. the AAXA–P2 Pico projector) have added momentum to SAR 

applications (Jansen et al, 2015, Knibbe et al, 2015). The practical use of this system for construction/maintenance 

projects can be in rapid design evaluation, better communication of the design intent, improved stakeholder/client 

engagement, extended information visualisation and simulation and as a visual enabling technology for the Last 

Planner meetings (Nee et al, 2012). 

3.5 Use of drones for surface scanning and auto-identification 

Drones or Unmanned Aerial Vehicles (UAV) have been tested for their effective use in construction for a while 

(Irizarry et al, 2012, Siebert and Teizer, 2014). The use of drones in connection with 3D models and BIM systems 

for visual progress monitoring, site survey, safety and quality analysis seems promising, given construction and 

maintenance projects often extend over large areas that can be more comprehensively and easily scanned from the 

air by drones. Moreover, drones can be programmed to fly autonomously with a relatively less requirement for 

ground control (Siebert and Teizer, 2014, Varela et al, 2014). The non-value adding, costly and time consuming 

activities of progress monitoring, on-site asset and material tracking, quality assurance/control and as-built model 

creation can be visualised and automated to a degree.  This automation will also decrease the amount of mistakes 

made in those routine tasks. The three main expected outcomes; higher visualisation and process transparency, 

reducing the amount of non-value adding activities and minimising defects match well with the Lean Construction 

principles (Sacks et al, 2010a) 
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3.6 Laser scanning 

The use of Light Detection and Ranging (LiDAR), Laser Detection and Ranging (LADAR) and 3D laser scanners 

provides a wide range of opportunities for asset management and real-time site monitoring for construction projects 

in every phase of their project lifecycle (Randall, 2011). They are effective in locating topographic features, 

defining feature geometries and creating 3D surfaces. The main advantage of those systems over different imaging 

techniques discussed in the construction automation literature is their being comparatively easier to use and more 

mature technologies (Zhang and Arditi, 2013). Promising results were obtained by using the surface scanning 

technologies in identifying earth-moving amounts (Hashash et al., 2005), controlling highway pavement thickness 

(Walters et al., 2008), construction progress comparisons (Akinci et al, 2006, Turkan et al, 2012) and measuring 

road surface deterioration levels (Jaselskis et al, 2005). In addition, some commercial hardware/software systems 

based on mounting lightweight LiDAR scanners onto drones and quad-rotors that are capable of collecting 700.000 

data points per second at an altitude of 40 meters are now available to choose from. However, their costs may not 

be trivial, which renders a cost/benefit analysis necessary. When the hardware/software cost is prohibiting, high-

definition cameras mounted on drones and integrated with an image-processing engine (Kim and Shim, 2013) or 

novel 3D photogrammetry techniques such as ‘Structure-from-Motion’ (Westoby et al, 2012) can also be 

investigated for large-area site monitoring with possible functionality and accuracy trade-offs. 

Scanning distance, point cloud density and output speed are important parameters affecting the decision on the 

technology to be used in surface scanning (Randall, 2011). Particularly with the LADAR and LiDAR technologies, 

it is possible to achieve detailed point clouds with just a couple of scans (Turkan et al, 2012). On the other hand, 

flash LADAR scans yield rapid outputs on highly active sites (Randall, 2011). Another concern is the total weight 

of scanners to be carried on drones. Lighter and more compact scanners have been released to the market. 

Additional algorithm layers can be used to enhance automatic object identification of the scans (Bosche et al, 

2013). Clear data collection, processing and management procedures should be in place to ensure that point clouds 

provided as outputs by those combined systems are reasonably free of noise, distortion, and of higher quality with 

sufficient details (point density). It should be also noted that a fully automated and reliable system is yet to be 

achieved in a real construction environment. Hence, human intervention and management of the data seem 

necessary. The point clouds captured by drones can also be forwarded to BIM models (Wang et al, 2014), which 

enables using various nD BIM capabilities. It is necessary to bind the real-time output provided by the technology 

to construction management processes.  

