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ABSTRACT: 

Clinicians make routine diagnosis by scrutinizing patients’ medical signs and symptoms, a skill popularly 
referred to as “Clinical Eye”. This skill evolves through trial-and-error and improves with time. The 
success of the therapeutic regime relies largely on the accuracy of interpretation of such sign-symptoms, 
analyzing which a clinician assesses the severity of the illness. The present study is an attempt to 
propose a complementary medical front by mathematically modeling the “Clinical Eye” of a VIRtual 
DOCtor, using Statistical and Machine Intelligence tools (SMI), to analyze Dengue epidemic infected 
patients (100 case studies with 11 weighted sign-symptoms). The SMI in VIRDOCD reads medical data 
and translates these into a vector comprising Multiple Linear Regression (MLR) coefficients to predict 
infection severity grades of dengue patients that clone the clinician’s experience-based assessment.  Risk 
managed through ANOVA, the dengue severity grade prediction accuracy from VIRDOCD is found higher 
(ca 75%) than conventional clinical practice (ca 71.4%, mean accuracy profile assessed by a team of 10 
senior consultants). Free of human errors and capable of deciphering even minute differences from 
almost identical symptoms (to the Clinical Eye), VIRDOCD is uniquely individualized in its decision-
making ability. The algorithm has been validated against Random Forest classification (RF, ca 63%), 
another regression-based classifier similar to MLR that can be trained through supervised learning. We 
find that MLR-based VIRDOCD is superior to RF in predicting the grade of Dengue morbidity. VIRDOCD 
can be further extended to analyze other epidemic infections, such as COVID-19.   

KEYWORDS: Statistical modeling; Predictive modeling; Dengue; Case Fatality; Python; Multiple linear 
regressions; ANOVA; Random forest 

 
I. INTRODUCTION: 

Medical diagnosis is an art of combining supervised learning (as a learner of medical science) with 
unsupervised/experiential learning (as a practitioner). In both cases, doctors learn why, how and what to 
look for in analyzing the patterns and inter-relationships between sign-symptom (predictors), as this may 
vary from case-to-case, patient-to-patient, and even for the same ailment. Doctors then subjectively 
ascribe weightage to the sign-symptoms diagnosis to understand the morbidity load and its influence on 
the outcome/diagnosis. Such mental shredding of the symptoms to identify the disease level and nature is 
an integral component of every diagnostic process.  

The numerically translated sign-symptoms are self-narrative that lead to a clinical understanding of the 
illness in terms of its ‘severity’ or ‘grade’. Such a dynamic medical concept, thus developed within a 
clinician, is popularly known as the ‘Clinical eye’ (Shapiro, Rucker, & Beck, 2006). Clinical eye matures as 
the clinician gains experience. Doctors with matured clinical eyes are able to diagnose a case with 
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reasonably high accuracy, in fact, often pre-empting them (Brunyé, Drew, Weaver, & Elmore, 2019). In 
the computer science linguistic, this Clinical eye is nothing but a set of conditional statements 
characterizing each numerical array, e.g., IF-THEN-ELSE serving as algorithmic equivalents of medical 
sign-symptom ‘A’, ‘B’, ‘C’ further sub-graded by individual weights ‘Mild’ (M), ‘Moderate’ (M), and ‘Severe’ 
(S) (Lu, Tong, Yu, Xing, Chen, & Shen, 2018), leading to Fatality/Severity/Grade prediction of the disease 
that are identically characterized within the MMS architecture. A ‘specialist’ or ‘expert’ is a clinician who 
has studied numerous such cases and has thus developed a robust (IF-THEN-ELSE) mental algorithmic 
map that can relate symptoms to potential severity (also fatality) grade (Chattopadhyay, Banerjee, Rabhi, 
& Acharya, 2013). An inherent feature of this mental mapping process is the ‘subjectivity index’ (Alessia 
Alunno, 2018) whereby different doctors may read symptoms differently, ascribing different weights to the 
incumbent factors, but eventually converging to a ‘global’ precision diagnosis that matches other 
clinicians in the field. Understanding such ‘individuality’ is critically important in human bias prevention 
during decision making, especially to avoid undercutting or overdoing the therapeutic regimen (Acharya, 
Sree, Ng, Chua, & Chattopadhyay, 2014).   

Statistical modelling towards Machine Intelligence (SMI) is an evolving domain of Computer Science and 
Information Technology. It is popularly used for decision making by a Computer that is trained on domain 
rules to extract causality driven outcomes within the individualized (patient specific) constraints 
(Chattopadhyay S. , Neurofuzzy Models to Automate the Grading of Old-age Depression, 2014). There 
are several reasons for the increasing dependence on such SMI assisted clinical decision making tools, 
some of which are the following: a) as an assistive tool for a second opinion; b) as a nursing aid, to 
preempt a medical condition before therapeutic intervention; c) as a critical complementary support 
system, particularly in developing countries, that suffer from acute shortage of medical professionals; d) 
as a telemedicine tool for beginning medical practitioners; e) as an omnipresent referencing guide, that is 
ubiquitous in nature. There may be other drivers too. SMI algorithms have already been successfully 
used in several healthcare domains, such as cardiology (Choi, Park, Ali, & Sungyoung, 2020; Xi he, 2020), 
mental health (Ashish, Chattopadhyay, Gao, & Hui, 2019), neurology (Dashti & Dashti, 2020), 
radiology/medical imaging techniques (Jin, et al., 2020; Chattopadhyay, Ray, & Acton, 2005) amongst 
others. Specialized regression algorithms like pseudo Zernike moment and multinomial regression were 
successfully used in Alzheimer detection (Wang, et al, 2017) and impending hearing loss (Wang, et al, 
2019), including prediction of antimicrobial resistance in ICU-admitted patients (Hernàndez-Carnerero & 
Sànchez-Marrè, 2021) and (Hernàndez-Carnerero A. , Sànchez-Marrè, Mora Jiménez, Soguero Riuz, 
Martínez Agüero, & Álvarez Rodríguez, 2020).  

