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Abstract: 

An optimal power management solution is a potential tool to develop cost effective and environmentally friendly 

power supply prepared using Renewable Energy Sources (RES) for the electrical power network. Therefore, the 

article introduces a novel optimization algorithm inspired by the vitality, namely: Manta Ray Foraging 

Optimization (MRFO), to figure out both multi and single objective problems of Optimal Power Flow (OPF) 

incorporating stochastic RES. The OPF problems are designed by considering four different objective functions: 

transmission power loss, emission index, fuel operational costs and voltage deviation. The stochastic and volatile 

nature of RES increases the complexity of the OPF issue. In this study, a new MRFO algorithm and some modern 

metaheuristic algorithms were used to settle the issue of OPF, enhance the energy efficiency, environment and 

cost performance of the power network. The test cases, with and without RES, different RES locations on the 

network, increasing in the load and outages of some transmission lines are considered by addressing the challenge 

of the proposed OPF. These cases are tested with bus systems as 30 and 118 and outcome from the suggested 

MRFO is compared to six metaheuristic optimization algorithms. Moreover, OPF challenges are successfully 

settled by the MRFO algorithm and outperform the proposed metaheuristic optimization methods. 

Keywords: Optimal power flow (OPF); manta ray foraging optimization; heuristic algorithms; emission minimization, 
power loss; fuel cost; renewable energy. 
 

1. Introduction 

1.1. Background 

     In power structure, fossil fuel power generations are the main source of pollution by producing the harmful 

gas emissions with poor efficiency which are less than 40% [1,2]. Nowadays, the contribution of RES in the 

electrical power network is one of the main solutions to minimize the emission index and improve quality of 

power system. Considering RES, level of emissions and power quality issues in the power generation dispatch 

problems are turning to the crucial matter with keeping running of the modern power electrical systems [1-3]. 

Optimal Power Flow (OPF) including RES and fossil fuel power generations plays an important role to present a 

fundamental optimization problem, especially the major of the worldwide shifting towards smart and micro grids. 

The power network operators need to determine the optimal power generations by using OPF problem. The goal 

of operating power generations flow is to meet an objective function for instance minimizing gas emission, fuel 

operational cost and voltage deviation [4-6]. The OPF management tools are usually designed and developed to 

improve the efficiency, quality and stability of the power network by optimally maintaining the voltage stability 

and controlling the power network in cost and energy effective way. In the literature, the OPF studies [7–14] have 

mainly used deterministic renewable generation profiles without considering the volatile behavior of RES to solve 
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single objective function OPF problem.  Therefore, this paper aims to develop a realistic OPF model with single 

and multi objective functions and treat the volatile behavior of RES by developing stochastic RES system based 

on two probability functions , namely: lognormal and Weibull functions [2,3]. In addition, this work will examine 

the effect of RES locations on the power network performances. 

1.2 Literature review 

In literature, several optimization approaches are utilized to determine the optimal power dispatch of generation 

units with or without RES by solving an OPF problem. Generally, there are two types of optimization methods, 

traditional and intelligent optimization methods. The traditional optimization approaches, in particular quadratic 

programming and gradient's technique, have been mainly employed to resolve single objective OPF difficulties 

[10-13]. For instance, a quadratic programming method was developed and used to minimize the transmission 

power loss in [15] and interior point algorithm was employed to achieve optimal power generations in [7].  

However, these traditional methods [7-14] are limited to the sensitivity to initial estimates, dimensions of the 

problem and some theoretical assumptions that are related to derivative requirements and search stagnation which 

helps to trap the solution at local minimum [11-14]. In modern power systems, due to the non-smooth and volatile 

nature of power generation problem, OPF are usually described as non-convex and nonlinear objective functions. 

Furthermore, the traditional optimization methods showed a lower performance in handling and solving modern 

power generation problems, especially with multi-objective function, due to the limitation of handling the 

complexity of computation and solving discontinuities and nonlinear functions [1-6]. Hence, for that case, a major 

development can do for a new optimization to achieve the global or near-global optimal solution to OPF 

challenges, which provide better capabilities compared to the traditional approaches.  

Recently, various metaheuristic optimization algorithms are developed to solve stochastic optimization power 

flow problems with and without RES [2,3,16-23]. For example, the researchers in [3,18] developed a Particle 

Swarm Optimization (PSO) algorithm to resolve conflict in case of multiple objective function problem. The cost 

function described the fuel operational cost and emission index aimed at a power system resourced by RES [3,18]. 

While a Moth Swarm Optimization (MSO) method is employed in [19,20] toward resolving different objective 

OPF functions for IEEE 30-bus system connected to wind power generation unit. However, the proposed 

optimization algorithms in [19–23] have only targeted solving single objective function problems and needed an 

understanding about  power generation with faultless in the RES. To overcome these limitations, the researchers 

in [24-27] proposed hybrid optimization algorithms employing self-learning techniques with heuristic algorithms. 

For example, the authors in [24,26] developed hybrid optimization algorithm by employing the fuzzy logic method 

and PSO to diminish the fuel operational cost and transmission power loss. In [27] to address the OPF problem, a 

self-learning technique was used to develop hybrid optimization model based on fuzzy clustering model and 

wavelet mutation strategy. However, the research studies in [24-27] assumed the perfect power generation 

knowledge for the RES without considering the volatile and non-smoothed generation nature of RES units or 

investigating the benefits of estimating the RES generations profiles which have a substantial influence on the 

performance of an electrical grid. Furthermore, due to the model complexity with different optimization 

techniques and the highly computational cost of these models, the hybrid optimization algorithms [24–27] suffer 

when the OPF includes problem multi-objective functions (very complex) or high-dimensional problem. This 

work aims to develop and employ number of the recent and powerful metaheuristic optimization algorithms due 

to the limited studies consider the significant of using metaheuristic algorithms. In general, the works on solving 
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power flow problems for a power network equipped with RES using metaheuristic optimization algorithms are 

sparse in the literature. Therefore, this paper develops a Manta Ray Foraging Optimization (MRFO) algorithm 

aimed at resolving both multi and single objective function problems for an electrical power network equipped 

with RES [28]. The MRFO model aims to treat the stochasticity of RES and create more realistic model compared 

to the literature [24-27] by estimating the RES based on probabilistic estimation techniques (Weibull and 

lognormal). Challenges in estimating the volatile RES nature substantially increase the difficulties of optimally 

solving OPF problem and increase the power network efficiency. The current literature has started to examine the 

significance of treating the uncertainty and volatility in RES to increase the energy efficiency, gas emission and 

fuel operational cost savings in the power networks [1-3,29,30]. The authors in [1-3,29,30] have used probabilistic 

estimation techniques in order to estimate the wind and solar systems considering the uncertainty and volatile 

nature in OPF problem by formulating a single objective function. The MRFO technique in this article aims to 

decrease the impact of the RES uncertainty term on the electrical network performance by minimizing the 

estimation error for a given OPF cost function. This paper presents a comprehensive analysis to the literature 

utilizing six recent metaheuristic algorithms as part of modern optimization algorithms compared to the proposed 

MRFO algorithm [28]. This analysis investigates the optimization methods performance for single and multi 

objective function taking into account the stochastic RESs. The MRFO algorithm will be compared to powerful 

and modern metaheuristic optimization algorithms stochastic from the literature: Chaotic Gravitational Search 

Algorithm (CGSA) [31], Supply Demand-based Optimization (SDO) [32], Improved Particle Swarm 

Optimization (IPSO) [33], Ant Lion Optimization (ALO) [34], Moth-Flame Optimization (MFO) [35], 

Autonomous Groups Particles Swarm Optimization (AGPSO) [33]. These new optimization algorithms aim to 

provide highly efficient algorithms for solving complex engineering problems and achieving global solution. The 

proposed new metaheuristics algorithms outperformed the common algorithm such as PSO over well-studied and 

engineering problems. Therefore, the CGSA, SDO, IPSO, ALO, MFO and AGPSO algorithms can be powerful 

and efficient in solving single and multi-objective functions for OPF cases for a power network system equipped 

with RES.  The researches on solving power flow problems for a network connected to RES using metaheuristic 

optimization algorithms  are sparse in the literature and there is limited studies introduce the impact of RES on 

the power network or the performance of the optimization algorithms or employ and compare different new 

metaheuristic optimization algorithms [36]. For example, the Success History-based Adaptive Differential 

Evolution (SHADE) algorithm has been used by Biswas et al. [37] to solve OPF for a power network (IEEE-30 

bus system) connected to only wind power sources. In [37], Biswas et al. the SHADE algorithm used to solve two 

main OPF problems, generation costs and power loss, without taking into account the other OPF problems such 

as the voltage deviation.  Furthermore, the proposed power network in [37] is only included the wind power 

sources in fixed location without considering the impact of other RES such as solar systems as one of popular 

RES in the world. In our paper, the stochastic behavior of both wind and solar power generation units are 

considered with different locations which increased the complexity of solving the OPF problems. 

Generally, heuristic optimization algorithms aim to achieve the global or near global optimal solution for the 

objective function by searching a wide variable space that are not close to the current state, which needs extensive 

search and to be a random process as possible. However, for OPF problem with multi objective function and 

volatile RES nature, the computational cost of these models will be high with restricted ability to achieve global 

optimal point in efficient time and it is very complex to implement and handle real-world problems [28]. This 
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motivated Weiguo Zhao et al. [28] to employ a new heuristic optimization method called Manta Ray Foraging 

Optimization (MRFO) algorithm. This new metaheuristic technique requires few adjustable parameters compared 

to the other techniques (s), so it consumes less time and easy to implement, which helps this algorithm to be 

potential for engineering applications and solving real-world problems. In [28], the MRFO is bio-inspired 

algorithm and developed based on the intelligent activities of manta rays, which includes three unparalleled 

foraging schemes, namely: chain, cyclone, and somersault. This new optimization algorithm aims to introduce an 

efficient approach for solving and handling different real and actual engineering challenges and problems such as 

designing pressure vessel and tension/compression spring. The performance of MRFO is evaluated throughout 23 

well-known test functions and 8 benchmark actual engineering problems [28]. The MRFO algorithm performance 

results show a powerful ability to achieve global optimization solution for constrained and unconstrained 

engineering problems. Furthermore, the evaluation of the MRFO algorithm shows that this proposed algorithm 

reduces the computational cost which helps it to be very suitable for real-world engineering problems [28]. 

Therefore, the MRFO algorithm can be beneficial for complex OPF with multi objective function and handling 

the volatile nature of RES in modern power system network. Adequate stochastic optimization models for modern 

network equipped with RES have gained a significant interest worldwide due to the prospect benefits of improving 

the environmental, energy and cost saving performance. In this work, a stochastic estimation model for RES and 

new MRFO algorithm will help to improve the power quality and environmental performance by reducing gas 

emissions, voltage deviation, fuel cost, and transmission loss. To the best of our knowledge, there are no studies 

on solving power flow problems and energy optimization problems have used the MRFO for solving OPF 

problems considering the volatile nature of RES or investigating the effect of increasing the demand system, 

power outages and RES locations in the power network.   

1.3 Contributions 

In this work, a new MRFO algorithm has been developed and presented incorporating with a stochastic probability 

prediction model for RES. The proposed MRFO algorithm is compared to six metaheuristic optimization methods 

for solving OPF problem in grid connected to RES. The proposed metaheuristic and MRFO methods have been 

designed to minimize voltage deviation, gas emission, fuel cost and the power loss on two scales of power 

networks, IEEE 30-bus and 118-bus.  In this work, the MRFO algorithm has been compared to new powerful 

optimization algorithms (CGSA, SDO, IPSO, ALO, MFO and AGPSO) as highly efficient algorithms for solving 

complex actual engineering problems.  To the author's knowledge, the MRFO has not used on solving power flow 

optimization problems and compared to the new proposed metaheuristic optimization algorithms (CGSA, SDO, 

IPSO, ALO, MFO and AGPSO), unlike the literature [19-26] that only employed one optimization method or 

only comparted to common algorithm's. This article targets to fill the gap in the previous literature by investigating 

the impact of RES locations, increasing the level of demands and power system outages on the power network 

performance. The originality of this article is laid out in the following points: 

i. A new MRFO optimization model is developed and employed to solve and handle complex OPF 

problems (single and multi-objective function) considering the uncertainty and stochastic behavior of 

RES by using probabilistic estimation model. 

ii. Unlike the literature, new metaheuristic optimization models (CGSA, SDO, IPSO, ALO, MFO and 

AGPSO) are developed and employed to solve OPF problems and compared to MRFO considering the 

stochastic nature of renewable energy resources. 
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iii. Unlike the previous studies [24-27] that focused only on solving OPF problem with single objective 

function, this paper aims to provide a comparison analysis for new heuristics optimization algorithms 

on solving single and multi-objective functions for electrical networks equipped with or without 

stochastic RES.  

iv. A comparison analysis for the impact of increasing the electrical demand, power system outages, 

locating RES based on different scenarios is presented to examine and evaluate the performance of the 

proposed algorithms using different real power network operation conditions. 

1.4    Outline of paper 

The rest of this study is structured as follows: the OPF problems and the probability prediction models for 

RESs formulations are detailed and introduced in Section 2. The MRFO algorithm is presented in Section 3. The 

simulation results, comparisons and discussions are presented in Section 4. Finally, the summary of this paper and 

conclusions are highlighted in Section 5. 
 

2. Problem Description: Components and mathematical formulation 

 
       The OPF problems for an electrical power network incorporating with RES are nonlinear, complex and non-

convex optimization problems, where the aim is to find the optimal generations mix of conventional generations 

and RES. Table 1 presents the objective function for our OPF problems that has been divided into 7 cases including 

single and multi-objective functions. These functions are solved under number of equality and inequality 

limitations and constraints, as will be discussed in subsections 2.1. Finally, the probabilistic estimation model for 

RES is presented in subsection 2.2 to generate solar and wind power profiles.  

Table 1: The description and summary of the objective functions for OPF problems.  

Case number Objective function 

1 minimization of transmission power loss. 

2 minimization of emission index. 

3 minimization of fuel operational cost. 

4 minimization of voltage level deviation. 

5 minimization of fuel opertional cost and voltage level deviation. 