3.7 RFID scanning 

Another aspect to the drone applications for visual controls in construction/maintenance projects is the combined 

use of drones with Radio-Frequency identification (RFID) readers to attain rapid, wide-area auto-identification 

and tracking. The use of the RFID technology in construction is not new. The main advantages of RFID tags are 

that unlike laser barcodes, they do not require a line of sight for information exchange, they are relatively durable 

in harsh construction environments and information can be both read from and written on them (Moselhi and El-

Omari, 2006). RFID tags are successfully employed in monitoring processes, in which mostly pre-fabricated 

materials are used, and updating material inventories (Lu et al, 2011). Location of workers, assets, equipment 

(construction and personnel protection) can be tracked in real time by using the RFID technology and Global 

Positioning System (GPS) for safety management, facilities management, processes management, and activity 

base (i.e. welding) progress measurement purposes (Shen et al, 2012, Kelm et al, 2013, Shahi et al, 2013, Lin et 

al, 2014). The information from RFID tags can also be integrated into BIM models.  

Recently, a practical experimentation of using drones with RFID readers to identify and track structural steel 

bundles in multiple, large storage yards by using active and passive RFID tags with promising results has been 

reported (Swedberg, 2014). Some commercial drone mounted RFID reading system designed mainly for retails 

stores are now available for purchase. Cost, communication range and medium (air, underwater and underground), 

and interference in cluttered areas should be the parameters to be considered choosing an appropriate RFID tagging 

technology (i.e. integrated circuit low, high, ultra-high frequency passive, semi-passive, active, ultra wide band or 

chipless RFID tags) (Chawla and Ha, 2007, Plessky and Reindl, 2010).  
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3.8 The Internet of Things (IoT) 

The novel paradigm Internet of Things (IoT) is an umbrella term that envisions a pervasive network of integrated 

things, such as wireless sensors and actuators, mobile and wearable computing devices, every-day objects with 

processing power and RFID/Auto-ID tags collectively making sense of their local situation and interacting with 

each other and human users (Atzori et al, 2010, Miorandi et al, 2012). The idea can be traced back from Weiser’s 

ubiquitous computing vision (Weiser, 1991) and it was popularised by Sterling’s description of a new category of 

space-time objects that are aware of their surroundings and can memorize real-world events (Sterling, 2005). 

Despite many technological or ethical challenges, like networking infrastructure, standardization, interoperability, 

data semantics, ad-hoc composition and coupling of things, data security and privacy issues (Bandyopadhyay and 

Sen, 2011), the paradigm carries the potential to embed a dynamic and collective ‘smartness’ into otherwise static 

and inanimate human environments (e.g. homes, offices, workplaces, roads, cities, country-wide facilities etc.) 

(Gubbi et al, 2013). The practical use of the IoT is relevant to uncontrolled and complex work environments like 

construction sites, where process elements are spatially distributed, mobile and exposed to environmental 

conditions. Wireless sensors (e.g. fiber optic/fiber Bragg grating and piezoelectric) and the auto-ID system network 

enables real-time context awareness in environmental and structural conditions, identity, time, activity type, 

activity location and reasons (Perera et al, 2014). Thus, It also fits well with the generic goals of the VM strategy; 

embedding information into processes, facilitating information flow and increasing workplace autonomy through 

increased process transparency.  

Kortuem et al. (2010) demonstrate a small-scale smart object network; an activity-aware hand tool, a policy-aware 

chemical storage barrel and a process-aware pneumatic pavement breaker communicating with construction 

workers through wearable devices to support the safety and process management efforts of a highway maintenance 

project. Ding et al (2013) propose an IoT based safety-early warning system for preventing accidents/structural 

failures in underground soil excavation conditions for a metro construction project that relies on an integrated 

system of RFID tags for personnel tracking, a network of fiber-optic sensors for structural health monitoring and 

portable devices. It should be noted that the dominant research perspective for the early use of the IoT paradigm 

and its related concepts in construction has been safety management (Chae and Yoshida, 2010, Carbonari et al, 

2011, Teizer, 2015). The potential of the paradigm for the construction industry still needs wider discussions from 

other construction management dimensions. Moreover, the paradigm’s vision of collective contextual sensing (e.g. 

a group of smart things sensing and evaluating a situation together) and extended or global scale connection of 

smart objects through the Internet have not been achieved yet. 

