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Abstract

Understanding how evolutionary agents behave in complex environments is a chal-

lenging problem. Agents can be faced with complex fitness landscapes, derived from10

multi-stage tasks, interaction with others, and limited environmental feedback. Agents

that evolve to overcome these can sometimes access greater fitness, as a result of factors

such as cooperation and tool use. However, it is often difficult to explain why evolu-

tionary agents behave in certain ways, and what specific elements of the environment

or task may influence the ability of evolution to find goal-achieving behaviours; even15

seemingly simple environments or tasks may contain features that affect agent evolution

in unexpected ways. We explore principled simplification of evolutionary agent-based

models, as a possible route to aiding their explainability. Using the River Crossing

Task (RCT) as a case study, we draw on analysis in the Minimal River Crossing (RC-)

Task testbed, which was designed to simplify the original task while keeping its key20

features. Using this method, we present new analysis concerning when agents evolve to

solve the RCT. We demonstrate that the RC- environment can be used to understand

the effect that a cost to movement has on agent evolution, and that these findings can

be generalised back to the original RCT. Then, we present new insight into the use of

principled simplification in understanding evolutionary agents. We find evidence that25

behaviour dependent on features that survive simplification, such as problem structure,

are amenable to prediction; while predicting behaviour dependent on features that are
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typically reduced in simplification, such as scale, can be invalid.

Keywords— Principled Simplification, Evolutionary Algorithms, Evolutionary Agents,

Explainability, River Crossing, Neuroevolution30
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1 Introduction

Understanding, explaining, and learning about complex natural phenomena and living sys-

tems are some of the aims of artificial life research (Aguilar et al., 2014; Bedau, 2007). This

often involves creating simple models that reduce the complexity of the original scenario,

such that the phenomena can be studied in detail. Tasks that individuals face in both natural35

and artificial life can be complex, involving many stages (Brutschy et al., 2014); studying

how artificial agents learn to solve these tasks can therefore be beneficial for explaining

or predicting more complex artificial scenarios, or phenomena in natural life. For example,

Stanton and Channon (2015) have explored how three-dimensional virtual agents can evolve

to learn sub-tasks in order to solve increasingly difficult problems. Nicolay et al. (2014) have40

explored the effect that the order that conflicting tasks are learnt in has on performance

in virtual robots. Additionally, Brutschy et al. (2014) show in simulation that interde-

pendent tasks can be broken down and allocated to individuals in a swarm in simulation;

further, they show that the approach in simulation can be transferred to physical robots,

thus demonstrating the value of performing the simulation experiments. Re-representing45

the problem with minimal complexity therefore can, in principle, aid understanding of the

problem itself.

In summary, this approach to generating such an understanding is to develop a sim-

plified yet sufficiently useful testbed, that facilitates analysis while retaining key problem

features, and such that insights can be generalised back to the original problem in the form50

of explanations. Here, we refer to this as principled simplification, and we note that has

long been common practice in Computer Science; a familiar example to many will be the

simplification of complex vehicle routing problems into the Travelling Salesperson Problem.

In this article, we aim to contribute to an understanding of how and when this principled

simplification is valuable, in terms of supporting explainability of complex evolutionary55

agent-based models. To do this, we explore a simulation environment that is well established

in the ALife community, the River Crossing Task (RCT) (Robinson et al., 2007). The RCT

was originally developed to explore how agents learn to solve increasingly complex tasks;

initially this was done using a novel neural network architecture that separated reactive

from deliberative processes. Since then, the testbed has been extended to explore the effect60

of social learning strategies (Jolley et al., 2016), learning by imitation (Borg et al., 2011),

and social action (Barnes et al., 2019), as well as how agents learn in a 3D world (Stanton &
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Channon, 2015). One of the difficult features of the RCT and its extensions is that agents

must learn sub-tasks in order to achieve their goal. Specifically, while the primary goal is

to collect resources in a 2D environment, they must first learn to pick up a stone and then65

drop it in a river, in order to ‘build a bridge’ and be able to cross the river safely. This

enables them to access all the resource objects, some of which are on the opposite side of

the river. They must learn this without any prior knowledge of the task or environment.

In this article, we explore the RCT using the method of principled simplification, in order

to generate new understanding of why learning this sub-task is so difficult for evolutionary70

agents. Specifically, we analyse the Minimal River Crossing (RC-) Task (Ghouri et al.,

2020), exploring how and when insights obtained in that analysis also apply to the original

RCT from which it is derived. We demonstrate that this aids the explainability of the

RCT problem, enabling predictions to be made about how or why agents behave in the

way that they do. We also demonstrate that these predictions may also not always be75

valid, and explore when this is the case. We find that principled simplification can support

explanations when structural features of the original problem are retained in the simplified

version. However, we further find that when simplification reduces quantitative features of

the problem, this leads to predictions based on those quantitative features being invalid.

This article builds on our prior work (Ghouri et al., 2020), in which we first presented80

the Minimal River Crossing (RC-) Task. It extends this work in four ways: i) an expanded

set of experimental results on our original experiments, which provide confirmation of and

greater confidence in the original results presented by Ghouri et al. (2020); ii) a new set

of experiments comparing evolutionary, random, and hybrid search; iii) corresponding new

experiments in the RCT, in order to establish when the RC- results do in fact generalise;85

and finally iv) new insights into when generalisations such as those studied in this paper are

possible.

Therefore, the contributions of this article are twofold: first, we present new insight into

why the RCT is challenging for evolutionary algorithms to solve, and in doing so explain

observed behaviour of evolutionary agents in the problem; second, we present new insight90

into the use of principled simplification as a method of explaining complex models, including

what to look for in determining whether predictions and explanations may be valid or not.

This, in turn, leads to suggestions for further exploration of the method.
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2 Explainability of Complex Agent Based Models

From humble beginnings (Schelling, 1971), agent-based modelling is now a serious and95

dominant method of generating understanding about possible emergent outcomes of complex

biological, physical, social, and economic systems (Helbing, 2012). To cite some examples,

agent-based modelling has been used to study strategies to tackle climate change (Robalino

& Lempert, 2000), by geographers to understand spatial systems (Torrens, 2010), by political

scientists to study nation state formation (Cederman, 2002), and quite broadly to explore100

questions around economies (Farmer & Foley, 2009). Agent-based modelling has also been

used extensively in the study of COVID-19 spread, particularly to assess the possible impacts

of diferent policies. Maziarz and Zach (2020) assess this as a methodology for that purpose,

noting the value that ABMs provide to epidemiology. They further note that this is due

to the fact that “although epidemiological ABMs involve simplifications of various sorts,105

the key characteristics of social interactions and the spread of SARS-CoV-2 are represented

sufficiently accurately.” (Maziarz & Zach, 2020).

