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Thesis summary  
 
Cystic fibrosis (CF) is a genetic disorder, characterised by the presence of a dysfunctional 

cystic fibrosis transmembrane conductance regulator (CFTR) protein. Currently approved 

therapeutic compounds all act by targeting CFTR directly. Yet, emerging evidence suggests 

that the proteostasis network within CF airway epithelial cells is severely disrupted, leading 

to fibrotic alterations of the extracellular matrix (ECM). TG2 is reported to be a key regulator 

of these pathogenic changes. With the advent of potent and selective inhibitors of TG2, a 

novel therapeutic avenue may now exist in CF. 
 

In this study, both immortalised and primary CF human bronchial epithelial cells (HBECs) 

were used to investigate the role of TG2, as regards the development of fibrosis in CF 

airway epithelia. It was shown that the deposition of TG2 and fibronectin is elevated in the 

ECM of both IB3 cells and CF primary HBECs. Notably, IB3 cells were found to undergo 

epithelial-mesenchymal transition (EMT)-derived myofibroblast transdifferentiation, with CF 

primary HBECs also exhibiting varying levels of EMT progression. 
 

Proof of concept experiments using CF primary HBECs revealed that the use of a CFTR 

corrector (VX-809) and TG2 specific inhibitor (1-155) in combination, could have a 

potentially additive therapeutic effect. A more in-depth investigation with IB3 cells, served 

to further validate these findings. It was demonstrated that the treatment of IB3 cells with 

VX-809 and 1-155, could completely reverse EMT-derived myofibroblast transdifferentiation 

and fully restore the barrier function of CF airway epithelium. Furthermore, the development 

of these pathogenic processes, was shown to be dependent on the interrelationship 

between extracellular TG2 and TGFβ1 signal transduction.  
 

The mechanism of cellular TG2 export in CF was also examined. Extracellular vesicles 

released by IB3 cells were determined to have increased TG2 expression and activity. IB3 

cells were shown to secrete elevated levels of exosomes, which were found to be reduced 

after combination treatment with VX-809 and 1-155. The findings within this study confirm 

the importance of extracellular TG2 in the pathogenesis of CF and suggest that 

pharmacological inhibition of its aberrant activity, represents a viable therapeutic approach. 

 

Keywords: cystic fibrosis, transglutaminase 2, epithelial-mesenchymal transition, TG2 

inhibitors, extracellular vesicles. 
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CHAPTER 1: INTRODUCTION 
 

 

1.1 Cystic Fibrosis 
 
 

Cystic fibrosis (CF) is a monogenic autosomal recessive disease (Figure 1.1), characterised 

by a defective cystic fibrosis transmembrane conductance regulator (CFTR) protein. 

Discernment of its simple monogenic nature in 1989 (Riordan, 1989) has led to an intensive 

foray of investigation, elucidating the identity of approximately 2000 mutations in this single 

gene (Cystic Fibrosis Genetic Analysis Consortium, 2020). Such a large number of defects 

illustrates why this disease has a highly variable and complex clinical expression. 

Substantial phenotypic variability even extends to patients with the same genotype (Weiler 

and Drumm, 2013). Hence, it is understandable why difficulties have persisted in addressing 

this disease therapeutically.  

CF affects approximately 70,000 - 100,000 individuals worldwide, including 10,500 from the 

UK alone (Kelly, 2017). There is a recognised heterogeneity in the geographical distribution 

of the disease, with CF found to be most prevalent within Caucasian populations (World 

Health Organization, 2004). The most common mutation is a deletion of phenylalanine at 

codon 508 (ΔF508), accounting for ~70% of all CF incidences (Davies et al., 2007). Found 

on the apical membrane of epithelial cells, CFTR primarily functions to transport chloride 

ions (Cl-) for maintenance of cell surface hydration. A new insight by Montoro et al. (2018), 

indicates that a previously unknown airway epithelial hierarchy may exist, with a rare cell 

subtype named ‘pulmonary ionocytes’ being a major source of CFTR expression. In regard 

to CF, absence of a functional CFTR, alongside increased activity of the epithelial sodium 

channel (ENaC) results in dehydrated, hyperviscous mucus which obstructs epithelium-

lined ducts. The exact relationship between CFTR and ENaC remains a subject of debate 

(Shei et al., 2018). To a lesser extent, CFTR transports bicarbonate ions (HCO3
−) for 

regulation of: normal mucin expansion (Quinton, 2008), activation of pancreatic enzymes 

(Kunzelmann et al., 2017) and preservation of respiratory defences (Shah et al., 2016). 
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CF is often defined by its primary cause of morbidity, comprising chronic infections, 

inflammation and obstruction of the lungs. Yet, abnormal regulation of epithelial chloride 

transport results in multiple clinical manifestations, including afflictions to the intestines, 

liver, gallbladder, pancreas, sweat glands and reproductive system (O’Sullivan and 

Freedman, 2009). Ordinarily this translated to poor prognosis, but recent times have seen 

a dramatic increase in life expectancies; such that a child born with CF in the UK today can 

expect to live into the 5th decade of their life (Keogh et al., 2018), compared to that of 5 

years in the early 1960’s (Dodge et al., 2007). This drastic improvement can be attributed 

largely to the development of standardised multisystem treatments constituting: antibiotics, 

chest physiotherapy, supplementation of digestive enzymes and advances in 

transplantation surgery (Stern et al., 2014). However, a revolution in today’s perspectives 

mean a shift away from treatment of clinical symptoms. What were once regarded as 

genetic nuances of CF, are now the target of precision medicine (Marson et al., 2017). 

Currently, there are three CFTR modulators which have been approved by the European 

Medicines Agency, with two of these drugs adopting the use of combination 

pharmacotherapy. However, at a considerable cost of around €150,000 to €250,000  per 

patient, per year (De Boeck, 2020); a real question mark remains over the universal 

accessibility of these treatments. 

 

 

 

 

 

 

 

 

 

Figure 1.1. CF an inherited, recessive disorder. For CF, an individual must inherit two copies of 

the mutated CFTR gene. If both parents are carriers there is a 25% chance that the offspring will 

acquire Cystic Fibrosis. C: Functioning CFTR gene; c: CFTR gene with mutation; CC: Unaffected, 

not a CF carrier; Cc: Unaffected, CF carrier; cc: CF Affected (red). 
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1.1.1 CFTR: Structure and biogenesis 
 

Considerable efforts have been made over the past 30 years to decipher the three-

dimensional (3D) arrangement of CFTR. An extensive review by Callebaut et al. (2017), 

details how our understanding has been based primarily on the theoretical data of  

comparative modelling and molecular dynamics. Efforts have been restricted due to the 

difficulties of expressing, purifying and reconstituting high levels of full-length CFTR protein, 

in its active state (Hunt et al., 2013). However, a major breakthrough came in 2016 when 

the atomic structure of full length CFTR was resolved using single-particle cryogenic-

electron microscopy (cryo-EM). This was first achieved from zebrafish (Zhang and Chen, 

2016) and then from human protein (Liu et al., 2017; Zhang et al., 2018). These exciting 

advances offer a more complete understanding of CFTR, with a greater capacity to correlate 

global arrangement to function. Nevertheless, some important details are still unknown, 

including: conformational changes in disease mutant structures, mechanistic actions of 

modulator compounds and the structural specifics of CFTR gating states.   

CFTR is encoded by a 230kb gene found on chromosome 7. It comprises 27 exons and 

exists as a 1480 amino acid polypeptide (Riordan, 1989). It is composed of two homologous 

halves, each consisting of a transmembrane domain (TMD) containing six membrane 

spanning segments (M1-12) and one nucleotide-binding domain (NBD). Both halves on the 

cytosolic side are interlinked via a central hydrophilic regulatory domain (R domain), which 

contains several phosphorylation sites (Figure 1.2).  

CFTR is a member of the ATP-binding cassette (ABC) transporter gene superfamily, yet is 

unique from nearly all other ABC transporters. Rather than using the energy from adenosine 

triphosphate (ATP) hydrolysis to drive an uphill movement of substrate, CFTR instead 

functions as an ATP-gated ion channel (Zhang et al., 2018). Phosphorylation of the R 

domain is also necessary for CFTR activation and is a prerequisite for channel gating 

(Seibert et al., 1999). In its open state, CFTR facilitates the passive diffusion of anions down 

the prevailing electrochemical gradient (Bear et al., 1992).  
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Topology studies have shown that the M7-M8 extracellular trans-membrane loop contains 

two N-linked glycosylation sites that are used in vivo (Gregory et al., 1990). It is at the 

endoplasmic reticulum (ER) that a core glycosylated form of CFTR (~150kDa) is created. 

This immature form is then trafficked through to the Golgi apparatus and undergoes post-

translational modification at its glycan moiety to produce the fully glycosylated CFTR 

(~170kDa) (Cheng et al., 1990). N-glycosylation enhances both productive folding of the 

protein (Chang et al., 2008) and its stability within the plasma membrane (Glozman et al., 

2009).  

In fact, the synthesis of CFTR is inefficient with only 20-50% of protein maturing beyond the 

ER (Lukacs et al., 1994), as at least four known molecular checkpoints tightly regulate the 

process of folding and trafficking (Farinha and Canato, 2017). Those that do become fully 

synthesised, exit in vesicles of the exocytic pathway which facilitate the insertion of CFTR 

into the plasma membrane (Ameen et al., 2003). Through a dynamic balance of endocytosis 

and recycling, a functional pool of CFTR are maintained at the cell surface (Okiyoneda and 

Lukacs, 2007).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. The transmembrane topology of CFTR. The protein contains two pseudo-symmetrical 

halves and exists as a homodimer. Each half contains a six-membrane spanning TMD segment 

(green), one nucleotide-binding domain (red) and is linked by an unstructured R domain (yellow), for 

phosphorylated activation. Two N-linked glycosylation sites are present on the M7-M8 extracellular 

loop. 
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1.1.2 CFTR: Mechanism of action 
 

Two separate processes of phosphorylation and ATP binding control the gating of CFTR. 

The first is necessary for activation and the latter for regulation of conformational states. 

The R domain is intrinsically disordered, with bioinformatics data suggesting the domain 

may have evolved from a noncoding sequence in the genome, bestowing CFTR a 

regulatory capacity (Sebastian et al., 2013). Recent structural data suggests that in its 

dephosphorylated state, the R region prevents NBD dimerisation by sterically hindering 

physical interaction (Zhang et al., 2017), while synchronously plugging the cytoplasmic 

entrance of the channel (Fay et al., 2018). Central to activity are a number of 

phosphorylation sites, for cAMP-dependent, protein kinase A (PKA) interaction. 

Additionally, protein kinase C activity is fundamental to PKA phosphorylation (Chappe et 

al., 2004), but at present the mechanism remains less well understood. A study by Hegedus 

et al. (2009) determined that no one phosphorylation site is essential, rather each has an 

additive effect upon the activity of channel opening. Moreover, a recent paper by Chen. 

(2020) established that PKA phosphorylation relieves the C terminus of the R domain from 

an auto-inhibitory position, to potentiate CFTR gating. 

Unlike classical ligand-gated ion channels, CFTR consumes ATP for channel closure. The 

channel opens when ATP-Mg2+ docks into the binding site of each NBD, with magnesium 

(Mg2+) functioning as an important cofactor for ATP hydrolysis (Dousmanis et al., 2002). 

Upon interaction, the two NBDs form a head-tail dimer which occludes two molecules of 

ATP-Mg2+ along its interface (Zhang et al., 2017). Resulting conformational changes in the 

two TMDs, create a transmembrane pathway opening for anions. This rearrangement is 

akin to the flipping of TMDs from an inward to an outward facing configuration (Csanády et 

al., 2019). Positively charged amino acids side chains which line the cytosolic entrance 

between TM4 and TM6, assist in attracting chloride ions to the inner mouth of the pore (El 

Hiani and Linsdell, 2015). This feature extends to the inner vestibule where the pore is lined 

with positively charged internal residues (Zhang et al., 2017). This allows physical 
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interaction with anions as they traverse the channel, although CFTR remains a relatively 

low-grade anion selectivity filter (Hwang et al., 2018). The channel then proceeds to close 

upon ATP hydrolysis and the release of adenosine diphosphate (ADP)/inorganic phosphate 

(Gunderson and Kopito, 1995).  

Aside from the primary mechanism of regulation, the influence of the CFTR C-terminus has 

also gained some attention. Displaying a PDZ-binding motif, the C-terminus can mediate 

an interaction of CFTR with the cell cytoskeleton (Moyer et al., 1999). Interestingly, the C-

terminus also maintains an affinity for the R domain in its phosphorylated state (Bozoky et 

al., 2013). Potentially, this region may serve as a docking site for the R domain upon 

displacement from its inhibitory position. Although CFTR is often characterised as a simple 

ion channel for the passive diffusion of Cl-, the regulation upholding this process is rather 

complex.  

 

1.1.3 Pathophysiology of CF 
 

Clinical manifestations of CF correspond to the sites in which CFTR is highly expressed. 

Predominantly found at the apical membrane of epithelial cells, CFTR maintains control of 

ion and water homeostasis in most exocrine tissues. Loss or reduction of channel activity 

leads to dysregulation of the osmotic gradients which drive fluid secretion into the luminal 

space of primarily, mucus producing organs. Mucus becomes dehydrated, with an 

increased concentration of polymeric mucins and aberrant biophysical properties (Ehre et 

al., 2014). The accumulation of viscous mucus can cause deleterious obstructions, such as 

plugging of the pancreatic and gallbladder ducts (Kreda et al., 2012). Indeed, pancreatic 

insufficiency (impaired release of proteolytic enzymes) leads to 40–50% of CF adult patients 

(UK) developing CF-related diabetes; the most commonly associated comorbidity of CF 

(Granados et al., 2019). Complications associated with liver disease (Kobelska-Dubiel et 

al., 2014) and gastrointestinal issues (Sabharwal, 2016), are also a feature of ductal mucus 

impediments. Changes related to fertility similarly demonstrate symptomatic prominence. 

Blockage or absence of the vas deferens underpins a significant rate of infertility in men, 
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reported at  >98% (Yoon et al., 2019). In contrast, women do not usually exhibit anatomical 

abnormalities, yet dehydrated cervical secretions become a physical impediment to 

adequate sperm migration (Kopito et al., 1973). As a result, women are more likely to 

experience subfertility and seek the assistance of reproductive intervention strategies 

(Sueblinvong and Whittaker, 2007). Generally, less severe pathologies correspond to 

exocrine tissues that lack mucus secreting cells including the kidneys (Jouret and Devuyst, 

2009) and sweat ducts (Quinton, 1983). 

Although CF presents itself as a multi-organ disease, respiratory complications represent 

the major cause of morbidity and mortality in patients (Zolin et al., 2020). Research has 

indicated that the lungs of CF infants are predisposed to extensive bacterial colonisation, 

alongside diminished bacterial clearance capabilities (Stoltz et al., 2010; Muhlebach et al., 

2018). It is this susceptibility to infection which contributes to a lifelong detrimental cascade 

of inflammation and airway remodelling. Like other organs, production of aberrant mucus is 

intrinsic to this process. Increasing evidence suggests that airway mucus comprises two 

distinct domains: the mobile layer and periciliary layer (PCL) (Button et al., 2012; Livraghi-

Butrico et al., 2017). In CF, dehydration of the epithelial surface compromises periciliary 

liquid of the PCL. This low viscosity solution is involved in ciliary beating and acts as a 

lubricant for transport of mucus in the mobile layer. With viscid mucus overlying epithelial 

cells and a decreased periciliary height, normal clearance is prevented (Button et al., 2012). 

This perpetuates a cycle of destruction involving: airway mucus obstruction, disseminated 

bronchiectasis, persistent bacterial infections, chronic inflammation and eventual lung 

fibrosis (Amaral, 2015). Ultimately, irreversible lung damage precedes respiratory failure, 

thus leading to the imminent requirement of a lung transplant. 

 

1.1.4 Classification of CF mutations 
 

Recent advances in human genetics has sought to revolutionise our understanding of CF. 

Integral to this development has been the elucidation of cellular and molecular defects, in 

correlation to their CFTR derived mutations. With this knowledge, a contemporary 
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classification system has been established. Attention focuses on the applicability of specific 

modulators for each functional class, rather than the mutation itself. This has constituted a 

paradigm shift in treatment away from symptomatic management and towards a new era of 

precision medicine (Marson et al., 2017).  

Traditionally classified into six distinct groups, mutational variants are systematised 

according to their adverse effect upon synthesis, function, trafficking or stability of CFTR 

(De Boeck, 2020). Since the conception of CFTR modulators, a seventh class has been 

proposed to include the abortive transcription of CFTR mRNA. Unlike the other classes, 

these large deletions and frameshift mutations cannot be rescued via corrective medicine 

(De Boeck and Amaral, 2016). Taken together, these seven functional classes are outlined 

in figure 1.3.  

 

 

 

 

 

 

 

 

 

 

 

 

Individuals with at least one class IV, V or VI mutation, typically retain residual function of 

the CFTR channel (Zemanick and Polineni, 2019). This generally equates to a phenotype 

Figure 1.3. Classification of CFTR mutations and their respective therapeutic approaches. A 

new strategy exists which aims to refine the myriad of CFTR mutations, into seven distinct functional 

classes. The hope is to develop modulators that are accurately targeted to a particular sub-type of 

CFTR defect, rather than each individual mutation. It is worth noting that most mutations can traverse 

the criteria of more than one class. Adapted from (De Boeck and Amaral, 2016). 
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of attenuated severity and requires a decreased level of treatment. This is evident in the 

recognised clinical diagnosis of milder/later onset of symptoms, for example: lower 

concentration of sweat chloride, diminished presence of CF-related diabetes, reduced liver 

disease, less chronic Pseudomonas aeruginosa infections and a slower decline in lung 

function (McKone et al., 2003; Dewulf et al., 2015) 

In reality, the classification system is likely an oversimplification, as the majority of mutations 

do not exclusively adhere to one definitive class (Cuyx and De Boeck, 2019). A primary 

example of this, is that of the most common CF mutation, ΔF508. In Europe, 80.6% of all 

CF patients possess at least one ΔF508 allele (Zolin et al., 2020). Deletion of the 

phenylalanine residue at position 508 directly affects NBD1 (Thomas et al., 1991), 

perturbing the thermodynamic stability of this gating domain (Protasevich et al., 2010). 

Resultantly, this disrupts a network of interdomain contacts, which maintain interactions 

between NBD1 and the TMDs (Serohijos et al., 2008). During folding, this causes an 

incorrect assembly in the cooperative regions of CFTR and leads to ER-associated 

degradation of the protein (Ward et al., 1995). This functional defect is what defines ΔF508 

as a prototypical (class II) mutation. Compounding this issue further is the existence of a 

secondary level of quality control. Research has shown that any ΔF508 CFTR which 

successfully traffic to the cell surface, become subjected to an increased rate of degradation 

(class VI) (Okiyoneda et al., 2010). It has been estimated that only ~2% of fully glycosylated 

ΔF508 CFTR insert into the plasma membrane, in comparison to that of wild type protein 

(Van Goor et al., 2011). Ultimately, the small proportion of ΔF508 CFTR which persist at 

the membrane, exhibit a reduced rate of PKA-dependent activation (Wang et al., 2000) and 

demonstrate an instability during NBD dimerisation (class III) (Jih et al., 2011). In this state, 

the open probability of ΔF508 channel is extremely low compared to that of native CFTR 

(Jih et al., 2011). This exemplifies how a single CFTR mutation can exhibit pleiotropic 

functional defects across multiple classes.  

Aside from the CFTR genotype, modifier genes and environmental factors also influence 
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the clinical course of this disease (Cutting, 2010). With such complexities, it is easy to 

understand the limitations faced when systematising CFTR mutations. Yet, the notion of 

classification is a powerful tool for pharmacologically targeting CF mutations, as it creates 

a provisional framework for the basis of separation and grouping (Martiniano et al., 2016). 

 

1.1.5 A new era of precision medicine 
 

With the advent of mutational grouping, the last decade has witnessed the emergence of 

CFTR modulators and heralded a new age of precision medicine for CF.  The term ‘precision 

medicine’ is the idea of encompassing a wide array of individual data, to tailor treatment in 

personalised manner (König et al., 2017; Marson et al., 2017). Many concepts central to 

this strategy are already utilised in the management of CF. A primary example references 

the surveillance of specific respiratory pathogens in CF individuals, for precise use of 

particular antibiotics (Paranjape and Mogayzel, 2018). This has now advanced in a genetic 

capacity, with the development of CFTR modulators. These compounds act to directly target 

an exact class of functionally associated CFTR mutations.  

Libraries of compounds have been tested by high-throughput screening (HTS), leading to 

the identification of five main groups of CFTR modulators. These include: i) potentiators that 

increase the open probability of CFTR channels to improve gating, ii) correctors that 

enhance the conformational stability of CFTR to achieve greater efficacy in protein folding 

and trafficking, iii) stabilisers that prolong the residence time of CFTR at the plasma 

membrane, iv) amplifiers that augment the expression of CFTR mRNA for increased protein 

abundance, v) read-through agents that supress premature termination codons by inducing 

a ribosomal read-through of the CFTR transcript (Lopes-Pacheco, 2020). However, of all 

the compounds to advance to clinical trials, at present only three drugs have been licensed 

for use in the UK including: Ivacaftor (Kalydeco), Lumacaftor plus Ivacaftor (Orkambi) and 

Tezacaftor plus ivacaftor (Symkevi). 
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1.1.5.1 CFTR modulator therapies 
 

Ivacaftor (VX-770) was the first drug to be licensed, which actively targets the underlying 

defect of CF (Feng et al., 2018). It binds within a cleft of CFTR, situated at the interface of 

membrane spanning segments 4, 5 and 8 (Liu et al., 2019). This site coincides with a hinge 

region in M-8, which confers a conformational flexibility to CFTR during gating (Zhang et 

al., 2018). The interaction of Ivacaftor with this mobile segment of M-8, is thought to stabilise 

the open configuration of CFTR, to potentiate channel gating (Liu et al., 2019). Over the 8 

years since its approval, the long-term benefits are starting to become apparent with 

observations of: less frequent infections with key CF pathogens (Frost et al., 2019), slower 

decline in lung function (Sawicki et al., 2015), reduction in sweat chloride levels (Sawicki et 

al., 2015), diminished number of pulmonary exacerbation episodes (McKone et al., 2014) 

and an overall improvement in quality of life (Quittner et al., 2016). Despite its success, the 

clinical benefit is predominantly restricted to individuals with at least one allele of a class III 

gating defect (accounting for only 3-5% of the CF population) (De Boeck et al., 2014). 

Nevertheless, Ivacaftor has paved the way for targeted drug development against the highly 

prevalent ΔF508 mutation.  

The first generation of CFTR corrector to receive approval was Lumacaftor (VX-809). While 

the putative binding site remains contentious (Hudson et al., 2017; Loo and Clarke, 2017), 

it is recognised that Lumacaftor functions as a pharmacological chaperone to rescue 

folding, processing and trafficking of CFTR to the plasma membrane (Van Goor et al., 

2011). Despite encouraging data in vitro, this did not translate to clinical gains for CF 

patients in vivo (Clancy et al., 2012).  

As a result, a movement towards combinational pharmacotherapy was established. By co-

administering Ivacaftor and Lumacaftor (a combination known as Orkambi), a modest 

improvement in lung function of 3% - 4% was observed, albeit for ΔF508 homozygous 

patients exclusively (Boyle et al., 2014). In reality, the hope for Orkambi has been affected 

by clinical shortcomings. Studies on Orkambi have shown that Ivacaftor abrogates the 
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pharmacological correction of ΔF508 CFTR; markedly increasing its turnover rate and 

affecting the long-term stability of the channel (Cholon et al., 2014). Furthermore, Orkambi 

induces the activity of hepatic drug metabolising enzyme Cytochrome P450 3A4, which 

results in a decrease in the plasma concentration of Ivacaftor (Schneider, 2018). On a 

clinical standing, Orkambi has also been reported to induce adverse events of dyspnoea 

and abnormal respiration (Wainwright et al., 2015).  

Consequently, a second-generation corrector (based on the structure of Lumacaftor) was 

developed as a successor. Alongside Ivacaftor, Tezacaftor (VX-661) became the 

replacement compound in this progressive dual combination therapy (named Symkevi). In 

clinical trials, Symkevi demonstrated improved tolerability and fewer complications 

associated with drug-drug interactions, but therapeutic efficacy still remained comparable 

to that of Orkambi (Taylor-Cousar et al., 2017). In regard to viability, clinical gains extended 

beyond the constraints of Orkambi to benefit both ΔF508 homozygous and ΔF508 

heterozygous patients with a residual function mutation (Rowe et al., 2017), approximately 

50% of the CF population (De Boeck, 2020). Undoubtedly a step in the right direction, 

however in a therapeutic context clinical benefits remain modest and a substantial 

proportion of individuals heterozygous for ΔF508, lack a compatible CFTR modulator 

therapy.  

 

1.1.5.2 Future treatment strategies 
 

Symkevi has provided the backbone for the most recent advancement in CFTR modulator 

treatment; an endeavour to produce a triple combination therapy, through incorporation of 

a next-generation corrector. These next-generation correctors function via an alternative 

mechanism to Tezacaftor and thus seek to have an additive effect (Lopes-Pacheco, 2020). 

In late 2019, Kaftrio (known as Trikafta in the US), (Ivacaftor, Tezacaftor and Elexacaftor 

[VX-445]) became the pioneer of the triple combination therapy and was approved by the 

American Food and Drug Administration for patient use in the United States. Clinical trials 

on Kaftrio have shown a significant improvement in lung function of an 11% increase over 
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Symkevi for ΔF508 homozygous patients (Keating et al., 2018) and interestingly a 14.3% 

rise for ΔF508 heterozygous patients with a minimal function mutation, in comparison to a 

placebo group (Middleton et al., 2019). These data are very promising and if true, Kaftrio 

has the potential to provide effective treatment for ~90% of the CF population.  

The development of CFTR modulators has been unquestionably transformative in the field 

of CF therapeutics. However, patients with rare CFTR mutations still present a notable 

challenge. Gene therapy and gene editing strategies have been proposed to treat 

individuals which remain unresponsive to current restorative therapies. Yet, both 

approaches face many barriers in regard to application, with obstacles of: safety, efficiency 

and vector suitability (Alton et al., 2016). Even clinically approved CFTR modulators have 

their limitations. A major drawback is the high cost attached to treatment; an aspect 

comprehensively evaluated by the Institute for Clinical and Economic Review. The report 

concluded that CFTR modulator therapies exceed commonly used cost-effectiveness 

thresholds and that lifetime reductions in the rate of CF progression, may be overly 

optimistic (Tice et al., 2020). This translates to a considerable burden for healthcare 

systems worldwide and acts to preclude citizens of low-income countries from benefiting 

(Cohen-Cymberknoh et al., 2016).  

Strikingly, the vast majority of combination therapies have been designed to target the 

CFTR protein directly. In the dynamic environment of CF drug development, compounds 

are often fast-tracked to clinical trial at the expense of elucidating their CFTR binding sites 

and corresponding mechanisms of action. With an emerging trend towards the inclusion of 

more than two CFTR modulators, it is unknown whether antagonistic drug-drug interactions 

may compromise the long-term efficacy of these treatments. It may become apparent to 

consider strategies besides the targeting of CFTR exclusively. An alternative approach 

looks to address prominent changes in the proteostasis of CF cells. Appealingly, such a 

regulator has the capacity to be combined with any class of CFTR modulator, as 

proteostasis is independent of CF genotype. This concept of two-directional (direct/indirect 
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approach) pharmacotherapy, may be a potential avenue of exploration in order to enhance 

the clinical outcome of CF patients.  

 

1.1.6 Considerations of CF model systems 
 

When investigating aspects of CF, it is important to be mindful of the appropriate application 

of preclinical model systems. Animal models have served to further our understanding of 

disease progression and pathophysiology in CF. Murine models were engineered with an 

inactivated CFTR, soon after the discovery of the gene itself (Dorin et al., 1992; Snouwaert 

et al., 1992). The intrinsic advantages of cost, ease of maintenance and short reproductive 

cycle (facilitating efficient genetic manipulation), made the mouse an ideal candidate for 

studying CF in vivo (Guilbault et al., 2007). However, it was later discerned that inherent 

limitations concerning the pathophysiological relevance of CF mice exist; as observed by 

failure to develop spontaneous respiratory infections, progressive lung disease and 

pancreatic insufficiency (Durie et al., 2004; Wilke et al., 2011). This has largely been 

attributed to the presence of a compensatory calcium-activated Cl- channel (Clarke et al., 

1994). To this end, larger animal models for example pigs (Rogers et al., 2008) and ferrets 

(Sun et al., 2008) have been used to more closely recapitulate the CF pathology of humans. 

Nevertheless, these animals are resource intensive and intestinal obstruction is a significant 

caveat, impacting the postnatal survival of both animals (Semaniakou et al., 2019). Recently 

rabbits and rats have been added to the repertoire of CF animal models (Rosen et al., 

2018a), but as of yet, their phenotypic applicability remains undefined. Ultimately, the value 

of CF animal models has relied upon evaluation of the accumulated data as a collective. 

These compiled findings have generated an insight into the pathogenesis of CF in humans. 

In contrast, the individual constraints of each animal model have restricted their contribution, 

to the development of CF pharmacotherapies (besides toxicology data) (Clancy et al., 

2019).   

Alternatively, immortalised epithelial cell lines have become the backbone of HTS 

strategies, for identification and examination of therapeutic compounds. They are generated 
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through implementation of heterologous expression systems by either: introducing proto-

onco genes into primary CF epithelial cells or stably transfecting immortalised 

(transformed/cancerous) non-CF epithelial cells with mutant CFTR (Gruenert et al., 2004). 

Ease of culture, cost effectiveness and reliable availability have made these cells an 

invaluable resource. The Fischer rat thyroid cell line has been used extensively to validate 

preclinical modulator responsiveness, including Ivacaftor (Van Goor et al., 2009) and 

Lumacaftor (Van Goor et al., 2011), in addition to their application in drug label expansion 

studies (Han et al., 2018). However, the higher propensity for false-positive and false-

negative “hits” in comparison to primary human bronchial epithelial cells (HBECs), illustrates 

the apparent limitations of cell line models (Mou et al., 2015).  

Primary HBECs from different CF individuals constitute a more representative model of 

biological relevance and are considered the ‘gold standard’ for verifying the preclinical 

efficacy of potential CF therapies, prior to human trials. Cultures are established through 

expansion of progenitor cells isolated from biopsies, lung explants and post-mortem 

samples of CF patients (Randell et al., 2011). They have been used to faithfully predict the 

clinical outcome of pharmacological activity, for both Ivacaftor (Van Goor et al., 2009) and 

Lumacaftor (Van Goor et al., 2011). When cultured on a porous support at an air-liquid 

interface, primary HBECs differentiate to form a pseudostratified epithelium that 

recapitulates the mucociliary phenotype observed in native airways (de Jong et al., 1993). 

Despite their success, it is important to consider that the majority of CF primary HBECs are 

procured from lungs with end stage disease and may not genuinely reflect cell behaviour at 

an early disease state (Clancy et al., 2019). In addition, hindrances of expense, technical 

complexity, accessibility and finite lifespan have acted to constrain their application as 

predominant cell models. 

This critical bottleneck has driven the development of increasingly sophisticated in vitro 

model systems. A recent concept by Valley et al. (2019), centres on reconditioning an 

established epithelial cell line (16HBE14o-) to express CFTR mutational variants, in the 
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native genomic context of the cell. This approach uses an adaptable CRISPR-based gene 

editing pipeline, to generate isogenic cell models for therapeutic testing. Akin to the 

individualisation observed with ‘precision medicine’, this research exemplifies a transition 

towards a personalised perspective of CF disease modelling. Alternative techniques refrain 

from employing cell lines completely. Novel strategies including: long term expansion of 

human airway organoids (Sachs et al., 2019) and differentiation of induced pluripotent stem 

cells (Merkert et al., 2019), seek to generate a representative library of patient-derived 

epithelial cells, with a sustained proliferative capacity. These innovative feats of 

bioengineering reveal a glimpse of what the future may hold for preclinical CF model 

systems. In practical terms however, the refinement, optimisation and standardisation of 

these contemporary protocols is essential, before their universal applicability to HTS. The 

question still remains, which model or combination of systems will best predict long-term 

clinical outcome measures of new CF drugs? For now, CF primary HBEC cultures and CF 

epithelial cell lines will continue to bridge the gap, acting as valuable complementary 

platforms of evaluation.  

 

1.2 Transglutaminases 
 
 

It has been over 60 years since Heinrich Waelsch and colleagues discovered the first 

mammalian transglutaminase (TG), in extracts from guinea pig livers (Sarkar et al., 1957). 

This pioneering study had identified an enzyme with the capacity to catalyse the 

incorporation of primary amines into proteins, in a calcium (Ca2+) dependent manner. It 

would later be discerned that this protein was transglutaminase 2 (TG2) and since then, 

eight additional TGs have been found (Grenard et al., 2001). With the exception of 

erythrocyte membrane protein band 4.2 (a catalytically inactive, structural TG), all members 

of the mammalian TG family (TG 1-7 & factor XIII) possess identical sequence homology at 

their active site (Eckert et al., 2014). This highly conserved catalytic core functions to 

promote reactions of post-translational modification, which primarily include: deamidation, 
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amine incorporation and protein crosslinking (Griffin et al., 2002). It is the latter, which has 

become the eminent focus of research efforts in the TG field.  

The mechanism of protein crosslink formation occurs via a sequential two-step process of 

transamidation and requires the presence of Ca2+ for TG activation. In the first instance, the 

thiol group of a cysteine residue (located in the TG active site), attacks a protein substrate 

at the γ-carboxamide group of a glutamine residue side chain (acyl-donor). This generates 

a thioester intermediate, alongside the concomitant release of ammonia (NH3). Thereafter, 

the thioester bond is attacked by an ε-amine group of a peptide bound lysine residue (acyl-

acceptor), resulting in the creation of an ε-(γ-glutamyl)lysine intermolecular isopeptide bond 

(Savoca et al., 2018) (Figure 1.4). Formation of these covalent bonds confers a resistance 

against proteolytic cleavage and mechanical force (Griffin et al., 2002). Ensuing 

supramolecular structures have a recognised pleiotropic functionality, with roles in: blood 

coagulation (Tahlan and Ahluwalia, 2014), skin barrier development (Hitomi et al., 2001), 

bone growth (Aeschlimann et al., 1996), maintenance of pregnancy and wound healing 

(Tahlan and Ahluwalia, 2014). 

 

 

 

 

 

 

 

 

 
 

The evolutionary significance of TGs is evidenced by their broad dissemination throughout 

the natural world, with their existence observed in: microorganisms, plants, invertebrates 

and vertebrates (Shleikin and Danilov, 2011). In relation to the mammalian system, each 

Figure 1.4. Transglutaminase mediated biocatalysis of protein crosslinking. TG subsists in an 

open conformation (catalytically functional), when activated by Ca2+. In this state, TG can form a 

thioester bond with the glutamine residue side chain of a target protein substrate (blue). This 

intermediate product then undergoes nucleophilic attack from the lysine residue of a second protein 

(green). The two proteins become linked through formation of an ε-(γ-glutamyl)lysine isopeptide 

bond, with the generation of an ammonia by-product. The TG active site is restored and becomes 

available for future cycles of catalysis. Adapted from (Duarte et al., 2020) 
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TG retains a unique profile of distribution within the tissues. In humans for instance, TG2 is 

widely expressed by the vast majority of cell types in the body (Gundemir et al., 2012), as 

opposed to TG4 which is exclusively localised to the prostate (Jiang and Ablin, 2011). 