4. EMERGING TECHNOLOGIES TO SUPPORT CONVENTIONAL VM SYSTEMS 

Through a dedicated logic layer, the visualization elements (information content) of each conventional VM system 

described in Table. 1 can be supported by the combined use of the reviewed emerging technologies for further 

automation, mobility, real-time feedback and context awareness. Also, those IT-supported systems will better 

facilitate a two-way communication. For instance, a work team can easily comment or propose a change in a SOP 

using their mobile computers. Some emerging technologies can be more relevant to some conventional VM tools 

and systems. Table. 4 displays a summary of the potential of emerging technologies to support conventional VM 

systems. In the table, the conventional VM systems commonly used in lean construction efforts have been showed 

with the emerging technologies that are more relevant to particular VM systems. In the rest of this section, the 

scope of those connections for improved VM practices are explained. The “X” in the table denotes the existence 

of a significant synergy between a particular technology and operational VM tool in developing applications. 

5S: BIM systems can present on mobile systems a dynamic visualisation background for general site 

standardization; site layout, standard material, component, machinery, tool locations, quantities and identifications 

with their corresponding responsible personnel.  Context awareness, AutoID systems and mobile technologies can 

yield work unit specific workplace standardization information, along with preventive health and safety, and 

maintenance information. AR systems combined with mobile technologies can be used to communicate what 

workplace element should actually be where and how to perform various preventive health and safety, and 

maintenance checks correctly.  

Visual performance boards: The IoT integrated into tools, equipment, components and machinery can 

automatically generate and communicate performance data. Also, surface scanning and advanced photogrammetry 
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can be used to rapidly capture actual productivity and quality performance data. Supervisors can give instant 

feedback over large construction areas on other performance aspects like 5S audits or the health and safety 

condition of a specific work units or locations by using mobile devices. As image processing engines improve, 

those general evaluations can also be automated on a set of standard assessment frameworks. The collated 

performance data can be complied as per the needs of different work units and can be transferred onto mobile 

systems and BIM models. Construction work units can see different performance information content as per their 

trade, work locations, work requirements (i.e. plans, health and safety and quality requirements) and work times 

(day or night).  

TABLE. 4: Emerging technologies to support conventional VM systems and tools 

 BIM Context aware 

systems 

Mobile 

computing (& 

wearable 

devices) 

Augmented 

reality systems 

Surface scan 

(Laser scanning, 

photogrammetry) 

AutoID 

(RFID, 

NFC) 

The Internet 

of Things 

(IoT) 

5S X X X X  X  

Visual 

Performance 

Boards 

X X X  X  X 

Standard 

Operating 

Procedures 

 X X X  X  

Internal Marketing  X X X  X X 

One-Point-

Lessons 

 X X X  X  

The A3 

methodology 

 X X   X  

The Last Planner 

meeting boards 

X X X X X X X 

Project production 

control systems 

X X X X X X X 

Andon system X  X   X X 

Heijunka boards X   X   X X 

Kanban System X X X   X X 

Poka Yokes  X X   X X 

 

Standard operating procedures (SOP): Work units can see different SOPs as per their trade, work locations, 

work requirements (plans, health and safety and quality requirements) and work times (day or night) with better 

context awareness on mobile devices. Also, the elements of SOPs such as production rate and work-in-progress 

amounts can be dynamically adjusted for different work conditions and times. AR tools combined with mobile 

technologies can facilitate the demonstrations of SOPs. on actual work settings.  

Internal marketing: The IoT, mobile computers and AutoID technologies will facilitate context specific internal 

marketing on construction sites. For instance, during night times, sensors can identify work units on night shifts 

and accordingly, internal marketing information for night-time safety precautions and requirements can be 

reminded. The information content of those marketing efforts can be customised by the performance and 

characteristics of work units for better outcomes.  For example, a low productivity work team can be incentivised 
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for more efficient work practices through messages on mobile computers as a communication medium. AR tools 

combined with mobile devices can clearly illustrate the difference between good and bad practices.  

One-Point-Lessons (OPL): Likewise SOPs, context awareness, mobile computers, AR tools and AutoID systems 

can be used to facilitate OPLs on construction sites. 

The A3 methodology: Highly customised A3 sheets to communicate and summarise various quality, safety and 

continuous improvement processes can be automatically created for different work units working under different 

contexts by using mobile devices and AutoID technologies.  In this way, for instance, a concrete work team will 

be able to see a different A3 process sheet than a cable laying team on their mobile devices. 

The Last Planner System: Coordination and two-way communication among different work units are the keys 

in creating the Last Planner meeting visuals and essentially executing the Last Planner System (Ballard, 2000). 

