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Abstract. Image-to-image translation is a computer vision problem
where a task learns a mapping from a source domain A to a target
domain B using a training set. However, this translation is not always
accurate, and during the translation process, relevant semantic informa-
tion can deteriorate. To handle this problem, we propose a new cycle-
consistent, adversarially trained image-to-image translation with a loss
function that is constrained by semantic segmentation. This formula-
tion encourages the model to preserve semantic information during the
translation process. For this purpose, our loss function evaluates the ac-
curacy of the synthetically generated image against a semantic segmenta-
tion model, previously trained. Reported results show that our proposed
method can significantly increase the level of details in the synthetic
images. We further demonstrate our method’s effectiveness by applying
it as a dataset augmentation technique, for a minimal dataset, showing
that it can improve the semantic segmentation accuracy.

Keywords: GAN · Dataset augmentation · Semantic segmentation.

1 Introduction

The sparsity of training data can hinder the performance of supervised machine
learning algorithms which often require large amounts of data to train and avoid
overfitting. Typical deep neural networks have hundreds of millions of parameters
to learn, which requires many passes over the training data. On small datasets,
running a large number of iterations can result in overfitting, which is usually
remedied by one or more of the following: acquiring more data, applying regular-
isation and performing data augmentation. The latter approach is mostly limited
to simple randomised manipulation of an existing dataset (e.g. affine warping,
rotation or other small perturbations) [27]. In this paper, we leverage the re-
cent success of adversarial image-to-image translation to propose a much more
sophisticated approach for data augmentation that applies to semantic segmen-
tation tasks. Under our scheme, an arbitrary number of new images is generated
by ‘translating’ each ground truth label image in our training dataset, and the
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(a) Real label (b) Real Image (c) CycleGAN (d) CSC-GAN (ours)

Fig. 1: Translation of facade label to a facade image. The task is to trans-
late from label to image. (a) and (b) are the real label and the real image, (b)
is CycleGAN generated, that incorrectly translates the facade behind the tree
and the balcony railings. (c) Using our CSC-GAN, that implements semantic
consistency in the translation process, the result is a more realistic image.

resulting image/labelling pairs are used to augment that dataset, leading to im-
proved accuracy. This is achieved by a new cycle-consistent, adversarially trained
image-to-image translation model (CSC-GAN) that strengthens local and global
structural consistency through pixel cycle-consistency and a semantic loss.

Synthesising realistic and high-resolution images is one of the most chal-
lenging tasks in computer vision and machine learning investigation areas [16].
The recent CycleGAN [30] introduced the concept of Cycle-consistency in the
context of an image-to-image translation GAN model producing impressive re-
sults. In particular, it appears to be able to translate semantic labelling to the
corresponding image, which seems perfect for data augmentation in semantic
segmentation tasks. Unfortunately, CycleGAN fails to capture the relevant se-
mantic constraints accurately (see Fig. 1(c)) and therefore, cannot be used for
data augmentation.

The question we pose in this paper is: How can one maintain the seman-
tic correspondence during the image-to-image translation process? Our answer
is an additional objective that enforces semantic consistency while the cycle-
consistency loss of CycleGAN helps the cross-domain transformation to retain
local structural information. Our CSC-GAN also proved to be simpler than other
methods [13], while generating realistic images with a significant increase on its
level of details to such an extent that they can improve the performance of a
state of the art semantic segmentation models like DeeplabV3 [5] and Fully-
Convolutional Network (FCN) [20]. This is a significant achievement if we con-
sider that (a) there is no new data or prior information that was fed to the
model and (b) DeeplabV3 and FCN are already extremely good at extracting
generalisable knowledge from any given dataset. Figure 1(d) is an example of
our method’s potential. We apply our CSC-GAN to an extremely sparse building
facade dataset [24] that consists of only 606 images and labels. Our experiments
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verify that image-to-image translation methods strengthened by semantic con-
sistency can be used to improve pixel-level semantic segmentation models.