In many agent-based models, evolution or other learning techniques are used in order

to model incentive-driven behaviour, survivability given limited resources, or population

dynamics. Citing three very different examples in order to convey the breadth of topics to110

which evolutionary agent-based modelling have been applied, Barbosa et al. (2011) use the

method to study human migration, Eldridge and Kiefer (2018) to explore the evolution of

soundscapes, and Ma and Nakamori (2005) to model technological innovation. Powers et

al. (2018) explore methodological issues, comparing evolutionary agent-based models with

equation-based evolutionary game theory, arguing for a complementary role for both in115

answering questions around complex social systems.

Many valuable insights have been gleaned from the use of agent-based models, yet they

still remain poorly understood1 and difficult to explain. In part, this comes from the result of

complex interactions between individual agents and the chance of emergent outcomes, as well

as the underlying black-box nature of many of the learning algorithms used inside individual120

agents. Taken together, this makes evolutionary agent-based models notoriously difficult to

understand, despite their obvious value. And the ability to understand evolutionary agent-

based models is not merely a ‘nice to have’, as Andras et al. (2018) note, if people do not

understand complex computational models, they are less likely to find them trustworthy.

1The validity, interpretation, and use of agent-based simulation models for the study of the spread of
COVID-19 has been a hot topic in online modelling communities.
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In this article, we aim to contribute towards methods for the analysis and explainability125

of evolutionary agent-based models. More specifically, we are interested in the extent to

which principled simplification of a model may allow us to generate insights that can be

generalised back to more complex versions of the original model. In order to do this, we

explore the specific and well-studied example of the River Crossing Task, using this as a

case study.130

2.1 The River Crossing Task

The original River Crossing Task (RCT) was developed to investigate how agents can evolve

to solve complex tasks using both reactive and deliberative behaviours in a dynamic envi-

ronment (Robinson et al., 2007). The RCT environment is a 2D grid, with a river of Water

separating an agent from its target ‘Resource’; the agent must learn appropriate behaviours135

to cross the river safely, so that it can collect this Resource object and thus achieve its goal.

Various other objects exist within the environment: Stones can be picked up and placed in

the river to build a bridge, acting as a safe passage across the river; Traps are dangerous

items that will kill the agent if stepped upon, giving strongly negative fitness; all ‘empty’

cells represent Grass, which are safe to pass over. Agents must first learn to avoid the river,140

otherwise they will drown and again receive a strongly negative fitness. By exploring the

fitness landscape, they can also learn that Stones can be used to build bridges; building a

bridge itself does not provide any reward, but it does enable agents to reach their target

object within the environment - the Resource.

The River Crossing Task can be varied, for example by altering the presence or number145

of Traps, Resources, and Stones, and changing the width and depth (in terms of number

of Stones required in one Water cell to build a bridge) of the river. This means that the

RCT is usually considered to be a family of environments, with common learning challenges

and tunable difficulty. One learning challenge common across the family, and observed by

Robinson et al. (2007), is that it is particularly difficult for agents to evolve successful goal-150

achieving behaviours when they have to learn sub-goals first (i.e. building a bridge with

a Stone), before the possibility of receiving any positive fitness became accessible. They

observed that the difficulty of this problem therefore led to evolution resembling random

search. To avoid this, agents in Robinson et. al’s agents were consequently evaluated on

three maps of increasing difficulty – starting with an environment where a bridge was already155
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Figure 1: A simplified RCT environment inspired by Robinson et al. (2007), adapted from
Barnes et al. (2019). The goal of the agent is to collect the Resource object on the opposite
side of the river; to do this, it must learn to build a bridge in the river with a Stone.

built in the river, allowing the agents safe passage to the Resource. This gave agents the

opportunity to discover that retrieving the Resource is linked to a high fitness, without the

need for learning the sub-tasks of building the bridge first; this involves the learning of risky

behaviour as interacting with the river has the potential to lead to a negative fitness.

In this article, we focus on an instance of the RCT family of environments on a 19 × 19160

grid, containing a one-cell wide river of Water in the centre, with one Stone on the same side

of the river as the agent, and one Resource on the opposite side. These are the minimum

set of objects required for an agent to achieve their goal, and, since agents must first learn

to complete sub-tasks before achieving any fitness at all (i.e. building a bridge), to capture

the common learning challenge identified by Robinson et al. (2007). Robinson et al. already165

demonstrate that the ability for agents to exhibit reactive and deliberative behaviours is

beneficial when navigating dynamic environments; the RCT configuration shown in Figure 1

is therefore static, and does not vary between the experiments in this study. Further, as one

of the primary motivations for this article is to aim for explainable agents through principled

simplification, other original RCT objects that are irrelevant for achieving the goal – like170

Traps, and multiple Stones (Robinson et al., 2007) – are not used. It is also worth noting

that while the size of the world impacts the number of moves an agent takes to achieve the

goal, it does not change the size of the search space.

Agents use a neural network learning architecture introduced by Barnes et al. (2019),

which is a simplified version of other RCT agent learning architectures proposed by Robinson175
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et al. (2007) and Borg et al. (2011). The first of the two artificial neural networks in this

learning architecture is a feed-forward deliberative network that determines target locations

to move to. The second, reactive network is inspired by the shunting equation proposed by

Yang and Meng (2000), which deals with navigation towards target locations; this works

by overlaying activation values on cells on the grid, centred on a highly positive value at a180

target location (e.g. a Stone) and which decay in all directions, providing a hill for the agent

to climb towards its desired location. Activations can also be highly negative, indicating

that the location is to be avoided (e.g. a successful agent may learn to avoid the river unless

it has a Stone), or 0, indicating no preference about that location. Further, the shunting

equation proposed by Yang and Meng (2000), which allows activity to propagate through185

the second reactive network in this architecture, only propagates positive activity; negative

activity thus does not propagate. In our implementation of the RCT, if the activation

landscape is flat, indicating the absence of any goal, the agent does not move2. The fitness

f for agent A is calculated with Equation 1:

Af = r − w − (c× m

2T
) (1)

where r is equal to the number of Resources collected, w = 1 if the agent falls into the190

Water and 0 otherwise, c = 1 if there is a cost to movement and 0 otherwise, and m is

the number of moves the agent has made. T is a constant representing the total number

of moves allowed, where T = 500; an agent will fail the task if it falls into the river, or

makes the maximum number of moves. By dividing the number of moves by twice the total

number of allowed moves for the cost to movement, agents that use the maximum number195

of moves whilst still achieving the goal (Af = 0.5) will receive a better fitness than those

that are Neophobic3 and do not achieve the goal (Af <= 0.0); successful agents that move

excessively are still rewarded, but receive a lower fitness than those that achieve their goal

in fewer moves.

2Interestingly, whether or not an agent remains stationary or makes a random move in this situation is
a detail omitted from Robinson et al. (2007). We discuss the implications of this decision in Section 5.2.

