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ABSTRACT 

Allocating a fixed cost among a set of peer decision-making units (DMUs) represents one of 

the most important applications of data envelopment analysis (DEA). However, almost all 

existing studies have addressed the fixed cost allocation (FCA) problem within a traditional 

framework while ignoring the existence of undesirable outputs. Undesirable outputs are 

neither scarce in various production activities in the real world nor trivial in efficiency 

evaluation and subsequent decision making. Motivated by this observation, this paper 

attempts to explicitly extend the traditional FCA problem to situations in which DMUs are 

necessarily involved with undesirable outputs. To this end, we first investigate the efficiency 

evaluation of DMUs considering undesirable outputs based on the joint weak disposability 

assumption. Then, flexible FCA schemes are considered to revisit the efficiency evaluation 

process. Results show that some feasible allocation schemes always exist such that all DMUs 

can be simultaneously efficient. Further, we define the comprehensive satisfaction degree and 

develop a satisfaction degree bargaining game approach to determine a unique FCA scheme. 

Finally, the proposed approach is demonstrated with an empirical study of banking activities 

based on real conditions. 
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1. Introduction 

Data envelopment analysis (DEA) is a nonparametric mathematical method originally 

designed to evaluate the relative efficiency of a set of homogenous decision-making units 

(DMUs) that are responsible for converting multiple inputs to produce multiple outputs 

(Charnes et al. 1978; Banker et al. 1984). Since its inception, DEA has been applied to 

various activities in the public and private sectors (Emrouznejad & Yang 2018; Li, 

Emrouznejad, et al. 2020; Li et al. 2021; Zhu, Li, Wu & Sun 2021), among which the fixed 

cost allocation (FCA) problem is one of the most important applications (Cook & Kress 1999; 

Beasley 2003; Li et al. 2009; Lin 2011a; Li et al. 2013; Du et al. 2014; Zhu, Aparicio, et al. 

2021). In many real managerial applications, FCA problems arise how to divide the total 

amount costs among multiple units in a reasonable way. The fixed cost refers to the expense 

of building a common platform for a group of units (Li et al. 2009; Li, Zhu & Liang 2019), 

and typical examples of fixed costs include the advertisement expenditures of a manufacturer 

across its retailers (Cook & Kress 1999), the cost of a common communication cable among 

users (Beasley 2003) and the maintenance charges of an information and technology service 

across bank branches (Li, Liang, et al. 2018; Li, Zhu & Chen 2019). The underlying issue of 

DEA-based FCA problems concern the determination of a unique scheme that fairly assigns 

cost shares to all peer DMUs based on intrinsic efficiency principles. 

DEA-based FCA approaches would investigate DMUs’ efficiency scores through the 

inclusion of allocated costs. The existing studies can be mainly divided into two categories 

based on their focus on efficiency invariance or efficiency maximization (Cook and Kress 

1999; Beasley 2003). Cook & Kress (1999) made the first attempt to allocate a fixed cost 

based on efficiency analysis, and they left efficiencies unchanged to ensure fairness. 

Efficiency invariance is related to the fact that the allocation scheme is out of the control of 

individual DMUs, and hence each DMU’s efficiency score should not be affected. 

Jahanshahloo et al. (2004) argued that Cook & Kress (1999) violated the Pareto-minimality 

principle and then proposed an alternative approach using a simple formula, but their 

approach was further thought to lack feasibility and acceptability (Lin 2011b). Cook & Zhu 

(2005) extended the Cook & Kress (1999) approach to an output-oriented version and 

developed a new feasible method to generate the FCA scheme in multi-input–multi-output 

situations. However, Lin (2011a) argued that the Cook & Zhu (2005) approach will be 

infeasible when some special constraints are added, and Lin (2011a) modified the constraints 

https://link.springer.com/article/10.1007/s10479-018-2819-x#ref-CR33
https://link.springer.com/article/10.1007/s10479-018-2819-x#ref-CR45
https://link.springer.com/article/10.1007/s10479-018-2819-x#ref-CR15
https://link.springer.com/article/10.1007/s10479-018-2819-x#ref-CR14
https://link.springer.com/article/10.1007/s10479-018-2819-x#ref-CR44
https://link.springer.com/article/10.1007/s10479-018-2819-x#ref-CR15
https://link.springer.com/article/10.1007/s10479-018-2819-x#ref-CR44
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to generate the final allocation plan through minimizing the gaps between the largest and 

smallest allocated cost. Interestingly, Amirteimoori & Kordrostami (2005) and Jahanshahloo 

et al. (2017) considered the efficiency invariance principle with a set of common weights, and 

Lin & Chen (2016) proposed a FCA approach based on super CCR (Charnes-Cooper-Rhodes) 

efficiency and practical feasibility. Lin et al. (2016) combined efficiency invariance and zero 

slacks to generate a FCA plan that is unique, partially dependent on DMUs' inputs and 

unit-invariant. 

Another important stream is based on efficiency maximization first proposed by Beasley 

(2003), who used a set of common weights to maximize the overall efficiency for all DMUs. 

In fact, the efficiency maximization principle will ensure the full efficiency of one for each 

DMU (Li et al. 2013; Si et al. 2013), and thus each DMU will deem the corresponding 

allocation scheme to be fair and beneficial since each DMU will reach the highest efficiency 

(Beasley 2003). A significant extension of this concept was presented by Li et al. (2013), who 

proved the existence of efficient allocation schemes that can render all DMUs simultaneously 

efficient under a set of common weights. The authors also defined a degree of satisfaction 

concept for determining a unique allocation scheme. Du et al. (2014) used a game-like cross 

efficiency approach to address the FCA problem. The results showed that all DMUs will be 

efficient, but multiple optimal allocation schemes will be obtained (Li, Li, et al. 2019). Chen 

et al. (2020) proposed another cross-efficiency DEA-based iterative approach, which took the 

overall goal of the whole organization and individual preferences into account in a centralized 

environment. Further, Sharafi et al. (2020) developed an alternative cross-efficiency based on 

the Pareto concept, and found that the allocated results would be Pareto cross-efficient. Li, 

Zhu & Liang (2018) and Li, Li, et al. (2019) developed game-based approaches for selecting 

an optimal scheme from efficient allocation schemes using Shapley and nucleolus solutions. 

Recently, Meng et al. (2020) proposed an approach incorporating the perspectives of coalition 

efficiency and the Shapley value, which considers the relationships among DMUs across 

their formed coalitions to determine their interaction types and then generates an allocation 

scheme that represents the Shapley value. 

Noting that most studies consider DMUs as black boxes without considering internal 

production structures, some researchers have extended the traditional FCA problem to 

network environments. Yu et al. (2016) extended the game-like cross efficiency approach 

developed by Du et al. (2014) to two-stage network structures where the intermediate outputs 

produced in the first stage are used as inputs in the second stage. Ding et al. (2019) and Zhu 

https://link.springer.com/article/10.1007/s10479-018-2819-x#ref-CR1
https://link.springer.com/article/10.1007/s10479-018-2819-x#ref-CR46
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et al. (2019) then extended the satisfaction degree method developed by Li et al. (2013), and 

some variants of two-stage structures and satisfaction degree concepts were also studied in 

reference to the two-stage FCA problem. Li, Zhu & Chen (2019) studied the same problem 

and it can obtain a unique allocation scheme through an iterative procedure. Recently, Chu et 

al. (2020), An, Wang, et al. (2020) and An, Wang & Shi (2020) studied the same two-stage 

FCA problem by considering game relationships. 

Other FCA studies address some special cases. For instance, Lotfi et al. (2007) extended 

the work of Jahanshahloo et al. (2004) by proposing a means of targeting fuzzy inputs, fuzzy 

outputs and fuzzy fixed costs. Pendharkar (2018) developed a DEA-based hybrid genetic 

algorithm to generate a cost allocation scheme minimizing the correlation between inefficient 

DMUs’ efficiency levels and allocated resources. Dai et al. (2016) considered returns to scale 

properties, and Khodabakhshi and Aryavash (2014) took the relationship between existing 

measures and fixed costs into account. Mostafaee (2013) left returns to scale properties and 

efficiencies unchanged and specified an allocation scheme by minimizing the gap in the 

allocated costs among all DMUs. Ding et al. (2018) studied a centralized FCA problem while 

considering heterogeneous technology across DMUs. Li, Zhu & Liang (2019) presented a 

non-egoistic principle requiring that the allocation proposed by each DMU itself will result in 

cost sharing of no less than those of other DMUs. Most recently, Li, Yan, et al. (2020) 

proposed a FCA approach based on the efficiency ranking concept, which addressed the 

performance and efficiency ranking interval by considering all relative weights. Li et al. 

(2009), Dai et al. (2016) and Lin & Chen (2020) studied cases in which allocated costs are 

considered as complements of other cost measures while all other studies in the existing 

literature consider allocated costs as additional inputs. 