6 minimization of fuel operational cost and transmission power loss. 

7 minimization of emission index, fuel opertional cost, voltage deviation, transmission power loss. 

2.1 Optimal Power Flow (OPF) Problems and model constraints 
 

In this article, the OPF problems for the electrical networks models under study incorporating with RES have 7 

objective functions [2,3], as presented in Table 1. The multi objective function (Cases 5,6 and 7) are introduced 

in this section as the total production cost for single functions. The objective functions listed in Table 1 are 

expressed as: 

1- Power transmission loss:  

The total transmission line loss in the proposed power network systems, 𝑃𝑡𝑙, is commonly described through 

Equation (1)  from all types of resources [3].  

𝑃𝑡𝑙 =∑𝐺𝑞(𝑉𝑖
2 +𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗  cos(𝜃𝑖 − 𝜃𝑗))

𝑊

𝑞=1

 

 

(1) 
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where 𝑃tl is the summation of power loss over all network load buses and transmission lines, W is the total number 

of the power transmission lines and load buses, 𝑉𝑖 and 𝑉𝑗  are the terminal voltages magnitudes of branch q, 𝜃𝑖 and 

𝜃𝑗 are the terminal voltage angles of branch q and 𝐺𝑞 is the conductance of branch q. 

2- Emission index: 

The conventional generation units run using release fossil fuel sources are the main source of pollution by 

producing the harmful gas emissions into the atmosphere. In order to limit emissions and avoid carbon tax 

penalties, the power network operators work on improving the environmental performance of the networks by 

minimizing the producing gas emission. This objective aims to reduce the total gas emission, 𝐸𝑔, in the proposed 

networks without affecting the total power generations under different operation and load conditions. The 𝐸𝑔 is 

expressed in tons per hour by Equation (2) [2]. 

𝐸𝑔 =∑(𝛼𝑛 + 𝛽𝑛  𝑃𝑛 + 𝛾𝑛𝑃𝑛
2)

𝑁𝐺

𝑛=1

 

 

(2) 

here, the 𝐸𝑔 is the total gas emissions, NG is the number of thermal generation units, 𝛼𝑛 , 𝛽𝑛  and 𝛾𝑛 are the 

emission index coefficients for the n thermal power generation unit and  𝑃𝑛 the power generated from thermal unit 

n. 

3- The fuel operational cost: 

The fuel operational cost of all thermal units, 𝐶𝑓𝑢𝑒𝑙 , is described in Equation (3) using a quadratic function as 

presented in [1-4].  

𝐶𝑓𝑢𝑒𝑙 =∑(𝜆𝑛 + 𝛿𝑛  𝑃𝑛 +𝜑𝑛𝑃𝑛
2)

𝑁𝐺

𝑛=1

 

 

(3) 

in this equation, 𝐶𝑓𝑢𝑒𝑙 is the fuel operational cost for the NG of thermal power generation units, 𝜆𝑛 , 𝛿𝑛 and 𝜑𝑛  

are the coefficients of the fuel operational cost for the n thermal generation unit and  𝑃𝑛 the power generated from 

thermal unit n. 

4- Voltage level deviation: 

In order to examine and evaluate the proposed optimization algorithms in this paper under power quality terms, 

the voltage deviation index is used. The voltage security in electrical networks is one of the most common power 

quality terms and operators aim to minimize generating an unattractive voltage profile. The voltage deviation 

index, 𝑉𝐷  , is basically the summation of all voltage deviation between the load bus, 𝑉𝑙 , for all buses, L, and the 

rated voltage which equal to 1.0 per unit. The cost function for the voltage level deviation is defined in Equation 

(4) as presented in [2,3]: 

𝑉𝐷 =∑|𝑉𝑙 − 1|

𝐿

𝑙=1

 

 

(4) 

5- Fuel operational cost and voltage level deviation. 

The multi cost function is basically the total of single functions. In Equation (5), the fuel operational cost and 

voltage level deviation index is described [2,3]. 
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𝐶𝐹𝑉 = (𝜗𝑓∑(𝜆𝑛 + 𝛿𝑛  𝑃𝑛 +𝜑𝑛𝑃𝑛
2)

𝑁𝐺

𝑛=1

)+ (𝜗𝑉𝐷∑|𝑉𝑙 − 1|

𝐿

𝑙=1

) 

 

(5) 

here, 𝐶𝐹𝑉  is the multi objective function (fuel operational cost and voltage level deviation) in a power 

network, 𝜗𝑓and  𝜗𝑉𝐷  are weight factors for each function and they assumed to be equal to 1 and 100 [1-4], 

respectively. In Equation (5), the weight factors (𝜗𝑓 and  𝜗𝑉𝐷) are optimality selected and they are common values 

for the proposed network [2,3].  In general, for the multi objective functions in this work, the weighted sum 

strategy is used in this paper as one of the most common and popular multi objective functions techniques.  The 

weighted sum strategy aims to convert the objective (optimization) problems into scalar problems through scaling 

operation process and then adding weighted factors for all the objectives. In order to obtain the real values of the 

objective function, it will need to reverse the scaling process.  

6- Fuel operational cost and power transmission loss. 

The fuel operational cost and the power transmission loss functions are merged in a cost function, 𝐶𝐹𝑃, as presented 

in Equation (6) [2,3]. 

𝐶𝐹𝑃 = (𝜗𝑓∑(𝜆𝑛 + 𝛿𝑛 𝑃𝑛 +𝜑𝑛𝑃𝑛
2)

𝑁𝐺

𝑛=1

)+ (𝜗𝑃∑𝐺𝑞(𝑉𝑖
2 +𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗  cos(𝜃𝑖 − 𝜃𝑗))

𝑊

𝑞=1

) 

 

(6) 

where 𝜗𝑓 and  𝜗𝑃  are weight factors for fuel operational cost and power transmission loss functions and they 

assumed to be 1 and 40 [16], respectively. In Equation (6), the multi objective function form for fuel cost and loss 

is one the common and standard from for the proposed network. The weighted sum strategy is used in this equation 

to present the multi objective function problem as common and popular multi objective functions strategy. In 

addition, the weight factors (𝜗𝑓 and  𝜗𝑃) are optimality selected and they are common values for the proposed 

network [2,3].   

 

7- The fuel operational cost, power transmission loss, gas emission index and voltage level deviation. 

In order to examine the proposed optimization methods with a conflict and complex objective function, this case 

merges four contrasting cost functions. In Equation (7), the fuel operational cost, gas emission, power transmission 

loss and voltage level deviation functions are emerged as multi cost function as follows:  

𝐶𝐹𝑃𝐺𝑉 = (𝜗𝑓∑(𝜆𝑛 + 𝛿𝑛 𝑃𝑛 +𝜑𝑛𝑃𝑛
2)

𝑁𝐺

𝑛=1

)+ (𝜗𝑃∑𝐺𝑞(𝑉𝑖
2 +𝑉𝑗

2 − 2𝑉𝑖𝑉𝑗  cos(𝜃𝑖 − 𝜃𝑗))

𝑊

𝑞=1

)

+ (𝜗𝑔∑(𝛼𝑛 + 𝛽𝑛  𝑃𝑛 + 𝛾𝑛𝑃𝑛
2)

𝑁𝐺

𝑛=1

)+ (𝜗𝑉𝐷∑|𝑉𝑙 − 1|

𝐿

𝑙=1

) 

 

 

(7) 

in this equation,  𝜗𝑔   is a weight factor for the gas emission index and it equals 19 [2,3], while𝜗𝑓, 𝜗𝑃 , 𝜗𝑉𝐷 are 

assumed here to be 1, 22 and 21 [2,3], respectively. Similar to Equations (5) and (6), the weighted sum strategy 

is used in Equation (7) to present the multi objective function problem for the fuel operational cost, power 

transmission loss, gas emission index and voltage level deviation.   
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2.1.1 The power network constraints 
 

The OPF as optimization problems for electrical network systems has a number of physical constraints and limits.  

The power network limitations are normally related to the operation conditions for the network equipment's and 

model parameters for instance frequency, current and voltage. These limitations are basically obtainable and 

divided into equality and inequality constraints.  

(a) Equality Constraints: 

In OPF problems, the equality limitations and constraints typically define the load flow in a power network system. 

In Equations (8) and (9), the total generates active power, ∑ 𝑃𝑛
𝑁𝐺
𝑛=1  , and reactive power, ∑ 𝑄𝑛

𝑁𝐺
𝑛=1 , produced from 

all available thermal and RES generations units, NG [1-4]. 

∑𝑃𝑛

𝑁𝐺

𝑛=1

= 𝑃𝐷 + 𝑃𝑡𝑙 

 

(8) 

∑𝑄𝑛

𝑁𝐺

𝑛=1

= 𝑄𝐷 +𝑄𝑡𝑙 

 

(9) 

where 𝑃𝐷  and 𝑄𝐷  represent the power demand of total active and reactive, 𝑃𝑛 and  𝑄𝑛 represent the power of active 

and reactive generated from a generation unit n, 𝑃𝑡𝑙 and 𝑄𝑡𝑙 represent the power loss of total active and reactive 

over all grid load buses and lines, respectively. In addition, the load flow constraints for the proposed electrical 

network system can be described as follow [2]:  

𝑃𝑛 − 𝑃𝐷𝑛 = 𝑉𝑛∑𝑉𝑞(𝐺𝑛𝑞 cos𝜃𝑛𝑞 +𝐵𝑛𝑞 sin𝜃𝑛𝑞)

𝑊

𝑞=1

 

 

(10) 

𝑄𝑛 − 𝑄𝐷𝑛 = 𝑉𝑛∑𝑉𝑞(𝐺𝑛𝑞 sin 𝜃𝑛𝑞 + 𝐵𝑛𝑞 cos 𝜃𝑛𝑞)

𝑊

𝑞=1

 

 

(11) 

Here, 𝑃𝐷𝑛   and 𝑄𝐷𝑛 are the power demand of total active and reactive connected to generation unit n, the 𝑃𝑛 and 

𝑄𝑛, 𝑉𝑛 and 𝑉𝑞 represent a voltage magnitudes at buses n and q, 𝐺𝑛𝑞 is the conductance between terminal buses n 

and q, 𝐵𝑛𝑞  represents a transfer susceptance among terminal buses n and q, 𝜃𝑛𝑞is the voltage angle variance 

among terminal buses n and q. 

(b) Inequality Constraints: 

Generally, the power network operating limitation related to the power system equipment’s are mainly inequality 

constraints. The inequality constrains can be expressed as the following [2,3]: 

• Power generation constraints including thermal and RES. 

𝑉𝑛 (min) ≤ 𝑉𝑛 ≤ 𝑉𝑛 (max) , n = 1,2,…,NG 
 

(12) 

𝑃𝑛 (min) ≤ 𝑃𝑛 ≤ 𝑃𝑛 (max),  n = 1,2,…,NG 
 

(13) 

𝑄𝑛 (min) ≤ 𝑄𝑛 ≤ 𝑄𝑛 (max), n = 1,2,…,NG 
 

(14) 
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where 𝑉𝑛 (min) and 𝑉𝑛 (max) represent both minimum and maximum voltage at generation unit n, 𝑃𝑛 (min) and 

𝑄𝑛 (min) for a minimum active and reactive power generation at unit n, 𝑃𝑛 (max) and 𝑄𝑛 (max) for a maximum active 

and reactive power generation at unit n, respectively.  

• The power transformer tap setting limitation. 

𝑃𝑇𝑘 (min) ≤ 𝑃𝑇𝑘 ≤ 𝑃𝑇𝑘 (max),  k = 1,2,…,NT (15) 

where the PT is the power transformers tap setting, the minimum and maximum setting limitation are  𝑃𝑇 (min)  and 

𝑃𝑇 (max), recpectively, and k the regulating tap of the transformer and NT is the number of taps. 

• The voltages level limitations at load buses, Equation (16) and the transmission loading limitations, 

Equation (17). 

𝑉𝐿𝑏 (min) ≤ 𝑉𝐿𝑏 ≤ 𝑉𝐿𝑏 (max) , b = 1,2,…,NL 
 

(16) 

𝑇𝐿𝑟 ≤ 𝑇𝐿𝑟 (max),  r= 1,2,…,Ln 
 

(17) 

where 𝑉𝐿𝑏 is the magnitude of voltage at bus b, NL is the total number of buses, 𝑉𝐿𝑏 (min) and 𝑉𝐿𝑏 (max) are the 

minimum and maximum voltages at the load bus b, 𝑇𝐿𝑟 is the loading magnitude at transmission line r, Ln is the  

number of transmission lines and 𝑇𝐿𝑟 (max) is the maximum loading at transmission line r. 

(c) Handling equality and inequality limitations and constraints 

To handle inequality constraints and decline any infeasible solutions, an external penalty function is 

employed and applied in this article [2,3].  This penalty function aims to penalize infeasible solution and keep the 

constraints dependent variables within the acceptable values during the iterative searching process. Consequently, 

the constraint OPF problems (Equations 1 to 7) can be converted into unconstrained optimization problem using 

a penalized cost function to each equation. The penalized objective function is defined as [2,3]: 

𝐶𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑍𝑃(𝑃1− 𝑃1(lim))
2
+𝑍𝑄∑(𝑄𝑛 −𝑄𝑛(lim))

2
𝑁𝐺

𝑛=1

+ 𝑍𝑉∑(𝑉𝑙 −𝑉𝑙(lim))
2

𝐿

𝑙=1

+   𝑍𝑇𝐿∑(𝑇𝐿𝑟 −𝑇𝐿𝑟(𝑙𝑖𝑚)
2

𝐿𝑛

𝑟=1

 

 

(18) 

where 𝑍𝑃, 𝑍𝑄, 𝑍𝑉and   𝑍𝑇𝐿  are the penalty factors for inequality constraints and they are assumed to be in this 

paper 100, 100, 100, and 100,000, respectively as presented in [1-3], 𝑃1  is the active power magnitude at the slack 

bus,  𝑃1(lim) is the limit value of 𝑃1 , 𝑄𝑛(lim) is the reactive power limit at 𝑄𝑛, the limit value of voltage bus 𝑉𝑙  is 

𝑉𝑙(lim), the limit value of the transmission line loading 𝑇𝐿𝑟 is 𝑇𝐿𝑟(lim). 