Overall, TGs participate in a diverse array of cellular and extracellular biological processes 

and as such, there resides an increased probability that TG perturbations will cause 

disease. Indeed, TGs are implicated in plethora of disorders including: cancer (Ablin et al., 

2017), coeliac disease (Maki et al., 1997), neurodegenerative conditions (Muma, 2007) and 

afflictions of the skin (Huber et al., 1995); to name but a few. However, it is TG2 which has 

attracted substantial attention, due to its notable involvement in numerous pathological 

pathways and prominence as a key player in fibrotic disease.  

 

1.2.1 TG2 Structure 
 

The human TG2 gene is located on chromosome 20 and encodes a protein of 687 amino 

acids, with a molecular weight of ~78kDa (Mehta et al., 2010). To date, five crystal 

structures of human TG2 have been elucidated: three in a closed conformation while in 

complex with a specific nucleotide, GDP (Liu et al., 2002), ATP (Han et al., 2010) or GTP 

(Jang et al., 2014) and two in an open conformation, through association with a mimetic 

peptide inhibitor (Pinkas et al., 2007) or in a Ca2+ bound state (Jeong et al., 2020). These 

studies have been an invaluable resource in discerning structural and functional aspects of 

TG2. It is now understood that TG2 consists of four distinct domains: an N-terminal β-

sandwich motif (aa 1-139), a catalytic core (aa 140-460) and two C-terminal β-barrel 

domains (aa 461-586 and 587-687) (Savoca et al., 2018) as illustrated in figure 1.5.  

Situated within the catalytic core is an indispensable triad of residues (Cys277, His335 and 

Asp358), fundamental to the transamidation activity of TG2 (Liu et al., 2002). It is this 

nucleophilic cysteine thiol (Cys277), which attacks the glutamine residue side chain during 

isopeptide bond formation.  Positioned in close proximity to the catalytic triad are two crucial 

tryptophan residues (Trp241 and Trp332). These conserved amino acids function to 

stabilise the transient thioester intermediate of the protein crosslinking reaction (Murthy et 
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al., 2002). Beyond transamidation activity, the catalytic core prevails as the primary site of 

Ca2+ binding. The long-standing absence of a Ca2+ bound TG2 crystal structure, has 

restricted our knowledge of Ca2+ binding motifs. Instead, structural information has 

depended on studies of site directed mutagenesis (Király et al., 2009) and comparative 

analysis (Fox et al., 1999; Ahvazi et al., 2002). With TG2 having the capacity to bind up to 

six Ca2+ ions, five putative binding sites were predicted to exist within the catalytic core 

domain (Király et al., 2009). However, Jeong et al. (2020) recently resolved a Ca2+ 

containing TG2 crystal, which definitively identifies two glutamate residues (Glu437 and 

Glu539) as Ca2+ binding sites. While Glu437 is situated in the catalytic core region, 

intriguingly Glu539 corresponds to a location within the β-barrel 1 domain. This novel data 

is the first to recognise a TG2 Ca2+ binding site, positioned outside of the catalytic core.  

 

 

 

 

 

 

 

 

Akin to Ca2+, guanosine triphosphate (GTP) is also bound by residues of both the β-barrel 

1 domain and catalytic core region (Jang et al., 2014). The β-barrel 1 domain supports a 

critical interaction in GTP binding, whereby an Arginine residue (Arg580) forms two 

hydrogen bonds with a phosphate moiety of GTP (Jang et al., 2014). In fact, research has 

shown that a point mutation of the Arg580 residue completely abolishes the GTP binding 

capacity of human TG2 (Ruan et al., 2008). Alternatively, the β-barrel 2 domain is thought 

to be involved in the externalisation of TG2. Heparin binding sites which are integral to the 

Figure 1.5. Schematic representation of the functional domains and significant binding sites 

of TG2. Four separate domains constitute the structural arrangement of the TG2 protein: N-terminal 

β-sandwich (red), catalytic core (green), β-barrel 1 (blue) and C-terminal β-barrel 2 (yellow). Each 

domain has specific responsibilities, which are coordinated to enable TG2 multi-functionality. Amino 

acid (aa) residue numbers corresponding to each functional domain and relevant binding site, are 

indicated above the TG2 structure. Central to transamidation activity is the catalytic triad (purple), 

which resides in the catalytic core domain of TG2. Adapted from (Mehta et al., 2010). 
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cellular export of TG2 , have been identified in both the C-terminal region (Lortat-Jacob et 

al., 2012) and catalytic core domain (Lortat-Jacob et al., 2012; Wang et al., 2012). The 

predicted binding clusters exhibit a large degree of separation in the linear sequence, yet 

form a single binding surface in the 3D arrangement (Lortat-Jacob et al., 2012). 

Consequently, for heparin binding sites to be in close spatial proximity, TG2 must subsist in 

a closed ‘compact’ configuration. In contrast, the N-terminal β-sandwich domain has been 

shown to bind Fibronectin, in a manner which remains independent of TG2 conformation. 

This interaction has been shown to play a significant role in cell: signalling (Telci et al., 

2008), migration (Sergey S. Akimov and Belkin, 2001) and progression of fibrosis (Olsen et 

al., 2011). 

 

1.2.2 Regulation of TG2 
 

TG2 is predominantly characterised as a stress response protein and is dynamically 

regulated through different mechanisms of cellular and molecular control (Ientile et al., 

2007). At a transcriptional level, the human TG2 gene (TGM2) associates with a plethora 

of factors, such as: Retinoids (Shimada et al., 2001), pro-inflammatory cytokines (Kuncio et 

al., 1998), interleukins (Suto et al., 1993) and steroid hormones (Fujimoto et al., 1996). 

These transcriptional activators target the highly receptive promoter of TGM2, to induce 

expression of TG2 (Gundemir et al., 2012). Research has shown that certain TG2 pathways 

even display the capacity for self-reinforcement, through formation of a positive feedback 

loop. For instance, both nuclear factor-kappa B (NF-κB) and transforming growth factor beta 

(TGFβ) demonstrate a reciprocal upregulation of activity with TG2, in breast (Ai et al., 2012) 

and ovarian (Cao et al., 2012) cancer cells, respectively. 

However, under normal physiological conditions the activity of TG2 is strictly controlled. 

Allosteric regulation of TG2 acts as a preventive safeguard against unrestrained 

crosslinking. The composition of the surrounding environment including:  Ca2+ ions, guanine 

nucleotides, and redox potential, modulate conformational changes of TG2 (Eckert et al., 

2014). When bound to GTP or guanosine diphosphate (GDP), TG2 adopts a closed 
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‘compact’ state. The catalytic active site of TG2 becomes physically occluded, as the two 

β-barrel domains are shown to be folded inwards (Liu et al., 2002). On the other hand, TG2 

also has the capacity to bind up to six Ca2+ ions, which facilitate its dissociation from 

GTP/GDP (Király et al., 2009). Upon Ca2+ binding a large structural shift is observed, as 

TG2 adopts an open ‘elongated’ configuration. This near linear arrangement permits 

substrates access to the catalytic active site and eliminates the guanine nucleotide binding 

site. Pinkas et al. (2007) have demonstrated that the two β-barrels are displaced to a 

significant degree, in order to achieve this structural transition. A recent study by Jeong et 

al. (2020) has highlighted a further level of complexity, showing that Mg2+ competitively 

interacts at the Ca2+ binding sites. This novel data suggests that Mg2+ promotes GTP 

binding, to crucially control the sensitivity of TG2 to Ca2+.  

In a physiological context, intracellular concentrations of GDP/GTP are high and Ca2+ 

concentrations low. As a result, TG2 mainly exists in a closed conformation within the cell 

and transamidation activity remains broadly silent (Klöock and Khosla, 2012). Conversely, 

in the extracellular environment GDP/GTP levels are minimal and Ca2+ concentrations 

persist at ~2mM (Clapham, 1995). With Ca2+ concentrations of ~1mM required for allosteric 

activation of TG2, transamidation activity would be expected to prevail outside of the cell 

(Klöock and Khosla, 2012). However, an additional level of regulation has been evidenced 

in TG2, involving an intrinsic sensitivity to redox state (Siegel et al., 2008).  

The principally oxidative conditions of the extracellular space renders TG2 catalytically 

inactive in its open form. Formation of two disulfide bonds between a triad of cysteine 

residues (Cys230, Cys370, and Cys371), was found to be central to this process (Stamnaes 

et al., 2010). It was discerned that Cys230 operates as an important redox sensor, 

generating a disulfide bond with Cys370, under oxidising conditions. This was shown to 

subsequently promote the formation of a more stable disulfide bond between Cys370 and 

Cys371 (Stamnaes et al., 2010). The precise mechanism by which these disulfide bonds 

impede the activity of TG2 remains to be elucidated. Nevertheless, it is evident that an 
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oxidative environment is sufficient to silence the transamidation activity of TG2, even in the 

presence of Ca2+. Reversal of this catalytic inactivation chiefly requires the involvement of 

a thiol reductase, notably thioredoxin-1, a protein which selectively recognises oxidised TG2 

(Plugis et al., 2017). Thioredoxin-1 is capable of reducing the disulfide bond between 

Cys370 and Cys371, for efficient activation of extracellular TG2 (Jin et al., 2011). An 

illustration summarising the allosteric regulation of TG2, is depicted in figure 1.6.  

 

 

 

 

 

 

 

 

 

 

 

Aside from changes in gene expression and allosteric control, it is thought that TG2 is also 

regulated by various types of post-translational modifications. Although studies addressing 

the subject have been limited, SUMOylation of TG2 has been evidenced as a case in point. 

Novel findings by Luciani et al. (2009) show that elevated levels of reactive oxygen species 

(ROS), mediates SUMOylation of intracellular TG2. As a result, proteasomal degradation 

of TG2 is prevented, thus enabling sustained activation of the enzyme. This illustrates the 

complexity of redox state and its influence on TG2, besides just the inhibition of its 

transamidation activity (Gundemir et al., 2012). Overall, control of TG2 involves the 

Figure 1.6. The three states of TG2 during allosteric regulation of activity. GDP/GTP binding 

inhibits catalytic activity by inducing a closed state conformation of TG2. Upon Ca2+ binding, TG2 

shifts towards an open configuration, thus negating the nucleotide binding site and facilitating the 

dissociation of GDP/GTP. Only when thioredoxin-1 reduces a restrictive disulfide bond, can TG2 

become fully active and engage its crosslinking capabilities. Adapted from (Katt et al., 2018). 
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sophisticated coordination of various regulatory mechanisms. This is vital to maintain 

correct TG2 functionality, but is often seen to be exploited in several pathological conditions. 

 

1.2.3 Physiological relevance of TG2 
 

The precise role of TG2 is intrinsically linked to the microenvironment in which it is situated 

(Nurminskaya and Belkin, 2012). TG2 is primarily cytosolic, but can also be found in the 

nucleus, extracellular matrix (ECM), and associated with the plasma membrane and 

mitochondria (Piacentini et al., 2014; Cardoso et al., 2015). Besides its well-known ability 

to crosslink proteins, TG2 displays diverse multifunctionality, combining: GTP/ATP 

hydrolysis, adapter/scaffolding properties, protein disulfide isomerase (PDI) activity and a 

kinase capacity (Nurminskaya and Belkin, 2012).  

The specific function of TG2 is largely determined by its responsiveness to stimuli of the 

surrounding microenvironment and direct protein-protein interactions. For instance, under 

normal physiological conditions cytoplasmic levels of Ca2+ are submicromolar, while 

nucleotide concentrations are high. As a result, cytosolic TG2 exhibits latency in 

transamidation activity and instead engages in GTPase activated signal transduction 

(Nakaoka et al., 1994). Alternatively, mitochondrial associated TG2 predominantly operates 

as a PDI (Mastroberardino et al., 2006). In the presence of a key substrate known as 

adenine nucleotide translocator 1, mitochondrial TG2 uses its PDI activity to modulate 

correct assembly of the protein and thus functions as a vital regulator of energy metabolism 

(Malorni et al., 2009). 

In an attempt to define the phenotypic significance of TG2, two groups established a mouse 

model with a homozygous deletion of the TGM2 gene (De Laurenzi and Melino, 2001; 

Nanda et al., 2001). Surprisingly, TG2 knockout mice were found to be viable, grow to a 

normal weight and size and exhibit no serious abnormalities in relation to development. 

Considering the multifunctional nature of TG2, the absence of any discernible pathologies 

is a real conundrum. The general consensus is that other TGs can compensate for the loss 
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of TG2, therefore rescuing the phenotype of TGM2-/- mice (Nurminskaya and Belkin, 2012). 

However, it must also be acknowledged that other TGs lack the capacity to bind GDP/GTP 

(Fesus and Piacentini, 2002). This could reflect the notion that GDP/GTP related functions 

of TG2, show a level of redundancy in mammalian physiology. Alternatively, TG2 in general 

may participate as more of an auxiliary regulator, as opposed to functioning as an 

indispensable component of cellular physiology.  

Yet, a further consideration is that TGM2-/- mice may only highlight the physiological 

relevance of TG2, in the presence of specific chemical or physical stressors. In actuality, 

TG2 knockout mice display wound healing deficiencies, as a consequence of decreased 

fibroblast adhesion with the ECM (Nanda et al., 2001). Sustained research efforts over the 

past two decades now confirm a prominent role for TG2 in processes of tissue repair and 

fibrosis; thus emphasising why TG2 is classified as a stress response protein (Ientile et al., 

2007; Benn et al., 2019). 

 

1.2.4 The role of TG2 in fibrosis 
 

Acute wound repair is a fundamental biological process, which facilitates tissue 

regeneration after injury (Wynn, 2007). A study by Upchurch et al. (1991), proposed a 

pivotal role for TG2 in the regulation of the wound healing response. It was revealed that 

endogenous TG2 persisted in the surrounding ECM of a wound site, following puncture 

wounding of a human fibroblast monolayer. Haroon et al. (1999) later confirmed this 

observation in vivo, demonstrating an increase in TG2 expression and activity, up to 3 days 

after performing punch biopsy wounds in rats.  

However, problems arise when there is no resolution of the inflammatory response. This 

can result if an insult persists or termination of the wound healing process becomes 

impaired (Verderio et al., 2004). Dysregulation leads to unrestrained remodelling of the 

ECM and permanent scarring. The destruction of normal tissue architecture eventually 
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undermines the functional capacity of the affected organ. This abnormal form of wound 

healing is what defines the pathogenesis of fibrotic diseases (Verderio et al., 2004).  

Fibrosis is characterised by the accumulation of myofibroblasts and enhanced deposition 

of ECM components (Olsen et al., 2011). These pathological features are typically 

conserved between tissues, irrespective of the initial pro-fibrotic stimuli that drive its 

induction (Johnson et al., 2007). The mechanisms underlying these changes, have long 

been the focus of intensive research efforts. In recent times, TG2 has emerged as a 

common denominator. The enzyme has been implicated in the progressive scar formation 

of a number of major organs, including those of the lungs (Olsen et al., 2011), liver (Qiu et 

al., 2007), kidneys (Johnson et al., 2007) and heart (Shinde et al., 2018). Proof of concept 

studies which either inhibit (Wang et al., 2018), restrict externalisation (Scarpellini et al., 

2014) or silence the expression of TG2 (Olsen et al., 2011), have all been shown to reduce 

fibrosis in vivo. However, caution must be taken when interpreting results, as a number of 

studies which state an inhibition of TG2, do so in a non-specific manner (Johnson et al., 

2007; Qiu et al., 2007; Olsen et al., 2014). As such, the inhibitors used are not selective for 

TG2 and results may be influenced by inhibition of other TGs. It must also be noted that in 

one particular study, the extent and pattern of liver fibrosis in TG2 knockout mice was found 

to be comparable to levels measured in wild type mice (Popov et al., 2011). This may 

indicate that in certain tissues, TG2 is a dispensable mediator of fibrosis. Yet, these findings 

are more likely a reflection of the method used to induce fibrosis and/or a circumstance of 

the experimental model itself. Overall, research substantiates the role of TG2 as a key 

effector protein for the development and progression of fibrosis. 

TG2 promotes fibrotic disease through its enzymatic capacity to crosslink proteins. This was 

demonstrated in a study by Johnson et al. (2003), which analysed 136 human biopsies from 

a variety of chronic renal diseases. It was established that the level of TG2 and ε(γ-glutamyl) 

lysine crosslinking, strongly correlated to the severity of renal scarring and that changes 

remained independent of the original aetiology. The transamidation activity of extracellular 
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TG2 has now been linked with two crucial pro-fibrotic roles. Firstly, TG2 effectively 

crosslinks fibrils of the ECM, principally collagen and fibronectin (Benn et al., 2019). As 

previously stated, these qualitative modifications create a stiffened matrix, which confers 

protection against proteolytic degradation. Indeed, Gross et al. (2003) measured a reduced 

rate of matrix turnover, in response to increased levels of TG2. The formation of a rigid ECM 

also supports the second role of TG2; the recruitment and activation of TGFβ1. 

Initially, TG2 establishes a large reservoir of latent TGFβ1 in the ECM, by crosslinking an 

inactive complex of TGFβ1 to fibronectin and fibrillin (Klingberg et al., 2018). Storage is 

further enhanced via the multimerization of latent TGFβ1, which depends on TG2 

crosslinking for stabilisation (Troilo et al., 2016). Matrix bound TGFβ1 is then activated 

through either proteolysis or mechanical force (Biernacka et al., 2011). Mechanical 

activation relies upon the contractile force of cells, which is seen to be especially efficient in 

a stress resistant environment (Wipff et al., 2007). This is the case in a TG2-crosslinked 

matrix, whereby prestress (internal tension) sensitises TGFβ1 for activation (Klingberg et 

al., 2014). Once active, TGFβ1 is a particularly effective mediator of fibrosis. Significantly, 

TGFβ1 drives myofibroblast transdifferentiation from various cellular progenitors including: 

fibroblasts (Masur et al., 1996), pericytes (Chang et al., 2012), endothelial cells (endothelial 

mesenchymal transition, EndMT) (Piera-Velazquez et al., 2011) and epithelial cells 

(epithelial-mesenchymal transition) (Nyabam et al., 2016).  

In essence, myofibroblasts serve as the linchpin of tissue fibrogenesis. They are 

responsible for the excess production of fibrous ECM components and express alpha-

smooth muscle actin (α-SMA), a contractile stress fibre which incorporates tensile strength 

into the matrix (Hinz et al., 2012). During the normal process of acute wound repair, the 

existence of myofibroblasts is transient and their function is both spatially and temporally 

constrained (Van De Water et al., 2013). However, in the presence of an unremitting 

inflammatory response, as seen in tissue fibrosis, a vicious self-reinforcing feedback loop 

between TG2 and TGFβ1 is established (Benn et al., 2019). This profound change in protein 
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homeostasis promotes the continuous survival of myofibroblasts (Van De Water et al., 

2013). As a result, myofibroblast activity persists, which perpetuates the pathological 

scarring observed in fibrotic disorders. Recent findings now indicate that TG2 acts to  

implement such changes in CF (Nyabam et al., 2016).  

 

1.2.5 TG2: A key player in CF 
 

Despite the etymology of CF, research has generally focused on the genetics of the disease, 

rather than the pathogenesis of fibrosis itself. Lung fibrosis has remained a key hallmark of 

CF, yet attempts to investigate the underlying molecular changes has only recently begun. 

In accordance with other fibrotic diseases, expression and activity of TG2 is found to be 

significantly upregulated in CF. Intriguingly, this has been shown to occur both intracellularly 

(Maiuri et al., 2008) and within the extracellular environment (Nyabam et al., 2016). As 

stated previously, allosteric control mechanisms typically prevent the activation of TG2 

within the cell (Katt et al., 2018). However, CF epithelial cells exhibit a dysregulation of the 

proteostasis network, in response to a defective CFTR (Esposito et al., 2016). This enables 

high levels of intracellularly active TG2, which creates an inherent pro-inflammatory profile 

in CF airways (Maiuri et al., 2008). Alternatively, extracellular TG2 embraces its common 

role as a pro-fibrotic mediator (Nyabam et al., 2016). 

 

1.2.5.1 The pathogenic significance of intracellular TG2 in CF 
 

Increasing evidence suggests that CF airways display a pro-inflammatory phenotype, prior 

to bacterial infection (Perez et al., 2007; Rosen et al., 2018b; Verhaeghe et al., 2007). This 

was initially linked to the defective CFTR protein (Perez et al., 2007), yet the mechanism 

underpinning this pathogenic trait had previously remained elusive. However, it has now 

become apparent that TG2 operates as a crucial mediator of this response (Luciani et al., 

2011). Research has shown that misfolding of ΔF508 CFTR, induces significant stress in 

the ER (Bartoszewski et al., 2008). This causes increased levels of ROS and an elevation 

of Ca2+ concentration within the intracellular environment (Maiuri et al., 2008). The 
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overproduction of ROS facilitates PIASγ (protein inhibitor of activated STAT protein gamma) 

dependent, SUMOylation of TG2 (Luciani et al., 2009). It has been demonstrated with other 

proteins, that SUMOylation of lysine side chains is incompatible with ubiquitination of these 

residues (Desterro et al., 1998; Buschmann et al., 2000). Thus, impediment to the 

ubiquitination of TG2 prevents its targeting for proteasomal degradation and leads to an 

increase in its expression (Luciani et al., 2009). In conjunction, the permissive rise in 

cytosolic Ca2+, enables TG2 to catalyse transamidation reactions within the cell (Maiuri et 

al., 2008). As such, intracellular proteins are crosslinked, thereby disrupting the proteostasis 

of CF airway epithelial cells. 

Ultimately, TG2 modulates inflammation through sequestration of peroxisome proliferator-

activated receptor gamma (PPARγ), a negative regulator of inflammatory gene expression. 

Research shows that TG2-mediated crosslinking of PPARγ can induce its formation into 

aggresomes, therefore enhancing classical parameters of inflammation (Maiuri et al., 2008). 

Normally, autophagy would respond as a cytoprotective mechanism, for the removal of 

these deleterious protein aggregates. However, Luciani et al. (2011) demonstrated that TG2 

also triggers an inhibition of autophagy. By crosslinking Beclin 1 (a central regulator of 

autophagosome formation), the autophagic pathway becomes defective and 

damaged/misfolded proteins accumulate, (e.g. PPARγ). A destructive cycle of increased 

ROS and TG2 ensues, thereby contributing to the intrinsic pro-inflammatory profile seen in 

CF airways. Besides protein crosslinking, cytosolic TG2 also uses its PDI activity to regulate 

cellular proteostasis and the stress response (Rossin et al., 2018). Evidently, TG2 

involvement is multifaceted regarding this CF inflammatory cascade.  

 

1.2.5.2 The pathogenic significance of extracellular TG2 in CF 
 

In parallel to its intracellular role, TG2 can also effectuate changes in the extracellular 

environment. Upon externalisation, TG2 functions as expected adopting its conventional 

role as a pro-fibrotic regulator. A recent study by Nyabam et al. (2016) is the first to 

demonstrate extracellular TG2-mediated crosslinking in CF. Akin to other fibrotic diseases, 
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TG2 was found to increase the expression and matrix deposition of Fibronectin. 

Furthermore, TG2 was shown to elevate TGFβ1 levels, which could be reduced through 

use of a selective TG2 inhibitor. Beyond its pro-fibrotic properties, TGFβ1 can adversely 

impact the function and morphology of CF epithelial cells. A study by Snodgrass et al. 

(2013), revealed that TGFβ1 can inhibit CFTR biogenesis and restrict the functional rescue 

of ΔF508 CFTR. Additional findings by Nyabam et al. (2016) show that TGFβ1 is also 

capable of inducing EMT in CF epithelial cells, possibly via a canonical Smad2/3 signalling 

pathway.  

Considering the quantity of research examining the intracellular role of TG2 in CF, the 

literature remains comparatively limited regarding its extracellular capacity. At present, our 

understanding is primarily based on a single study (Nyabam et al., 2016). Clearly a positive 

development, yet there persists a need to validate and enhance these findings further; 

especially given the predominant use of cell lines in this investigation. As previously stated, 

CF model cell lines may be limited in their physiological relevance. Cell immortalisation has 

the potential to render the morphology and cellular dynamics disparate from their tissue of 

origin (Pan et al., 2009). For this reason, future research must substantiate these results in 

a more reliable model system, such as CF patient primary cells.  

This work also generates some intriguing questions in relation to the specifics of TGFβ1 

signalling in CF. Activation of the non-canonical (non-Smad2/3) pathways by TGFβ1, are 

becoming increasingly recognised as critical processes in the pathogenesis of fibrosis 

(Finnson et al., 2020). Is it then possible that in addition to the Smad2/3 signalling already 

observed (Nyabam et al., 2016), signal transduction via non-canonical pathways are also 

implicated in CF? Furthermore, this study demonstrates the interconnection between TG2, 

TGFβ1 and EMT in a CF epithelial cell line (Nyabam et al., 2016). As previously mentioned, 

myofibroblasts are critical components of fibrosis, which can emerge from epithelial 

precursors. In subsequent studies it may be pertinent to evaluate whether the development 

of EMT, is in reality the process of myofibroblast transdifferentiation. 
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As reported with CF, the externalisation of TG2 is found to be a common feature of fibrotic 

conditions. However, the precise mechanism by which this occurs continues to remain the 

focus of intense scrutiny. Recent insights have proposed an unconventional route for TG2 

secretion, but further research is required for confirmation of these findings. 

 

1.3 Externalisation of TG2 
 
 

Despite the well-established link between extracellular TG2 and fibrosis, the process of TG2 

secretion is still to be fully elucidated. In contrast to the majority of exported proteins, TG2 

lacks a signal peptide (Chou et al., 2011). These peptide sequences are N-terminal 

extensions, which target proteins for externalisation using the conventional secretory 

pathway (via the ER, Golgi apparatus, plasma membrane and ultimately to the extracellular 

environment) (Owji et al., 2018). Significant findings have identified heparan sulfate 

proteoglycans (HSPGs), specifically syndecan-4, as essential binding partners of TG2 in a 

range of diseases (Furini and Verderio, 2019). It is now thought that syndecan-4 is 

responsible for trafficking TG2 to the ECM, via a non-classical pathway (Furini et al., 2020). 

HSPGs are glycoproteins characterised by the presence of one or more covalently linked 

heparan sulfate (HS) chains. The HS chains are strongly negative and sulfate modifications 

are highly dynamic, allowing HSPGs to interact with a plethora of ligands (Sarrazin et al., 

2011). One such ligand is TG2, first shown to promote a novel RGD-independent cell 

adhesion pathway by directly binding HS chains of HSPGs (Verderio et al., 2003). Central 

to this process is the specific interaction between TG2 and syndecan-4 (a membrane bound 

HSPG with diverse functionality) (Telci et al., 2008), Crucially, a study by Scarpellini et al. 

(2009) sought to further examine the relevance of this interaction, using syndecan-4 

knockout fibroblasts. It was discovered that these cells displayed an ineffective capacity to 

externalise TG2, resulting in the concurrent accumulation of TG2 in the cytosol. This finding 

was a major development, establishing the first link between syndecan-4 and its role in 

trafficking TG2 to the ECM. 
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It has since been revealed, that TG2 contains a heparin binding site for direct association 

with HS and heparin (a heavily sulfated analogue of HS). However, no definitive consensus 

has been reached over its precise location within the TG2 sequence. A study by Wang et 

al. (2012) proposed a putative binding region of 21 amino acids (aa 202 – 222), located in 

the catalytic core domain. Site-directed mutagenesis of key basic residues (Lys205 and 

Arg209), were found to be crucial for heparin binding. In contrast, independent analysis of 

two mutated Lysine residues (Lys202 and Lys205) positioned within this suggested binding 

site, found no reduction in TG2 affinity for heparin (Lortat-Jacob et al., 2012). Instead, two 

isolated clusters of basic residues (aa 262 – 265 and 598 – 602) were identified as a credible 

alternative. Such lack of coherence may feasibly be attributed to the two separate 

approaches used to quantify the heparin binding properties of TG2; with one group using a 

heparin-sepharose affinity isolation column (Wang et al., 2012) and the other using surface 

plasmon resonance spectroscopy (Lortat-Jacob et al., 2012). Although the explicit 

placement of the heparin binding site is yet to be determined, both studies do confirm that 

TG2 binding of heparin/HS is conformation dependent. Only in a closed configuration does 

TG2 exhibit a high affinity for heparin/HS, while a significant reduction in binding is 

evidenced in its open form (Lortat-Jacob et al., 2012; Wang et al., 2012). 

It has now been established that syndecan-4 is a key pro-fibrotic partner of TG2, integral to 

the cellular export of the enzyme. This was illustrated by the protective impact of syndecan-

4 knockout, in two mouse models of tubulointerstitial fibrosis (Scarpellini et al., 2014). 

Remarkably, the absence of syndecan-4 resulted in reduced levels of extracellular TG2, a 

decrease in TGFβ1 activation and an amelioration of kidney fibrosis in both models. 

Nevertheless, the mechanism by which TG2 achieves cellular release has remained 

enigmatic. One leading theory which incorporates syndecan-4 involvement has recently 

emerged. Novel research by Furini et al. (2018) suggests that extracellular vesicles (EVs), 

specifically exosomes, are responsible for trafficking TG2 to the cell surface, in a syndecan-

4 dependent manner. 
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1.3.1 Extracellular vesicles: A brief overview 
 

EVs are a heterogenous population of lipid bilayer enclosed structures, revealed to be an 

important facet of intercellular communication (Van Niel et al., 2018). Initially thought to 

function as a process for eliminating unwanted proteins, EVs are now understood to 

package and transport various forms of cargo, including: lipids, nucleic acids, proteins and 

organelles (Doyle and Wang, 2019). Research has indicated that the overall composition of 

EVs is largely dependent upon cell type and its corresponding physiological state. As an 

example, cellular stress has been found to alter both the protein and RNA content of 

endothelial cell derived EVs (de Jong et al., 2012). Indeed, it is the unique composition of 

EVs, which defines their purpose and function. In a similar context, EVs also differ greatly 

in size, ranging from approximately 50–5,000 nm (Mathieu et al., 2019). The overall 

heterogeneity of biophysical properties has previously created difficulties in distinguishing 

the exact role of EVs. Therefore, a crucial breakthrough has been the recognition of EV 

subtypes. EVs are now broadly classified into three main subgroups, defined as: exosomes, 

microvesicles and apoptotic bodies. The principal features of each subtype are summarised 

below in Table 1.1. 

 

Table 1.1. The main characteristics of the most widely studied and recognised EV subtypes. 

 

1.3.1.1 Exosomes 
 

Exosomes are typically the smallest type of EV at around 50–150 nm in diameter (Mathieu 

et al., 2019). They form through the inward budding of early endosomes, an intermediary of 

EV Subtype Exosome Microvesicles Apoptotic Bodies 

Origin Endosomal system Plasma membrane Plasma membrane 

Size ~50–150 nm ~100–1,000 nm ~100–5,000 nm 

Function 
Intercellular 

communication and 
pathogenesis 

Intercellular 
communication and 

pathogenesis 
Facilitate efferocytosis 

Cargo 
lipids, nucleic acids and 

proteins 
lipids, nucleic acids and 

proteins 
Nuclear fractions, cell 

organelles 
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mature multivesicular bodies (MVBs). Ultimately, mature MVBs (and their contents) are 

either targeted for lysosomal degradation or fuse with the cell’s plasma membrane for 

release of exosomes into the extracellular environment (Raposo et al., 1996). It is still 

unknown whether distinct subpopulations of MVBs exist (Buschow et al., 2009), or cells 

instead maintain a finely tuned balance between secretion and degradation (Villarroya-Beltri 

et al., 2016), or possibly a combination of both? Irrespective of the mechanism, control of 

the process appears to be largely influenced by the endosomal sorting complex required 

for transport (ESCRT) machinery, a vital regulator of cargo sorting and exosome 

biogenesis. 

The ESCRT machinery is a family of proteins which assemble into 4 sequential protein 

complexes (ESCRT-0, -I, -II and -III), in conjunction with its associated accessory proteins 

(Schmidt and Teis, 2012). Both ESCRT-0 and ESCRT-I function to cluster ubiquitylated 

cargo proteins into membrane microdomains, followed by recruitment of ESCRT-II and 

ESCRT-III which accomplish membrane budding and scission (Van Niel et al., 2018). 

Intriguingly, syndecans have been found to intersect the ESCRT machinery through 

formation of a tripartite complex with syntenin and ALG-2-interacting Protein X (ALIX) 

(Baietti et al., 2012). This syndecan assembly was shown to not only support the biogenesis 

of exosomes, but to also influence the selective loading of these vesicles with specific cargo.  

Alternatively, exosomes can form in the absence of ESCRT machinery, although the 

mechanism is less well defined (Stuffers et al., 2009). Proteins of the tetraspanin family 

appear to be instrumental in this process, particularly CD63 (van Niel et al., 2011). 

Moreover, ESCRT-independent exosomes are seen to be enriched in ceramide, a cone 

shaped lipid which induces negative curvature (intraluminal budding) of the endosomal 

membrane (Trajkovic et al., 2008). Taken together, the formation of exosomes involves 

different sorting machineries, which influence the preferential selection of vesicle cargo. By 

regulating the composition of exosomes, sorting machineries act as the main determinants 

of their functional roles. 
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The final step of exosome secretion involves MVB fusion with the plasma membrane. The 

process is not entirely understood, but is thought to involve soluble N-ethylmaleimide-

sensitive factor attachment protein receptor (SNARE) complexes (Wei et al., 2017) and 

require Ca2+ (Savina et al., 2005). Once released, exosomes engage in various 

physiological events, yet their involvement in disease states is becoming increasingly 

evident. Research has now revealed that exosomes are implicated in: cancer (Hoshino et 

al., 2015), neurodegenerative disorders (Marie et al., 2015), cardiovascular conditions (Yu 

et al., 2012), viral infections (Arenaccio et al., 2014), and more recently tissue fibrosis (Furini 

et al., 2018).  

 

1.3.1.2 Microvesicles and apoptotic bodies 
 

In contrast, microvesicles and apoptotic bodies are predominantly larger than exosomes. 

Both EV subtypes originate from the plasma membrane, with microvesicles budding directly 

from the surface of healthy cells and apoptotic bodies generated through the outward 

membrane blebbing of dying cells (Doyle and Wang, 2019). The mechanism of microvesicle 

formation is still to be fully elucidated, yet the process is seen to involve changes in Ca2+ 

concentration, lipid distribution, enzymatic activity (crucially translocases and scramblases) 

and a rearrangement of the cytoskeletal structure (Van Niel et al., 2018). Alternatively, 

apoptotic bodies result from an increase in cytosolic-hydrostatic pressure following cell 

contraction (Charras et al., 2005). Functionally, microvesicles operate in a similar context 

as exosomes, mediating intercellular communication via cargo transportation. The role of 

apoptotic bodies remains less well defined, although they most likely promote the efficient 

clearance of apoptotic cells through ‘find me’ and ‘eat me’ signals (Grant et al., 2019). 

Despite separate routes of biogenesis, the characterisation of EV subtypes continues to be 

problematic. The potential for overlapping sizes and shared vesicle composition, increases 

the likelihood of co-isolation when sorting EV populations (Van Niel et al., 2018). In an 

attempt to differentiate EV subtypes, research by Kowal et al. (2016) used quantitative 

proteomic analysis to compare isolated fractions of EVs. The study identified a subset of 
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tetraspanins (CD9, CD63 and CD81) enriched in the fractions of exosomal sized EVs. 