2 Related work

Generative adversarial networks (GANs), introduced by Goodfellow et al. [10],
employ the concept of adversarial training, where two models are simultane-
ously trained: a generative model G that captures the data distribution, and a
discriminator model D that estimates the probability that a sample came from
the training data rather than G. The generator learns the data distribution pg,
over the data x, by creating a mapping function from a prior noise distribution
pz(z) to data space as G(z; θg). Further, the discriminator, D(x; θd), outputs a
single scalar representing the probability that x came from the training data
instead of pg. It has shown extraordinary results in many computer vision tasks
such as style transfer [17, 28], image generation [4, 8, 21], image translation [14,
30, 7], multi-domain image translation [7] and super-resolution [19].

The GAN framework was first introduced to generate visually realistic images
and, since then, many applications have been proposed, including data augmen-
tation [27], a technique widely used to increase the volume of data available for
training.

One of the areas where GANs have been employed for data augmentation is
Medical Imaging. Yi et al. in [29], surveyed 150 published articles in the medical
image synthesis area and found that GANs are employed for image reconstruc-
tion, segmentation, detection, classification and cross-modality synthesis. The
main reason for this widespread use seems to be the relative sparsity of labelled
datasets in the highly specialized medical image domains.

The same conclusion is reached in Bowles et al. [3], where the use of GANs
for augmenting CT scan data is investigated. They use a Progressive Growing of
GANs (PGGAN) network [16] to generate the synthetic data in the joint image-
label space. Their results show that GAN augmentation works better, the more
sparse the dataset. Unfortunately the PGGAN framework is more suitable for
spatially registered datasets (e.g. faces, or medical imaging). Using an extensive
image dataset, Sandfort et al. [25] trained a CycleGAN model [30] to transform
contrast Computed Tomography (CT) images into non-contrast images, for data
augmentation in CT segmentation tasks. According to the authors, the publicly
available datasets consists universally of contrast-enhanced CT images, while
real-world data contains a certain percentage of non-contrast CT images. This
domain shift affects the performance of real-world applications negatively. Using
CycleGAN to alleviate this issue, the authors report significant improvement in
CT segmentation tasks performance.

When the available data is not uniformly distributed between the distinct
classes, the accuracy of an image classification model can degenerate. In [22],
Mariani et al. propose a balancing generative adversarial network (BAGAN),
an augmentation method that can generate new minority-class images and then
restore the dataset balance. Likewise, in [1], Antoniou et al. proposed a Data
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Augmentation Generative Adversarial Network (DAGAN) architecture based
on a conditional GAN, conditioned on images from a given class c, where the
generator network also uses an encoder to project the condition down to a lower-
dimensional manifold. Their adversarial training leads their system to generate
new images from a given sample, one that appears to be within the same class
but look different enough to be a diverse sample.

An impressive dataset augmentation method using GAN for semantic seg-
mentation is introduced by Richter et al. in [2]. In their paper, they present an
approach for creating a semantic label for images extracted from modern com-
puter games. Using game engines to generate endless quantities of labelled data is
a longstanding theme in Computer Vision research. Their experiments show that
using the acquired data, to supplement real-world images, significantly increases
accuracy, showing that a network trained on unrealistic data can generalise very
well to existing datasets.

CyCADA, proposed by Hoffman et al. in [13], also explores ways of enforcing
semantic consistency on image synthesis. This adversarial unsupervised adapta-
tion algorithm aims to learn a model that correctly predicts a label for a target
data. Their input is the source data XS , the source label YS and the target data
XT . Their aim is to learn a model that can correctly predict the label YT for
the target data XT . In contrast, our work doesn’t seek to predict but to increase
the translated image quality with the help of a pre-defined classifier. We are
provided with the source data XS and the source label YS . Our purpose is to
learn a model that do the translation YS −→ XS more accurately.

