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High frequency acoustic waves confined inside a suspended core fiber (SCF) are revealed by numerical simulations for the first time. 
A standard optical fiber (SMF) is modelled to explain the current research limitations. The acoustic frequency response and energy 
concentrated in both fibers are evaluated from 50 to 56 MHz with the 3D finite element method. The simulated dispersion curves are 
compared to the Pochhammer-Chree solutions. The energy in the SCF core at the resonance of 52.84 MHz is approximately 16 times 
higher compared to the SMF, indicating a new route for the design and fabrication of fiber-based ultrasonic devices. 

 
Ultrasonic waves have been successfully employed to 
modulate optical fibers in notch filters, frequency shifters, 
dynamic couplers, Q-switched and mode-locked fiber 
lasers1–6. Acousto-optic modulators are tuned by the 
acoustic power and frequency, providing low insertion 
losses and easy integration with fiber optic components. In 
particular, the interaction of standing longitudinal acoustic 
waves and fiber Bragg gratings (FBGs) is suitable to 
mode-lock the repetition rate of fiber lasers at twice the 
acoustic frequency. The acoustically induced 
displacements compress and extend the grating period, 
inducing reflection bands on both sides of the Bragg 
wavelength 7. Constant acoustic amplitude and period are 
therefore important requirements to accurately tune the 
grating reflectivity with stable output operation. 

However, in standard fibers, the acoustic energy is 
distributed throughout the cladding, reducing the 
interaction with the optical modes in the core. Long 
interaction lengths, high acoustic powers, cladding-etched 
and tapered fibers have been employed to increase the 
acousto-optic interaction 6,8. Nevertheless, the reduction of 
the fiber diameter degrades the optical/mechanical 
stability, while long lengths increase the switching time. 
The decreasing acoustic energy in the core becomes 
critical with the variation of the acoustic velocity and the 
emergence of higher order modes with increasing 
frequency, limiting the operation of current devices to 
frequencies up to approximately 10 MHz 9. 

Figs. 1(a)-1(c) illustrate the displacements u in a 
standard single mode optical fiber (SMF) with increasing 
frequency f. Longitudinal acoustic waves are axially 
symmetric waves characterized by radial v and axial w 
displacement components given by 9,10,   
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expressed in terms of the dilatational cD and transversal cT 
material velocities,  
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Lamé elastic constants, γ and μ, and density ρ.  J0 and J1 

are Bessel functions of the first kind, k=2�/λb, is the 
wavenumber, ω=2�f=kcP, is the angular frequency, and A 

and C are arbitrary constants. The axial and radial 
displacements exchange over the fiber cross section with 
the radius r. The fiber diameter is 2a.  

As ka→0, the phase velocity cP approaches the 
extensional velocity cE=(Y/ρ)½, where Y is the Young's 
modulus. Consequently, the axial displacements are 
predominantly distributed over the fiber cross section 
(Fig. 1(a)). As ka→∞, cP  approaches the velocity of 
Rayleigh surface waves 11, 
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in which, υ is the Poisson's ratio. The kinetic energy 

density, 2 2 221
2 ( ),E u v w    propagates in the 

fiber with the group velocity, / ,gc k    as 9, 
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Most of the displacements are radially distributed at 
low values of cg (Fig. 1(b)). Fig. 1(d) shows the modulus 
variation of w and v for the fundamental acoustic mode 
(l01), indicating null (dark blue color) and maximum (dark 
red color) displacements.  

The axial displacements are partially replaced by the 
radial components over the fiber cross section with 
increasing frequency f 9. Fig. 1(c) illustrates the 
displacements around 50 MHz. The wavenumbers k of the 
free-vibration modes are computed with the finite element 
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method (FEM) 12–16. Fig. 1(e) shows the simulated phase 
velocities cP (solid lines) compared to cD, cT, cR and cg, 
calculated with Eqs. (3), (4) and (5) (the velocities are 
normalized to cE). The fiber cross section becomes 
multimode at frequencies approaching 30 MHz in which 
the acoustic period λb is comparable to the fiber diameter.   