However, these proteins were also present in the fractions of large EVs, thus precluding 

their relevance as exosome-specific markers. Components of the ESCRT machinery have 

also been considered as markers of distinction, yet co-expression across EV subtypes is 

again an issue (Nabhan et al., 2012). Due to the large degree of commonality displayed 

between vesicles and the current limitations of isolation techniques, accurately 

distinguishing EV subtypes will be a major goal of future research. (Furini et al., 2018).  

 

1.3.1.3 The role of extracellular vesicles in TG2 secretion 
 

As previously stated, TG2 does not possess the necessary signal peptide required for 

externalisation via the classical secretory pathway. However, almost a decade ago the first 

insights into TG2 export began to emerge. Significantly, TG2 was identified in EVs derived 

from cancer cells (Antonyak et al., 2011) and its secretion was shown to be associated with 

the endosomal system (Santhanam et al., 2011; Zemskov et al., 2011). Thereafter, the 

presence of TG2 was reported in EVs derived from other cell systems (Van Den Akker et 

al., 2012; Piacentini et al., 2014); although the size of EVs found to be involved varied 

substantially between these studies. 

Subsequently, research by Diaz-Hidalgo et al. (2016) sought to specifically investigate the 

role of smaller EVs (exosomes) in TG2 trafficking. The study confirmed that TG2 was 

present in secreted exosomes, but only upon induced impairment of proteostasis. Under 

this enforced state of cellular stress, TG2 was shown to interact with two major components 

of the ESCRT sorting machinery: tumour susceptibility gene 101 (TSG101) and ALIX. 

Surprisingly, even TG2 itself was found to be implicated in exosome biogenesis, engaging 

in the active recruitment of vesicular cargo (Diaz-Hidalgo et al., 2016). Crucially, these 

findings were the first to demonstrate that exosomes can mediate the selective release of 

TG2, as a response to pathophysiological conditions. On the other hand, details of 

syndecan-4 involvement and the extent to which large EVs contribute to this process, still 

remained unresolved. 
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To clarify this mechanism further, a recent study examined the TG2 interactome in 

membranes of wild type/fibrotic mouse kidneys, using co-immunoprecipitation and 

quantitative proteomics (Furini et al., 2018). By using a protein database to identify the 

functional properties of binding partners, TG2 was shown to strongly associate with 

exosomal proteins (including syndecan-4), especially under fibrotic conditions. Moreover, 

comparison of EV fractions isolated from NRK52E cells (rat renal epithelial cell line), 

revealed a high level of TG2 in exosomes and only weak expression in microvesicles (Furini 

et al., 2018). Similarly, TG2 was detected in exosomes purified from pooled urine samples 

of chronic kidney disease patients, while its presence was absent from microvesicle 

fractions (Furini et al., 2018). Predictably, TG2 was also found to co-precipitate with 

syndecan-4 in exosomes produced by NRK52E cells and subsequent knockout of this 

HSPG, led to a major reduction of TG2 in exosomes (Furini et al., 2018). In support of these 

findings, the inhibition of membrane fusion events (a specific requirement for exosome 

secretion), also acts to restrict TG2 release (Furini et al., 2020). In summary, this evidence 

indicates that TG2 is recruited to exosomes via its interaction with syndecan-4 and is 

accordingly externalised through the exosomal pathway during kidney fibrosis. A 

representation of this potential mechanism of TG2 secretion is depicted in figure 1.7.  

Novel research has now demonstrated a functional relationship between tumour-derived 

exosomes and the development of metastasis (Shinde et al., 2020). Results show that 

exosomes released from metastatic breast cancer cells contain aberrant levels TG2, which 

drives the formation of a metastatic niche. Upon exosomal secretion, TG2 acts to crosslink 

fibronectin and transform the native matrix into a more tumour-permissive 

microenvironment (Shinde et al., 2020). This study highlights the importance of exosomes 

in TG2-mediated alterations of the ECM. In addition, TGF-β1 treatment of NRK52E cells 

was found to increase the expression of TG2 in exosomes (Furini et al., 2018). Overall, this 

indicates the dynamic interplay between release of exosomal TG2, matrix crosslinking, 

TGF-β1 activation and its possible stimulation of TG2 enriched exosomes. 
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Despite recent advances in our understanding of the TG2 secretory pathway, its 

involvement in fibrotic conditions still remains relatively unsubstantiated. To establish 

whether the association between EVs and TG2 is a common feature of fibrosis, its validation 

in other fibrotic systems is essential. Further research is also required to determine the 

mechanism by which exosomes increase extracellular levels of TG2. In essence, are 

exosomes enriched with TG2 as suggested (Furini et al., 2018) or do cells actually produce 

a higher concentration of exosomes, or a combination of both? Considering that TG2 is an 

attractive therapeutic target, there is now a growing need to evaluate the effect of TG2 

inhibition on EV secretion.  

Figure 1.7. Externalisation of TG2 via a syndecan-4 dependent non-classical pathway. A 

proposed mechanism for TG2 secretion to the extracellular environment. Exosomes originating from 

early endosomes incorporate syndecan-4, allowing TG2 to directly interact with this HSPG using its 

heparin sulfate binding site. Exosomes contained within mature MVBs are then targeted for fusion 

with the plasma membrane. These intraluminal vesicles are then released to the ECM, whereby 

inactive TG2 is exposed to high Ca2+ and low GTP concentrations. This conceivably lowers the HS 

binding affinity of TG2 and induces a conformational change towards its linear (open) state. Once 

active, TG2 can crosslink protein fibres of the ECM (e.g. fibronectin and collagen) into a fibrotic 

matrix. Adapted from (Furini et al., 2018). 
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1.4 TG2 inhibitors and their therapeutic potential in fibrosis 
 
 

Given the importance of TG2 in various pathological conditions, particularly fibrosis, TG2 

inhibitors have been developed as both an investigative tool and as a prospective 

therapeutic strategy. The vast majority of inhibitors have been designed to suppress TG2 

activity, although preventing TG2 externalisation has also been reported as an alternative 

approach (Wang et al., 2012). Depending on the mechanism of action, these inhibitors are 

broadly categorised into three main types: competitive amines, reversible and irreversible 

inhibitors (Keillor et al., 2015).  

The earliest form of TG inhibitors were competitive amines. These primary amines act by 

competing with biogenic amine substrates, to restrain the formation of native isopeptide 

bonds (Keillor et al., 2015). However, lack of specificity regarding the exclusive inhibition of 

TG2, has led to the creation of more targeted inhibitors. Unlike amines, reversible inhibitors 

work in a more standard fashion. They are not directly involved in the reaction, but instead 

bind TG2 to impede its catalytic activity (Keillor and Apperley, 2016). The application of 

such inhibitors may be pharmacologically safer for clinical studies, yet poor solubility and 

low efficiency limits their therapeutic value (Szondy et al., 2017).  

A further consideration is off-target implications. A primary example is GK921, a small 

molecule inhibitor which binds the N-terminus of TG2 at an allosteric binding site. Although 

GK921 binds outside of the catalytic core, its interaction induces a conformational change 

which causes polymerisation and inactivation of TG2 (Kim et al., 2018). Crucially, its site of 

contact overlaps with a p53 binding region, a protein supressed by TG2 (Kang et al., 2016). 

Thus, GK921 and p53 compete for the same binding site, which promotes the stabilisation 

of p53 and enables its increased activity (Kim et al., 2018). Evidently, inhibitors not directed 

towards the active site have a larger potential for non-specific effects.  

For such reasons, many of the TG2 inhibitors developed are irreversible. Generally, these 

inhibitors are designed as analogs of a TG2 substrate (acyl-donor) and target the cysteine 
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residue of the active site (Szondy et al., 2017). They commonly incorporate a 

peptidomimetic scaffold, which enables an electrophilic functional group (warhead) to be 

positioned next to the nucleophilic thiol group of Cys277 (Keillor and Apperley, 2016). 

Following much research, ‘warheads’ have been refined for their stability and reactivity, 

making these compounds particularly effective inhibitors (Keillor et al., 2015). The beneficial 

impact of such compounds has been revealed, when applied to fibrotic model systems. 

Studies have demonstrated their capacity to ameliorate pathophysiological features of 

kidney (Badarau et al., 2015), lung (Nyabam et al., 2016) and cardiac fibrosis (Shinde et 

al., 2018). Indeed, the first irreversible TG2 inhibitor (ZED1227) has already entered 

advanced clinical trials for the potential treatment of individuals with coeliac disease 

(Ventura et al., 2018). 

With TG2 playing a central role in the development of CF, inhibition of its aberrant activity 

is now a focus of therapeutic intervention. The endogenous competitive amine, cysteamine, 

was the first TG inhibitor to be evaluated in the context of CF. In a small scale clinical 

investigation, cysteamine was administered to 10 (ΔF508 homozygous) CF patients, 

alongside epigallocatechin gallate (EGCG), a green-tea flavonoid (De Stefano et al., 2014). 

Analysis of nasal epithelial cells collected from patients after treatment showed restoration 

of CFTR function and reduced levels of pro-inflammatory cytokines (De Stefano et al., 

2014). This pilot study was followed by an open-label phase II clinical trial, which claimed 

to observe similar effects (Tosco et al., 2016). However, in complete contradiction to these 

findings, an independent study reported an absence of response for cysteamine treatment, 

either alone or together with EGCG (Awatade et al., 2019). Clearly, further scrutiny of 

cysteamine is required and issues concerning the application of a non-robust, pan TG 

inhibitor still need to be addressed.  

In contrast, specific, irreversible peptidomimetic inhibitors of TG2 have been developed at 

Aston University, which target the Ca2+ activated configuration of the enzyme in the 

intracellular and/or extracellular space (Badarau et al., 2015). The cell permeable inhibitor, 
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1-155, has been shown to be a potent and highly selective inhibitor of TG2 (Badarau et al., 

2015). Its addition to an established CF epithelial cell line was found to restore CFTR at the 

plasma membrane, with CFTR levels shown to increase beyond that of cysteamine treated 

cells (Nyabam et al., 2016). Furthermore, 1-155 was also seen to reduce the presence of 

TGFβ1 in the matrix and partially reverse the expression of EMT markers. These preliminary 

results are certainly encouraging and provide a basis for exploring the capacity of 1-155 

further. CF has long been considered a channelopathy, which is only reparable by targeting 

the CFTR defect directly. Application of a highly specific TG2 inhibitor presents an 

alternative therapeutic approach, which can conveniently be combined with approved CFTR 

modulators.  

 

1.5 Aims and objectives 
 
 

The aim of this study is to further assess the role of extracellular TG2 in regulating CF 

progression and to then evaluate its importance as a therapeutic target. This study will also 

attempt to gain an insight into the relevance of EVs, for the externalisation of TG2 in CF. To 

achieve these aims, the following objectives were set: 

 

(1) Examine the role of extracellular TG2 in CF progression, specifically its induction of 

EMT and EMT-derived myofibroblast transdifferentiation, using both immortalised and 

primary CF bronchial epithelial cells. 

 

(2) Evaluate the therapeutic potential of two-directional (direct/indirect approach) 

pharmacotherapy, using a TG2 specific inhibitor and an approved CFTR corrector, in a 

CF cell model system. 

 

(3) Confirm the importance of TG2-mediated TGFβ1 activation in CF and investigate the 

engagement of downstream signalling pathways (canonical and non-canonical). 

 

(4) Determine the involvement of EVs in trafficking TG2 to the ECM in CF and define the 

impact of combination treatment on this process. 
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CHAPTER 2: MATERIALS AND METHODS 
 

 

2.1 Materials 
 

2.1.1 Chemicals 
 

All general laboratory chemicals and reagents used during this study were purchased from 

Sigma-Aldrich (UK), unless stated otherwise. 

 

2.1.2 Equipment 

 

 Epithelial Voltohmmeter (Worldwide Precision Instruments, USA) 

 EVOS™ FL Digital Inverted Microscope (Invitrogen, UK) 

 G:BOX Gel Documentation System (Syngene, UK) 

 Mini-PROTEAN® Tetra Cell Gel Electrophoresis System and Mini Trans-Blot® Wet 

Transfer System (Bio-Rad, UK)  

 Multiskan™ GO Microplate Spectrophotometer (Fisher Scientific, UK)  

 qNano - Tunable Resistive Pulse Sensing (IZON Science, New Zealand) 

 SpectraFluor Microplate Reader (BMG LABTECH, UK)  

 Leica DMI4000 B Inverted Fluorescence Microscope (Leica Microsystems, UK)  

 

2.1.3 Antibodies  
 

Table 2.1. List of primary antibodies used for Western blotting and immunofluorescence staining 

 

 

Primary Antibody Biological Source Manufacturer 

α-SMA (A2547) Mouse - monoclonal Sigma-Aldrich, UK 

E-cadherin (sc-7870) Rabbit - polyclonal Santa Cruz Biotechnology, USA 

Fibronectin (F3648) Rabbit - polyclonal Sigma-Aldrich, UK 

GAPDH (ab8245) Mouse - monoclonal Abcam, UK 

N-cadherin (sc-59987) Mouse - monoclonal Santa Cruz Biotechnology, USA 

p-Smad3 (ab52903) Rabbit - monoclonal Abcam, UK 

Smad3 (ab40854) Rabbit - monoclonal Abcam, UK 

TG2 (ab2386) Mouse - monoclonal Abcam, UK 

TGFβ1 (sc-130348, HRP) Mouse - monoclonal Santa Cruz Biotechnology, USA 

TSG101 (ab83) Mouse - monoclonal Abcam, UK 

ZO-1 (sc-10804) Rabbit - polyclonal Santa Cruz Biotechnology, USA 
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Table 2.2. List of secondary antibodies used for Western blotting or immunofluorescence staining 

 

2.2 Methods 
 

2.2.1 Cells 
 

The CF model cell line IB3-1 is a human bronchial epithelial cell, with loss of CFTR channel 

function. It is derived from a CF patient containing a heterozygous mutation of W1282X 

(class I)/∆F508 (class II) and is immortalised using a adeno-12-SV40 hybrid virus (Zeitlin et 

al., 1991). C38 is an isogenic IB3-1 derived cell line, corrected with an adeno-associated 

viral vector containing a shortened version of wild-type CFTR. The expressed CFTR protein 

is truncated at the amino-terminal, but functions with elevated Cl- efflux (Flotte et al., 1993). 

Both IB3-1 and C38 cell lines were given as a kind gift by Portland VA Medical Center 

(USA).  

Primary HBECs isolated from surface epithelium (human bronchi) of a healthy individual, 

were purchased from Promocell (UK). Primary HBECs isolated from surface epithelium 

(human bronchi) of three individuals (030, 032 & 037) all expressing a ∆F508 homozygous 

mutation for CF, were given as a kind gift from the Cystic Fibrosis Foundation (USA).  

 

2.2.2 Cell culture 

 

2.2.2.1 Cell culture in submerged medium 
 

C38, IB3, HBEC and primary CF cells were all cultured in airway epithelial medium (AEM), 

supplemented with: Bovine Pituitary Extract (0.004 ml/ml), Epidermal Growth Factor 

(recombinant human) (10 ng/ml), Insulin (recombinant human) (5 µg/ml), Hydrocortisone 

Secondary Antibody Biological Source Manufacturer 

Goat anti-mouse HRP-
conjugated (ab97040) 

Goat - polyclonal Abcam, UK 

Swine anti-rabbit HRP-
conjugated (P0217) 

Swine - polyclonal Dako, Denmark 

Goat anti-mouse FITC-
conjugated (F0257) 

Goat - polyclonal Sigma-Aldrich, UK 

Donkey anti-rabbit TRITC-
conjugated (A16028) 

Donkey - polyclonal Thermo Fisher Scientific, UK 
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(0.5 µg/ml), Epinephrine (0.5 µg/ml), Triiodo-L-thyronine (6.7 ng/ml), Transferrin 

(recombinant human) (10 µg/ml) and Retinoic Acid (0.1 ng/ml), stated at final concentrations 

after addition to the medium (Promocell, UK). Cells were maintained in a humidified 

atmosphere at 37oC in 5% CO2.  

 

2.2.2.2 Cell culture at air-liquid interface 
 

To stimulate differentiation and recapitulate the polarity of respiratory epithelium observed 

in vivo, a biphasic chamber system was used to culture epithelial cells at air-liquid interface 

(ALI), as first described by Whitcutt et al. (1988). Using sterile forceps, Transwell® inserts 

(Corning, UK) with a pore size of 0.4 µm and an area of either 0.33 cm2 were inserted into 

24-well companion plates (Corning, UK). The membranes of each Transwell® were coated 

with 50 µl of 100 µg/ml solution of collagen IV (Sigma-Aldrich, UK) in 3% (v/v) acetic acid, 

after the acidity of the solution was neutralised to pH 7.4 with 1 M NaOH. Collagen IV was 

left to coat the membranes overnight at room temperature, under sterile conditions. The 

following day excess collagen IV was removed and AEM was used to rinse the Transwells® 

twice, before the plate was pre-warmed at 37oC for 2 h. Thereafter, Transwells® were 

seeded at a cell density of 3 x 104 cells/well in 200 μl AEM, with 600 μl AEM added to the 

basal wells of the companion plate. The plates were then incubated at 37oC in 5% CO2 to 

allow cell attachment and treatments were added in fresh AEM after 2 h if applicable. AEM 

and treatments were changed every 24 h, up to the point of ALI establishment. After 4 days 

in submerged conditions, AEM was carefully removed from the Transwells® and the apical 

layer of cells exposed to air to establish ALI. AEM in the basal wells was replaced with 

PneumaCultTM-ALI medium (STEMCELL Technologies, UK) and the cells were cultured for 

a further 14 days, with basal ALI medium and treatments changed every 2 days.  

 

2.2.2.3 Cell passaging 
 

Cells were passaged once reaching approximately 90% confluency, with all primary cells 

used up to a maximum passage of 5. For cell passaging, the AEM was removed from each 
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flask and the cells washed once with PBS (Sigma-Aldrich, UK) for the removal of dead cells, 

cell debris and residual medium. Cells were then treated with 0.25% trypsin-EDTA solution 

(Sigma-Aldrich, UK) for 5 min at 37oC, to detach adherent cells. After cell detachment was 

confirmed using an inverted microscope, AEM was added to neutralise the trypsin. The cell 

suspension was then centrifuged at 300 x g for 5 min. The supernatant was discarded and 

the cell pellet resuspended in fresh AEM. For routine passaging, cells were seeded at an 

appropriate cell density in a tissue culture flask and cultured in a humidified incubator at 

37°C in 5% CO2. For experiments, cells were counted using a haemocytometer to calculate 

the desired cell density and then used as required.  

 

2.2.2.4 Cell cryopreservation and storage 
 

The initial steps of cell cryopreservation followed the same methodology as described for 

cell passaging (section 2.2.2.3), until the point of centrifugation. After discarding the 

supernatant, the cell pellet was resuspended in freezing mixture composed of 10% (v/v) cell 

culture grade DMSO (Sigma-Aldrich, UK) in fetal bovine serum (FBS) (Gibco, UK). 

Thereafter, 1 ml of the cell suspension (containing approximately 1 x 106 cells) was 

aliquoted per cryovial, before labelling each vial with cell type, date and passage number. 

The cryovials were then individually wrapped in paper towel to facilitate gradual freezing 

and immediately transferred to a -20°C freezer for 1 h. Cryovials were subsequently stored 

at -80°C for a minimum of 24 h, before being relocated to vapour phase liquid nitrogen tanks 

for long term storage.  

 

2.2.2.5 Cell culture from frozen stocks 
 

The cryovial was removed from liquid nitrogen storage and promptly placed into a 37oC 

water bath, whilst avoiding immersion. Once the cells had completely thawed, the cell 

suspension was immediately transferred to a sterile tube and pre-warmed AEM added in a 

dropwise manner. The cell suspension was then transferred to a tissue culture flask and 

placed in a humidified incubator at 37°C in 5% CO2. Upon cell attachment, any residual 
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DMSO was removed by discarding the existing medium and replacing with fresh AEM. 

 

2.2.3 Cell viability count using Trypan Blue exclusion 
 

To enumerate the number of live cells within a cell suspension, a Trypan Blue solution of 

0.4% (w/v) (Gibco, UK) was used. This charged diazo dye is excluded from cells with an 

intact membrane, while non-viable cells are stained blue. In an Eppendorf tube, 50 μl of 

0.4% (w/v) Trypan Blue was added to 50 μl of cell suspension and then mixed through 

gentle pipetting. After incubating the mixture for 2 min at room temperature, 10 μl was 

loaded on to each side of a haemocytometer. Using an inverted microscope, unstained cells 

were counted in two quadrants on both sides of the haemocytometer. An average was then 

calculated, multiplied by (104) and corrected for the dilution factor to give the number of 

‘viable cells/ml’ in the original cell suspension. Stained cells were also counted to ensure 

cell viability was above 95% for the total cell population. 

 

2.2.4 Cell toxicity assay 
 

To quantify the cytotoxicity of compounds, a colorimetric XTT assay (ATCC, UK) was used 

as first described by Scudiero et al. (1988). The principle is based on the reduction of a cell 

impermeable yellow tetrazolium salt (XTT), a reaction facilitated by metabolically active cells 

only. Upon XTT reduction, a bright orange soluble formazan salt is formed. Cells were 

seeded in flat-bottomed 96 well plates at of density of 8 x 103 cells/well and incubated at 

37oC in 5% CO2, for 2 h. Thereafter, the medium was replaced with fresh AEM and 

compounds added at set concentrations, before the plate was returned to the incubator. 

AEM and treatments were then changed every 24 h, for a period of 72 h. To prepare the 

activated-XTT solution, 20 μl of the activation reagent was mixed with 1 ml of the XTT 

reagent. The AEM was then removed from the wells, before an aliquot of 50μl of the 

activated-XTT solution was added to each well and the plate incubated at 37oC for 4 h. 

Following the incubation period, the plate was gently shaken to evenly distribute the orange 

formazan derivative and the absorbance measured at a wavelength of 490 nm and 630 nm 
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using a SpectraFluor microplate reader. The absorbance value at 630 nm (used to assess 

non-specific readings) was subtracted from the absorbance value at 490 nm for each well.  

 

2.2.5 Cell protein analysis 

 

2.2.5.1 Lysis of cells in submerged culture 
 

For the collection of whole cell lysates, AEM was removed from cells seeded in 60 mm cell 

culture dishes (VWR, UK) and each cell monolayer washed twice with ice-cold PBS. After 

removing the PBS, ice-cold lysis buffer was added (50 mM Tris-HCl, pH 7.4, 1% (v/v) 

Nonidet P-40, 0.5% (w/v) sodium deoxycholate, 0.1% (w/v) SDS, 2 mM EDTA, 1 mM NaF, 

1 mM Na3VO4, 0.1 mM PMSF in methanol and 1% (v/v) HaltTM protease inhibitor cocktail 

(Thermo Fisher Scientific, UK)) and the adherent cells detached using pre-cooled cell 

scrapers. The cell lysates were then transferred to pre-cooled Eppendorf tubes and kept on 

ice for 30 min, with occasional agitation throughout. After this time, the cell lysates were 

centrifuged at 300 x g for 10 min at 4oC to remove unwanted cell debris and the 

supernatants collected in fresh pre-cooled Eppendorf tubes. If not used immediately, cell 

lysates were stored at -80oC.  

 

2.2.5.2 Protein concentration assay 
 

The protein concentration of cell lysates was determined using a commercially available 

DCTM Protein Assay kit (Bio-Rad, UK), based on the well documented Lowry assay (Lowry 

et al., 1951). Bovine serum albumin (BSA) standards were prepared at concentrations 

ranging from 0.1-1 mg/ml, as per the manufacturer’s instructions. An aliquot of 5 µl per 

standard and sample (cell lysates were diluted in distilled water to fit within the standard 

curve if necessary), were pipetted into a 96 well plate in triplicate. Following this, 25 µl of 

reagent A was added to each well, followed by 200 µl of reagent B and the plate gently 

shaken. The plate was incubated at room temperature for between 15-45 min and then read 

at a wavelength of 750 nm using a SpectraFluor microplate reader. A linear standard curve 

was created by plotting absorbance values against BSA concentrations, which was 
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subsequently used to determine the protein concentration of cell lysates. Protein 

concentrations were corrected for dilution factor if applicable. 

 

2.2.5.3 Collection of the extracellular matrix 
 

For isolation and investigation of ECM fractions, cells were seeded into 35 mm cell culture 

dishes (VWR, UK) in AEM and placed in a humidified incubator at 37oC, in 5% CO2.  After 

2 h, the AEM was removed and treatments were added in fresh AEM. Subsequent changes 

of AEM and treatments occurred every 24 h, for a period of 72 h. Thereafter, AEM was 

removed and each cell monolayer washed twice with PBS, before 1 ml of 2mM EDTA in 

PBS was added. The cell culture dishes were then incubated at 37oC for 5-10 min, at which 

point gentle pipetting of the solution was used to detach the cells. After three washes with 

PBS, an inverted microscope was used to confirm the complete removal of cells, before 

adding 35 µl of 2X Laemmli buffer (0.125 M Tris, pH 6.8, 4% SDS, 20% glycerol, 10% 2-

mercaptoethanol, 0.004% bromophenol blue). The ECM was detached using a cell scraper 

and each sample transferred into an Eppendorf tube. The samples were then placed in a 

heat block at 95oC for 5 min, to ensure proteins were denatured.  Each sample was loaded 

onto an SDS polyacrylamide gel in equal volume. 

 

2.2.5.4 SDS-Polyacrylamide Gel Electrophoresis 
 

The protein concentration of cell lysates was quantified using the DCTM Protein Assay kit, 

as described in section 2.2.5.2. Using these values, proteins were separated at equal 

concentrations using SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE). The SDS-

PAGE gels consisted of two layers, a small-pore resolving gel (Table 2.3), with a large-pore 

stacking gel on top (Table 2.4). The percentage polyacrylamide of the resolving gel was 

chosen in accordance with the molecular weight of the target protein, for optimal separation. 

After preparing and pipetting the resolving solution between two glass plates (1.5 mm), 

propan-2-ol was overlaid to ensure an even gel surface layer. The resolving solution was 

then left to polymerise for 1 h at room temperature, before propan-2-ol was discarded and 
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the gel surface rinsed twice with distilled water. Thereafter, the stacking solution was gently 

pipetted above the resolving gel and a 1.5 mm comb inserted to form the wells. The stacking 

solution was left to polymerise for 1 h at room temperature, before the comb was carefully 

removed and the wells rinsed with SDS-PAGE running buffer (25 mM Tris, 192 mM Glycine 

and 0.1% (w/v) SDS, pH 8.3). After casting the gel, cell lysates were diluted in a 1:1 ratio 

with 2X Laemmli buffer and placed in a heat block at 95oC for 5 min. The samples were 

then cooled on ice for 5 min before loading. A Kaleidoscope™ Prestained Protein Standard 

(Bio-Rad, UK) was loaded into an outer well, as a reference marker for protein molecular 

weight. The Mini-PROTEAN® Tetra Cell gel electrophoresis system was then assembled 

and filled with running buffer. Electrophoresis was performed at 90 V for 15 min and 

increased to 120 V until the bromophenol blue dye reached the bottom of the resolving gel. 

 

Table 2.3. SDS-PAGE resolving gel composition 

  

Table 2.4. SDS-PAGE stacking gel composition 

 

2.2.5.5 Western blotting 
 

Proteins separated by SDS-PAGE (section 2.2.5.4), were transferred on to nitrocellulose 

membrane (VWR, UK) using a Mini Trans-Blot® wet transfer system. Nitrocellulose 

Resolving Gel Solutions 
% (v/v) Acrylamide Concentration  

10 12 

30% Acrylamide/0.8% bisacrylamide 5 ml 6 ml 

4X 1.5 M Tris-HCl/0.4% (w/v) SDS pH 8.8 3.75 ml 3.75 ml 

Distilled H20 6.25 ml 5.25 ml 

10% (w/v) Ammonium persulphate 0.05 ml 0.05 ml 

TEMED 0.01 ml 0.01 ml 

Stacking Gel Solutions Volume 

30% Acrylamide/0.8% bisacrylamide 0.65 ml 

4X 0.5 M Tris-HCl/0.4% (w/v) SDS pH 6.8 1.25 ml 

Distilled H20 3.05 ml 

10% (w/v) Ammonium persulphate 0.025 ml 

TEMED 0.005 ml 
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membrane, fibre pads and filter paper were pre-soaked in ice-cold transfer buffer (48.8 mM 

Tris, 39 mM Glycine and 20% (v/v) methanol, pH 8.3) for 5 min, prior to the transfer. The 

SDS-PAGE gel was carefully retrieved from the glass plates and positioned on a sheet of 

pre-soaked filter paper. Pre-soaked nitrocellulose membrane was laid on top of the gel, 

followed by pre-soaked filter paper and a roller used to remove any air bubbles. The transfer 

cassette was then assembled and placed inside an electrode module within a buffer tank. 

A frozen ice pack was placed adjacent to the electrode module and the tank filled with ice-

cold transfer buffer. The tank was then surrounded with ice and the transfer carried out at 

300 mA for 75 min. Following protein transfer, the cassette was disassembled and the 

membrane briefly washed with TBST (20 mM Tris base, 150 mM NaCl and 0.1% (v/v) 

Tween® 20, pH 7.6). The membrane was then incubated in blocking buffer (5% (w/v) 

skimmed milk in TBST) for 1 h at room temperature; or alternatively (5% (w/v) BSA in TBST) 

when targeting phosphorylated proteins. Thereafter, the membrane was immunoprobed 

with a protein-specific primary antibody (Table 2.1), diluted as per the manufacturer’s 

instructions in the appropriate blocking buffer. This was left on a rocking platform overnight 

at 4°C or for 2 h at room temperature. After three 15 min washes with TBST, the membrane 

was incubated with an applicable HRP-conjugated secondary antibody (Table 2.2) diluted 

in the appropriate blocking buffer and left on a rocking platform for 2 h at room temperature. 

Following three 15 min washes with TBST, the chemiluminescent signal was developed 

using Amersham™ ECL™ western blotting detection reagents (G.E Healthcare Life 

Sciences, UK) and the signal captured using a G:BOX F3 gel documentation system. 

 

2.2.5.6 Ponceau S staining 
 

Ponceau S staining was used to validate the correct transfer of proteins from SDS-PAGE 

gel to nitrocellulose membrane and as a loading control (a suitable alternative when use of 

a ‘housekeeping protein’ was not applicable). Following protein transfer (section 2.2.5.5) 

the membrane was immersed in Ponceau S Staining Solution (Sigma-Aldrich, UK) and left 

to stain for 5 min at room temperature, on a rocking platform. The membrane was then 
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rinsed with distilled water until the background was clear, before an image of the stained 

proteins was captured. Thereafter, the membrane was completely destained via repeat 

washes with distilled water on a rocking platform, until the Ponceau S stain was no longer 

visible. Immunological detection was then performed as normal, continuing from the point 

of membrane blocking (section 2.2.5.5). 

 

2.2.5.7 Stripping and reprobing of the membrane 
 

To investigate more than one protein of interest or ensure equal loading through detection 

of a ‘housekeeping protein’, bound primary and secondary antibodies were stripped from 

the nitrocellulose membrane and the blot reprobed. The membrane was immersed in 

stripping buffer (62.5 mM Tris-HCl, 2% (w/v) SDS, 100 mM 2-mercaptoethanol (added fresh 

before use), pH 6.7) and incubated at 50oC for 30 min, with occasional agitation throughout. 

After discarding the stripping buffer, the membrane was washed four times with TBST for 

15 min per wash. The membrane was then incubated in blocking buffer and the western 

blot method followed through to immunological detection, as described in section 2.2.5.5.  

 

2.2.5.8 Immunofluorescence staining 
 

Immunofluorescence staining was performed to visualise the expression and localisation of 

target proteins. Cells were seeded in Nunc™ Lab-Tek™ 8-well chamber slides (Thermo 

Fisher Scientific, UK) at 3 x 104 cells/well and allowed to grow for 16 h (primary cells) or 24 

h (cell lines). After this time, AEM was removed and the cells washed twice with PBS. Cells 

were then fixed with 3.7% (v/v) paraformaldehyde (Sigma-Aldrich, UK) in PBS for 15 min, 

at room temperature. Following three washes with PBS, the cells were incubated in blocking 

buffer (3% (w/v) BSA in PBS) for 30 min at 37oC, to prevent non-specific staining. The 

blocking buffer was then discarded and the cells incubated with an antigen-specific primary 

antibody (Table 2.1) in blocking buffer (1:100 dilution) for 2 h at 37oC. When examining the 

co-distribution of two target proteins, both primary antibodies (from different species) were 

added simultaneously. After three washes with PBS, the cells were incubated with 
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Fluorescein isothiocyanate (FITC, green) and/or Tetramethylrhodamine isothiocyanate 

(TRITC, red) conjugated secondary antibodies (Table 2.2) in blocking buffer (1:100 dilution), 

for 2 h at 37oC. Following three washes with PBS, the rubber gasket of the chamber slide 

was detached, excess liquid was removed and the coverslip mounted with a drop of 4’,6-

diamidino-2-phenylindole (DAPI, blue) VECTASHIELD® mounting medium (Vector 

Laboratories, UK). Fluorescent images were captured using a Leica® DMI4000 B inverted 

fluorescence microscope, via widefield microscopy. Images were then analysed using 

ImageJ® software and relative fluorescence calculated as, [integrated density – (area of 

selected fluorescence x mean fluorescence of background readings)]. 

 

2.2.5.9 Transglutaminase activity assay 
 

Transglutaminase activity was measured using a biotin-cadaverine incorporation assay, 

based on the method first described by Slaughter et al. (1992). The wells of a flat-bottomed 

96 well plate were coated with 50 µl of 10 mg/ml N,N-dimethylcasein (Sigma-Aldrich, UK) 

in 50 mM Tris-HCl, pH 8.0 and left overnight at 4oC. The following day, wells were washed 

three times with TBST, before the addition of recombinant human TG2 (Zedira, Germany) 

(IC50 assay) or EV sample, with 0.1 mM biotin-cadaverine, 10 mM CaCl2, 1 mM DTT, stated 

at final concentrations in 50 mM Tris-HCl, pH 7.4. In separate wells, replacement of CaCl2 

with 10 mM EDTA was used as a negative control and the addition of 400 ng of recombinant 

human TG2 was used as a positive control. Each sample and control were prepared in 

triplicate and the plate incubated at 37oC for 2h. The wells were then washed three times 

with TBST, before adding blocking buffer (3% (w/v) BSA in 50 mM Tris-HCl, pH 7.4) to each 

well and incubating for 30 min at 37oC. After discarding the blocking buffer, incorporation of 

biotin-cadaverine into N,N-dimethylcasein was detected by incubating wells with 

ExtrAvidin®−Peroxidase (Sigma-Aldrich, UK) diluted in blocking buffer (1:1000), for 1 h at 

37oC. Following a further three washes with TBST, the reaction was developed using a 

SIGMAFAST™ OPD (o-Phenylenediamine dihydrochloride) substrate solution (Sigma-

Aldrich, UK). One OPD tablet and one urea hydrogen peroxide buffer tablet were dissolved 
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in 20 ml of distilled water and 100 μl added to each well. The colour development was ended 

by the addition of 50 μl of 3 M HCl and the absorbance read at 490 nm using a Multiskan™ 

GO Microplate Spectrophotometer.  