Through mobile devices and web-services, work teams do not need to be co-located to have their Last Planner 

meetings and to create those regular meeting visuals, and work constraints tables. This regular co-location need 

can particularly be problematic and wasteful for large construction projects.  Also, the key information of the Last 

Planner meetings (what was promised versus what was actually achieved) can be better visualized to work units 

on BIM models with areas of improvement. Those BIM models can be openly accessible through mobile devices.  

Moreover, through AutoID technologies and the IoT , the production outputs of work units can be automatically 

and accurately captured and recorded into the what was actually achieved as a part of the Last Planner visuals. 

Surface scanning technologies can also be used on larger areas to rapidly record and visualize the what was actually 

achieved part (actual performance). Construction work units can also at the same time manually input, modify or 

comment on their work status and deliverables on BIM based models through the touch screens of their mobile 

devices on a real time basis. On construction sites, AR can be used with mobile devices to communicate the range 

of promises work teams need to fulfil within the Last Planner. For instance, by using AR visuals taken from BIM 

models on their tablets or wearable glasses, a pipe fitting team can easily see in a specific location (i.e. on a specific 

wall or floor), the amount and type of pipes they need to fit in that specific area to fulfil their promise as per their 

Last Planner promises.  

Project production control systems:  4D/5D BIM models have already been used to link BIM systems with work 

schedules and costs. Their use should be directed towards mobile systems more for large-scale construction and 

maintenance projects.  Those models can be improved with the integration of BIM supported AR systems on 

mobile devices to enable work units to compare what is actually planned and what is actually done.  Through 

AutoID technologies and the IoT, the production outputs of work units can be automatically and accurately 

captured and recorded. Also, surface scanning technologies are relevant to large-scale projects to rapidly capture 

the quality and status of work.  Conventional visual control boards that are used to link the Last Planner plans to 

site tasks in lean construction efforts can be turned into virtual visual control boards, on which work teams or 

subcontractors can visualize, interact, coordinate, plan and control their site works according to the Last Planner 

plans by using mobile devices and web-services instead of physical control cards. Those virtual visual control 

systems will enable real-time automation of the work unit clash analysis by work locations, capturing and 

addressing the information needs of work units to accomplish their planned tasks and calculation of the Plan 

Percent Complete (PPC) ratios, which is the ratio of the number of realized activities according to the plans to the 

total number of planned activities in a given time interval. 

Andon system: BIM based andon systems similar to the KanBIM prototype can be further developed for mobile 

devices. Work units can create manual andon signals by using mobile devices and AutoID technologies The IoT 

also can be used to generate simpler andon signals  (i.e. “production on-going”or “production stopped”, but not 

“production may stop soon”) and communicate them on mobile devices of supervisors automatically for their 

attention. BIM models can replace andon boards as the visualization background for andon signals. 

Heijunka boards: Mobile computers, AutoID technologies and the IoT can be used to automatically or manually 

create the demand for materials or tools/machinery use.  Those demands can be either levelled with a levelling 

engine without the involvement of a human-operator or by the decision of a supervisor. The levelled schedule for 

materials or tool/machinery use can be communicated on mobile devices and BIM models. 

Kanban system:  BIM based kanban systems similar to the KanBIM prototype can be further developed for mobile 

devices. AutoID technologies with mobile devices  (as readers and writers of RFID tags) can be used as kanban 

signals among work units. They are now capable of containing the kanban visualization information identified in 
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Table 1. Also, with the IoT, inanimate objects can automatically generate kanban signals for different purposes 

such as material replenishment, machinery/tool safety and maintenance check demand or machinery utilisation 

status (idle, stopping, working etc). 

Poka-Yokes: The IoT integrated into construction machinery, materials, components, tools and gadgets can be 

programmed to communicate on mobile devices critical information to act as safety and quality poka-yokes. For 

instance, sensors integrated into plants and work helmets can communicate with each other to warn work units (by 

vibration and/or beeping) of any plant/worker interface type work hazard (proximity). Again, context awareness, 

mobile devices and AutoID technologies will give way to creating customised poka-yoke systems for different 

work teams working under different conditions and constraints.  

Although there is a potential in the combined use of emerging technologies with conventional VM systems, a 

conceptual IT architecture, which is presented in the subsequent section, is needed to facilitate the implementation 

ideas outlined above and novel IT based VM and lean construction efforts to a greater extent. 