2.2 The probabilistic estimation model for RES 
 

           In order to improve the reliability and quality of an electrical networks, RES has been widely employed.  

Nowadays, RES has a direct impact on the electricity market [2,29,30]. In a power system incorporating with RES 

to solve OPF problem, for instance reducing gas emissions index, it is vital to optimally rise the power output 

from RES. However, the RES is naturally volatile and basically depends on weather conditions [29,30]. Therefore, 

a stochastic estimation model for RES profiles instead of deterministic profiles is essential to efficiently and 

optimally solve OPF problems with RES. The stochastic estimation model helps the optimization algorithm to 

deal with the uncertainties in RES profiles. In this article, the wind and solar energy sources are the most popular 

RES connected in different location scenarios to two power networks (IEEE 30-bus and 118-bus).  The difficulties 

in accurately predicting the weather condition increase the challenge of optimality solving OPF problem with 

RES. In this work, the RESs (wind and solar power generations) have been modelled by using probabilistic 
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estimation algorithms to generate the RES profiles and present the stochastic nature. In OPF problems, the wind 

and solar generation profiles are utilized as a negative load to allow the available RES power to be firstly injected 

to the network then the rest of generation units. This means that the total demand will be reduced, which minimizes 

the gas emission, fuel operational cost and power loss of the thermal units. In addition, the RES units dispatch the 

optimal power value which optimally solves the OPF problem at each case. 

2.2.1 Wind Power Units 
 

      The generation of wind power units are guided by weather condition such as the wind speed. Therefore, the 

generation power profile of wind power units can be descried as stochastic term. The wind power units basically 

depends on one main variable, the wind speed, which follows the Weibull probability distribution function 

[2,29,30]. Thus, the wind generation output can be characterized and presented as a random variable. The 

probability of wind speed based on Weibull function,   𝑊𝑠(𝑣), is described in Equation (19) as presented in 

[2,3,29]. The Weibull probability estimation for the wind speed delivers the uncertainty term in the wind power 

output. 

  𝑊𝑠(𝑣) =
𝜅

𝑠
(
𝑣

𝑠
)
𝜅−1

𝑒−
(
𝑣
𝑠
)
𝜅

 

 

(19) 

Here, 𝑣 is the wind speed, 𝜅 is the dimensionless shape factor and s is the scale factor of the Weibull distribution 

function. The wind generation unit converts the wind kinetic energy to electrical energy, as described in Equation 

(19). By using the estimated value of the wind speed, 𝑣 , the electricity power output from the wind generator 

unit,   𝑊𝑝(𝑣), can be calculated as in [2,3,29]. 

  𝑊𝑝(𝑣) = {

0 𝑣 < 𝑣𝑖𝑛 𝑎𝑛𝑑 𝑣 > 𝑣𝑜𝑢𝑡

  𝑊𝑝𝑟  (
𝑣 − 𝑣𝑖𝑛
𝑣𝑟 − 𝑣𝑖𝑛

) 𝑣𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑟

  𝑊𝑝𝑟 𝑣𝑟 < 𝑣 ≤ 𝑣𝑜𝑢𝑡

 

 

(19) 

where  𝑊𝑝𝑟 is the nominal and rated power value for the wind generation unit, 𝑣𝑟 is the rated and nominal wind 

speed,  𝑣𝑖𝑛  and 𝑣𝑜𝑢𝑡 are the cut-in and cut-out wind speed for the proposed wind generation unit, respectively. 

The impact of locating the wind generation unit in different location scenarios on the power flow results will be 

investigated in this work. In this article, the cost of generated electricity by wind power generation units is 

described and formulated as presented in [2,3,29,30] by using the wind speed and actual power profiles. The total 

power generation from wind units, PWcost, is the summation of the direct, reserve and penalty costs of the wind 

units, 𝑊𝐷  , 𝑊𝑅 , and 𝑊𝑃  , respectively in ($/h) [2,3,24] as described in Equation (20), if N is the total number of 

wind units. The penalty term, 𝑊𝑃 , aims to minimize the impact of the wind generation uncertainty on the cost 

estimation. 

PWcost =∑WD,n + WR,n +WP,n

N

n=1

 

 

(20) 
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2.2.2 Solar Power Units 

 

Solar power profile mainly depends on the weather condition such as solar irradiance; therefore, it is uncertain 

and volatile quantity. Solar irradiance follows the lognormal probability distribution function, which means that 

the solar system output is a random variable. The probability of solar irradiance based on lognormal 

function, S (𝐼), is described in Equation (21) as presented in [2,3]. The lognormal estimation for the solar 

irradiance delivers the uncertainty term in the solar power output. 

 

𝑆(𝐼) =
1

𝐼𝜎√2𝜋
exp(

−(ln 𝐼 − 𝜇)2

2𝜎2
) 𝐼 > 0 

 

(21) 

where I is the solar irradiance, 𝜇 and 𝜎 are the mean and standard deviation of the lognormal probability function. 

The solar power generation unit converts solar irradiance to electrical energy, where the solar system 

output,  𝑆𝑝(𝐼), is calculated using the estimation of solar irradiance and presented in Equation (22)  [2,3]. 

  𝑆𝑝(𝐼) =

{
 
 

 
   𝑆𝑝𝑟

𝐼2

𝐼𝑠𝑅𝑐
𝑓𝑜𝑟   0 < 𝐼 < 𝑅𝑐

  𝑆𝑝𝑟
𝐼

𝐼𝑠
𝑓𝑜𝑟           𝐼 ≥ 𝑅𝑐

 

 

(22) 

Where 𝑆𝑝𝑟  is the nominal  power output of the solar generation unit, 𝐼𝑠 is the standard solar irradiance equal to 

800 W/m2, 𝑅𝑐 is the irradiance point which is set equal to 120 W/m2 as in [2,3,29,30]. The total power generation 

costs of PV units,PVcost, is mainly calculated similar to wind power systems using the direct, reserve and penalty 

costs of  PV system, PVD , PVR, and PVP respectively in ($/h) [2,3,24] as described in Equation (23), if k is the 

total number of PV units [2,3, 24]. Finally, the impact of locating the solar generation unit in different location 

scenarios at power network on the power flow will be investigated in this paper. 

𝑃𝑉𝑐𝑜𝑠𝑡 =∑𝑃𝑉𝐷,𝑘 + 𝑃𝑉𝑅,𝑘 + 𝑃𝑉𝑃,𝑘

𝐾

𝑖=1

 

 

(23) 

 
In general, the total cost of all generation units (fuel, wind and solar) for the proposed power network model, 

𝑇𝑐𝑜𝑠𝑡 , in $/h is presented using a common function in Equation (24) that is presented in [2,3, 29,30] as 

𝑇𝑐𝑜𝑠𝑡 = 𝐶𝑓𝑢𝑒𝑙 + PWcost + 𝑃𝑉𝑐𝑜𝑠𝑡 (24) 

3. Proposed method: Manta Ray Foraging Optimization  
 

In 2019, a new bio-inspired and metaheuristic optimization algorithm  called Manta Ray Foraging 

Optimization (MRFO) has been introduced by Weiguo Zhao  et al. [28]. The aim of MRFO is to deliver an 

alternative optimization approach for handling engineering problem and challenges. In addition, the MRFO 

algorithm is simple to develop and implement with lower running simulation time, where it required few 

adjustable parameters compared to other optimization algorithms [28].  The MRFO algorithm provide is highly 

efficient algorithm for solving complex engineering problems and achieving global solution [28]. The MRFO 

algorithm outperformed common algorithms in [28] over well-studied and engineering problems. Therefore, the 

MRFO algorithm can be powerful and efficient in solving single and multi-objective functions for OPF cases for 
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a power network system equipped with RES. The basic idea of MRFO is inspired and developed from the 

intelligent activities and natures of manta rays by creating three unique foraging strategies, chain, cyclone and 

somersault. These strategies present the search characteristics of manta rays and work on facilitating and 

smoothing convergence to the global solution [28].  Firstly, the chain foraging strategy updates the current 

searching position based on the current global best solution. Secondly, the random searching performance is 

presented by cyclone foraging strategy to improve the extensive global search mechanism. This strategy works 

on adding a random position (random searching) in the search space to update each individual position to the 

random and the reference positions. The first step participates in exploitation and the following step in exploration. 

The MRFO algorithm allows to smoothly change between the chain and the cyclone foraging’s by write either 

gradually increasing the value of rand, the ratio between current and maximum number of iterations. Finally, the 

somersault foraging is a strategy allows each individual to move from the existing or actual position to any 

symmetrical position around the current global solution. The MRFO algorithm for solving optimization problems 

is summarized in Figure 1 and described below: 

• Step 1 Population Initialization: this step aims to generate a random population in the domain of the 

optimization problem. This step is basically similar to another heuristic optimization algorithm.  

• Step 2 Searching Step: at each iteration, t, the position of each individual in the domain will be updated 

based on the current searching position and reference position. The value of the ratio between the current 

iteration, t, and maximum iterations number (T) decreases from (1/T) to 1 which means moving from 

exploratory to exploitative search, respectively.  

• Step 3 Reference Position Evaluation: the current global best solution is selected to be a reference 

position for the utilization of search when the ratio of t/T is less than the random value. When the ratio of 

t/T is larger than the random value, a random value from space will be selected as reference position.  

• Step 4 Moving between Strategies in MRFO: the MRFO can change between the chain and the cyclone 

foraging based on the random value. Then, individuals in the domain will be updated based on their current 

positions and the current global best solution by using somersault foraging.  

• Step 5: Repeat steps 2–4 until the maximum iterations number is reached, which is the stop criterion here.  

In general, MRFO algorithm is required to adjust few numbers of parameters which helps it to be an easy algorithm 

to implement and makes it very potential for engineering applications. The parameters of MRFO algorithm are 

related to the foraging strategies, where there are two main weight coefficients to adjust the chain and cyclone 

foraging strategies Additionally, two random numbers will be used to update the individual position in somersault 

foraging. The computational cost of heuristic optimization models is basically dependent on the number of 

parameters (variables, individuals) and the maximum iterations number [28]. In this paper, the best solution 

(optimal values) for each parameter was selected over range of values to achieve the results in this work. The 

simulation models for the MRFO and other heuristics optimization algorithms have been implemented based on 

the parameters and the details are presented within the following section. 
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Fig. 1. The main MRFO procedures.  

4. Simulation results and discussion 
    

 The suggested formulation for OPF problems in electrical networks equipped with RES, as discussed in Section 

2, is tested to examine the performance of MRFO approach. Thus, this section presents and discusses the results 

of the suggested optimization approaches. Firstly, the description of the test systems is introduced; then, the 

MRFO and other heuristics optimization algorithms tested under different power network and operation scenarios. 

Throughout this section, the proposed MRFO optimization approach is comparable against six heuristics 

optimization algorithms from the literature, specifically: CGSA [31], SDO [32], IPSO [33], ALO [34], MFO [35], 
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and AGPSO [33]. The comparison of single and multi-objective function for OPF problem over different network 

scenarios are presented.  

4.1 Test systems 
   

For the purpose of examining the potency and evaluating the performance of the suggested optimization 

algorithms, all algorithms are using two standard power network systems, IEEE bus systems as 30 and 118. Firstly, 

the IEEE 30 is adopted as a reference model for electrical power grid here in the article from [38-40]. The IEEE 

30-bus system includes a six thermal power generation parts, 30 buses, 41 branches and the swing bus is bus 1, 

as presented in Figure 2. The thermal generations locate to be at buses number 1, 2, 5, 8, 11 and 13. The magnitude 

limitation of load voltage represents a 0.95–1.05 p.u and with generator voltage limits are 0.95–1.1 p.u. In the 

buses number 11,12,15 and 36, transformers with tap changer that vary the voltage from 0.9 p.u. toward 1.1 p.u. 

Furthermore, the voltage automatic regulator compensators limits are 0 - 0.5 p.u. In this network, the active 

demand equal to 2.834 p.u and for a reactive equal to 1.262 p.u, besides a total load is 100 MVA. To investigate 

and examine the impact of incorporating RES to the proposed network system and RES locations on the OPF 

solvers, the IEEE 30-bus system [38-40] is adjusted with inserting RES in two different locations, as follows:  

• The IEEE  30-bus system is adjusted by firstly adding and incorporating solar and wind generation unit at 

bus 24 and 30, respectively. Secondly, the thermal generation units have been replaced through solar unit 

next to buses number 5, also number 13, and wind system by bus number 11, as presented in Figure A.1 in 

the appendix section. The details and data model for wind and solar systems are adopted form [2,3] and 

presented in Table 2 and it's called IEEE 30-bus Modified (1).  

• In order to examine the proposed optimization solvers performance across diverse scenarios of RES 

locations, the IEEE bus number 30 Modified (2) is used in this section, as presented in Figure A.2. The 

thermal generation units in IEEE 30-bus system replaced with solar unit next to buses number 5 with 

number 13, and wind system by bus number 11. In this modification, solar and wind systems have been 

added to buses 17 and 28, respectively. The general RES model conditions and data of wind and solar 

systems are described in Table 2 [2,3]. Secondly, for assessing the MRFO algorithm in terms of both 

scalability and reliability, an IEEE bus for 118 in power network is employed with large-area power 

network model. The data and network specification for IEEE 118-bus system are extracted from [39].  

Both of the IEEE power network systems are used to present and formulate OPF problems, as presented in Section 

2. The coefficients of fuel cost and gas emission function equations, as presented in Section 2.1, are described in 

Table 3 and given in [2,3,32,34]. To implement the proposed MRFO  and the other six heuristics optimization 

algorithms, a certain number of parameters needs to be firstly selected to achieve the best optimal solution. 

Generally, the performance of optimization techniques relies on factors such as the model parameters, the 

complexity of the problem, constraints, the information availability, and the simulation model package. Moreover, 

each optimization algorithm has advantages and disadvantages and there is no algorithm suitable for all problems. 

In this article, the values of the parameters are verified based on empirical tests using previous studies  information 

and running the proposed optimization solvers many times over a range of values for each parameter. The main 

parameters of each optimization technique are presented in Table 4 and including the range and optimal values. 