3We use the term ‘Neophobic’ in this paper to refer to agents that evolve to avoid new situations and
do not explore the environment. Similarly, we use the terms ‘Builders’ to refer to agents that successfully
build a bridge, and ‘Dead’ to refer to agents that fall in the river, respectively.
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2.2 What Can We Learn from River Crossing Tasks?200

Whilst the RCT in design is simple, the task involved is complex for agents to learn to solve

– agents must learn complete sub-tasks before any positive fitness becomes accessible. One

of the main contributions of this work was an agent learning architecture that could express

both reactive and deliberative behaviours; agents could thus navigate dynamic environments

with ease without the need for route planning mechanisms, whilst also being able to solve205

novel and more complex versions of the task when shown them for the first time. An

important observation though is that agents could not achieve the task with evolutionary

search without first being shown how to achieve the goal (i.e. collecting the Resource), as

there was otherwise no incentive to learn to build a bridge.

Later, extensions to the testbed, such as the RC+ task, are designed to increase in210

complexity such that the final environment cannot be solved by incremental evolution on its

own (Borg et al., 2011). Borg et al. evaluated agents on five environments at each generation

instead of Robinson et al.’s three, where agents had to exhibit different behaviours to achieve

their goal in the final environment, as no Stones were present to build a bridge. As a result,

Borg et al. (2011) demonstrated that learning by imitation through transcription errors215

and cultural transmission can enable agents to achieve goals where incremental evolution

cannot; Jolley et al. (2016) showed this was also possible by employing teacher-learner

social learning strategies. Borg et al. (2011), and later Jolley et al. (2016), theorised that

the resulting fitness landscape had two peaks (the former being for building a bridge to

achieve the goal, and the latter relating to solving the final task) – and that the valley220

between could not be bridged by agents that just learnt via incremental evolution alone.

Drawing on the observation of Robinson et al. (2007), that building a bridge in the RCT

without first being exposed to the Resource leads to random search, we posit that a similar

fitness landscape exists for building a bridge, thus making this a difficult task for evolution

to solve.225

Other instances in the RCT family include the 3D River Crossing (3D RC) Task and

the River Crossing Dilemma (RCD). Stanton and Channon (2015) demonstrated that the

RCT task could be extended such that 3D, rigid-body virtual agents could be evolved in

a 3D version of the RCT (3D RC Task); agents employed a hybrid neural architecture to

express reactive and deliberative behaviours that enabled navigation and interaction with230

the environment. Further, Barnes et al. (2019) explored how the pursuit of individual

9



goals was affected when agents coevolved in a multi-agent, gamified version of the task

called the River Crossing Dilemma (RCD), in which agents shared an environment with

an unknown other. Additionally, a simple technique inspired by the theory of social action

was shown to mitigate evolutionary volatility arising from actions of other agents within235

the environment, without the need for agents to be aware of the existence of others; this

unintended influence should be considered when designing systems that are colocated or

operate in shared environments.

A common factor in the RCT family of environments is that the seemingly simple act

of building a bridge involves learning two implicit things: adapting learnt knowledge that240

the river is ‘safe’ if a stone is being carried, and that the neutral behaviour of putting a

stone in the river is beneficial in the long term. An agent therefore depends on learning this

sub-task of building a bridge first in order to achieve its goal, and must endure a period of

low fitness during evolution in order to find the optimal solution.

Task decomposition has been shown to be powerful when using a neuroevolutionary245

approach for learning sequential sub-tasks (Jain et al., 2012), and when using modular

connectionist architectures (Jacobs et al., 1991). Nicolay et al. (2014) conclude that, when

training a robot to learn two conflicting tasks, learning the ‘harder’ task before learning

both simultaneously is more beneficial than learning both together initially. One issue

with current approaches to solving the RCT is that agents use neuroevolution to evolve250

a combination of two neural networks for reactive and deliberative behaviours (Robinson

et al., 2007). As complexity of the task and the sub-tasks involved increases, so does the

learning architecture required; this means that the search space also increases, and evolving

optimal solutions is more difficult (Federici & Downing, 2006).

While the learning and interaction techniques explored in this literature (e.g., task de-255

composition, evolving for modularity, social learning) may be beneficial for designing agents

to solve the RCT and its variants well, it is also clear that studying the RCT and its variants

support the generation of general insights into how evolutionary agents behave in a variety

of different scenarios. Our focus in this article is in line with this latter aim: rather than

trying to find good solutions for the RCT task, we are interested in exploring and explaining260

why the task is difficult for agents to learn at its core.

As a first step in this study, we therefore require an equivalent problem with reduced

complexity, paired with a simplified agent representation and learning architecture.
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Figure 2: The Minimal River Crossing Task Testbed: a 1 × 5 grid-world environment with
water in the leftmost cell, and grass in all others. There is a stone in the rightmost cell, and
an agent in the center cell.

3 The Minimal River Crossing Task Testbed

The Minimal River Crossing (RC-) Task testbed, originally proposed by Ghouri et al. (2020),265

is a principled simplification of the original River Crossing Task (RCT) (Robinson et al.,

2007) and its extensions. The (RC-) is designed to reduce the complexity of the original

River Crossing Task while keeping its core properties, such that agent evolution can be

studied in closer detail. The intention was to support increased explainability of agent

evolution in the RCT, by benefitting from the simpler environment in order to facilitate270

analysis of the fundamental learning tasks. In this article, we explore the extent to which

this proves to be the case.

In order to do this, we explore three questions in the RCT/RC- in this article. First,

what effect does a cost to movement (c in Equations 1 and 2) have on agent evolution?

Second, what effect does the introduction of a population have on agent evolution, compared275

with a 1 + 1 evolutionary algorithm? Third, what impact will the introduction of Random

Immigrants (Cobb & Grefenstette, 1993) (typically used to generate increased diversity)

have on agent evolution? We use these questions as examples of the sorts of concepts that

can be explored in greater detail using this method.

The RC- testbed, depicted in Figure 2, consists of a 1 × 5 grid, containing Water in the280

leftmost cell, a Stone in the rightmost cell, and Grass in all others (including underneath

the Stone). The goal of the agent, starting in the centre cell, is to build a bridge by first

picking up the Stone, and then heading to the Water to build a bridge. In the original RCT

environment, it is this act of building a bridge that allows an agent safe passage across the

river in order to collect the reward object; thus the act of collecting the reward object is not285

accessible unless a bridge is built. The RC- therefore simplifies the agent’s reward state by

only awarding a strongly positive fitness when it has built a bridge. An agent dies if it steps

into the Water without carrying a Stone, and receives a strongly negative fitness. Another
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simplification present in the RC- is a reduction in the existing objects in the environment to

only those that are necessary to achieve the goal; excess Stones, other objects such as Traps,290

and Resource objects, which can all be seen in other variations of the RCT, are therefore

not used in the RC- environment.