The post 2010 era saw a fast emerging landscape of SMI assisted infection modeling (Agrebi & Larbi, 
2020) (Silver, et al., 2017). This relates to four key areas – (i) early detection, that can substantially curb 
morbidity and mortality/case fatality, (ii) early start of treatment typically at the symptomatic stage, (iii) 
prognostic evaluations, and critically (iv) as a supplement to traditional prognosis tools when they fail to 
associate events with future prediction of an epidemic due to (a) BIG data size, (b) data complexity, 
and/or (c) inherent clinical subjectivity (Chen & Asch, 2017). In most cases related to epidemics and 
pandemics, early detection is of utmost importance in containing infection propagation, thereby reducing 
the case fatality rate. This is even more pertinent for resource thrifty developing nations, where SMI 
based tools can provide seamless and ubiquitous healthcare that is hitherto unavailable to the masses 
(Daneshgar & Chattopadhyay, 2011).  
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The starting phase of the infection modeling studies relied on conventional Machine Learning (ML) 
algorithms, typically consisting of k-Nearest Neighbors as part of a supervised learning algorithm 
(Watkins & Boggess, 2002), followed by creation of memory kernels for detecting repeated disease 
threats (Cuevas, Osuna-Enciso, Zaldivar, Perez-Cisneros, & Sossa, 2012). Support Vector Machine has 
also been used to accurately detect malarial parasites from RBC (Go, Kim, Byeon, & Lee, 2018). Evolution 
of infection networks have used optimized Artificial Neural Networks to detect Kyasanur Forst (viral) 
Disease where the infection load is carried by ticks (Majumdar, Debnath, Sood, & Baishnab, 2018), Ebola 
propagation severity/outcome (Colubri, Silver, Fradet, Retzepi, Fry, & Sabeti, 2016). The latest addition in 
the lineage are the Multiple Regression classifiers, e.g. regression algorithm, linear regression model, 
gradient boosted regression tree algorithm, negative binomial regression model, and generalized additive 
model, that have shown promise in dengue forecasting in China.  

In the recent past, various aspects of Dengue, both epidemiological and clinical pathophysiological, have 
been studied. Patients’ history, sign-symptoms, investigation results are considered as the independent 
variables, whereas various types of Dengue fevers represent the dependent variables to develop the 
classifiers. Decision Tree (DT) and Random Forest (RF) classifiers have been used by (Sarma, Hossain, 
Mittra, Bhuiya, Saha, & Chakma, 2020) to predict Dengue fever. The study concludes that, with 79% 
accuracy in prediction, DT-based classifier has outperformed RF-based classifier. Tiruveedhula et al 
(Tiruveedhula, Navya, Gayathri, & Reshma, 2018) applied Simple Classification and Regression Tree 
(CART), Multilayer Perceptron (MLP), and C4.5 algorithms to analyze the normal and abnormal cases of 
Dengue using clinical parameters. CART-based classifier performed best with nearly 100% accuracy.  

Other algorithms, like ML algorithms, Naïve Baye’s, J48, RF, Reduces Error Pruning (REP) Tree, 
Sequential Minimal Optimization (SMO), Locally Weighted Learning (LWL), AdaboostM1, and ZeroR, 
have also been used in classifying Dengue data (Rajathi, Kanagaraj, Brahmanambika, & Manjubarkavi, 
2018).  

Another study targeting early prediction of Dengue incidence in a larger population concluded that the 
ML-based classifier could detect certain weeks of the year those were found to be vulnerable for dengue 
outbreak, which would assist the administration and the healthcare setup to get prepared for managing 
the ailments appropriately. In this study, humidity, wind speed, temperature and rainfall were taken as the 
independent variables and fed into an SVM classifier whose prediction accuracy, precision, sensitivity, 
and specificity were found to be 70%, 56%, 14%, and 95%, respectively (Salim, et al., 2021).  

In another study with similar objective, i.e., predicting the dengue outbreak timing in an year, authors 
applied a battery of ML classifiers, e.g., SVM, K-Nearest Neighbor (k-NN), Artificial Neural Network 
(ANN), Naïve Baye’s, DT, Logistic regressions, and LogitBoost ensemble classifier. LogitBoost ensemble 
classifier was able to predict the outbreak with 92% accuracy (Iqbal & Islam, 2019).  