In surveying articles from the existing literature, we find that almost all previous articles 

have developed approaches for FCA problems under a traditional framework while ignoring 

the existence of undesirable outputs. However, most FCA problems in the real world are 

involved in sectors where undesirable outputs are inevitable. To provide a simple view of 

these observations, we summarize the existing studies in Table 1, including the application 

sectors and possible undesirable outputs. It can be demonstrated from Table 1 that most real 

applications inevitably provide undesirable outputs, while Li, Zhu & Chen (2019) is the only 

study that addresses the FCA problem in a case where the bad debt in banking activities was 

explicitly considered as a kind of undesirable output. However, Li, Zhu & Chen (2019) 

developed their approach considering only traditional inputs and desirable outputs, while the 
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bad debt was only considered in an empirical study to illustrate the usefulness and efficacy of 

their proposed approach. Therefore, Li, Zhu & Chen (2019) simply adopted the data 

transformation method developed by Seiford and Zhu (2002) to change undesirable outputs 

into desirable outputs. It is rather remarkable that undesirable outputs are neither scarce nor 

trivial in both academic research and real applications since undesirable outputs are inevitable 

and frequently appear in many production activities. It is well known that undesirable outputs 

have intrinsic features and that significantly affect evaluation results, and therefore we should 

focus on such outputs. Motivated by this idea, in this paper, we will explicitly extend the 

traditional FCA problem to situations in which DMUs convert inputs to produce desirable 

outputs and undesirable outputs simultaneously. 

Table 1 DEA-based fixed cost allocation studies 

Study Application 
Typical undesirable 

outputs 

Are undesirable 

outputs considered 

Cook & Kress (1999) Numerical -- NO 

Beasley (2003) Numerical -- NO 

Jahanshahloo et al. (2004) Numerical -- NO 

Amirteimoori & Kordrostami 

(2005) 
Numerical -- NO 

Cook & Zhu (2005) Numerical -- NO 

Lin (2011a) Numerical -- NO 

Lin (2011b) Numerical -- NO 

Li et al. (2013) Numerical -- NO 

Si et al. (2013) Numerical -- NO 

Mostafaee (2013) Numerical -- NO 

Du et al. (2014) Numerical -- NO 

Lin et al. (2016) Numerical -- NO 

Pendharkar (2018) Numerical -- NO 

Zhu et al. (2019) Numerical -- NO 

Li et al. (2009) Car manufacturer Pollution NO 

Khodabakhshi & Aryavash(2014) Gas company Pollution NO 

Dai et al. (2016) Multinational firm Not clear NO 

Lin & Chen (2016) School Not clear NO 

Yu et al. (2016) Bank Bad-debt NO 

Jahanshahloo et al. (2017) Bank Bad-debt NO 

Ding et al. (2018) Gas company Pollution NO 

Li, Zhu & Liang (2018) Bank Bad-debt NO 

Chu & Jiang (2019) Car manufacturer Pollution NO 

Ding et al. (2019) Bank Bad-debt NO 

Li, Zhu & Chen (2019) Bank Bad-debt YES 

Li, Zhu, Liang (2019) Transportation Pollution NO 
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Li, Li, et al. (2019) 
Steel and iron 

enterprise 
Pollution NO 

An, Wang et al. (2020) Bank Bad-debt NO 

An, Wang & Shi (2020) Bank Bad-debt NO 

Chu et al. (2020) Bank Bad-debt NO 

Li, Yan, et al. (2020b) Bank Bad-debt NO 

Lin & Chen (2020) Car manufacturer Pollution NO 

Meng et al. (2020) Bank Bad-debt NO 

Note: “--"means that the numerical example has nothing to do with undesirable outputs as it 

is a virtual dataset. 

In allocating a fixed cost across DMUs with undesirable outputs, we first examine the 

initial relative efficiency level by assuming the free disposability of inputs and the joint weak 

disposability of desirable outputs and undesirable outputs. We then take flexible FCA 

schemes into account to reexamine the potential efficiency scores, and results show that some 

feasible FCA schemes can always render all DMUs simultaneously efficient under a set of 

common weights. Further, we propose a new approach for determining a unique allocation 

scheme. The approach is based on a comprehensive satisfaction degree concept and a 

satisfaction degree bargaining game model. Finally, we present an empirical study to 

illustrate the proposed approach. In summation, this article makes a number of contributions 

to the existing literature. First, this study explicitly explores the FCA problem in an 

environment with undesirable outputs, while all previous studies ignored undesirable outputs. 

An inception is Li, Zhu & Chen (2019), which simply transformed undesirable outputs into 

their desirable version to follow a conventional framework. Since the transformation method 

ignores the weak disposability of undesirable outputs and different results and implications 

would be obtained, it indeed makes sense to explicitly consider undesirable outputs for such 

FCA problems. Second, this study develops a feasible and practical approach for determining 

a unique allocation scheme, rectifying the satisfaction degree concept and resulting in the 

development of a Nash bargaining game model. Third, the newly proposed FCA approach is 

used in an empirical study of real conditions to illustrate its applicability and usefulness. 

The remainder of this paper is organized as follows. First, section 2 develops the 

mathematical methodology. Second, section 3 applies the proposed approach to an empirical 

case involving twenty-seven commercial bank branches. Finally, section 4 concludes the 

paper and provides additional notes. 
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2. Methodology 

2.1. Preliminary 

Consider a common situation involving n DMUs with each DMU being responsible for 

converting m inputs into s outputs. The input and output vectors of 𝐷𝑀𝑈𝑗  (𝑗 = 1, … , 𝑛) are 

written as 𝑿𝑗 = (𝑥1𝑗 , … , 𝑥𝑖𝑗 , … , 𝑥𝑚𝑗)  and 𝒀𝑗 = (𝑦1𝑗, … , 𝑦𝑟𝑗 , … , 𝑦𝑠𝑗) , respectively. For a 

certain 𝐷𝑀𝑈𝑑(𝑑 = 1, … , 𝑛), Banker et al. (1984) proposed model (1) for calculating the 

maximal proportional input reduction while maintaining existing output production under the 

variable returns to scale (VRS) assumption: 
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where 𝜆𝑗  is the intensity variable corresponding with 𝐷𝑀𝑈𝑗 (𝑗 = 1, … , 𝑛) . Intensity 

variables are used to construct a production frontier based on the current input consumption 

and output production of all observed DMUs. Then, each DMU can be projected onto that 

frontier and be evaluated by comparing itself to its ideal projection. The optimal objective 

function of model (1) 𝑒𝑑
∗  estimates the maximal reduction proportion of inputs while 

maintaining current levels of output production. It is easy to show that the optimal objective 

function of model (1) ranges from zero to unity. Furthermore, the evaluated DMU is 

identified as efficient when it cannot proportionally reduce any inputs, that is, 𝑒𝑑
∗ = 1. By 

contrast, the evaluated DMU is assumed to be inefficient when 𝑒𝑑
∗ < 1, which implies that it 

is possible to proportionally reduce current inputs while producing unreduced outputs. 

Note in addition that when we drop the third constraint ∑ 𝜆𝑗
𝑛
𝑗=1 = 1 from model (1), it 

reduces to the classic CCR model (Charnes et al. 1978) under the constant returns to scale 

(CRS) assumption. The CRS model will contain both pure technique efficiency and scale 

efficiency, while the VRS model computes only the pure technique efficiency that is free 

from scale effects. It is clear that the VRS model is more general in its mathematical 

formulation than the CRS model, and the VRS can be easily changed into the CRS model by 

removing one constraint or adding an additional constrained condition. However, Dyson et al. 

(2001) argued that adopting the VRS model might lead to a pitfall if it is used in situations in 
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which there are no inherent scale effects. Therefore, we will develop mathematical models in 

the more general VRS case throughout this paper, but in the real applications, it is necessary 

to first test the data separately for scale effects and adopt the VRS assumption only when 

scale effects can be demonstrated. Scale effects can be a priori information in real 

applications, but if they are not a priori information, some procedures have also been 

developed in the literature for the purpose of testing for scale effects and returns to scale 

properties (Zhu & Shen 1995; Banker 1996; Simar & Wilson 2002; Wei & Yan, 2004; Banker 

& Natarajan 2011). 

Model (1) considers only traditional intended outputs that are maximized as possible, 

while undesirable outputs such as pollution and bad debt are also generated frequently in 

various production processes (Färe et al. 1989; Seiford & Zhu 2002). As Murty et al. (2012) 

pointed out that the generation of undesirable outputs proceeds hand-in-hand with the 

processes of consumption and production, and it exhibits the inevitability of a certain 

minimal amount of the undesirable outputs. 