The best solution (optimal values) for each parameter was chosen to achieve the results in this work. The 

simulation models for the MRFO and other heuristics optimization algorithms have been employed and developed 

on MATLAB 2016 using 2.8-GHz i7 PC with 16 GB of RAM. 
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Fig. 2. The proposed IEEE 30-bus network  

 

Table 2: The data of solar and wind systems for the proposed  Modified (1) and (2) networks. 

Wind systems connected to the proposed  Modified (1) network. 

Unit Bus No. of turbines   Wpr s κ vin (m/s) vout (m/s) vr (m/s) 

1 11 10 2 9 1.65 4 25 13 

2 30 12 2 10 1.7 4 25 13 

Wind systems connected to the proposed  Modified (2) network. 

1 11 10 2 9 1.65 4 25 13 

2 28 12 2 10 1.7 4 25 13 

Solar systems connected to the proposed  Modified (1) network. 

Unit Bus   Spr (MW) Is (W/m2) Rc  μ σ   

1 5 25 800 120 6 0.6   

2 13 30 800 200 6 0.6   

3 24 30 800 170 6 0.6   

Solar systems connected to the proposed  Modified (2) network. 

1 5 25 800 120 6 0.6   

2 13 30 800 200 6 0.6   

3 17 30 800 170 6 0.6   
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Table 3: The gas emission and fuel operational cost coefficients of thermal units in the proposed  IEEE-30 bus system. 

gas emission coefficients 

Generator bus 𝛼 𝛽 𝛾 

1 1 4.091 -5.554 6.49 

2 2 2.543 -6.047 5.638 

3 5 4.258 -5.094 4.586 

4 8 5.326 -3.55 3.38 

5 11 4.258 -5.094 4.586 

6 13 6.131 -5.555 5.151 

fuel cost coefficients 

Generator bus 𝜆 𝛿 𝜑 

1 1 0 2 0.00375 

2 2 0 1.75 0.0175 

3 5 0 3 0.025 

4 8 0 3.25 0.00834 

5 11 0 3 0.025 

6 13 0 3 0.025 

 

Table 4: The main parameters value and the parameters testing ranges of the proposed optimization approaches. 

Algorithm Parameters Values Testing Range 

IPSO [33] Coefficient of inertia Decreasing from 0.9 to 0.4 (linearly) ---- 

Search agents number  50 25-100 

Maximum iteration number 100 50-200 

Coefficient of acceleration  1 and 2  

ALO [34] Size of population  50 25-100 

Maximum iteration number 100 50-200 

SDO [32] Size of population 50 25-100 

Maximum iteration number 100 50-200 

MFO [35] Size of population 50 25-100 

Maximum iteration number 100 50-200 

Shape constant 1 0-2 

AGPSO [33] Coefficient of inertia Decreasing from 0.9 to 0.4 (linearly) ---- 

Number of search agents 50 25-100 

Maximum iteration number 100 50-200 

Inertia coefficient 1 and 2  

MRFO [28] Search agents number 50 25-100 

Initial gravitational constant 100 50-150 

Size of population 50 25-100 

Maximum iteration number 100 50-200 

Somesault factor 2 1-3 

CGSA [31] Chaoatic map Defined by logistic in [31] --- 

 Maximum number of iterations 100 50-200 

 Descending coefficient  10 5-15 

4.2 Single and multi-objective function results  
 

This section aims to present the IEEE 30-bus model results, which were obtained using the proposed recent 

heuristic optimization algorithms for all objective function cases, as summarized in Table 1. The objective 

function values are used to compare the results, where the transmission line loss, emission index, fuel cost and 
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voltage deviation are given in MW, ton/h, $/h and p.u, respectively.  In Table 5, the result showed that the MRFO 

algorithm outperform all other heuristic optimization algorithms for the given data by achieving the minimum 

cost function value over all cases. For example, the MRFO has obtained 3.181063 MW in case 1 compared to 

4.765994 MW and 3.928019 MW for ALO and CGSA, respectively. However, MRFO and IPSO have obtained 

close results to case 2, which are 0.204224 ton/h, 0.204987 ton/h, respectively. For case 4, the MRFO and AGPSO 

have achieved 0.1233304 p.u and 0.1248445 p.u, respectively. The multi-objective function cases (Case 5-7) 

results showed that MRFO has outperformed other heuristic optimization algorithms in terms of decreasing the 

objective function values. The transmission line loss, emission index, fuel cost and voltage deviation, as expected, 

depending on the objective minimized and it has minimum values when individually minimized.  

Table 5: Results of the MRFO and the proposed metaheuristic algorithms for IEEE 30-bus model over different objective function cases. 
 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

CGSA 3.928019 0.214162 843.8661 0.1311433 857.4699 1073.843 994.36722 

SDO 3.620135 0.208335 842.4642 0.1314178 857.0143 1060.094 995.89322 

MRFO 3.181063 0.204224 837.8103 0.1233304 853.7259 1059.013 990.01329 

IPSO 3.452462 0.204987 841.1485 0.1391369 858.4031 1061.669 995.91718 

ALO 4.765994 0.212901 856.3358 0.1367593 859.1723 1071.952 998.95404 

MFO 3.395259 0.209613 841.962 0.1285336 858.1296 1061.407 997.81549 

AGPSO 3.684243 0.209609 842.6436 0.1248445 858.6297 1060.663 994.29724 

 

The convergence curves presented the relationship between the number of iterations and optimum cost 

function. For example, Figure 2 illustrated the convergence curves over cases 2 and 7 for all the proposed 

optimization algorithms. The MRFO algorithm has smoother and speedy convergence curve, where the MRFO 

has achieved the optimal results within less iterations compared to other metaheuristic optimization approaches, 

as seen in Figures 3. This showed that the MRFO algorithm has lower computational cost and higher efficiency 

in CPU utilization.  

  

(a) (b) 
Fig. 3. Convergence curves of the MRFO and the proposed metaheuristic optimization models for (a) case 2 and (b) case 7. 

The previous results showed that the MRFO model outperforms other optimization algorthims and has the 

minimum objective function values for all cases without any infringement to the limitations and constraints. Table 

6 presents the MRFO model results for IEEE 30-bus network for case 1 as an example. In Table 6 and tables in 
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the Appendix section, the PG is the generators active power, VG is the generator voltage magnitude, QG is the 

reactive power of generator, QC is the magnitude of  shunt capacitor, TS is the tap changer voltage, and VD is the 

voltage deviation. In Table 6 and all tables in the appendix, the control variables are highlighted as bold text and 

state variables as normal text. 

Table 6: Results of the MRFO algorithms for IEEE 30-bus model over different objective function cases. 

Parameters  Min  Max  case 1 case 2 case 3 case 4 case 5 case 6 case 7 

PG1 (MW) 50 200 52.45123 64.52673 139.9879 135.7245 139.8683 95.81943 118.6466 

PG2 (MW) 20 80 79.52508 68.26401 58.95586 54.72236 59.21454 53.58874 52.35471 

PG5 (MW) 15 50 49.89869 49.98748 20.985 32.99517 24.7227 47.77595 36.22531 

PG8 (MW) 10 35 34.92556 34.48852 34.16928 12.89263 30.73691 34.89481 34.8718 

PG11 (MW) 10 30 29.86572 29.96472 17.20179 26.22522 18.05257 29.5956 26.84233 

PG13 (MW) 10 40 39.9148 39.9716 19.14378 27.872 18.23371 25.73785 19.74797 

VG1 (p.u.) 0.95 1.1 1.059105 1.064265 1.074382 1.028337 1.04667 1.065443 1.071 

VG2 (p.u.) 0.95 1.1 1.053028 1.054884 1.058575 1.016385 1.027091 1.054636 1.059597 

VG5 (p.u.) 0.95 1.1 1.031529 1.034532 1.02783 0.998324 1.004804 1.037331 1.032443 

VG8 (p.u.) 0.95 1.1 1.040915 1.024281 1.040362 1.000625 1.004433 1.040804 1.040823 

VG11 (p.u.) 0.95 1.1 1.076003 1.076201 1.063444 1.045407 1.009391 1.08264 1.052561 

VG13 (p.u.) 0.95 1.1 1.047012 0.968038 1.044096 1.013123 1.004894 1.059065 1.016396 

QG1 (MVAr) -20 150 -2.54692 9.85596 0.245012 -9.38369 11.56811 -2.73418 -4.36391 

QG2 (MVAr) -20 60 3.017738 19.28971 12.03046 10.62814 8.971878 3.680779 17.36502 

QG5 (MVAr) -15 62.5 19.33753 28.90979 23.4239 31.34045 35.10225 24.50257 21.24103 

QG8 (MVAr) -15 48 29.49256 22.39821 32.10829 35.54928 38.44545 25.20361 27.70747 

QC10 (MVAr) 0 5 1.608274 1.098943 2.227006 3.824171 3.220963 2.956771 1.435408 

QG11 (MVAr) -10 40 15.17821 23.6746 13.92861 19.46254 1.665713 18.18019 19.76257 

QC12 (MVAr) 0 5 4.31586 2.213457 1.445433 1.335555 4.093917 0.888182 1.98635 

QG13 (MVAr) -15 44 12.55374 -13.1849 8.352941 2.628981 -4.13535 9.34424 2.010326 

QC15 (MVAr) 0 5 3.497263 2.839656 3.615316 4.599411 2.664672 2.48676 4.479763 

QC17 (MVAr) 0 5 4.750872 3.330972 3.882472 2.688204 2.575065 3.814932 4.566432 

QC20 (MVAr) 0 5 2.637549 4.460008 4.767304 4.942899 4.518492 3.840383 3.816575 

QC21 (MVAr) 0 5 4.881207 1.47523 3.451327 4.709096 2.098408 4.367202 3.145302 

QC23 (MVAr) 0 5 1.564046 1.373651 4.787802 4.680784 4.828105 2.709757 3.544914 

QC24 (MVAr) 0 5 3.469463 2.386178 2.836615 4.385637 4.921799 4.805279 4.434736 

QC29 (MVAr) 0 5 2.497439 1.542376 1.290046 1.665862 3.2387 3.078047 3.069847 

TS11 (p.u.) 0.9 1.1 0.976077 0.993108 0.998793 1.028328 1.000398 1.012009 1.052721 

TS12 (p.u.) 0.9 1.1 1.05516 0.958774 1.052066 0.936642 0.909349 0.972617 0.984844 

TS15 (p.u.) 0.9 1.1 1.027278 1.006784 1.004566 0.98529 0.972054 0.99584 1.014613 

TS36 (p.u.) 0.9 1.1 0.988176 1.014805 0.964133 0.955172 0.967209 0.980792 1.006176 

VD (p.u.) 0.534452 0.495975 0.578668 0.12333 0.129428 0.858611 0.323022 

Fuel cost ($/h) 972.1568 952.3171 837.8103 857.0938 840.6257 898.5184 862.1618 

Power line loss (MW) 3.181063 3.803056 7.043596 7.031943 7.428731 4.012376 5.288765 

Emission index(ton/h) 0.207202 0.204224 0.28493 0.271953 0.283905 0.222343 0.248169 

Objective function 3.181063 0.204224 837.8103 0.12333 853.7259 1059.013 990.0133 
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4.3 Renewable energy sources (RES) scenarios results 
 

To investigate the impact of incorporating RES to the electrical networks, and the RES locations on the OPF 

solvers, the IEEE 30-bus model has been adopted in this paper by inserting RES in two different locations, as 

presented in Section 4.1 The proposed MRFO is compared to the proposed metaheuristic approaches by using 

Modified (1) and Modified (2) networks. In this section, the MRFO is employed to achieve and find the best 

optimal solution for OPF problems of electrical networks equipped with RES. The MRFO results of all cases for 

all power network scenarios are presented in Table 7. These results indicate that the RES and the location of the 

wind and PV systems have a direct impact on the OPF solutions.  In addition, the results showed that the MRFO 

is an effective solver for the OPF problems with RES. As an example, the objective functions values for case 1 

and 3 were decreased from 3.181063 MW and 837.8103 $/h to 2.09218 MW and 0.09114 $/h, respectively, after 

inserting the RES (Modified (1) network model). By adding the RES to the power network as a negative load 

value, the total network demand will decreased, which leads to a decline in the transmission losses and fuel 

operational cost. In turn, the total objective functions for cases 5, 6, and 7 will decrease. Table 7 shows that the 

maximum reduction in the objective function was 55% in case 2 for Modified (1) and Modified (2) networks. The 

minimum improvement for adding the RES was equal to 7.7% and 3.9% in  case 3 for Modified (1) and Modified 

(2) networks, respectively. On the other hand, the Modified (1) and Modified (2) networks have displayed close 

results to cases 2 and 6. This indicates that the location of RES on the power network has a limited impact on the 

MRFO algorithm in these cases.  The MRFO results for Modified (2) system have increased compared to Modified 

(1) system for case 1 and 7 by around 13% and 16%, respectively.   

 

Table 7: Results of the MRFO algorithm for IEEE 30-bus, Modified (1) and Modified (2) networks for all cases. 
 

case 1 case 2 case 3 case 4 case 5 case 6 case 7 

IEEE 30-bus system 3.181063 0.204224 837.8103 0.12333 853.7259 1059.013 990.0133 

IEEE 30-bus Modified (1)  2.09218 0.09114 772.9864 0.074447 795.9037 938.1911 749.9863 

IEEE 30-bus Modified (2) 2.409543 0.091077 804.9323 0.083975 788.6009 953.8583 895.2246 

The percentage of cost function reduction 

Modified (1) over IEEE 30-bus (%) 34.23017 55.59008 7.737291 39.6359 6.77292 11.40895 11.63351 

Modified (2) over IEEE 30-bus (%) 24.25353 55.62086 3.924274 31.91039 7.628322 9.929536 7.804434 

Modified (1) over Modified (2) (%) 13.1711 -0.069 3.9688 11.3461 -0.926 1.6425 16.31286 

 

The MRFO results are compared among the proposed recent heuristic optimization algorithms for the Modified 

(1) and Modified (2) networks over different cases, as presented in Table 8. The optimization algorithms results 

show that the MRFO is more effective than other heuristic optimization algorithms in solving the OPF problems 

for electrical networks incorporating RES. For example, Table 8 shows that the MRFO obtained a better result 

complex multi-objective function with conflict cost functions (case 7) with objective function equal to 749.9863 

compared to 802.8756 and 803.41164 for AGPSO and ALO algorithms, respectively. The results in Table 8 
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indicates that the results of Modified (2) system has been increased compared to Modified (1) system for almost 

all algorithms.   