3.1 Agent Representation in the RC-

An agent’s genome is represented using a pair of integers (R,L), each in the range [0, 4],

where R is the number of moves to the right it will take, and L is the subsequent number295

of moves to the left. Further, a strategy of (1R, 2L, 3R) for example can be simplified to

(2, 0); this removes unnecessary complexity from the genome representation, but also means

that the genome represents the outcomes of more complex movement strategies in a simple

manner. As a result, there are a total of 25 possible agent solutions between (0, 0) and (4, 4),

with 12 being valid (e.g. (1, 2)) and 13 being invalid (e.g. (3, 2)); from the starting position,300

an agent can take a maximum of two moves to the right, then four to the left, resulting in

the optimal solution of (2, 4). The fitness f for agent A is calculated with Equation 2:

Af = Is− Iw − (c×m) (2)

where s = 1 if a bridge is built successfully with a Stone and 0 otherwise, w = 1 if

the agent falls into the Water and 0 otherwise, c = 1 if there is a cost to movement or 0

otherwise, and m is the number of moves taken by the agent. I is a constant where I = 10,305

indicating the magnitude of the reward or penalty. Agents can thus be characterised as the

Builders (achieve the goal), the Dead (receive a penalty for drowning), and the Neophobic

(do nothing).

3.2 Agent Evolution in the RC-

All the experiments in this study evolve agents using an evolutionary algorithm (EA) with310

the following common parameters. Agents evolve for 100 generations, and experiments are

repeated for 100 independent runs; each experiment is also repeated with and without a

cost to movement applied to agents (i.e. c = 0 and c = 1 in Equations 1 and 2), to explore

how this impacts evolutionary learning. Agents have no prior knowledge of the task or

environment, and are initialised with zero knowledge at the start of evolution. In the (RC-),315

we operationalise this by initialising all agents to (0, 0); as we will see later, in the RCT this
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is typically done by initialising the neural network with uniform random weights. At each

generation, the agent in the population with highest fitness is selected to be the ‘parent’;

tournament size is therefore equal to the population size. Once a parent is selected, an

offspring is generated from this single parent by mutation; no crossover occurs.320

The mutation operator applied to an agent’s genome, (R,L), is as follows. Chromosomes

are treated ‘piecewise’, in the sense that each allele (R and L) is treated independently of

the other. Each allele has a 50% chance to mutate, with an equal chance of the mutation

being +x or −x: the percentage chance of x = 1 is 60%, x = 2 is 25%, x = 3 is 10% and

x = 4 is 5%. This means that there is a high probability that the offspring is mutated by a325

small amount, but there is still a very small probability of being mutated by a large amount

to enable agents to escape local optima and explore other areas of the solution space. As

the search space here is very limited, a fixed percentage chance of mutation is deemed a

suitable representation of other common mutation operators – say for example values chosen

from a Gaussian distribution in the context of large search spaces. If an invalid solution is330

generated, new offsprings are created until one is valid. This mutated offspring then replaces

the worst performing agent in the population, unless otherwise specified.

4 Understanding the RC-

This section presents results, both analytical and experimental, concerning the RC-. In

doing so, we present insights into the workings of evolutionary processes on agents solving335

it.

4.1 Landscape Analysis

As an agent’s genome is represented using a pair of integers, each in the range [0, 4], the

fitness landscape for the RC- environment can be fully mapped with a 5 × 5 grid. Figures

3a and 3b show the fitness landscapes for the RC- environment, without and with a cost340

for movement respectively. Out of the 25 possible agent solutions, 12 are valid and 13 are

invalid (i.e., agents can make at most two moves to the right, and the number of legal moves

to the left is bounded by how many moves to the right they have made first). As the agent

has no prior knowledge of the environment or its location within it, restricting the search

space to 3 × 5 would provide additional information and bias the problem.345

Without a cost to movement (i.e., c = 0), Figure 3a shows that a neutral landscape
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(a) Without cost to movement. (b) With cost to movement.

Figure 3: Fitness landscapes of all 25 possible agent solutions in the RC- environment, where
there is (a) no cost to movement, or (b) a cost of −1 per move. The 13 invalid solutions are
indicated with an ‘x’, whereas the 12 valid solutions show the fitness received if the agent
makes the specified moves to the right then left. Agents receive a fitness of +10 by moving
2 moves to the right to pick up a Stone, then 4 left to build a bridge in the water. If an
agent moves into the Water without first picking up a Stone, it will receive a fitness of −10.

is created; agents can explore without penalty, and there is no indication of proximity to

the optimal solution. However, when a cost to movement is introduced (c = 1), Figure 3b

shows that a trap function is created in the landscape (Nijssen & Bäck, 2003). This means

that agents receive a lower fitness as they get closer to the optimum, making it difficult for350

evolution to find.

4.2 Experimental Setup

The first set of experiments explore the effect that a cost to movement has on evolution,

using a 1+1 evolutionary algorithm (EA). The 1+1 EA has been shown to be simple yet

effective for simple search problems (Droste et al., 2002; Nijssen & Bäck, 2003), which makes355

it an appropriate choice for agent evolution in the RC- due to its small search space. As the

population size is 1, the EA described in Section 3.2 is adapted such that the single agent in

the population will only be replaced if the fitness of the offspring is greater than, or equal

to, its own fitness; the EA would in fact instead be a random walk if the offspring always

replaced the single agent in the population.360

The second set of experiments increase the population size in the EA to 5, to explore

the effect of this change on evolution, and then replaces the agent with the lowest fitness

(as described in Section 3.2). All ties (in terms of fitness) are broken randomly.

14



The third set of experiments also use a population size of 5, to explore the effect of

Random Immigrants on evolution and learning. Random Immigrants inject randomness into365

the population, leading to greater diversity (Cobb & Grefenstette, 1993) and the chance to

escape local optima. We explore the effect that different probabilities of introducing Random

Immigrants into the population has on how agents are able to achieve their goals in the RC-

when agents are and are not subjected to a cost to movement. At each generation, the

worst-performing agent in the population is either replaced by an offspring of the best,370

or a Random Immigrant; these experiments are repeated for different levels of Random

Immigrants: from 0.1 probability of generating a Random Immigrant instead of an offspring

by mutation, in 0.1 intervals, up to 1.0 probability (which resembles random search). These

are compared against the results from the second set of experiments, which provide a baseline

of 0.0 probability of Random Immigrants. We can therefore compare the behaviour of375

traditional evolutionary search to random search, as well as the effect that increasing levels

of randomness in the EA has on evolution and goal-achievement.