With the consideration of undesirable outputs 𝑩𝑗 = (𝑏1𝑗, … , 𝑏𝑝𝑗, … , 𝑏𝑞𝑗)   for 

𝐷𝑀𝑈𝑗  (𝑗 = 1, … , 𝑛), a core task is to identify means of addressing undesirable outputs with 

desirable outputs, as the results would be very different depending on the used approach. The 

DEA literature contains many strands dealing with undesirable outputs, see, for example, 

treating undesirable outputs as inputs (Seiford & Zhu 2002), the directional distance function 

model (Chung et al. 1997), strong  and weak disposability modelling (Färe & Grosskopf 

2003; Kuosmanen 2005; Färe & Grosskopf 2009; Kuosmanen & Podinovski 2009), 

managerial and natural disposability modelling (Sueyoshi & Goto 2012; Song et al. 2012), 

by-production technology (Førsund 2009; Murty et al. 2012; Dakpo 2016; Førsund 2018; 

Boussemart et al. 2020; Fukuyama et al. 2020, 2021), eco-inefficiency (Chen & Delas 2012). 

We note that the strong and weak disposability assumptions of undesirable outputs and 

desirable outputs are the two most common used methods for dealing with the by-production 

mode in the literature (Zhou et al. 2012; Zhu et al. 2020; Zhu, Li, Li, et al. 2021; Li, 

Emrouznejad, et al. 2020; Li, Li, et al. 2020), although both have some weaknesses (Førsund 

2009; Murty et al. 2012). A significant feature between the strong and weak disposability 

assumptions is whether undesirable outputs can be produced without damage or a subsequent 

cost for the desirable outputs (Kuosmanen 2005; Chen & Delmas 2012). If undesirable 

outputs can be freely generated without damage or a subsequent cost, implying that both 

inputs and outputs can change unilaterally without compromising each other, then 
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undesirable outputs are assumed to be strongly disposable. In contrast, if the production of 

undesirable outputs indeed causes some damage or a subsequent cost for inputs or desirable 

outputs, implying that a reduction in undesirable outputs would also result in a reduction of 

desirable outputs simultaneously (Kuosmanen 2005; Kuosmanen & Podinovski 2009), then 

undesirable outputs are assumed to be weakly disposable. 

Since undesirable outputs are usually not free from desirable outputs in many real 

managerial applications, such as the empirical application in a later section in which the 

undesirable bad-debts cannot be freely reduced without affecting incomes and changing 

banking operations, we develop our models assuming joint weak disposability, and the 

weakly disposable DEA model is indeed a useful empirical tool in the analysis of undesirable 

outputs (Färe & Grosskopf 2003; Kuosmanen 2009). It should be also noted that nowadays 

there are several approaches for dealing with the by-production mode, but it has not reached a 

consensus. Different approaches can be used for developing FCA approaches depending on 

the problem environment, and results would be hence different. According to Kuosmanen 

(2005) and Kuosmanen & Podinovski (2009), model (2) can be developed to calculate the 

maximal proportional input reduction of DMUs with desirable outputs and undesirable 

outputs: 
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Denote the production technology with inputs 𝑿, desirable outputs 𝒀 and undesirable 

outputs 𝑩  as 𝑃(𝑿) = {(𝒀, 𝑩)|𝑿 can produce (𝒀, 𝑩)} . Model (2) assumes the free 

disposability of inputs and the joint weak disposability of desirable outputs and undesirable 

outputs. As indicated in Kuosmanen (2005) that, outputs are weakly disposable if (𝒀, 𝑩) ∈

𝑃(𝑿) and 0 ≤ 𝜌 ≤ 1 implies (𝜌𝒀, 𝜌𝑩) ∈ 𝑃(𝑿). The joint weak disposability of desirable 

and undesirable outputs allows, by definition, a proportional abatement of all of them. The 

VRS mathematical formulation of the corresponding technology requires including such 

non-uniform abatement factors. This can be done as indicated in Kuosmanen (2005) by 
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modifying the production possibility set 

{(𝑥, 𝑦, 𝑏)| ∑ 𝛽𝑗𝑥𝑖𝑗
𝑛
𝑗=1 ≤ 𝑥, ∑ 𝛽𝑗𝜌𝑗𝑦𝑟𝑗

𝑛
𝑗=1 ≥ 𝑦, ∑ 𝛽𝑗𝜌𝑗𝑏𝑝𝑗

𝑛
𝑗=1 = 𝑏, ∑ 𝛽𝑗

𝑛
𝑗=1 = 1, 𝛽𝑗 ≥ 0} , where 

0 ≤ 𝜌𝑗 ≤ 1 is the non-uniform proportional abatement factor of outputs that scales down 

both desirable and undesirable outputs by the same proportion, being consistent with 

Shephard (1970)’s definition. Through the simple algebraic operations of 𝛽𝑗𝜌𝑗 = 𝜆𝑗 and 

𝛽𝑗(1 − 𝜌𝑗) = 𝜂𝑗 , the modified production possibility set 

{(𝑥, 𝑦, 𝑏)| ∑ (𝜆𝑗 + 𝜂𝑗)𝑥𝑖𝑗
𝑛
𝑗=1 ≤ 𝑥, ∑ 𝜆𝑗𝑦𝑟𝑗

𝑛
𝑗=1 ≥ 𝑦, ∑ 𝜆𝑗𝑏𝑝𝑗

𝑛
𝑗=1 = 𝑏, ∑ (𝜆𝑗 + 𝜂𝑗)𝑛

𝑗=1 = 1, 𝜆𝑗 , 𝜂𝑗 ≥ 0} 

is used in the above model (2). The free disposability of inputs and desirable outputs is 

modeled by inequality constraints, the jointly weakly disposability of desirable outputs and 

undesirable outputs is modeled through the inclusion of abatement factors, and the 

undesirable outputs are not necessarily freely disposable due to the strict equality constraint. 

It is clear that model (2) always holds for Kuosmanen’s (2005) production specification, as 

discussed and debated in Kuosmanen (2005), Färe & Grosskopf (2009) and Kuosmanen & 

Podinovski (2009). 

Compared to the traditional BCC (Banker-Charnes-Cooper) formulation in model (1), 

here, the intensity variables are divided into the nondisposed intensity variable 𝜆𝑗 and the 

disposed intensity variable 𝜂𝑗. The inputs of 𝐷𝑀𝑈𝑗  (𝑗 = 1, … , 𝑛) are weighted by the sum 

of both the disposed intensity variable 𝜂𝑗 and nondisposed intensity variable 𝜆𝑗 while the 

desirable and undesirable outputs of 𝐷𝑀𝑈𝑗  (𝑗 = 1, … , 𝑛)  are only weighted by the 

nondisposed intensity variable 𝜆𝑗. Model (2) would reduce to the CRS model by dropping 

the fourth constraint, and in that case, 𝜂𝑗 is redundant and the weak disposability is satisfied 

by default. Note in addition that the weak disposability of desirable outputs and undesirable 

outputs can also be modeled in other formulations. One of important features in model (2) is 

that it allows for nonuniform abatement factors 𝜌𝑗 across different units. Readers can refer 

to Kuosmanen (2005), Färe & Grosskopf (2009) and Kuosmanen & Podinovski (2009) for 

further discussions. 

The following model (3) is a dual of model (2) in the multiplier formulation: 
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Here, 𝑢𝑟  (𝑟 = 1, … , 𝑠), 𝑣𝑖  (𝑖 = 1, … , 𝑚), 𝑤𝑝 (𝑝 = 1, … , 𝑞) and 𝑢0 are dual variables 
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derived from model (2) and are also unknown decision variables in model (3). Each dual 

variable measures the level of efficiency increments attributable to a unit increase/reduction 

in the corresponding input-output bundle. In particular, the first constraint corresponds to a 

nondisposed intensity variable 𝜆𝑗  and the second constraint corresponds to a disposed 

intensity variable 𝜂𝑗 . According to the dual theory, it holds that �̂�𝑑
∗ = �̅�𝑑

∗  for any 

𝐷𝑀𝑈𝑑 (𝑑 = 1, … , 𝑛). 

2.2. Performance with flexible fixed cost allocation schemes 

Now consider a problem environment in which a total fixed cost R is allocated across all 

n DMUs. Without any loss of generality, each 𝐷𝑀𝑈𝑗  (𝑗 = 1, … , 𝑛) is supposed to provide a 

proportion of the total fixed cost 𝑅𝑗 such that the following holds: 

0,
1

= = j

n

j j RRR .                                              (4) 

Equation (4) above represents a full cover condition guaranteeing that the individual 

allocated cost 𝑅𝑗  (𝑗 = 1, … , 𝑛) takes the same value as the total fixed cost R. Since any 

allocation scheme satisfying the full cover condition is a feasible allocation scheme in the real 

world, considerable flexibility is available in the determination of a unique FCA scheme. 