Table 8: Results of the proposed optimization algorithms results for Modified (1) and Modified (2) networks for case 7. 
 

AGPSO MFO ALO IPSO MRFO SDO CGSA 

IEEE 30-bus Modified (1)  802.8756 772.94109 803.41164 769.07981 749.9863 773.84641 771.07042 

IEEE 30-bus Modified (2) 901.6399  933.80365 901.89125 944.26979 895.2246 916.38100 928.6616 

 

In Figure 4, the impact of the renewable energy sources on the total generation costs by using different OPF 

solvers is presented. Generally, the MRFO outperformed all other algorithms by achieving the minimum costs for 

the IEEE 30-bus without renewable energy resources (fed by the utility) and Modified (1) network with renewable 

energy resources. In the power networks Modified (1) with renewable energy sources, the total generation costs 

for all solvers decreased compared to the IEEE 30-bus without renewable energy resources. This indicates that 

the renewable energy resources locations has a significant impact on reducing the generation costs. For example, 

the MRFO recorded the maximum improvement with cost reduction equal to 11%, whereas the minimum 

reduction in total generation cost was 5% for IPSO algorithm. 

  

 

Fig. 4. The total generation costs for the IEEE 30-bus without renewable energy resources (fed by utility) and Modified (1) network with 

renewable energy resources and percentage of generation cost saving. 
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4.4 Increase in demand and power line outgas results 

The electricity demand is significantly growing every year due to the shifting towards electrification of transport, 

increasing electricity usage level at homes due to using electricity loads such as heating and air conditioning and 

growing population. This will increase the pressure on the power network infrastructure and energy suppliers. 

Nowadays, one of the main challenges that face distribution network operators increase in electricity demand, 

which may lead to outage and failure to cover the required load demand.  To examine the impact of these 

conditions on the optimization algorithm performance, the proposed MRFO algorithm  is tested on the three 

networks (IEEE 30-bus, Modified (1) and Modified (2) networks) with 30% load increase and line outages on the 

power network, as presented in Table 8. Then, a comparison analysis for the impact of increasing the electrical 

demand and power system outages for the MRFO and the other heuristic optimization algorithms is presented in 

Table 9. In this section, the power system outage was for transmission lines (2 to 6) and (10 to 21), which presented 

the main power lines close to the generator units.   

The results in Table 9 indicate that the increase in the electrical demand and network outages conditions has a 

significant impact on the OPF solutions. As an example, the objective function values for case 1 and 7 were 

dramatically increased from 3.18106 MW and 990.01 for IEEE 30-bus system to 10.3562 MW and 1460.03, 

respectively, after increasing the demand by 30% and having number of line outages. In addition, the results show 

that by adding the RES to the power network (Modified (1) and Modified (2) networks), the impact of the power 

network outages and the increase in demand is less compared to networks without RES (IEEE 30-bus network). 

For example, Table 9 shows that the emission index function (Case 2) increased by 40.5%, 16.4% and 15.9% for 

Modified (1) and Modified (2) networks, respectively, after increasing the demand and the line outages. 

Furthermore, the results indicate that the location of RES on the power network has a limited impact on the MRFO 

algorithm, where, the Modified (1) and Modified (2) systems have shown close result for all cases.  The details 

MRFO results for all network scenarios have been shown in Appendix A, Tables A1–A5. 

 

Table 9: Results of the MRFO algorithm for different power network systems under increasing demand and transmission line outages 

conditions 
 

case 1 case 2 case 3 case 4 case 5 case 6 case 7 

IEEE 30-bus network 3.18106 0.20422 837.810 0.12333 853.725 1059.013 990.01 

IEEE 30-bus modified -1 2.09218 0.09114 772.986 0.07444 795.903 938.1911 749.986 

IEEE 30-bus modified- 2 2.40954 0.09107 804.932 0.08397 788.600 953.8583 895.224 

IEEE 30-bus network with 30% increase in load 

and outages of some transmission lines 

10.3562 0.28707 1167.435 0.20311 1193.317 1633.216 1460.03 

IEEE 30-bus modified 1 with 30% increase in load 

and outages of some transmission lines 

5.36663 0.10612 1072.905 0.08613 1077.842 1360.785 1249.93 

IEEE 30-bus modified 2 with 30% increase in load 

and outages of some transmission lines 

7.30354 0.10562 1052.049 0.14091 1123.534 1382.903 1286.25 

 

Table 10 presents the MRFO algorithm results compared among the proposed recent heuristic optimization 

algorithms for single objective function problem (case 1) and multi-objective function (case 7) for the Modified 

(1) and Modified (2) networks after increasing the load demand and having outage on the power network. These 
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results demonstrate that the MRFO algorithm is more effective than other metaheuristic optimization approaches 

in solving the OPF problems under abnormal conditions. For example, the MRFO displayed a better result for 

case 3 for Modified (1) network with 30% increase in load and outages of some transmission lines with objective 

function equal to 1072.952 $/h compared to 1105.9788 $/h and 1104.973 $/h for AGPSO and CGSA algorithms, 

respectively. As demonstrated in the previous section, changing the location of the RES does not have a direct 

impact on the optimization algorithm results and performance.  

Table 10: Results of the proposed optimization algorithms results for Modified (1) and Modified (2) networks considering 30% load increasing 

and line outages. 
 

AGPSO MFO ALO IPSO MRFO SDO CGSA 

 Case 3  

IEEE 30-bus Modified (1)  1105.9788 1079.3829 1078.4191 1112.2389 1072.9052 1073.3601 1104.973 

IEEE 30-bus Modified (2) 1089.0076 1077.3109 1065.3384 1074.3852 1052.0499 1086.0282 1072.918 

 Case 7  

IEEE 30-bus Modified (1)  1293.3283 1295.0288 1295.7599 1332.3993 1249.935 1294.1581 1354.741 

IEEE 30-bus Modified (2) 1322.8860 1293.8097 1307.5417 1347.9242 1286.251 1308.5756 1333.435 

 

4.5 Statistical analysis for the MRFO and the proposed metaheuristic optimization algorithms 
 

In the previous sections, the MRFO algorithm outperformed the other heuristic optimization methods and and 

proved to be the most effective solver for all network model scenarios. In order to provide a further evidence on 

the performance of MRFO, the proposed metaheuristic optimization approaches in this article were used to solve 

case 1 problem over 1000 runs of simulations. The statistical analysis for the proposed optimization algorithm is 

presented in Table 11 including the minimum and maximum cost function values over the 30 runs for all methods. 

Furthermore, the median and standard deviation values for the cost function over the 30 runs for all methods is 

presented in Table 11. The results show that the MRFO is the most effective solver compared to other heuristics 

methods because it achieved lower cost function values for the minimum, maximum, median values and standard 

deviation. For example, the standard deviation for the MRFO had a lower compared to the other metaheuristic 

optimization techniques with values equal to 0.0392. 

  

Table 11: Statistical analysis for the proposed optimization method over case 1. 

  Minimum Maximum Median Standard deviation 

AGPSO 3.684242972 4.0789175 3.74279579 0.148931363 

MFO 3.39525918 3.60128064 3.469399978 0.067816401 

ALO 4.765994381 6.038091104 5.362548392 0.460612714 

IPSO 3.452462153 4.30687017 3.498564623 0.272798974 

MRFO 3.181063492 3.332614406 3.276390137 0.039221242 

SDO 3.62013511 4.139257779 3.836721806 0.147978987 

CGSA 3.928019042 4.963097807 4.435250265 0.314260995 



23 

4.6 Estimate of computational costs 
 

The average of computational cost (execution time) for solving the OPF problems (Cases 1 to 7) for IEEE 

30-bus system is presented in Figure 5 for different optimization techniques. This approximation of computational 

cost has been made on 2.8-GHz i7 PC with 16 GB of RAM. To check the computational cost of each algorithm, 

100 independent trials are performed and the average of the results is shown in this section. In general, the MRFO, 

IPSO and AGPSO recorded the lower execution time around 11 s for all cases, while the CGSA, SDO and ALO 

algorithms reordered more than 20 s for all cases. The MRFO outperformed all other algorithms and achieved the 

lowest computational cost for all cases. This is mainly due to the fact that the MRFO algorithm requires a few 

numbers of parameters which makes it an easily implementable and promising  algorithm for engineering 

applications.  

 
Fig. 5. The computational cost of the MRFO and the other metaheuristic optimization technique for IEEE 30-bus system over all cases. 

 

4.7 Analysis of exploration and exploitation performance in MRFO algorithm  
 

In general, the exploration behavior in MRFO aims to look for the optimal solution within a wide variable 

space. The exploration search in areas are not neighbor to the current position (solution), which let the exploration 

process be more extensive and random process as possible but it helps the algorithm to avoid local optimal 

solutions [28]. The exploitation behavior in MRFO works on confining the search process into a small region 

from the exploration process. The exploitation search on the promising region from the searching space at 

exploration. In MRFO, at each iteration, t, the position of each individual in the domain will be updated based on 

the current searching position and reference position. The value of the ratio between the current iteration, t, and 

maximum iterations number (T) decreases from (1/T) to 1 which means moving from exploratory to exploitative 

search, respectively [28]. In this section, the exploration and exploitation performance presented for the IEEE 30-

bus model with Case 1 (power transmission loss).  Figure 6 presented the convergence curves for the exploration 

and exploitation process over Cases 1. The convergence curve of exploration process showed a low performance 

at iterations less than 10 compared to the exploitation process where the exploration search within larger space at 
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the beginning of the searching process. However, both exploration and exploitation process showed similar 

convergence behavior after the iteration number 15 as the searching space became more specific.  

 

Fig. 6. Convergence curves of the exploration and exploitation process in MRFO algorithm for IEEE 30-bus system (Case 1). 

 

4.8 Largescale system results 
 

To examine the scalability of the proposed MRFO algorithm, an IEEE 118-bus power network is employed 

as large-scale power network model. The data and network specification of IEEE 118-bus system are extracted 

from [3,39]. The IEEE 118-bus system has 54 thermal power generation units, 118 buses, 130 branches and the 

swing bus is chosen to be bus 65. The voltage magnitude limits are 0.95–1.06 p.u for the load and generators. 

Furthermore, the tap changer setting is 0.9-1.1 p.u. Moreover, the limit of the voltage automatic regulator 

compensators is 0 - 0.3 p.u. The active and reactive demand values , in this system,  equal 2.834 p.u and 1.262 

p.u, respectively, and the total load is 100 MVA. The proposed MRFO and other heuristics optimization 

approaches are employed to solve OPF problem in case 3, minimizing the fuel operational cost, as presented in 

Table A.6. The results in Table 12 show that the MRFO displayed a better result and outperformed other heuristic 

optimization methods and is more effective in solving and handling OPF problems for large-scale network. For 

example, the MRFO achieved an objective function for case 3 equal to 135606.4538 $/h compared to 146423.6197 

$/h and 139380.565 $/h for AGPSO and IPSO, respectively. 

Table 12: Results of the proposed optimization algorithms results for IEEE 118-bus network (case 3). 

Optimization algorithm Objective function ($/h) 

AGPSO 146423.619 

MFO 136484.918 

IPSO 139380.595 

MRFO 135606.453 

SDO 136708.054 

ALO 136122.470 

CGSA 140243.971 
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As a large-scale system, it is interesting to check the convergence rate for all optimization methods. Figure 7 

presents the convergence curves over case 3 for all the proposed optimization algorithms. The MRFO algorithm 

has smoother and speedy convergence curve, and it achieved the optimal results within 300 iterations compared 

to other heuristic optimization algorithms, as seen in Figure 7. However, ALO algorithm displayed a close result 

for number of iterations under 300 but the curve was not smooth. This indicates that the MRFO algorithm has 

lower computational cost and higher efficiency in CPU utilization.  

 
Fig. 7. Convergence curves of the MRFO and  the other metaheuristic optimization technique for IEEE 118-bus system. 

 

The computational cost (execution time) for solving the OPF problem (Cases 3) for the IEEE 118-bus system 

is presented in Table 13 for the proposed optimization techniques. Generally, the computational cost results of all 

algorithms for the IEEE 118-bus system increased compared to IEEE 30-bus system. The execution time increased 

from simulations in up to 24 s. (IEEE 30-bus) to 34 min. (IEEE 118-bus) due to the high complexity and high 

number of parameters of the IEEE-118 bus model. However, the CGSA, MRFO, IPSO, MFO and AGPSO 

recorded the lower execution time around 17.54, 17.57, 16.73, 16.29 and 16.20 min, respectively, for the IEEE 

118-bus system (Case 3). While the SDO and ALO algorithms reordered more than half hour with 33.98 and 

30.37 min, respectively. This approximation of computational cost has been made on 2.8-GHz i7 PC with 16 GB 

of RAM. The showed the algorithms which required a few numbers of parameters such as MRFO are more easy 

to implement and promising algorithm for engineering applications 

Table 13: Results of the computational cost for the proposed optimization algorithms results for IEEE 118-bus network (case 3). 

Optimization algorithm Computational cost (minutes) 

AGPSO 16.20895 

MFO 16.2908 

IPSO 16.73787 

MRFO 17.57983 

SDO 33.98215 

ALO 30.37941 

CGSA 17.54448 
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4.9 Discussion 

An optimal power management solution has become a significant tool to develop cost effective and 

environmentally friendly power supply network. Since there is limited research on using metaheuristic algorithms 

on OPF problems. Therefore, this article introduced a novel optimization algorithm inspired by the vitality, 

namely: Manta Ray Foraging Optimization (MRFO), to figure out both multi and single objective problems of 

Optimal Power Flow (OPF) incorporating stochastic RES.  In addtion, the new MRFO algorithm and some modern 

metaheuristic algorithms were used and compared to settle the issue of OPF, enhance the energy efficiency, 

environment and cost performance of the power network. The proposed algorithms are tested with bus systems as 

30 and 118 and outcome from the suggested MRFO is compared to six metaheuristic optimization algorithms 

(CGSA, SDO, IPSO, ALO, MFO and AGPSO). Moreover, OPF challenges are successfully settled by the MRFO 

algorithm and outperform the proposed metaheuristic optimization methods. The MRFO algorithm outperformed 

all other optimization algorithms for the given data by achieving the minimum cost function value over all cases. 