4.3 Cost to Movement and Evolution

When there is no cost to movement, agents encounter a neutral landscape (Figure 3a)

in which they can explore without penalty; there is no explicit incentive to exploration,380

but more importantly there is no inherent disincentive to exploration. Figure 4 depicts

the evolution of agents evolving with a 1+1 EA, when they are either subjected to a cost

to movement or not. 92% of agents evolve to be Builders (those that achieve the goal)

when there is no cost to movement and thus are able to explore a neutral fitness landscape

(Table 1). In contrast, adding a cost of −1 per move is shown to have a dramatic effect385

on evolution, as only 10% of agents evolve to be Builders under these conditions. A cost

to movement creates a trap in the fitness landscape (Figure 3b), as agents must endure

negative fitness in order to evolve a solution that is capable of achieving the goal. Agents

are therefore found to be discouraged from exploring when a cost to movement is present,

and are encouraged to be Neophobic.390

4.4 Population Size and Evolution

Here, we increase the population size from 1, as seen in the 1+1 EA results in the previous

section, to 5, to explore the impact that a population size has on evolution in the RC-. As
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Figure 4: The percentage of runs in which a ‘Builder’ solution has been found at each
generation when agents evolve with a 1+1 EA in the RC- (agents that build a bridge and
thus achieve their goal), with and without a cost to movement (CTM). When there is no
cost to movement, agents are able to explore the search space without penalty and thus
more ‘Builder’ solutions are found, compared to when there is a trap function in the search
space created by a cost to movement.

with the previous set of experiments, no cost to movement means that agents are able to

explore without penalty; as a result, more Builder solutions are evolved when there is a395

neutral fitness landscape than when a cost to movement creates a trap (Figure 5). At the

end of evolution, 73% of agents evolve to be Builders with no cost to movement, whereas 14%

are Builders when the fitness landscape contains a trap (Table 1). This result is consistent

with the 1+1 result, demonstrating that the presence of either a trap function or neutral

landscape has the same effect, when the algorithm uses a population. When there is a cost to400

movement and therefore a trap in the fitness landscape, an increase in population size from

1 to 5 neither helps nor hinders the evolution of Builder solutions; however, we observe that

by increasing the population size, fewer agents evolve to be Builders when there is a neutral

Table 1: The percentage of runs in which a ‘Builder’ solution has been found after 100
generations in the RC-.

Pop Size CTM Builders (%)

1 No 92
1 Yes 10
5 No 73
5 Yes 14
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Figure 5: The percentage of runs in which a ‘Builder’ solution has been found at each
generation in the RC- (agents that build a bridge and thus achieve their goal) with a
population size of 5 at each generation, with and without a cost to movement (CTM). A trap
function is created when there is a cost to movement, making it harder for ‘Builder’ solutions
to evolve compared to when there is a neutral landscape (from no cost to movement).

fitness landscape. As the replacement operator is changed from ‘replace with offspring only

if it has better fitness’ to ‘always replace worst agent with offspring ’ when the population405

size is increased from 1 to 5, one would expect this to be the cause of the slight decrease in

Builder solutions that are found, rather than an effect of an increase in the population size.

4.5 Random Immigrants and Evolution

Injecting randomness into a population via Random Immigrants during evolution increases

the diversity and can aid the ability of the population to traverse a search space (Cobb &410

Grefenstette, 1993). A small proportion (e.g. 0.1) of random immigrants is often sufficient

to enable populations to escape local optima or traverse challenging fitness landscapes, and

selecting this proportion is typically an important parameter choice in designing an effec-

tive evolutionary algorithm. Here, this parameter is then used as a probability when a new

offspring is generated: with this probability, instead of producing an offspring by evolution-415

ary operators (crossover and mutation based on the parent), we introduce an individual

with a uniformly randomly initialised genome. As we increase the proportion of random

immigrants, the algorithm tends towards resembling random search, and at the extreme

where the proportion of offspring generated as random immigrants instead of by evolution-
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Figure 6: The percentage of runs in which a ‘Builder’ solution has been found at each
generation in the RC- (agents that build a bridge and thus achieve their goal) with a popu-
lation size of 5, with and without a cost to movement (CTM), and increasing probabilities
of introducing a Random Immigrant (RI) at each generation. When there is a cost to move-
ment, and hence a trap function, increased randomness improves the ability of the search to
find ‘Builder’ solutions; indeed random search outperforms evolutionary search in this case.
When there is no cost to movement, and hence a neutral landscape, any non-zero quantity
of Random Immigrants is sufficient to improve the search process; varying the proportion
of Random Immigrants above 0.1 has no further effect.

ary operators is 1.0, the algorithm indeed becomes random search. Since we now know that420

evolutionary agents in the RC- are faced with either a trap function or a neutral landscape

(in the cases of a cost to movement or absence of cost to movement, respectively), here we

build on the population-based experiments in Section 4.4, to explore the impact of adding

increasing levels of randomness to a population-based search.

The experiments in this section are designed to explore the effect that an increasing425

probability of injecting Random Immigrants into the population has on evolution and thus

the ability to achieve goals in the RC-.

Figure 6 shows these results for agents that evolve with and without a cost to movement.

It is immediately obvious that any amount of randomness that is injected into the population

is beneficial for evolution in the RC-; the search space is small, with only 12 possible valid430

solutions, which makes a random jump to a different part of the search space likely to

have a positive outcome. This effect is more prominent when agents face a neutral fitness

landscape, as random jumps may place the agents closer to the optimum or at the optimum

itself. With a cost to movement however, any diversity added by a Random Immigrant must
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Table 2: The percentage of runs in which a ‘Builder’ solution is evolved after 100 generations
in the RC-.

CTM
Probability of Random Immigrants (P (RI))

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

No 73 100 100 100 100 100 100 100 100 100 100
Yes 14 64 84 99 94 97 97 99 100 100 100

be exactly the optimal solution to have any sustained benefit: the closer a solution is in435

the fitness landscape to the optimum, the worse the fitness is, and thus the solution will be

selected out of the population at the next generation. So, while any probability of Random

Immigrants has an immediate effect on the evolution of Builders when there is a fitness

landscape, this benefit is more gradual when there is a cost to movement, which increases

as the probability of introducing a Random Immigrant at each generation increases. This440

is because there are more chances for a Random Immigrant to ‘jump’ to the optimum as

the probability increases. With a cost to movement, the largest benefits from Random

Immigrants are seen with P (RI) >= 0.8, as 100% of agents achieve the goal at the end of

evolution (Table 2); this is in contrast to a neutral fitness landscape, in which case 73% of

agents achieve the goal with traditional evolutionary search, which rises to 100% of agents445

when any non-zero proportion of Random Immigrants are introduced.

5 Generalising to the Original RCT Problem

The results in Section 4 are interesting in that they provide insight into the structure of

the RC- problem environment, and how evolution operates in the RC-. However, our stated

aim in producing the RC- is to support the generation of understanding that generalises450

back to the original RCT from which it was inspired, especially where this understanding

would have been difficult to obtain by analysing the original (more complex) problem. An

important and related broader question is: can the approach of principled simplification, as

we have explored in the case study in this paper, provide such insight, and if so, when? Are

there features that can be readily and reliably explored and generalised using this technique,455

and are there features that are not amenable to analysis using this method?

