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Probabilistic Message-Passing Control
Randa Herzallah , David Lowe, and Yazan Qarout

Abstract—There is insufficient current understanding of how
to apply fully decentralized control to networks of sparsely cou-
pled nonlinear dynamical subsystems subject to noise to track a
desired state. As exemplars, this class of problem is motivated
by practical requirements of creating decentralized power grids
robust to cascade failures, the digital transformation of Industry
4.0 managing IoT connectivity reliably, and controlling transport
flow in smart cities by computing at the edge. We demonstrate
that an approach utilizing probability theory to characterize and
exploit the uncertainty in locally received information, and locally
optimized messages passed between neighboring subsystems is
sufficient to implicitly infer global knowledge. Thus, control of a
global state could be realized through decentralized control sig-
nals applied only to local subsystems using only local information
without any reference to a global current state. Given a global
system that can be decomposed into a set of locally coupled
subsystems, we develop a theoretical method of probabilistic
message passing and probabilistic control signals all interacting
only at the subsystem level, but which promotes a system-wide
convergence to a desired state. Our theoretical results are cor-
roborated using computational experiments on a network of a
10-node partially coupled system decomposed into four sepa-
rated subsystems with control inputs applied and determined
at the subsystem level. Comparing the results with a central-
ized control method utilizing information from all the nodes to
achieve global state convergence validates our hypothesis that
local decentralized probabilistic control can be affected by the
mechanism of local probabilistic message passing without need-
ing access to global centralized information. We also provide a
set of numerical experiments increasing the network size show-
ing that the decentralized algorithm is independent of the global
system size.

Index Terms—Decentralized control, fully probabilistic control,
probabilistic message passing.

I. INTRODUCTION

THE CURRENT evolution of Web 3.0 the semantic Web,
the Internet of Things, and the motivation for peer-to-peer

architectures of global decision management require inevitable
decentralization of resource. Decentralization, defined as the
dispersion, delegation, or distribution of authority away from a
central organization, is distinct from distributed architectures
where the decisions are still focussed locally, although the
functions such as data, computing, resource management may
be delegated across a connected network. Most recently, this
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has been highlighted [1] by the development of blockchain [2],
both as a mechanism for supporting egalitarian cryptocur-
rency, and as an example of a decentralized ledger technology
(DLT). Blockchain however, is but one recent impact of decen-
tralization. The impact of distributed energy resources, the
mandated requirement of ambitious renewable energy tar-
gets to national energy policies, and inefficiencies of energy
transport across distance are motivating a future decentral-
ized power grid at nation state level, favoring decentralized
generation [3]. Similarly, traffic management systems to ease
congestion and pollution across smart cities by computing at
the edge requires a stable, controllable decentralized connected
network of local autonomous systems [4]. For multiagent
systems such as drone formations for agriculture or surveil-
lance, there exists the generic unsolved distributed formation
control problem of multirobot systems [5].

The demand for stable behavior of self-adaptive decentral-
ized yet connected systems motivates the core of this article:
to devise a theoretical and algorithmic framework for a fully
decentralized control approach that can be applied to such
noisy and nonlinear systems.

However, full decentralization leads to many challenges,
not least of which is how can a decentralized system arrive
at a global consensus that is optimal for the whole commu-
nity when all decision making is made at the local subgroup
level. Simple “unsupervised” self-organization in dynamical
systems is insufficient in systems that require a specific global
outcome. It is not a closed system problem and needs to
respond and interact with external stimuli or interventions
guiding the system to specific outcomes, such as confirming a
block of financial transactions on a ledger, or a desired voltage
output whilst dealing with fluctuating global power demand.
Being decentralized, each local subgroup by definition does
not respond to commands sent from a global controlling center.
Each subgroup only sees information passed by its (presum-
ably sparse) connection links to other local subgroups and
modifies its local behavior to optimize its own characteris-
tics. The challenge is how to locally direct each subsystem
to a behavior that optimizes a global system benefit, when
each subsystem does not have access to the global cost func-
tion, and only observes signals from its neighbors, and in turn
will communicate its own local state to its own connected
subgroups.

The final challenge is that in addition to dealing with non-
linear behavior within a subsystem we have to contend with
noise, uncertainty, and stochasticity across the system, so con-
ventional deterministic control techniques cannot be employed
to direct the behavior of the decentralized subsystems. This
implies we need an approach where subsystems and external
control strategies need to be developed probabilistically.
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The focus of this article is to introduce the theoretical struc-
ture for the explicit control interventions in a decentralized but
interconnected system under the assumption that each subsys-
tem only has access to probabilistic information on the state of
each connected subsystem. In a similar way, each subsystem
conveys information on its current state to its own connected
neighbors, all without having access to the global cost function
of the whole system. A correcting probabilistic control signal
is introduced at each subsystem, the precise form of which is
one of the novel contributions of this article.

The methodology employed in this article is to consider the
decentralized set of partially coupled subsystems where each
subsystem’s state is locally estimated and controlled indepen-
dently using a probabilistic model for each subsystem and a
probabilistic controller each of which needs to be estimated
rather than predetermined. Each subsystem can measure the
state of the local variables that describe its own dynamical
behavior (i.e., the state of the subsystem is observable by
the local subsystem). However, each subsystem only receives
partial information on the current state of its neighboring sub-
systems, via probabilistic message passing, the form of which
is derived in this article. Note that messages passed from a par-
ticular subsystem about its state are treated by the neighboring
subsystems as external variables, and so cannot be influenced
by local control interventions. This is the mechanism that
allows us to decouple the problem into locally controllable
decentralized subsystems.

The novelty is in treating the full control problem as
intrinsically probabilistic, where the decentralization aspect is
achieved by exploiting the statistical independence between
subsystems, allowing a decomposition of the joint distribution
into locally accessible probability distributions constituting
the information in the message passing between connected
subsystems.

II. REVIEW OF CURRENT APPROACHES

The deterministic dynamical systems-based approach has
provided several useful developments, notably in synchroniz-
ing chaos [6], pinning control [7], [8], multiagent control [9],
and mean-field optimal control [10]. These developments how-
ever have weaknesses. They either over-represent single-agent
architectures as far as the controller design is concerned, which
retain elements of centralization requiring knowledge of the
global state, or are decentralized but decisions are based on
disconnected knowledge, or on a simplifying averaging, and
do not incorporate stochastic uncertainty.

Another fundamental problem in complex systems control
is consensus in which the objective is to devise decentralized
control laws for all subsystems constituting a complex system
to ensure that the global objective of the complex system is
achieved using only local knowledge available to each sub-
system locally. A comprehensive analysis of the consensus
problem along with the influence of direct information flow
accompanied with changes in the network topology was given
in [11]. A recent overview of decentralized consensus issues
in modern blockchain networks was reviewed in [12], though
without issues of stochastic uncertainty, and not addressing
the environmentally unsustainable energy budget consumed by

the main consensus algorithms at scale. Similarly, it has been
proposed [13] to use a blockchain solution as a decentralized
peer-to-peer energy trading model for smart grids, but again
suffers from all the problems of scalability and constraints of
the consensus algorithms. Also related to using blockchain for
microgrids in distributed decision making [14]. Although not
strictly a decentralized control algorithm, they investigate a
decentralized consensus decision-making approach for cyber-
security of multimicrogrid power systems which are subject to
incomplete information. Of note is their use of Bayesian games
to incorporate decision making under uncertainty. In particu-
lar, they consider incomplete information being made available
to each node, and use a Harsanyi transformation to convert
this into a problem of complete but imperfect information.
A fuzzy payoff matrix is used to determine a local decision
which is recorded on a blockchain using modified consen-
sus. This is a rare example of including uncertainty explicitly
into the decision-making algorithm, although still constrained
by the consensus approaches of blockchain, and limited by
uncertainty in dynamics.