SMI tools have also been used in other areas of data modeling, such as Support Vector Machine (SVM) 
learning algorithm, Cross-validation (LOOCV) method, and Nested One-versus-one (OVO) SVM. The 
latter was used to analyze gene sequences from bacteria in preference to the high-resolution melt (HRM) 
method. The combination of SVM and HRM has been shown to identify bacterial colonies (Fraley, et al., 
2016) with high accuracy (100%). SMI based epidemiological models are known to successfully 
complement error ridden laboratory procedures relating to sample collection, preservation, distribution, 
and laboratory testing, e.g. assessing fatality due to pulmonary Tuberculosis, the second most frequent 
cause of deaths (Saybani, et al., 2015), especially of the multi-drug-resistant variety (Huddar, Svadzian, 
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Nafade, Satyanarayana, & Pai, 2020), or Cardiovascular (CVD) risk with lifestyle changes (Xi He, et al 
2020).  A topic that is assuming critical importance during the present Covid onslaught is the SMI 
interpretation of herd immunity (O’Driscoll, et al., 2020), especially in predicting its emergence 
(Chattopadhyay, et al 2021).  

The state-of-the-art literature clearly points to three important knowledge gaps:  

(i) None of the ML-based classifiers used in these analyzes integrate the rule-bases of the 
human clinicians with those from the model, thus making these studies less robust clinically.  

(ii) The earlier studies use MLR, RF and other classifiers to classify the data points through a 
form of unsupervised learning. VIRDOCD conceptualizes MLR and RF-based classifiers as 
‘learning tools’, based on its coefficient values, entropies, as well as Gini index, to analyze 
data modeled outcomes through the lenses of seasoned clinicians. 

(iii) Many of these studies lack cross-validation against other classifiers, unlike in this study. 

Structured on these three research questions, the key deliverable of this study is a tool that can easily 
integrate with a medical setup that is usable both by clinicians and nurses, thereby, doubling up as a 
Virtual Doctor (VIRDOCD). The aim is not to substitute or even downplay the role of human intervention 
but rather to serve as a complementary diagnostic aid. A key technical novelty of this study is the 
reinvention of intelligent statistical modeling as an equally powerful diagnostic tool, substituting the more 
popular choice of deep learning algorithms that are more complex and hence difficult to maneuver. 
VIRDOCD can be a layman’s tool, that is self-contained, and with attributes that can be sourced in 
individualized healthcare.  

Section II of the article outlines the Experimental design; section III illustrates the results obtained; section 
IV summarizes the conclusions from this virtual model and highlights on future extensions.   

II. EXPERIMENTAL DESIGN: 

The numerical experiment uses a 6-stage data modeling architecture that is divided into (A) Data 
collection from various sources taking proper ethical measures (Chattopadhyay S. , 2012), (B) Data 
preprocessing and fidelity check (Goforth, 2015), (C) Data mining – examining within group and between 
group variations of the collected data by 1-WAY ANOVA, (Anwla, 2020) (D) Development of predictive 
model using Multiple Linear Regressions (MLR) (Rao, 2020), (E) Testing the model performance on a set 
of test cases where outputs are known, (F) Parametric study to observe how each of the individual input 
parameters influences the prediction, as well as their cross-correlated cumulative contribution towards the 
prediction performance of the model, and (G) Comparing MLR-based classifier’s performance accuracy 
with a Random Forest (RF)-based classifier and then validating against human clinicians. 

A. Data Collection:  
Primary data (N=100) were enumerated from bed tickets and prescriptions. Data collection processes 
and activities are outlined in Table 1 below. 
 
Table 1. Data Collection parameters 

Duration: Jan 2018 – 
Dec 2019 (Two years) 

Source: Clinics, Nursing homes 
in the vicinity and hospitals 

Diagnosis: confirmed with NS1 
rapid test and Elisa IgM and IgG 

Habit of substance 
abuse and alcoholism: 
ignored 

Patient population: 150 Gender: Males - 98, Females – 
52 
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Age group: 18 yrs and 
above 

Co-morbidities: ignored Socio-economic-condition: 
ignored 

Ethical measures and data privacy protection: Data source, doctors’ and patient names and 
address/telephone numbers remain anonymous. 

   

Clinical ‘input’ parameters: A total of 11 “sign-symptom” (Sahak, 2020), as follows, 

• Fever (F) • Sore throat (S) • Headache (H) • Nausea (N) 
• Vomiting (V) • Stomachache (ST) • Myalgia (M) • Rashes (R) 
• Diarrhea (D) • Joint pain (J) • Bleeding gums (B) 

 
 

Conventional sign-symptoms Map for Symptomatic Dengue Analysis: 

1. Fever: This is the most common symptom in symptomatic dengue cases, sometimes 
exacerbated due to viral load in blood (viraemia). 

2. Sore throat: Due to involvement of the upper respiratory tract.  
3. Headache: Due to the associated sinusitis as the consequence of upper respiratory tract 

infection. 
4. Nausea: Due to viraemia. 
5. Vomiting: Due to viraemia 
6. Stomach ache: Due to bleeding in the rectus muscle sheath. 
7. Myalgia: Due to diffused viral invasion in muscles causing inflammation. 
8. Rashes: Due to capillary dilatation under the skin. 
9. Diarrhea: Due to excessive fluid generation inside bowel. 
10. Joint pain: Due to inflammation of the joint. 
11. Bleeding gum: Due to lowering of platelet count. 

 
Weighted values assigned to each clinical ‘input’ parameter:  

Fever: Measured by thermal scanner; 3-point scale – Mild (99º F < m < 101º F), Moderate (101º F < M < 
102º F), Severe (S > 102º F). 