In this Section, we explore attempts to generalise results from the experiments from

Section 4 on the RC- back to the base RCT environment (Figure 1). We note where this is

successful and where it is not, discuss possible reasons, and ask: what might we learn from
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this?460

5.1 Experimental Setup for the RCT

As the search space for agents in the RCT is much larger than in the RC-, the evolutionary

algorithm described in Section 3.2 is adapted slightly to accommodate for this change in

scale. Agents in the RCT are evolved for 10,000 generations, with each experiment being

repeated 100 times with and without a cost to movement. The total cost to movement465

incurred by an agent is defined in Equation 1; agents may elect to not move, in which case

their fitness will be 0.0 – but they will not achieve their goal. Agents are initialised with

random weights in the deliberative neural network, and have no prior knowledge of the task

or environment at the beginning of evolution. As with the EA design for agents evolving in

the RC-, tournament size equals the population size. The individual with the highest fitness470

is selected to be the parent at each generation, from which an offspring is generated by

mutating the weights in the deliberative neural network by a random value from a Gaussian

distribution with µ = weight and σ = 0.01; crossover does not occur. The worst performing

agent in the population is replaced by this mutated offspring, inline with the RC- EA setup

described in Section 3.2 – unless the population size is 1, in which case the worst agent is475

only replaced if the fitness of the offspring is greater than or equal to its own fitness (inline

with Section 4.2). The details of the experimental setup for the RCT are the same as for the

RC-, described in Section 4.2, so we can ascertain whether results in the RC- can actually

be generalised back to the RCT.

5.2 Effect of a Cost to Movement480

When agents are evolved with a 1+1 EA in the RC-, as explored in Section 4.3, agents are

found to encounter a neutral fitness landscape with no inherent disincentive to exploration

when there is no cost to movement; as a result, a much higher percentage of agents are able

to achieve their goal when there is no cost to movement compared to when there is a cost

to movement. This cost to movement creates a trap in the fitness landscape: the fitness an485

agent receives gets lower as they approach the optimum; this makes it difficult for successful

Builder solutions to evolve because selection pressure in the evolutionary algorithm favours

higher-fitness solutions.

Looking instead at how agents evolve in the RCT with a 1+1 EA, Figure 7 paints a
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Figure 7: The percentage of runs in which a ‘Builder’ solution has been found at each
generation when agents evolve with a 1+1 EA, with and without a cost to movement (CTM),
in the RCT. A higher percentage of runs evolve agents that achieve their goal (‘Builders’)
when there is no cost to movement compared to when a trap function arises through a
cost to movement. Further, agents are free to explore the landscape and experiment with
behaviours when there is a neutral fitness landscape: agents may evolve to build bridges
without necessarily learning to achieve their goal when there is no cost to movement, but
these two behaviours are strongly linked when there is a trap in the fitness landscape.

similar picture as Figure 4: more agents are able to evolve the behaviours necessary to490

achieve their goal when there is a neutral fitness landscape as opposed to when a trap

exists. When there is no cost to movement and thus a neutral fitness landscape, agents

in the RCT may evolve to build a bridge without necessarily learning how to collect the

Resource to achieve their goal; this is because there is no negative consequence for exploring

new behaviours, and disincentive to learning how to build a bridge – a result that was also495

observed in the RC- (Section 4.3). Over time, agents may then explore the search space

enough to also learn to achieve their goal as well. Conversely, the act of building a bridge

is closely tied with the ability to achieve goals when there is a cost to movement present; as

each move is costly when a trap function is present, agents learn to only build a bridge when

there is a reward. Bridge-building is consequently difficult to learn, because agents must500

endure a period of low fitness in order to discover the link between bridge-building (low

fitness from number of moves), and retrieving the Resource to achieve the goal (positive

reward that is only accessible through building a bridge).

Whilst fewer agents overall are able to achieve their goal in the RCT than the RC-, due
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Table 3: The percentage of runs in which a ‘Builder’ solution has been found after 100
generations in the RC-, or 10,000 generations in the RCT.

Experiment Pop Size CTM Builders (%)

RC-

1 No 92
1 Yes 10
5 No 73
5 Yes 14

RCT

1 No 31
1 Yes 10
5 No 26
5 Yes 8

to the increase in problem complexity and size of the search space, the same trend is seen:505

a higher percentage of agents are able to achieve their goal when a neutral fitness landscape

is experienced, compared to when a trap exists as a result of a cost to movement penalty.

This can be seen more clearly when looking at Table 3: 92% and 31% of agents achieve their

goal with no cost to movement in the RC- and RCT respectively, compared to 10% in both

the RC- and RCT when a cost to movement is applied.510

It is worth noting that as the fitnesses received by agents will differ when there is or

is not a cost to movement applied, presenting and discussing the mean fitness for example

would be misleading as the fitnesses are not comparable. Instead, we focus on our primary

question of interest, whether or not the agents manage to build a bridge and achieve the

goal; fitness is simply a means to an end in this respect. We can therefore objectively see515

that, regardless of fitness, a cost to movement does in fact influence the ability for an agent

to evolve the behaviours necessary to achieve their goal in both the RC- and the RCT, and

that by capturing the structural nature of the landscape that causes this, the analysis of

the RC- enables us to predict how a cost to movement would affect evolution in the RCT.

Interestingly, in their original presentation of the RCT, Robinson et al. (2007) omit520

details concerning how an agent behaves when there is no target location given to the

shunting network (i.e. the activation landscape is flat). This would be the case for example

when the deliberative neural network produces values of 0 for all locations in the landscape,

indicating that the agent has no goal to move towards or away from any of them. Yang and

Meng (2000) do not discuss this either, since the focus of their work is in how to achieve525

navigational goals, rather than what to do in their absence. Here, we have designed agents

such that if there is no activation signal generated by the deliberative network, the agent

does not move, as it has no goal.
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An alternative, which also appears reasonable, would be to have the agent move to a

random adjacent cell, in the absence of any activation signal. This means that when it had530

no goal, it would explore the environment in a random walk. At first glance, this may seem

an implementation detail of little consequence, but on closer inspection we can see that

this has a profound impact on the form of the problem to be solved. Specifically, in the

case of there being a cost to movement, this means that every agent would always move at

every time point, thereby making m in Equation 1 a constant. This would have the effect535

of removing the trap function from the RCT’s fitness landscape, since there would be no

option to improve overall fitness by staying still. Assuming that the cost to movement is

a proxy for energy usage associated with moving, then this also removes the option for the

agent to learn to save energy when it has no knowledge of a goal in the environment. In

order to also analyse this using the RC-, one can easily construct a variant of Figure 3b but540

based on a constant value for m in Equation 2; the result would be a neutral landscape once

again.

5.3 Increase in Population Size

In the RC-, similar results are observed when the population size is increased from 1 to 5, as

discussed in Section 4.4: more Builders are evolved when there is no penalty for exploration545

compared to when a trap exists in the fitness landscape, regardless of population size.