In this paper, we have investigated the modal 
superposition and energy confinement in the cores of a 
standard optical fiber and a suspended core fiber 
(SCF) 4,13,17 at frequencies higher than 50 MHz. In this 
range, the SMF cross section supports two higher order 
modes with distinct displacement patterns, phase and 
group velocities (modes l02 and l03 in Fig. 1(e)). The 
overlapping between the modes transfers energy from the 
fiber core to the cladding and surface, inducing distortion 
of the wave amplitude and period. As a promising 
alternative, we propose monomode operation in the fiber 
core by modal acoustic filtering with SCFs.  

We have modelled a SMF-28 and a SCF of 500 µm 
length and 125 µm diameter. The SCF model is based on 
a real fiber 4, with a 5 µm diameter (D) core suspended by 

four air holes with a diameter of ~45µm. The silica bridges 
are ~700 nm in thickness. The bridge length (d) is ~27 µm. 
Both fibers are composed of silica: Young’s modulus 
Y=72.5 GPa, Poisson ratio � =0.17 and density 
ρ=2200 kg/m3 9,13. A sinusoidal acoustic force with 
amplitude Fac=3×10-3N is axially applied at one end of the 
fibers from f = 50 to 56 MHz (20 kHz steps), as illustrated 
in Fig. 1(f). The other fiber end is fixed. The frequency 
response is calculated by means of the finite element 
method (FEM) included in the commercial package 
COMSOL Multiphysics 5.4, employing the methodology 
described in Refs.2,12,13,15,16. The simulations are computed 
with a High-Performance Computer cluster (HPC) 
equipped with 2000 processor-cores and 9TB memory. 

The axial displacements w are computed in the core 
center (r=0) of both fibers. The wavelength λb of the modal 
superposition is estimated from |w| by employing the fast 
Fourier transform (FFT)18,19, as illustrated in Fig. 1(g). The 
FFT peaks are fitted with a cubic spline interpolation 
function and normalized to emphasize the predominant 
wavelength λb (dark red color in Figs. 2(a) and 2(b)). λb is 
also computed by averaging the distance between 
consecutive wave peaks and nodes along the fiber 
(averaged peak-to-peak (APP)). This method provides 
high accuracy to measure periodic waves. Overlapping 
between the FFT/APP curves indicates waves approaching 
constant amplitude and period. The kinetic energy density 
E is integrated along the SCF core and bridges and along 
the SMF core. The efficiency of the energy confinement 
Erel is evaluated by comparing the energy in the core with 
the total energy stored in the fiber.  

The wavelength λb of the three acoustic modes 
supported by the SMF for the considered frequency range 
is calculated by means of the well-known Pochhammer-
Chree theory 20,21. The wavenumber in Eqs. (1) and (2) are 
numerically computed by employing the same parameters 
of the simulations, and the method and algorithms 
proposed in Refs.22–25. The same procedure is employed to 
compute the wavelength λb of the mode confined inside the 
SCF core, considering the fiber core as a perfect 
cylindrical waveguide.  

Figures 2(a) and 2(b) show the 2D FFT spectrum 
compared to APP (white line) and the theoretically 
calculated modes (black lines) for the SMF and SCF. The 
displacements of the acoustic modes are shown in steps of 
f = 1 MHz in Fig. 2(c). The resonance peaks in Fig. 2(d) 
show the comparison between the energy confined in the 
SCF and SMF, Erel. Fig. 2(a) shows variations of λb caused 
by the superposition between the three modes. The 
difference between FFT and APP methods indicates 
distortion of the sinusoidal wave pattern caused by modes 
overlapping out-of-phase or transversally to the fiber 
length (e.g. as indicated by the regions delimited by white 
dashed lines). As defined in Eqs. (1) and (2), the axially 
symmetric modes are characterized only by radial v and 
axial w displacement components (Figs. 1(a)-1(c) 
illustrate these components with vectors for the 
fundamental mode in a SMF. The superposition of the 

