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If the originally flat bottom of a wide quantum well with
multiple eigenstates is periodically modulated, its eigenval-
ues rearrange into denser groups separated by wider gaps.
We show that this effect, if implemented in an elongated
bottle microresonator [also called a surface nanoscale axial
photonics (SNAP) microresonator] allows us to design
microwave photonic tunable filters with an outstanding
performance.
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Design and fabrication of high-quality microwave filters is a
longstanding problem that has attracted scientists and engineers
for several decades [1–3]. The interest in this problem is moti-
vated by critical applications of microwave filters in modern
communication technologies, where their accurate transmission
spectrum characteristics are highly desirable to combine with
small dimensions and broadband tunability. Photonics suggests
several solutions to this problem based on miniature photonic
circuits [4–6]. In particular, much research work was done to
design and fabricate microwave filters based on coupled ring
resonators [7–9], photonic crystals [10], distributed feedback
resonators [11], Mach–Zehnder interferometers [12], fiber
Bragg gratings [13], frequency comb generators [14], Brillouin
scattering [15], and other approaches [4–6].

In many cases, it is important to create filters in which trans-
mission amplitude has a maximum flatness within the predeter-
mined bandwidth and steeply vanishes outside it. Theoretically,
filters with predetermined flatness and high rejection rate can be
designed by apodization of coupled microresonator circuits with
a sufficiently large number of elements [16,17]. Experimentally,
the intrinsic losses and insufficient fabrication precision lead to
severe noise in the transmission amplitude of such circuits grow-
ing with the number of resonant elements [18] and impractical-
ity of devices fabricated of sufficiently large number of coupled
microresonators.

Even for negligible propagation losses, at light frequency f
and for the pass bandwidth 1 f , microresonators with charac-
teristic dimension d should be fabricated with the precision of
better than 1d ∼1 f d/ f . For characteristic f = 200 THz,
1 f = 100 MHz, and d = 100 µm, we have 1d ∼ 0.5 Å,
which is not possible to achieve by conventional modern
microphotonic fabrication technologies. For this reason,

coupled ring resonators and other photonic infinite impulse
response filters were fabricated with the aid of microheaters,
enabling us to tune the circuit elements individually (see,
e.g., [9,11,19] and references therein).

Increasing the microresonator Q-factor allows us to create
filters with better passband flatness and larger rejection rate.
Indeed, at optical frequency f , the pass bandwidth cannot be
smaller than 1 fpass ∼ f /Q, while to arrive at sufficient flat-
ness we have to have Q� f /1 fpass. Thus, at f = 200 THz,
the characteristic for microwave applications passband with
1 fpass = 100 MHz requires Q� 2 · 106. That high and much
higher Q-factors are possible to achieve in stand-alone microres-
onators [20,21]. However, the problem of effectively combining
them into a circuit of multiple elements with the predetermined
dimensions and coupling remains open.

Favorably, the ultraprecise fabrication precision combined
with ultralow material and scattering losses required for reali-
zation of microwave photonic filters can be achieved in the
surface nanoscale axial photonics (SNAP) technology [22–26],
which has not yet been considered for microwave applications.
In SNAP, the required microresonator circuits are fabricated in
the form of coupled bottle microresonators having nanoscale
effective radius variation (ERV). In Ref. [23], 30 coupled bottle
microresonators were fabricated at the surface of a 19µm radius
optical fiber with better than 1 Å precision. In Ref. [25], it was
shown that coupled SNAP bottle microresonators can be post-
processed with the frequency precision of better than 0.2 GHz.
This fabrication precision can be further improved since in
Ref. [25] it was limited by the resolution of the optical spectrum
analyzer used. The intrinsic Q-factor of bottle microresonators
(characterizing material and scattering losses) can be greater
than the loaded Q-factor 3 · 108 of a bottle resonator with sim-
ilar radius measured in Ref. [27]. All of this suggests the SNAP
technology as a promising approach for fabrication of practical
microwave photonics filters and signal processing devices.