3 Proposed method

In this section, we present our Cycle and Semantic Consistent GAN (CSC-
GAN) framework. We consider the problem of image-to-image translation with
cycle and semantic consistency, where we are provided with the source data X
and source labels Y . The aim is to learn a stochastic model f that translates
a labelling into the corresponding image (i.e. Y −→ X) in such a way that the
resultant images are so realistic they can improve the results of a deep semantic
segmentation model [5, 20], when used as a dataset augmentation technique. To
do so, we extend the CycleGAN framework by adding a new loss function Lsem

that evaluates how accurate is the synthetic generated image against a previously
trained semantic segmentation model g. To establish the background, we first
review in the following sections, the GAN/Cycle-GAN models on which our
method is based.

3.1 CycleGAN loss functions

The CycleGAN full objective is composed of an adversarial loss and a cycle
consistency loss, as follows.
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Adversarial loss. The adversarial loss is given by

LGAN (G,DY ) = Ey∼pdata(y)[logDY (y)]
+ Ex∼pdata(x)[log(1−DY (G(x)))],

(1)

where G tries to generate images that look similar to images from domain Y and
DY aims to distinguish between the translated samples G(x) and real samples y.
G aims to minimise this objective against an adversary D that tries to maximise
it.

Cycle consistency loss. Adversarial losses individually cannot guarantee that
the learned function can map a single input x to a desired output y. To addi-
tionally decrease the space of possible mapping functions, CycleGAN authors
argue that the learned mapping functions should be cycle-consistent, intending
to encourage the source content to be preserved during the conversion process.
For each image x from domain X, a different map F should be able to bring x
back to the original image, i.e., x −→ G(x) −→ F (G(x)) ≈ x. This is called the
forward cycle consistency. Similarly, for each image y from domain Y , G and F
should also satisfy backward cycle consistency: y −→ F (y) −→ G(F (y)) ≈ y. This
behaviour is encouraged using a cycle consistency loss:

Lcyc(G,F ) = Ex∼pdata(x) ‖ F (G(x))− x ‖1

+ Ey∼pdata(y) ‖ G(F (y))− y ‖1 .
(2)

Full objective. The CycleGAN full objective is

L(G,F,DX , DY ) = LGAN (G,DY )
+ LGAN (F,DX)
+ λLcyc(G,F ),

(3)

where λ controls the relative importance of the two objectives.

3.2 Semantic consistency objective

As we have access to the source labelled data, we aim to encourage high seman-
tic consistency after image translation explicitly. For this purpose, we pre-train
a semantic segmentation model g, on the same training set used to train our
CSC-GAN model, and use this model g to evaluate the synthetic images during
the CSC-GAN training. By fixing the model g weights during the CSC-GAN
training, we guarantee that a good segmentation result, obtained from a syn-
thetic image, is due to an improvement in the synthetic image quality, as the
model g was trained on real images. Using the segmenter model g we propose
our semantic consistency objective as
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Fig. 2: Impact of the proposed semantic consistency loss over the synthetic im-
ages, during model training.

Lsem(g, F ) = Ey∼pdata(y)Lcs[g(F (y)), y], (4)

where Lcs[., .] is the cross-entropy loss [13] comparing two segmentation masks
g(F (y)) and y. This equation means that given a label y ∈ Y , the model g
predicts the labels for F (y), i.e., the synthetic image generated using the real
label y. The loss Lsem evaluates this prediction, and its result is added to the
CycleGAN objective function, intending to help improve the overall synthetic
image quality. It is interesting to note the superficial similarity between the
semantic consistency loss Lsem and the third term of the cycle consistency loss
(Eq. 3). Both G and g map from images to labels but (a) g is producing 1-
hot encoding per label while G produces an RGB image as in [30], hence the
different choice of image distance metric and (b) g is a pre-trained network (we
use the DeepLabV3 architecture) while G is a network we train adversarially.
We experimented with removing the trainable G network but were unable to
achieve a converged solution, possibly because G introduces a convex relaxation
to the optimisation problem. The full objective is then

L(G,F,DX , DY ) = LGAN (G,DY )
+ LGAN (F,DX)
+ λLcyc(G,F )
+ µLsem(g, F ).