Fig. 1. Illustration of the axial w and radial v displacements 
exchanging with the frequency in a SMF: (a) up to 10 MHz, and 
approximately (b) 30 MHz and (c) 50 MHz. (d) Distribution of 
w and v for the fundamental mode l01. (e)Phase velocity (solid 
lines) and group velocity (dashed lines) for l01 and higher order 
modes l02 and l03. (f) Modelling, input parameters and boundary 
conditions applied to the SCF and SMF. (g) The energy 
confinement Erel and displacements w are computed by the 
FEM. The dispersion curves are calculated by the FFT and APP 
methods.  
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modes is therefore the basic algebraic sum of the 
components (vectors) of the considered individual modes. 
The high agreement between the simulated FFT and 
theoretical curves of 98% (averaged over the frequency 
range) indicates the higher-order mode l03 as the dominant 
mode in the fiber core. The energy is mostly distributed in 
the cladding and surface, reducing the overall energy in the 
SMF core to a maximum of 3% in Fig. 2(d). 

 Oppositely, the energy is concentrated in the 
bridges (44%) and core (49%) for the SCF resonance in 
Fig. 2(b), inducing strong confinement inside the fiber 
(93%) at fc=52.84 MHz. The clear region around the 
resonance in the FFT spectrum and the agreement between 
the APP and theoretical curves of 94% indicates just one 
mode (l01) with an almost sinusoidal pattern in the SCF 
core. Higher agreement with theoretical values are 
expected by employing SCFs approaching a circular 
shaped core and reducing the superposition with higher 

order cladding modes (white dashed lines in Fig. 2(b)).  
Overall, distortion of the wave amplitude and period is 
reduced for the whole frequency range compared to the 
SMF. 

We have evaluated the superposition between the 
acoustic modes inside the SMF and SCF at fc=52.84 MHz 
(frequency indicated as a vertical dashed line in Fig. 1(e)). 
Fig. 3(a) shows the 3D displacements in the SMF being 
evaluated along the yz plane (Fig. 3(b)). |u| is decomposed 
into the radial v and axial w components in Figs. 3(c) and 
3(d). Fig. 3(g) shows v and w normalized to the maximum 

at the radial positions indicated in Fig. 3(a). The 
overlapped radial pattern of the fundamental mode l01 is 
shown as a detail in Fig. 3(c). The axial pattern of l01 is not 
visible because it overlaps the higher order modes l02 and 
l03 (Figs. 3(e) and 3(f)). Note that strong radial couplings 
induce 90o shifted axial displacements along the fiber (e.g. 
vertical green line). Fig. 3(g) shows distortion of the wave 

Fig. 2. Wavelength λb variation for the (a)SMF and (b)SCF computed with the 2D FFT and APP methods for f=50-56 MHz 
The simulations are compared to the Pochhammer-Chree theoretical modes (black lines). (c) Displacement patterns are shown 
in 1 MHz steps. (d) The efficiency of energy confinement Erel in the SCF and SMF. 
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amplitude and period in the core center caused by the 
modes overlapping nonuniformly and out-of-phase over 
the fiber cross section. The physical mechanism 
underlying the results in Fig. 3 are defined by the 
dispersion of the acoustic waveguide in the considered 
frequency range. In other words, the fiber cross section 
works as a transversal acoustic cavity which is resonant 
with the modal field of higher order modes after a specific 
frequency. The sinusoidal wave pattern with constant 
amplitude and wavelength of the fundamental mode 
illustrated in Fig. 1(a) (up to 10 MHz) is replaced by a 
complex wave pattern, as seen in Fig. 3(g). The dispersion 
causes the fundamental mode to concentrate mostly over 
the fiber surface, as indicated in the cross section of l01 in 
Fig. 3(c) and the shortest wavelength in Fig. 3(g). The 
increasing wavelength in Fig. 3(g) shows the influence of 
the higher order modes in the fiber, indicating the 
dominance of l03 in the core center (r = 0), as indicated with 
the axial displacement w in Fig. 3(f). 