Sore throat: Patient reported, clinically tested; cumulative weights w [0, 1] ascribed on a 3-point scale – 
Mild (w ≤ 0.33), Moderate (w ≤ 0.66) and Severe (w > 0.66).   

The remaining parameters are similarly assessed over a 3-point mMS scale. 

Clinical values of the ‘outcome’ parameters: As noted, we classify disease outcomes (O) in 3 
categories – mild (m), moderate (M) and severe (S). Weighted scores [0, 1] are drawn from patients’ 
reports and feedback from clinicians. These values are then subdivided into a 3-point outcome-scale as 
follows: 

Mild (m) (O ≤ 0.33): patients have responded to symptomatic home treatment amounting to full recovery. 

Moderate (M) (0.33≤O≤0.66): systemic complications in patients, leading to hospital treatment, eventual 
therapeutic management ensuring full recovery. 

Severe (S) (O>0.66): patients had to be shifted to ICU/ITU amounting to increased recovery time or 
fatality. In this study, patients with O 0.66 became critically ill, but none expired.  
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Together, this 3-point classification of severity calibration is defined as ‘mMS’. Note that the cut-off values 
used (0.33 and 0.66) relate to one-third and two-thirds number density of cases; different cut-off markers 
could also be subjectively implemented. 

The statistical modeling and predictive ML algorithm in this study were implemented through Python, set 
within the panda, matplotlib, scipy, numpy, math and sklearn environments (data and code to be released 
through open access repositories). 

B. Data pre-processing and fidelity check:  

Input data, presented as csv spreadsheet, comprise clinical parameters recorded from inputs by attending 
clinicians. The result was expressed as a 3-dimensional (N X P x K) asymmetric matrix, where ‘N’ (=100) 
denotes the number of cases/patients, ‘P’(=11) the clinical parameters and ‘K’ (=3) refers to the 
corresponding 3-point outcome possibilities (mild, moderate, severe). The operator matrix is thus 
represented as follows 

𝑁"𝑥𝑀% → 𝐾(        (1) 

Data “x” thus collected were (column) normalized between [0,1] using ‘Max-Min normalization’ method 
(McCaffrey, 2020), leading to a min-shifted data set normalized within the maximum-minimum values:   

y = (x – min) / (max – min),     (2) 

where ‘min’ is the minimum cell value and ‘max’ is the maximum cell value correspond to parameters ‘P’ 
and ‘K’, as defined in Eq (1). This technique linearly maps the variable ‘x’ to ‘y’ in a continuous number 
space varying between 0 and 1 without any data loss, which is a significant advantage. Note, our choice 
of ‘min’ value is one that is close to the baseline ‘0’ but not exactly at ‘0’ while ‘max’ approaches ‘1’ but is 
not exactly at ‘1’. The uncertainty windows around the two limiting values account for subjectivity in 
diagnosis that are known to fluctuate both with patients and clinicians alike.  

Parameters ‘Pi’ (i = 1, 2 …, 11) and outcomes ‘Kj’ (j = 1, 2, 3) follow the same 3-point mMS scale as 
before - ‘mild’ (m<0.33), ‘moderate’ (0.34<M<0.66) and ‘severe’ (0.66<S<1.0, marked by the cell color 
red).. Table 2 depicts a representative data set of the mMS responses. 

Representative pre-processed (normalized) data of the 100 dengue cases are shown in Table. 2. The 
VIRDOCD algorithm was trained to adapt to the 3-point weighted sign-symptoms based dengue markers 
as advised by the clinicians. The target was to develop a VIRtual DOCtor through supervised learning 
that can self-sufficiently ascribe severity scores to patients, independent of clinicians, thus ensuring 
‘independent’ unbiased decision making rid of human subjectivity errors in diagnosis.  

Table 2. Glimpse of a set of pre-processed data after ‘column-wise’ max-min normalization 

  



  VIRDOCD: A virtual doctor 

7 
 

Data reliability testing with Cronbach’s α: 

To establish eligibility/fidelity, that is how closely related the 11 variables are in defining the dengue 
infected group and analyze their interconnectedness, the data were pre-processed/mined using 
Cronbach’s 𝛼method (Cronbach, 1951) (Goforth, 2015): 

α =  (+,-)///

0/1(+,").-
 ̅       (3) 

Here ‘r’ refers to the number of scaled data, 𝑐 is the mean of all covariances between data points, and 𝑣 
is the average variance. The Cronbach measure checks for internal consistency of the dataset and is the 
most important pre-processing step. The consistency score α is expressed as a number between 0 and 1, 
where α≥0.8 is considered ideal while α≤0.5 is deemed “unacceptable” (Goforth, 2015).   

C. Data mining:  

Descriptive statistics:  

This is a process where epidemiological data is expressed as a functional combination of its features and 
quantifying parameters like shape, frequency, central tendency (mean, median represented by 50% 
percentile, and mode), dispersion (range, standard deviation, variance), and position (percentile rankings, 
quartile ranking) (Sucky, 2020). 