When agents evolve in the RCT with a population size of 5, Figure 8 shows that the

risk of receiving a lower fitness when moving acts as a deterrent to exploration; learning

the sub-task of building a bridge is more difficult as a period of low fitness must first be

endured, meaning that these low-fitness but potentially successful solutions are more likely550

to be replaced during evolution when agents endure a cost to movement. Similarly to the

results presented in the previous section and in Figure 7, the act of building a bridge is

strongly tied with achieving the goal when agents experience a trap in the fitness landscape;

conversely, a larger percentage of agents explore and traverse the fitness landscape to build

a bridge without achieving the goal when there is no movement penalty applied.555

The results obtained in the RC-, presented in Section 4.4 and Figure 5, corroborate

the findings in the RCT: a cost to movement affects the ability of agents to achieve their

goals, because a trap in the fitness landscape instead encourages agents to be Neophobic.

Fewer agents overall achieve their goal in the RCT compared to the RC-, but as alluded to in
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Figure 8: The percentage of runs in which a ‘Builder’ solution has been found at each
generation, when agents evolve with a population size of 5, with and without a cost to
movement (CTM), in the RCT. More agents evolve to be ‘Builders’ (those that achieve
their goal) when there is no cost to movement, meaning agents can explore a neutral fitness
landscape without penalty. A cost to movement creates a trap function, making it hard for
‘Builders’ to evolve. As agents can explore without penalty in a neutral fitness landscape,
agents may learn to build a bridge without learning to achieve the goal; these behaviours
are strongly linked when there is a trap in the fitness landscape.

Section 5.2, this can be expected due to the increase in problem complexity and search space560

size. 73% and 26% of agents achieve their goal when there is a neutral fitness landscape

in the RC- and RCT respectively, compared to 14% and 8% with a cost to movement

(Table 3). These results align with what was observed in the RC- (Section 4.4): an increase

in population size from 1 to 5 is not observed to help or stifle the evolution of Builder

solutions when there is a trap in the fitness landscape, whereas fewer agents evolve to be565

Builders when there is no cost to movement. The experiments conducted in the RC- are

therefore seen to predict the outcome of the same experiments conducted in the RCT.

5.4 Introduction of Random Immigrants

Injecting Random Immigrants into the population was found to have an immediate and

sustained effect on evolution in the RC-, as discussed in Section 4.5. This effect was more570

pronounced in agents that were not subjected to a cost to movement, as any non-zero pro-

portion of Random Immigrants was beneficial to evolution and the pursuit of goal-achieving

behaviour. However, when a trap was present in the fitness landscape, the number of
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Table 4: The percentage of runs in which a ‘Builder’ solution is evolved after 100 generations
in the RC-, or 10,000 generations in the RCT.

Environment CTM
Probability of Random Immigrants

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

RC-
No 73 100 100 100 100 100 100 100 100 100 100
Yes 14 64 84 99 94 97 97 99 100 100 100

RCT
No 27 28 33 32 30 30 19 26 25 35 30
Yes 8 8 10 6 7 14 10 6 6 5 8

Builders that evolved increased inline with the probability of Random Immigrants; a cost to

movement means that Random Immigrants would only be beneficial if the random solution575

is at the optimal point in the fitness landscape, and, as the probability of Random Immi-

grants increases, so does the likelihood that a new, random solution would be introduced at

the optimum. In all experiments, the traditional evolutionary algorithm was outperformed

by either a hybrid algorithm with any amount of randomness introduced, and pure random

search.580

These experiments were repeated in the RCT, and the results are presented in Figure 9

There are two common observations throughout this study: fewer agents achieve the goal

overall when subjected to a cost to movement than without, as there is a disincentive for

exploration; fewer agents achieve their goal in the RCT compared to the same experiments

conducted in the RC- due to the increase in problem complexity and search space size.585

These observations still stand true when analysing the number of Builders that evolve in

the RCT when different probabilities of Random Immigrants are introduced. When there is

a trap in the fitness landscape caused by a cost to movement, both traditional evolutionary

search, random search, and hybrids of the two produce similar numbers of Builders at the

end of evolution; only 5-14% of agents evolved to be Builders in these experiments, as seen590

in Table 4. Interestingly, both traditional evolutionary search and random search evolve 8%

of agents to be Builders, showing that there is no real difference made by increasing ran-

domness, in the case when there is a trap. We also found that both evolutionary, random

and hybrid search evolved more Builder solutions over time when agents did not experience

a cost to movement, and had no disincentive for exploration. Here, some amount of ran-595

domness in the population was observed to be beneficial for evolution, however traditional

and random search were found to be similar: 27% and 30% of agents evolved to be Builders

with traditional and random search respectively.
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Figure 9: The percentage of runs in which a ‘Builder’ solution has been found at each
generation in the RCT and thus achieve their goal with a population size of 5, with and
without a cost to movement (CTM), and increasing probabilities of introducing a Random
Immigrant (RI) at each generation. Traditional evolutionary search and random search find
a similar number of ‘Builder’ solutions, both when there is and is not a cost to movement;
hybrid search, with any non-zero proportion of Random Immigrants, neither helps nor
hinders evolutionary search in general. When agents face a neutral fitness landscape through
no cost to movement, more ‘Builder’ solutions are found than when there is a trap landscape.

There is a divergence from the results of these experiments in the RC- to the results in

the RCT for the first time in this experimental study: the RC- cannot predict how evolution600

will be affected in the RCT, when different probabilities of Random Immigrants are intro-

duced into the population. We see that any non-zero proportion of Random Immigrants is

beneficial for agents evolving in the RC- without a cost to movement, but a gradual increase

in benefit as the probability of Random Immigrants increases when a cost to movement

exists. No such observations were made when agents evolve in the RCT – so what prompted605

this change? In each experiment, evolution has either nothing to go on, or else is actively

pushed away from the goal when a trap exists: structurally, this is the same in both RC-

and RCT, in the sense that agents are either in a ‘neutral’ (no cost to movement) or ‘hostile’

(cost to movement and thus trap) environment for evolution. However, as the scale changes,

the amount of exploration inherent to each of random search and evolution comes into play.610

Specifically, when the search space is small, the probability of random search finding the

goal is increased, compared to in a large search space. Conversely, in a large search space,

neither random search nor evolutionary search have any effective ‘tactics’ to approach the
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goal, thus both do roughly as bad as each other: there is no perceptible nor significant dif-

ference. In simpler terms, agents in the RCT learn through knowledge encoded in a neural615

network, however in the RC-, only 12 possible valid solutions exist. This makes it more

likely that Random Immigrants in the RC- will fall at the optimal position in the fitness

landscape, but is not so straightforward in the RCT. As we approach random search, there

is a divergence between the results observed in the RC- and the RCT, due to the quantita-

tive change introduced in the simplification process, and the effect of this on the behaviour620

of the search process. Specifically, a probability of Random Immigrants of 0.1 - 1.0 in the