By affording a non-negative allocated cost 𝑅𝑗  (𝑗 = 1, … , 𝑛)  for each 𝐷𝑀𝑈𝑗  (𝑗 =

1, … , 𝑛), the input-output bundle is changed for the DMUs. Therefore, the performance of all 

DMUs is affected regardless of whether the allocated cost is considered as a new independent 

input or a complement to existing inputs. In this work, we consider the allocated cost as an 

additional input, and readers can refer to Li et al. (2009), Dai et al. (2016) and Lin and Chen 

(2020) for another case in which the allocated cost is considered as a complement to existing 

inputs. To this end, model (5) is developed below to investigate the potential sources of 

post-allocation efficiency with the flexible allocation scheme (𝑅1, … , 𝑅𝑛): 
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            (5) 

It is well known that the DEA-based FCA approaches determine the allocation scheme 
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by investigating the impact of allocated costs on efficiency scores (Cook & Kress 1999; 

Beasley 2003; Li et al. 2009; Lin 2011a; Du et al. 2014; An, Wang, et al. 2020). Therefore, 

the allocation of other DMUs’ costs is needed for the computation of the efficiency of DMUd 

in above model (5). Model (5) is obtained from model (3) with two differences. On the one 

hand, the equation (4) of a total cost covered by n DMUs is added to model (3) to develop 

model (5). On the other hand, the impact of possible allocated costs is considered in the 

evaluated efficiency scores in model (5), which is implemented by replacing the inputs 

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1  by (∑ 𝑣𝑖𝑥𝑖𝑗

𝑚
𝑖=1 + 𝑣𝑚+1𝑅𝑗) . Here, an additional relative weight 𝑣𝑚+1 > 0  is 

attached to the allocated costs. Further, model (5) can be linearized to model (6) below by 

substituting 𝑟𝑗 = 𝑣𝑚+1𝑅𝑗(𝑗 = 1, … , 𝑛): 

*
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                (6) 

Assume that (𝑢𝑟
∗ , 𝑣𝑖

∗, 𝑤𝑝
∗, 𝑟𝑗

∗, 𝑣𝑚+1
∗ , 𝑢0

∗ , ∀𝑟, 𝑖, 𝑝, 𝑗) is the optimal solution of model (6) 

when it is solved for 𝐷𝑀𝑈𝑑 (𝑑 = 1, … , 𝑛). Then, a 𝐷𝑀𝑈𝑑’s relative efficiency is calculated 

as 𝐸𝑑
∗ = ∑ 𝑢𝑟

∗𝑦𝑟𝑑
𝑠
𝑟=1 + ∑ 𝑤𝑝

∗𝑏𝑝𝑑
𝑞
𝑝=1 + 𝑢0

∗ . It is clear that the optimal objective function 𝐸𝑑
∗  

is smaller than one, and the optimum is reached if ∑ 𝑢𝑟 𝑦𝑟𝑑
𝑠
𝑟=1 − ∑ 𝑣𝑖 𝑥𝑖𝑑

𝑚
𝑖=1 − 𝑟𝑑 +

∑ 𝑤𝑝 𝑏𝑝𝑑
𝑞
𝑝=1 + 𝑢0 = 0. Otherwise, the objective function can be further improved according 

to the first and third constraints of model (6). Following a similar practice used by Li et al. 

(2013), Li, Zhu & Chen (2019)  and Ding et al. (2020), we easily find a set of efficient 

allocation schemes. For further details, we provide the following theorems. 

Theorem 1. The optimal objective function of model (6) is always one, and thus 𝐸𝑑
∗ = 1 for 

any 𝑑 = 1, … , 𝑛. 

Proof: See Appendix A. 

From Theorem 1, we find that any DMU can be efficient by determining a feasible FCA 

scheme and by selecting a set of optimal relative weights, which means that any proportional 

input reduction is impossible without proportionally reducing desirable outputs and 

undesirable outputs. This theorem also demonstrates that DMUs’ efficiency levels can be 
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affected by affording the fixed cost, and hence all DMUs have enough incentives to respond 

to certain FCA schemes according to the effects on their efficiency scores. Therefore, a 

certain FCA scheme is considered to be fair and acceptable when it can determine a maximal 

efficiency score for all DMUs. 

Theorem 2. There is always at least one feasible FCA scheme that can make all DMUs 

simultaneously efficient under a set of common weights. 

Proof: See Appendix B. 

Theorem 2 extends Theorem 1 to a broader platform where all DMUs rather than an 

individual DMU can be efficient by taking allocated costs into account in an environment 

with undesirable outputs. Therefore, these efficient allocation schemes are considered to be 

fair and acceptable. According to the above theorems and conclusions, the efficient allocation 

set (EAS), which contains all allocation schemes that can make all DMUs simultaneously 

efficient under a set of common weights, can be expressed as shown in formula (7): 
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    (7) 

The first constraint of formula (7) can ensure that all DMUs are efficient simultaneously. 

By rethinking model (5) or equivalently model (6), we can find that the efficient status would 

be simultaneously achieved if ∑ 𝑢𝑟 𝑦𝑟𝑗
𝑠
𝑟=1 − ∑ 𝑣𝑖 𝑥𝑖𝑗

𝑚
𝑖=1 − 𝑣𝑚+1𝑅𝑗 + ∑ 𝑤𝑝 𝑏𝑝𝑗

𝑞
𝑝=1 + 𝑢0 =

0 (𝑣𝑚+1 > 0)  is held for any 𝐷𝑀𝑈𝑗  (𝑗 = 1, … , 𝑛) . Then its equivalent version 

∑ 𝑢𝑟 𝑦𝑟𝑗
𝑠
𝑟=1 − ∑ 𝑣𝑖 𝑥𝑖𝑗

𝑚
𝑖=1 − 𝑅𝑗 + ∑ 𝑤𝑝 𝑏𝑝𝑗

𝑞
𝑝=1 + 𝑢0 = 0 would be obtained by assuming 

𝑢𝑟 = 𝑢𝑟 𝑣𝑚+1⁄ , 𝑣𝑖 = 𝑣𝑖 𝑣𝑚+1⁄ , 𝑤𝑝 = 𝑤𝑝 𝑣𝑚+1⁄  and 𝑢0 = 𝑢0 𝑣𝑚+1⁄ . 

By comparing formula (7) with that developed by Li et al. (2013), two features are 

significant except for scalar 𝑢0, which means that this work considers a VRS case while Li et 

al. (2013) studied a CRS case. First, undesirable outputs are involved and their relative 

weights 𝑤𝑝(𝑝 = 1, … , 𝑞) are free of a sign, diverging from other measures whose relative 

weights are nonnegative. This applies because this article adopts the joint weak disposability 

of desirable outputs and undesirable outputs, and undesirable outputs are constrained by 

equalities, implying a free dual variable. Second, the third constraint, which corresponds with 

the disposed intensity variable 𝜂𝑗 in the envelopment formulation, represents DMUs’ abated 

outputs through the scaling down of activity levels. This constraint can ensure nonnegative 
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aggregated outputs by linking to the first constraint as ∑ 𝑢𝑟𝑦𝑟𝑗
𝑠
𝑟=1 + ∑ 𝑤𝑝𝑏𝑝𝑗

𝑞
𝑝=1 =

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1 + 𝑅𝑗 − 𝑢0 ≥ 0. It is remarkable that both of the above two features emerge due to 

concerns related to undesirable outputs. It thus indeed makes sense to explicitly address 

undesirable outputs in an FCA problem. 

2.3. FCA using a satisfaction degree bargaining game approach 

It is notable that the efficient allocation set given in formula (7) includes more than one 

feasible allocation scheme, and many concepts and methods have been developed to address 

the FCA problem on the basis of efficient allocation schemes (Li et al., 2013; Si et al., 2013; 

Li, Zhu & Chen 2019; Li, Li, et al. 2019; Chu et al., 2020). In this section, we adopt a 

satisfaction degree bargaining game approach to determine a unique FCA scheme. To this end, 

we first calculate the interval of allocated costs for all 𝐷𝑀𝑈𝑗  (𝑗 = 1, … , 𝑛) . When 

𝐷𝑀𝑈𝑑 (𝑑 = 1, … , 𝑛) is under consideration, then model (8) can be used to calculate the 

maximal/minimal allocated cost while all DMUs remain efficient with undesirable outputs: 

max max
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           (8) 

The constraint of model (8) is just the efficient allocation set included in Formula (7). 

Therefore, the optimal objective function of model (8) determines an allocation interval for 

𝐷𝑀𝑈𝑑. Namely, the final allocated cost is no more than the maximum 𝑅𝑑
𝑚𝑎𝑥 and no less 

than the minimum 𝑅𝑑
𝑚𝑖𝑛 since otherwise the fully efficient status of some DMUs would be 

sacrificed. 