 

2.2.6 Phenotypic evaluation of epithelial cells 

 

2.2.6.1 In vitro scratch assay 
 

To evaluate epithelial cell migration in vitro, cells were seeded in a 24 well plate at 1 x 105 

cells/well and incubated at 37oC in 5% CO2 until confluent (approximately 24 h). The AEM 

was then removed and a p200 pipet tip was used to scrape the cell monolayer in a straight 

line to create a scratch. The wells were gently washed once with PBS to remove cell debris 

and three reference points were made along the scratch (using an ultra-fine tip marker), on 

the outside bottom of each well. Treatments in fresh AEM or the secretome of treated cells 

were then added, before capturing images of each scratch at the three reference points/well 

using an EVOS™ FL digital inverted microscope (10X objective). The plate was then placed 

in a humidified incubator at 37°C, in 5% CO2 and the cells left to migrate for 4 h. Following 

the incubation period, images were taken of each scratch at the same three reference 

points/well to ensure continuity. The plate was then returned to the humidified incubator and 

the process repeated at 16 h post wounding. The images acquired for each sample were 

analysed using ImageJ® software and wound closure measured as the percentage 

reduction in wound area, relative to the original area of the wound at 0 h time point.  

 

2.2.6.2 Trans-epithelial electrical resistance (TEER)  
 

An epithelial voltohmmeter was used to assess the electrical resistance (Ω) of epithelial 

cells grown at ALI, as a quantitative measure of cellular barrier integrity. After establishing 

ALI as described in section 2.2.2.2, an aliquot of 200 μl of PneumaCultTM-ALI medium was 

added apically to each Transwell® insert (0.33 cm2). Before use of the epithelial 

voltohmmeter, the STX2 electrode was sterilised in 70% ethanol and then pre-conditioned 

in ALI medium for 3 min. Thereafter, the longer arm of the STX2 electrode was extended 
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into the basal well of the companion plate and the shorter arm inserted into the Transwell®, 

whilst avoiding physical contact with the cell layer. To obtain reproducible measurements, 

the depth of immersion and angle of the electrode was kept consistent throughout. The 

electrical resistance of the cells in each Transwell® was then measured in triplicate. The 

apical medium was then carefully removed from the Transwells® to reinstate ALI. To 

determine background resistance, 200 μl of ALI medium was added apically to a collagen 

coated Transwell® in the absence of cells and measurement taken in triplicate. The process 

was then repeated at specified time points, over a period of 14 days (post ALI).  The average 

resistance of each Transwell® was then calculated from each triplicate and the average 

background resistance subtracted from each of these values. Final values were expressed 

as unit area resistance (Ω.cm2), calculated by multiplying each background corrected 

sample resistance by the effective area of the membrane (0.33 cm2).  

 

2.2.6.3 Paracellular permeability assay  
 

To determine the functional integrity of tight junctions in an epithelial cell layer, the 

paracellular permeability of horseradish peroxidase (HRP) was measured. After culturing 

epithelial cells at ALI for 14 days (section 2.2.2.2), the basal PneumaCultTM-ALI medium 

was discarded and the basal wells washed once with PBS. Following the removal of any 

residual liquid, 800 μl of PBS was added to each basal well and 200 μl of HRP (~44 kDa) 

(Sigma-Aldrich, UK) in PBS was gently pipetted into each Transwell®, at a final 

concentration of 0.5 μM. A collagen coated Transwell® in the absence of cells, was used 

as a positive control. The plate was then incubated at 37°C for 5 min, to allow the 

paracellular diffusion of HRP from the apical surface to the basal compartment. Immediately 

following incubation, Transwell® inserts were carefully removed from the companion plate, 

before 50 μl aliquots were taken from each basal well in triplicate and transferred to a 96 

well plate. The reaction was developed using a SIGMAFAST™ OPD substrate solution, 

whereby one OPD tablet and one urea hydrogen peroxide buffer tablet were dissolved in 

20 ml of distilled water and 50 μl added to each well. The colour development was 



 J.M.Gavin, PhD Thesis, Aston University 2020.                                            74 
 

terminated with the addition of 50 μl of 3 M HCl and the absorbance read at 490 nm using 

a Multiskan™ GO Microplate Spectrophotometer.  

 

2.2.7 Isolation and characterisation of EVs and extracellular soluble protein 

 

2.2.7.1 Size exclusion chromatography 
 

To purify and separate EVs and extracellular soluble protein from the cell secretome, size 

exclusion chromatography (SEC) was used. Cells were seeded in 175 cm2 tissue culture 

flasks at 5 x 106 cells/flask. Treatments were added if applicable and the cells incubated at 

37oC in 5% CO2. After 72 h, AEM containing the cell secretome was removed from each 

flask and transferred to pre-cooled 50 ml centrifuge tubes. The samples were then 

centrifuged at 2000 x g for 20 min at 4oC, to remove any cells and large particles. The 

supernatants were recovered and transferred to pre-cooled Amicon® ultra-15 ml centrifugal 

filter units (10 kDa molecular weight cut- off) (Merck Millipore, UK), before being centrifuged 

at 3200 x g at 4oC (until the total sample volume was concentrated to approximately 1 ml). 

Thereafter, a qEVoriginal/70 nm SEC column (IZON Science, New Zealand) was fixed on 

a stand and equilibrated from 4oC to room temperature. The column was flushed with 10 ml 

of PBS, before the first sample was loaded onto the column loading frit. The void volume 

was immediately collected (3 ml) and the loading frit continually topped up with PBS, once 

all the sample had entered the column. EVs were then collected (3.5 ml) directly after the 

void volume, in a pre-cooled 15 ml tube. Following the recovery of EVs, a gap of 0.5 ml was 

eluted from the column and discarded to avoid cross-contamination between the EV and 

extracellular soluble protein elution zones. Extracellular soluble protein was collected (8 ml) 

immediately after the gap in a pre-cooled 15 ml tube. Alternatively, the entire sample was 

collected in 1 ml aliquots in pre-cooled Eppendorf tubes, for the determination of elution 

profiles. The column was flushed with 20 ml PBS after each sample and the column re-used 

up to a maximum of 5 times.   
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2.2.7.2 Preparation of EVs and extracellular soluble protein for protein 

analysis 
 

Following the purification and separation of EVs and extracellular soluble protein (section 

2.2.7.1), samples were transferred to pre-cooled Amicon® ultra-0.5 ml centrifugal filter units 

(10 kDa molecular weight cut- off) (Merck Millipore, UK) and centrifuged at 14000 x g at 4oC 

(until the total sample volume was concentrated to approximately 50 μl). The concentrated 

samples were then used for further analysis. 

 

2.2.7.3 Tunable resistive pulse sensing 
 

The concentration and size distribution of a population of EVs was quantified using tunable 

resistive pulse sensing (TRPS), via the qNano platform (IZON Science, New Zealand). The 

nanopore (NP), lower fluid cell and upper fluid cell were first cleaned with 70% ethanol to 

remove all contaminants. Either an NP100 (EV detectable size range of ~50 - 330 nm) or 

NP150 (EV detectable size range of ~70 - 420 nm) (IZON Science, New Zealand) were 

used for measurements and attached to the holding arms of the qNano. Digital callipers 

were used to calibrate the applied nanopore stretch (ranging between 45 – 47 mm for all 

experiments). An aliquot of 78 μl of PBS was applied to the lower fluid cell, with caution 

taken to prevent air bubbles. The upper fluid cell was then attached and the Faraday cage 

placed over the top to reduce background noise. Polystyrene calibration particles (IZON 

Science, New Zealand) complementary to the selected nanopore were vortexed and diluted 

in PBS to the required target particle concentration (particles/ml), before 35 μl was loaded 

on to the upper fluid cell. The PM2 nozzle was then connected and a constant pressure of 

7 mbar applied. Using the IZON control suite software a constant voltage was applied 

across the fluid cell. Runs were recorded for 500 particles or 10 min, whichever came first. 

Following calibration, the upper fluid cell was washed twice with PBS and any residual liquid 

removed. EV samples purified through SEC (section 2.2.7.1) were then measured via the 

same process. Calibration particles and samples were measured under identical 

parameters of nanopore stretch, pressure, voltage and electrolyte solution (PBS), for each 
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independent experiment. Data analysis for EV concentration and size distribution was 

performed using the IZON control suite software. 

 

2.2.8 Statistical analysis 
 

All data are expressed as mean values ± standard error of the mean (SEM) taken from 

three independent experiments, unless stated otherwise. Statistical analysis was performed 

using GraphPad Prism 5 software (GraphPad, La Jolla, CA, USA). Statistical significance 

between data sets was calculated using a Student's t-test or analysis of variance (ANOVA) 

followed by an appropriate post-hoc test, as detailed in the figure legends. A p-value <0.05 

was considered significant. 
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CHAPTER 3: RESULTS 
 

 

3.1 Introduction 
 
 

TG2 is a multifunctional protein, which is widely expressed in nearly all mammalian tissues. 

Although predominantly a cytosolic protein, TG2 is also found to be distributed throughout 

the cell and extracellular environment (Gundemir et al., 2012). To understand its 

physiological relevance in vivo, two TG2 knockout mouse models were generated via 

separate approaches (De Laurenzi and Melino, 2001; Nanda et al., 2001). Surprisingly, both 

TGM2-/- mouse models developed normally, without any overt abnormalities. It was only 

upon further investigation, that TG2 knockout mice were shown to have an impaired wound 

healing response (Merans et al., 2002; Nardacci et al., 2003). It is now understood that TG2 

plays a critical role in tissue repair.  

Following tissue injury, TG2 is upregulated and then externalised into the ECM (Verderio et 

al., 2004). Its ability to crosslink proteins is vital to processes of tissue repair, including 

stabilisation and remodelling of the ECM (Aeschlimann and Thomazy, 2000). However, 

issues occur if an insult continues or termination of the wound healing response becomes 

disrupted. As a result, TG2 accumulates within the extracellular environment, leading to 

excessive deposition of ECM fibrils (e.g. fibronectin and collagen) and increased activation 

of TGFβ1 (Nunes et al., 1997; Telci et al., 2009). 

TGFβ1 is now recognised as an effective pro-fibrotic cytokine, which drives myofibroblast 

transdifferentiation from multiple cellular progenitors (Hinz et al., 2007); although the 

existence of EMT-derived myofibroblast formation is still hotly debated (Hill et al., 2019). 

During tissue repair, myofibroblasts function as the main effector cells. They secrete fibrous 

components of the ECM and also express α-SMA positive stress fibres, which facilitate 

wound contraction (Bochaton-Piallat et al., 2016). Following wound closure, myofibroblasts 

are normally removed via apoptosis (Desmouliere et al., 1995). However, in fibrosis a 

positive feedback loop exists between TG2 and TGFβ1, resulting in the persistence of 
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myofibroblasts (Wang et al., 2018). Ultimately, their sustained activity causes increased 

ECM rigidity and a progressive decline in the functional compliance of the tissue. 

Research has now shown TG2 to be implicated in a number of fibrotic diseases, including 

CF. A study by Maiuri et al. (2008) was the first to highlight an increased expression of TG2, 

within CF airway epithelial cells. It was demonstrated that intracellular TG2-mediated 

crosslinking, induces the functional sequestration of the anti-inflammatory PPARγ protein. 

A further derangement of the proteostasis network was then revealed, after TG2 was seen 

to disable autophagy in ΔF508 CF bronchial epithelial cell lines and the lungs of ΔF508 

homozygous mice (Luciani et al., 2010).  

Thereafter, TG2 was found to have an additional pathological role, relating to fibrotic 

changes in the ECM of CF airway epithelia (Nyabam et al., 2016). This novel investigation 

identified a link between elevated levels of cell surface TG2, increased extracellular TGFβ1 

protein expression and the subsequent induction of EMT. However, these findings are 

representative of a single study, with the sole use of immortalised CF epithelial cells as a 

model system. Validation of results and further research is therefore an important next step. 

Overall, given the importance of TG2 in CF, targeted inhibition of its aberrant activity 

represents a viable opportunity for therapeutic intervention. 

 

3.2 Aims and Objectives 
 
 

This chapter uses immortalised and primary CF bronchial epithelial cell model systems to: 

 

(1) Examine the importance of extracellular TG2 and matrix deposition of fibronectin in CF 

progression. 

(2) Investigate EMT-derived myofibroblast transdifferentiation in CF airway epithelial cells. 

(3) Identify differences in the protein levels of TG2, fibronectin and EMT induction for CF 

primary HBECs, isolated from three separate (∆F508 homozygous) CF patients.  

(4) Perform proof of concept experiments using CF primary HBECs, to test the efficacy of 

combination treatment (an approved CFTR corrector with a TG2 specific inhibitor). 
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3.3 Results 
 

3.3.1 Characterisation of TG2 protein levels in C38 and IB3 cells 
 

As previously discussed, TG2 plays a pivotal role in the progression of a number of fibrotic 

conditions. In CF airway epithelial cells, TG2-mediated crosslinking has been linked to 

defective autophagy (Luciani et al., 2011) and the induction of EMT (Nyabam et al., 2016). 

This is thought to result from a constitutive upregulation of TG2 within these cells (Luciani 

et al., 2009). To further validate this finding, TG2 expression was measured in ‘CF diseased 

state’ IB3 cells, in comparison to ‘CFTR corrected’ C38 cells.  

C38 and IB3 cells were cultured for 72 h, before whole cell lysates were collected and TG2 

protein levels were measured via western blot analysis. As shown in Figure 3.1, TG2 protein 

expression was significantly higher in IB3 cells compared to C38 cells, with an observed 

increase of ~6.2-fold (p<0.001). 
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3.3.2 Investigating EMT-derived myofibroblast transdifferentiation of IB3 cells 
 

A recent study by Nyabam et al. (2016), reported that TG2 overexpression can drive EMT 

progression in IB3 cells. Intriguingly, EMT has also been observed in idiopathic pulmonary 

fibrosis (IPF), with alveolar epithelial cells functioning as the cellular progenitors of 

myofibroblasts (Kim et al., 2006). However, the process of epithelial to myofibroblast 

transdifferentiation, is yet to be examined in CF. The protein expression of α-SMA is 

considered the most reliable hallmark of mature myofibroblasts (Hinz et al., 2007). As such, 

protein levels of α-SMA and two mesenchymal-specific markers (fibronectin and N-

cadherin) were measured in IB3 cells, in comparison to ‘CFTR corrected’ C38 cells. 

Figure 3.1. Measurement of TG2 protein expression in С38 and IB3 cells. C38 and IB3 cells 

were grown for 72 h, before whole cell lysates were collected and proteins separated using SDS-

PAGE. Following protein transfer, western blot analysis was performed for detection of TG2. 

Membranes were stripped and reprobed for the loading control GAPDH. (A) Representative western 

blot of TG2 protein expression. (B) Densitometry of TG2 protein levels, measured using ImageJ 

software. Data normalised to GAPDH and expressed as the mean fold change ± SEM, in 

comparison to C38 cells. Statistical analysis of three independent experiments (N=3) using an 

unpaired, two-tailed t-test; ***P<0.001. 
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C38 and IB3 cells were cultured for 72 h, before whole cell lysates were collected and 

samples analysed using western blot analysis. The protein expression of fibronectin, N-

cadherin and α-SMA was found to be significantly higher in IB3 cells compared to C38 cells, 

with an increase of ˃2-fold (p<0.01) measured for all three proteins (Figure 3.2). 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Measurement of fibronectin, N-cadherin and α-SMA protein expression in C38 

and IB3 cells. C38 and IB3 cells were grown for 72 h, before whole cell lysates were collected and 

proteins separated using SDS-PAGE. Following protein transfer, western blot analysis was 

performed for detection of fibronectin, N-cadherin and α-SMA. Membranes were stripped and 

reprobed for the loading control GAPDH. (A) Representative western blots of fibronectin, N-

cadherin and α-SMA protein expression. Densitometry of (B) fibronectin (C) N-cadherin and (D) α-

SMA protein levels, measured using ImageJ software. Data normalised to GAPDH and expressed 

as the mean fold change ± SEM, in comparison to C38 cells. Statistical analysis of three 

independent experiments (N=3) using an unpaired, two-tailed t-test; **P<0.01. 
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3.3.3 Characterisation of TG2 and fibronectin deposition levels in the ECM of 

C38 and IB3 cells 
 

As demonstrated in Figure 3.1, IB3 cells express intrinsically high levels of TG2. This 

enzyme is an important regulator of ECM stability and increased externalisation of TG2 

serves as a prominent feature of fibrosis (Furini et al., 2020). Elevated levels of extracellular 

TG2 cause excessive deposition of fibronectin into the ECM, which is a major contributing 

factor in the shift from normal tissue repair to fibrogenesis (To and Midwood, 2011). 

Although this process has been established in other fibrotic diseases, research has so far 

been limited in CF. Therefore, TG2 and fibronectin protein expression was measured in the 

ECM of IB3 cells, in comparison to the ECM of C38 cells. 

C38 and IB3 cells were cultured for 72 h, before cells were detached and the ECM collected. 

Samples were analysed using western blot analysis. As illustrated in Figure 3.3, TG2 and 

fibronectin deposition was significantly higher in the ECM of IB3 cells compared to the ECM 

of C38 cells, with an increase of ˃6-fold (p<0.001) measured for both proteins. 
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Figure 3.3. Measurement of TG2 and fibronectin protein expression in the ECM of С38 and 

IB3 cells. C38 and IB3 cells were grown for 72 h, before the cells were detached using 2mM EDTA. 

The ECM fractions were collected and proteins separated using SDS-PAGE. Following protein 

transfer, western blot analysis was performed for the detection of TG2 and fibronectin in the ECM. 

Ponceau S staining was used as a loading control. (A) Representative western blots of TG2 and 

fibronectin protein expression in the ECM. Densitometry of (B) TG2 (ECM) and (C) fibronectin 

(ECM) protein levels, measured using ImageJ software. Data normalised to Ponceau S staining 

and expressed as the mean fold change ± SEM, in comparison to C38 cells. Statistical analysis of 

three independent experiments (N=3) using an unpaired, two-tailed t-test; ***P<0.001. 
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3.3.4 Assessing the co-localisation of TG2 and fibronectin in the ECM of C38 

and IB3 cells 
 

TG2 can promote tissue fibrosis via its direct interaction with exogenous fibronectin. 

Research has shown that externalised TG2 increases the matrix deposition of fibronectin 

through enzymatic crosslinking (Philp et al., 2018) and by acting as a coreceptor for the 

assembly of fibronectin-integrin complexes (Akimov et al., 2000). An increased presence of 

TG2 and fibronectin was found in the ECM of IB3 cells, in comparison to the ECM of C38 

cells (Figure 3.3). However, the level of association between TG2 and fibronectin in the 

matrix, cannot be validated by this data alone. As such, both proteins were assessed for 

their localisation within the extracellular environment of C38 and IB3 cells, by using two-

colour immunofluorescence staining. 

C38 and IB3 cells were seeded in 8-well chamber slides and grown for 24 h. Extracellular 

TG2 and fibronectin protein expression was then visualised via indirect 

immunofluorescence staining, with FITC (green) and TRITC (red) labelled antibodies, 

respectively. As shown in Figures 3.4 B and C, TG2 and fibronectin protein levels were 

significantly increased in the ECM of IB3 cells (p<0.05), compared to the ECM of C38 cells. 

In addition, co-localisation of TG2 and fibronectin was detected in the ECM of both C38 and 

IB3 cells, as identified by the spatial overlap of the two fluorescent markers (Figure 3.4 A).  
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Figure 3.4. Immunofluorescence staining of TG2 and fibronectin in the ECM of C38 and IB3 

cells. C38 and IB3 cells were seeded in 8-well chamber slides and grown for 24 h. Cells were then 

fixed and two-colour immunofluorescence staining used for the detection of TG2 and fibronectin 

matrix protein levels. DAPI (blue) was used as a nuclear counterstain to label cells. Images were 

captured using a Leica® DMI4000 B inverted fluorescence microscope, at 40X objective. (A) 

Representative images of TG2 (green) and fibronectin (red) protein expression in the ECM. Images 

were analysed using ImageJ software and the relative fluorescence of (B) TG2 (ECM) and (C) 

fibronectin (ECM) quantified. Data expressed as the mean fold change ± SEM, in comparison to 

C38 cells. Statistical analysis of two independent experiments (N=2) using an unpaired, two-tailed 

t-test; *P<0.05.  
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3.3.5 Evaluating the integrity of tight junctions in С38 and IB3 cells 
 

Pulmonary epithelium serves as a structured barrier, to preclude harmful luminal contents 

from contacting the subepithelial tissue (Brune et al., 2015). In contrast, IB3 cells appear to 

undergo EMT-derived myofibroblast transdifferentiation (Figure 3.2). This would indicate a 

loss of apical-basal cell polarity, with CF airway epithelium possessing a diminished 

capacity to function as a robust cellular barrier. As a result, TEER was used to assess the 

electrical resistance of C38 and IB3 cell monolayers at ALI. TEER quantitatively measures 

the ionic conductance of the paracellular pathway, so is therefore a strong indicator of 

cellular tight junction integrity. 

C38 and IB3 cells were cultured at ALI for 14 days. TEER values were measured using an 

epithelial voltohmmeter, with readings taken at stated time points between 0–14 days post 

ALI. C38 cells were found to have increased TEER values across all time points measured, 

in comparison to IB3 cells (Figure 3.5). Yet, only at day 14 was the increase in TEER seen 

to be statistically significant (p<0.01).  
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3.3.6 Characterisation of TG2 and fibronectin deposition levels in the ECM of 

HBECs and CF primary cells 
 

Novel data shown in Figures 3.3 and 3.4, has revealed that TG2 and fibronectin deposition 

is upregulated in the ECM of IB3 cells. Yet, these findings are limited by the use of 

immortalised epithelial cell lines (C38 and IB3 cells), which have undergone extensive 

adaptation and selection processes. Such measures can result in genetic changes, which 

cause some of the original parental cell features to be altered or lost (Awatade et al., 2018). 

For this reason, it is important to use a more physiologically relevant model system, to 

substantiate results obtained from immortalised cell studies. Therefore, TG2 and fibronectin 

protein levels were measured in the ECM of CF primary HBECs (isolated from three ΔF508 

homozygous CF patients, identified as 030, 032 & 037), in comparison to the ECM of normal 

primary HBECs. 

Figure 3.5. TEER measurements of C38 and IB3 cells. C38 and IB3 cells were cultured in 
Transwell® inserts for 14 days at ALI. The electrical resistance (Ω) of each Transwell® was 

measured using an epithelial voltohmmeter and recorded at time points of 0, 2, 4, 8 and 14 days 

post ALI. Measurements were taken in triplicate and the electrical resistance of a collagen coated 

Transwell® in the absence of cells, subtracted from experimental groups. Final TEER values 

presented as Ω.cm2. Data expressed as the mean ± SEM of three independent experiments (N=3). 

Statistical analysis performed using a two-way ANOVA, with a post-hoc Bonferroni multiple 

comparison test; **P<0.01. 
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HBECs and CF primary cells (030, 032 and 037) were cultured for 72 h, before cells were 

detached and the ECM collected. Samples were analysed using western blot analysis. As 

demonstrated in Figure 3.6, protein levels of TG2 and fibronectin were found to be 

significantly higher in the ECM of all three CF primary cells, compared to the ECM of normal 

HBECs. Overall, the increase in matrix deposition of TG2 and fibronectin was measured to 

be ˃3-fold, for all three CF primary cells. Interestingly, differences in protein expression 

were also observed between CF primary cells, with 032 cells (p<0.05) exhibiting significantly 

higher levels of fibronectin matrix deposition, in comparison to 030 cells. 
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Figure 3.6. Measurement of TG2 and fibronectin protein expression in the ECM of HBECs 

and CF primary cells. HBECs and CF primary cells (030, 032 and 037) were grown for 72 h, before 

the cells were detached using 2mM EDTA. The ECM fractions were collected and proteins 

separated using SDS-PAGE. Following protein transfer, western blot analysis was performed for 

the detection of TG2 and fibronectin in the ECM. (A) Representative western blots of TG2 and 

fibronectin protein expression in the ECM. Densitometry of (B) TG2 (ECM) and (C) fibronectin 

(ECM) protein levels, measured using ImageJ software. Data expressed as the mean fold change 

± SEM, in comparison to HBECs. Statistical analysis of three independent experiments (N=3) using 

a one-way ANOVA, with a post-hoc Tukey test; *P<0.05, **P<0.01, ***P<0.001. 
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3.3.7 Assessing the co-localisation of TG2 and fibronectin in the ECM of 

HBECs and CF primary cells 
 

Data shown in Figure 3.4, evidences the co-localised overexpression of TG2 and fibronectin 

in the ECM of IB3 cells. In support of these findings, both proteins were found to have 

increased deposition in the ECM of CF primary cells (030, 032 and 037), compared to the 

ECM of HBECs (Figure 3.6). On the other hand, the capacity for TG2 and fibronectin to 

associate in the ECM of CF primary cells, has never been investigated. As such, the 

localisation of both proteins was assessed within the extracellular environment of CF 

primary cells, by using two-colour immunofluorescence staining. Normal HBECs were used 

for comparison as a healthy control. 

HBECs and CF primary cells (030 and 032) were seeded in 8-well chamber slides and 

grown for 16 h. Extracellular TG2 and fibronectin protein expression was then visualised via 

indirect immunofluorescence staining, with FITC (green) and TRITC (red) labelled 

antibodies, respectively. As shown in Figure 3.7 B, TG2 protein expression was significantly 

increased in the ECM of 030 and 032 cells by ~3-fold (p<0.05) and ~4.7-fold (p<0.001) 

respectively, in comparison to the ECM of HBECs. Further to this, 032 cells (p<0.05) 

demonstrated significantly higher levels of matrix TG2, compared to 030 cells. Similarly, 

fibronectin protein levels were found to be increased in the ECM of 030 and 032 cells, in 

comparison to the ECM of HBECs (Figure 3.7 C). However, changes in protein expression 

failed to reach statistical significance. Interestingly, co-localisation of TG2 and fibronectin 

was detected in the ECM of both 030 and 032 cells, as identified by the appearance of a 

yellow colour after images of TG2 and fibronectin were superimposed (Figure 3.7 A). 
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Figure 3.7. Immunofluorescence staining of TG2 and fibronectin in the ECM of HBECs and 

CF primary cells. HBECs and CF primary cells (030, 032) were seeded in 8-well chamber slides 

and grown for 16 h. Cells were then fixed and two-colour immunofluorescence staining used for the 

detection of TG2 and fibronectin matrix protein levels. DAPI (blue) was used as a nuclear 

counterstain to label cells. Images were captured using a Leica® DMI4000 B inverted fluorescence 

microscope, at 40X objective. (A) Representative images of TG2 (green) and fibronectin (red) 

protein expression in the ECM. Images were analysed using ImageJ software and the relative 

fluorescence of (B) TG2 (ECM) and (C) fibronectin (ECM) quantified. Data expressed as the mean 

fold change ± SEM, in comparison to HBECs. Statistical analysis of three independent experiments 

(N=3) using a one-way ANOVA, with a post-hoc Tukey test; ns, not significant, *P<0.05, ***P<0.001. 
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3.3.8 Examining the existence of EMT in CF primary cells 
 

Previous research from the literature (Nyabam et al., 2016) and this study (Figure 3.2), has 

revealed that IB3 cells undergo EMT. Nevertheless, the existence of EMT is yet to be 

examined in the model system of CF primary HBECs. At present, it is unknown whether 

EMT is an artefact of the IB3 cell line or is indeed a common feature of CF airway epithelium. 

For this reason, protein levels of E-cadherin (epithelial cell marker) and N-cadherin 

(mesenchymal cell marker) were measured on the surface of CF primary cells, by using 

immunofluorescence staining. Normal HBECs were used for comparison as a healthy 

control. 

HBECs and CF primary cells (030, 032 and 037) were seeded in 8-well chamber slides and 

grown for 16 h. Cell surface E-cadherin and N-cadherin protein expression was then 

visualised via indirect immunofluorescence staining, with TRITC (red) and FITC (green) 

labelled antibodies, respectively. These data show that E-cadherin protein levels were 

significantly decreased on the surface of all CF primary cells (p<0.05), in comparison to 

HBECs (Figures 3.8 A and B). In contrast, N-cadherin protein levels were significantly 

increased on the surface of all CF primary cells, in comparison to HBECs (Figures 3.8 A 

and C). Moreover, 032 cells (p<0.05) showed significantly higher surface protein levels of 

N-cadherin, compared to 030 and 037 cells. 
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Figure 3.8. Immunofluorescence staining of E-cadherin and N-cadherin on the cell surface 

of HBECs and CF primary cells. HBECs and CF primary cells (030, 032 and 037) were seeded 

in 8-well chamber slides and grown for 16 h. Cells were then fixed and immunofluorescence staining 

used to independently detect E-cadherin and N-cadherin cell surface protein levels. DAPI (blue) 

was used as a nuclear counterstain to label cells. Images were captured using a Leica® DMI4000 

B inverted fluorescence microscope, at 40X objective. (A) Representative images of E-cadherin 

(red) and N-cadherin (green) protein expression on the cell surface. Images were analysed using 

ImageJ software and the relative fluorescence of (B) E-cadherin and (C) N-cadherin quantified. 

Data expressed as the mean fold change ± SEM, in comparison to HBECs. Statistical analysis of 

two independent experiments (N=2) using a one-way ANOVA, with a post-hoc Tukey test; ns, not 

significant, *P<0.05, **P<0.01. 
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3.3.9 Evaluating the integrity of tight junctions in HBECs and CF primary cells 
 

C38 and IB3 cells cultured at ALI, exhibit large differences in TEER values (Figure 3.5). 

After 14 days, IB3 cell monolayers were found to have significantly reduced levels of 

electrical resistance, in comparison to C38 cell monolayers. This data suggests that the 

integrity of tight junctions in the epithelial cell barrier is likely compromised in CF airways. 

However, immortalised airway epithelial cells often experience incomplete mucociliary 

differentiation, when cultured at ALI (Luengen et al., 2020). By contrast, primary airway 

epithelial cells cultured at ALI are the considered the gold standard for obtaining a 

pseudostratified mucociliary phenotype in vitro (Srinivasan et al., 2015). Therefore, TEER 

was measured for HBECs and CF primary cells, to confirm the accuracy of the findings in 

Figure 3.5. 

HBECs and CF primary cells (030, 032 and 037) were cultured at ALI for 14 days. TEER 

values were measured using an epithelial voltohmmeter, with readings taken at stated time 

points between 0–14 days post ALI. HBECs were found to have increased TEER values 

across all time points measured, in comparison to all three CF primary cells (Figure 3.9). 

Notably, HBECs showed significant increases in TEER at day 4 (p<0.01) and day 14 

(p<0.001), compared to all three CF primary cells. Further differences in TEER values were 

also observed between CF primary cells. 030 cells demonstrated significant increases in 

TEER at day 8 (p<0.01) and day 14 (p<0.001), compared to 032 cells. Similarly, 037 cells 

were seen to have a significantly higher TEER value at day 14 (p<0.01), in comparison to 

032 cells. 
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Figure 3.9. TEER measurements of HBECs and CF primary cells. HBECs and CF primary cells 

(030, 032 and 037) were cultured in Transwell® inserts for 14 days at ALI. The electrical resistance 

(Ω) of each Transwell® was measured using an epithelial voltohmmeter and recorded at time points 

of 0, 2, 4, 8 and 14 days post ALI. Measurements were taken in triplicate and the electrical 

resistance of a collagen coated Transwell® in the absence of cells, subtracted from experimental 

groups. Final TEER values presented as Ω.cm2. Data expressed as the mean ± SEM of three 

independent experiments (N=3). Statistical analysis performed using a two-way ANOVA, with a 

post-hoc Bonferroni multiple comparison test; **P<0.01, ***P<0.001, the minimum level of 

significance reached by HEBCs, in comparison to all CF primary cells; ¥¥P<0.01, ¥¥¥P<0.001 

significant difference between 030 and 032 cells; ††P<0.01, significant difference between 032 and 

037 cells. 

 

   

0 2 4 6 8 10 12 14
0

100

200

300

400

500
HBEC

030
***

032

037

**

¥¥

††

¥¥¥

Time (days)

T
E

E
R

 (



c
m

2
)



 J.M.Gavin, PhD Thesis, Aston University 2020.                                            96 
 

3.3.10 Evaluating the cell migration levels of HBECs in comparison to CF 

primary cells  
 

CF primary cells (030, 032 and 037) have been shown to exhibit the hallmark of EMT, with 

an upregulation of N-cadherin protein expression in conjunction with a downregulation of E-

cadherin protein expression (Figure 3.8). CF primary cells (030, 032 and 037) were also 

found to have reduced TEER values in comparison to HBECs (Figure 3.9). It is now well 

understood that a central feature of EMT, is the loss of cell-cell adhesion and the acquisition 

of cell motility (Loh et al., 2019). Therefore, the cell migration levels of CF primary cells were 

measured in comparison to HBECs, to further validate the existence of EMT progression in 

CF bronchial epithelial cells. 

An in vitro scratch assay was performed to quantify the cell migration levels of HBECs and 

CF primary cells (030, 032 and 037), over 16 hours. All three CF primary cells exhibited a 

level of increased percentage wound closure, in comparison to HBECs (Figure 3.10). 

Intriguingly, percentage wound closure also differed between CF primary cells, with 030 

cells demonstrating the lowest percentage wound closure (63%) and 037 cells the highest 

(100%).  
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Figure 3.10. Measurement of percentage wound closure for HBECs and CF primary cells. 

HBECs and CF primary cells (030, 032 and 037) were seeded in a 24 well plate and grown until 

confluent, before a scratch was made in each cell monolayer. Images were acquired in triplicate at 

0 h and 16 h post-wounding. (A) Representative images of each scratch, captured at the specified 

time points. Images were analysed using ImageJ software and (B) cell migration calculated as the 

percentage wound closure, relative to the original area of the wound at 0 h. Data expressed as the 

mean ± SEM of an independent experiment (N=1), performed in triplicate 
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3.3.11 The combined effect of a CFTR corrector and TG2 inhibitor on TG2 

protein expression in CF primary cells 
 

Emerging evidence suggests, that a complex derangement of the proteostasis network 

takes place within ΔF508 CF bronchial epithelial cells (Bodas and Vij, 2019). Previous 

research from the literature (Maiuri et al., 2008; Luciani et al., 2009, 2010; Nyabam et al., 

2016) has demonstrated that TG2 is a key regulator of these changes. With the advent of 

potent and selective TG2 inhibitors (Badarau et al., 2015), a novel therapeutic avenue now 

exists. Using a two-directional (direct/indirect) approach, TG2 inhibitors could potentially be 

used to complement existing drugs, which currently all target CFTR directly. Thus, a proof 

of concept experiment was designed, to test the efficacy of this multi-pronged treatment. An 

approved CFTR corrector (VX-809) was used in combination with a selective TG2 inhibitor 

(1-155) and the effect on TG2 expression in CF primary cells was measured.  

CF primary cells (030, 032 and 037) were treated with either VX-809 (2.5 µM), 1-155 (2.5 

µM) or VX-809 (2.5 µM) and 1-155 (2.5 µM) combined. Following treatment for 72 h, whole 

cell lysates were collected and TG2 protein expression was measured via western blotting. 

The results from each independent experiment (involving the use of separate CF patient 

primary cells, i.e. 030, 032 and 037), were combined for statistical analysis. These data 

show a decrease in TG2 expression across all treatment conditions (Figure 3.11). Both 1-

155 alone and VX-809 in combination with 1-155 were able to significantly reduce TG2 

protein levels by 53% (p<0.05) and 67% (p<0.01) respectively, in comparison to untreated 

CF primary cells.  
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Figure 3.11. Measurement of TG2 protein expression in CF primary cells following treatment 

with VX-809 and 1-155 alone or in combination. CF primary cells (030, 032 and 037) were treated 

with VX-809 (2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) and 1-155 (2.5 µM) for 72 h, with 

treatments changed every 24 h. Whole cell lysates were collected and proteins separated using 

SDS-PAGE. Following protein transfer, western blot analysis was performed for detection of TG2. 