5. FUTURE IMPLEMENTATION SCENARIOS FOR IT BASED VISUAL 
MANAGEMENT 

For lean construction management, the visualisation through integrated BIM systems and aerial LiDAR scans can 

be used as effective communication means in value capturing and evaluating alternatives at the design and 

construction stages. They can also be used in the Last Planner meetings, to track site progress, site conditions for 

safety and production output of first-run studies (e.g. productivity experiments in lean efforts), to facilitate takt 

(rate of production) planning, to provide data for process simulation, to analyse continuous improvement efforts 

in critical tasks, to automate progress calculations and quality checks, as material replenishment/purchase and 

production “pull” signals, to monitor material and plant flow over  the site, to produce VM performance metrics 

for operational on-site staff, to generate more accurate and faster BIM based as-builts,  to integrate information in 

other BIM based flow visualisation efforts (e.g. KanBIM or VisiLean), and to assess surfaces and structural 

elements for maintenance. 

One common use of drones and RFID readers in providing visual controls can be in routine and rapid tracking of 

on-site stocked materials to produce automatic “pull” signals for production and replenishment through an ERP 

system on a Just-in-Time delivery basis. This can be particularly relevant to site-stock monitoring on large 

construction sites. Hence, certain inventories and work-in-progress can be kept at their optimums by their 

external/internal demands. On-site production or installation progress and actual material demand rates can also 

be visually tracked via the combined technology. This looks particularly promising for construction/maintenance 

projects in which many pre-fabricated materials are used. Additionally, necessary information from pre-fabricated 

items for facilities management systems can be quickly scanned from drone mounted RFID readers.  

Rapid reading of RFID tags by using drones enables two-way communication over larger open areas. This gives 

way to using RFID tags as kanban pull signals for various requirements by the operational workforce. A certain 

amount of RFID tags for different purposes can be given to work teams scattered on the site to enable the “pull” 

for some materials, work processes/production from upstream units, equipment, safety, maintenance, and quality 

check demands at the operational level. Various on-site process transparency increasing information, like planned 

location of use and quantity of materials, equipment and worker groups according to daily plans, maintenance, 

safety and process related information can be written on RFID tags for a better information flow. It seems 

particularly applicable to sites where WLAN or 3G/4G mobile signal receptions are limited or unreliable. A 

combined use of RFID tags, GIS and drones may enable the implantation of an andon quality control system for 

mobile construction teams, a more static version of which has been successfully used in high-rise building 

construction projects (Tezel et al., 2015). On RFID integrated boards, work teams can share their process flow 

status that can be communicated to management through GIS and drones along with their site locations and team 

IDs. Additionally, related VM metrics can be automatically produced for the work force through the RFID 

readings. 

The vision of combined use of the IoT and VM can find many practical applications at the operational and strategic 

management level in construction/maintenance projects. In construction logistics, the real-time monitoring and 

visualising of every link in a supply chain, from design to demolition, can be achieved via the RFID and the Near-
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Field Communication (NFC) technologies, enabling working on almost zero safety stocks and a reliable Just-in-

Time delivery system. A real-time access to the supply chain information will keep the workforce better informed 

and the stock levels at their optimums. In warehouses, sensors can be used to visually track atmospheric and 

environmental conditions, along with the quantity of materials, consumables, tools and the who is in possession 

of what tool/equipment information at any time on the site. It is also possible to monitor the wear and tear on 

critical construction material parts to enable preventive maintenance for higher safety and reliability. One-site 

stocked materials and tools can be easily found and tracked by the workforce reducing the amount of material 

losses and time spent looking for them. On-site theft, site restriction violations and material/equipment/plant 

misuse can be reduced by visually controlling and real-time tracking of whether they have been moved from 

restricted areas without permission. Sensors are useful for monitoring and visualizing structural (e.g. strain in soil 

or concrete) and environmental conditions (e.g. temperature, moisture, rainfall, specific gas levels, wind speed etc) 

for safety and quality management purposes. For instance, optimum site lightening can be automatically adjusted 

according to daylight to prevent sight related accidents and mistakes. 

For heavy plant operations, visually assisted driving and navigation, real-time traffic monitoring, route and 

quantity/use optimization and levelling (visual plant heijunka), and collision prevention (mistake-proofing or 

poka-yoke) along with maintenance tracking and support can be achieved through sensor networks. By using the 

AutoID technology, equipment and plant may enable their operation by only authorised and trained personnel. 