RCT makes little difference to the number of Builder solutions that are evolved, however

the same probabilities in the RC- have a dramatic effect – both with and without a cost

to movement – with all probabilities of Random Immigrants producing more Builders than

traditional evolutionary search. The reason why we see divergence here, while the results625

in Sections 5.2 and 5.3 match up to their RC- counterparts presented in Sections 4.3 and

4.4, is because they were based on a qualitative feature of the search landscape, its struc-

ture, and the impact of this on searching. Conversely, in this section, the simplification was

quantitative in nature, and thus impacted upon the probabilities inherent to each search

algorithm.630

6 Reflections on Principled Simplification as an Ap-

proach to Explainability

We began this article by discussing the approach of simplifying a problem or model in order

to aid our understanding of it. The main idea is to create a minimal yet sufficiently useful

testbed, that allows us to analyse features of the problem (in this case, when and why it is635

difficult to solve). In order to do this, the aim is to retain key problem features such that

they can be studied, and insights gained on the simpler version can be generalised back to

the original problem. Further, such analysis on the simpler variant should be facilitated

by this simplicity, which then also provides for clearer explanations. In completing this

process, observed results on the original problem can then be explained, using its simpler640

analogy. As an example, the trap function and neutral landscape in this study are clearly

visible in the RC- landscape, visualised in 2D in Figure 3. These figures are valuable tools

to understanding and explaining to others why evolution behaves in the way it does.
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We refer to this process as principled simplification, though we lay no claim to having

invented the idea. We do, however, believe that Artificial Life and many fields allied with645

Computer Science would benefit from a deeper understanding of how and when it works

as a method. To this end, one key methodological insight arising from this study is that

it is important to distinguish between qualitative features associated with problem struc-

ture, problem scale, and finally other quantitative features orthogonal to scale. Concerning

the quantitative nature of scale-based features, why would we expect a smaller problem to650

enable us to predict something that relies on scale in order to determine outcomes? As

an example, the impact of Random Immigrants (and other algorithm features of this type,

we hypothesise) cannot be predicted using this method, since they rely on relative proba-

bilities associated with different outcomes, that are dependent on the size of the problem

search space. And in this particular simplification, problem search space has been reduced.655

It is conceivable that a different simplification of the RCT could be constructed that pre-

served aspects of scale, but this is not something that has yet been done. Conversely, both

structural and quantitative features unrelated to the scale of the problem can be analysed

in simplified versions that preserve them, in a way that can generalise to more complex

variants that share those same features. This is the case in our study with the shape of660

the fitness landscape, which is a major determining factor on the behaviour of evolutionary

processes on landscapes of that shape. It is also the case in the observations concerning the

impact of a population. While in the latter case we have not extended our pen-and-paper

analysis of the RC- to explain this result, empirically we observe a link between the RC-

and RCT.665

In other words, when considering principled simplification as a tool, ask: is this feature

orthogonal to the simplification and hence preserved; or in simplifying, have we altered

the feature? Here, we have shown examples of analysis and experimental prediction using

a preserved feature, where we were indeed able to predict outcomes in the more complex

version of the problem, and one example where, due to the feature being quantitatively670

dependent on the scale of the simplification, we were not.

7 Conclusions

Evolutionary agent-based models are widely used in a number of applications, but are often

built upon a number of assumptions that can inadvertently make agent behaviour and
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evolution hard to explain or understand. We demonstrate that principled simplification675

can be used as a tool to support the explainability of complex evolutionary agent-based

models, by presenting an experimental case study that shows behaviour can be explained

and predicted in an instance of the River Crossing Task (RCT) through simplification, using

the Minimal River Crossing (RC-) Task.

Qualitative simplifications to the structure of the problem or environment can facilitate680

the explainability of agent behaviour and evolution, as results in the simplified testbed

are shown to generalise back to the original problem. Specifically, we demonstrate this by

exploring how the addition of a cost to movement affects the ability of evolution to find goal-

achieving solutions in the RCT – the results of which can be predicted with the simplified

RC-. Agents have no disincentive to exploration when there is no cost to fitness, and the685

resulting neutral fitness landscape allows agents to experiment with behaviours without

penalty; with a cost to movement however, a trap arises in the fitness landscape, which

deters and pushes agents away from the optimum, thus making it harder for evolution to

find successful solutions. Similarly, there is evidence that qualitative predictions associated

with quantitative features unrelated to problem scale can also be made. This is the case690

in experimentally examining the size of the population; this is a quantitative feature of the

evolutionary algorithm that affects its behaviour but, unlike Random Immigrants that are

sampled from the problem space, is not dependent on problem space size.

Further, what might not be so obvious is how implementation details regarding the setup

of the environment and evolutionary algorithm may also affect evolution. In previous work695

(Ghouri et al., 2020), we found that when agents were subjected to a cost to movement in

the RCT – with no option but to move at each timestep and thus incur the maximum penalty

if the goal was not achieved – the resulting fitness landscape does not contain a trap but

instead becomes neutral. By instead allowing agents to intentionally decide whether to move

or not at each timestep (as we have done in this paper), the landscape stops being neutral700

and a trap is again present. Another factor to consider in testbed design is how initialisation

may affect evolutionary search; in this experimental study, agents that evolve in the RC-

are initialised at zero (0, 0), but it is not difficult to imagine that random initialisation could

have a completely different effect on evolution when the search space is small. Considering

the RC- has 12 possible valid solutions, if all agents in a population size of 5 are unique,705

nearly half of the search space is already explored before evolution even begins. Whilst

an increase in diversity that arises from a larger population size may potentially influence
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the number of Builders that evolve than a 1+1 EA, incremental evolution may still be

problematic for agents that are far from the optimum depending on where in the search

space they begin. We therefore show that features that appear to be minor implementation710

details can become a critical factor in how evolution proceeds – the implications of which

would not have become obvious nor easily understood without a study of the environment

via principled simplification.

Arguably the most interesting discovery arising from this experimental study surrounds

when principled simplification cannot predict or explain agent evolution or behaviour in715

ways that can generalise back to the original task from which it was inspired. Simplification

of structural aspects of the environment or algorithm, such as a cost to movement or larger

population size (as is explored in this article), is shown to be able to predict how evolution

will be affected when experiments are repeated in more complex environments. However,

when elements that are influenced by the scale of the problem itself are introduced, such as720

changes that are affected by the size of the search space, agent behaviour and evolution can

no longer be explained or predicted due to a difference in magnitude between the simplified

and original problems. Our exploration of the introduction of Random Immigrants is a

prime example of when principled simplification is ineffective for explaining or predicting

agent behaviour when evolving in the original task, because randomness is likely to have a725

greater impact as the search space decreases in size.

Finally, we note that in this study we have not proven that this approach will or will

not work in a given situation. Simply, we have provided evidence in support of our claims.

We therefore recommend that this study act as a template for future similar studies, in

order that further evidence concerning the validity of predictions based on different forms730

of feature can be obtained.
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