Membranes were stripped and reprobed for the loading control GAPDH. (A) Representative western 

blot of TG2 protein expression. (B) Densitometry of TG2 protein levels, measured using ImageJ 

software. Data normalised to GAPDH and expressed as the mean fold change ± SEM, in 

comparison to untreated CF primary cells. Three independent experiments, each using separate 

CF patient primary cells (N=3), were statistically analysed using a one-way ANOVA, with a post-

hoc Tukey test; ns, not significant, *P<0.05, **P<0.01. 
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3.3.12 Evaluating the integrity of tight junctions in 030 cells following 

treatment with a CFTR corrector and TG2 inhibitor in combination 
 

As revealed in Figure 3.11, two-directional combination treatment (VX-809 and 1-155) 

significantly reduced the protein expression of TG2, in CF primary HBECs isolated from 

three different individuals (030, 032 and 037). Remarkably, combination treatment was also 

seen to decrease TG2 protein levels to a greater extent than the use of either compound 

alone, with a close to additive effect observed. Although the results from this initial 

investigation are promising, only a single protein marker (TG2) was used for analysis. Thus, 

an examination of epithelial cell barrier function was performed, to further assess the 

efficacy of two-directional pharmacotherapy. As previously revealed, the structural integrity 

of airway epithelium is attenuated in CF (Figures 3.5 and 3.9). Therefore, TEER was used 

to determine whether tight junction complexes could be restored in CF primary HBECs, 

following combination treatment with VX-809 and 1-155.  

030 cells were cultured at ALI for 14 days and treated with either VX-809 (2.5 µM), 1-155 

(2.5 µM) or VX-809 (2.5 µM) and 1-155 (2.5 µM) in combination, with treatments changed 

every 24 h prior to ALI and every 48 h thereafter. Normal HBECs were used for comparison 

as a healthy control. TEER values were measured using an epithelial voltohmmeter, with 

readings taken at stated time points between 0 - 14 days post ALI. At day 8, a significant 

increase in TEER values was observed for HBECs (p<0.01) and 030 cells treated with VX-

809 and 1-155 (p<0.05), compared to untreated 030 cells (Figure 3.12). Even greater 

differences in TEER values were seen at day 14, with significant increases measured for 

HBECs (p<0.001) and 030 cells treated with either 1-155 (p<0.01) or VX-809 and 1-155 

(p<0.001), in comparison to untreated 030 cells. 
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Figure 3.12. TEER measurements of 030 cells following treatment with VX-809 and 1-155 

alone or in combination. HBECs and 030 cells were cultured in Transwell® inserts for 14 days at 

ALI. 030 cells were treated with VX-809 (2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) and 1-155 

(2.5 µM), with treatments changed every 24 h prior to ALI and every 48 h thereafter. DMSO was 

used as a vehicle control. The electrical resistance (Ω) of each Transwell® was measured using an 

epithelial voltohmmeter and recorded at time points of 0, 2, 4, 8 and 14 days post ALI. 

Measurements were taken in triplicate and the electrical resistance of a collagen coated Transwell® 

in the absence of cells, subtracted from experimental groups. Final TEER values presented as 

Ω.cm2. Data expressed as the mean ± SEM of three independent experiments (N=3). Statistical 

analysis performed using a two-way ANOVA, with a post-hoc Bonferroni multiple comparison test; 

*P<0.05, **P<0.01, ***P<0.001. 
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3.4 Discussion 
 
 

It is now established that TG2 plays a pivotal intracellular role, as regards to derangement 

of the proteostasis network in CF airway epithelia (Maiuri et al., 2008; Luciani et al., 2009, 

2010; Tosco et al., 2016). However, a study has recently emerged which suggests that TG2 

is also responsible for pathological changes in the extracellular environment of these cells 

(Nyabam et al., 2016). This chapter looks to expand upon the initial observations of that 

research, to further understand the interrelationship between TG2, EMT and the 

development of fibrosis in CF. To begin with, a comparative analysis of TG2 protein 

expression was performed using the ‘CF diseased state’ IB3 cell line and the ‘CFTR 

corrected’ C38 cell line. As expected, TG2 protein levels were significantly elevated in IB3 

cells compared to C38 cells, thus reinforcing the extensively reported link between CF and 

TG2 overexpression in airway epithelial cells.  

It is becoming increasingly clear that EMT is involved in the pathogenesis of progressive 

fibrosis. Induction of EMT has now been evidenced in fibrotic diseases of the kidney (Iwano 

et al., 2002) lung (Kim et al., 2006), liver (Rygiel et al., 2008), and heart (Zhou et al., 2010). 

Nevertheless, the capacity for EMT to contribute towards the myofibroblast population, still 

remains controversial (Hill et al., 2019). Interestingly, the upregulation of TG2 in CF airway 

epithelia, has been found to be associated with the acquisition of a mesenchymal phenotype 

(Nyabam et al., 2016). Data within this chapter confirms the elevation of mesenchymal 

protein expression in IB3 cells and demonstrates for the first time, an increased presence 

of the myofibroblast marker, α-SMA. Taken together, this indicates that CF bronchial 

epithelial cells undergo EMT-derived myofibroblast transdifferentiation. Yet, it must also be 

considered that cells are extremely sensitive to changes in their biophysical 

microenvironment (Tschumperlin et al., 2013). Matrix stiffness is now recognised as a 

crucial regulator of myofibroblast formation (Liu et al., 2010). It would seem logical that TG2-

mediated ECM crosslinking, is acting as a key driver of this process. However, research 

suggests that the use of plasticware for in vitro cell culture, may also provide a rigid 
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substrate for the mechanoactivation of myofibroblasts (Hinz et al., 2007; Chadli et al., 2019). 

As such, the contribution of each element to the myofibroblast transdifferentiation of IB3 

cells is unclear.  

As stated above, TG2 can promote fibrotic remodelling of the ECM. Studies using separate 

disease models, have continued to demonstrate a strong correlation between higher levels 

of extracellular TG2 and the increased synthesis / deposition of fibrous ECM proteins (Telci 

et al., 2009; Espitia Pinzón et al., 2017; Philp et al., 2018; Shinde et al., 2020). This study 

is the first to confirm such changes in the context of CF. Data from this chapter identifies 

the co-localised overexpression of TG2 and fibronectin, in the ECM of IB3 cells. Firstly, this 

suggests that the cellular export of TG2 is increased by CF airway epithelia, agreeing with 

the work by Nyabam et al. (2016), which measured high levels of TG2 on the cell surface 

of IB3 cells. Furthermore, the spatial overlap of the two fluorescent markers may indicate 

an association between TG2 and fibronectin in the extracellular environment of CF airway 

epithelial cells. Nevertheless, further investigation would be required to validate the 

presence of such a protein-protein interaction. 

EMT has now been shown to have an underlying role in various fibrotic lung diseases 

including: asthma (Johnson et al., 2013), IPF (Jonsdottir et al., 2015) and chronic 

obstructive pulmonary disease (COPD) (Milara et al., 2013). It is understood that one of the 

earliest cellular events of EMT is the disassembly of epithelial – epithelial cell contacts (e.g. 

tight junctions) and the loss of apical-basal cell polarity (Lamouille et al., 2014). In fact, an 

intrinsic disruption of the tight junctions has been evidenced in the airway epithelium of all 

the diseases mentioned prior (Heijink et al., 2014; Ohta et al., 2012; Xiao et al., 2011). 

Research now suggests that the barrier function of CF airway epithelium may also be 

compromised. Two studies have previously found that CFBE41o- (ΔF508 homozygous) cell 

monolayers exhibit a lower TEER, in comparison to normal 16HBE14o- cell monolayers 

(Weiser et al., 2011; Castellani et al., 2012). Data within this chapter supports these 

findings, in which TEER values were measured using a separate CF epithelial cell line. It 
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was shown that after 14 days at ALI, IB3 cell monolayers had significantly decreased TEER, 

compared to C38 cell monolayers. Taken together with the previous studies, it seems likely 

that tight junction integrity is diminished in CF airway epithelium. Furthermore, considering 

that IB3 cells undergo EMT-derived myofibroblast transdifferentiation, the loss of barrier 

function may well be a feature of this phenotypic change.  

Although CF bronchial epithelial cell lines have proven to be of considerable value to CF 

research, there are inherent limitations that exist with the use of immortalised cells. The 

process of transformation is accompanied by karyotypic instability, which can lead to 

alterations in cell morphology, as well as cell function (Gruenert et al., 2004). As a result, 

cell lines may express dissimilar phenotypic characteristics, relative to the cell type of origin. 

For example, cigarette smoke exposure has been shown to have markedly different effects 

on CF immortalised cells, in comparison to CF primary cells (Williams et al., 2016). This 

research serves to highlight the importance of using primary cells, to substantiate 

experimental findings derived from the use of cell lines.  

Therefore, primary HBECs isolated from three ∆F508 homozygous individuals were 

characterised, so as to confirm the results obtained with IB3 cells. Crucially, all primary cells 

were used up to a maximum passage of 5, to minimise the phenotypic changes associated 

with prolonged primary cell culture, e.g. cellular senescence. It was found that TG2 and 

fibronectin protein levels were significantly higher in the ECM of CF primary HBECs, 

compared to ECM of normal HBECs. By using two-colour immunofluorescence staining, 

TG2 and fibronectin were also shown to co-localise in the ECM of CF primary HBECs. 

These data provide further evidence that there is an increased cellular export of TG2 by CF 

airway epithelia, which is associated with enhanced matrix deposition of fibronectin. 

As indicated previously, IB3 cells exhibit EMT induction and impaired tight junction integrity. 

However, the detection of functional EMT changes in CF airway epithelia, has only ever 

been established using the IB3 cell line (Nyabam et al., 2016). A recent literature review 

highlights the absence of CF primary cell studies (Amaral et al., 2020). To date, only a single 
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study has noted the existence of EMT in CF primary cells; a profiling transcriptome meta-

analysis, which identified an EMT signature in CF patient nasal samples (Clarke et al., 

2015). For that reason, CF primary HBECs were examined for functional indicators of EMT. 

It was revealed that CF primary HBECs show increased N-cadherin protein expression, 

decreased E-cadherin protein expression, reduced TEER and higher levels of cell 

migration, in comparison to normal HBECs. Unfortunately, due to unforeseen 

circumstances, CF primary HBECs could no longer be used after the first year of research. 

As such, it was not possible to measure α-SMA protein levels in CF primary HBECs. 

Furthermore, the lack of CF primary HBECs, prevented the obtainment of additional 

biological replicates for some experiments. Nevertheless, these findings demonstrate for 

the first time that CF airway epithelial cells undergo EMT, although the potential influence 

of in vitro cell culture must also be recognised.  

Interestingly, differences between CF primary HBECs were also observed. In general, 032 

cells exhibited the most severe phenotype, in terms of disease state. Compared to the other 

CF primary HBEC isolates, 032 cells showed the greatest matrix deposition of TG2 and 

fibronectin, the largest change in EMT protein expression and the lowest TEER. It must be 

noted however, that 037 cells demonstrated the highest cell migration levels. Yet, this 

discrepancy may possibly be explained by the fact that the result is representative of a 

single experiment. As a whole, these findings highlight the intersubject variability found 

between CF patients, even those which possess identical CFTR mutations. Still, it remains 

unclear whether these results reflect genuine biological differences, or instead denote 

inconsistencies in the method / circumstances of isolating cells. Moreover, CF primary 

HBECs are typically isolated from lung explants and post-mortem samples (Randell et al., 

2011). With this tissue having progressed to an end of disease stage, it raises the question 

as to whether CF primary HBEC isolates ever reflect cell phenotype at an earlier disease 

state? (Clancy et al., 2019). 
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As outlined previously, CF animal models have been constrained by their inability to 

recapitulate organ abnormalities seen in humans with CF (Semaniakou et al., 2019). As 

such, CF primary cells have acted as critical bridge in terms of a relevant pathophysiological 

model system, which can be used to complement immortalised cell studies. Within this 

chapter, both types of cell model system have been used to demonstrate the importance of 

TG2, in CF airway epithelia. Previous research has shown that the selective inhibition of 

TG2, functions to have a therapeutic effect on IB3 cells (Nyabam et al., 2016). However, 

modulators directed at non-CFTR targets have recently failed in clinical trials (e.g. Ataluren 

and Cavosonstat), having lacked the relevant primary cell data (Clancy et al., 2019; Konstan 

et al., 2020). Hence, CF primary HBECs were used for proof of concept experiments, to test 

the use of TG2 specific inhibitor (1-155) with an approved CFTR corrector (VX-809).  

It was revealed that VX-809 and 1-155 could reduce TG2 protein expression in CF primary 

HBECs, to a greater extent than the use of either compound alone. Furthermore, 030 cells 

treated with VX-809 and 1-155 showed significantly increased TEER after 14 days at ALI, 

with TEER reaching almost comparable levels as were measured for HBECs. Importantly, 

these data support previous findings, which employed the use of immortalised cell lines for 

testing (Nyabam et al., 2016). This suggests that IB3 cells will provide a reliable cell system 

for further investigation of combination treatment and that TG2 inhibitors could potentially 

be used as therapeutic agents in the treatment of CF.  

In conclusion, this chapter has shown that the protein expression / matrix deposition of TG2 

and fibronectin, is elevated in both IB3 cells and CF primary HBECs. In addition, IB3 cells 

were demonstrated to undergo EMT-derived myofibroblast transdifferentiation, with CF 

primary HBECs also found to exhibit increased EMT. Moreover, intersubject variability was 

observed between different CF (ΔF508 homozygous) primary HBEC isolates, as regards to 

the level of fibrotic changes within cells and the surrounding ECM. Finally, combination 

treatment with VX-809 and 1-155 was determined to have a potentially additive therapeutic 

effect on CF primary HBECs, which will be examined further in the following chapter.  
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CHAPTER 4: RESULTS 
 

 

4.1 Introduction 
 
 

CF is a multisystem disease, that results in range of clinical manifestations. Nevertheless, 

the major cause of morbidity and mortality in CF patients, relates to progressive lung 

disease and its eventual outcome of respiratory failure (Zolin et al., 2020). Traditionally, 

treatment has relied upon symptomatic management including: pancreatic enzyme 

replacement therapy, mucolytics, physiotherapy and antibiotics (Stern et al., 2014). In 

addition to early diagnosis, these therapeutic regimens have substantially improved the life 

expectancy of CF patients, rising from early childhood in the 1960’s to around 30 years in 

the 1990’s (Dodge et al., 2007). Yet despite these advances, there remained a clear gap 

between the median survival of CF patients and that of the normal population. Further to 

this, individuals continued to suffer considerable clinical and economic burdens, which 

limited their quality of life (Lopes-Pacheco, 2020). 

However, just over 30 years ago the discovery of the CFTR gene sparked a revolution in 

the treatment of CF (Riordan, 1989). Since then, more than 2000 variants of CFTR have 

been identified, which are now classified into seven distinct functional classes (De Boeck 

and Amaral, 2016). This notion of mutational grouping has laid the foundations for a 

pharmacological approach, in which compounds target a specific class of CFTR defect. 

Indeed, the first CFTR modulator (Ivacaftor) was approved in 2012, albeit this potentiator 

held little benefit for individuals with the most common CFTR mutation, ΔF508 (Flume et 

al., 2012). This led to the development of CFTR correctors (e.g. Lumacaftor), compounds 

designed to facilitate the folding and trafficking of ΔF508 CFTR to the plasma membrane. 

Thereafter, CFTR modulators were combined to improve drug efficacy, resulting in the most 

recent advancement of a triple combination therapy (Kaftrio). Clinical trials have indicated 

that Kaftrio may provide a significant clinical benefit to CF patients with at least one copy of 

the ΔF508 variant (Heijerman et al., 2019). Conversely, this means that 10% of the CF 



 J.M.Gavin, PhD Thesis, Aston University 2020.                                            109 
 

population are still left without a treatment (Cuevas-Ocaña et al., 2020). Furthermore, the 

long-term effects of CFTR- directed modulator combinations are yet unknown.  

Research from the literature now challenges the classical belief, that CF is simply a 

channelopathy (Bodas and Vij, 2019). As mentioned in the previous chapter, the 

proteostasis network within CF airway epithelia is deranged, meaning that correction of 

CFTR alone may be limited in its therapeutic capacity. In fact, TG2 activity has been found 

to play a crucial role in the regulation of CFTR maturation and stability (Nyabam et al., 2016; 

Tosco et al., 2016). Moreover, its pathological influence extends beyond CFTR, with TG2 

seen to promote fibrotic changes in both CF airway epithelial cells and the surrounding ECM 

(Nyabam et al., 2016).  

As such, selective and potent inhibitors of TG2 open up a new therapeutic avenue in CF 

and one which can be combined with currently approved CFTR modulators. By targeting 

the underlying proteostasis dysfunction in CF airway epithelia, therapeutic benefits might 

be gained, in addition to the already impressive results reported for Kaftrio (Griese et al., 

2021). Further to this, TG2 inhibitors have the advantage of acting independently of any 

CFTR mutation and are therefore applicable to all CF patients. Although the preliminary 

data has been encouraging (Nyabam, 2015), this innovative approach of two-directional 

(direct/indirect) pharmacotherapy now requires further investigation.  

 

4.2 Aims and Objectives 
 
 

This chapter aims to evaluate the effectiveness of two-directional combination treatment by: 

 

(1) Investigating the effect of using an approved CFTR corrector (VX-809) with a TG2 

specific inhibitor (1-155) on IB3 cells, compared to use of either compound alone. 

(2) Using a cell-impermeable TG2 inhibitor to understand the role of extracellular TG2 in 

the pathogenesis of CF.   

(3) Examining the significance of TG2-mediated TGFβ1 activation in CF and to determine 

the involvement of canonical and non-canonical downstream signalling pathways.  
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4.3 Results 
 

4.3.1 Determination of half-maximal inhibitory concentration (IC50) for the 

cell-permeable TG2 inhibitor 1-155 
 

Data from chapter 3 establishes a possible link between TG2 and CF progression. Hence, 

TG2 may be a potential therapeutic target for the treatment of CF. Specific, irreversible 

peptidomimetic inhibitors have been developed at Aston University, which target TG2 in its 

Ca2+ activated form. The cell-permeable compound 1-155, has been shown to be a potent 

and highly selective inhibitor of TG2, which was originally determined to have IC50 value of 

~6 nM (Badarau et al., 2015). However, published data evaluating the inhibitory effect of 1-

115 on TG2 activity has been limited. Thus, it is vital to validate the efficacy of 1-155 as a 

TG2 inhibitor, before investigating its therapeutic potential.   

To confirm the IC50 value of 1-155, a transglutaminase activity assay was performed. Ten 

concentrations of 1-155 ranging from 1 nM – 50 μM were tested and decreases in TG2 

activity measured as a percentage, relative to the TG2 activity of a DMSO control. From the 

dose-response curve, the IC50 value of 1-155 was determined to be 18.47 nM (Figure 4.1).  
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4.3.2 The effect of a CFTR corrector on TG2 and fibronectin protein expression 

in IB3 cells 
 

Corrector compounds form the backbone of currently approved CFTR modulator therapies 

(De Boeck, 2020). Numerous studies have demonstrated that correctors rescue the folding, 

processing and trafficking of CFTR mutants to the plasma membrane, for increased Cl- 

transport (Lopes-Pacheco, 2020). However, recent data indicates that CF is more 

complicated than just a simple imbalance in Cl- movement. Loss of CFTR leads to a major 

dysregulation of the proteostasis network in CF airway epithelial cells (Maiuri et al., 2008; 

Luciani et al., 2009, 2011), with TG2 overexpression leading to adverse alterations of the 

ECM (Nyabam et al., 2016). Despite the fact that correctors have been proven to rescue 

CFTR, it is yet to be investigated whether this also translates to the reversal of fibrotic 

changes. 

Figure 4.1. Quantification of the IC50 value for TG2 inhibitor 1-155 using a transglutaminase 

activity assay. Biotin-cadaverine incorporation into N,N-dimethylcasein was used as a quantitative 

measure of TG2 activity. Cell-permeable TG2 inhibitor 1-155 was added to wells at concentrations 

ranging from 1 nM – 50 μM. A DMSO control was used as a reference of total TG2 activity. A does-

response curve was generated and the inhibitory effect of 1-155 measured as the percentage 

reduction in total TG2 activity. The relative IC50 was determined as the half-maximal inhibitory 

concentration. Data expressed as the mean ± SEM of three independent experiments (N=3), each 

performed in triplicate.  
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To determine the effect of CFTR correction on fibrotic progression in CF, IB3 cells were 

treated with the established CFTR corrector, VX-809. Following an extensive review of the 

literature, VX-809 was found to be predominantly used at concentrations ranging from 1–5 

μM. These data show a reduction in the protein expression of TG2 and fibronectin, in 

response to all three concentrations of VX-809 (Figure 4.2). The use of VX-809 at 2.5 μM 

caused the largest decrease in TG2 and fibronectin protein levels. However, changes were 

not seen to be statistically significant across the range of VX-809 concentrations tested. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Measurement of TG2 and fibronectin protein expression in IB3 cells in response 

to different concentrations of CFTR corrector VX-809. IB3 cells were treated with three different 

concentrations of VX-809 (1, 2.5 and 5 µM) for 72 h, with treatments changed every 24 h. Whole 

cell lysates were collected and proteins separated using SDS-PAGE. Following protein transfer, 

western blot analysis was performed for detection of TG2 and fibronectin. Membranes were stripped 

and reprobed for the loading control GAPDH. (A) Representative western blots of TG2 and 

fibronectin protein expression. Densitometry of (B) TG2 and (C) fibronectin protein levels, measured 

using ImageJ software. Data normalised to GAPDH and expressed as the mean fold change ± SEM 

in comparison to untreated IB3 cells. Statistical analysis of three independent experiments (N=3) 

using a one-way ANOVA, with a post-hoc Tukey test; ns, not significant. 
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4.3.3 Evaluating the cytotoxicity of compounds VX-809 and 1-155 on C38 and 

IB3 cells  
 

Compounds 1-155 and VX-809 have been shown to reduce both the activity (Figure 4.1) 

and protein expression (Figure 4.2) of TG2, respectively. It has not previously been 

determined whether use of a TG2 inhibitor with a CFTR corrector, can decrease aberrant 

levels of TG2 in an additive or synergistic manner. Before testing VX-809 and 1-155 in 

combination, a preliminary assessment of compound cytotoxicity was conducted. This was 

performed to eliminate cell death as a factor of influence when interpreting the results of 

further investigations. Based on the data from Figure 4.2, VX-809 was tested at its most 

effective concentration of 2.5 μM. TG2 inhibitor 1-155 was also tested at 2.5 μM, a known 

concentration for efficacy of the compound. 

An XTT assay was used to assess the cytotoxicity of VX-809 and 1-155, either alone or in 

combination. C38 and IB3 cells were treated for 72 h, with both compounds used at a 

concentration of 2.5 μM. These data show no significant difference in cell viability across all 

treatment conditions, for either C38 cells (Figure 4.3 A) or IB3 cells (Figure 4.3 B). 
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Figure 4.3. The cytotoxicity of VX-809 and 1-155 used alone or in combination on C38 and 

IB3 cells. C38 and IB3 cells were treated with VX-809 (2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) 

and 1-155 (2.5 µM) for 72 h, with treatments changed every 24 h. DMSO was used as a vehicle 

control. An XTT assay was performed and the absorbance read at a wavelength of 490 nm and 630 

nm. The background absorbance (630 nm) was subtracted from the sample absorbance (490 nm) 

for each well. The percentage cell viability of (A) C38 and (B) IB3 cells following treatment with VX-

809 and 1-155 used alone or in combination, relative to untreated C38 or IB3 cells. Data expressed 

as the mean ± SEM of three independent experiments (N=3). Statistical analysis performed using 

a one-way ANOVA, with a post-hoc Tukey test; ns, not significant. 
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4.3.4 The combined effect of a CFTR corrector and TG2 inhibitor on TG2 

protein expression in IB3 cells 
 

The TG2 inhibitor 1-155 has previously been shown to reduce the protein expression of 

TG2 in IB3 cells (Nyabam et al., 2016). However, the relevance of this data is limited, as 

the investigation lacks the inclusion of a ‘CFTR corrected’ control cell line. As such, the 

extent to which 1-155 decreases TG2 protein expression, relative to native levels of TG2 in 

non-CF airway epithelial cells, is yet to be determined. Data within this report has 

demonstrated that VX-809 can also reduce the presence of TG2 in IB3 whole cell lysates 

(Figure 4.2). As a result, IB3 cells were treated with VX-809 and 1-155 either alone or in 

combination, to establish whether 1-155 can completely abrogate the increased expression 

of TG2 or rather VX-809 can be used together with 1-155 to have an additive or synergistic 

effect. 

IB3 cells were treated with either VX-809 (2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) and 

1-155 (2.5 µM) combined. Following treatment for 72 h, whole cell lysates were collected 

and TG2 protein expression was measured via western blot analysis. C38 cells were used 

to determine normal protein levels of TG2. These data show a decrease in TG2 expression 

across all treatment conditions (Figure 4.4). Both 1-155 alone and VX-809 with 1-155 were 

able to significantly reduce TG2 protein levels by 47% (p<0.05) and 65% (p<0.01) 

respectively, in comparison to untreated IB3 cells. Interestingly, the combined decrease in 

TG2 expression for use of 1-155 (47%) and VX-809 (19%) alone totalled 66%, thus 

matching the reduction observed for treatment with VX-809 and 1-155 in combination 

(65%). 
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Figure 4.4. Measurement of TG2 protein expression in IB3 cells following treatment with VX-

809 and 1-155 alone or in combination. IB3 cells were treated with VX-809 (2.5 µM), 1-155 (2.5 

µM) or VX-809 (2.5 µM) and 1-155 (2.5 µM) for 72 h, with treatments changed every 24 h. C38 cells 

were used as a CFTR corrected control. Whole cell lysates were collected and proteins separated 

using SDS-PAGE. Following protein transfer, western blot analysis was performed for detection of 

TG2. Membranes were stripped and reprobed for the loading control GAPDH. (A) Representative 

western blot of TG2 protein expression. (B) Densitometry of TG2 protein levels, measured using 

ImageJ software. Data normalised to GAPDH and expressed as the mean fold change ± SEM, in 

comparison to untreated IB3 cells. Statistical analysis of three independent experiments (N=3) using 

a one-way ANOVA, with a post-hoc Tukey test; ns, not significant, *P<0.05, **P<0.01, ***P<0.001.  
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4.3.5 The combined effect of a CFTR corrector and TG2 inhibitor on EMT-

derived myofibroblast transdifferentiation of IB3 cells 
 

Data within this report has revealed that TG2 protein levels are inherently increased in IB3 

cells (Figure 3.1), alongside enhanced expression / deposition of fibronectin (Figures 3.2 

and 3.3) and the induction of EMT-derived myofibroblast transdifferentiation (Figure 3.2). 

As shown in Figure 4.4, both VX-809 and 1-155 were able to independently reduce protein 

levels of TG2 in IB3 whole cell lysates, with a further decrease measured in response to 

combination treatment. To further understand the relationship between TG2 and the 

presence of fibronectin / myofibroblasts, IB3 cells were again treated with VX-809 and 1-

155 alone or in combination. The effect on fibronectin, N-cadherin and α-SMA protein 

expression was then measured, to test whether a corresponding downregulation of the 

three pro-fibrotic markers would be observed 

IB3 cells were treated with either VX-809 (2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) and 

1-155 (2.5 µM) for 72 h, before whole cell lysates were collected and samples analysed 

using western blot analysis. A C38 control was used for comparison of normal protein 

expression. These data show a decrease in protein levels of fibronectin, N-cadherin and α-

SMA across all treatment conditions, in comparison to untreated IB3 cells (Figure 4.5). Both 

1-155 alone and VX-809 with 1-155 were able to significantly reduce protein levels by ≥28% 

(p<0.05) and ≥67% (p<0.001) for all three proteins respectively, in comparison to untreated 

IB3 cells. Remarkably, combination treatment caused a greater decrease in protein 

expression, than the total decrease measured when combining the effect of VX-809 and 1-

155 used alone, for all three proteins analysed.  
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Figure 4.5. Measurement of fibronectin, N-cadherin and α-SMA protein expression in IB3 

cells following treatment with VX-809 and 1-155 alone or in combination. IB3 cells were treated 

with VX-809 (2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) and 1-155 (2.5 µM) for 72 h, with 

treatments changed every 24 h. C38 cells were used as a CFTR corrected control. Whole cell 

lysates were collected and proteins separated using SDS-PAGE. Following protein transfer, 

western blot analysis was performed for detection of fibronectin, N-cadherin and α-SMA. 

Membranes were stripped and reprobed for the loading control GAPDH. (A) Representative western 

blots of fibronectin, N-cadherin and α-SMA protein expression. Densitometry of (B) fibronectin (C) 

N-cadherin and (D) α-SMA protein levels, measured using ImageJ software. Data normalised to 

GAPDH and expressed as the mean fold change ± SEM in comparison to untreated IB3 cells. 

Statistical analysis of three independent experiments (N=3) using a one-way ANOVA, with a post-

hoc Tukey test; ns, not significant, *P<0.05, **P<0.01, ***P<0.001.  
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4.3.6 Determination of half-maximal inhibitory concentration (IC50) for the cell-

impermeable TG2 inhibitor R281 
 

As demonstrated in Figures 4.4 and 4.5, 1-155 can decrease the aberrant expression of 

TG2 and pro-fibrotic markers in IB3 whole cell lysates. However, 1-155 is a cell-permeable 

compound, capable of inhibiting TG2 both inside and outside of the cell (Badarau et al., 

2015). As such, it is unknown whether 1-155 effectuates these changes by inhibiting 

intracellular or extracellular TG2, or possibly a combination of both. To specifically 

determine the role of externalised TG2, a membrane-impermeable TG2 inhibitor known as 

R281 was used to treat IB3 cells. Originally shown to have an IC50 value of ~10 µM (Griffin 

et al., 2008), this compound has been used extensively to investigate the role of 

extracellular TG2 in various cellular processes (Nadella et al., 2015; Feriotto et al., 2017; 

Zonca et al., 2017). With inhibitory capacity varying between each synthesis of the 

compound, an initial measurement IC50 was performed to validate the efficacy of R281. 

The IC50 value of R281 was quantified using a transglutaminase activity assay. Ten 

concentrations of R281 ranging from 0.5 μM – 10 mM were tested and decreases in TG2 

activity measured as a percentage, relative to the TG2 activity of a DMSO control. From the 

dose-response curve the IC50 value of R281 was determined to be 39.14 μM (Figure 4.6). 
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4.3.7 The combined effect of a CFTR corrector and cell-impermeable TG2 

inhibitor on TG2 protein expression in IB3 cells 
 

Previous research has identified deleterious effects associated with the overexpression of 

TG2, both inside (Maiuri et al., 2008; Luciani et al., 2009, 2011; Rossin et al., 2018) and 

outside (Nyabam et al., 2016) of CF airway epithelial cells. As shown in Figure 4.4, the use 

of 1-155 to inhibit TG2 activity within the intracellular and extracellular environment of IB3 

cells, led to a significant reduction in TG2 protein levels. Moreover, a further decrease was 

measured when using 1-155 in combination with VX-809. Although this is promising from a 

therapeutic standpoint, mechanistically it is unknown whether complete or localised 

inhibition of TG2 is required to promote this response. To determine the importance of 

extracellular TG2, the cell-impermeable compound R281 was used to inhibit externalised 

TG2 exclusively. 

Figure 4.6. Quantification of the IC50 value for TG2 inhibitor R281 using a transglutaminase 

activity assay. Biotin-cadaverine incorporation into N,N-dimethylcasein was used as a quantitative 

measure of TG2 activity. Cell-impermeable TG2 inhibitor R281 was added to wells at concentrations 

ranging from 0.5 µM – 10 mM. A DMSO control was used as a reference of total TG2 activity. A 

does-response curve was generated and the inhibitory effect of R281 measured as the percentage 

reduction in total TG2 activity. The relative IC50 was determined as the half-maximal inhibitory 

concentration. Data expressed as the mean of one independent experiment (N=1), performed in 

triplicate.  
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IB3 cells were treated with either VX-809 (2.5 µM), R281 (500 µM) or both in combination 

for 72 h. A C38 control was used for comparison of normal protein expression. Whole cell 

lysates were collected and TG2 protein expression was measured via western blotting. Use 

of R281 or VX-809 and R281 significantly decreased TG2 protein levels by 60% (p<0.001) 

and 76% (p<0.001) respectively, in comparison to untreated IB3 cells (Figure 4.7). 

Treatment with VX-809 (21%) or R281 (60%) alone, jointly reduced TG2 expression by 

81%. This was comparable to the decrease seen with VX-809 and R281 combined (76%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 4.7. Measurement of TG2 protein expression in IB3 cells following treatment with VX-

809 and R281 alone or in combination. IB3 cells were treated with VX-809 (2.5 µM), R281 (500 

µM) or VX-809 (2.5 µM) and R281 (500 µM) for 72 h, with treatments changed every 24 h. C38 cells 

were used as a CFTR corrected control. Whole cell lysates were collected and proteins separated 

using SDS-PAGE. Following protein transfer, western blot analysis was performed for detection of 

TG2. Membranes were stripped and reprobed for the loading control GAPDH. (A) Representative 

western blot of TG2 protein expression. (B) Densitometry of TG2 protein levels, measured using 

ImageJ software. Data normalised to GAPDH and expressed as the mean fold change ± SEM in 

comparison to untreated IB3 cells. Statistical analysis of three independent experiments (N=3) using 

a one-way ANOVA, with a post-hoc Tukey test; ns, not significant, ***P<0.001.  
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4.3.8 The combined effect of a CFTR corrector and cell-impermeable TG2 

inhibitor on EMT-derived myofibroblast transdifferentiation of IB3 cells 
 

As demonstrated in Figure 4.5, TG2 inhibitor 1-155 partially decreased fibronectin, N-

cadherin and α-SMA protein expression in IB3 whole cell lysates. Moreover, a complete 

reduction in the protein levels of all three pro-fibrotic markers, was seen in response to 

combination treatment (VX-809 and 1-155). The subsequent replacement of 1-155 with a 

cell-impermeable TG2 inhibitor (R281), found R281 capable of reducing TG2 protein 

expression (Figure 4.7) to a similar level as measured with 1-155 (Figure 4.4). As a result, 

the effect of R281 on fibronectin, N-cadherin and α-SMA protein expression was assessed, 

to further evaluate extracellular TG2 inhibition in comparison to total TG2 inhibition.  

IB3 cells were treated with either VX-809 (2.5 µM), R281 (500 µM) or VX-809 (2.5 µM) and 

R281 (500 µM) for 72 h, before whole cell lysates were collected and samples analysed 

using western blot analysis. A C38 control was used for comparison of normal protein 

expression. As shown in Figure 4.8, the protein expression of fibronectin, N-cadherin and 

α-SMA was reduced across all treatment conditions, in comparison to untreated IB3 cells. 