In practical and rational applications, each DMU is intrinsically willing to reduce its 

allocated cost. Therefore, each DMU is more willing to afford a cost share closer to the 

minimum value of 𝑅𝑑
𝑚𝑖𝑛 or is more willing to afford a cost share farther from the maximum 

𝑅𝑑
𝑚𝑎𝑥. Therefore, we can follow Li et al. (2013) and Li, Yan, et al. (2020) in defining two 

different satisfaction degree concepts from the given allocation scheme (𝑅1, … , 𝑅𝑛). 

Definition 1. The optimistic satisfaction degree of 𝐷𝑀𝑈𝑑  (𝑑 = 1, … , 𝑛) for the FCA scheme 

is 𝜌𝑑
𝑜 =

𝑅𝑑
𝑚𝑎𝑥−𝑅𝑑

𝑅𝑑
𝑚𝑎𝑥−𝑅𝑑

𝑚𝑖𝑛. 

Definition 2. The pessimistic satisfaction degree of 𝐷𝑀𝑈𝑑  (𝑑 = 1, … , 𝑛)  for the FCA 
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scheme is 𝜌𝑑
𝑝 =

𝑅𝑑
𝑚𝑖𝑛−𝑅𝑑

𝑅𝑑
𝑚𝑎𝑥−𝑅𝑑

𝑚𝑖𝑛. 

As a comparison, the first definition focuses mainly on the maximal allocated cost 

𝑅𝑑
𝑚𝑎𝑥 while the second definition focuses mainly on the minimal allocated cost 𝑅𝑑

𝑚𝑖𝑛. The 

first definition of satisfaction degree is optimistic since it measures how different the 

allocated cost is from the worst result; and the greater the distance is, the higher the degree of 

satisfaction. The optimistic degree of satisfaction ranges from zero to unity, and each 

𝐷𝑀𝑈𝑑(𝑑 = 1, … , 𝑛) will prefer a cost share that is related to a greater optimistic degree of 

satisfaction. By contrast, the second satisfaction degree is pessimistic since it measures how 

different the allocated cost is from the best result. The pessimistic degree of satisfaction 

ranges from -1 to 0, and similarly an FCA scheme with a greater degree of pessimistic 

satisfaction is preferred to another one with a smaller degree of pessimistic satisfaction. 

In fact, previous studies have only considered either optimistic or pessimistic degrees of 

satisfaction (Li et al. 2013; Ding et al. 2019; Zhu et al. 2019; Chu et al. 2020). In this work, 

we believe that neither the optimistic degree of satisfaction nor the pessimistic degree of 

satisfaction can provide enough information on satisfaction with allocation schemes. Based 

on this observation, we further define a comprehensive degree of satisfaction that is a convex 

combination of the optimistic satisfaction degree and the pessimistic satisfaction degree. 

Definition 3. The comprehensive satisfaction degree of 𝐷𝑀𝑈𝑑 (𝑑 = 1, … , 𝑛) for the FCA 

scheme is 𝜌𝑑
𝑐 = 𝑘𝜌𝑑

𝑜 + (1 − 𝑘)𝜌𝑑
𝑝, 𝑘 ∈ [0,1]. 

To simplify this, we express the comprehensive satisfaction degree as k-optimistic. 

Decision makers can incorporate information on optimistic and pessimistic attitudes into the 

comprehensive satisfaction degree. Therefore, considering the comprehensive satisfaction 

degree can generate more sophisticated results. It is easy to verify that 𝜌𝑑
𝑐 =

𝑘𝑅𝑑
𝑚𝑎𝑥+(1−𝑘)𝑅𝑑

𝑚𝑖𝑛−𝑅𝑑

𝑅𝑑
𝑚𝑎𝑥−𝑅𝑑

𝑚𝑖𝑛 . Hence, a larger k implies a more optimistic attitude. When 𝑘 = 0, then 

𝐷𝑀𝑈𝑑 is fully pessimistic since the minimal allocated cost 𝑅𝑑
𝑚𝑖𝑛 has a significant impact on 

the comprehensive satisfaction degree. By contrast, when 𝑘 = 1, 𝐷𝑀𝑈𝑑 is fully optimistic.  

In determining a unique FCA scheme, we believe that the most preferred allocation 

scheme is associated with the maximal comprehensive satisfaction degree for all DMUs. To 

this end, we develop a satisfaction degree bargaining game model as shown below. It is 

notable that there are many solution concepts for game-based cost allocation problems, such 

as Shapley value, nucleolus, kernel, core, τ-value, cost gap method, etc. (Tijs and Driessen 

1986; Nakabayashi & Tone 2006; Lozano 2012; Li, Emrouznejad, et al. 2020). It is possible 
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for decision makers to select the game solution depending on the context in which the 

problem is located, and the results might be different depending on the selected solution. 

Here in this article, we put our main focus on developing a FCA approach with undesirable 

outputs, but readers should recognize the possibility of using other solutions. 

Within the bargaining game process, each DMU is considered to be a player. The 

relative weights and allocation schemes of the EAS are players’ strategies and the 

comprehensive satisfaction degree is considered as a payoff. In addition, the breakdown point 

is linked to the maximal allocated cost 𝑅𝑗
𝑚𝑎𝑥(𝑗 = 1, … , 𝑛), which represents the minimal 

comprehensive satisfaction degree �̂�𝑗
𝑐 =

𝑘𝑅𝑗
𝑚𝑎𝑥+(1−𝑘)𝑅𝑗

𝑚𝑖𝑛−𝑅𝑗
𝑚𝑎𝑥

𝑅𝑗
𝑚𝑎𝑥−𝑅𝑗

𝑚𝑖𝑛 = 𝑘 − 1 . In addition, the 

breakdown point increases along with k, which implies that different allocation results should 

be determined from different levels of optimistic attitudes. 
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           (9) 

Following a practice similar to that adopted by Wu et al. (2009) and Wu et al. (2013), we 

can easily demonstrate that the feasible region of model (9) is a convex set. To this end, we 

have the following Theorem 3. 

Theorem 3. Denote S as all the restrictions in above model (9), i.e., S is the feasible regions 

of (𝑢1, … , 𝑢𝑠, 𝑣1, … , 𝑣𝑚, 𝑤1, … , 𝑤𝑞 , 𝑢0). Then, S is a convex set. 

Proof. See Appendix C. 

Further, for a game problem like the considered satisfaction degree Nash bargaining 

game, Nash (1950) presented a Nash bargaining solution characterized by four properties: 

Pareto efficiency, invariance with respect to affine transformation, independence of irrelevant 

alternatives, and symmetry. According to the Nash bargaining theorem, if the feasible region 

S is convex, then there would be only one solution satisfying the four properties. Therefore, 

we have the important lemma below, which can be easily verified by referring to Nash (1950, 

1953) and Wu et al. (2009) and we omit the proof here. 



17 

Lemma: There exists only one solution satisfying the satisfaction degree Nash bargaining 

game. 

For the traditional bargaining problem, Nash (1950, 1953) has shown that there exists a 

unique solution called the Nash bargaining solution, and the solution can be obtained by 

solving the above maximization problem in model (9), which can maximize the whole 

comprehensive satisfaction degree of all DMUs. The above model is a nonlinear 

programming model, but it can be immediately solved using standard modules with tools 

such as MATLAB. Then, the unique Nash bargaining solution of model (9) determines a 

unique FCA scheme (𝑅1
∗, … , 𝑅𝑛

∗ ).  

3. Illustration 

In this section, we apply the proposed approach to a real case of commercial bank activities 

originally described by Li, Zhu & Chen (2019) and studied by Chu et al. (2020). In more 

detail, there is a commercial bank with twenty-seven branches in China. The bank’s 

headquarters decide to allocate 8000 units (unit: 10 thousand Chinese Yuan (CNY)) of 

maintenance charges for information and technology services across these branches. While Li, 

Zhu & Chen (2019) presented a two-staged production system in their work and dealt with 

undesirable outputs via a data transformation method, we ignore the internal structure while 

maintaining our main interest in undesirable outputs. The approach proposed in this paper is 

the only one that can explicitly deal with the FCA problem with undesirable outputs. 

In this case, each branch is regarded as a DMU. In addition, there are three inputs and 

three outputs, as given in Table 2. The three inputs are labor (x1), fixed assets (x2) and 

operation costs except for labor costs (x3); and the three outputs are interest income (y1), 

noninterest income (y2) and bad debt (z1). The input-output data are given in Table 3. Note in 

particular that the bad debt is a jointly produced undesirable output of two other desirable 

outputs: interest income and noninterest income. A problem arises in the allocation of the 

total maintenance charges for information and technology services (8000 units) across the 27 

bank branches. Keep in mind that we also consider the allocated cost as an additional input 

that differs from existing inputs for simplification. In this section we will conduct the analysis 

under the VRS case since these twenty-seven bank branches have relatively different input 

usage and output production, while the proposed allocation model can be theoretically used 

under the CRS assumption, and for readers’ interest we also provide the CRS results in 

Appendix D. In fact, by comparing efficiency scores under the CRS and VRS cases shown in 
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later tables we find that almost one half of all bank branches have scale inefficiencies, 

implying that it is more appropriate to conduct the empirical analysis under the VRS case. 