Analysis of Variance (ANOVA): 

Analysis of the Variance Test (ANOVA) is a generalization of the t-tests involving more than two groups 
(Fisher, 1921). ANOVA quantifies the difference in the mean value anywhere in the model (checking for a 
‘global’ effect), but without informing where the difference lies (if there is any). To find where the 
difference is in between groups, post-hoc tests are required (Anwla, 2020). One-way ANOVA has been 
conducted in this work to examine whether the sign-symptoms, classed under mMS categorization 
(variable “K”), are statistically different from each other. It has also been conducted to understand 
whether the clinical grades (fatality/grade/severity) significantly differ between (dengue) patients. For 
cases with statistically significant outcomes from one-way ANOVA, the Alternative Hypothesis (HA) was 
used instead of the Null Hypothesis (H0), indicating that there were at least two groups which are 
statistically significant while being different from each other (Anwla, 2020). The Null Hypothesis was 
validated against F-statistics, the ratio of variance of the group means to mean of the intra-group 
variances. F=1 points to null hypothesis. It tests the null hypothesis using equation 4, below, 

𝐻9 = 𝜇" = 𝜇< = ⋯ = 𝜇(.      (4) 

Here µ represents the mean of the group and k measures the number of such groups. If, however, the 
one-way ANOVA returns a statistically significant result, the Alternative Hypothesis (HA) is accepted 
instead of the Null Hypothesis (H0), indicating that there are at least two group which are statistically 
significantly while being different from each other (Anwla, 2020). 

F-statistic (the ratio of variance of the group means / mean of the within group variances) equals to ‘one’ 
accepts null hypothesis, else it accepts alternative hypothesis. For this work, F-static values (Anwla, 
2020) are shown in the Results section. 

D. Development of VIRDOCD with Multiple Linear Regressions (MLR): 
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Multiple Linear Regression (MLR) is an extension of the linear regression model (Rao, 2020) that combines 
multiple explanatory variables to predict one or more response functions. VIRDOCD uses MLR supervised 
learning strategy, trained by the ‘Clinical eyes’ i.e., the knowledge base accorded by a set of experienced 
human doctors. Unlike human intervention, a key motivation behind this strategy is to outline a diagnostic 
regime that can stay unperturbed (i.e., the retention of ‘individuality’ in clinical decision making) to changes 
in rule/knowledge bases according to the judgments of individual clinicians. If Y represents the predicted 
output i.e. the weighted Case fatality grade of a set of N patients with sign-symptoms Xi, (i =1, 2, ..,11) 
weighted by w[0,1]), the working principle of the MLR model is given by  

Y = 𝐵9 + 𝐵"𝑋" + 𝐵<𝑋< +⋯+ 𝐵A𝑋A,    (5) 

where the B’s are the slope coefficients for individual predictors. The entries for variables Xi are obtained 
from hospital inventory, a represented set of which is shown in Table 2. The aim is to find the best-fit B 
values that minimize the error functions extrapolating the best line or hyperplane depending on the number 
of input variables/predictors (weighted sign-symptoms). Null hypothesis is accepted when all coefficients 
(B) are zero, else we accept alternative hypothesis, that is, when at least one B value is non-zero, that 
amounts to linearly independent variables. Predicted degree of dengue fatality using the Coefficient values 
(B) and 11 sign-symptoms (X values) for few cases are described in the Results section.  

E. Testing the performance of VIRDOCD:  

VIRDOCD was trained on 75% of the dengue data i.e. 75 patients, mimicking the ‘Clinical Eyes’ or ‘Rule 
base’ (represented as the IF-THEN rules) of ten experienced clinicians. The model was then tested for its 
predictive power by using the remaining 25% and comparing the predictions against medical prognosis 
(by the same medical team). ‘Ten-fold cross validation’ was conducted by randomly partitioning the 
dataset into 10 equal sized compartments. Of the 10 compartments, one was retained for 
data validation and associated testing of the model; the remaining 9 compartments were used for training 
data (de Rooij & Weeda, 2020).  

Prediction errors were measured using the Root Mean Square (RMS) formula (B"
C
∑ 𝑋E<E ). RMS Error 

(RMSE) was preferred over Mean Square Error (MSE) as RMSE accord relatively higher 
weights to large errors. This means RMSE is a more accurate measure of fluctuation when 
large errors are undesirable, which is expected and desired in clinical decision making (Willmott & 
Matsuura, 2005). RMSE thus obtained has been shown in Table 3.  

F. Parametric study to check the sensitivity (robustness) of the model: 

VIRDOCD was calibrated for robustness using a 2-stage strategy: 

(a) Single-factor influence, where predictions by VIRDOCD and other doctors were compared by 
varying the weights of only one predictor (sign-symptom) for any given dengue case. 

(b) Cumulative influence, where comparisons have been made by varying weights of all the sign-
symptoms for any given dengue case. 

G. Validation of VIRDOCD: 

VIRDOCD’s performance in predicting Dengue is validated using a two-stage approach,  
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(a) Comparing its performance with an ‘RF-based classifier’ developed in this study, working 
principle of which is detailed below. 

(b) Comparing with the human clinicians’ accuracy of prediction.  

Random Forest (RF) regression:  

RF is a bundle of Decision Trees (DT) that is created randomly. It is also a regression-based classifier, 
which learns using a supervised learning method similar to MLR. Hence, RF has been chosen for 
comparing VIRDOCD’s performance. Merging of individual DT’s output into one gives the final output of 
the algorithm. RF’s training is conducted by the ‘bagging’ method, where combinations of learning yield 
the final result (Donges, 2019). Figure 1 shows the workflow diagram of the RF algorithm. RF can do 
regressions and classification simultaneously similar to MLR. RF is also a useful algorithm to handle 
multi-dimensional data and prevent data over-fitting as MLR is capable of (Jaiswal, 2021).  