(5)

where λ and µ are relative important weights. To show the impact of the new
semantic consistency loss, Figure 2 presents the evaluation comparison of the
synthetic images, during model training, with and without our proposed loss.
It shows a dramatic improvement in the mIoU score and the cross-entropy loss
when the objective described in the equation 5 is used, instead of the regular
CycleGAN loss defined in equation 3.
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Fig. 3: CSC-GAN two steps. First we train a semantic segmentation model
g on the training set, then we use it to evaluate the synthetic images quality
during our model training.

4 Experimental results

In this section we present the attained results of our approach CSC-GAN com-
pared against the Facade dataset [24] augmented with the regular CycleGAN
model [30],SPADE model [23], which is a state-of-art label to image translation
and two style transfer models [9, 15], being that [15] was designed explicitly for
dataset augmentation. The datasets used on the experiments are listed in Table
1.

In order to compare these augmented datasets, for each one we trained two
semantic segmentation models, DeeplabV3 [5] and Fully-Convolutional Network
(FCN) [20], both with a ResNet101 [11] backbone. Each model is trained for
50 epochs with a learning rate set to 0.0002 and the Adam optimiser [18]. The
performance of each model is reported using the mean intersection-over-union
(mIoU) score [26] evaluated over the test set.

The facade dataset [24] has been split into a training XS , with 80% or 484
images and a test XT set, with 20% or 122 images. As shown in Table 1, there
are six variations of the training set, but the test set remains the same across
all experiments.

The augmentation is done as follows: For each label y ∈ XS a synthetic image
x = F (y) is generated and the pair (y, x) is added to the dataset. By the end a
new training set X ′

S is created with size twice as XS . This is done because one
synthetic image per each label y ∈ XS is added to the new training set X ′

S .
The CSC-GAN model is trained in two steps: First, we train the semantic

segmentation model g on the regular facade dataset, which is used as a labeller
during the CSC-GAN training, then we train the CSC-GAN model, as described
above. Figure 3 illustrates these two stages.

Table 2 presents the results. Each experiment was executed 5 times and the
results reported are the mean and the standard deviation for these 5 executions.
The presented results show that the dataset augmented with images from our
CSC-GAN model can outperform the regular facade dataset by approximately
4% when the DeeplabV3 [6] model is trained on it and by roughly 3% with the
FCN [20] model, as shown in the last row on Table 2. SPADE also provided
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Training set name Size Description
facade 484 regular training set without any augmentation. [24]
facade+CycleGAN 968 regular plus images from regular CycleGAN model [30].
facade+SPADE 968 regular plus images from SPADE model [23].
facade+Styleaug 968 regular plus images from style augmentation model [15].
facade+Arbitrary 968 regular plus images from arbitrary artistic stylization model [9].
facade+CSC-GAN 968 regular plus images from our CSC-GAN model.

Table 1: Datasets. Lists of all datasets used in the semantic consistency exper-
iment.

Fig. 4: FID x MioU. The graph suggests an inverse relationship between the
two metrics. Data were normalised to fit in the same plot. The Frechet Inception
Distance (FID) is a metric that compares statistics of real and generated images
and summarises how similar the two groups of images are. A lower FID score
indicates that the two groups of images are more similar.

promising results, but it was also outperformed by our method. The datasets
augmented by [15] and [23] got a decrease in performance concerning the regular
Facade dataset, showing that style transfer is not a good technique for dataset
augmentation on a per-pixel classification scenario as semantic segmentation.
Also, the FID [12] metric in the first column suggests an inverse relation with
the mIoU metric, as shown in Figure 4. This inverse relationship is because
the synthetic images must be within the original distribution, but it also has
to look different enough to be regarded by the semantic segmentation model
as a diverse sample. A low FID means that the synthetic images are too close
to the original dataset distribution; therefore, they cannot be viewed as new
samples. Conversely, a high FID means that the synthetic data are too diverse
from the original data; hence they cannot be considered as samples from the
same distribution.