Table 2 Notations of input-output measures 

Input/output Variable Unit Notation 

Inputs 

Labor Person x1 

Fixed asset 10 thousand CNY x2 

Operations costs other than labor 

costs 
10 thousand CNY x3 

Desirable 

outputs 

Interest income 10 thousand CNY y1 

Non-interest income 10 thousand CNY y2 

Undesirable  

outputs 
Bad debt 10 thousand CNY z1 

 

Table 3 Input-output data for the twenty-seven bank branches 

DMUs x1 x2 x3 y1 y2 z1 

1 25 619 538 2947 913 224 

2 27 419 489 3138 478 516 

3 40 1670 1459 5494 1242 877 

4 42 2931 1497 3144 870 1138 

5 52 2587 797 6705 854 618 

6 45 2181 697 8487 1023 2096 

7 33 989 1217 4996 767 713 

8 107 6277 2189 21265 6282 6287 

9 88 3197 949 8574 1537 1739 

10 146 6222 1824 21937 5008 3261 

11 57 1532 2248 8351 1530 2011 

12 42 1194 1604 5594 858 1203 

13 132 5608 1731 15271 4442 2743 

14 77 2136 906 10070 2445 1487 

15 43 1534 438 4842 1172 1355 

16 43 1711 1069 6505 1469 1217 

17 59 3686 820 6552 1209 1082 

18 33 1479 2347 8624 894 2228 

19 38 1822 1577 9422 967 1367 

20 162 5922 2330 18700 4249 6545 

21 60 2158 1153 10573 1611 2210 

22 56 2666 2683 10678 1589 1834 

23 71 2969 1521 8563 905 1316 

24 117 5527 2369 15545 2359 2717 

25 78 3219 2738 14681 3477 3134 

26 51 2431 741 7964 1318 1158 
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27 48 2924 1561 11756 2779 1398 

We first investigate the efficiency levels of these bank branches. When we do not 

recognize the undesirable feature of bad debt and consider it as a kind of desirable output, 

there would be 14 efficient branches and the lowest efficiency score is found for branch 23 at 

0.6364 as shown in the second column of Table 4. Further, different results are generated 

when we immediately deal with the bad debts by assuming the free disposability of inputs 

and the joint weak disposability of desirable outputs and undesirable outputs. As seen from 

the third and fourth columns of Table 4, all DMUs have an efficiency score that is no less 

than the previous one. This result demonstrates the need to manage undesirable outputs and it 

indeed makes sense and difference to explicitly deal with undesirable outputs. Further, all 

DMUs are fully efficient when the flexible FCA scheme is considered as illustrated by the 

last column of Table 4 and by Theorem 1. 

Table 4 Preliminary efficiency results 

DMUs Model (1) Model (2) Model (3) Model (6) 

1 1.0000 1.0000 1.0000 1.0000 

2 1.0000 1.0000 1.0000 1.0000 

3 0.7719 0.7719 0.7719 1.0000 

4 0.7297 0.7297 0.7297 1.0000 

5 0.7716 1.0000 1.0000 1.0000 

6 1.0000 1.0000 1.0000 1.0000 

7 0.8761 0.9108 0.9108 1.0000 

8 1.0000 1.0000 1.0000 1.0000 

9 0.7616 0.7814 0.7814 1.0000 

10 1.0000 1.0000 1.0000 1.0000 

11 1.0000 1.0000 1.0000 1.0000 

12 0.7941 0.7941 0.7941 1.0000 

13 0.9003 1.0000 1.0000 1.0000 

14 1.0000 1.0000 1.0000 1.0000 

15 1.0000 1.0000 1.0000 1.0000 

16 0.8700 0.8700 0.8700 1.0000 

17 0.7343 0.7822 0.7822 1.0000 

18 1.0000 1.0000 1.0000 1.0000 

19 1.0000 1.0000 1.0000 1.0000 

20 1.0000 1.0000 1.0000 1.0000 

21 1.0000 1.0000 1.0000 1.0000 

22 0.8255 0.8300 0.8300 1.0000 

23 0.6364 0.6620 0.6620 1.0000 

24 0.7236 0.7312 0.7312 1.0000 

25 1.0000 1.0000 1.0000 1.0000 
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26 0.9278 1.0000 1.0000 1.0000 

27 1.0000 1.0000 1.0000 1.0000 

Since there are multiple efficient allocation schemes as given in Theorem 2 and Formula 

(7), we further calculate the interval of possible allocated costs while keeping all DMUs 

efficient. If the minimal allocated cost is equal to the maximal allocated cost, then a unique 

allocation amount would be determined. We can learn from the second and third columns of 

Table 5 that all DMUs present a relatively large allocation interval ranging from zero for most 

DMUs to a relatively large value. This result implies that all bank branches have flexibility in 

paying for the maintenance charge for information and technology services. We then adopt 

the satisfaction degree concept and use the satisfaction degree bargaining game approach to 

determine the final allocation scheme. 

Since the Nash bargaining gain model proposed in this paper is based on the 

comprehensive satisfaction degree, which is a convex combination of optimistic and 

pessimistic degrees of satisfaction, the value of k should affect the allocation results. Decision 

makers can incorporate preferred information on optimistic and pessimistic attitudes into the 

comprehensive satisfaction degree, and hence change the value of k and generate different 

allocation results. In this section, we consider a special case where k=0.5 as an illustration, 

which means that the comprehensive satisfaction degree is the arithmetic mean of the 

optimistic satisfaction degree and the pessimistic satisfaction degree. As the breakdown point 

is only related to the value of k, it is always defined as -0.5 for all DMUs in our empirical 

illustration. Therefore, the objective function of the Nash bargaining game model is 

∏ (𝜌𝑗
𝑐 + 0.5)𝑛

𝑗=1 . 

Table 5 Calculation results and allocation results 

DMUs 𝑅𝑗
𝑚𝑖𝑛 𝑅𝑗

𝑚𝑎𝑥 𝜌𝑗
𝑐 𝑅𝑗

∗ 
Li, Zhu & 

Chen (2019) 

Chu et al. 

(2020) 

1 0.0000 577.1865 0.0459 262.1154 134.4306 84.1034 

2 0.0000 594.4732 0.0823 248.2889 61.7595 94.3866 

3 0.0000 405.9803 -0.0102 207.1441 150.8768 164.7918 

4 0.0000 375.2481 0.2174 106.0278 47.8869 105.3818 

5 0.0000 486.0476 0.0175 234.5133 125.6671 193.2387 

6 0.0000 730.6505 -0.0102 372.8013 195.6915 267.4747 

7 0.0000 477.1937 0.0482 215.6030 85.3113 148.3827 

8 0.0000 1657.0593 0.0439 755.7614 1118.2562 688.2128 

9 0.0000 421.3070 -0.0102 214.9643 214.2724 263.6254 

10 0.0000 1118.9466 0.0366 518.5040 877.1561 653.8042 

11 0.0000 508.1724 0.1282 188.9192 170.1160 262.2932 
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12 0.0000 457.8628 0.1168 175.4365 73.7728 173.1905 

13 0.0000 942.2770 0.1278 350.6987 708.5666 463.3684 

14 63.0262 651.3131 0.0011 356.5208 410.7174 299.9504 

15 76.1476 575.6960 0.0441 303.8858 188.8462 155.3719 

16 156.6240 421.1089 -0.0102 291.5727 224.9445 198.2271 

17 0.0000 451.5719 -0.0102 230.4065 174.7134 197.1552 

18 0.0000 666.3405 0.1501 233.1743 88.6087 273.5019 

19 39.4108 568.1979 0.0030 302.2379 153.7766 280.2254 

20 0.0000 1495.5025 0.2558 365.2215 646.7800 622.8994 

21 162.6180 564.2589 -0.0102 367.5480 279.5816 326.2304 

22 0.0000 478.0152 0.0894 196.2524 187.6059 322.5401 

23 0.0000 341.5584 0.0360 158.4847 90.9078 255.9596 

24 0.0000 564.8941 0.1351 206.1117 329.7382 470.3725 

25 0.0000 733.8698 -0.0102 374.4439 540.7023 454.1207 

26 129.2969 528.2120 0.0124 323.8271 229.0715 236.9063 

27 74.0810 851.5954 0.0300 439.5348 490.2422 344.2850 

When assessing the satisfaction degree Nash bargaining game model with MATLAB 

2018a, we have an optimal function and a series of optimal solutions, which are associated 

with satisfaction degrees and allocated costs across all bank branches, as shown in Table 5. It 

can be seen from Table 5 that the allocated costs range from a minimum of 106.0278 for 

branch 4 to a maximum of 755.7614 for branch 8. This result is similar with the results of Li, 