 

Figure 1. Working principle of a RF regression algorithm. 

The working steps of an RF algorithm are as follows:  

Step-1: choosing random ‘k’ data points from the Training set 

Step-2: building DT subsets of each 

Step-3: choosing ‘N’ number of DTs (here, we have chosen ‘3’, for Mild, Moderate, and Severe grade of 
sign-symptoms) 

Step-4: repeat Step-1 to 3 

Step-5: for each test data point, finding predicted values of each tree 

Step-6: assigning the test data points to the category that wins the maximum vote. 

The RF-regression is computed by estimating the MSE using the following Eqn. (6), where pi and ti 
indicate the predicted and target outputs respectively, such that 1<i<N.  

MSE = "
C
∑ (𝑝E − 𝑡E)<C
EI"  … (6) 
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Classification using RF can be made by calculating the Gini-index (GI) as in Eqn. (7) below, where fi 
represents the relative frequency of a class and ‘c’ the number of such classes. 

GI = 1- ∑ 𝑓%<-
%I"  … (7) 

Entropy (E) has been measured to analyze nodal branching in the DT. This follows Eqn. (8) below: 

E = ∑ −𝑓E. 𝑙𝑜𝑔<(𝑓E)-
EI"  … (8) 

The results of all experiments are outlined in the following section. 

III. EXPERIMENTAL DESIGN: RESULTS AND DISCUSSIONS 

In this section the results of the experiments have been showcased with necessary analysis of the 
results. 

A. Cronbach’s α: A score of 0.8311 indicates that the data is internally consistent. Table 3 below shows 
parameter-wise (sign-symptom-wise) representation of the evenly distributed medical data (refer to 
boxplots in Figure 2 for visualization) without noticeable difference between the minimum (min), 
maximum (max), mean and standard deviations (std in the table). Similar results were obtained in the 
quartile distributions. Boxplots represent the five-number summary of minimum, first quartile, median, 
third quartile, and maximum. 

Descriptive statistics: below Table 3 shows the descriptive statistics of all parameters under 
test.  
Table 3. Descriptive statistics 

 

Table 3 presents sign-symptoms (parameters) data with min-max-std fluctuations (refer to boxplots in 
Figure 2 for improved visualization) without much difference between the minimum (min), maximum 
(max), mean and standard deviations (std, in the table). Similar results were obtained in the quartile 
distributions. Boxplots are the five-number summary of minimum, first quartile, median, third quartile, and 
maximum. Figure 2 shows horizontal lines varying between [1,0], in a top-bottom orientation where the 
horizontal line at the bottom denotes minimum while the uppermost represents the maximum. The 
weighted (human) knowledge base from Table 3, comprising inputs from ten senior clinicians, can serve 
as good training material VIRDOCD. 
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Figure 2. Boxplots of input parameters (sign-symptoms). 

 

DATA MINING: ONE-WAY ANOVA: 

 Analysis of Variance (ANOVA) has been used to determine whether there are any statistically significant 
differences between the means of two or more independent (unrelated) sign-symptoms as in the 3-point 
scale (mild, moderate, and severe) discussed before. 

Table 4. ANOVA table 

Table 4 represent residuals (experimental errors) that are normally 
distributed. The probability plot of model residuals (Shapiro-Wilks Test) (Das 
& Rahmatullah Imon, 2016), that is sign-symptoms weighted between [0,1] 
is given in Figure 3. Observations are sampled independently of each other. 
In this experiment, the F-statistic was found unequal to 1 for any of the 
parameters, thus refuting the null hypothesis and accepting alternative 
hypothesis. If the p-value is less than 𝛼(0.95ℎ𝑒𝑟𝑒), the null hypothesis is 
rejected. Table 4 clearly shows all p-values (predictor-wise) under 0.95, and 
hence they affect the outcome and accept alternative hypothesis, rejecting 
null hypothesis. Also note that since p>0.05, the sign-symptoms profile 
follow a non-Gaussian probability density function (Figure 3). Table 4 
provides prediction for a given (first) dengue case conducted to test the 
fidelity of the code and the mathematical formula using Eq. (5).  
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Figure 3. Histogram plots of all 11 input parameters (sign-symptom). 
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Figure 4. Probability plot (Q-Q plot) of model residuals. 

R2 calibrating the proportion of variance of the fatality prediction that is predictable from the independent 
sign-symptoms, showing the goodness of model fit, is shown in Figure 4. The R2 from our data scores at 
97% indicating that 97% of the data are distributed close to mean. The result confirms the stability of the 
VIRDOCD model that is suggestive as the number of data points (100) was not exactly statistically large.  
From ANOVA, it was also clear that sign-symptoms were largely independent of each other leading to a   
good statistical fit (R2 = 97%) for the VIRDOCD model. 

Summary of the experimental data analysis:  

1. The database comprised of 100 dengue cases involving 11 input parameters and one output 
parameter, each with three grades (mild, moderate, and severe). Input parameters were 
essentially the sign-symptoms of dengue, while the output parameter represents the grade or 
degree of case fatality.  

2. All 11 input and output parameters were assigned weights [0,1] by ten experienced clinicians. 
Based on their domain knowledge, each case could be represented as an IF-THEN rule and 
hence, we could consider it not just as a mere database, but rather as a ‘rule base’ of 100 cases. 
This ‘rule base’ is nothing but the domain knowledge or “Clinical eye” of the doctors. 