Treatment with R281 alone decreased protein levels by ≥30% for all three proteins 

compared to untreated IB3 cells, although the change in N-cadherin expression was not 

found to be significant. Furthermore, combination treatment with VX-809 and R281 

significantly reduced protein levels by ≥57% (p<0.001) for all three proteins, in comparison 

to untreated IB3 cells. Overall, combination treatment reduced protein expression to a 

greater extent than the sum effect of VX-809 and R281 used independently, for all three 

proteins analysed. 
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Figure 4.8. Measurement of fibronectin, N-cadherin and α-SMA protein expression in IB3 

cells following treatment with VX-809 and R281 alone or in combination. IB3 cells were treated 

with VX-809 (2.5 µM), R281 (500 µM) or VX-809 (2.5 µM) and R281 (500 µM) for 72 h, with 

treatments changed every 24 h. C38 cells were used as a CFTR corrected control. Whole cell 

lysates were collected and proteins separated using SDS-PAGE. Following protein transfer, 

western blot analysis was performed for detection of fibronectin, N-cadherin and α-SMA. 

Membranes were stripped and reprobed for the loading control GAPDH. (A) Representative western 

blots of fibronectin, N-cadherin and α-SMA protein expression. Densitometry of (B) fibronectin (C) 

N-cadherin and (D) α-SMA protein levels, measured using ImageJ software. Data normalised to 

GAPDH and expressed as the mean fold change ± SEM in comparison to untreated IB3 cells. 

Statistical analysis of three independent experiments (N=3) using a one-way ANOVA, with a post-

hoc Tukey test; ns, not significant, *P<0.05, **P<0.01, ***P<0.001.  
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4.3.9 The effect of TGFβ receptor I inhibition on TG2 protein expression in IB3 

cells 
 

It has long been established that TG2 facilitates the activation of TGFβ1, a key mediator of 

fibrosis capable of upregulating TG2 and promoting myofibroblast formation (Benn et al., 

2019). As demonstrated in Figures 3.1 and 3.2, both TG2 and α-SMA are highly expressed 

in IB3 whole cell lysates, compared to C38 whole cell lysates. These data suggest a central 

pro-fibrotic role for TGFβ1 in CF. This was investigated by treating IB3 cells with a TGFβ 

receptor I (ALK5) inhibitor. TG2 protein expression was measured to establish whether 

restriction of TGFβ1 signal transduction, would generate a similar response as inhibition of 

extracellular TG2 (Figure 4.7). In addition, recombinant human TGFβ1 was used alone to 

examine its influence on TG2 protein levels or in combination with ALK5 inhibitor to ensure 

efficacy of the compound. 

IB3 cells were treated with ALK5 inhibitor (10 µM), TGFβ1 (1 ng/ml), or ALK5 inhibitor (10 

µM) combined with either VX-809 (2.5 µM) or TGFβ1 (1 ng/ml) for 72 h, before whole cell 

lysates were collected and samples analysed using western blot analysis. Treatment with 

TGFβ1 resulted in a ˃7-fold increase (p<0.001) in TG2 protein expression, compared to 

untreated IB3 cells (Figure 4.9). Conversely, the use of TGFβ1 in the presence of an ALK5 

inhibitor (p<0.05) saw a significant reduction (31%) in TG2 protein levels, in comparison to 

untreated IB3 cells. Both ALK5 inhibitor alone and ALK5 inhibitor with VX-809 were able to 

decrease TG2 protein levels further by 71% (p<0.001) and 86% (p<0.001) respectively, in 

comparison untreated IB3 cells. 
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Figure 4.9. The effect of ALK5 inhibitor treatment alone or in combination with VX-809 on 

TG2 protein expression in IB3 cells. IB3 cells were treated with TGFβ (1 ng/ml) or an ALK5 

inhibitor (10 µM) either alone or in combination with VX-809 (2.5 µM) or TGFβ (1 ng/ml) for a period 

of 72 h, with treatments changed every 24 h. Whole cell lysates were collected and proteins 

separated using SDS-PAGE. Following protein transfer, western blot analysis was performed for 

detection of TG2. Membranes were stripped and reprobed for the loading control GAPDH. (A) 

Representative western blot of TG2 protein expression. (B) Densitometry of TG2 protein levels, 

measured using ImageJ software. Data normalised to GAPDH and expressed as the mean fold 

change ± SEM in comparison to untreated IB3 cells. Statistical analysis of three independent 

experiments (N=3) using a one-way ANOVA, with a post-hoc Bonferroni multiple comparison test; 

*P<0.05, ***P<0.001.  
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4.3.10 The effect of TGFβ receptor I inhibition on EMT-derived myofibroblast 

transdifferentiation of IB3 cells 
 

The importance of TGFβ1 signalling in CF airway epithelial cells, has been demonstrated 

in Figure 4.9. Inhibition of the ALK5 receptor significantly reduced TG2 protein levels in IB3 

whole cell lysates, with a further decrease measured in response to VX-809 and ALK5 

inhibitor combined. These findings correspond to the effect seen with R281 treatment 

(Figure 4.7), indicating a mechanistic link between extracellular TG2 activity and TGFβ1 

signal transduction. Inhibition of extracellular TG2 has also been shown to reduce the 

expression of fibronectin, N-cadherin and α-SMA (Figure 4.8). Thus, IB3 cells were again 

treated with ALK5 inhibitor alone or in combination with VX-809, to determine whether a 

similar downregulation of pro-fibrotic markers would be observed. 

IB3 cells were treated with ALK5 inhibitor (10 µM), TGFβ1 (1 ng/ml), or ALK5 inhibitor (10 

µM) combined with either VX-809 (2.5 µM) or TGFβ1 (1 ng/ml). Following treatment for 72 

h, whole cell lysates were collected and samples analysed using western blot analysis. As 

shown in Figure 4.10, treatment with TGFβ1 induced a significant ˃1.5-fold increase in 

protein expression for all three proteins, in comparison to untreated IB3 cells. Alternatively, 

TGFβ1 treatment in the presence of ALK5 inhibitor was found to reduce the levels of all 

three proteins, compared to untreated IB3 cells. Both ALK5 inhibitor alone and ALK5 

inhibitor with VX-809 significantly decreased the expression of all three pro-fibrotic markers 

by ≥31% and ≥50% respectively, in comparison to untreated IB3 cells.   
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Figure 4.10. The effect of ALK5 inhibitor treatment alone or in combination with VX-809 on 

fibronectin, N-cadherin and α-SMA protein expression in IB3 cells. IB3 cells were treated with 

TGFβ (1 ng/ml) or an ALK5 inhibitor (10 µM) either alone or in combination with VX-809 (2.5 µM) 

or TGFβ (1 ng/ml) for a period of 72 h, with treatments changed every 24 h. Whole cell lysates were 

collected and proteins separated using SDS-PAGE. Following protein transfer, western blot 

analysis was performed for detection of fibronectin, N-cadherin and α-SMA. Membranes were 

stripped and reprobed for the loading control GAPDH. (A) Representative western blots of 
fibronectin, N-cadherin and α-SMA protein expression. Densitometry of (B) fibronectin (C) N-

cadherin and (D) α-SMA protein levels, measured using ImageJ software. Data normalised to 

GAPDH and expressed as the mean fold change ± SEM in comparison to untreated IB3 cells. 

Statistical analysis of three independent experiments (N=3) using a one-way ANOVA, with a post-

hoc Bonferroni multiple comparison test; ns, not significant, *P<0.05, **P<0.01, ***P<0.001.  
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4.3.11 The impact of combination treatment on reducing activation of the 

canonical TGFβ signalling pathway in IB3 cells 
 

TGFβ1 activation of the cell surface ALK5 receptor, leads to the propagation of intracellular 

signalling via two separate routes: the Smad dependent canonical pathway or the Smad 

independent non-canonical pathways (Akhurst and Hata, 2012). Previous research has 

suggested the possible involvement of the Smad 2/3 signalling pathway in IB3 cell fibrosis 

(Nyabam et al., 2016). As such, the canonical TGFβ1 signalling pathway was investigated. 

Activation of the canonical Smad2/3 pathway was assessed by measuring levels of 

phosphorylated Smad3 (p-Smad3), a requisite of Smad dependent signal transduction. 

Total Smad3 (t-Smad3) was measured to ensure normalisation of p-Smad3 levels. IB3 cells 

were treated with VX-809 and 1-155 either alone or in combination, to determine their effect 

upon canonical TGFβ1 signal transduction in CF. 

IB3 cells were treated with either VX-809 (2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) and 

1-155 (2.5 µM) for 72 h, before whole cell lysates were collected and samples analysed 

using western blot analysis. This data shows that p-Smad3 levels are inherently lower in 

C38 cells (p<0.001), compared to IB3 cells (Figure 4.11). Treatment with either VX-809 or 

1-155 alone significantly decreased levels of p-Smad3 by 39% (p<0.05) and 61% (p<0.001) 

respectively, in comparison to untreated IB3 cells. Further to this, treatment with VX-809 

and 1-155 in combination reduced p-Smad3 levels by 73% (p<0.001), which was found to 

be roughly equivalent to the expression of p-Smad3 measured in C38 whole cell lysates.   
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Figure 4.11. The relative levels of phosphorylated Smad3 in IB3 cells following treatment 

with VX-809 and 1-155 alone or in combination. IB3 cells were treated with VX-809 (2.5 µM), 1-

155 (2.5 µM) or VX-809 (2.5 µM) and 1-155 (2.5 µM) for 72 h, with treatments changed every 24 h. 

C38 cells were used as a CFTR corrected control. Whole cell lysates were collected and proteins 

separated using SDS-PAGE. Following protein transfer, western blot analysis was performed for 

detection of p-Smad3 and t-Smad3. Membranes were stripped and reprobed for the loading control 

GAPDH. (A) Representative western blot of p-Smad3 and t-Smad3 protein expression. (B) 

Densitometry of p-Smad3 protein levels, measured using ImageJ software. Data normalised to t-

Smad3 and GAPDH, then expressed as the mean fold change ± SEM in comparison to untreated 

IB3 cells. Statistical analysis of three independent experiments (N=3) using a one-way ANOVA, 

with a post-hoc Tukey test; *P<0.05, ***P<0.001. 
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4.3.12 Influence of the non-canonical extracellular signal-regulated kinase 

(ERK) signalling pathway on TG2 and fibronectin protein expression in IB3 

cells 
 

As shown in Figure 4.11, IB3 cells exhibit increased activation of the TGFβ1 Smad 

dependent canonical pathway. However, growing evidence now implicates several of the 

Smad independent non-canonical pathways in the pathogenesis of fibrosis (Finnson et al., 

2020). In particular, the ERK signalling pathway has been found to be activated in a variety 

of fibrotic conditions including: kidney (Cheng et al., 2013), liver (Foglia et al., 2019), cardiac 

(De Boer et al., 2004) and pulmonary (Madala et al., 2012) fibrosis. Nonetheless, the ERK 

signalling pathway is yet to be investigated with regard to fibrotic development in CF. As a 

result, the protein expression of TG2 and fibronectin was measured in IB3 cells, in response 

to ERK inhibitor treatment.  

IB3 cells were treated with ERK inhibitor (10 µM), TGFβ1 (1 ng/ml) or ERK inhibitor (10 µM) 

combined with either VX-809 (2.5 µM) or TGFβ1 (1 ng/ml). Following treatment for 72 h, 

whole cell lysates were collected and samples analysed using western blot analysis. 

Treatment with ERK inhibitor alone did not significantly affect TG2 and fibronectin protein 

levels (Figure 4.12). Conversely, the use of VX-809 and ERK inhibitor in combination 

(p<0.05) led to a significant reduction in the expression of TG2 (42%) and fibronectin (54%), 

in comparison to untreated IB3 cells. Interestingly, ERK inhibition did not prevent TGFβ1 

induced increases of TG2 (˃1.5-fold) and fibronectin (˃3-fold) protein levels. 
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Figure 4.12. The effect of ERK inhibitor treatment alone or in combination with VX-809 on 

TG2 and fibronectin protein expression in IB3 cells. IB3 cells were treated with TGFβ (1 ng/ml) 

or an ERK inhibitor (10 µM) either alone or in combination with VX-809 (2.5 µM) or TGFβ (1 ng/ml) 

for 72 h, with treatments changed every 24 h. Whole cell lysates were collected and proteins 

separated using SDS-PAGE. Following protein transfer, western blot analysis was performed for 

detection of TG2 and fibronectin. Membranes were stripped and reprobed for the loading control 

GAPDH. (A) Representative western blots of TG2 and fibronectin protein expression. Densitometry 

of (B) TG2 and (C) fibronectin protein levels, measured using ImageJ software. Data normalised to 

GAPDH and expressed as the mean fold change ± SEM, in comparison to untreated IB3 cells. 

Statistical analysis of three independent experiments (N=3) using a one-way ANOVA, with a post-

hoc Bonferroni multiple comparison test; ns, not significant, *P<0.05.  
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4.3.13 The combined effect of a CFTR corrector and TG2 inhibitor on restoring 

the presence of tight junction protein Zonula occludens-1 (ZO-1) in IB3 cells 
 

Previous research in the literature has focused on the upregulation of mesenchymal 

markers in CF airway epithelia cells (Nyabam et al., 2016). Data from this study has 

revealed this to be a consequence of cells undergoing EMT-derived myofibroblast 

transdifferentiation (Figure 3.2). Combination treatment has been shown to reverse 

increases in the protein expression of fibronectin, N-cadherin and α-SMA, in IB3 whole cell 

lysates (Figures 4.5 and 4.8). However, a critical aspect of EMT is the loss of cell polarity 

and disassembly of cell adhesion systems, allowing epithelial cells to transition towards a 

more motile mesenchymal phenotype (Willis et al., 2006). As such, it is crucial to assess 

indicators of epithelial cell phenotype, to fully validate the extent of EMT reversal following 

treatment. The tight junction protein ZO-1 was selected as an appropriate marker, due to 

its native expression in normal epithelial cells (Stevenson et al., 1986) and recognised 

downregulation in CF epithelial cells (Castellani et al., 2012; Carbone et al., 2014; Ruan et 

al., 2014).  

IB3 cells were treated with either VX-809 (2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) and 

1-155 (2.5 µM) in combination. Following treatment for 72 h, whole cell lysates were 

collected and ZO-1 protein expression was measured via western blot analysis. C38 cells 

were used to determine normal protein levels of ZO-1. As illustrated in Figure 4.13, the 

protein expression of ZO-1 increased across all treatment conditions, in comparison to 

untreated IB3 cells. Notably, treatment with VX-809 and 1-155 in combination significantly 

increased ZO-1 protein levels by ~3-fold (p<0.001), compared to untreated IB3 cells. This 

was seen to be largely comparable to the ~3.5-fold (p<0.001) change in ZO-1 protein 

expression, observed between untreated C38 and IB3 cells. 
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Figure 4.13. Measurement of ZO-1 protein expression in IB3 cells following treatment with 

VX-809 and 1-155 alone or in combination. IB3 cells were treated with VX-809 (2.5 µM), 1-155 

(2.5 µM) or VX-809 (2.5 µM) and 1-155 (2.5 µM) for 72 h, with treatments changed every 24 h. C38 

cells were used as a CFTR corrected control. Whole cell lysates were collected and proteins 

separated using SDS-PAGE. Following protein transfer, western blot analysis was performed for 

detection of ZO-1. Membranes were stripped and reprobed for the loading control GAPDH. (A) 

Representative western blot of ZO-1 protein expression. (B) Densitometry of ZO-1 protein levels, 

measured using ImageJ software. Data normalised to GAPDH and expressed as the mean fold 

change ± SEM in comparison to untreated IB3 cells. Statistical analysis of three independent 

experiments (N=3) using a one-way ANOVA, with a post-hoc Tukey test; ns, not significant, 

***P<0.001.  
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4.3.14 The effect of TGFβ receptor I inhibition on restoring the presence of 

tight junction protein ZO-1 in IB3 cells 
 

Inhibition of ALK5 reduces the protein expression of TG2 and pro-fibrotic markers in IB3 

whole cell lysates (Figures 4.9 and 4.10), in the same manner as treatment with TG2 

inhibitors 1-155 (Figures 4.4 and 4.5) and R281 (Figures 4.7 and 4.8). Further to this, ZO-

1 protein expression was found to be largely restored in IB3 whole cell lysates, following 

combination treatment with VX-809 and 1-155 (Figure 4.13). Consequently, IB3 cells were 

treated with ALK5 inhibitor either alone or in combination with VX-809, to determine whether 

a similar restoration of ZO-1 protein expression would be observed.  

IB3 cells were treated with ALK5 inhibitor (10 µM), TGFβ1 (1 ng/ml) or ALK5 inhibitor (10 

µM) combined with either VX-809 (2.5 µM) or TGFβ1 (1 ng/ml). Following treatment for 72 

h, whole cell lysates were collected and ZO-1 protein expression was measured via western 

blot analysis. As shown in Figure 4.14, treatment with ALK5 inhibitor alone and in the 

presence of TGFβ1 increased ZO-1 protein levels by ~3-fold compared to untreated IB3 

cells, although changes did not reach statistical significance. Moreover, combination 

treatment with VX-809 and ALK5 inhibitor significantly increased ZO-1 protein levels by ˃5-

fold (p<0.05), in comparison to untreated IB3 cells. TGFβ1 did not have a significant effect 

on ZO-1 protein expression, compared to untreated IB3 cells. 
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Figure 4.14. The effect of ALK5 inhibitor treatment alone or in combination with VX-809 on 

ZO-1 protein expression in IB3 cells. IB3 cells were treated with TGFβ (1 ng/ml) or an ALK5 

inhibitor (10 µM) either alone or in combination with VX-809 (2.5 µM) or TGFβ (1 ng/ml) for a period 

of 72 h, with treatments changed every 24 h. Whole cell lysates were collected and proteins 

separated using SDS-PAGE. Following protein transfer, western blot analysis was performed for 

detection of ZO-1. Membranes were stripped and reprobed for the loading control GAPDH. (A) 

Representative western blot of ZO-1 protein expression. (B) Densitometry of ZO-1 protein levels, 

measured using ImageJ software. Data normalised to GAPDH and expressed as the mean fold 

change ± SEM in comparison to untreated IB3 cells. Statistical analysis of three independent 

experiments (N=3) using a one-way ANOVA, with a post-hoc Tukey test; ns, not significant, 

*P<0.05.  
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4.3.15 Evaluating the integrity of tight junctions in IB3 cells following 

treatment with a CFTR corrector and TG2 inhibitor in combination 
 

As shown in Figure 4.13, expression of the epithelial tight junction protein ZO-1 is found to 

be diminished in IB3 cells, compared to CFTR corrected C38 cells. However, protein levels 

of ZO-1 can be largely restored via combination treatment with VX-809 and 1-155. This data 

suggests that the development of EMT in CF airway epithelial cells can be therapeutically 

reversed. Nevertheless, further research was needed for confirmation of EMT reversal, 

specifically an investigation into the effect of treatment in a physiological context. As such, 

IB3 cells were grown at ALI and treated with VX-809 and 1-155 alone or in combination. 

The ohmic resistance of each cell monolayer was then measured, as a direct assessment 

of tight junction integrity. 

IB3 cells were cultured at ALI for 14 days and treated with either VX-809 (2.5 µM), 1-155 

(2.5 µM) or VX-809 (2.5 µM) and 1-155 (2.5 µM) in combination, with treatments changed 

every 24 h prior to ALI and every 48 h thereafter. TEER values were measured using an 

epithelial voltohmmeter, with readings taken at stated time points between 0 - 14 days post 

ALI. At day 14, a significant increase in TEER values was observed for C38 cells (p<0.05) 

and IB3 cells treated with either 1-155 (p<0.05) or VX-809 and 1-155 (p<0.01), in 

comparison to untreated IB3 cells (Figure 4.15). Furthermore, the TEER values for C38 

(145.31 Ω.cm2) and IB3 cells treated with VX-809 and 1-155 (148.50 Ω.cm2) reached 

comparable levels, at 14 days ALI.  
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4.3.16 Assessing the barrier function of IB3 cells in response to treatment with 

a CFTR corrector and TG2 inhibitor in combination 
 

TEER values measured in Figure 4.15, indicate that the physical integrity of tight junctions 

is compromised in CF airway epithelial cells, which can be rescued via combination 

treatment with VX-809 and 1-155. However, TEER only reflects the ionic conductance of 

the paracellular pathway and does not assess the actual barrier function of an epithelial cell 

monolayer. Therefore, enzymatic markers such as HRP can be used, to study the physical 

diffusion of macromolecules across the paracellular pathway. As such, IB3 cells were 

treated with VX-809 and 1-155 alone or in combination and HRP diffusion used as a 

measure of paracellular permeability.   
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Figure 4.15. TEER measurements of IB3 cells following treatment with VX-809 and 1-155 alone 

or in combination. C38 and IB3 cells were cultured in Transwell® inserts for 14 days at ALI. C38 

cells were used as a CFTR corrected control. IB3 cells were treated with VX-809 (2.5 µM), 1-155 

(2.5 µM) or VX-809 (2.5 µM) and 1-155 (2.5 µM), with treatments changed every 24 h prior to ALI 

and every 48 h thereafter. DMSO was used as a vehicle control. The electrical resistance (Ω) of each 

Transwell® was measured using an epithelial voltohmmeter and recorded at time points of 0, 2, 4, 8 

and 14 days post ALI. Measurements were taken in triplicate and the electrical resistance of a 

collagen coated Transwell® in the absence of cells, subtracted from experimental groups. Final 

TEER values presented as Ω.cm2. Data expressed as the mean ± SEM of three independent 

experiments (N=3). Statistical analysis performed using a two-way ANOVA, with a post-hoc 

Bonferroni multiple comparison test; *P<0.05, **P<0.01. 
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IB3 cells were cultured at ALI for 14 days and treated with either VX-809 (2.5 µM), 1-155 

(2.5 µM) or VX-809 (2.5 µM) and 1-155 (2.5 µM) in combination, with treatments changed 

every 24 h prior to ALI and every 48 h thereafter. After this time, HRP (~44 kDa) was added 

to each Transwell® and the paracellular diffusion of HRP from the apical surface to the 

basal compartment was measured. These data show a decrease in the paracellular flux of 

HRP across all treatment conditions (Figure 4.16). Notably, IB3 cells treated with either 1-

155 alone or VX-809 and 1-155 significantly reduced HRP paracellular flux by 38% (p<0.05) 

and 49% (p<0.01) respectively, in comparison to untreated IB3 cells. Interestingly, 

decreases in HRP paracellular flux for combination treatment (49%) and C38 cells (52%), 

closely matched.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16. The paracellular permeability of IB3 cells grown at ALI following treatment with 

VX-809 and 1-155 alone or in combination. Cells were cultured in Transwell® inserts for 14 days 

at ALI. C38 cells were used as a CFTR corrected control. IB3 cells were treated with VX-809 (2.5 

µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) and 1-155 (2.5 µM), with treatments changed every 24 h 

prior to ALI and every 48 h thereafter. DMSO was used as a vehicle control. HRP (0.5 μM) was 

added apically to each Transwell®. Paracellular diffusion of HRP was measured after 5 min via 

detection of peroxidase activity, using an OPD substrate solution. Absorbance was read at a 

wavelength of 490 nm. Measurements of HRP paracellular diffusion were taken in triplicate for each 

sample. Data expressed as the mean ± SEM of three independent experiments (N=3), in comparison 

to untreated IB3 cells. Statistical analysis performed using a one-way ANOVA, with a post-hoc Tukey 

test; ns, not significant, *P<0.05, **P<0.01, ***P<0.001. 
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4.3.17 Evaluating the cell migration levels of IB3 cells in response to treatment 

with a CFTR corrector and TG2 inhibitor in combination 
 

Data shown throughout this study has illustrated that CF airway epithelia cells lose their 

inherently structured phenotype and subsequently acquire mesenchymal characteristics. 

This results in the conversion of adherent epithelial cells into myofibroblasts, via the process 

of EMT (Figures 3.2). Fundamentally, EMT confers a migratory capacity to epithelial derived 

myofibroblasts, which require motility to move to the site of injury (Stone et al., 2016). 

Combination treatment with VX-809 and 1-155 has been shown to consistently reverse the 

development of EMT in IB3 cells, measured through changes in protein expression (Figures 

4.5 and 4.13), TEER (Figure 4.15) and paracellular permeability (Figure 4.16). However, as 

increased cell motility is a central outcome of EMT and a major feature of myofibroblasts, it 

was essential to confirm the effect of treatment on IB3 cell migration levels.  

An in vitro scratch assay was performed to quantify cell migration levels over 16 h. A 16 h 

time course was set as the limit, due to non-proliferative rates of C38 and IB3 cells 

measured to be within 16 h (Nyabam, 2015). Immediately after wounding, IB3 cells were 

treated with either VX-809 (2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) and 1-155 (2.5 µM) 

in combination. As shown in Figure 4.17, all treatment conditions significantly decreased 

percentage wound closure compared to untreated IB3 cells, at 4 h and 16 h time points. 

Moreover, treatment of IB3 cells with VX-809 and 1-155 (p<0.001) significantly reduced 

percentage wound closure at 4 h post-wounding, compared to the use of either VX-809 or 

1-155 alone. However, the same effect was not found to be statistically significant at 16 h. 

Interestingly, the percentage wound closure for C38 cells and IB3 cells treated with VX-809 

and 1-155 was seen to be largely equivalent (4 h and 16h). 
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Figure 4.17. Measurement of percentage wound closure for IB3 cells following treatment with 

VX-809 and 1-155 alone or in combination. Cells were seeded in a 24 well plate and grown until 

confluent, before a scratch was made in each cell monolayer. IB3 cells were treated with VX-809 

(2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) and 1-155 (2.5 µM) post-wounding. C38 cells were 

used as a CFTR corrected control. Images were acquired in triplicate at 0, 4 and 16 h post-

wounding. (A) Representative images of each scratch, captured at the specified time points. Images 

were analysed using ImageJ software and (B) cell migration calculated as the percentage wound 

closure, relative to the original area of the wound at 0 h. Data expressed as the mean ± SEM of 

three independent experiments (N=3), in comparison to untreated IB3 cells. Statistical analysis 

performed using a one-way ANOVA, with a post-hoc Tukey test; ns, not significant, *P<0.05, 

**P<0.01, ***P<0.001. 
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4.4 Discussion 
 
 

Current treatment strategies for CF have become largely centred around the development 

of CFTR-directed drugs. However, it is now recognised that a defect in the CFTR protein 

has broader implications, than the mere absence of its chloride transport. Emerging 

evidence suggests that the proteostasis network within CF airway epithelial cells is severely 

perturbed (Maiuri et al., 2008; Luciani et al., 2009, 2010; Nyabam et al., 2016). In chapter 

3, it was confirmed that the overexpression of TG2 is strongly associated with these 

pathogenic changes. Indeed, the inhibition of TG2 activity in CF primary HBECs, greatly 

decreased TG2 protein levels and partially restored tight junction integrity. Moreover, when 

used in combination with a CFTR corrector (VX-809), the TG2 inhibitor (1-155) was found 

to have a roughly additive therapeutic effect. Although these results are promising, the 

experiments have limited scope and serve mainly as a proof of concept. As such, this 

chapter focuses on a more in-depth investigation of two-directional pharmacotherapy and 

its effect on CF airway epithelia, through use of the established IB3 cell line.  

The notion of inhibiting TG2 activity as a therapeutic strategy for CF, has previously been 

explored using the compound cysteamine (Tosco et al., 2016). However, cysteamine is a 

non-robust pan transglutaminase inhibitor, which is known to have multiple off-target 

interactions, besides its inhibition of transglutaminases (Bodas and Vij, 2017; Paul and 

Snyder, 2019). Conflicting data in the literature now questions whether cysteamine in fact 

elicits any response in CF airway epithelial cells (Awatade et al., 2019). Alternatively, this 

study uses a potent and selective inhibitor of TG2, known as 1-155. Furthermore, both cell-

permeable (1-155) and cell-impermeable (R281) compounds were used, so as to 

investigate the effect of inhibiting total TG2 activity and extracellular TG2 activity, 

respectively. Initially, the relative IC50 of both TG2 inhibitors was measured using a 

transglutaminase activity assay. This was undertaken to validate the efficacy of 1-155 and 

R281, before their use in further experiments. It was found that 1-155 had a relative IC50 

value of 18.47 nM and R281 a relative IC50 value of 39.14 µM. These IC50 values are largely 
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comparable to measurements reported in the literature, which have been stated at ~6 nM 

and ~10 µM for 1-155 and R281, respectively (Griffin et al., 2008; Badarau et al., 2015). By 

contrast, cysteamine has previously been determined to have an IC50 value of ~178–232 

µM (Jeon et al., 2004), thus highlighting differences in the potency of these compounds in 

terms of TG2 inhibition.  

Although a substantial body of research has been produced assessing the efficacy of CFTR 

correctors, their capacity to reinstate the proteostasis network in CF airway epithelial cells, 

is yet to be investigated. Thus, IB3 cells were treated with VX-809 and its effect on TG2 / 

fibronectin protein expression was measured. Following an extensive review of the 

literature, VX-809 was deemed to be used at concentrations between 1–5 μM for cell based 

studies (Awatade et al., 2015; Pranke et al., 2017; Garbuzenko et al., 2019). Accordingly, 

three concentrations of VX-809 (1, 2.5 and 5 μM) were tested within this range. Interestingly, 

CFTR correction was found to impact the proteostasis network of IB3 cells. All three 

concentrations of VX-809 were shown to decrease TG2 and fibronectin protein levels, albeit 

without reaching statistical significance. This implies that CFTR correction may only partially 

restore the proteostasis network in CF airway epithelia, which questions the therapeutic 

strategy of correcting CFTR alone. With VX-809 (2.5 μM) proving the most effective, this 

concentration was used for all subsequent experiments. 

Considering the involvement of TG2 in cellular processes, it is not known whether TG2 

inhibition can negatively impact the cell viability of airway epithelia. Data from the current 

literature has shown that 1-155 is non-toxic up to at least 100 μM in HUVECS, over a period 

of 72 h (Badarau et al., 2015). Furthermore, no obvious signs of toxicity were observed in 

mice following treatment with 1-155 over 14 days (Badarau et al., 2015). However, the use 

of 1-155 in combination with VX-809 has also never been evaluated and the presence of 

detrimental interactions are undetermined. It was demonstrated that the use of VX-809 and 

1-155 alone or in combination, had no effect on C38 and IB3 cell viability. These findings 

suggest that the compounds are safe to use together at the tested working concentrations. 



 J.M.Gavin, PhD Thesis, Aston University 2020.                                            143 
 

Yet, it must also be acknowledged that immortalised cells may not reflect the response of 

primary cells or mammalian systems, and thus warrants further testing.  

With preliminary testing complete, an investigation of combination treatment (VX-809 and 

1-155) was conducted. As demonstrated in chapter 3, IB3 cells show increased TG2 protein 

expression and undergo EMT-derived myofibroblast transdifferentiation. Within this chapter 

it was revealed that the treatment of IB3 cells with 1-155, can cause a partial reduction of 

TG2, fibronectin, N-cadherin and α-SMA protein levels. This suggests that TG2 inhibition 

can somewhat reverse the intrinsic pro-fibrotic profile of CF airway epithelia. These findings 

also support data from a recent study, which reported that EndMT-derived myofibroblast 

transdifferentiation in cardiac fibrosis can be attenuated via the application of 1-155 (Wang 

et al., 2018). Moreover, this is the first study to show that use of VX-809 in combination with 

1-155 can have an approximately additive therapeutic effect. Mechanistically it is very 

unlikely that VX-809 and 1-155 act on the same target in terms of an increased dose 

response, as VX-809 (5 μM) was previously found to have no additional effect over VX-809 

(2.5 μM). These results may instead indicate that both VX-809 and 1-155 are acting 

independently of one another, although it is quite possible that the two compounds have a 

direct / indirect effect on the same pathway. 

To understand the role of extracellular TG2 in these pro-fibrotic changes, the 1-155 cell-

permeable TG2 inhibitor was replaced with a cell-impermeable compound (R281). Previous 

research has examined this in the context of a chronic renal fibrosis rat model (Johnson et 

al., 2007). It was revealed that the cell-impermeable TG2 inhibitor was equally as effective 

in reducing fibrosis, as the cell-permeable TG2 inhibitor. Intriguingly, the same outcome 

was also demonstrated in this study. The treatment of IB3 cells with R281 was found to 

decrease TG2, fibronectin, N-cadherin and α-SMA protein levels, to the same extent as 

shown with 1-155. In addition, R218 was also seen to generate a roughly additive effect 

when used in combination with VX-809. Intracellular TG2 activity has previously been linked 

with pro-inflammatory changes in CF airways (Maiuri et al., 2008). However, these data 
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suggest that the pathogenic significance of TG2 regarding fibrotic alterations of the CF 

lungs, centres around its function in an extracellular capacity.  

The current literature is of the consensus that TG2 mediates fibrosis through activation of 

TGFβ1. Research has shown that the transamidation activity of extracellular TG2 creates a 

large reservoir of latent TGFβ1 in the ECM, which becomes mechanically activated by a 

stiffened matrix (Nunes et al., 1997; Klingberg et al., 2014). Indeed, an interrelationship 

between TG2, TGFβ1 and EMT has previously been identified in CF (Nyabam et al., 2016). 

Data within this chapter confirms the importance of TGFβ1 signalling in CF airway epithelial 

cells, using an ALK5 (TGFβ type I receptor) inhibitor and recombinant human TGFβ1. ALK5 

inhibition was shown to have much the same effect as TG2 inhibition, albeit with a stronger 

reduction of TG2 protein levels. By contrast, the application of recombinant human TGFβ1 

acted to significantly increase TG2, fibronectin, N-cadherin and α-SMA protein expression 

in IB3 cells. These data indicate the potential existence of positive feedback loop between 

TGFβ1 and TG2, whilst also highlighting the importance of TGFβ1 as a main driver of EMT-

derived myofibroblast transdifferentiation in CF airway epithelia. Interestingly, a therapeutic 

limit was not reached with the inhibition of ALK5, as its use in combination with VX-809 had 

an additional effect. This suggests that the inherent pro-fibrotic phenotype of CF airway 

epithelia, cannot be fully alleviated via inhibition of TGFβ signalling alone. 

TGFβ signalling has now been shown to operate through the canonical Smad2/3 dependent 

pathway in various fibrotic lung diseases including: asthma (Wnuk et al., 2020), IPF 

(Kolosova et al., 2011) and COPD (Mahmood et al., 2017). Data within this chapter supports 

these findings, suggesting that this also occurs in CF (Nyabam et al., 2016). It was 

demonstrated that IB3 cells have enhanced levels of p-Smad3, in comparison to C38 cells. 

Moreover, the relationship between TG2 and TGFβ was further confirmed, as treatment 

with 1-155 led to reduced levels of p-Smad3. Intriguingly, the use of VX-809 also decreased 

p-Smad3 levels, indicating that CFTR correction can somehow influence TGFβ signal 

transduction in CF airway epithelial cells.  
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Emerging evidence now suggests that non-canonical TGFβ pathways may also be involved 

in the pathogenesis of fibrosis, specifically ERK signalling (Finnson et al., 2020). For 

example, the aberrant activation of both ERK and Smad signalling pathways have been 

found to be implicated in kidney fibrosis (Cheng et al., 2013). Thus, ERK signalling was 

investigated in IB3 cells using an ERK inhibitor. It was demonstrated that ERK inhibition did 

not significantly affect TG2 and fibronectin protein expression. This was expected as TGFβ 

signal transduction can still propagate via alternative pathways, despite the inhibition of 

ERK. Yet, when used in combination with VX-809, both TG2 and fibronectin protein levels 

were significantly decreased. This is important, as the use of VX-809 alone was previously 

determined to lack the capacity to induce significant decreases in TG2 and fibronectin. As 

such, these data highlight the effect of ERK inhibition and elucidates a role for ERK 

signalling in fibrotic processes of CF. This is the first study to propose that TGFβ signal 

transduction operates via both canonical and non-canonical pathways in CF bronchial 

epithelial cells. However, the notion that ERK signal transduction may also or independently 

occur via direct growth factor binding to receptor tyrosine kinases, cannot be ruled out. 