For example, the MRFO has obtained 3.181063 MW in case 1 compared to 4.765994 MW and 3.928019 MW for 

ALO and CGSA, respectively. By adding the RES to the power network, which leads to a decline in the 

transmission losses and fuel operational cost. The MRFO results for Modified (2) system have increased compared 

to Modified (1) system for case 1 and 7 by around 13% and 16%, respectively. Finally, in term of the computational 

cost,  the MRFO outperformed all other algorithms and achieved the lowest computational cost for all cases. This 

is mainly due to the fact that the MRFO algorithm requires a few numbers of parameters which makes it an easily 

implementable and promising optimization algorithm for engineering applications.  

In order to examine the performance of MRFO compared to literature, the Differential Evolution (DE) 

algorithm [41] is employed in this section to solve the OPF problems.  The DE algorithm is one of the common 

heuristic optimization algorithms, where it easy to implement and fast. However, the DE is highly sensitive to the 

choosing of the mutation strategy. Table 14 presented the results of the MRFO and DE algorithms for IEEE 30-

bus model over different objective function cases. In Table 13, the result showed that the MRFO algorithm 

outperform the DE algorithm for the given data by achieving the minimum cost function value over all cases. For 

example, the MRFO has obtained 3.181063 MW in Case 1 compared to 4.22558 MW for DE. However. For case 

4, the MRFO has achieved 0.1233304 p.u compared to 0.129344 p.u for DE algorithm. The multi-objective 

function cases (Case 5-7) results showed that MRFO has outperformed DE in terms of decreasing the objective 

function values.  

 

Table 14: Results of the MRFO and DE algorithms for IEEE 30-bus model over different objective function cases. 

 

MRFO DE 

Cas 1 3.181063 4.22558 

Cas 2 0.204224 0.205291 

Cas 3 837.8103 846.7418 

Cas 4 0.1233304 0.129344 

Cas 5 853.7259 859.302 

Cas 6 1059.013 1079.569 

Cas 7 990.01329 1004.946 
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5. Conclusions  
 

In this work, a new MRFO algorithm has been employed to find the best optimal solution of different OPF 

problems for two electrcial network systems, IEEE 30-bus and 118-bus networks, equipped with RES. The OPF 

problems have been formulated based on single and multi-objective functions through seven cases considering 

the transmission line loss, emission index, fuel operational cost and voltage level deviation. To present the volatile 

nature of RES, the power network included a realistic RES model (wind and solar systems) based on probabilistic 

estimation model. This paper aims to provide a new optimal controller able to handle the RES and distribution 

network load nature compared to conventional optimization methods.  In the results section, the MRFO have been 

tested and evaluated compared to six recent metaheuristic optimization techniques, namely: CGSA [31], SDO 

[32], IPSO [33], ALO [34], MFO [35], AGPSO [33].The MRFO model outperformed all other metaheuristic 

optimization techniques for IEEE network scenarios without and with RES in different locations.  Recent and new 

heuristics optimization algorithms have been used and compared in this paper to provide the decision maker 

different suitable optimization techniques. The implementation of the recent metaheuristic algorithms presented 

in this article and installing an energy storage system to the distribution network is part of our future work.  
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Appendix A 
 

 

Fig. A.1 IEEE 30-bus Modified (1) network. 
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Fig. A.2. IEEE 30-bus Modified (2) network model. 
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Table A.1: Results of the MRFO algorithms for Modified (1) network model over different objective function cases. 

Parameters  Min  Max  case 1 case 2 case 3 case 4 case 5 case 6 case 7 

PG2 (MW) 20 80 53.10217 48.07466 32.94601 52.01362 36.43982 54.98197 37.05768 

PG5 (MW) 15 50 49.63039 44.81097 23.93882 42.24296 18.12777 44.79729 39.61072 

PG8 (MW) 10 35 33.6883 34.18198 15.21964 22.95162 15.68816 30.73283 21.10183 

PG11 (MW) 10 30 29.15468 26.46959 22.53192 21.02408 17.71029 21.20181 22.95418 

PG13 (MW) 10 40 32.22617 28.37741 25.1366 23.71591 27.36847 28.54333 32.52251 

PG24 (MW) 10 30 23.26583 30.35393 20.45652 22.07107 31.18611 22.04507 23.87276 

PG30 (MW) 10 40 14.30296 24.64489 19.82092 19.81776 19.85457 13.57662 18.27899 

V1 (p.u.) 0.95 1.1 1.042974 1.043735 1.029566 1.023102 1.059126 1.056807 1.048096 

V2 (p.u.) 0.95 1.1 1.037619 1.024446 1.012832 1.021021 1.033664 1.053581 1.036026 

V5 (p.u.) 0.95 1.1 1.021754 0.971964 0.982048 1.006501 0.986745 1.026678 1.015858 

V8 (p.u.) 0.95 1.1 1.028307 0.985283 0.982123 0.994553 0.990354 1.044738 1.015983 

V11 (p.u.) 0.95 1.1 1.017064 0.985269 1.036049 1.038617 0.975677 1.087042 1.030732 

V13 (p.u.) 0.95 1.1 1.057979 0.987437 0.987846 0.989488 1.028588 1.031164 1.024036 

V24 (p.u.) 0.95 1.1 1.048095 0.982508 0.996259 1.020084 1.013762 1.033888 1.011005 

V30 (p.u.) 0.95 1.1 1.047869 1.058702 1.003829 0.994556 1.010163 1.034495 0.999635 

QC10 (MVAr) 0 5 2.709669 2.834854 2.878847 3.267427 4.898477 2.44212 1.956199 

QC12 (MVAr) 0 5 1.907855 2.22496 1.433953 1.585303 1.334457 3.230505 3.127213 

QC15 (MVAr) 0 5 3.236474 1.519369 2.040478 3.3857 2.783895 3.815968 1.641764 

QC17 (MVAr) 0 5 3.301172 1.912732 2.161203 3.671866 1.487661 2.049416 2.636066 

QC20 (MVAr) 0 5 2.387955 2.262026 2.088197 4.754891 3.885065 2.415719 1.01972 

QC21 (MVAr) 0 5 2.230793 3.103763 2.414129 2.051029 1.382453 4.021438 2.275083 

QC23 (MVAr) 0 5 1.983756 0.709728 4.162238 2.894224 1.828182 3.412833 3.843702 

QC24 (MVAr) 0 5 2.310883 3.633435 1.123758 2.889005 2.60504 3.961491 1.650644 

QC29 (MVAr) 0 5 2.194497 3.109543 3.710817 3.490717 2.503892 2.733164 2.054229 

T11 (p.u.) 0.9 1.1 0.955064 0.971119 1.017779 1.051917 0.923558 0.994171 1.063002 

T12 (p.u.) 0.9 1.1 0.967489 1.034648 0.926286 0.932673 0.9636 1.069785 0.984622 

T15 (p.u.) 0.9 1.1 0.992005 0.952204 0.995202 0.944508 1.001144 0.961325 1.021147 

T36 (p.u.) 0.9 1.1 0.974354 1.033271 0.941588 0.994846 1.025545 1.021236 1.05964 

PG1 (MW) 50 200 50.12168 50.26699 129.454 83.39577 123.3727 70.28122 91.66999 

QG1 (MVAr) -20 150 -3.7992 38.44965 5.180942 -13.8634 30.66366 -12.0001 -0.32295 

QG2 (MVAr) -20 60 9.217485 28.63081 23.18515 30.19853 24.68527 21.1628 6.812256 

QG5 (MVAr) -15 62.5 25.8976 2.7691 27.39866 34.32917 19.52058 14.53575 24.94962 

QG8 (MVAr) -15 48 35.36776 8.544639 19.29343 13.95259 16.12931 30.81041 7.242511 

QG11 (MVAr) -10 40 -10.3333 -0.10446 19.92168 20.12693 -18.7655 20.77132 18.24767 

QG13 (MVAr) -15 44 11.98071 -1.92601 1.548432 -12.5582 12.96609 -6.50249 12.35813 

QG24 (MVAr) -15 44 10.04775 0.309948 6.04246 15.68824 7.396501 3.792129 16.15183 

QG 30 (MVAr) -15 44 -0.01355 12.13142 -6.06147 -4.99356 2.359617 1.596974 1.892531 

Objective function 2.09218 0.09114 772.9864 0.074447 795.9037 938.1911 749.986 

 

 

 

 

 



32 

Table A.2: Results of the MRFO algorithms for Modified (2) network model over different objective function cases. 

Parameters  Min  Max  case 1 case 2 case 3 case 4 case 5 case 6 case 7 

PG2 (MW) 20 80 41.26976 46.03051 50.21708 42.90434 41.57726 47.50968 51.11793 

PG5 (MW) 15 50 49.87673 45.85056 16.38781 42.74314 20.69422 42.6933 31.68752 

PG8 (MW) 10 35 34.03808 34.99891 15.94532 27.03659 15.66154 33.02222 27.10051 

PG11 (MW) 10 30 26.71325 23.39222 14.42703 29.18163 13.58418 20.092 19.67384 

PG13 (MW) 10 40 35.48068 38.06924 24.33229 26.50477 25.96712 32.03786 23.85832 

PG24 (MW) 10 30 28.98175 25.62961 22.66975 29.41947 20.46784 23.4189 27.18945 

PG30 (MW) 10 40 19.32172 22.92367 24.74107 12.78315 16.54969 17.56075 23.97139 

V1 (p.u.) 0.95 1.1 1.05322 1.046666 1.044637 1.016361 1.023397 1.031602 1.035555 

V2 (p.u.) 0.95 1.1 1.045335 1.030763 1.023774 1.011042 1.001503 1.02875 1.02933 

V5 (p.u.) 0.95 1.1 1.027824 0.971653 0.966154 1.00012 0.985017 1.008071 1.008081 

V8 (p.u.) 0.95 1.1 1.041659 1.007847 1.010159 0.997212 0.991726 1.019416 1.010569 

V11 (p.u.) 0.95 1.1 1.040673 1.048767 1.054652 1.006254 1.012243 1.042945 1.004422 

V13 (p.u.) 0.95 1.1 1.051495 1.013657 1.034143 1.005583 1.044254 1.03366 1.038148 

V24 (p.u.) 0.95 1.1 1.024744 1.016531 1.026012 1.018366 1.01503 1.024023 1.016218 

V30 (p.u.) 0.95 1.1 1.034548 1.032327 1.062038 1.017632 1.022829 1.028042 1.017985 

QC10 (MVAr) 0 5 1.866647 2.882352 1.260363 2.210579 1.065362 2.719868 4.003627 

QC12 (MVAr) 0 5 3.232075 0.901549 2.886921 0.938107 1.534628 3.16147 2.521854 

QC15 (MVAr) 0 5 3.445747 3.194922 1.545543 4.580346 1.25331 2.59011 3.073014 

QC17 (MVAr) 0 5 4.131541 4.905936 0.653646 3.790853 1.274772 0.832628 1.911283 

QC20 (MVAr) 0 5 3.308342 0.774057 1.495331 4.789223 4.570564 4.685877 3.649528 

QC21 (MVAr) 0 5 3.698954 0.229876 4.106533 2.276768 3.009614 3.519136 1.858349 

QC23 (MVAr) 0 5 3.970972 1.785421 3.274069 3.801528 3.350577 1.49005 1.545233 

QC24 (MVAr) 0 5 3.37165 2.032923 3.844517 4.576448 2.136412 0.699983 2.261085 

QC29 (MVAr) 0 5 3.057844 0.785225 4.145339 3.720081 3.63434 3.325993 3.330121 

T11 (p.u.) 0.9 1.1 0.975897 0.944684 1.012401 1.021274 0.991878 0.976485 0.990925 

T12 (p.u.) 0.9 1.1 1.063503 1.094021 0.982655 0.937774 0.974741 0.960351 1.027059 

T15 (p.u.) 0.9 1.1 1.044673 1.091848 0.913571 0.974064 0.972777 0.9864 1.033247 

T36 (p.u.) 0.9 1.1 1.003808 1.046128 1.000571 0.997979 0.999807 1.033053 0.994348 

PG1 (MW) 50 200 50.12757 50.1212 121.5146 76.31505 135.8922 70.34842 82.99339 

QG1 (MVAr) -20 150 -2.5168 18.8621 16.46883 -10.4469 8.470261 -14.9524 -11.3586 

QG2 (MVAr) -20 60 -1.23268 15.44455 17.1281 12.78753 -11.6449 19.28501 15.30275 

QG5 (MVAr) -15 62.5 19.78951 -12.4005 -1.22409 33.30156 34.42281 22.88972 28.01875 

QG8 (MVAr) -15 48 28.29284 8.220352 34.56509 21.63146 27.61989 30.47642 16.86162 

QG11 (MVAr) -10 40 2.644352 7.955274 16.24934 3.991066 3.04843 5.319557 -1.92993 

QG13 (MVAr) -15 44 19.39047 19.22173 -6.96992 -1.56298 15.18239 6.184359 20.01357 

QG24 (MVAr) -15 44 1.063447 15.58164 3.148071 9.864174 9.647139 0.900453 13.81952 

QG 30 (MVAr) -15 44 3.716495 19.72763 14.36053 7.600432 9.55253 10.91323 2.573355 

Objective function 2.409543 0.091077 804.9323 0.083975 788.6009 953.8583 895.224 

 

 

 

 

 



33 

Table A.3: Results of the MRFO algorithms for IEEE 30-bus network model considering 30% load increasing and line outages over different 

objective function cases. 