In this Letter, we consider a SNAP microresonator (SMR)
with periodically modulated ERV illustrated in Fig. 1(a) (which
can be also considered as a system of coupled bottle microres-
onators) coupled to the input microfiber MF1 and output
microfiber MF2. The frequency eigenvalue structure of this
SMR is illustrated in Fig. 1(b). This structure has a series of
dense eigenfrequencies separated from others by a gap. The
experimental realization of similar SMRs with subangstrom
precision was demonstrated in [22,23], while a four-port reso-
nant SMR device coupled to two microfibers was fabricated in
Ref. [28] following the demonstration of an ultralow loss four-
port microtoroid device in Ref. [29]. We show that below that

0146-9592/21/174144-04 Journal © 2021Optical Society of America

https://orcid.org/0000-0001-7289-3547
mailto:m.sumetsky@aston.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1364/OL.433077
https://crossmark.crossref.org/dialog/?doi=10.1364/OL.433077&amp;domain=pdf&amp;date_stamp=2021-08-19


Letter Vol. 46, No. 17 / 1 September 2021 /Optics Letters 4145

the periodic SMR structure illustrated in Fig. 1 can be apodized
and appropriately coupled to MF1 and MF2 to perform as a
bandpass filter with close to flat transmission amplitude and
high rejection.

Following the SNAP theory [22], we consider whispering
gallery modes (WGMs), which slowly propagate along the SMR
axis z and introduce the cutoff frequency fc (z) corresponding
to a WGM with fixed azimuthal and axial quantum numbers,
m =m0 and p = p0. A relatively small nonresonant trans-
mission from MF1 to MF2 determined by WGMs with other
quantum numbers, which limits the rejection rate, will be dis-
cussed later. The nanoscale ERV 1r (z)= r (z)− r0 of a SMR
with radius r0 is expressed through the cutoff frequency varia-
tion (CFV) 1 fc (z)= fc (z)− f0 as 1r (z)= r01 fc (z)/ f0.
Therefore, we can characterize a SMR either by ERV 1r (z)
or by CFV 1 fc (z). We also introduce the frequency variation
1 f = f − f0 and characteristic frequency variation of our
SMR 1 f0[Fig. 1(b)]. Then, the one-dimensional wave equa-
tion describing the axial dependence of WGM amplitude [22]
can be presented in the dimensionless form:

9ζ ζ + (ε− ν(ζ )+ iγ +3δ(ζ − ζMF)+3δ(ζ + ζMF)) 9 = 0.
(1)

Here, the dimensionless frequency ε, attenuation γ , MF-
SMR coupling parameter3, and distance along the SMR ζ are
defined as

ε=
1 f
1 f0

, γ =
g
1 f0

, ζ =
z
z0
, 3= z0 D,

z0 =
πc

23/2n( f01 f0)
1/2 , (2)

where c is the speed of light, n is the SMR refractive index (below
we consider silica SMR with n = 1.44), g is the attenuation
expressed through its Q-factor as g = f0/Q, and D is the
microfiber-SMR complex-valued coupling parameter [22],
which is assumed to be the same for MF1 and MF2. We also
assume that the SMR is symmetric with respect to its center at
z= 0, and MF1 and MF2 are positioned symmetrically at axial
coordinates z= zMF and z=−zMF. Then, provided that the
microfiber-SMR coupling is lossless [29,30], the transmission
amplitude S12( f , zMF) from MF1 to MF2 is determined as [22]

Fig. 1. (a) Illustration of a SMR with nanoscale periodically mod-
ulated ERV coupled to microfibers MF1 and MF2 and (b) the corre-
sponding CFV. Red lines are the axial frequency eigenvalues of SMR.

S12(1 f , zMF)

=
2 Im(3)G(ε, ζMF,−ζMF)

(1+3G(ε, ζMF, ζMF))
2
−32G2(ε, ζMF,−ζMF)

.

(3)

Here, ζMF = zMF/z0, ε=1 f /1 f0 and G(ε, ζ1, ζ2) is the
Green’s function of Eq. (1). To take into account the coupling
loss (which can be very small for a four-port microresonator
[29]), the numerator in this equation should be reduced accord-
ingly [22,28]. The dimensionless form of Eqs. (1)–(3) allows us
to design filters with different passbands 1 fpass by rescaling. It
follows from Eqs. (2) and (3) that to design a filter with passband
σ1 fpass from a filter with passband1 fpass we have to rescale the
CFV of the last filter by σ , its length by σ−1/2, its Q-factor by σ ,
and the coupling parameter D byσ 1/2.