Zhu & Chen (2019) and Chu et al. (2020), according to whom the highest costs of 1118.2562 

and 668.2128 are found for branch 8 while the lowest costs of 47.8869 and 84.1034 are found 

for branches 4 and 1, respectively. Further, it shows a little similar tendency across all 

branches, however, the allocated cost in this paper is largely different from that of Li, Zhu & 

Chen (2019) and Chu et al. (2020), as shown in Table 5 and Figure 1. This result may be 

attributed to the fact that the examined problem involves undesirable outputs while only the 

current work explicitly considers undesirable outputs and their intrinsic features with the 

proposed allocation approach. Further, the gap between the maximal and minimal allocated 

costs across all DMUs is 649.7336, which is smaller than the value 1070.3693 given by Li, 

Zhu & Chen (2019) and a little larger than that of Chu et al. (2020) by 604.1094. Since a 

smaller gap implies the presence of more fairness, this result suggests that the explicit 

consideration of undesirable outputs may generate fairer allocation results with less 

implementation difficulty and organizational resistance. 



22 

 

Figure 1 Allocation results with different approaches 

Further, the allocation results reveal a number of other features. First, the simultaneously 

efficient assumption is indeed upheld. In fact, considering the allocated cost as the fourth 

input and applying model (2) or model (3) determines the full efficiency of one for each 

DMU. Second, the proposed approach can ensure positive cost sharing for all DMUs. Third, 

all DMUs will have benefits relative to the worst and maximal allocated cost 𝑅𝑗
𝑚𝑎𝑥(𝑗 =

1, … , 𝑛), that is, the final allocated cost 𝑅𝑗
∗ is strictly smaller than 𝑅𝑗

𝑚𝑎𝑥; otherwise, the 

objective function of model (9) would be zero if 𝑅𝑗
∗ = 𝑅𝑗

𝑚𝑎𝑥 for some DMUs and in turn it 

would not be an optimum. In addition, the final allocation scheme is always unique due to the 

bargaining game features, and this explanation is theoretically supported by game theory. 

This feature is very important for the studied problem since the deep logic behind the FCA 

problem shows that multiple possibilities can occur. In addition, our analysis shows that the 

allocation results are significantly different from the initial efficiencies, meaning that the 

proposed approach does not necessarily compromise DMUs with higher efficiencies. Li, Zhu 

& Chen (2019) consider this phenomenon to be a very important advantage of DEA-based 

FCA approaches. In addition, since the proposed bargaining game model is based on the 

comprehensive satisfaction degree, which is a combination of the optimistic satisfaction 

degree and the pessimistic satisfaction degree, the final allocation results are determined from 

the perspective of both the maximal and minimal allocated costs. Therefore, a DMU’s 

comprehensive satisfaction degree is positive when it is allocated a cost share similar to the 

minimal cost relative to the maximal cost. This result is intuitive. DMUs trade off their 

baselines (i.e., maximal costs) and ideal goals (i.e., minimal costs) and are negatively 
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satisfied with an allocation scheme when it must offer a cost share similar to the maximal 

cost, meaning that they have made more concessions. More importantly, the proposed 

approach considers the bargaining game played by all DMUs, and the derived allocation 

scheme serves as a Nash bargaining equilibrium for maximizing the comprehensive 

satisfaction degree across all DMUs, rendering the allocation scheme fair and acceptable. 

Figure 1 shows that the different approaches for allocating cost are providing different 

results. Further, we investigate the difference from a statistical point of view. Since the 

empirical study is the only FCA problem with undesirable outputs in the literature, we can 

compare our results with similar methods only on this example. Given the total fixed cost, the 

average allocated cost would be exactly R/n regardless of which approach is used. Therefore, 

we will investigate the difference by comparing variance instead of mean value. The null 

hypothesis for the F-test is that there isn’t any statistically significant difference between this 

paper and similar approaches, that is, the allocation in this paper is not statistically significant 

different from those by Li, Zhu & Chen (2019) and Chu et al. (2020). As Table 6 shows that 

this paper provides different allocations with respect to Li, Zhu & Chen (2019) under 1% 

significance level, while there is no statistically significant difference between this paper and 

Chu et al. (2020). Note in addition that the allocation scheme is generated by mathematical 

optimization models, even allocation schemes that are not statistically significant different are 

indeed different if these allocation schemes are not identical. 

Table 6 Two-sample F-test between this paper and similar approaches 

 Mean  Variance F-statistics  P-value 

This paper 296.2963 17169.72   

Li, Zhu & Chen (2019) 296.2963 72731.61 0.2361 0.0002 

Chu et al. (2020) 296.2963 27330.28 0.6282 0.1213 

Based on the above observations and discussion, we can conclude that it indeed makes 

sense to explicitly address undesirable outputs and their intrinsic characteristics in the FCA 

problem. It is of vital importance to immediately develop FCA approaches for cases 

involving undesirable outputs, and for this purpose, the approach proposed in this paper is 

useful and of practical value. 

4. Conclusions 

This paper extends the traditional FCA problem to situations in which DMUs generate both 

desirable outputs and undesirable outputs simultaneously. To this end, it immediately deals 

with undesirable outputs by assuming the joint weak disposability of desirable outputs and 
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undesirable outputs, and flexible FCA schemes are taken into account to investigate the 

efficiency evaluation processes. Our analysis demonstrates the existence of multiple efficient 

allocation schemes. To determine a unique and fair allocation scheme, this paper rectifies the 

satisfaction degree concept and further develops a Nash bargaining game approach based on 

the comprehensive satisfaction degree. Finally, an empirical study of twenty-seven bank 

branches is provided to illustrate the usefulness and efficacy of the proposed approach. 

This paper can be further extended in several respects. First, it would be of vital 

significance to develop resource allocation approaches considering undesirable outputs given 

an ever-increasing awareness of environmental concerns. Second, although this paper takes 

undesirable outputs into account, the degree of undesirable outputs or desirable outputs can 

be further incorporated. For example, neutral outputs such as customers being less satisfied 

with banking services are less desirable than desirable outputs (e.g., satisfied customers) but 

are more desirable than undesirable outputs (e.g., unsatisfied customers). Thus, future work 

can attempt to incorporate relations and preferred information among desirable, neutral and 

undesirable outputs into the development of fixed cost and resource allocation approaches. 

Third, noting that the existing FCA studies are based on efficiency scores, future work can 

develop approaches based on efficiency rankings. Fourth, the Nash bargaining solution is just 

one alternative solution, so the approach to determine the final FCA plan could be extended 

based on other game solutions considering the context in which the application problem is 

located. Lastly, there exist several approaches dealing with undesirable outputs, and it is clear 

that the results might be very different depending on the selected approach. Future research 

can be developed for different approaches such as by-production pollution-generating 

technologies of Murty et al. (2012) and Dakpo (2016). 
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Appendix 

Appendix A 

Theorem 1. The optimal objective function of model (6) is always one, and thus 𝐸𝑑
∗ = 1 for 

any 𝑑 = 1, … , 𝑛. 

Proof: The proof is simple adaptation of the existing ones in Li et al. (2013), Li, Zhu & Chen 

(2019) and Ding et al. (2020).  

First, it is clear that the optimal objective function of model (6) is no more than one since 

∑ 𝑢𝑟𝑦𝑟𝑑
𝑠
𝑟=1 + ∑ 𝑤𝑝𝑏𝑝𝑑

𝑞
𝑝=1 + 𝑢0 ≤ ∑ 𝑣𝑖𝑥𝑖𝑑

𝑚
𝑖=1 + 𝑟𝑑 = 1. 