Parameters  Min  Max  case 1 case 2 case 3 case 4 case 5 case 6 case 7 

PG2 (MW) 20 80 78.94449 79.83669 65.58424 49.34778 64.66157 73.1973 63.48292 

PG5 (MW) 15 50 49.98827 49.82762 28.24901 45.90088 33.82235 49.84066 49.87719 

PG8 (MW) 10 35 34.95284 34.7913 34.94111 31.15215 34.70196 34.95787 34.98517 

PG11 (MW) 10 30 29.91441 29.90981 27.59889 29.55048 26.5664 29.98705 29.87211 

PG13 (MW) 10 40 39.64715 39.97612 26.61393 29.17901 23.9581 39.1412 39.62201 

V1 (p.u.) 0.95 1.1 1.081956 1.046626 1.092108 1.032217 1.062568 1.083414 1.083951 

V2 (p.u.) 0.95 1.1 1.065634 1.033513 1.07761 1.014742 1.047367 1.072297 1.068344 

V5 (p.u.) 0.95 1.1 1.036057 0.975877 1.03372 1.015921 1.020408 1.033834 1.033085 

V8 (p.u.) 0.95 1.1 1.028779 0.999667 1.028509 1.001257 1.005163 1.033002 1.030437 

V11 (p.u.) 0.95 1.1 1.087029 1.025528 1.072146 1.058847 1.004218 1.099288 1.071498 

V13 (p.u.) 0.95 1.1 1.074987 1.067463 1.06855 1.041078 1.031964 1.052367 1.03801 

QC10 (MVAr) 0 5 2.177567 1.962423 1.950354 3.681026 2.871682 1.97668 3.38373 

QC12 (MVAr) 0 5 2.481772 2.836509 1.480597 0.935936 1.233784 2.44054 3.154654 

QC15 (MVAr) 0 5 3.31715 3.297904 1.615822 4.297911 4.458261 2.921722 2.236931 

QC17 (MVAr) 0 5 3.419588 2.124557 4.202032 3.147542 2.587714 2.516494 4.877759 

QC20 (MVAr) 0 5 1.463249 3.964579 3.48587 4.568082 4.801797 3.555862 4.260357 

QC21 (MVAr) 0 5 4.442144 2.293983 4.699624 4.451532 4.797764 4.602726 4.447628 

QC23 (MVAr) 0 5 2.098127 3.903728 4.077244 3.812175 4.702557 4.534655 4.044118 

QC24 (MVAr) 0 5 3.978503 2.174635 3.624665 4.382269 4.877549 4.777324 4.816797 

QC29 (MVAr) 0 5 2.999428 2.916789 2.686182 2.103919 1.377672 3.194547 1.678429 

T11 (p.u.) 0.9 1.1 1.020357 1.037524 1.039978 1.065708 1.013077 1.032093 1.094004 

T12 (p.u.) 0.9 1.1 0.948111 0.947277 0.942346 0.901865 0.903039 0.932736 0.939791 

T15 (p.u.) 0.9 1.1 1.011039 0.987815 0.987828 1.010391 1.007613 0.984559 1.017915 

T36 (p.u.) 0.9 1.1 0.983533 0.970228 0.97034 0.937559 0.940359 0.965428 0.96658 

PG1 (MW) 50 200 145.3291 145.484 199.8753 197.7545 199.8073 151.7441 161.408 

QG1 (MVAr) -20 150 6.661507 0.288621 -3.58019 -10.343 -3.42034 -3.86065 2.050774 

QG2 (MVAr) -20 60 4.90321 27.79252 34.9193 -3.86528 24.35985 25.46731 16.21581 

QG5 (MVAr) -15 62.5 32.43408 7.452135 32.63462 57.48644 48.53358 25.35044 27.06184 

QG8 (MVAr) -15 48 22.4029 39.95048 24.79764 37.36931 42.24075 28.13959 23.54894 

QG11 (MVAr) -10 40 24.14658 16.54514 21.33558 28.86264 1.732175 28.61334 31.55477 

QG13 (MVAr) -15 44 21.06083 28.217 14.68961 19.23051 13.22439 3.776342 9.982602 

Objective function  
  

10.35625 0.287071 1072.905 0.203117 1193.317 1633.216 1249.935 
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Table A.4: Results of the MRFO algorithms for Modified (1) network model considering 30% load increasing and line outages over different 

objective function cases. 

Parameters  Min  Max  case 1 case 2 case 3 case 4 case 5 case 6 case 7 

PG2 (MW) 20 80 78.96897 77.98696 47.31534 48.92198 51.63177 59.07841 65.6926 

PG5 (MW) 15 50 49.75286 49.78734 23.48595 39.71887 29.70946 46.63523 41.52254 

PG8 (MW) 10 35 34.58978 34.97955 17.62082 27.82599 31.92295 33.85609 27.52136 

PG11 (MW) 10 30 29.88365 29.93845 25.4378 22.95243 25.80333 26.38364 25.23275 

PG13 (MW) 10 40 39.67939 39.83336 31.83106 23.71102 21.67895 32.93794 38.35061 

PG24 (MW) 10 30 34.64945 31.31808 31.94187 22.04308 29.94312 33.81893 29.67559 

PG30 (MW) 10 40 23.33483 34.99725 17.84804 17.97953 19.7405 24.47107 20.12121 

V1 (p.u.) 0.95 1.1 1.063925 1.07387 1.054677 1.033922 1.030842 1.060292 1.063462 

V2 (p.u.) 0.95 1.1 1.053655 1.067041 1.038821 1.022276 1.007517 1.055784 1.055167 

V5 (p.u.) 0.95 1.1 1.024181 1.012364 0.988563 1.021867 0.968974 1.021903 1.009547 

V8 (p.u.) 0.95 1.1 1.034577 1.021702 1.003073 0.993468 0.996842 1.008956 1.029904 

V11 (p.u.) 0.95 1.1 1.043691 1.030491 1.041562 1.045414 1.070071 1.026937 1.057706 

V13 (p.u.) 0.95 1.1 1.077659 1.035777 1.054522 0.997822 1.017527 1.021037 0.991366 

V24 (p.u.) 0.95 1.1 1.033488 1.022621 1.017592 1.030418 1.030332 1.017659 1.018034 

V30 (p.u.) 0.95 1.1 1.038833 1.08252 0.994157 0.994472 0.994693 1.034226 1.006218 

QC10 (MVAr) 0 5 2.278882 3.132612 2.890755 2.501674 2.754704 0.461179 2.615473 

QC12 (MVAr) 0 5 0.164793 3.402865 1.885262 4.178705 3.042388 2.514137 3.18184 

QC15 (MVAr) 0 5 2.151162 3.413179 3.718069 4.228252 4.548734 3.441233 4.032904 

QC17 (MVAr) 0 5 3.869799 0.4709 3.96408 2.79627 2.395369 1.743567 3.710018 

QC20 (MVAr) 0 5 1.466611 3.409901 1.571531 4.73299 2.140893 4.490369 3.462153 

QC21 (MVAr) 0 5 2.443377 2.454726 2.780677 3.811369 3.762391 2.048941 1.977807 

QC23 (MVAr) 0 5 1.096695 3.068933 1.543831 0.19635 0.873228 1.838742 1.577679 

QC24 (MVAr) 0 5 2.106778 3.063475 2.111643 2.26522 2.396395 0.581908 1.560782 

QC29 (MVAr) 0 5 3.347535 4.742404 2.322185 3.25545 3.559147 2.761782 3.082734 

T11 (p.u.) 0.9 1.1 0.986026 0.972644 1.00365 1.058723 1.008261 0.951534 1.004849 

T12 (p.u.) 0.9 1.1 0.978386 0.951062 1.034732 0.954365 1.032838 1.051182 0.981354 

T15 (p.u.) 0.9 1.1 1.035464 1.035861 1.036447 0.964705 0.986375 0.975444 1.05668 

T36 (p.u.) 0.9 1.1 1.017255 1.093388 0.956061 1.014009 0.978366 1.005584 1.015467 

PG1 (MW) 50 200 82.9277 75.77557 185.0096 176.9115 169.1525 118.2156 128.1961 

QG1 (MVAr) -20 150 0.405601 3.19481 -7.44534 -14.2802 7.484293 -9.77482 -11.5805 

QG2 (MVAr) -20 60 2.500786 32.12949 29.64943 11.29931 1.511998 39.32977 27.98602 

QG5 (MVAr) -15 62.5 25.32738 10.97833 22.30958 62.13944 22.48241 35.20044 16.30698 

QG8 (MVAr) -15 48 26.91915 11.99124 24.70083 12.56644 31.74416 20.24748 35.9639 

QG11 (MVAr) -10 40 3.809973 -0.1999 15.79635 23.50413 28.2527 1.530513 16.65041 

QG13 (MVAr) -15 44 30.02298 12.62193 28.29841 -7.94096 5.761604 2.035944 0.653175 

QG24 (MVAr) -15 44 8.680901 9.336052 13.45444 30.27236 24.18245 12.91652 17.56532 

QG 30 (MVAr) -15 44 0.416866 11.97251 -6.58519 -2.47701 -6.08521 1.754381 -2.46631 

Objective function 5.366639 0.106125 1097.801 0.086139 1077.842 1360.785 1267.739 
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Table A.5: Results of the MRFO algorithms for Modified (2) network model considering 30% load increasing and line outages over different 

objective function cases. 

Parameters  Min  Max  case 1 case 2 case 3 case 4 case 5 case 6 case 7 

PG2 (MW) 20 80 79.00149 74.8635 46.6811 58.22198 50.83562 67.40784 51.17015 

PG5 (MW) 15 50 49.47831 49.16434 28.34376 45.4369 31.02998 45.63023 44.54412 

PG8 (MW) 10 35 34.6971 34.3292 17.23866 15.10945 29.61125 34.43795 32.73215 

PG11 (MW) 10 30 29.16752 29.64316 20.01942 28.19089 18.53591 22.8976 22.97138 

PG13 (MW) 10 40 39.50936 39.80338 25.01644 25.12719 34.84481 37.63715 31.42468 

PG24 (MW) 10 30 34.07383 34.96276 25.61198 24.15306 28.82371 27.45107 28.10106 

PG30 (MW) 10 40 33.05256 34.29304 23.45599 26.22933 24.28776 30.16446 28.09945 

V1 (p.u.) 0.95 1.1 1.063334 1.072434 1.035254 1.025283 1.085124 1.067451 1.059591 

V2 (p.u.) 0.95 1.1 1.056744 1.057138 1.0177 1.009935 1.04946 1.049982 1.035092 

V5 (p.u.) 0.95 1.1 1.019907 0.984366 0.973253 1.01703 0.964841 1.005012 0.998674 

V8 (p.u.) 0.95 1.1 1.038759 1.012435 0.984456 0.994805 0.997273 1.025395 1.004556 

V11 (p.u.) 0.95 1.1 1.066567 1.048274 1.054442 1.034212 1.068435 1.02458 1.002695 

V13 (p.u.) 0.95 1.1 1.054095 1.052389 0.994329 1.005019 1.033426 1.035493 1.011156 

V24 (p.u.) 0.95 1.1 1.040507 1.00883 1.002526 1.032926 1.029804 1.011434 1.012037 

V30 (p.u.) 0.95 1.1 1.054074 1.033843 1.027541 1.031024 1.0221 1.039485 1.007327 

QC10 (MVAr) 0 5 2.493709 3.336323 2.141834 2.494784 3.367212 1.518972 2.56503 

QC12 (MVAr) 0 5 2.796687 2.538229 1.340885 1.852237 1.916065 3.411 2.733211 

QC15 (MVAr) 0 5 2.57427 2.061078 3.566731 3.349961 3.113586 2.608734 1.952866 

QC17 (MVAr) 0 5 2.433391 3.447538 3.248285 1.329277 2.590277 1.904918 1.719682 

QC20 (MVAr) 0 5 0.731748 1.642465 1.309861 4.75354 4.680383 2.969138 1.695451 

QC21 (MVAr) 0 5 2.021231 3.851081 2.89671 4.955263 2.775167 2.802972 1.066731 

QC23 (MVAr) 0 5 2.919978 1.362881 2.568006 4.745201 3.351246 1.877524 0.853848 

QC24 (MVAr) 0 5 1.153299 4.537772 2.9841 3.621478 0.775302 2.2439 3.068872 

QC29 (MVAr) 0 5 2.492457 2.121194 3.03757 4.016321 3.150069 2.271534 4.297433 

T11 (p.u.) 0.9 1.1 1.009383 0.967195 1.034364 1.077024 1.071996 0.992497 0.962727 

T12 (p.u.) 0.9 1.1 0.980484 1.050467 0.991304 0.903831 1.047344 0.979637 0.987968 

T15 (p.u.) 0.9 1.1 0.989832 1.035925 0.975795 0.978819 0.98041 1.088445 0.996929 

T36 (p.u.) 0.9 1.1 0.981204 1.024632 0.98662 1.003575 0.988041 0.996703 1.04716 

PG1 (MW) 50 200 75.01545 77.68743 195.3619 156.526 161.404 109.8122 137.7088 

QG1 (MVAr) -20 150 -3.32565 21.30816 -2.86097 -6.40699 50.38176 11.32523 25.44928 

QG2 (MVAr) -20 60 15.75814 25.13243 28.89474 -9.85527 10.95306 4.282485 0.604725 

QG5 (MVAr) -15 62.5 18.38867 -6.36423 26.43162 61.86748 -9.53753 14.86808 27.79436 

QG8 (MVAr) -15 48 33.84586 14.1158 25.58473 22.02726 -0.82446 31.20136 31.35526 

QG11 (MVAr) -10 40 15.23982 10.76785 30.27025 21.09399 34.92945 4.249821 -3.39173 

QG13 (MVAr) -15 44 9.395583 25.68146 0.808552 -1.63449 7.283186 25.32366 5.557552 

QG24 (MVAr) -15 44 10.44966 4.363254 15.23614 23.27533 23.47096 11.66743 20.64932 

QG 30 (MVAr) -15 44 -3.8103 1.454174 1.820208 -0.90529 -2.92932 -0.81551 -0.30307 

Objective function 7.303549 0.105623 1052.049 0.14091 1123.534 1382.903 1286.251 
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Table A.6: Results of the MRFO and the proposed metaheuristic optimization techniques for case 3 for the large scale power network model 

(IEEE 118-bus system). 