Although several methods for consensus and synchroniza-
tion have been proposed in [15] and [16], there is still a
lack of a reliable framework that can guarantee synchro-
nization in the presence of heterogeneous and/or uncertain
complex systems components. Some recent studies considered
distributed adaptive synchronization to harmonize multiagent
systems with large uncertainties and heterogeneous agents, but
they mostly assumed linear systems and identical dimensions
for all agents [17], [18]. For networks that change topology
over time, adaptive control methods have been proposed to
guarantee stability for uncertain switched linear systems [19],
[20]. A robust synchronization method was proposed in [21]
for linear multiagent systems with uncertainty in the agent
dynamics. However, despite being proven robust, the afore-
mentioned methods considered linear dynamical systems only,
therefore, they are too restrictive to be used in real-world sce-
narios where the processes exhibit nonlinear dynamics and
where their models are usually difficult to obtain. Similarly,
the approach in [22] presented the consensus control problem
of heterogeneous linear multiagent systems using a dis-
tributed proportional–integral protocol to ensure consensus
of heterogeneous linear multiagent systems within directed
communication graphs. However, in addition to the issues of
being constrained to linear subsystems, the algorithm proposed
depends on the eigenvalue information of the Laplacian matrix
of the communication graph, and so requires knowledge of the
whole system.

An approach to decentralization algorithms in tree-structured
graphs was considered in [23] using a nonconvex optimization
over tree-structured networks, where each node can solve small-
scale optimization problems and communicate approximate
value functions with its neighbors. However, stochastic uncer-
tainty was not incorporated and the explicit large-scale global
knowledge of the tree structure has to be assumed.

An approach to create a distributed output-feedback con-
troller in a linear system using a triggering function to only
transmit information between nodes at given interval events
to achieve bounded consensus was described in [24]. As a
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leader–follower framework, the model assumed full determin-
istic knowledge of the leader dynamics, did not incorporate
any noise or stochastic uncertainty in the dynamics or in the
observed or estimated state values or control signals. Also, the
knowledge of the full connectivity matrix is used to create the
control gain in the linear system.

Going beyond linearity and fixed architectures, recent
studies have investigated uncertain nonlinear multiagent
systems [25]. Decentralized control methods have also been
proposed to control large-scale and interconnected nonlin-
ear systems [26], [27]. Nonetheless, most of these methods
were based on the exploitation of traditional adaptive and
optimal control approaches and the minimization of the mean
of the objective function, thus yielding heuristic certainty
equivalence controllers which are known to perform badly
in the presence of noise, model uncertainty, and unmodeled
dynamics. Other studies in complex systems reviewed recent
advances on controllability and control of complex networks
and explored the intricate interplay between the network topol-
ogy and dynamical laws. Liu and Barabási [28] discussed
the challenges that nonlinearity, high dimensionality, and con-
straints on the intervention impose on designing system-level
control [29], and developed analytical tools to study the
controllability of an arbitrary complex directed network [30].

Ma and Ma [31] proposed an algorithm using radial basis
function neural networks to estimate the unknown nonlinear-
ities in switched nonlinear large-scale systems for adaptive
decentralized fault-tolerant control using certainty equiva-
lence controllers. However, stochastic uncertainties (noise)
and unknown dynamics limit the use of certainty equivalence
controllers.

Another approach using a radial basis function neural
network to estimate the intermediate nonlinear behaviors in
a decentralized control system, but this time considering input
saturation and time-dependent output constraints has recently
been shown in [32]. A control algorithm was introduced using
time-varying barrier Lyapunov functions to ensure output con-
straints and a backstepping approach with Lyapunov stability
for finite time system stability was used for convergence. No
noise effects or other stochastic uncertainty disruptions were
included, scaling behavior was not analyzed, and the system
used knowledge of a global Lyapunov function.

There are also message-passing approaches for the
minimization of global network objective functions using only
local decentralized optimizations. For instance, [33] devised
a decentralized message-passing approach which was efficient
for the basic decomposition of electrical load networks. This
work gave full decentralization providing a minimization of
a global cost function if the device objective functions are
convex closed proper functions. However, it was not a prob-
abilistic framework to deal with the inherent stochasticities,
neither did it provide a mechanism of local control.

As indicated in this overview of existing research directions,
there are gaps in knowledge surrounding insights for a robust
framework of genuine decentralized control. This is especially
acute for nonlinear partially coupled stochastic systems with
inherent uncertainties, where no global information can be
communicated to the local level.

III. SYSTEM MODEL

This section outlines an architecture and the components of
the decentralized control framework. A global multicomponent
system is decomposed into a set of nonoverlapping but loosely
coupled subsystems. This loose coupling will be quantified
later on by a set of probabilistic messages representing partial
knowledge of one subsystem passed to another subsystem. The
receiving subsystem treats these partial messages as external
independent “environment” variables. At no point is global
system knowledge needed at the local subsystem level.

A. Nomenclature

The global system is composed of K subsystems, labeled
α, β, γ, . . . , where needed. t denotes time, t = {1, 2, . . . , |t|}
is the time sequence, and |t| is the cardinality of t. The
(locally) observable multivariate state of a given subsystem
at time t is denoted xα

t (or simply xt where no confusion
occurs). Information received from a subsystem β by a sub-
system α at time t is denoted yβ→α

t (generically abbreviated
yt when there is no confusion). These are treated as inde-
pendent external variables. We will also use the notation
zt = [xt, yt] to group together the observed and external input
variables to a subsystem. The local control signal at sub-
system α at time t is denoted uα

t , or generically ut. Since
we are developing a probabilistic framework, we assume
that there is a conditional joint distribution of all variables
at each subsystem, denoted sα[ . . . ]. We will write this
as s(xt, yt|xt−1, . . . x0, yt−1, . . . y0, ut, . . . u0) to show depen-
dencies. We also use s(xt| . . . ) and s(yt| . . .) to denote the
distribution functions of the observed and external variables
separately which will be clear from the context of variables.
The control signals are also assumed to be taken from a con-
ditional distribution function, denoted c(. . . ) = cα(ut|zt−1)

applied at subsystem α. A particular optimized choice of a spe-
cific control strategy will be denoted co. We also use D(Js||JI)

to denote the Kullback–Leibler divergence (KLD) between the
two probability distributions between the joint probability den-
sity function of the closed-loop control system Js and an ideal
joint probability density JI .