Hand tools and equipment can visually communicate their maintenance periods or conditions, replacement of their 

consumables/parts and their working conditions (e.g. orientation, vibration, and noise) by creating visual signals. 

The actuators on heavy plant and tools can be coupled with and fine-tuned by the information from sensors 

measuring parameters like soil density, distance, temperature, soil grade in real-time to increase construction safety 

and quality.  Smart posters or boards integrated with AutoID technologies can visually present personalised and 

dynamic visual information (e.g. performance metrics, work aids, protective equipment-PPE- requirements, level 

or requirement of training for particular tasks) for different worker groups or managers by their corresponding IDs 

integrated on their PPE or badges.  

Smart cards or tokens can be used as kanban signals to pull material, information or work among process units. 

Those cards may contain dynamic and additional information (e.g. not static but changing material amounts 

according to the stocks, production demand and levelling, information on standardized work, routine maintenance 

requirements on a plant or process safety) and can be easily tracked by a central monitoring system. The use of 

tools or equipment can be dynamically limited to prevent overproduction as an important waste in lean 

construction.  Supervisors can upload information onto augmented site layouts and area maps that can provide for 

instance, daily production planned information on a specific zone and traffic conditions on a site with some safety 

information. A digital diary summarizing the important events and tasks for a project and supported by the IoT 

can be maintained by the management and reached openly by the workforce through mobile or wearable computing 

devices. Automated and rapid data collection on processes, real-time material, equipment and plant use will give 

basis to close investigations for reduction of waste and a wide variety of process simulation, optimization and 

improvement actions. The IoT and visual controls application domain is open to development and experimentation 

by specific project conditions. 

Figure 1 presents a futuristic implementation scenario architecture which brings together the key technology 

components discussed above in a holistic picture, allowing for dynamic context relevant information provisioning 

and feedback to allow for informed decision making. Figure 2 presents the activity diagram for the scenario 

architecture. The key features of the implementation scenario are discussed as below: 

 

Data collection layer: The data collection layer is primarily realized through a sensor network (the IoT), RFID 

tags, a surface scanning and AutoID reading mechanism, which can optionally be mounted on drones or 

quadcopters for larger sites, and GPS/GIS for geolocationing. Also, the elements of the data presentation layer 

(black bland) can be used to collect on-site data from the work teams. Those technologies were found appropriate 

to rapidly collect data from larger construction sites. 

Data communication layer: The data communication layer can be divided into two main parts; on-site 

communication and external communication. The on-site communication is realized with outdoor WLAN access 
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points and wireless communication protocols (3G/4G) for increased mobilization. The communication with the 

external databases can be executed over the World Wide Web. 

Database layer: The database layer  consists of internal and external databases. The internal databases include a 

BIM database to present a generic visualization background of the project for various VM and lean construction 

efforts. The integration of the ERP databases is also important to keep track of the general managerial data, such 

as material logistics, cost accounts, Human Resources etc. The external databases will help the system to integrate 

with external stakeholders 

Data analytics layer: The data analytics layer consists of a point cloud management engine for surface scans, VR 

and Spatial Reality engine, cloud infrastructure and a visual controls system to provide the VM and lean process 

backbone. 

Data presentation layer:  The data presentation layers mainly consists of mobile and wearable devices and static 

touch screens. 

 

 

FIG. 1: Conceptual IT architecture to support VM and lean construction scenarios on construction sites 

 

The abovementioned scenario illustrates how IT-driven and context specific Visual Management approaches could 

drive organizational processes. However, experiences of technology implementation within the construction sector 

highlight that technological approaches must be supported by corresponding changes in business processes, 

capabilities and skills within an organization and its supply chain. Technological push alone, without 

corresponding business process improvements, will not lead to the realisation of full business potential of the 

aforementioned technologies within the construction context.  A SWOT (Strengths-Weaknesses-Opportunities-

Threats) analysis matrix of the proposed scenario is given in Table 5. 
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FIG. 2: Activity diagram for the conceptual IT architecture to support VM and lean construction scenarios on 

construction sites 

TABLE. 5: SWOT matrix of the proposed scenario 

Strengths 

 Enabling automation and dynamic information 

flow for conventional VM systems 

 Enriching the content and presentation of visual 

information 

 Added context awareness to conventional VM 

systems 

 Dissemination of VM systems onto the whole 

construction site through added mobility (larger 

coverage) 