Thus, the mechanism of ERK activation in CF warrants further investigation, alongside 

research into the involvement of other non-canonical pathways.  

Finally, the capability of combination treatment (VX-809 and 1-155) to restore an epithelial 

phenotype to CF airway epithelial cells was examined. Notably, only the combined use of 

1-155 or ALK5 inhibitor with VX-809, could significantly rescue ZO-1 protein expression. It 

has previously been discerned that CFTR interacts with ZO-1 to regulate tight junction 

assembly (Ruan et al., 2014) and this could explain why CFTR correction is vital to the 

restoration of ZO-1. Moreover, the treatment of IB3 cells with VX-809 and 1-155 was shown 

to ameliorate functional indicators of EMT (TEER, paracellular permeability and cell 

migration), reaching comparable levels as were measured for C38 cells. This indicates that 

combination treatment acts to reverse EMT and ultimately recover the structured barrier 

function of CF airway epithelium. Taken together, these findings demonstrate that the 
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combined use of a CFTR corrector with a TG2 inhibitor, may provide an effective treatment 

for individuals with CF.    

In conclusion, these data reinforce the results obtained in the proof of concept experiments 

with CF primary HBECs. It was demonstrated that a TG2–TGFβ1 axis exists in CF bronchial 

epithelial cells, with signal transduction occurring via canonical and potentially non-

canonical pathways. Treatment of IB3 cells with VX-809 and 1-155 was shown to diminish 

TG2 overexpression and fully reverse EMT-derived myofibroblast transdifferentiation. In 

addition, combination treatment acted to restore the native phenotypic characteristics of CF 

airway epithelial cells, including: tight junction integrity, barrier function and low cell motility. 

Strikingly, it was found that the pathogenic significance of TG2 in fibrotic processes of CF 

airway epithelial cells, relates to its activity within the extracellular environment. In the next 

chapter, the mechanism facilitating TG2 externalisation to the ECM will be investigated.  
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CHAPTER 5: RESULTS 
 

 

5.1 Introduction 
 
 

The importance of extracellular TG2 activity in fibrosis is now well-established. Indeed, the 

increased cellular export of TG2 has been linked to fibrotic conditions of the lungs (Olsen 

et al., 2011), kidneys (Burhan et al., 2016), liver (Tatsukawa et al., 2017) and heart (Wang 

et al., 2018). However, unlike most externalised proteins, TG2 lacks a signal peptide and is 

therefore not exported via the classical secretory pathway (Chou et al., 2011). As a result, 

TG2 must be trafficked to the cell surface via an unconventional secretory pathway. Over 

the past decade, there has been an extensive research effort to try and uncover the 

mechanism responsible. 

In the search for ligands that could influence TG2 export, a prominent role for syndecan-4 

was identified. It had previously been shown that TG2 could bind directly to syndecan-4 via 

its HS chains (Telci et al., 2008). Subsequent research by Scarpellini et al. (2009) revealed 

that syndecan-4-null fibroblasts lacked the capacity to externalise TG2, resulting in its 

intracellular retention. It was later discerned that TG2 only had a high binding affinity for 

heparin/HS, when in its closed conformation (Lortat-Jacob et al., 2012; Wang et al., 2012). 

Significantly, these studies had indicated that the externalisation of TG2 was dependent on 

its interaction with syndecan-4, whilst in a closed configuration. Nevertheless, the actual 

mechanism of TG2 secretion, still remained elusive.  

Initially, a hypothesis centred around non-vesicular transport was proposed, which 

predicted the direct translocation of TG2 through the plasma membrane (Verderio et al., 

2009). However, this theory has since been largely dismissed and replaced by one involving 

a vesicular-related mechanism. In fact, a breakthrough came in 2011, when TG2 was found 

to be incorporated in cancer cell-derived EVs (Antonyak et al., 2011) and its cellular 

secretion associated with the endosomal system (Santhanam et al., 2011). Thereafter, the 

presence of TG2 was detected in EVs derived from other cell types (Van Den Akker et al., 
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2012; Piacentini et al., 2014). Despite these advances, the findings were largely 

observational and the mechanistic details remained relatively undefined. 

Thus, research by Diaz-Hidalgo et al. (2016) sought to gain further insight by focusing on a 

particular EV subtype, namely exosomes. It was demonstrated that TG2 plays a vital role 

in the biogenesis of exosomes, specifically under stressful cellular conditions. Moreover, 

upon induction of proteostasis impairment, TG2 was seen to be selectively recruited to 

exosomes and released into the extracellular environment. Crucially, these findings had 

shown that TG2 export was facilitated by exosomes, as a response to pathophysiological 

conditions. However, the contribution of larger EVs had yet to be investigated.  

In an attempt to determine the importance of both exosomes and microvesicles in TG2 

secretion, a global proteomic study was conducted (Furini et al., 2018). Binding partners of 

TG2 were identified in a kidney fibrosis animal model, which highlighted clusters of 

exosomal proteins and syndecan-4 in the interactome. In contrast, TG2 was seen to be only 

weakly expressed in microvesicles. Furthermore, knockout of syndecan-4 led to a large 

reduction in exosomal TG2. Overall, these data indicated a potential pathway for TG2 export 

in fibrosis, which involves the targeted recruitment of TG2 to exosomes via syndecan-4. 

Further research is now needed to understand the dynamic changes in EV populations 

during fibrosis and the effect of TG2 inhibition on exosome secretion. 

 

5.2 Aims and Objectives 
 
 

This chapter aims to investigate the TG2 secretory pathway in CF by: 

 

(1) Measuring the protein expression of TG2, fibronectin and TGFβ1 in the ECM of IB3 

cells, in response to the inhibition of extracellular TG2. 

(2) Comparing the size distribution profiles of C38 and IB3 cell derived EV populations. 

(3) Determining the involvement of EVs in the externalisation of TG2 from IB3 cells.  

(4) Examining the impact of combination treatment (VX-809 and 1-155) on the dynamics 

of IB3 cell derived EV populations. 
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5.3 Results 
 

5.3.1 The combined effect of a CFTR corrector and TG2 inhibitor on matrix 

deposition of TG2 and fibronectin 
 

As demonstrated in Figures 4.4 and 4.5, combination treatment (VX-809 and 1-155) can 

reverse the overall expression of TG2 and fibronectin in IB3 whole cell lysates. Yet from 

these data alone, it remains unclear the extent to which TG2 and fibronectin are reduced in 

the ECM specifically. As outlined previously, it is predominantly alterations of the ECM 

which act as the main driver of progressive fibrosis (Benn et al., 2019). One such feature is 

the aberrant overexpression of extracellular TG2, which leads to increased crosslinking of 

ECM fibrils (Collighan and Griffin, 2009). For this reason, IB3 cells were treated with VX-

809 and 1-155 alone or in combination and changes measured in the ECM exclusively. 

IB3 cells were treated with either VX-809 (2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) and 

1-155 (2.5 µM) for 72 h, before cells were detached and the ECM collected. Samples were 

analysed using western blot analysis. A C38 control was used for comparison of normal 

ECM protein expression. These data show a decrease in matrix protein levels of TG2 and 

fibronectin across all treatment conditions, in comparison to untreated IB3 cells (Figure 5.1). 

Notably, the use of 1-155 alone significantly reduced matrix protein levels of TG2 and 

fibronectin by 48% (p<0.05) and 53% (p<0.01) respectively, compared to untreated IB3 

cells. A further decrease in matrix protein levels was measured in response to combination 

treatment with VX-809 and 1-155, whereby TG2 and fibronectin protein expression was 

reduced by 67% (p<0.01) and 65% (p<0.001) respectively, compared to untreated IB3 cells. 
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Figure 5.1. Measurement of TG2 and fibronectin protein expression in the ECM of IB3 cells 

following treatment with VX-809 and 1-155 alone or in combination.  IB3 cells were treated with 

VX-809 (2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) and 1-155 (2.5 µM) for 72 h, with treatments 

changed every 24 h. C38 cells were used as a CFTR corrected control. Сells were detached using 

2mM EDTA and ECM fractions collected, before proteins were separated using SDS-PAGE. 

Following protein transfer, western blot analysis was performed for the detection of TG2 and 

fibronectin in the ECM. Ponceau S staining was used as a loading control. (A) Representative 

western blots of TG2 and fibronectin protein expression in the ECM. Densitometry of (B) TG2 (ECM) 

and (C) fibronectin (ECM) protein levels, measured using ImageJ software. Data normalised to 

Ponceau S staining and expressed as the mean fold change ± SEM, in comparison to untreated IB3 

cells. Statistical analysis of three independent experiments (N=3) using a one-way ANOVA, with a 

post-hoc Tukey test; ns, not significant, *P<0.05, **P<0.01, ***P<0.001. 
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5.3.2 The combined effect of a CFTR corrector and cell-impermeable TG2 

inhibitor on matrix deposition of TG2, fibronectin and TGFβ1 
 

As shown in Figure 5.1, matrix protein levels of TG2 and fibronectin were decreased, 

following IB3 cell treatment with VX-809 and 1-155 in combination. Subsequently, 1-155 

was replaced with the cell-impermeable compound R281, to determine whether an 

equivalent response would be observed through inhibition of extracellular TG2. In addition, 

it is known that TG2 mediated deposition of fibronectin leads to a stiffened ECM, which 

enhances the mechanical activation of matrix bound TGFβ1 (Klingberg et al., 2014). 

Therefore, matrix protein levels of TGFβ1 were also measured, to examine the effect of 

R281 on this downstream pro-fibrotic cytokine.  

IB3 cells were treated with either VX-809 (2.5 µM), R281 (500 µM) or VX-809 (2.5 µM) and 

R281 (500 µM) for 72 h, before cells were detached and the ECM collected. Samples were 

analysed using western blot analysis. A C38 control was used for comparison of normal 

ECM protein expression. As illustrated in Figure 5.2, matrix protein levels of TG2, fibronectin 

and TGFβ1 were reduced across all treatment conditions, compared to untreated IB3 cells. 

However, decreases in the expression of all three proteins only reached statistical 

significance for IB3 cells treated with both VX-809 and R281. Further to this, the matrix 

protein levels of fibronectin and TGFβ1 were found to be largely comparable between C38 

cells and IB3 cells treated with VX-809 and R281.  
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Figure 5.2. Measurement of TG2, fibronectin and TGFβ1 protein expression in the ECM of 

IB3 cells following treatment with VX-809 and R281 alone or in combination. IB3 cells were 

treated with VX-809 (2.5 µM), R281 (500 µM) or VX-809 (2.5 µM) and R281 (500 µM) for 72 h, with 

treatments changed every 24 h. C38 cells were used as a CFTR corrected control. Сells were 

detached using 2mM EDTA and ECM fractions collected, before proteins were separated using 

SDS-PAGE. Following protein transfer, western blot analysis was performed for the detection of 

TG2, fibronectin and TGFβ1 in the ECM. Ponceau S staining was used as a loading control. (A) 

Representative western blots of TG2, fibronectin and TGFβ1 protein expression in the ECM. 

Densitometry of (B) TG2 (ECM), (C) fibronectin (ECM) and (D) TGFβ1 (ECM) protein levels, 

measured using ImageJ software. Data normalised to Ponceau S staining and expressed as the 

mean fold change ± SEM, in comparison to untreated IB3 cells. Statistical analysis of three 

independent experiments (N=3) using a one-way ANOVA, with a post-hoc Tukey test; ns, not 

significant, *P<0.05, **P<0.01, ***P<0.001. 
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5.3.3 A comparison of C38 cell migration levels when cultured in the 

secretome of untreated and treated IB3 cells 
 

As demonstrated in Figures 5.1 and 5.2, TG2 overexpression in the ECM was abrogated 

via combined treatment of IB3 cells with a CFTR corrector and TG2 inhibitor. This suggests 

that combination treatment in some way restricts the externalisation of TG2. As such, an 

investigation of the CF airway epithelial cell secretome was conducted, to identify changes 

in the release of paracrine soluble factors following treatment. Cell migration levels were 

used as a measure of EMT, to highlight differences between the pro-fibrotic capacity of cell 

secretomes.  

An in vitro scratch assay was performed to quantify cell migration levels over 16 h. 

Immediately after wounding, C38 cells were cultured in the cell secretomes of untreated 

C38 cells, untreated IB3 cells or IB3 cells which were treated with VX-809 (2.5 µM) and 1-

155 (2.5 µM) alone or in combination. All secretomes were collected after 72 h of cell growth. 

As shown in Figure 5.3, the secretomes of treated IB3 cells caused significantly reduced 

percentage wound closure, in comparison to the secretome of untreated IB3 cells (4 h and 

16h). In addition, a significant decrease in percentage wound closure was observed for C38 

cells cultured in the secretome of VX-809 and 1-155 treated IB3 cells, compared to the 

secretomes of IB3 cells treated with VX-809 or 1-155 alone (4 h and 16h). Notably, the 

secretomes of both untreated C38 cells and IB3 cells treated with VX-809 and 1-155 were 

found to generate comparable levels of wound closure, at 4 h and 16 h time points. 
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Figure 5.3. Measurement of percentage wound closure for C38 cells when cultured in the 

secretome released from IB3 cells treated with VX-809 or 1-155 alone or in combination. C38 

cells were seeded in a 24 well plate and grown until confluent, before a scratch was made in each 

cell monolayer. The secretomes of untreated C38 cells, untreated IB3 cells or IB3 cells treated with 

VX-809 (2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) and 1-155 (2.5 µM) were added to the wells 

post-wounding. Cell secretomes were collected after 72 h, in which treatments were changed every 

24 h. Images were acquired in triplicate at 0, 4 and 16 h post-wounding. (A) Representative images 

of each scratch, captured at the specified time points. Images were analysed using ImageJ software 

and (B) cell migration calculated as the percentage wound closure, relative to the original area of 

the wound at 0 h. Data expressed as the mean ± SEM of three independent experiments (N=3), in 

comparison to C38 cells treated with the secretome of untreated IB3 cells. Statistical analysis 

performed using a one-way ANOVA, with a post-hoc Tukey test; *P<0.05, **P<0.01, ***P<0.001. 
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5.3.4 An experimental approach to examine the role of EVs in TG2 secretion 

from CF airway epithelial cells 
 

Data shown throughout this study emphasises the importance of TG2 activity in the 

extracellular environment, with regard to the development of fibrosis in CF airways. 

Treatment of IB3 cells with the TG2 inhibitor 1-155 either alone or in combination with VX-

809, was found to significantly reduce levels of TG2 in the ECM (Figure 5.1) and decrease 

the pro-fibrotic capacity of the IB3 cell secretome (Figure 5.3). This has led to the formation 

of a hypothesis, which proposes that the cellular export of TG2 is diminished in response to 

these treatments. However, the mechanism of TG2 secretion remains poorly understood 

and has never been investigated in CF. Even beyond CF, only a limited number of studies 

have attempted to examine the TG2 secretory pathway, with all research indicating that 

EVs are likely involved in the trafficking of TG2 (Diaz-Hidalgo et al., 2016; Furini et al., 2018; 

Shinde et al., 2020). 

Therefore, an experimental plan was created to research the mechanism of TG2 secretion 

in CF and the define the role of EVs in this process. A multi-faceted approach was designed 

involving the optimisation and application of SEC, TRPS, protein concentration assay, 

transglutaminase activity assay and western blotting, for use with EVs and extracellular 

soluble protein specifically. A schematic outlining the overall workflow strategy of this novel 

investigation is shown in Figure 5.4. 
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5.3.5 Optimisation of SEC for reliable isolation and recovery of EVs and 

extracellular soluble protein 
 

To determine whether EVs are involved in IB3 cell secretion of TG2, a reliable method was 

required for isolation of vesicles. Several purification techniques have been widely used in 

the literature including: ultracentrifugation, density gradient centrifugation, chemical 

precipitation and SEC (Brennan et al., 2020). The selection of SEC was based on the end 

goal of preserving EV biofunctionality, while limiting protein contaminants. With drawbacks 

of extreme centrifugal force and inclusion of additional chemicals, the other techniques were 

not deemed suitable for this particular investigation.   

SEC optimisation was carried out to ensure accurate isolation and separation of EVs from 

extracellular soluble protein. With downstream analyses dependant on the quality of 

purification, optimisation was performed as an essential preliminary step. After culturing 

C38 and IB3 cells for 72 h, cell secretomes were collected and ran through a qEVoriginal/70 

nm SEC column. EV concentration was quantified using TRPS and protein concentration 

measured using a DCTM Protein Assay kit. As shown in Figures 5.5 A and B, the SEC elution 

zones of EVs and extracellular soluble protein were identical for both C38 and IB3 cell 

secretomes. Using this data, a SEC protocol was devised to maximise the recovery of EVs 

and extracellular soluble protein, whilst retaining high levels of purity for each isolate (Figure 

5.5 C). This protocol was implemented for use in all other experiments requiring the 

application of SEC. Upon further comparison of SEC elution profiles, it was found that the 

IB3 cell secretome contained higher levels of EVs and extracellular soluble protein, over the 

C38 cell secretome. Intriguingly, a higher protein level was also observed in the EV elution 

zone of the IB3 cell secretome, compared to the C38 cell secretome. 
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Figure 5.5. Elution profiles of EVs and extracellular soluble protein following SEC of C38 and 

IB3 cell secretomes. C38 and IB3 cells were grown for 72 h and the cell secretomes collected. 

Cell secretomes were pre-processed via centrifugation, with recovered supernatants loaded 

separately on to a qEVoriginal/70 nm SEC column. Samples eluted from the column were collected 

in 1 ml aliquots, up to a total elution volume of 15 ml. EV and extracellular soluble protein 

concentration of individual aliquots were measured using TRPS (NP150) and a DCTM Protein Assay 

kit, respectively. Data analysis of EV concentration was performed using the IZON control suite 

software. Elution profiles of the (A) C38 and (B) IB3 cell secretomes following SEC. (C) Schematic 

representation of SEC elution zones, determined to be optimal for the recovery of purified EVs and 

extracellular soluble protein. Elution profiles generated using data from a single experiment (N=1). 
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5.3.6 Characterisation of EVs secreted by C38 and IB3 cells 
 

A comparison of SEC elution profiles revealed that IB3 cells release more EVs than C38 

cells (Figures 5.5 A and B). Furthermore, the IB3 cell secretome was seen to exhibit a large 

peak in protein concentration within the EV elution zone, in comparison to the C38 cell 

secretome. This could reflect the higher concentration of EVs or possibly indicate a higher 

level of EV associated proteins, or a combination of both. However, a more in-depth analysis 

is required to determine differences between C38 and IB3 cell derived EV populations, as 

the inferences above are based upon a single optimisation experiment. As such, a 

biophysical characterisation of the EVs secreted by C38 and IB3 cells was performed. 

C38 and IB3 cells were cultured for 72 h, before the cell secretomes were collected and ran 

through a qEVoriginal/70 nm SEC column. Purified EVs were recovered and analysed using 

TRPS. A NP150 (EV detectable size range of ~70 - 420 nm) was used to analyse EVs, due 

to its applicability for measurement of both exosomal and microvesicle size ranges. As 

shown in Figure 5.6 A, IB3 cells were found to secrete significantly more EVs than C38 

cells, with an observed increase of 56% (p<0.001). In addition, the concentration of EVs 

secreted by C38 (p<0.001) and IB3 cells (p<0.001) were significantly greater, than the level 

of constituent EVs in the AEM. Intriguingly, the mean size of IB3 cell derived EVs was 

significantly smaller by approximately 30 nm (p<0.05), compared to the mean size of C38 

derived EVs (Figure 5.6 B). 
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Figure 5.6. Quantification of the concentration and mean particle diameter of C38 and IB3 

cell derived EV populations using TRPS. C38 and IB3 cells were grown for 72 h and the cell 

secretomes collected. AEM was examined to determine the background level of EVs in the cell 

culture medium. Cell secretomes and AEM were pre-processed via centrifugation, with recovered 

supernatants loaded separately on to a qEVoriginal/70 nm SEC column. Samples were eluted from 

the column and EV fractions collected. The (A) concentration and (B) mean particle diameter of 

purified EV populations were measured using TRPS (NP150). Data analysis was performed using 

the IZON control suite software. Data expressed as the mean ± SEM of three independent 

experiments (N=3), in comparison to C38 cells. Statistical analysis performed using (A) a one-way 

ANOVA, with a post-hoc Tukey test; ***P<0.001 or (B) an unpaired, two-tailed t-test; *P<0.05. 
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5.3.7 Measuring the concentration and size distribution of C38 and IB3 cell 

derived EV populations when normalised to cell number 
 

As demonstrated in Figures 5.6, IB3 cells secrete more EVs than C38 cells, yet the average 

diameter of EV generated is approximately 30 nm smaller. These novel data highlight a 

disparity in the biophysical properties of EV populations produced by C38 and IB3 cells. To 

further understand the cause of such variance, an investigation into the size distribution of 

EVs within each EV population was conducted. Furthermore, to give a more accurate 

assessment of changes in EV concentration, cells were counted immediately after the 

collection of cell secretomes. This was undertaken to ensure that comparisons between 

C38 and IB3 cells were relative, by normalising EV concentrations against cell number. 

C38 and IB3 cells were cultured for 72 h, before the cell secretomes were collected and 

viable cells were counted using a Trypan Blue exclusion assay. The cell secretomes were 

ran through a qEVoriginal/70 nm SEC column and purified EVs recovered. EVs were 

analysed using TRPS, via an NP150. After 72 h of cell culture, IB3 cells (p<0.01) were seen 

to have a significantly higher growth rate (+19%), in comparison to that of C38 cells (Figure 

5.7 A). Subsequently, this data was used to normalise EV concentrations, with IB3 cells 

(p<0.05) continuing to show significantly increased levels of secreted EVs (+30%), 

compared to C38 cells (Figure 5.7 B). Ultimately, the size distribution of C38 and IB3 cell 

derived EV populations were determined and normalised against cell number. It was found 

that the increased production of IB3 cell derived EVs was focused in the exosomal size 

range, in comparison to C38 cell derived EVs (Figure 5.7 C). A significant rise in EV 

concentration was measured from 100 – 139 nm in particle diameter. 
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Figure 5.7. The concentration and size distribution of C38 and IB3 cell derived EV 

populations after normalisation to cell number. C38 and IB3 cells were grown for 72 h and the 

cell secretomes collected. (A) Viable C38 and IB3 cells were counted using a Trypan Blue exclusion 

assay. Cell secretomes were pre-processed via centrifugation, with recovered supernatants loaded 

separately on to a qEVoriginal/70 nm SEC column. Samples were eluted from the column and 

isolated EV fractions collected. The (B) concentration and (C) size distribution of purified EV 

populations were measured using TRPS (NP150) and normalised to cell number. Data analysis 

was performed using the IZON control suite software. Data expressed as the mean ± SEM of three 

independent experiments (N=3), in comparison to C38 cells. Statistical analysis performed using 

(A, B) an unpaired, two-tailed t-test; *P<0.05, **P<0.01 or (C) a two-way ANOVA, with a post-hoc 

Bonferroni multiple comparison test; **P<0.01, ***P<0.001. 
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5.3.8 Evaluating the level of cellular resources used in the production of C38 

and IB3 cell derived EV populations 
 

IB3 cells are found to secrete a significantly higher concentration of EVs compared to C38 

cells (Figure 5.7 B), by producing increased levels of exosomes (Figure 5.7 C). Yet upon 

further analysis, it was discerned that C38 cells generate more microvesicle sized EVs than 

IB3 cells (Figure 5.7 C). Thus, it remains unclear whether IB3 cells utilise additional cellular 

resources to yield more EVs, or instead compensate for enhanced exosome production by 

diverting EV components away from the synthesis of microvesicles. As such, the total 

surface area of C38 and IB3 cell derived EV populations was quantified. This was used as 

a basic method of analysis, for comparing the levels of cellular resources (e.g. membrane 

area) invested into the production of EVs. 

After culturing C38 and IB3 cells for 72 h, cell secretomes were collected and  viable cells 

counted using a Trypan Blue exclusion assay. The cell secretomes were ran through a 

qEVoriginal/70 nm SEC column, before purified EVs were recovered and analysed using 

TRPS, via an NP150. Based on the assumption of sphericity, the total surface area of 

separate EV populations was estimated using the equation (4πr2), with values adjusted for 

EV concentration and cell number. It was found that no significant difference existed 

between the total surface area of the IB3 cell derived EV population, compared to the EV 

population secreted by C38 cells (Figure 5.8).  

 

 

 

 

 

 



 J.M.Gavin, PhD Thesis, Aston University 2020.                                            165 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

C38 IB3

0

25000

50000

75000

100000

125000

ns

T
o

ta
l 
s
u

rf
a
c
e
 a

re
a
 (

n
m

2
) 

o
f 

E
V

s
 /

n
o

rm
a
li
s
e
d

 t
o

 c
e
ll
 n

u
m

b
e
r

Figure 5.8. Total surface area of C38 and IB3 cell derived EV populations after normalisation 

to cell number. C38 and IB3 cells were grown for 72 h and the cell secretomes collected. Viable 

C38 and IB3 cells were counted using a Trypan Blue exclusion assay. Cell secretomes were pre-

processed via centrifugation, with recovered supernatants loaded separately on to a qEVoriginal/70 

nm SEC column. Samples were eluted from the column and isolated EV fractions collected. The 

concentration and mean particle diameter of purified EV populations were measured using TRPS 

(NP150). Data analysis was performed using the IZON control suite software. (A) Total surface area 

of EV populations was calculated using the equation (4πr2), with values adjusted for EV 

concentration and normalised against cell number. Data expressed as the mean ± SEM of three 

independent experiments (N=3), in comparison to C38 cells. Statistical analysis performed using 

an unpaired, two-tailed t-test; ns, not significant. 
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5.3.9 Measuring the protein concentration of EVs and extracellular soluble 

protein secreted by C38 and IB3 cells 
 

Data shown in Figures 5.7 and 5.8, indicate a shift in the ratio of EV sizes released by CF 

airway epithelial cells. IB3 cells are seen to use similar levels of cellular resources as C38 

cells, but merely redistribute these resources away from the production of microvesicle 

sized EVs and towards the synthesis of exosomal sized EVs. However, as evidenced in 

Figure 5.5, a sizable protein peak was observed exclusively in the EV elution zone of the 

IB3 cell secretome. Taken together, this could suggest that IB3 cell derived exosomes are 

potentially enriched in protein. Therefore, the protein concentration of C38 and IB3 cell 

derived EV populations were measured comparatively. Furthermore, the primary role of EVs 

is to selectively transport cargo (e.g. proteins) for delivery to distant targets outside of the 

cell (Margolis and Sadovsky, 2019). As such, the concentration of extracellular soluble 

protein in the secretomes of C38 and IB3 cells was also measured. 

After culturing C38 and IB3 cells for 72 h, cell secretomes were collected and ran through 

a qEVoriginal/70 nm SEC column. Purified EVs and extracellular soluble protein fractions 

were recovered and concentrated using Amicon® ultra-0.5 ml centrifugal filter units, before 

the protein concentration of both fractions was measured using a DCTM Protein Assay kit. 

The protein concentration of the IB3 cell derived EV population was found to be significantly 

higher than that of the C38 cell derived EV population, with an observed increase of 46% 

(p<0.01) (Figure 5.9 A). Furthermore, both C38 and IB3 cell derived EV populations 

demonstrated increased levels of protein concentration, compared to constituent EVs of the 

AEM. In contrast, IB3 cells exhibited only a modest increase in extracellular soluble protein 

concentration compared to C38 cells, without reaching statistical significance (Figure 5.9 

B). In addition, both C38 and IB3 cells were seen to produce higher concentrations of 

extracellular soluble protein, in comparison to the constituent soluble protein of the AEM.  
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Figure 5.9. Measurement of protein concentration for C38 and IB3 cell derived EVs and 

extracellular soluble protein using a DCTM protein assay kit. C38 and IB3 cells were grown for 

72 h and the cell secretomes collected. AEM was examined to determine the protein concentration 

of EVs and extracellular soluble protein, within the cell culture medium. Cell secretomes were pre-

processed via centrifugation, with recovered supernatants loaded separately on to a qEVoriginal/70 

nm SEC column. Samples were eluted from the column and isolated EV and extracellular soluble 

protein fractions collected. Fractions were concentrated in volume using Amicon® ultra-0.5 ml 

centrifugal filter units, before the protein concentration of (A) EVs and (B) extracellular soluble 

protein was measured using a DCTM Protein Assay kit. Data expressed as the mean ± SEM of three 

independent experiments (N=3), in comparison to C38 cells. Statistical analysis performed using a 

one-way ANOVA, with a post-hoc Tukey test; ns, not significant, **P<0.01, ***P<0.001. 
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5.3.10 The protein expression of TG2 in C38 and IB3 cell derived EVs 
 

Throughout this study the data have shown that externalisation of TG2 into the ECM, is 

critical to the development of fibrosis in CF airways. However, the route of TG2 secretion 

has yet to be investigated in CF. A recent study examining the mechanism of TG2 export in 

chronic kidney disease identified links to an unconventional secretory pathway, specifically 

involving exosomes (Furini et al., 2018). Novel data from Figures 5.6, 5.7 and 5.9 A, has 

demonstrated that IB3 cells release high levels of exosomes, which are likely enriched in 

protein. Considering the parallels, it is quite possible that TG2 is also exported via exosomes 

in CF airway epithelial cells. To test this hypothesis, an attempt was made to detect the 

expression of TG2 in purified EVs isolated from the secretome of IB3 cells. The protein 

TSG101 (a component of the ESCRT sorting machinery) was used as an EV and exosomal 

marker (Willms et al., 2016). 

C38 and IB3 cells were cultured for 72 h, before the cell secretomes were collected and ran 

through a qEVoriginal/70 nm SEC column.  Purified EVs were recovered and concentrated 

using Amicon® ultra-0.5 ml centrifugal filter units. EVs were then analysed using western 

blotting, for the detection of TG2 protein expression. Remarkably, the presence of TG2 was 

identified in EVs secreted by IB3 cells (p<0.001) and to a significantly greater level (˃4-fold) 

than C38 cell derived EVs (Figure 5.10). As expected, constituent EVs of the AEM were 

found to lack the presence of TG2. 
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Figure 5.10. Measurement of TG2 protein expression in C38 and IB3 cell derived EVs. C38 

and IB3 cells were grown for 72 h and the cell secretomes collected. AEM was examined to 

determine the background level of TG2 protein expression for EVs, within the cell culture medium. 

Cell secretomes were pre-processed via centrifugation, with recovered supernatants loaded 

separately on to a qEVoriginal/70 nm SEC column. Samples were eluted from the column and 

isolated EV fractions collected. Purified EVs were concentrated in volume using Amicon® ultra-0.5 

ml centrifugal filter units, before the protein concentration of EVs was measured using a DCTM 

Protein Assay kit. Samples were loaded on to a gel at equal protein concentrations and SDS-PAGE 

used to separate proteins. Following protein transfer, western blot analysis was performed for 

detection of TG2. The membrane was stripped and reprobed for TSG101. (A) Representative 

western blot of TG2 protein expression. (B) Densitometry of TG2 protein levels, measured using 

ImageJ software; np, not present. Data expressed as the mean fold change ± SEM in comparison 

to C38 cells. Statistical analysis of three independent experiments (N=3) using a one-way ANOVA, 

with a post-hoc Tukey test; **P<0.01, ***P<0.001. 
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5.3.11 The protein expression of free soluble TG2 in C38 and IB3 cell derived 

secretomes 
 

As revealed in Figure 5.10, EVs secreted by IB3 cells are enriched in TG2, compared to 

EVs secreted by CFTR corrected C38 cells. However, it is unknown whether TG2 remains 

internalised / bound to EVs following secretion or is in fact liberated from EVs once 

externalised into the extracellular environment. Consequently, the soluble protein fraction 

of C38 and IB3 cell derived secretomes was purified and analysed for detection of TG2 

protein expression.  

C38 and IB3 cells were cultured for 72 h, before the cell secretomes were collected and ran 

through a qEVoriginal/70 nm SEC column. The purified soluble protein fraction of each 

sample was recovered and concentrated using Amicon® ultra-0.5 ml centrifugal filter units. 

The soluble protein isolates were then analysed using western blotting, for detection of TG2 

protein expression. The data shows that TG2 protein levels were significantly increased by 

˃5-fold (p<0.05) in the extracellular soluble protein isolate of IB3 cells, in comparison to the 

extracellular soluble protein isolate of C38 cells (Figure 5.11). An absence of TG2 

expression was observed in the constituent soluble protein of the AEM. 
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Figure 5.11. Measurement of TG2 protein expression in C38 and IB3 cell derived extracellular 

soluble protein isolates. C38 and IB3 cells were grown for 72 h and the cell secretomes collected. 

AEM was examined to determine the background level of TG2 protein expression for soluble 

protein, within the cell culture medium. Cell secretomes were pre-processed via centrifugation, with 

recovered supernatants loaded separately on to a qEVoriginal/70 nm SEC column. Samples were 

eluted from the column and isolated soluble protein fractions collected. Purified soluble protein 

isolates were concentrated in volume using Amicon® ultra-0.5 ml centrifugal filter units, before the 

protein concentration of soluble protein isolates was measured using a DCTM Protein Assay kit. 

Samples were loaded on to a gel at equal protein concentrations and SDS-PAGE used to separate 

proteins. Following protein transfer, western blot analysis was performed for detection of TG2. The 

membrane was stripped and reprobed for TSG101. (A) Representative western blot of TG2 protein 

expression. (B) Densitometry of TG2 protein levels, measured using ImageJ software; np, not 

present. Data expressed as the mean fold change ± SEM in comparison to C38 cells. Statistical 

analysis of two independent experiments (N=2) using a one-way ANOVA, with a post-hoc Tukey 

test; ns, not significant, *P<0.05. 
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5.3.12 Measuring the TG2 activity of C38 and IB3 cell derived EV populations 
 

The involvement of EVs in the export of TG2 from IB3 cells has been evidenced in Figure 

5.10. Accordingly, TG2 activity was measured to establish whether the enzyme remains 

catalytically active when in association with EVs. Moreover, during the experimental 

process of TG2 activity analysis, EVs presumably remain largely intact. As such, TG2 

activity levels are likely representative of enzymatic function on the surface of EVs. 

C38 and IB3 cells were cultured for 72 h, before the cell secretomes were collected and ran 

through a qEVoriginal/70 nm SEC column.  Purified EVs were recovered and concentrated 

using Amicon® ultra-0.5 ml centrifugal filter units. The TG2 activity of EVs was then 

quantified using a transglutaminase activity assay. A negative control of recombinant 

human TG2 in the absence of Ca2+ and presence of EDTA, was used as a reference of null 

transglutaminase activity. As demonstrated in Figure 5.12, EVs secreted by C38 cells 

showed little to no TG2 activity, while in comparison a significant level of TG2 activity was 

found with IB3 cell derived EVs (p<0.001).  
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5.3.13 Measuring the TG2 activity of extracellular soluble protein isolated from 

the secretomes of C38 and IB3 cells 
 

As established in Figure 5.11, TG2 exists in its free form within the extracellular environment 

of IB3 cells. Furthermore, TG2 has also been found to be exported from IB3 cells, via its 

interaction with EVs (Figure 5.10). This suggests that EVs function to traffic TG2 to the 

surface of CF airway epithelial cells and upon externalisation TG2 dissociates into the ECM. 