B. Architecture

The global system is decomposed into K partially coupled
subsystems each estimated and controlled independently with
a probabilistic model and a probabilistic controller as shown
in Fig. 1. Each subsystem can access its own local state that
describes its dynamical behavior. This measured information
of a particular subsystem is denoted by {xt}. Each subsys-
tem communicates partial information that describes its current
state to its neighboring subsystems via probabilistic message
passing to be derived later. Messages passed from a particular
subsystem about its state xt enter the neighboring subsystems
as external variables which are denoted by yt by the receiving
subsystem. The main objective of the subsystem’s controller
is to influence its own state xt while it treats the receipt of
its neighbors’ state information as external disturbances yt. It
will be shown that the optimized probabilistic message pass-
ing between neighboring subsystems achieves global system
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Fig. 1. Architecture of the decentralized probabilistic control framework of complex systems. The set of sensors in the top parallelogram shape measure
the state of the variables, xt that describe the dynamical behavior of that subsystem. TD is the temporal delay line. yt denotes the external signals that are
received from other neighboring subsystems. The dynamics of each subsystem are estimated using two probabilistic models, sα(xα

t |uα
t , zt−1) and sα(yα

t |yt−1).
The optimized probabilistic controller of a particular subsystem is c∗α(uα

t |zt−1). The messages being passed depend on the architecture of other subsystems.
In the figure, the outgoing messages from a subsystem are shown as a dark parallelogram shape while the incoming messages to the subsystems are shown
as a light gray parallelogram shape. The figure shows mainly three subsystems α, β, and γ along with another subsystem which is shown to be further away
with fading connection arrows to emphasize the existence of other subsystems that constitute a complex system. Two messages are shown being passed from
subsystem α to subsystem β denoted as Mβ←α{xα

t → yβ
t } and from subsystem β to subsystem γ denoted as Mγ←β {xβ

t → yγ
t } where the state variables, xα

t
from the source subsystem are treated as external signals, yα

t in the destination subsystem.

goals in a cooperative manner where various subsystems have
access to different and local information. The probabilis-
tic message passing to be developed in this article allows
the subsystems to update local information using the partial
information they hold on the state of their neighboring sub-
systems. Reconciliation of the subsystems’ partial knowledge
allows a consistent global approximation to emerge.

In the prescribed network of interacting components, the
state of each subsystem xt is influenced by a multivariate con-
trol input ut. The states of the subsystems are also driven by
part of the observed multivariate state values of their neigh-
bors, yt−1 received through probabilistic message passing.
However, we assume a probabilistic approach in which each of
these variables (states, external variables, and control signals)
are sampled from underlying probability distributions that need
to be determined. We will use the independence between the
external variables and the local state variables to decompose
the full joint distributions into products of simpler distribu-
tions that need to be estimated. The interaction between all
these random variables in a given subsystem can be described
by a Markov-type probability density function as follows:

s(xt, yt|xt−1, . . . , x0, yt−1, . . . , y0, ut, . . . , u1)

= s(xt|zt−1, ut)s(yt|yt−1),

zt−1 =
[
xt−1, yt−1

]
, z0 given, t ∈ t, t = {1, 2, . . . , |t|}.

(1)

The first conditional density model on the right-hand side
of (1), s(xt|zt−1, ut) follows from the assumed Markovian
property, whereas the second conditional density model,

s(yt|yt−1) represents the assumption that yt are external vari-
ables to that subsystem with their dynamics uninfluenced by
the control input ut or the subsystem states xt. In the follow-
ing sections, we derive the probabilistic estimation and control
problem of a subsystem.

C. Fully Probabilistic Design of Subsystem

Following the previous representation of a subsystem model,
a subsystem objective is to derive a randomized control
input probability distribution c(ut|zt−1) to achieve its objec-
tives and consequently the objectives of the overall complex
system. In this article, this optimization process is achieved
by using the fully probabilistic design (FPD) methods of con-
trol. FPD selects the optimal control strategy, co from the set
c of randomized control strategies, formed by sequences of
randomized control laws c = {c(ut|zt−1)}, t ∈ t, as follows:

co = arg min
c∈c

D(Js||JI), (2)

where D(.) is the KLD between the joint probability density
function of the closed-loop control system Js and an ideal joint
probability density JI . The joint probability density function
of the closed-loop system can be written explicitly using the
system’s input and output data as follows:

Js = Js
(
x|t|, . . . , x1, y|t|, . . . , y1, u|t|, . . . , u1

)

=
∏

t∈t

s(xt|zt−1, ut)s(yt|yt−1)c(ut|zt−1). (3)

The ideal joint pdf of the closed-loop system behavior JI spec-
ifies the preferred form for the joint distribution of the system
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behavior Js. For a subsystem model explained in Section III,
it is given by,

JI = JI
(
x|t|, . . . , x1, y|t|, . . . , y1, u|t|, . . . , u1

)

=
∏

t∈t

sI(xt|zt−1)s(yt|yt−1)cI(ut|zt−1). (4)

To clarify, the ideal distribution of the subsystem internal
state, sI(xt|zt−1) can be specified according to the control
objective that is required to be achieved from controlling the
system under consideration. For example, for the objective
of regulation around the origin, the mean of the distribution
sI(xt|zt−1) needs to be set equal to zero and the covariance
of this distribution will be specified by the maximum fluctu-
ations that are allowed around the origin. Similarly, the mean
of the ideal controller cI(ut|zt−1) will need to be set to zero to
achieve the regulation objective, while the covariance of this
distribution will specify the allowed range of optimal inputs.

In (4), the probability density function s(yt|yt−1) describing
the desired behavior of the external variables yt is taken to
be equal to the corresponding counterpart in (3). This follows
from the assumption that the dynamics of external random
variables are not influenced by the control input ut of the sub-
system. The interpretation of the desired probability density
function s(yt|yt−1) of the external variables, yt respects their
externalities and allows them to evolve independently.

Therefore, once the various distributions given in (3) and (4)
have been determined, the Kullback–Leibler minimization as
specified by (2) determines the optimal randomized con-
trol strategy, which in turn needs to be selected from its
distribution.

We determine each of the required distributions in the
following.

D. Estimating the Probability Distribution Function of
Subsystem Model

The FPD control method assumes the availability of a prob-
ability density function, s(xt, yt|zt−1, ut) describing the system
model (1). This model is not prescriptive and cannot be found
as the solution of a closed-form set of equations. We make the
assumption that at a given time instant this unknown model
function can be locally approximated as a conditionally depen-
dent Gaussian distribution, parameterized by a mean and a
covariance function that depends on the state and external
variables and is adaptively modified at each time instant.

Consequently, we employ a machine learning approach to
affect the function approximation of the distribution in an
adaptive online manner. The use of a function-approximating
nonlinear model to estimate the probabilistic form of the
subsystems has several advantages, including the ability to
implicitly detect complex nonlinear relationships between a
subsystem output and its inputs.