Parameters Range (unit) AGPSO MFO IPSO MRFO SDO ALO CGSA 

PG1 30-100  (MW) 30 30 30 30.96757 37.45242 32.19872 56.92175 

PG4 30-100 (MW) 30 30 30 38.69991 37.38809 30.52256 54.72663 

PG6 30-100 (MW) 30 30 30 31.88598 36.7689 32.31421 48.07277 

PG8 30-100 (MW) 100 30 30 37.14882 47.54017 30.08409 59.10519 

PG10 165-550 (MW) 165 344.4105 165 314.189 274.3131 321.2854 288.2645 

PG12 55.5-185 (MW) 55.5 55.5 55.5 69.95526 67.56325 57.61395 61.73909 

PG15 30-100 (MW) 100 30 30 32.03603 38.63409 30.99056 52.91447 

PG18 30-100 (MW) 100 30.54771 30 30.20097 42.35575 64.14394 30.00004 

PG19 30-100 (MW) 30 30 30 30.45038 36.98835 59.71248 56.3819 

PG24 30-100 (MW) 30 30 30 36.48068 31.03371 30.58917 45.16931 

PG25 96-320 (MW) 96 96.00857 175.0428 151.1618 147.5557 149.6173 160.4091 

PG26 124.2-414 (MW) 231.1613 240.997 254.2534 212.8986 206.1774 172.494 254.7575 

PG27 30-100 (MW) 30 30 30 32.73291 30.98495 43.6923 63.56414 

PG31 32.1-107 (MW) 32.1 32.1 32.1 32.11366 32.10476 32.1 32.1 

PG32 30-100 (MW) 100 30 30 31.01471 43.87933 30.05668 57.00572 

PG34 30-100 (MW) 100 30 30 31.08278 42.2081 30.04785 59.99619 

PG36 30-100 (MW) 100 30 30 31.90564 32.00456 30.64935 32.58738 

PG40 30-100 (MW) 30 30 30 33.07294 41.89296 36.44252 52.61235 

PG42 30-100 (MW) 30 30.00002 30 30.7529 31.87347 30.04052 61.19681 

PG46 35.7-119 (MW) 35.7 35.7 35.7 35.83198 36.0983 35.7 35.7 

PG49 91.2-304 (MW) 91.2 175.5565 182.7174 162.0221 146.8441 114.7176 135.8814 

PG54 44.4-148 (MW) 44.4 47.67372 44.4 47.18772 47.30178 45.91587 75.87834 

PG55 30-100 (MW) 30 30 30 30.92842 35.85357 30.3001 40.38338 

PG56 30-100 (MW) 100 30 30 34.79591 31.59644 36.30038 47.58111 

PG59 76.5-255 (MW) 76.5 135.6115 76.5 120.5515 119.4002 100.0258 147.2969 

PG61 78-260 (MW) 78 130.3805 140.5072 127.8258 112.2114 134.6712 131.2491 

PG62 30-100 (MW) 30 30.00001 30 32.36409 33.47516 30.12824 50.602 

PG65 147.3-491 (MW) 147.3 314.8029 147.3 274.2813 281.634 275.3696 264.8385 

PG66 147.6-492 (MW) 147.6 147.6 330.1276 281.2701 240.7729 250.6336 277.9269 

PG70 30-100 (MW) 30 30 30 30.84779 35.72794 37.26744 62.47118 

PG72 30-100 (MW) 100 30.0005 100 30.86611 30.40672 30.10324 30.00293 

PG73 30-100 (MW) 30 30 100 31.55323 34.93577 49.6996 62.59458 

PG74 30-100 (MW) 30 30 30 31.1112 35.79324 30.02872 30.00054 

PG76 30-100 (MW) 100 30.00127 30 30.56639 31.33634 35.21138 54.29059 

PG77 30-100 (MW) 100 30 30 30.49904 41.72377 33.30175 59.64992 

PG80 173.1-577 (MW) 173.1 355.6666 395.6407 331.2483 338.6717 318.4095 280.2968 
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Table A.6 Cont. 

Parameters Range (unit) AGPSO MFO IPSO MRFO SDO ALO CGSA 

PG85 30-100 (MW) 100 30 100 31.89674 33.34715 30.68743 30.04266 

PG87 31.2-104 (MW) 31.2 31.2 31.2 31.21273 31.20615 31.2 31.2 

PG89 212.1-707 (MW) 212.1 376.3453 212.1 373.7225 362.243 403.1462 365.5596 

PG90 30-100 (MW) 30 100 30 31.26029 31.6276 30.00069 42.73916 

PG91 30-100 (MW) 30 30 30 30.63928 40.86916 30.37009 30 

PG92 30-100 (MW) 30 30 100 30.25403 37.7424 30.00787 46.64855 

PG99 30-100 (MW) 30 30.02172 30 30.6721 33.00981 30.07874 30 

PG100 105.6-352 (MW) 105.6 181.8163 201.5991 174.0365 136.3298 165.5598 167.2408 

PG103 42-140 (MW) 42 42 42 42.65984 45.82262 42.21775 47.45191 

PG104 30-100 (MW)  100 30 30 31.02069 34.54116 31.49788 45.99121 

PG105 30-100 (MW) 30 30 30 30.56365 51.10086 30.1704 30.00011 

PG107 30-100 (MW) 100 30 30 30.74997 30.86223 30.38378 46.66208 

PG110 30-100 (MW) 30 30 30 31.04967 30.4354 30.168 33.01099 

PG111 40.8-136 (MW) 40.8 40.8067 40.8 41.16207 42.51737 41.04555 40.83572 

PG112 30-100 (MW) 100 30.00136 30 30.38368 30.21976 30.66641 53.14452 

PG113 30-100 (MW) 30 30 30 31.79081 33.64665 30.32401 30.00368 

PG116 30-100 (MW) 100 30 30 31.33014 30.24324 30.47595 61.00436 

VG1  (p.u) 1.1 1.09999 1.1 0.998229 0.982739 1.029343 0.985709 

VG4 (p.u) 1.1 1.099805 1.1 1.013872 0.995006 1.07073 0.995771 

VG6 (p.u) 1.1 1.1 1.1 1.003335 0.991238 1.059188 1.021008 

VG8 (p.u) 1.1 1.1 1.1 1.021154 0.973657 1.035121 1.021501 

VG10 (p.u) 1.1 1.1 1.1 1.043335 1.014003 1.058952 1.069293 

VG12 (p.u) 1.1 1.1 1.1 1.007116 0.990264 1.053148 1.024564 

VG15 (p.u) 1.1 1.1 1.1 0.99871 0.976985 1.05415 1.032899 

VG18 (p.u) 0.95 1.099803 1.1 1.000742 0.984192 1.063527 1.034675 

VG19 (p.u) 1.1 1.1 1.1 0.991393 0.970413 1.052833 1.049455 

VG24 (p.u) 1.1 1.1 1.1 1.006627 0.991053 1.033501 1.024659 

VG25 (p.u) 1.1 1.1 1.1 1.003077 0.995181 1.050835 1.028193 

VG26 (p.u) 1.1 1.1 1.1 1.039963 0.989802 1.056238 0.998241 

VG27 (p.u) 1.1 1.099999 1.1 1.004515 0.966514 1.055823 0.969271 

VG31 (p.u) 1.1 1.096255 1.1 0.997407 0.983931 1.04982 1.022014 

VG32 (p.u) 1.1 1.1 1.1 1.00424 0.979768 1.042494 0.992235 

VG34 (p.u) 1.1 1.1 1.1 1.004577 0.987231 1.057136 1.029457 

VG36 (p.u) 1.1 1.1 1.1 1.00375 0.980783 1.054074 1.011428 

VG40 (p.u) 1.1 1.082856 1.1 0.992705 0.970891 1.044673 1.030762 

VG42 (p.u) 1.1 1.077736 1.1 0.984555 0.969592 1.056026 1.040734 
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Table A.6 Cont. 

Parameters Range (unit) AGPSO MFO IPSO MRFO SDO ALO CGSA 

VG46 (p.u) 1.1 1.1 1.1 0.97959 0.984637 1.055091 1.025712 

VG49 (p.u) 1.1 1.097394 1.1 0.982181 0.987269 1.069266 1.020808 

VG54 (p.u) 1.1 1.052031 1.1 0.965236 0.961004 1.05932 0.991423 

VG55 (p.u) 1.1 1.04899 1.1 0.962025 0.955332 1.060495 1.022598 

VG56 (p.u) 1.1 1.04833 1.1 0.964113 0.959133 1.059448 0.985944 

VG59 (p.u) 1.1 1.064989 1.1 0.984881 0.969187 1.066789 1.013321 

VG61 (p.u) 1.1 1.084577 1.1 0.984874 0.982994 1.061875 1.035536 

VG62 (p.u) 1.1 1.085795 1.1 0.979581 0.980883 1.057629 1.031393 

VG65 (p.u) 1.1 0.95 1.1 0.989528 0.966526 1.068715 1.022879 

VG66 (p.u) 1.1 1.099602 1.1 0.986523 0.979194 1.081559 1.045484 

VG70 (p.u) 1.1 1.1 1.1 1.007477 1.001306 1.058688 1.002377 

VG72 (p.u) 1.1 1.1 1.1 0.997136 0.986891 1.048889 1.054746 

VG73 (p.u) 1.1 1.09922 1.1 0.990812 0.978309 1.047086 1.016771 

VG74 (p.u) 1.1 1.098527 1.1 1.013918 0.977304 1.054302 1.043769 

VG76 (p.u) 1.1 1.1 1.1 0.976014 0.971128 1.041931 1.021779 

VG77 (p.u) 1.1 1.071125 1.1 0.970109 0.971193 1.031252 1.016732 

VG80 (p.u) 1.1 1.075183 1.1 0.981236 0.995623 1.041891 1.020222 

VG85 (p.u) 1.1 1.078921 1.1 0.988678 1.007653 1.051081 1.031347 

VG87 (p.u) 1.1 1.1 1.1 1.005024 1.000543 1.037322 1.059626 

VG89 (p.u) 1.1 1.1 1.1 0.996996 0.968108 1.049529 1.056419 

VG90 (p.u) 1.1 1.1 1.1 1.01321 1.007167 1.065019 1.009426 

VG91 (p.u) 1.1 1.1 1.1 0.997392 0.990586 1.05495 1.034428 

VG92 (p.u) 1.1 1.1 1.1 0.99747 0.986943 1.05824 1.040041 

VG99 (p.u) 1.1 1.094449 1.1 1.006164 0.997758 1.064785 1.01001 

VG100 (p.u) 1.1 1.1 1.1 0.972062 0.992236 1.055319 1.048106 

VG103 (p.u) 1.1 1.070245 1.1 0.992506 1.001478 1.063885 1.033873 

VG104 (p.u) 1.1 1.055268 1.1 0.997462 1.00344 1.065813 1.024946 

VG105 (p.u) 1.1 1.025686 1.1 1.004403 1.011794 1.052274 1.004192 

VG107 (p.u) 1.1 1.01719 1.1 1.009979 1.005123 1.049861 1.014309 

VG110 (p.u) 1.1 0.95 1.1 1.003936 1.003016 1.046556 0.957684 

VG111 (p.u) 1.1 1.06465 1.1 1.008132 1.003809 1.057257 1.027574 

VG112 (p.u) 1.1 1.1 1.1 1.011296 1.006388 1.062672 1.052127 

VG113 (p.u) 1.1 1.066452 1.1 1.000952 0.99998 1.052244 1.012115 

VG116 (p.u) 1.1 1.099998 1.1 1.019567 1.003468 1.066107 1.021668 

QC5 (MVAr) 1.1 0.95 1.1 0.992519 0.990879 1.054895 1.01871 

QC34 (MVAr) 25 24.60774 25 14.23945 6.987025 5.61805 11.8448 
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Table A.6 Cont. 

Parameters Range (unit) AGPSO MFO IPSO MRFO SDO ALO CGSA 

QC37 (MVAr) 25 0 25 7.777117 7.027916 0.803327 16.59707 

QC44 (MVAr) 0 25 0 8.355769 6.652553 21.9136 10.09537 

QC45 (MVAr) 14.32451 9.478307 3.091401 3.698047 7.43489 8.555815 13.56792 

QC46 (MVAr) 0 25 16.12487 11.76134 9.67422 0 11.54436 

QC48 (MVAr) 25 3.856716 25 11.35375 8.481854 0 10.79601 

QC74 (MVAr) 0 0.001562 6.161427 17.27489 4.436313 11.221 9.715015 

QC79 (MVAr) 25 3.673715 25 19.69564 6.578532 0 7.03489 

QC82 (MVAr) 0 25 0 12.69201 16.89946 2.863306 13.68539 

QC83 (MVAr) 25 0 25 10.37409 8.390118 0.057374 10.9378 

QC105 (MVAr) 25 24.72202 8.559449 12.17088 5.511948 15.28833 9.784053 

QC107 (MVAr) 13.7981 25 25 12.19842 8.335438 14.89733 14.15661 

QC110 (MVAr) 25 25 0.097001 6.715803 7.125564 3.207183 10.56264 

TS8 (p.u) 1.1 1.1 1.1 0.981506 0.978347 0.969248 0.949922 

TS32 (p.u) 1.1 0.9 1.1 0.97291 0.933048 0.971081 1.021558 

TS36 (p.u) 1.1 0.957863 1.1 0.971023 0.954292 0.987372 1.018254 

TS51 (p.u) 0.9 0.924651 1.1 0.942711 0.970844 0.994566 0.982483 

TS93 (p.u) 0.966503 0.9 1.1 0.93619 1.007349 0.979119 1.001944 

TS95 (p.u) 1.1 0.900001 1.1 1.013301 0.949085 1.01507 1.044051 

TS102 (p.u) 1.1 0.9 1.1 1.002486 1.035996 1.015126 1.099689 

TS107 (p.u) 1.1 0.900581 1.1 0.98146 1.00364 1.004581 0.996547 

TS127 (p.u) 1.1 0.90317 1.1 0.991761 1.008993 0.990989 0.981716 

PG69 MW 413.2441 402.9867 417.4569 369.2255 376.5373 421.7667 -132.246 

Objective function 146423.6 136484.9 139380.6 135606.5 136708.1 136122.5 144811.7 

 