We start with the design of a 100 MHz passband filter con-
structed of four coupled microresonators modeled by harmonic
oscillations of CFV plotted in Fig. 2(a). Fabrication of similar
SMR with subangstrom precision was demonstrated in [22,23].
The CFV precision achieved in [25] was 0.16 GHz, sufficient
to introduce the CFV with characteristic 2 GHz amplitude
shown in Fig. 2(a). In our modeling, we assume that the intrinsic
SMR Q-factor, which determines its internal losses, is Q = 108

[27,31] and set the frequency f0 = 193.4 THz corresponding
to the center of optical communication C-band of 1550 nm.
We optimize the symmetric positions of MF1 and MF2 to
arrive at the best flat transmission power |S12|

2 within band-
width 1 fpass = 100 MHz and vanishing outside it. The result
of optimization is shown in Fig. 2(b) along the whole SMR
spectrum and in Fig. 2(c) for the spectrum in the vicinity of the
passband considered. It is seen that the transmission power is
quite flat within the passband and vanishes down to −100 dB
in its vicinity (we show below that this value can be prevailed by
nonresonant transmission). The optimized positions of MF1
and MF2 are ±zopt =±381 µm, and the coupling parameter
is D= 0.0015+ 0.0017i µm−1. This value of D is an order
of magnitude less than those typically observed for the cou-
pling of the microfiber and SMR positioned in direct contact
[22,23,32]. We suggest that this small coupling can be achieved
by bending the microfiber [7] or placing it (or a planar wave-
guide) several hundred nanometers away from the SMR [30].
Remarkably, we found that the displacement of MF1 and MF2
by several microns followed by optimization of D does not
significantly change the behavior of |S12|

2.
Increasing the number of coupled microresonators and

apodization of their initially periodic ERV allows us to add
more flexibility in designing a filter and achieve better passband
flatness and rejection rate. In the next example, we design a
1 GHz passband filter by optimization of an SMR composed
of eight coupled microresonators. Now, in addition to the opti-
mization of positions of MF1 and MF2 made above, we apodize
the SMR by narrowing the barriers between the first, second,
and third and, symmetrically, between the sixth, seventh, and
eighth microresonators. The optimized CFV of a SMR with
the Q-factor Q = 108 is plotted in Fig. 3(a). While narrowing
of the barriers is achieved here by straightforward cutting, we
suggest that, in a more advanced CFV optimization, the barrier
widths can be adjusted in a way more suitable for experimen-
tal realization. It is seen from Fig. 3(a) that the length of the
designed 1 GHz filter is much smaller than that of the 100 MHz
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Fig. 2. (a) CFV for a SMR consisting of four coupled microres-
onators. (b) Transmission power spectrum of optimized SMR
along its whole bandwidth and (c) near the passband considered.
(d) Spectrogram of transmission amplitude |S12| calculated for
the optimized coupling parameter D, which is magnified near the
considered passband in (e).

Fig. 3. (a) CFV for a SMR consisting of eight coupled microres-
onators. (b) Transmission power spectrum of optimized SMR
along its whole bandwidth and (c) near the passband considered.
(d) Spectrogram of transmission amplitude |S12| calculated for
the optimized coupling parameter D, which is magnified near the
considered passband in (e).

filter shown in Fig. 2, and its CFV is much greater. Figure 3(b)
shows the spectrum of the transmission power |S12|

2 along
the full SMR bandwidth, which was obtained by optimization
of the transmission power along the passband magnified in
Fig. 3(c). The determined optimized positions of MF1 and
MF2 are ±zopt =±90 µm, and the coupling parameter is
D= 0.0145+ 0.013i µm−1.

The considered models and rescaling relations indicated
above allow us to design SMRs having CFVs and transmission
spectra with other passbands. For example, to design a SMR
with 500 MHz passband from the 100 MHz passband SMR
with Q = 108 described above (Fig. 2), we have to magnify the
frequency values along the horizontal axis in Figs. 2(b) and 2(c)
by five. The CFV of this SMR is obtained by dividing the values
of distance along the horizontal axis in Fig. 2(a) by 51/2 (i.e., this
SMR is 51/2 times shorter) and multiplying the CFV values
along the vertical axis by five. The Q-factor of this SMR is five
times smaller, Q = 2 · 107.