To estimate the probabilistic model of a subsystem (1),
we adopt the method proposed in [34]. In this method,
the distribution of a system output was approximated using
a Gaussian function but with functional forms of input-
dependent means and global variances. The input-dependent
means were estimated using machine learning models as

Fig. 2. Architecture of the neural network model that estimates the
probabilistic models of the subsystems of a complex system.

universal nonlinear function approximators. Following the esti-
mation of the input-dependent means, the residual errors in
the means’ predictions are calculated which are approxi-
mately Gaussian random noise with zero mean and a global
covariance matrix. Applying this approach to estimating the
subsystem model function, the nonlinear relationships between
the multivariate subsystem states as well as its external state
variables, {xt, yt} with their corresponding inputs {(zt−1, ut)}
are obtained using a standard nonlinear interpolator such that
the following inequalities hold:

∣∣
∣xt − f̂ (zt−1, ut)

∣∣
∣ ≤ δ1,

∣∣yt − ĝ(yt−1)
∣∣ ≤ δ2, (5)

where {δ1, δ2} > {0, 0} are small tolerance values, and
f̂ (zt−1, ut), ĝ(yt−1) are neural network approximations of
the subsystem state xt, and external state yt, respectively.
Following this estimation, the residual errors from the esti-
mation process can be obtained as follows:

e1(zt−1, ut) = xt − f̂ (zt−1, ut),

e2(yt−1) = yt − ĝ(yt−1). (6)

Here, e1(zt−1, ut) and e2(yt−1) represent the approximation
errors satisfying |e1(zt−1, ut)| ≤ δ1 and |e2(yt−1)| ≤ δ2,
respectively. The global covariance of these approximation
errors can then be calculated as follows:

Rxt = E

((
xt − f̂ (zt−1, ut)

)(
xt − f̂ (zt−1, ut)

)T
)

,

Ryt = E
((

yt − f̂ (yt−1)
)(

yt − ĝ(yt−1)
)T)

. (7)

The estimated subsystem states and external state,
{f̂ (zt−1, ut), ĝ(yt−1)} and their corresponding estimated
autocovariances {Rxt , Ryt } are then used to characterize the
Gaussian distribution description of the probability density
functions of the subsystem state and its external state as
follows [34]:

s(xt|zt−1, ut) ∝ Nxt

(
f̂ (zt−1, ut), Rxt

)

s(yt|yt−1) ∝ Nyt

(
ĝ(yt−1), Ryt

)
. (8)

This architecture is shown in Fig. 2.
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E. Optimal Randomized Controller of Subsystem

The next distribution to estimate is the control distribu-
tion applied to each subsystem. For this, we make use of the
following theorem.

Theorem 1: The randomized optimal control strategy for a
subsystem model (1) and an ideal closed-loop model (4) that
optimizes the FPD objective function defined in (2) is given by

co(ut|zt−1) = cI(ut|zt−1) exp
[−ξ(ut, zt−1)

]

ω(zt−1)
, where

ω(zt−1) =
∫

cI(ut|zt−1) exp
[−ξ(ut, zt−1)

]
dut,

ξ(ut, zt−1) =
∫

s(xt|ut, zt−1)

[
ln

(
s(xt|ut, zt−1)

s(xt|ut, zt−1)

)

− ln(ω̃(xt, yt−1))

]
dxt, and

ln(ω̃(xt, yt−1)) =
∫

s(yt|yt−1) ln(ω(xt, yt)) dyt, (9)

where this solution is obtained by solving the following recur-
sive equation that represents the minimization of (2) with
respect to the control input

− ln ω(zt−1) =
∫

s(xt|zt−1, ut)s(yt|yt−1)c(ut|zt−1)

×
⎡

⎢
⎣ ln

(
s(xt|zt−1, ut)

sI(xt|zt−1, ut)

)
+ ln

(
c(ut|zt−1)

cI(ut|zt−1)

)

︸ ︷︷ ︸
≡partial cost−→U(xt,ut)

− ln ω(zt)︸ ︷︷ ︸
optimal cost-to-go

⎤

⎥
⎦dxt dyt dut. (10)

The full derivation of (10) can be found in [35]. Equation (10)
constitutes the recurrence equation of the dynamic program-
ming solution to the FPD control problem.

Proof: The proof of this theorem can be found in [35].
For the general form of probability density functions of

a system dynamics as given in (1), the integrals defined in
Theorem 1, that are required to derive the optimized control
strategy, will be hard to evaluate even if Gaussian probability
density functions are assumed. This is due to the nonlinear
dependency of these probability density functions on the state
and control inputs. Therefore, the problem of the derivation of
the optimal randomized controller is generically a nonlinear
optimization problem that can be solved by setting the deriva-
tive of the recurrence functional equation (10) with respect to
the control input equal to zero

0 = ∂
[− ln(ω(zt−1)

]

∂ut
=
∫

s(xt|zt−1, ut)s(yt|yt−1)c(ut|zt−1)

[
∂U(xt, ut)

∂xt

∂xt

∂ut
+ ∂U(xt, ut)

∂ut
+ λ[zt]

∂zt

∂ut

]
d(xt, yt, ut),

(11)

where

λ[zt] = ∂[− ln(ω(zt))]

∂zt
, (12)

is the derivative of the optimal cost-to-go function with respect
to the system state vector.

This solution yields the Riccati equation and state-
dependent control input in the linear quadratic regulator case
which can be solved efficiently. In the case where the param-
eters of the system probability density functions are general
nonlinear functions of the state and control input as speci-
fied by (8), the optimal control solution from (11) has no
closed analytic form. Therefore, we extend the FPD adaptive
critic approach to derive the near to optimal control inputs
for single dynamical nonlinear systems such that optimal
control inputs can be optimized for nonlinear decentralized
dynamical systems with external state variables. The FPD
adaptive critic approach is based on the dual heuristic pro-
gramming (DHP) scheme of adaptive critic methods. The
methodology and optimization method involved in the FPD
adaptive critic approach for the proposed decentralized control
framework remains the same as that for single systems and is
taken as a ready methodology in this article. In particular, three
parametric blocks called the controller or action network, the
forward model and the critic network need to be implemented
to optimize the control system and derive the optimal control
inputs. The action network is responsible for estimating the
conditional distribution of control signals as will be explained
next, while the critic network provides an approximation to
the derivative of the optimal cost-to-go function as specified
in (12). The forward model can be either a mathematical model
or neural network approximation to the conditional distribu-
tion of the system dynamics as discussed in Section III-D.
The main differences between the implementation of the FPD
adaptive critic approach in the proposed decentralized frame-
work as compared to that of single dynamical systems come
from the existence of the external state variables in the com-
plex system decomposition and design. In particular, the inputs
to the forward dynamical models need to be dealt with to take
care of external state variables of the subsystems as discussed
in Section III-D. In addition, the form of the recurrence equa-
tion (12) to be optimized involves multiple integrations as a
consequence of the introduction of the external state to the
state of the subsystems of a complex system.

Next, we focus on the problem of estimating the con-
ditional distribution of control inputs based on the derived
optimal control values from (11). This is required for further
development of the probabilistic message passing proposed
in this article. The conditional distribution of control inputs
can be obtained using the same method that is discussed in
Section III-D for estimating the conditional distribution of the
forward dynamics of the controlled system. Following this
method, a controller network can be optimized such that the
error between the optimal control input ut, obtained from (11)
and estimated control input h(zt−1) from the neural network is
minimized. Once this network is optimized, information about
the error between the optimal control ut and estimated control
h(zt−1) will become available. Hence, the controller generates
a control signal ut stochastically from a Gaussian distribution

c∗(ut|zt−1) ∝ Nut(h(zt−1),
), (13)
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where h(zt−1) is the mean computed from the controller
network and 
 is a fixed covariance matrix equal to the aver-
age residual error between the output of the network and the
optimal control signal, E[(ut − h(zt−1))(ut − h(zt−1))

T ].