To better understand the improvement brought by our CSC-GAN, in Figure 5
we compare the correctly predicted pixels of the models trained with CycleGAN



CSC-GAN: Cycle and semantic consistency for dataset augmentation 9

DeeplabV3 [6] FCN [20]
Dataset name FID mIoU Accu. mIou Accu.
facades [24] 0.552 (0.016) 0.706 (0.013) 0.558 (0.003) 0.711 (0.002)
facade+CycleGAN [30] 22.742 0.557 (0.008) 0.710 (0.007) 0.562 (0.002) 0.714 (0.002)
facade+SPADE [23] 24.107 0.565 (0.009) 0.716 (0.008) 0.572 (0.004) 0.723 (0.003)
facade+Styleaug [15] 75.307 0.543 (0.005) 0.698 (0.005) 0.561 (0.005) 0.714 (0.004)
facade+Arbitrary [9] 37.804 0.550 (0.005) 0.703 (0.004) 0.562 (0.003) 0.714 (0.002)
facade+CSC-GAN (ours) 29.268 0.573 (0.005) 0.723 (0.004) 0.574 (0.003) 0.724 (0.002)

Table 2: Experimental results. Accu. is the pixel accuracy; the FID [12] metric
is calculated against the dataset without augmentation. Each experiment was
executed 5 times, the mIoU and the pixel accuracy results reported are the mean
and the standard deviation for these 5 executions.

and CSC-GAN augmented datasets with the model trained with the regular
facade dataset. The comparisons are made over the test set segmentation results.

Figure 5(a) presents the comparison of the regular facade with CycleGAN;
the graph shows that for six out of twelve labels, there is a drop in the correctly
predicted pixels, being cornice and deco labels the ones that have the most
significant difference. Conversely, in Figure 5(b), except for background, window
and shop the model trained with our CSC-GAN augmented dataset attained a
substantial improvement in the correctly predicted pixels. Special attention must
be taken to the decoration and balcony labels, two very challenging categories
where our method presented a significant improvement over the facade dataset.
The reason is the increase in level-of-detail obtained by the CSC-GAN model to
the generated images, as we can see in Figure 6.

In Figure 6, column (c), note that our model is capable of learning the ap-
pearance of balcony railings and in the second row the extended model begins to
show the pillar as a 3D structure, instead of just a flat shape as shown in column
(b). The third row, column (c), shows that the extended model can also learn
the decoration, which the regular CycleGAN model represents as a flat shape.

5 Conclusion

In this paper, we propose a cycle consistent image generation framework that
combines with semantic constraints to deliver increased level-of-detail in the
generated images. This improvement enables the use of the method for data
augmentation in the domain of semantic segmentation. As future work we in-
tend to apply our model to photorealistic images of general scenes. We are also
planning to investigate more challenging datasets, such as geospatial images.
Another promising direction to explore is the domain-transfer effect that arises
from cross-training the semantic segmentation model on different datasets.
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(a) CycleGAN augmented

(b) CSC-GAN augmented

Fig. 5: Figures (a) and (b) compare the correctly predicted segmentation pixels
between the regular facade and the augmented datasets. Figure (b) shows that
for the majority classes, our CSC-GAN model can produce more accurate images
for data augmentation.
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24. Radim Tyleček, R.Š.: Spatial pattern templates for recognition of objects with
regular structure. In: Proc. GCPR. Saarbrucken, Germany (2013)

25. Sandfort, V., Yan, K., Pickhardt, P.J., Summers, R.M.: Data augmentation us-
ing generative adversarial networks (cyclegan) to improve generalizability in ct
segmentation tasks. Scientific reports 9(1), 1–9 (2019)

26. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (Apr 2017)

27. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep
learning. Journal of Big Data 6(1), 60 (2019)

28. Wang, X., Gupta, A.: Generative image modeling using style and structure adver-
sarial networks. CoRR abs/1603.05631 (2016)

29. Yi, X., Walia, E., Babyn, P.: Generative adversarial network in medical imaging:
A review. Medical Image Analysis 58, 101552 (2019)

30. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Computer Vision (ICCV), 2017
IEEE International Conference on (2017)