Figs. 4(a) and 4(b) show the displacement distribution 
in the SCF, decomposed into the transversal v and axial w 
components (Figs. 4(c) and 4(d)). Fig. 4(g) shows v and w 
at the radial positions in Fig. 4(a). The displacement 
pattern over the silica bridges has distinct transversal (A1) 
and axial (S0) components10. A1 is antisymmetric in relation 
to the fiber axis and S0 is symmetric in relation to the line 
perpendicular to the fiber axis 26. The xy patterns of A1 and 
S0 are shown in Fig. 4(e) and 4(f). S0 achieves a maximum 
at the core center (r=0) inducing a longitudinal acoustic 

wave with constant period λb and amplitude (Fig. 4(g)). In 
contrast, the displacements on the fiber surface (r=a) have 
a maximum amplitude of ~3% compared to the core. 
Considering that these low displacements have no 
significant effect on S0

26, the resonant wavenumber 
kb=2�/λb is estimated as14,26,  

      

4

41
~ 1 ,

8b b

b

D
k L

L
 
  
      

 (6) 

in which, Lb is the effective total bridge length, and D is 
the core diameter (D/Lb ≤ 0.1). Solution of Eq. (6) shows 
that the silica bridges and core are resonant with half 
wavelength λb (Lb~λb/2), as seen in Figs. 4(d) and 4(f). 
Therefore, tuning of fc is expected by changing the bridge 
length, or with minor effect, the core diameter. Frequency 
shifts of fc caused by changes of the fiber length are also 
expected. The results show that the SCF is considerably 
less affected by dispersion compared to the SMF. 
Although the evidence of higher order modes is still 
observed over the fiber surface and cladding (yellow 
shadows in Fig. 4(e) and 4(f)), the influence of these 
modes in the fiber core is irrelevant. The reduced 
dispersion is confirmed by a smaller wavelength in the 
core center (r = 0) compared to the SMF, as seen in 
Fig. 4(g). The sinusoidal pattern in the fiber core shows the 
existence of just one mode in the core, which is suitable 
for acousto-optic modulation, as has been demonstrated 
for frequencies lower than 10 MHz. In fact, the waveguide 
diameter is significantly reduced to 5 µm (fiber core) 
imposing a strong filtering to higher other modes with 
transversal fields considerably larger than this value. For 
practical applications, the dispersion phenomenon is 
adjusted by evaluating the ratio of between the waveguide 
diameter and the period of the acoustic waves at a specific 
acoustic frequency. 

The theory described by Eqs. (1) to (5) provides a basic 
understanding about the definition of longitudinal acoustic 
waves and the main parameters used as reference in 
acoustic waveguides. Our numerical investigation aims to 
provide a practical, versatile and detailed alternative in 
comparation to the complex and extensive Pochhammer-
Chree equations, describing the propagation of 
longitudinal modes in an infinite, isotropic, homogeneous 
and solid cylindrical waveguide. The solution of those 
equations has been computed by employing a combination 
of numerical methods included in the algorithms proposed 
by Puckett in Ref. 25. The modes’ wavenumbers 
(wavelength, phase and group velocities) are calculated for 
each acoustic frequency, considering the fiber ́s geometry 
and material as input parameters. The dispersion curves 
(wavelength vs frequency) are calculated individually for 
each mode, as seen in Figs. 2(a) and 2(b). In contrast, the 
3D simulation provides a tool for the design and evaluation 
of the overall device, including additional parameters 
necessary for the manufacture and efficient operation. It 
enables the study of the real situation in which the resonant 

Fig. 3. (a) 3D SMF displacements evaluated in the (b) yz plane. 
(c) radial v and (d) axial w components show the overlapping 
between the fundamental l01 and higher order modes (e) l02 and 
(f) l03. (g) Wavelength λb is evaluated as indicated in Fig. 3(a).  
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modes are excited simultaneously in the fibers, in which 
one dominates over the others in a specific frequency 
range.  