IV. PROBABILISTIC MESSAGE PASSING

As discussed, the framework uses an architecture where
neighboring subsystems are assumed to have access to par-
tial copies of their neighbors’ state measurements estimated
via probabilistic message passing. Probabilistic message pass-
ing is required between the subsystems in order to achieve
consensus among the subsystems on the information that they
retain about the state of their neighbors. This decentralized
probabilistic message-passing method, which forms the main
innovation of this article, will be developed in this section.
Without loss of generality, the method is outlined here for a
complex system that is composed of two subsystems indexed
by ρ ∈ {α, β}. Each subsystem can access its measured state
values, xt, retains copies of the partial states of its neigh-
bors yt, and optimizes its control input, ut that influences its
state values. Moreover, the governing equation of a subsystem
indexed by ρ is a general nonlinear equation as discussed in
Section III-D.

We start our development by considering the optimally
tuned closed-loop probability density description of subsystem

α, evaluated at time t

Lα

(
xα

t , yα
t , uα

t |zα
t−1

) = sα

(
xα

t |uα
t , zα

t−1

)
c∗
(
uα

t |zα
t−1

)
sα

(
yα

t |yα
t−1

)
.

(14)

Using the probability density functions of the forward system
dynamics of node α which is specified by (8), the designed
randomized controller of node α given by (13), and treating
the probability models sα(xα

t |uα
t , zα

t−1) and sα(yα
t |yα

t−1) as mul-
tivariate Gaussian distributions, we can rewrite (14) according
to the analysis given by (15) as shown at the bottom of the
page.

Subsystem β receives information about the internal state,
xα

t of its neighboring subsystem α through message passing.
This information about the state of subsystem α is treated
as external variables in subsystem β, xα

t → yβ
t . Therefore,

in order to update the knowledge that subsystem β retains
on its external variables, we need to integrate the closed-
loop probability density description of subsystem α over all
state variables except its internal state xα

t which needs to be
passed to subsystem β in order to update its information on
its external state variables,

Mβ←−α

(
xα

t |zα
t−1

) =
∫ ∫

Lα

(
xα

t , yα
t , uα

t |zα
t−1

)
dyα

t duα
t . (16)

Using (15) in (16) yields (17), as shown at the bottom of the
page. The evaluation of this integral is shown in (18), at the
bottom of the page.

Lα

(
xα

t , yα
t , uα

t |zα
t−1

) = exp

{
−
(

xα
t − f̂α

(
zα

t−1, uα
t

))T
R−1

xα
t

(
xα

t − f̂α
(
zα

t−1, uα
t

))

− (yα
t − ĝα

(
yα

t−1

))T
R−1

yα
t

(
yα

t − ĝα

(
yα

t−1

))}× exp
{
−(uα

t − hα

(
zα

t−1

))T

−1

α

(
uα

t − hα

(
zα

t−1

))}
,

= exp

{

−
[

xα
t − f̂α

(
zα

t−1, uα
t

)

yα
t − ĝα

(
yα

t−1

)
]T
[

R−1
xα

t
0

0 R−1
yα

t

][
xα

t − f̂α
(
zα

t−1, uα
t

)

yα
t − ĝα

(
yα

t−1

)
]}

× exp
{
−(uα

t − hα

(
zα

t−1

))T

−1

α

(
uα

t − hα

(
zα

t−1

))}
. (15)

Mβ←−α

(
xα

t |zα
t−1

) =
∫ ∫

exp

{

−
[

xα
t − f̂α

(
zα

t−1, uα
t

)

yα
t − ĝα

(
yα

t−1

)
]T
[

R−1
xα

t
0

0 R−1
yα

t

]

×
[

xα
t − f̂α

(
zα

t−1, uα
t

)

yα
t − ĝα

(
yα

t−1

)
]}

× exp
{
−(uα

t − hα

(
zα

t−1

))T

−1

α

(
uα

t − hα

(
zα

t−1

))}
dyα

t duα
t . (17)

Mβ←−α

(
xα

t |zα
t−1

) =
∫ ∫

exp

{
−
(

xα
t − f̂α

(
zα

t−1, uα
t

))T
R−1

xα
t

(
xα

t − f̂α
(
zα

t−1, uα
t

))

− (yα
t − ĝα

(
yα

t−1

))T
R−1

yα
t

(
yα

t − ĝα

(
yα

t−1

))− (uα
t − hα

(
zα

t−1

))T

−1

α

(
uα

t − hα

(
zα

t−1

))
}

dyα
t duα

t

=
∫

exp
{
−(yα

t − ĝα

(
yα

t−1

))
R−1

yα
t

(
yα

t − ĝα

(
yα

t−1

))}
dyα

t

∫
exp

×
{
−
(

xα
t − f̂α

(
zα

t−1, uα
t

))T
R−1

xα
t

(
xα

t − f̂α
(
zα

t−1, uα
t

))− (uα
t − hα

(
zα

t−1

))T

−1

α

(
uα

t − hα

(
zα

t−1

))}
duα

t

∝
∫

exp

{
−
(

xα
t − f̂α

(
zα

t−1, uα
t

))T
R−1

xα
t

(
xα

t − f̂α
(
zα

t−1, uα
t

))− (uα
t − hα

(
zα

t−1

))T

−1

α

(
uα

t − hα

(
zα

t−1

))}
duα

t . (18)
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This is an integral over a Gaussian distribution with the
dependent variable governing the nonlinear mean in the con-
trol input, and so does not have a closed-form representation.
Under the assumption that the system is asymptotically close
to an equilibrium, the dominant contribution from the inte-
grand comes from the peak and its surrounding. We could
consider a stationary phase or saddle point approximation
to the full distribution. Alternatively, in this article, we use
an approximation of the full distribution-based around its
conditional mean and conditional variance, ignoring higher
order cumulants. Thus, to evaluate this integral, the mean of
Mβ←−α(xα

t |zα
t−1) can be obtained as follows:

〈
Mβ←−α

(
xα

t |zα
t−1

)〉 =
∫ ∫

xα
t exp

{
−
(

xα
t − f̂α

(
zα

t−1, uα
t

))T

× R−1
xα

t

(
xα

t − f̂α
(
zα

t−1, uα
t

))−(uα
t −hα

(
zα

t−1

))T

× 
−1
α

(
uα

t − hα

(
zα

t−1

))
}

dxα
t duα

t

=
〈
f̂α
(
zα

t−1, uα
t

)〉

uα
t

(19)

where 〈. . . 〉 denotes the mean over the control signal. Now,
the covariance of Mβ←−α(xα

t |zα
t−1) can be evaluated as follows:

cov
(
Mβ←−α

(
xα

t |zα
t−1

)) =
∫ ∫ (

xα
t − < f̂α

(
zα

t−1, uα
t

)
>uα

t

)T

(
xα

t − 〈f̂α
(
zα

t−1, uα
t

)〉uα
t

)
exp

{
−
(

xα
t − 〈f̂α

(
zα

t−1, uα
t

)〉uα
t

)T

× R−1
xα

t

(
xα

t − 〈f̂α
(
zα

t−1, uα
t

)〉uα
t

)
− (uα

t − hα

(
zα

t−1

))T

× 
−1
α

(
uα

t − hα

(
zα

t−1

))}
dxα

t duα
t ,

= Rxα
t
. (20)