 Improved process transparency in construction 

operations 

 Converting a wide-set of conventional VM 

systems into IT-based systems  

 Enabling novel on-site VM implementation 

opportunities and scenarios that have not been 

tried before 

Weaknesses 

 Lack of technology integration and 

interoperability 

 Lack of a comprehensive VM data analytics  

 Lack of the business case (cost/benefit and 

return on investment analyses) 

 Lack of prototypes and implementation cases, 

even if partial 

 Lack of trained workforce to work with IT 

enabled VM systems 

 Initial and maintenance costs for the 

implementation can be high 

 Lack of awareness of the opportunities for VM 

with emerging technologies 

 Some system components may need to be 

reconfigured with each new project. 

Opportunities 

 Increasing attention to lean construction, and its 

tools and techniques in the construction industry 

with many successful implementation cases 

 Clear digital construction vision set out by 

certain governments (i.e. level 2 BIM mandate 

in the UK) 

 Intensifying technology integration efforts. 

 Decreasing technology costs 

 Raising awareness of and attention to certain 

technological components (i.e. BIM) 

 

Threats 

 Giving too much emphasis on the technology 

side, neglecting the process and people 

components 

 Insufficient supply chain (i.e. subcontractors 

and suppliers) readiness to operationalise the 

scenarios 

 Insufficient top management and/or client 

support 

 Increasing the dependency of site operations on 

technology – maintenance and smooth working 

of the components become highly critical 

 Insufficient return on investment that will 

negatively affect the adoption of similar efforts 

in the field 
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6. CONCLUSION AND RECOMMENDATIONS 

Lean construction and emerging technologies are two of the prominent research and implementation areas that 

have been frequently discussed to improve the overall performance of the construction industry. This paper aims 

at bridging the gap between VM in lean construction, and the digital construction movements to an extent by 

outlining how emerging technologies can add dimensions to conventional VM and lean construction practices, 

particularly for large construction and maintenance projects. Many opportunities, in which emerging IT systems 

can add the context awareness, mobility, dynamism and instant feedback features to conventional VM systems, 

tools, and lean construction practices have been identified.  

Although promising, the extended use of IT systems to support and replace conventional VM systems to facilitate 

information flow on large construction and maintenance projects currently faces a number significant barriers such 

as; (i) interoperability issues among emerging technologies, (ii) initial technology investment and maintenance 

costs,  (iii) lack of human capital that is competent in both lean construction processes and emerging IT, (iv) lack 

of best practices and exemplary cases, (v) lack of proof of return on investment and the business cases,  and (vi) 

the project based, fragmented and highly competitive nature of the industry.  To create the business case, the next 

step in this research domain can be smaller-scale pilot efforts in real-life contexts in relation to the proposed 

architecture, future implementation options or the synergy matrix in Table. 4. 

There are also some driving parameters; (i) the attention to lean construction and VM has been increasing for 

operational performance improvement in construction with many successful implementation cases, (ii) there is a 

clear digital construction vision set by certain governments in the world that drives large construction organizations 

to invest in digital technologies, (iii) some technological components have been fast maturing and receiving 

significant attention by the industry (i.e. BIM), enabling their integration with many other technologies, and (iv) 

increasing research on the integration of technology components as a consequence of the need to combine and link 

their functions with each other. 

The lean principle of using only reliable, thoroughly tested technology that serves people and processes (Liker, 

2004) dictates a certain level of technological maturity in lean implementations, including VM. This may create 

some initial resistance and hesitancy. However, as the technology becomes more affordable and better integrated 

with each other, some of the outlined barriers will be overcome in time. Also, external driving factors like 

government mandates will help those technologies penetrate into the industry further. On the other hand, more 

macro concerns, such as the fragmented industrial structure, low profit margins rendering the industry too much 

return on investment focused, the risk averse supply chain and human capital issues should be challenged with 

more collaborative and integrated project delivery systems and training mechanism for an extended use of 

emerging IT tools with VM and lean construction. Even if partial, a working prototype based on the synergies 

described above will help create the business case for more extensive endeavours in the future. One of the first 

steps to that prototype should be developing a VM analytics module carrying the conventional VM logic (tools 

and systems) to the digital systems. 
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