3. From ANOVA it was clear that sign-symptoms jointly and individually influence the grade/severity 
of case fatality. Each sign-symptom was independent of the other and followed non-Gaussian 
distributions, as expected. The model showed a good statistical fit (R2 = 97%) and hence, could 
be used to train the VIRDOCD model. 

Coefficient constants, predictors (i.e., sign-symptoms) as in Table 5:  
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Table 5. Coefficient table 

 

 

 

 

 

 
 
 
 
B. PERFORMANCE OF VIRDOCD: 

Table 8, Figures 5a and 5b represent a sample prediction done by testing VIRDOCD and RF (trained on 
75% data) on 25% test cases using 10-fold cross-validation, including error estimation. As discussed, the 
target of this study is to deliver a Virtual “Clinical Eye”, which is nothing but the product of the coefficient 
values of the weighted sign-symptoms and the added ‘bias’ value, obtained from equation 5. The 
coefficient values are the numerical representations of individual ‘perception’ based judgement. Since no 
human judgement is completely bias-free, to make VIRDOCD’s clinical judgement close to human-
judgment, the bias value obtained from equation 5 has been added to the score line. The cumulative 
scores (Y) for each test case is hence the product of coefficient values (B) and weighted sign-symptoms 
(X), added with bias (B0).   

Table 5 tabulates the Coefficient values for each sign-symptom (B0 = 0) as outlined in Eqn. (5). VIRDOCD 
output, designated as Calc_Out in Table 6 (column 2), is evaluated by combining the parameters from 
Table 5 (blue)with remaining 25% of data {F=0.9650, ST=0.3397, H=0.8671, …, J=0.0882, B=0.4717} 
(green): 
 
Calc_Out = 0 + 0.0248 x 0.9650 + (-0.1293) x 0.3397 + 0.1161 x 0.8671 + … + 0.0286 x 0.0882 + (-
0.1052) x 0.4717 = 0.4562 (moderate outcome),  
 
where ‘Calc_Out’ (2nd column) and ‘Target_Out’ (3rd column) for the 1st test case (1st row, denoted by 0) 
matches real data.  

 
C. PARAMETRIC STUDY FOR TESTING THE ROBUSTNESS: 
Detailed parametric study is an important step to examine the ‘individuality’ in decision making by 
VIRDOCD. The study was done in two stages 

(i) Single factor influence: analyzing system response by individually varying the weights of one of 
the 11 factors (sign-symptoms) while keeping the other 10 unchanged over a 3-point mMS 
span: 0.1 (mild), 0.5 (moderate), and 0.9 (severe), and  

(ii) All factor influence: analyzing multidimensional system response by varying all 11 factors 
simultaneously over a wider 5-point span: 0.05 (very mild), 0.1 (mild), 0.5 (moderate), 0.9 
(severe), 0.95 (very severe).  
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Single factor influence (Table 6):  
‘Nausea (N)’ is a specific case in hand. If the other 10 sign-symptoms are restricted to the ‘mild’ (=0.1) 
category, the individual N-response (=0.541) records as ‘moderate’, that is of a higher category. On the 
other hand, if the other 10 factors are constrained at the ‘moderate’ level (=0.5), the individual N-response 
(=0.6355) records as ‘severe’, that is of the highest category. This is a highly encouraging result as 
VIRDOCD can be seen to show judgmental independence in analyzing the dengue CFG, akin to that of a 
team of experienced clinicians. It does not over or under weigh its prediction depending on the initial 
choice of the mMS category. 
 

Table 6. Result of Single factor parametric study 
 
 
 
 
 
 
 
 
 
 
 
Multi-factor influence (Table 7):  
Table 7 shows how a dengue case is predicted by VIRDOCD when sign-symptom weights are valued at 
0.05 (very mild), 0.1 (mild), 0.5 (moderate), 0.9 (severe), 0.95 (very severe). We see that despite all 
symptoms being weighted as very mild, or mild or severe or very severe, VIRDOCD has retained its own 
opinion as to the definition of the real ‘moderate’ throughout, despite varying weights from the clinicians 
over a much wider range, which again confirms independence in the VIRDOCD prediction profile, as 
expected with conventional clinicians. 
 

Table 7. Result of Multi-factor parametric study 
 
 
 
 

Summary of the performance of VIRDOCD:  

• MLR algorithm has worked well to build the VIRDOCD (Virtual doctor) predictive model. 
• Diagnostic accuracy (RMS) – approximately 75%. 
• Robust, i.e., not so hypersensitive to the learnt rule base and is able to preserve its individuality.  

 
D. VALIDATION: 

Performance of VIRDOCD has been validated by (i) comparing with another regression-based classifier, 
such as an RF-based classifier, which has been developed in this study and (ii) comparing with the 
human clinicians’ diagnostic accuracy.   

Experimental results show that RF-based classifier shows lesser accuracy (63%), compared to VIRDOCD 
(75%) (refer to Table 8 and Figures 5a and 5b), based on the RMS value. While comparing the 
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diagnostic accuracy with human (doctor), study has shown that their overall clinical diagnostic accuracy is 
about 71.4% (Richens, Lee, & Johri, 2020). Hence, VIRDOCD, for this dataset performs the best. 