Thus, an examination of TG2 activity was needed to confirm that TG2 retains its functionality 

once separated from EVs. Consequently, extracellular soluble protein was isolated from the 

secretomes of C38 and IB3 cells and TG2 activity measured using a transglutaminase 

activity assay. 

Figure 5.12. Quantification of TG2 activity for C38 and IB3 cell derived EVs using a 

transglutaminase activity assay. C38 and IB3 cells were grown for 72 h and the cell secretomes 

collected. Cell secretomes were pre-processed via centrifugation, with recovered supernatants 

loaded separately on to a qEVoriginal/70 nm SEC column. Samples were eluted from the column 

and isolated EV fractions collected. Purified EVs were concentrated in volume using Amicon® ultra-

0.5 ml centrifugal filter units, before the protein concentration of EVs was measured using a DCTM 

Protein Assay kit. Biotin-cadaverine incorporation into N,N-dimethylcasein was used as a 

quantitative measure of TG2 activity, with EV populations tested at equal protein concentrations. A 

negative control of recombinant human TG2 (400 ng) with the addition of EDTA (10 mM) and in the 

absence of Ca2+ was used. Data expressed as the mean fold change ± SEM in comparison to the 

negative control. Statistical analysis of three independent experiments (N=3) using a one-way 

ANOVA, with a post-hoc Tukey test; ns, not significant, ***P<0.001. 
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C38 and IB3 cells were cultured for 72 h, before the cell secretomes were collected and ran 

through a qEVoriginal/70 nm SEC column.  The purified soluble protein fraction of each 

sample was recovered and concentrated using Amicon® ultra-0.5 ml centrifugal filter units. 

The TG2 activity of soluble protein isolates was then quantified using a transglutaminase 

activity assay. A negative control of recombinant human TG2 in the absence of Ca2+ and 

presence of EDTA, was used as a reference of null transglutaminase activity. The level of 

TG2 activity in the extracellular soluble protein isolate of the C38 cell secretome was found 

to be negligible (Figure 5.13). Conversely, a significant level of TG2 activity (p<0.01) was 

detected in the extracellular soluble protein isolate of the IB3 cell secretome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13. Quantification of TG2 activity for C38 and IB3 cell derived extracellular soluble 

protein isolates using a transglutaminase activity assay. C38 and IB3 cells were grown for 72 

h and the cell secretomes collected. Cell secretomes were pre-processed via centrifugation, with 

recovered supernatants loaded separately on to a qEVoriginal/70 nm SEC column. Samples were 

eluted from the column and isolated soluble protein fractions collected. Purified soluble protein 

isolates were concentrated in volume using Amicon® ultra-0.5 ml centrifugal filter units, before the 

protein concentration of soluble protein isolates was measured using a DCTM Protein Assay kit. 

Biotin-cadaverine incorporation into N,N-dimethylcasein was used as a quantitative measure of 

TG2 activity, with soluble protein isolates tested at equal protein concentrations. A negative control 

of recombinant human TG2 (400 ng) with the addition of EDTA (10 mM) and in the absence of Ca2+ 

was used. Data expressed as the mean fold change ± SEM in comparison to the negative control. 

Statistical analysis of three independent experiments (N=3) using a one-way ANOVA, with a post-

hoc Tukey test; ns, not significant, *P<0.05, **P<0.01. 
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5.3.14 Characterisation of IB3 cell derived EVs after CFTR corrector and TG2 

inhibitor treatment 
 

A disparity exists between the biophysical properties of C38 and IB3 cell derived EV 

populations. As evidenced in Figure 5.6, IB3 cells secrete a significantly higher concertation 

of EVs, which are on average 30 nm smaller in particle diameter, compared to C38 cell 

derived EVs. This variation was found to be a consequence of IB3 cells producing increased 

levels of exosomes (Figure 5.7 C). For this reason, EV production was measured in 

response to IB3 cell treatment. An NP100 (EV detectable size range of ~50 - 330 nm) was 

used to examine EVs, principally in the exosomal size range. The concentration, mean 

particle diameter and total surface area of EV populations were all analysed to give a 

comprehensive overview of biophysical variances.  

IB3 cells were treated with either VX-809 (2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) and 

1-155 (2.5 µM) for 72 h, before the cell secretomes were collected and ran through a 

qEVoriginal/70 nm SEC column. Purified EVs were recovered and analysed using TRPS, 

via an NP100. As shown in Figure 5.14 A, EV concentration was reduced across all 

treatment conditions, in comparison to untreated IB3 cells. Yet, the decrease was only seen 

to be significant for IB3 cells treated with VX-809 and 1-155 (p<0.05). Moreover, an increase 

was observed in the mean particle diameter of EVs secreted by IB3 cells treated with 1-155 

or VX-809 and 1-155, compared to untreated IB3 cells (Figure 5.14 B). However, changes 

failed to reach statistical significance. Further to this, the total surface area of EV 

populations derived from IB3 cells treated with VX-809 (p<0.05) or VX-809 and 1-155 

(p<0.05) was significantly decreased, in comparison to untreated IB3 cells (Figure 5.14C).  
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Figure 5.14. Quantification of the concentration, mean particle diameter and total surface 

area of IB3 cell derived EV populations following treatment with VX-809 and 1-155 alone or 

in combination. IB3 cells were treated with VX-809 (2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) 

and 1-155 (2.5 µM) for 72 h, with treatments changed every 24 h. Cell secretomes were collected 

and pre-processed via centrifugation, with recovered supernatants loaded separately on to a 

qEVoriginal/70 nm SEC column. Samples were eluted from the column and EV fractions collected. 

The (A) concentration and (B) mean particle diameter of purified EV populations were measured 

using TRPS (NP100). Data analysis was performed using the IZON control suite software. (C) Total 

surface area of EV populations was calculated using the equation (4πr2), with values adjusted for 

EV concentration. Data expressed as the mean ± SEM of three independent experiments (N=3), in 

comparison to untreated IB3 cells. Statistical analysis performed using a one-way ANOVA, with a 

post-hoc Tukey test; ns, not significant, *P<0.05, **P<0.01. 
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5.3.15 Evaluating the size distribution profiles of EV populations in response 

to CFTR corrector and TG2 inhibitor treatment 
 

As determined in Figure 5.10, IB3 cells secrete EVs highly enriched in TG2. Furthermore, 

IB3 cells produce greater levels of exosomes, in comparison to C38 cells (Figure 5.7 C). 

Taken together, this data indicates that an unconventional exosomal pathway may be used 

by IB3 cells, for increased export of TG2 into the extracellular environment. As previously 

demonstrated in Figure 5.14 A, combined treatment of IB3 cells with VX-809 and 1-155 

caused a significant decrease in EV secretion. As such, the size distribution of EV 

populations was investigated, to assess whether combination treatment impacts the 

secretion of exosomes specifically. 

IB3 cells were treated with either VX-809 (2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) and 

1-155 (2.5 µM) for 72 h, before the cell secretomes were collected and ran through a 

qEVoriginal/70 nm SEC column. Purified EVs were recovered and analysed using TRPS, 

via an NP100. Significant decreases in EV concentration were measured across all 

treatment conditions (p<0.001) between the particle size range of 60–119 nm, in 

comparison to untreated IB3 cells (Figure 5.15).  Further to this, IB3 cells treated with VX-

809 and 1-155 (p<0.001) exhibited a significant reduction in EV concentration between the 

particle size range of 80–99 nm, compared to IB3 cells treated with either VX-809 or 1-155 

alone. 
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Figure 5.15. Quantification of the size distribution of IB3 cell derived EV populations 

following treatment with VX-809 and 1-155 alone or in combination. IB3 cells were treated with 

VX-809 (2.5 µM), 1-155 (2.5 µM) or VX-809 (2.5 µM) and 1-155 (2.5 µM) for 72 h, with treatments 

changed every 24 h. Cell secretomes were collected and pre-processed via centrifugation, with 

recovered supernatants loaded separately on to a qEVoriginal/70 nm SEC column. Samples were 

eluted from the column and EV fractions collected. The size distribution of purified EV populations 

was measured using TRPS (NP100). Data analysis was performed using the IZON control suite 

software. Data expressed as the mean of three independent experiments (N=3). Statistical analysis 

performed using a two-way ANOVA, with a post-hoc Bonferroni multiple comparison test; 

***P<0.001. 
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5.4 Discussion 
 
 

For several years, EVs were not considered to be of biological importance and were 

deemed nothing more than a cellular waste removal system (Cocucci et al., 2009). Yet, over 

the last decade EVs have become recognised as a crucial mechanism of intercellular 

communication, functioning as carriers of biologically active cargo (Margolis and Sadovsky, 

2019). Consequently, research in the field of EVs has expanded dramatically and the tools 

used for both isolation and measurement of EVs has greatly improved. This has led to the 

classification of EVs into three distinct subtypes, comprising exosomes, microvesicles and 

apoptotic bodies. It is in fact the smaller, endosomal derived exosomes which have now 

been linked to the externalisation of TG2 in a kidney fibrosis model (Furini et al., 2018). 

Although an exciting discovery, the research is novel and requires further validation in other 

fibrotic systems. Thus, this chapter aims to investigate the role of EVs in the cellular export 

of TG2, from CF bronchial epithelial cells.  

Data within chapter 4 has demonstrated that IB3 cells overexpress TG2 and fibronectin, 

which can be reversed via combination treatment with VX-809 and 1-155. However, the 

pathogenesis of fibrosis mainly centres around the increased externalisation of TG2 and its 

associated fibrotic remodelling of the ECM. In this chapter, it was revealed that VX-809 and 

1-155 can also reduce the deposition of TG2 and fibronectin, specifically in the extracellular 

environment of IB3 cells. These findings suggest that combination treatment has the 

capacity to attenuate fibrotic alterations of the ECM in CF airways. Moreover, the use of 

VX-809 with a cell impermeable TG2 inhibitor (R281) was found to have a comparable 

effect, as seen with 1-155. This again reaffirms the significance of extracellular TG2 activity 

in CF and its role in promoting fibrosis. In addition, the treatment of IB3 cells with R281 was 

found to decrease the protein expression of TGFβ1 in the ECM. The impact of extracellular 

TG2 inhibition on matrix TGFβ1 levels, further validates the existence of a positive feedback 

loop between the two proteins in CF airway epithelial cells. 
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As discussed, the use of VX-809 and R281 attenuates TG2 and TGFβ1 protein levels, in 

the matrix of IB3 cells. Thus, it may be plausible that combination treatment acts by 

restricting the vicious self-reinforcing loop of: TG2-mediated activation of TGFβ1 in the 

ECM, TGFβ1 signal transduction and the increased synthesis / export of TG2. As such, the 

overall pro-fibrotic capacity of the cell secretome would be expected to be diminished, 

following the treatment of IB3 cells with VX-809 and 1-155. Indeed, C38 cells cultured in 

the cell secretome of treated IB3 cells showed reduced cell migration levels, in comparison 

to C38 cells cultured in the secretome of untreated IB3 cells (4 h and 16h). This is the first 

study to demonstrate that use of either VX-809 or 1-155, can impact the release of pro-

fibrotic paracrine soluble factors, from CF airway epithelial cells. However, it cannot be ruled 

out that a residual presence of the compounds remained in the cell secretome after its 

transfer to C38 cells. Yet, it would be unlikely for 1-155 to elicit such a response, as TG2 

inhibition has previously been shown to have no effect on the cell migration levels of C38 

cells (Nyabam et al., 2016). 

With a prominent role discerned for extracellular TG2 activity in CF, a workflow strategy was 

designed to investigate the mechanism of its externalisation. The first step was to optimise 

a reliable method for isolating and recovering EVs with preserved biofunctionality. This was 

crucial as TG2 is potentially associated with the cell surface of EVs (Furini et al., 2018). 

Multiple isolation techniques exist, yet SEC was chosen as the most suitable method. In 

fact, a recent review comparing six different exosomal isolation methods found SEC to be 

the optimal choice, with SEC yielding a high recovery rate of pure and functionally intact 

exosomes (Sidhom et al., 2020). Preliminary optimisation of SEC demonstrated that EVs 

could be accurately isolated from extracellular soluble protein. Intriguingly, the IB3 cell 

secretome was seen to exhibit a large peak in protein concentration within the EV elution 

zone, compared to C38 cell secretome. This is often indicative of a higher level of EV 

associated proteins (e.g. TG2), although the increased concentration of EVs cannot be 

excluded as a possible factor.  
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With SEC optimisation complete, differences in the biophysical characteristics of C38 and 

IB3 cell derived EV populations were analysed using TRPS. It was shown that a shift in the 

production of EV subtype occurs, with IB3 cells releasing significantly higher concentrations 

of exosomes, compared to C38 cells which release more microvesicles. This fits with the 

hypothesis that exosome release is involved in the export of TG2 from CF epithelial cells. 

However, it must also be acknowledged that TRPS measures particles and not EVs 

exclusively. Lipoprotein particles are lipid-enriched, non-vesicular structures which 

predominantly exist around the smaller size range of EVs (Mathieu et al., 2019). Thus, it is 

only assumed that these data reflect changes in EV concentration and not lipoprotein 

particle concentration. Nevertheless, SEC has been proven to perform relatively well in 

separating EVs from contaminating lipoprotein particles in a recent investigation (Brennan 

et al., 2020). Furthermore, the use of 70 nm cut-off SEC columns in this study, likely 

excludes most of the smaller sized lipoprotein particles (e.g. LDL and HDL), albeit larger 

lipoprotein particles (e.g. VLDL and chylomicrons) may still remain. 

C38 and IB3 cell derived secretomes were subsequently analysed, to test for variances in 

the protein content of EV populations and extracellular soluble protein. It was shown that 

IB3 cell derived EVs are significantly enriched in protein, compared to C38 cell derived EVs. 

A slight increase in extracellular soluble protein concentration was also measured in the IB3 

cell secretome compared to C38 cell secretome. Importantly, the protein concentration of 

both EVs and extracellular soluble protein was found to be considerably lower in AEM, 

thereby confirming that observed differences were dependent upon cellular activity. 

Therefore, these findings could potentially indicate that IB3 cells produce EVs loaded with 

protein cargo, which is then released into the extracellular environment. 

To determine whether increased TG2 export might be partially responsible for these 

differences in protein concentration, both EVs and extracellular soluble protein were 

measured for TG2 protein levels. Remarkably, TG2 protein expression was found to be 

upregulated in both IB3 cell derived EVs and extracellular soluble protein fractions. 
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Moreover, the quantification of TG2 activity in both fractions, served to further validate these 

findings. These data support the current literature which links the mechanism of TG2 

secretion to EV transport (Furini et al., 2018; Shinde et al., 2020) and is the first study to 

show this in the context of CF. In addition, these results indicate that even in association 

with EVs, TG2 retains its enzymatic activity when stimulated under the appropriate 

conditions. As regards the transglutaminase activity assay, EVs are predicted to remain 

largely intact throughout the experimental process, which suggests that TG2 is present on 

the surface of EVs. This would support previous observations by Furini et al. (2018). As 

expected, no TG2 expression or activity was detected in the EV-free AEM. 

Although, TG2 expression was not measured in separate EV subtypes, exosomes were 

previously found to be significantly increased in the secretome of IB3 cells. Indeed, data 

from the literature also reports the involvement of exosomes in cellular TG2 export (Diaz-

Hidalgo et al., 2016; Furini et al., 2018; Shinde et al., 2020). As such, it is highly likely that 

TG2 is externalised by exosomes in CF bronchial epithelial cells. Therefore, it would be 

anticipated that combination treatment acts to either reduce the loading of TG2 into 

exosomes or limit the release of exosomes themselves. To test the latter, IB3 cells were 

treated with VX-809 and 1-155 alone or in combination and their respective EV populations 

characterised using TRPS. An NP100 (EV detectable size range of ~50 - 330 nm) was used 

for analysis, to focus primarily on exosomal changes. It was determined that all treatments 

could reduce the concentration of IB3 cell derived EVs, although only with VX-809 and 1-

155 combined, was the change found to be significant. Moreover, both the use of 1-155 and 

combination treatment increased the mean particle diameter of EVs, albeit without reaching 

statistical significance. Interestingly, the mean particle diameter of IB3 cell derived EVs did 

not vary with the use of VX-809. This possibly suggests that VX-809 causes less exosomes 

to be released, while 1-155 induces a switch towards microvesicle production, with 

combination treatment operating through a dual effect. This is an intriguing dynamic and 

may explain why an additive therapeutic effect is seen when using VX-809 and 1-155 in 
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combination. Indeed, it could be expected that combination treatment utilises both routes to 

fully abrogate exosomal associated export of TG2 from IB3 cells. In support of this 

hypothesis, a significant decrease in exosomal sized EVs ranging from (60 - 119 nm) was 

seen in response to all treatments. Notably, both VX-809 and 1-155 were shown to reduce 

the concentration of these exosomes to similar levels, while combination treatment was 

demonstrated to have a more substantial effect. These novel findings are very fascinating 

and clearly warrants further investigation. 

In conclusion, this chapter has shown that the externalisation and activity of extracellular 

TG2, is integral to increased deposition of fibronectin and TGFβ1 in the ECM of CF 

bronchial epithelial cells. Furthermore, the cell secretome of IB3 cells was found to express 

pro-fibrotic paracrine soluble factors, which could increase cell migration levels of C38 cells. 

Strikingly, the pro-fibrotic capacity of the IB3 cell secretome was found to be diminished, 

after the treatment of IB3 cells with VX-809 and 1-155. Characterisation of C38 and IB3 cell 

derived EVs highlighted disparities between EV populations, with IB3 cells releasing more 

exosomes and C38 cells releasing increased levels of microvesicles. Furthermore, IB3 cells 

were seen to generate EVs with a higher protein content, compared to C38 cells. This may 

be explained by the fact that IB3 cells were found to secrete EVs enriched in TG2. Similarly, 

enhanced levels of TG2 were also detected in the extracellular soluble protein isolates of 

IB3 cells. These findings were further supported by the measurement of increased TG2 

activity, within both EV and extracellular soluble protein fractions of the IB3 cell secretome. 

Ultimately, the treatment of IB3 cells with VX-809 or 1-155 was shown to partially reduce 

increases in exosome secretion, with combination treatment seen to largely reverse these 

changes entirely.   

 

  

 



 J.M.Gavin, PhD Thesis, Aston University 2020.                                            184 
 

 

 

 

 

 

 

 

Chapter 6 
 

Discussion and Future work 

 

 

 

 

 

 

 

 

 



 J.M.Gavin, PhD Thesis, Aston University 2020.                                            185 
 

CHAPTER 6: DISCUSSION AND FUTURE WORK 
 

 

6.1 Discussion 
 
 

Over the past decade, the landscape of CF treatment has changed dramatically with the 

development of CFTR modulators. The first major breakthrough came in 2011, with a 

successful phase III trial of Ivacaftor (VX-770) (Ramsey et al., 2011). This pharmacological 

potentiator had been shown to increase the activity of a defective CFTR and improve the 

clinical outcome for CF patients carrying at least one G551D mutation. Since then, the 

development of CFTR modulators has advanced rapidly. First came the introduction of 

Lumacaftor (VX-809), a CFTR corrector designed to traffic ΔF508 CFTR to the cell surface 

(Clancy et al., 2012). This subsequently led to the creation of next-generation CFTR 

correctors and the concept of triple combination therapy (e.g. Kaftrio) (Taylor-Cousar et al., 

2019). Undoubtedly, this switch from symptomatic management to CFTR directed precision 

medicine has helped revolutionise CF treatment, yet it may only be part of the answer.  

Continued research of the most common CFTR mutation, ΔF508, has led to a better 

understanding of the key cellular mechanisms disrupted as a consequence of this CFTR 

defect. It is now recognised that the proteostasis network within CF airway epithelial cells, 

is severely perturbed (Bodas and Vij, 2019). This suggests that the absence of functional 

CFTR at the plasma membrane has a wider impact, than the mere loss of its chloride 

transport. Thus, currently approved CF drugs may be restricted in their effectiveness, as 

these compounds all target CFTR exclusively. Alternatively, compounds which correct the 

proteostasis network may provide a complementary therapeutic strategy and one which can 

be conveniently combined with approved CFTR modulators.  

It has previously been revealed that TG2 is integral to changes in the proteostasis network 

of CF airway epithelial cells (Maiuri et al., 2008; Luciani et al., 2009, 2011). Indeed, TG2 

overexpression was recently linked to increases in TGFβ1 levels and EMT induction in CF 

IB3 cells (Nyabam et al., 2016). This study has attempted to expand upon the initial findings 
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of that research by further examining the role of TG2 in CF progression, specifically the 

significance of its extracellular activity. In addition, TG2 was evaluated as a potential 

therapeutic target in CF, which was assessed using a potent and selective inhibitor of TG2 

(1-155). Finally, this study aimed to unravel the mechanism of TG2 externalisation from CF 

bronchial epithelial cells. 

The data presented in chapter 3 are in agreement with the findings by Nyabam et al. (2016), 

which links increased TG2 protein levels to EMT progression in CF airway epithelial cells. 

However, the additional characterisation of IB3 cells conducted in this study, has revealed 

that EMT induction may actually reflect the process of EMT-derived myofibroblast 

transdifferentiation. Along with the increased protein expression of fibronectin and N-

cadherin (mesenchymal markers), IB3 cells were also shown to exhibit high levels of the 

myofibroblast marker, α-SMA. However, from these data alone it cannot be determined 

what percentage of epithelial cells undergo EMT or indeed the proportion of those EMT 

derived cells which transdifferentiate into myofibroblasts. Furthermore, the existence of 

EMT-derived myofibroblast transdifferentiation in fibrosis is still hotly debated. Several 

studies have provided conflicting evidence of its absence or presence in fibrotic model 

systems (Willis et al., 2006; Wu et al., 2007; Humphreys et al., 2010; Rock et al., 2011). It 

has even been suggested that EMT instead promotes a pro-fibrotic microenvironment for 

fibroblast-myofibroblast differentiation, while not directly contributing towards the 

myofibroblast population itself (Hill et al., 2019). Thus, it cannot be ruled out that the EMT-

derived myofibroblast transdifferentiation observed in this study, is possibly a feature of in 

vitro cell culture and / or the use of immortalised CF epithelial cells.  

It was also shown that TG2 and fibronectin protein levels were elevated in a co-localised 

manner, within the ECM of IB3 cells. Although this has been well documented in other 

fibrotic diseases, this is the first study to show this in the context of CF. This may indicate 

that the increased cellular export of TG2, leads to the enhanced matrix deposition of 

fibronectin. It has been demonstrated before that this can occur via TG2-mediated 
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crosslinking of fibronectin (Philp et al., 2018) or through a non-enzymatic binding interaction 

between the two proteins (S. S. Akimov and Belkin, 2001). Further investigation would be 

needed to discern the mechanism(s) by which this takes place in CF. In relation to these 

changes, myofibroblasts are also found to secrete ECM components (e.g. fibronectin) in 

fibrosis (Klingberg et al., 2013). Taken together, these findings suggest that both the 

increased externalisation of TG2 and EMT-derived myofibroblast transdifferentiation of 

airway epithelial cells, leads to fibrotic remodelling of the ECM in CF (Figure 6.1).  

 

 

 

 

 

 

 

One of the strengths of this study is the use of CF primary HBECs, which provided a more 

physiologically relevant model system for investigation. In support of IB3 cell studies, the 

co-localised overexpression of TG2 and fibronectin was also detected in the ECM of CF 

primary HBECs. Furthermore, CF primary HBECs were demonstrated to exhibit varying 

levels of EMT progression. Interestingly, this may reflect the existence of partial EMT in CF. 

This would seem logical, as EMT is recognised as an extremely dynamic process (Fintha 

et al., 2019). These data may also suggest that the level of EMT progression is linked to 

the extent of tissue fibrosis. Indeed, 032 cells showed both the highest level of EMT and 

the greatest matrix deposition of TG2 and fibronectin. Further research would be needed to 

confirm this, although the same observation has previously been made in another study, 

which identified EMT intensity as a predictive marker of renal allograft fibrosis levels (Hertig 

et al., 2008). Overall, it is becoming increasingly evident that EMT participates in tissue 

Figure 6.1. The pathogenic processes associated with fibrotic remodelling of the ECM in CF. 

Normal airway epithelial cells form a structured barrier and maintain a well-organised ECM. By 

contrast, ΔF508 airway epithelial cells undergo EMT-derived myofibroblast transdifferentiation and 

externalise high levels of TG2. Both processes can contribute to the increased deposition of ECM 

components (e.g. fibronectin), which leads to a stiffened and fibrotic matrix in CF airways.   
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fibrosis. Yet, a major consideration of in vitro experiments, is the degree to which tissue 

culture plasticware influences EMT progression in cells. 

Proof of concept experiments examining the effectiveness of two-directional combination 

treatment (CFTR corrector with a selective TG2 inhibitor), demonstrated a roughly additive 

therapeutic response. This was evidenced by the combined decrease in TG2 protein levels 

/ increase in TEER values, following the treatment of CF primary HBECs with VX-809 and 

1-155 together. A more detailed investigation of two-directional pharmacotherapy using IB3 

cells, further substantiated these findings. Interestingly, the exclusive inhibition of 

extracellular TG2 activity with R281, generated a comparable response as seen with 1-155. 

Given both the additive nature of combination treatment and the pathogenic significance of 

extracellular TG2 activity, it is quite possible that VX-809 and 1-155 reduce fibrosis via two 

alternative pathways.  

Data within this study has also highlighted the functional relationship between extracellular 

TG2 and TGFβ1 in CF airway epithelial cells. Indeed, these results may help to explain the 

mechanism by which TG2 inhibition attenuates fibrotic changes in CF. It was revealed that 

a positive feedback loop exists between TG2 and TGFβ1 in IB3 cells, with TGFβ signal 

transduction operating via canonical and potentially non-canonical pathways. Thus, It is 

highly probable that the inhibition of extracellular TG2 activity restricts the matrix activation 

of TGFβ1 and its downstream signalling, which is a known promoter of TG2 transcription 

(Ritter and Davies, 1998). Subsequently, this would prevent the unabating cycle of TG2-

TGFβ1 self-amplification and diminish the pro-fibrotic effects of extracellular TG2. Additional 

research would be required to assess the involvement of other non-canonical TGFβ 

pathways besides ERK (e.g. JNK pathway). 

On the other hand, it is likely that VX-809 effectuates its response via an intracellular 

mechanism. It has previously been reported in the literature that the subsistence of ΔF508 

CFTR, induces oxidative stress within CF airway epithelial cells (Luciani et al., 2009). This 

increased generation of ROS results in the SUMOylation of TG2, which prevents its 
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ubiquitination and therefore its proteasomal degradation (Esposito et al., 2016). Ultimately, 

this leads to the accumulation of cytosolic TG2. As a result, the treatment of CF airway 

epithelial cells with VX-809 may circumvent this process, by correcting ΔF508 CFTR and 

alleviating oxidative stress. Thus, it is plausible that both VX-809 and 1-155 collectively 

suppress TG2 overexpression in CF, via two separate routes of intracellular and 

extracellular origin, respectively. However, further investigation would be needed to confirm 

this hypothesis.   

Although these findings are promising, some important questions remain as regards the 

feasibility of combination treatment. As previously mentioned, the concept of TG2 inhibition 

has already been tested in CF, with the use of a non-robust pan transglutaminase inhibitor, 

cysteamine (Tosco et al., 2016). Yet, an open-label trial assessing the tolerability of 

cysteamine in CF patients, reported adverse reactions for 70% of the participants (Devereux 

et al., 2016). This may have been due to non-specific off-target effects by cysteamine, or 

was potentially an outcome of TG2 inhibition. Hence, it is important that the safety and 

efficacy of 1-155 is evaluated in a clinical setting, along with the impact of intersubject 

variability. Furthermore, since the start of this study, the development of CFTR modulators 

has advanced considerably. As a consequence, next-generation CFTR correctors like 

Elexacaftor, have now become available. As such, it would be pertinent to examine the use 

of 1-155 in combination with more recent CFTR correctors, to determine whether any 

additional benefits may be observed. Moreover, investigating the effect of a CFTR 

potentiator in combination with a CFTR corrector(s) and selective TG2 inhibitor, would also 

be of relevance. Finally, an important end-point measurement of CF treatment, is an 

improvement in the level of CFTR expression at the apical membrane and increased 

chloride transport. Interestingly, it has previously been established that 1-155 can increase 

the mature form of CFTR at the plasma membrane (Nyabam et al., 2016). Nevertheless, 

the effect of combination treatment (VX-809 and 1-155) on CFTR has not been addressed 

in this study and is therefore a crucial point of consideration for future studies.  
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The mechanism of cellular TG2 export has not previously been investigated in CF. 

Emerging evidence from the literature suggests that the cell surface trafficking of TG2 is 

mediated by EVs, specifically exosomes (Diaz-Hidalgo et al., 2016; Furini et al., 2018; 

Shinde et al., 2020). Data within chapter 5 supports these findings, identifying EV secretion 

as a key pathway for the externalisation of fibrogenic TG2 in CF. It was shown that IB3 cells 

secrete EVs with high levels of TG2 protein expression and activity, in comparison to C38 

cells. However, a limiting factor of this study and other research is the current methods of 

EV isolation. Although SEC is typically considered the best available option, contamination 

from lipoprotein particles still remains an issue. Recently developed techniques, may now 

improve the purity of EV isolates. For example, a new approach known as dual-mode 

chromatography, integrates SEC and cation exchange (Van Deun et al., 2020). Cation 

exchange is incorporated alongside SEC to segregate positively charged lipoprotein 

particles, from negatively charged EVs. Hence, this technique could be used in future 

research, to enhance the accuracy of EV analytical studies. 

The biophysical characterisation of C38 and IB3 cell derived EV populations, has elucidated 

the pathogenic importance of exosome synthesis in CF. It was demonstrated that IB3 cells 

release higher concentrations of exosomal sized EVs, compared to C38 cells which release 

more microvesicle sized EVs. Considering that TG2 was found to be only associated with 

IB3 cell derived EVs, it is not unreasonable to assume that exosomes are involved in the 

export of TG2 from CF airway epithelial cells. In support of this hypothesis, the treatment of 

IB3 cells with VX-809 and 1-155 combined, was found to completely reverse this increase 

in exosome secretion. Correspondingly, combination treatment also attenuates TG2 

overexpression in the ECM of IB3 cells, which suggests that TG2 externalisation is linked 

to the release of exosomes. Interestingly, VX-809 and 1-155 seemed to influence exosomal 

secretion via two separate mechanisms. This observation reinforces the notion that both 

compounds act independently to reduce cellular TG2 export and may actually reflect their 

differing mechanisms of action, as discussed previously. Finally, these data are in 
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agreement with the findings by Furini et al. (2018), which identified exosome-mediated 

transport of TG2 in a kidney fibrosis model. As a result, this may suggest that TG2 exosomal 

secretion is a conserved pathway in the pathogenesis of tissue fibrosis. 

Despite the novel outcomes of this research, there a few considerations which need to be 

addressed. As alluded to in the introduction, EVs are a heterogenous population of cell-

derived membranous particles, in which different EV subtypes exhibit similar compositions 

and overlapping sizes (Van Niel et al., 2018). Thus, the quantification of size only functions 

as a crude marker of EV subtype and cannot be used to definitively characterise changes. 

However, in this study size was used to provide a general insight into EV population shifts, 

with regard to the proportion of exosomal and microvesicle sized EVs. At present, common 

definitions of EV subtypes still rely on size and this will undoubtedly evolve with the 

development of the EV field (Margolis and Sadovsky, 2019). Furthermore, the cellular 

export of TG2 has often been found to be dependent upon its interaction with syndecan-4 

(Verderio et al., 2009; Scarpellini et al., 2014; Furini et al., 2018). In future studies, it would 

be interesting to knockout syndecan-4 in CF airway epithelial cells and investigate 

subsequent changes in exosome secretion and TG2 externalisation. 

In conclusion, this study has established a better understanding of the molecular 

mechanisms underlying TG2-mediated fibrotic changes, in CF airway epithelial cells. It has 

been demonstrated that these pathogenic alterations depend exclusively on the cellular 

export of TG2 to the extracellular environment, which likely occurs via the unconventional 

pathway of exosome secretion. Following the externalisation of TG2, an excessive 

deposition of fibronectin was measured in the matrix, alongside the increased activation of 

TGFβ1. It was revealed that TGFβ signal transduction occurs via canonical (Smad) and 

potentially non-canonical (ERK) pathways in CF. This upregulation in TGFβ signalling was 

shown to result in the formation of a vicious self-reinforcing feedback loop between TG2 

and TGFβ1, which functions as a major driver of EMT-derived myofibroblast 

transdifferentiation. Ultimately, the inherent persistence of this deleterious cycle, leads to 
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accumulation of fibrous ECM components and the development of fibrosis in CF airways. 

Whether this is a common pathogenic feature of all CFTR mutations, will still need to be 

determined. Furthermore, this study has identified a novel therapeutic strategy of two-

directional pharmacotherapy, for the treatment of CF. These data reveal for the first time 

the potential of using a TG2 specific inhibitor in combination with a CFTR corrector, to 

neutralise the pro-fibrotic sequence of events described above (Figure 6.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. The proposed mechanism of two-directional pharmacotherapy in (ΔF508) CF 

bronchial epithelial cells. The application of an approved CFTR corrector (VX-809) in combination 

with a TG2 specific inhibitor (1-155), has been proven to negate TG2-mediated fibrotic changes in 

(ΔF508) CF bronchial epithelial cells. ① TG2 is exported from the cell via an unconventional pathway 

involving exosomes. Once in the ECM, TG2 adopts an open/active conformation, whereby its active 

site is impeded by the use of a TG2 inhibitor, 1-155. ② This subsequently prevents TG2-mediated 

crosslinking of the latent TGFβ1 complex into the ECM. ③ As a result, TGFβ1 is not released and 

intracellular signal transduction of the downstream canonical (Smad) and non-canonical (ERK) 

pathways, does not take place. ④ This precludes an upregulation in the expression of TG2, α-SMA 

and EMT associated proteins. ⑤ In parallel, VX-809 traffics ΔF508 CFTR to the plasma membrane, 

which alleviates oxidative stress and reduces the accumulation of cytosolic TG2.  
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6.2 Future work 
 
 

To further expand upon the findings of this study, future research could focus on the 

following areas of investigation: 

 

 Examine CF bronchial epithelial cells with CFTR mutations besides ΔF508, to 

determine whether TG2-mediated fibrotic alterations are common feature of all CFTR 

variants or potentially linked to a particular functional class(es) of CFTR defect. 

 

 Continue with the evaluation of two-directional pharmacotherapy by testing the efficacy 

and safety of combination treatment (VX-809 and 1-155) in a CF animal model. This 

will be used to assess the viability of progressing combination treatment towards 

human clinical trials. 

 

 Investigate the underlying molecular mechanisms controlling the attenuation of TG2 

externalisation from IB3 cells, following treatment with VX-809. To then evaluate the 

impact of other approved CFTR modulators, in combination with VX-809 and 1-155. 

 

 To determine the effect of combination treatment (VX-809 and 1-155) on the apical 

expression of CFTR at the plasma membrane and the level of chloride transport, in CF 

primary HBECs. 

 

 To perform cryo-electron microscopy on secretome samples after SEC, to assess the 

purity of EV isolates.  

 

 Isolate exosomes and microvesicles separately from IB3 cell derived EV populations. 

To then comparatively analyse the level of involvement of both EV subtypes, as regards 

the externalisation of TG2 from CF airway epithelial cells.  

 

 To knockout syndecan-4 from CF primary HBECs using syndecan-4 targeting siRNA 

and then examine the effect on TG2 expression in exosomes and microvesicles, which 

have been isolated from the cell secretome. 
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