This means that the message to be passed from subsystem α to
subsystem β can be approximated by the following Gaussian
distribution:

Mβ←−α

(
xα

t |zα
t−1

) ∝ exp

{
−
(

xα
t − 〈f̂α

(
zα

t−1, uα
t

)〉uα
t

)T

R−1
xα

t

(
xα

t − 〈f̂α
(
zt−1, uα

t

)〉uα
t

)}
. (21)

In our proposed framework, a subsystem exchanges messages
with its neighbors to update its knowledge about the exter-
nal variables it retains on the state of its neighbors. Thus, the
probabilistic model that is evaluated in subsystem α as given
by (21) will be passed to subsystem β to update its knowl-
edge about its external variables, yβ

t . In particular, as shown
in (8), node β estimates its external variables according to the
following probabilistic model:

sβ

(
yβ

t |yβ

t−1

)
∝ N

xβ
t

(
ĝβ

(
yβ

t−1

)
, R

yβ
t

)
. (22)

By passing probabilistic messages about the information that
subsystem α retains on the external variables of node β,
the following probabilistic model becomes available to the
external variables of subsystem β:

Mβ←−α

(
xα

t |zα
t−1

) ∝ Nxα
t

(
〈f̂α
(
zα

t−1, uα
t

)〉uα
t
, Rxα

t

)
, where

yβ
t ← xα

t . (23)

Therefore, the information provided by the two probability
density functions specified by (22) and (23) can be fused using
Bayes’ rule by multiplying the two together, i.e., consider-
ing the prediction model from node β as specified by (22)
and the message-passed model from node α as specified
by (23). The new pdf representing the fusion of the information
from prediction and probabilistic message passing, is therefore
given by (24) at the bottom of this page. Where in (24), the
following definitions are used.

μfused =
(

R−1
xα

t
+ R−1

yβ
t

)−1

×
(

R−1
yβ

t
ĝβ

(
yβ

t−1

)
+ R−1

xα
t

< f̂α
(
zα

t−1, uα
t

)
>uα

t

)
,

�fused =
(

R−1
xα

t
+ R−1

yβ
t

)−1

. (25)

The two equations in (25) represent the message-passing
update steps that are equivalent to the measurement update
equations of the Kalman filter. This can be explicitly shown
by noticing that the Kalman gain can be defined as follows:

Kt = R
yβ

t

(
Rxα

t
+ R

yβ
t

)−1
. (26)

yfused;t;β ∝ exp

{
−
(

yβ
t − < f̂α

(
zα

t−1, uα
t

)
>uα

t

)T
R−1

xα
t

(
yβ

t − < f̂α
(
zα

t−1, uα
t

)
>uα

t

)}

× exp

{
−
(

yβ
t − ĝβ

(
yβ

t−1

))T
R−1

yβ
t

(
yβ

t − ĝβ

(
yβ

t−1

))}
,

= exp

{
−yTβ

t

(
R−1

xα
t
+ R−1

yβ
t

)
yβ

t + 2yTβ
t

(
R−1

xα
t

< f̂α
(
zα

t−1, uα
t

)
>uα

t
+R−1

yβ
t

ĝβ

(
yβ

t−1

))

− < f̂α
(
zα

t−1, uα
t

)
>T

uα
t

R−1
xα

t
< f̂α

(
zα

t−1, uα
t

)
>uα

t
−ĝβ

(
yβ

t−1

)T
R−1

yβ
t

ĝβ

(
yβ

t−1

)}
,

∝ exp

{

−
(

yβ
t − μfused

)T
�−1

fused

(
yβ

t − μfused

)
− < f̂α

(
zα

t−1, uα
t

)
>T

uα
t

R−1
xα

t
< f̂α

(
zα

t−1, uα
t

)
>uα

t
−ĝβ

(
yβ

t−1

)T
R−1

yβ
t

ĝβ

(
yβ

t−1

)

+
(

R−1
xα

t
< f̂α

(
zα

t−1, uα
t

)
>uα

t
+R−1

yβ
t

ĝβ

(
yβ

t−1

))T

�fused

(
R−1

xα
t

< f̂α
(
zα

t−1, uα
t

)
>uα

t
+R−1

yβ
t

ĝβ

(
yβ

t−1

))}

(24)
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Using this definition of the Kalman equation in (25) yields the
measurement update equations of the Kalman filter,

μfused = ĝβ

(
yβ

t−1

)
+ Kt

(
< f̂α

(
zα

t−1, ut
)

>ut −ĝβ

(
yβ

t−1

))

(27)

�fused = R
yβ

t
− KtRyβ

t
. (28)

V. EXPERIMENT

The proposed theoretical decentralized framework is veri-
fied in this section on the small scale but difficult problem of
a stochastic version of a coupled map nonlinear lattice with
periodic boundary conditions [36] which was originally intro-
duced in [37]. Although this system will have its own internal
self-organized behavior, we will explore an explicit control
problem where the criterion is that regardless of the starting
configuration, control needs to move the system to the ori-
gin, regardless of any self-organizing tendency. The stochastic
uncontrolled dynamic of the lattice is described by

vi
t = F

(
vi−1

t−1, vi
t, vi+1

t−1

)
+ κ i

t

= f
[
(1− 2ε)vi

t−1 + ε
(

vi−1
t−1 + vi+1

t−1

)]
+ κ i

t (29)

where i ∈ {1, 2, . . . L}, L is the length of the lattice, ε is the
coupling strength, and periodic boundary conditions vi+L

t = vi
t.

κt is the Gaussian noise with covariance matrix 0.01I, and I
is the identity matrix. The local map f (v, a) is taken to be
the logistic map f (v) = av(1 − v) that satisfies the condi-
tion f (v∗, a) = v∗. This coupled map lattice exhibits chaotic
characteristics in the regime 3.57 < a ≤ 4.0 and has a homo-
geneous steady state v∗ = 1 − 1/a. The linearized dynamics
of this lattice about the homogeneous steady state is described
by Xt = AXt−1 + κt, where

A = η

⎛

⎜⎜⎜⎜⎜
⎝

1− 2ε ε 0 . . . ε

ε 1− 2ε ε . . . 0
0 ε 1− 2ε . . . 0
...

...
...

. . .
...

ε 0 0 . . . 1− 2ε

⎞

⎟⎟⎟⎟⎟
⎠

, (30)

is the L × L Jacobian matrix, X = v − v∗, and η =
(∂f (v∗, a)/∂v)|v=v∗ .

Note that this choice of local dynamics is not crucial to this
article. It is used as an example of local nontrivial dynamical
behavior that has a tendency to self-organize in the absence
of control. This problem is difficult in that it is inherently

nonlinear, and the noise induces fundamental global coupling
and destabilizing perturbations. We start by considering a 10-
node lattice (L = 10) with a nonsymmetric division into four
coupled subsystems (K = 4).