Table 8. Prediction of dengue case fatality by VIRDOCD and RF-based classifier and error in 
prediction, a comparison 

  
 

 
 

Figure 5a. Calculated vs Actual outputs  

 
 

Figure 5b. Calculated vs Actual outputs (RF) 
 

Figure 5: Comparison between model versus real data 

IV. DISCUSSION:  
 
Both as a diagnostic tool and also as a medical aid, digital healthcare is under the radar. The last two 
decades have seen increasing implementation of Statistical Machine Learning (SMI) tools to assist 
clinical practices in screening, diagnosing and grading an illness. However, no study has utilized 
clinicians’ rule-based ‘learning’ while arriving at a prediction by analyzing the weighted sign-symptoms to 
conclude on the probability of a disease, or its severity grade. In other words, no work has been reported 
that has attempted to quantify and then translate the ‘clinical eye’ of a human physician into data-
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validated diagnosis. The analytics within the proposed tool (VIRDOCD) is based on experience-based 
weighing of the sign-symptoms, then combining them towards a cumulative outcome as a probabilistic 
conclusion, that we call as the ‘medical diagnosis’ (Chattopadhay, 2013). The follow-up therapeutic 
routine is based on the correctness of the diagnosis. For more complicated cases involving a team of 
clinicians in a medical board, the specialists first independently analyze the sign-symptoms and then take 
an arithmetic mean across the board to converge to a unified opinion. Bulk of the relevant literature 
analyze patient data based on their arbitrary choice of classifiers without attempting to causally link their 
algorithms with deductive reasoning from the human clinicians. There is also the curse of subjectivity. 
Classifiers failing with a certain dataset are not necessarily crippled against all datasets, and vice versa. 
These limitations has traditionally coerced against realistic implementation of computational diagnostics in 
a real medical setup.    
 
The present study is an attempt to develop an SMI-based tool (VIRDOCD) that applies the rule base of 
the human clinicians (weighted sign-symptoms and possible grade of the illness) and hence can better 
serve as a diagnostic aid to clinicians in screening and grading Dengue cases. VIRDOCD is structured on 
recursive MLR that requires training the algorithm with weighted patient data (assigned by a group of 
doctors), and then combining the individual diagnostics to identify a human error-free diagnostic decision. 
Table 1 shows the sign-symptoms of a cluster of 100 dengue infected (at various levels) patients that are 
initially trained on 80% data, then performance tested against human judgments. Robustness in the 
decision making process is a key target that we measure by examining whether the final outcome from 
VIRDOCD suffers from judgmental bias introduced by the training rules, or are genuinely neutral. The 
agreement with predictions from a specialist medical board (10 senior clinicians) confirms that the 
algorithm works and is actually more accurate. Its performance is further validated against another 
regression-based classifier, developed using RF algorithm, and found to be superior to it, as well as 
against the overall predicting accuracy of human clinicians.  
 
Although MLR is apparently a (computationally) ‘hard’ technique, yet, the coefficient values (refer to 
equation 5 and Table 5) vary across the weighted datasets that are influenced by the statistical properties 
of the data, such as its distribution, pattern, interconnectedness amongst the attributes (ANOVA, refer to 
Table 4), and statistical significance (p-values with CI 95%). It is important to note that the MLR algorithm 
in VIRDOCD has been developed relying on the inherent malleability of the coefficient values. Therefore, 
the algorithmic ‘hardness’ has been effectively reduced. Coefficient values derived from VIRDOCD, 
therefore, can clone human-like perception rather than mechanized numbers. Finally, VIRDOCD’s 
robustness has been tested through parametric studies, where some parameters weights were kept 
constant varying others. To our satisfaction, VIRDOCD was able to retain its judgmental individuality 
(refer to Table 7 & 8). 

V. CONCLUSIONS AND FUTURE WORK: 

Statistical methods such as ANOVA and MLR are useful techniques to develop a predictive epidemic 
model. ANOVA provides insights into the data structure by analyzing the ‘intra’ and ‘inter’-group 
variations, data distribution, and effect of each predictor (sign-symptoms) on disease outcome (fatality 
grade/severity). On the other hand, MLR-based predictive modeling throws light on how ‘fit’ the model is, 
and how each predictor influences outcome prediction. VIRDOCD (virtual doctor) is an MLR-based 
predictive model (a new doctor) that is able to learn through the rule base (Clinical eyes) of human 
doctors, develop its own ‘understanding’ (by the Coefficient values obtained through MLR process). and 
finally develop its own Clinical eye (product of its understanding and the rule base given by the human 
doctors). Thus it combines the best of both worlds. Comparing the diagnostic accuracy of VIRDOCD (ca 
75%) with another regression-based classifier (RF, ca 63%) and human clinical diagnoses at 71.4% 



  VIRDOCD: A virtual doctor 

18 
 

(Richens, Lee, & Johri, 2020), the measure seems well balanced and trained for accurate prediction. 
Another important feature of VIRDOCD is its ability to retain its non-biased attribute in decision making, 
unlike human doctors who are likely to show subjective fluctuations in their patient evaluation. 

Work is ongoing to introduce a chromatic RGB-styled sign-symptom grading, which can vary continuously 
between 0 and 1 to make medical predictions objectively subjective. We are in the process of introducing 
‘stochastic assessment kernels’ before and after VIRDOCD data training that could then distribute 
numbers within these intermediate regimes generalizing the 3-point scale to a higher dimensional 
construct.  
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