Second, we show that the optimal objective function of model (6) can reach one. To this 

end, consider �̅�𝑖 = 0(𝑖 = 1, … , 𝑚) ,  �̅�𝑚+1 = ∑ 𝑦𝑠𝑗
𝑛
𝑗=1 2𝑅𝑦𝑠𝑑⁄ + ∑ 𝑏𝑞𝑗

𝑛
𝑗=1 2𝑅𝑏𝑞𝑑⁄ , �̅�𝑠 =

1 2𝑦𝑠𝑑⁄ , �̅�𝑟 = 0(𝑟 = 1, … , 𝑠; 𝑟 ≠ 𝑠) , �̅�0 = 0 , �̅�𝑞 = 1 2𝑏𝑞𝑑⁄ , �̅�𝑝 = 0(𝑝 = 1, … , 𝑞; 𝑝 ≠ 𝑞) 

and �̅�𝑗 = 𝑦𝑠𝑗 2𝑦𝑠𝑑⁄ + 𝑏𝑞𝑗 2𝑏𝑞𝑑⁄ (𝑗 = 1, … , 𝑛) . Then, it is easy to verify that �̅� =

(�̅�𝑖 , �̅�𝑚+1, �̅�𝑟 , �̅�0, �̅�𝑝, �̅�𝑗 , ∀𝑖, 𝑟, 𝑝) is a feasible solution of model (6) since it satisfies all 

constraints in model (6). Therefore, the optimal objective function of model (6) is no less 

than that with �̅� = (�̅�𝑖 , �̅�𝑚+1, �̅�𝑟 , �̅�0, �̅�𝑝, �̅�𝑗 , ∀𝑖, 𝑟, 𝑝), namely, 𝐸𝑑
∗ ≥ 𝐸𝑑

∗(�̅�) = 1. 

To sum up, the optimal objective function of model (6) is exactly one. Furthermore, the 

outputs labeled as s and q are randomly selected, that is, there exists at least one feasible 

solution that can achieve the optimal objective function model (6) of one. Therefore, the 

optimal objective function model (6) is always one. This completes the proof of Theorem 1. 

Appendix B 

Theorem 2. There is always at least one feasible FCA scheme that can make all DMUs 

simultaneously efficient under a set of common weights. 

Proof: The proof follow Li et al. (2013). Let us consider again the feasible solution �̅� =

(�̅�𝑖 , �̅�𝑚+1, �̅�𝑟 , �̅�0, �̅�𝑝, �̅�𝑗 , ∀𝑖, 𝑟, 𝑝) in the proof process of Theorem 1. In addition, we can learn 

from Theorem 1 that the efficiency score of 𝐷𝑀𝑈𝑑 is one, and hence 𝐷𝑀𝑈𝑑 is efficient. 

  In addition, we can easily find the following results that can be used to characterize other 

DMUs’ efficiency scores. 

𝐸𝑗
∗ ≥ 𝐸𝑗(�̅�) =

∑ 𝑢𝑟𝑦𝑟𝑗
𝑠
𝑟=1 +∑ 𝑤𝑝𝑏𝑝𝑗

𝑞
𝑝=1 +𝑢0

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1 +𝑟𝑗

=
𝑦𝑠𝑗 2𝑦𝑠𝑑⁄ +𝑏𝑞𝑗 2𝑏𝑞𝑑⁄ +0

0+𝑦𝑠𝑗 2𝑦𝑠𝑑⁄ +𝑏𝑞𝑗 2𝑏𝑞𝑑⁄
= 1, ∀j ≠ d    (B1) 

Therefore, we have 𝐸𝑗
∗ ≥ 1 for all 𝐷𝑀𝑈𝑗(𝑗 = 1, … , 𝑛).  

In addition, it always holds that − ∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1 − 𝑟𝑗 + 𝑢0 = − 𝑦𝑠𝑗 2𝑦𝑠𝑑⁄ − 𝑏𝑞𝑗 2𝑏𝑞𝑑⁄ ≤

0(𝑗 = 1, … , 𝑛), and the efficiency of any DMU is no more than one since ∑ 𝑢𝑟𝑗
𝑠
𝑟=1 +

∑ 𝑤𝑝𝑏𝑝𝑗
𝑞
𝑝=1 + 𝑢0 − ∑ 𝑣𝑖𝑥𝑖𝑗

𝑚
𝑖=1 + 𝑟𝑗 ≤ 0, namely, 𝐸𝑗

∗ ≤ 1 for all 𝐷𝑀𝑈𝑗  (𝑗 = 1, … , 𝑛). 
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To sum up, we have 𝐸𝑗
∗ = 1 for all 𝐷𝑀𝑈𝑗  (𝑗 = 1, … , 𝑛), which means that all DMUs can 

be simultaneously efficient under a set of common weights (�̅�𝑖, �̅�𝑚+1, �̅�𝑟 , �̅�0, �̅�𝑝, ∀𝑖, 𝑟, 𝑝) 

and the feasible allocation scheme �̅�𝑗 = 𝑦𝑠𝑗 2𝑦𝑠𝑑⁄ + 𝑏𝑞𝑗 2𝑏𝑞𝑑⁄ (𝑗 = 1, … , 𝑛). This completes 

the proof of Theorem 2. 

Appendix C 

Theorem 3. Denote S as all the restrictions in above model (9), i.e., S is the feasible regions 

of (𝑢1, … , 𝑢𝑠, 𝑣1, … , 𝑣𝑚, 𝑤1, … , 𝑤𝑞 , 𝑢0). Then, S is a convex set. 

Proof. Suppose that both 𝜋1 = (𝜌1𝑗
𝑐 , 𝑅11, … , 𝑅1𝑛, 𝑢11, … , 𝑢1𝑠, 𝑣11, … , 𝑣1𝑚, 𝑤11, … , 𝑤1𝑞 , 𝑢10) 

and 𝜋2 = (𝜌2𝑗
𝑐 , 𝑅21, … , 𝑅2𝑛, 𝑢21, … , 𝑢2𝑠, 𝑣21, … , 𝑣2𝑚, 𝑤21, … , 𝑤2𝑞 , 𝑢20) belong to S. For any 

𝜆 ∈ [0,1], we have the following: 
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(C4) 

Together with (C1)-(C4), we have (1 − 𝜆)𝜋1 + 𝜆𝜋2 ∈ 𝑆. Therefore, S is a convex set. This 

completes the proof of Theorem 3. 

Appendix D 

Table A Results under the CRS assumption 

DMUs 
Model 

(1) 

Model 

(2) 

Model 

(3) 

Model 

(6) 
𝑅𝑗

𝑚𝑖𝑛 𝑅𝑗
𝑚𝑎𝑥 𝜌𝑗

𝑐 𝑅𝑗
∗ 

1 1.0000 1.0000 1.0000 1.0000 0.0000 250.1171 111.2690 0.0551 

2 1.0000 1.0000 1.0000 1.0000 15.0149 121.0986 76.0201 -0.0751 

3 0.7117 0.7196 0.7196 1.0000 0.0000 249.9209 142.1954 -0.0690 
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4 0.4414 0.4414 0.4414 1.0000 0.0000 173.4954 2.8839 0.4834 

5 0.6926 1.0000 1.0000 1.0000 0.0000 346.4381 121.5028 0.1493 

6 1.0000 1.0000 1.0000 1.0000 11.9937 450.4135 249.6891 -0.0422 

7 0.8684 0.9099 0.9099 1.0000 0.0000 209.7754 108.8794 -0.0190 

8 1.0000 1.0000 1.0000 1.0000 270.0481 1613.5451 1042.6490 -0.0751 

9 0.7513 0.7513 0.7513 1.0000 0.0000 333.4550 191.7590 -0.0751 

10 1.0000 1.0000 1.0000 1.0000 400.8738 1104.4489 805.4767 -0.0751 

11 1.0000 1.0000 1.0000 1.0000 89.1326 400.4718 214.9571 0.0959 

12 0.7930 0.7930 0.7930 1.0000 0.0000 224.1958 106.6352 0.0244 

13 0.8963 0.9803 0.9803 1.0000 197.3671 894.1907 574.2157 -0.0408 

14 1.0000 1.0000 1.0000 1.0000 163.7416 555.2580 379.5280 -0.0512 

15 1.0000 1.0000 1.0000 1.0000 76.1476 307.0211 173.2597 0.0794 

16 0.8511 0.8511 0.8511 1.0000 165.4697 278.6759 218.5524 0.0311 

17 0.6671 0.6907 0.6907 1.0000 0.0000 247.3520 130.0207 -0.0257 

18 1.0000 1.0000 1.0000 1.0000 0.0000 545.1867 194.5305 0.1432 

19 1.0000 1.0000 1.0000 1.0000 42.2992 426.7259 232.3876 0.0055 

20 1.0000 1.0000 1.0000 1.0000 0.0000 1416.4555 638.6197 0.0491 

21 1.0000 1.0000 1.0000 1.0000 175.5411 446.8738 331.5756 -0.0751 

22 0.7974 0.8062 0.8062 1.0000 7.7165 418.5955 243.9995 -0.0751 

23 0.6309 0.6517 0.6517 1.0000 0.0000 341.5584 117.5065 0.1560 

24 0.6749 0.6903 0.6903 1.0000 184.2779 557.2423 340.4073 0.0814 

25 1.0000 1.0000 1.0000 1.0000 387.3550 727.4923 550.9908 0.0189 

26 0.8973 0.9751 0.9751 1.0000 134.2021 330.2947 230.8085 0.0073 

27 1.0000 1.0000 1.0000 1.0000 143.8141 818.1647 469.6809 0.0168 

 

 

 