The calculated very large transmission sideband rejection
[down to −100 dB in both cases shown in Figs. 2(b) and 3(b)]
can be violated by nonresonant transmission of light from MF1
to MF2 not taken into account by Eq. (1), which describes
the contribution of WGMs having a single azimuthal and
radial quantum number, m =m0 and p = p0, only. To esti-
mate the contribution of WGMs with nonresonant quantum
numbers, we assume that all WGMs with radial quantum
numbers greater than p = 0 vanish (like, e.g., in a capillary
SMR with sufficiently narrow walls [33]). We introduce the
separation of the cutoff frequencies 1 faz along the azimuthal
quantum number m in the vicinity |1m| �m0 of m0, where
1m =m0 −m. Then, 1 faz is expressed through the SMR
radius r0 as 1 faz = c (2πnr0)

−1. For fiber radii and CFVs
of our concern, r0 . 1 mm and 1 f0 . 10 GHz, we have
1 f0�1 faz. Under these assumptions, the contribution to
the nonresonant transmission S(nr )

12 of azimuthal modes with
1m < 0 is negligible, while the contribution of M WGMs with
1m > 0 is [34]

S(nr )
12 = S(nr )

0 4,

4=

M∑
1m=1

1

1m1/2
exp

[
2iβazzopt

(
1m +

1 f
1 faz

)1/2
]
,

S(nr )
0 =

Im(D)
βaz

,

βaz =
22/3πn

c
( f01 faz)

1/2, 1 faz =
c

2πnr0
.

(4)

Factor S(nr )
0 in this equation determines the character-

istic value of nonresonance transmission, while the sum
over 1m rapidly oscillates as a function of SMR radius r0.
For the 100 MHz passband SMR considered above (Fig. 2)
with radius r0 = 20 µm, we have 20 log(S(nr )

0 )∼=−53 dB.
For the 1 GHz filter with the same radius (Fig. 3), we have
20 log(S(nr )

0 )∼=−35 dB. These values are much greater than
the rejection rates calculated above in the resonance approxima-
tion. Therefore, they determine the sideband rejection rate of
the designed filters. The increase of the rejection rate with the
reduction of microfiber-SMR coupling determined by Im(D)
correlates with experimental observations for a ring microres-
onator [35]. Numerical modeling based on Eq. (4) shows that
these sideband transmission values can be reduced by ∼10 dB
by optimization of the fiber radius r0. Much better reduction of
the nonresonant transmission can be achieved by appropriate



Letter Vol. 46, No. 17 / 1 September 2021 /Optics Letters 4147

Fig. 4. (a) Tunable filter comprised of two 1 GHz filters connected
in series. (b) Transmission power spectra of this filter tuned to 1 GHz,
0.5 GHz, and 0.2 GHz passbands. (c) Same spectra magnified near the
passbands.

bending of the microfiber around the SMR, which results in the
phase matching [7,36] to be considered elsewhere.

Remarkably, connection of SMR filters in series allows us
to significantly reduce the nonresonant transmission in the
rejection region and achieve the passband tunability. As an
example, we consider a device consisting of two SMR 1 GHz
passband filters designed above connected in series, as illustrated
in Fig. 4(a). The transmission amplitude of this filter is found as
S(2)12 = S12(1 f −1 fsh1, zMF)S12(1 f −1 fsh2, zMF). Here,
1 fsh1,2 are the shifts of the cutoff frequencies of SMRs, which
can be tuned by adjacent thermal heaters shown in Fig. 4(a).
This allows us to tune both the central frequency and the pass-
band width of the filter. Figures 4(b) and 4(c) show the spectra
of transmission power of this filter for1 fsh1 = 0 and1 fsh2 = 0
(1 GHz passband, red curves), 1 fsh2 = 0.5 GHz (0.5 GHz
passband, blue curves), and 1 fsh2 = 0.8 GHz (0.2 GHz pass-
band, green curves). The estimated rejection rate limited by the
nonresonant transmission with the amplitude S(nr )

0 defined by
Eq. (4) is now∼70 dB.

We suggest that optimization of a SMR profile with more
flexible CFV parameters, as well as SMRs connected in series,
will lead to filter designs with superior transmission charac-
teristics. Experimentally, optimization of the MF1 and MF2
positions and their coupling to SMR can be performed by their
translation along the microfiber and SMR directions [24],
bending [7,36], and by tuning the microfiber-SMR gap [30].
Finally, the design and experimental realization of SMR devices
for more general microwave photonics spectral shaping [37]
may be of special interest.
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