We will then scale this example network by exploring
different sized networks with up to 1000 nodes.

A. 10-Oscillator Inhomogeneously Coupled Lattice

We simulate a coupled lattice of length L = 10 nonlin-
ear oscillators, i.e., a lattice with ten oscillators. Two sets of
experiments were conducted for comparison. The first set of
experiments considers the decentralized control of the cou-
pled map lattice according to the probabilistic message passing
while the second set considers the globally centralized pinning
control of the lattice. In these experiments, a = 3 and ε = 0.33
is simulated. Without loss of generality, the chosen network
architecture is represented by the connectivity matrix (31), as
shown at the bottom of the page.

The high-level control aim is to return the whole lattice state
of ten nodes from its initial value X = X0 to the origin (the
fixed point position) or a state close to the origin.

In the decentralized control experiment, the control task is
designated by four separated subsystems to be controlled by
local knowledge, where each subsystem is responsible for con-
trolling a different set of oscillators. Node α takes Xt,1 = xα

1,t,
Xt,2 = xα

2;t, and Xt,3 = xα
3;t as internal states, and Xt,4 = yα

4,t,
Xt,5 = yα

5;t, Xt,8 = yα
6,t, Xt,9 = yα

7;t, and Xt,10 = yα
8;t as external

states. Hence, the system model of node α is described by,

sα
(
xα

t |uα
t−1, zα

t−1

) = Nxα
t

(
Aαzα

t−1 + Bαuα
t−1, Rα

xt

)
, where,

Aα =
⎛

⎝
−0.34 − 0.33 0 0 0 0 0 − 0.33
−0.33 − 0.34 − 0.33 0 0 0 0 0

0 − 0.33 − 0.34 − 0.33 0 0 0 0

⎞

⎠,

Bα =
⎛

⎝
1
1
1

⎞

⎠.

sα
(
yα

t |yα
t−1

) = Nxα
t

(
Cαyα

t−1, Rα
yt

)
, where,

Cα =

⎛

⎜
⎜⎜⎜
⎝

0 0 0 c1;α c2;α 0 0 0
0 0 0 c3;α c4;α 0 0 0
0 0 0 0 0 c5;α c6;α c7;α
0 0 0 0 0 c8;α c9;α c10;α
0 0 0 0 0 c11;α c12;α c13;α

⎞

⎟
⎟⎟⎟
⎠

.

(32)

A =

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜
⎝

−0.34 −0.33 0 0 0 0 0 0 0 −0.33
−0.33 −0.34 −0.33 0 0 0 0 0 0 0

0 −0.33 −0.34 −0.33 0 0 0 0 0 0
0 0 −0.33 −0.34 −0.33 0 0 0 0 0
0 0 0 −0.33 −0.34 −0.33 0 0 0 0
0 0 0 0 −0.33 −0.34 −0.33 0 0 0
0 0 0 0 0 −0.33 −0.34 −0.33 0 0
0 0 0 0 0 0 −0.33 −0.34 −0.33 0
0 0 0 0 0 0 0 −0.33 −0.34 −0.33
−0.33 0 0 0 0 0 0 0 −0.33 −0.34

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟
⎠

. (31)
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Node β takes Xt,4 = xβ

1,t and Xt,5 = xβ

2;t as internal states,

and Xt,1 = yβ

1,t, Xt,2 = yβ

2;t, Xt,3 = yβ

3;t, Xt,6 = yβ

4;t, and

Xt,7 = yβ

5;t as external states. Hence, the system model of
node β is described by,

sβ
(

xβ
t |uβ

t−1, zβ

t−1

)
= N

xβ
t

(
Aβzβ

t−1 + Bβuβ

t−1, R
xβ

t

)
, where,

Aβ =
(

0 0 −0.33 −0.34 −0.33 0 0
0 0 0 −0.33 −0.34 −0.33 0

)
,

Bβ =
(

1
1

)
.

sβ
(

yβ
t |yβ

t−1

)
= N

xβ
t

(
Cβyβ

t−1, R
yβ

t

)
, where,

Cβ =

⎛

⎜
⎜⎜⎜
⎝

0 0 c1;β c2;β c3;β 0 0
0 0 c4;β c5;β c6;β 0 0
0 0 c7;β c8;β c9;β 0 0
0 0 0 0 0 c10;β c11;β
0 0 0 0 0 c12;β c13;β

⎞

⎟
⎟⎟⎟
⎠

. (33)

Node γ takes Xt,6 = xγ

1,t and Xt,7 = xγ

2;t as internal states,
and Xt,4 = yγ

3,t, Xt,5 = yγ

4;t, Xt,8 = yγ

5;t, Xt,9 = yγ

6;t, and
Xt,10 = yγ

7;t as external states. Hence, the system model of
node γ is described by,

sγ
(
xγ

t |uγ

t−1, zγ

t−1

) = Nxγ
t

(
Aγ zγ

t−1 + Bγ uγ

t−1, Rxγ
t

)
, where,

Aγ =
(

0 −0.33 −0.34 −0.33 0 0 0
0 0 −0.33 −0.34 −0.33 0 0

)

Bγ =
(

1
1

)
.

sγ
(
yγ

t |yγ

t−1

) = Nxγ
t

(
Cγ yγ

t−1, Ryγ
t

)
, where,

Cγ =

⎛

⎜⎜⎜⎜
⎝

0 0 c1;γ c2;γ 0 0 0
0 0 c3;γ c4;γ 0 0 0
0 0 0 0 c5;γ c6;γ c7;γ
0 0 0 0 c8;γ c9;γ c10;γ
0 0 0 0 c11;γ c12;γ c13;γ

⎞

⎟⎟⎟⎟
⎠

.

(34)

Finally, node δ takes Xt,8 = xδ
1,t, Xt,9 = xδ

2;t and Xt,10 = xδ
3;t

as internal states, and Xt,1 = yδ
4,t, Xt,2 = yδ

5;t, Xt,3 = yδ
6;t,

Xt,6 = yδ
7;t, and Xt,7 = yδ

8;t as external states. Hence, the
system model of node δ is described by,

sδ
(
xδ

t |uδ
t−1, zδ

t−1

) = Nxδ
t

(
Aδzδ

t−1 + Bδuδ
t−1, Rxδ

t

)
, where,

Aδ =
⎛

⎝
0 0 0 0 − 0.33 − 0.34 − 0.33 0
0 0 0 0 0 − 0.33 − 0.34 − 0.33
−0.33 0 0 0 0 0 − 0.33 − 0.34

⎞

⎠,

Bδ =
⎛

⎝
1
1
1

⎞

⎠.

sδ
(
yδ

t |yδ
t−1

) = Nxδ
t

(
Cδyδ

t−1, Ryδ
t

)
, where,

Cδ =

⎛

⎜⎜
⎜⎜
⎝

0 0 0 c1;δ c2;δ c3;δ 0 0
0 0 0 c4;δ c5;δ c6;δ 0 0
0 0 0 c7;δ c8;δ c9;δ 0 0
0 0 0 0 0 0 c10;δ c11;δ
0 0 0 0 0 0 c12;δ c13;δ

⎞

⎟⎟
⎟⎟
⎠

.