 The acoustic waves excited in the core of the optical 
fibers at higher frequencies show a complex non-
sinusoidal envelope caused by the superposition of the 
modes. The direct evaluation of the wave amplitude in the 
space domain (acoustic amplitude along the fiber length) 
for each frequency is elaborate and may be impracticable 
to evaluate a large number of samples (300 samples are 
analyzed for the considered frequency range). The FFT 
evaluates efficiently all these samples and calculates the 
acoustic wavelength of the mode or modes contributing to 
the complex acoustic amplitude. The analyses of the 
wavelengths in the frequency domain identifies the modes 
and how the acoustic waves deviate from a sinusoidal 
pattern with constant amplitude and period (ideal case for 
practical applications). The FFT therefore indicates the 
most suitable frequency range for the efficient operation of 
the acousto-optic devices. Considering that the devices are 
driven by an electrical signal, the dispersion curves show 

the frequencies in which the devices are properly tuned to 
have a higher modulation efficiency (e.g. the frequency 
range from 52 to 53.5 MHz in Fig. 2(b)). 

Further advance of this study might suggest the 
evaluation of the relative amplitude of each mode in the 
modal superposition. It might be achieved by considering 
the third axis of the FFT at a specific frequency (e. g. 
evaluation of the acoustic amplitude versus the 
wavelength). The experimental assembly of the proposed 
device might require the modelling of the real SCFs 
geometry and material considering defects, imperfections, 
or dimension changes, which could shift the resonance and 
reduce the effective overall energy in the core. 
Microcavities based on SCFs might be achieved with good 
optical and mechanical properties by employing advanced 
splicing and alignment techniques27.  

Overall, the achievements and methodology proposed 
in this research are promising for the design and 
fabrication of acousto-optic modulators and fiber-based 
ultrasonic sensors, especially those composed of fiber 
Bragg gratings28–30. The combination with FBGs enables a 

Fig. 4. (a) 3D SCF displacements evaluated in the (b) yz plane. (c) Transversal v and (d) axial w components show the (e) 
antisymmetric A1 and (f) symmetric S0 wave patterns. (g) Wavelength λb is evaluated as indicated in Fig. 4(a). 
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distinct advantage to measure simultaneously the acoustic 
field and temperature 31. The high acoustic sensitivity in 
the SCF core is significantly promising to improve the 
noise-limited pressure resolution and frequency operation 
of optoacoustic devices, contributing to compact and 
efficient all-fiber devices for biomedical applications 30.  

 In summary, we have numerically investigated the 
modal superposition and energy confinement in the cores 
of a SMF and a SCF from 50 to 56 MHz. For the SMF, 
coupling between modes reduces the acoustic energy in the 
core. Distortion of the wave amplitude and period is 
observed. Energy distribution on the fiber surface with 
increasing frequency is expected, since the modes tend to 
propagate as Rayleigh waves. We have proposed a 
potential solution to increase the frequency operation of 
the current all-fiber ultrasonic devices by efficiently 
confining the acoustic energy inside SCFs. The wave 
periods must be comparable with the total bridge length. 
Multimode overlapping in the fiber core is considerably 
reduced for the 6 MHz frequency range, approaching a 
monomode dispersionless bandwidth around the 
resonance at fc=52.84 MHz. High energy in the SCF core 
will certainly strengthen the interaction with the optical 
modes and Bragg gratings, making possible acoustic 
modulation of fiber lasers with repetition rates higher than 
100 MHz.  
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