Fig. 3. State and control inputs of the lattice using decentralized control and
probabilistic message passing. (a) States of the lattice from the decentralized
control. (b) Control signals of the lattice using decentralized control.

(35)

The unknown parameters of nodes α, β, γ , and δ are estimated
using generalized linear models as discussed in Section III-D.

After message-passing optimization, the evaluated
dynamical evolution of the states of the lattice network
and the resulting evaluated control signals are shown in
Fig. 3(a) and (b), respectively. The figure shows that the
decentralized controlled lattice is globally locked to the origin
and that the designed probabilistic control and message-
passing approach has been effective in reconstructing the
global desired state using only decentralized local knowledge.

We now consider a control mechanism which uses global
knowledge and hence is centralized. This second experiment
considers lattice control using probabilistic pinning control,
where the length ten lattice is controlled using just two con-
trol signals that are placed adjacent at the lattice sides, thus
yielding the following control dynamics:

Xt = AXt−1 + But−1 + κt, where A is given by (31)

B =
(

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

)T

(36)

and κt is Gaussian noise with covariance matrix 0.01I, I is the
identity matrix, and ut = [ut,1, ut,2]T is the vector of control
inputs. For fair comparison, the parameters of the lattice that
are defined in (36) are assumed to be unknown, thus estimated
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Fig. 4. State and control inputs of the lattice as a result of using centralized
control. (a) States of the lattice derived using centralized control. (b) Control
inputs of the lattice using centralized control.

online using a generalized linear model. The resulting opti-
mized states of the lattice network and the control signals are
shown in Fig. 4(a) and (b), respectively. It can be observed that
the centralized controller controlling all ten oscillators shows
higher fluctuations in the transient and steady-state periods
than the decentralized experiment.

B. Scaling Performance

In a decentralized approach to probabilistic control on
networks of loosely connected subclusters, the expected
network variance away from the desired control value should
be independent of the total number of nodes in the system
(above the individual subcluster size), and the magnitude of
this variance would be set by the noise in the dynamics gov-
erning each individual subsystem. Also, we would expect that
the computational time to converge using a sequential com-
puter polling each subcluster in turn should only scale linearly
with the number of subclusters, and not scale superlinearly as
the total number of individual nodes increases at scale.

In this final experiment, we evaluate the variance away
from a desired value and estimate the total computational
time as the number of nodes is increased to a total network
size of N = 10, 40, 100, 300, 600, 1000 nodes, respectively.
For consistency with the previous experiment, each subclus-
ter consists of 10-node coupled lattices, each divided into
four loosely coupled subsystems, and each operating locally

Fig. 5. (a) Average steady-state error and (b) sequential execution time for
varying number of nodes (superimposed with a dotted linear regression line).

within its 10-node environment. The dynamics within a sub-
cluster are governed by the same dynamical system as used
in the previous experiment, but the parameters governing
the dynamic behavior are randomized, thus allowing mixed
chaotic/nonchaotic subcluster behavior.

Each node in each 10-node subgroup is randomly con-
nected to a node in two neighboring subgroups with each node
initially operating its own dynamical system.

For each subcluster, we evaluated the optimal probabilistic
local controllers that minimize the Kullback–Leibler diver-
gence and determine the optimal subsystem state at a given
instant. The probabilistic messages are evaluated and passed
between the subsystems to inform the local controllers about
the state of their neighboring nodes which in turn allow the
achievement of the global control objective of the considered
network.

For each network size N = 10, 40, 100, 300, 600, 1000
decomposed into randomly connected blocks of 10-node
4-subcluster components, the computational time to converge
and the resulting variance away from the desired value is
recorded and displayed in Fig. 5.

In all of these experiments, the local controllers of sub-
systems in the network were able to synchronize their corre-
sponding states after a few iterations. The average steady-state
variances around the desired objective as well as the sequen-
tial computational time for different network sizes are shown
in Fig. 5(a) and (b), respectively.
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Fig. 5(a) shows that the average network variance away from
the desired state determined by the probabilistic controller is
a constant, independent of the system size. The magnitude of
this variance is set by the noise level in the stochastic dynamics
of each subsystem.

Fig. 5(b) shows that the sequential execution time scales
linearly with the system size, and so when operating in a
decentralized nonsequential mode, the time to convergence of
the system is independent of the actual system size.

The figure confirms that the probabilistic message passing
scales in a decentralized manner and as such has the capacity
to scale to huge system sizes, limited only by the maximum
size of a local subsystem.

VI. CONCLUSION

The hypothesis of this article was that a fully decentral-
ized probabilistic framework to control connected subsystems
using only locally available information could be devised to
approximate globally optimal control. We have verified this
hypothesis as follows.

1) The global system was taken as a set of partially coupled
subsystems, where each subsystem had its own dynam-
ics, the instantaneous state of which was estimated from
a locally self-consistent process.

2) Each subsystem can measure its own state, but
information on neighboring subsystems was treated as
an external variable quantified only as a Gaussian prob-
ability distribution of evaluated mean and covariance.

3) Each subsystem was moderated by a local control signal.
4) The local optimal control signal was obtained from max-

imizing the KLD between an estimated and a desired
probability distribution.

5) Estimating the relevant probability distributions was
achieved by imposing an independence between subsys-
tems allowing the full problem to be decomposed into
a fully decentralized, self-consistent, locally estimable
problem.

6) The probability density function of the system model
needs to be evaluated, and in the absence of having
an analytic solution, this was estimated online using
a machine learning approach assuming conditionally
dependent Gaussian distributions of unknown input-
dependent mean and covariances to be learned. This had
the benefit of detecting complex nonlinear relationships
between local subsystem outputs and inputs, which is
another novelty of this article.

7) Numerically comparing the proposed decentralized
message-passing approach with a centralized (pinning)
control approach on a small-scale nonlinear multicom-
ponent 10-node partially coupled 4-subsystem example
verified the hypothesis of local probabilistic control
achieving global optimization.

8) Numerically demonstrating the approach on network
graphs of size 10, 40, 100, 300, 600, 1000 nodes showed
a convergent constant average and total network variance
around the desired value, independent of the number of
nodes, as would be expected in a correctly operating
decentralized control algorithm.

9) Also the computational time on a sequentially operating
computer scaled only linearly with the network size, thus
reflecting that the actual real-time operation of such a
network in decentralized subclusters would be constant,
determined only by the size of each subcluster, not the
total number of nodes. This demonstrates that the algo-
rithm scales to very large networks bound only by the
size of the largest subcluster.

This article has followed an FPD approach and used
input-dependent Gaussian distribution approximations for the
unknown probability distributions, that are updated at each
instant using a machine learning approach. This avoided the
need to evaluate analytically intractable integrals numerically
explicitly, though this was not a key focus of this article.
Although the approximation was sufficient to support the arti-
cle’s hypothesis, this is one aspect that will benefit from more
in depth evaluation in the future. The approach scales to very
large systems since it is fully decentralized, and no aspect
of the implementation requires any global system knowl-
edge. This allows computational and memory resource to be
decentralized to each subcluster. This article demonstrated the
efficacy of allowing each subcluster to send a connection to
other subclusters, with a connection signal determined from
the decentralized message-passing algorithm.
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