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Molecular oxygen excited to singlet state (Singlet oxygen, 1O2) becomes highly reactive and
cytotoxic chemical. 1O2 is commonly generated by photoexcitation of dyes (photosensitiz-
ers), including the photodynamic therapy and diagnostics of cancer. However, the forma-
tion of singlet oxygen is often unwanted for various light-sensitive compounds, e.g. it
causes the photobleaching of fluorescent probes. In either case, during a development of
new photosensitive chemicals and drugs there is a need to evaluate the amount of 1O2

formed during photoexcitation. The direct approach in measuring the amount of singlet
oxygen is based on the detection of its luminescence at 1270 nm. However, this lumines-
cence is usually weak, which implies the use of highly sensitive single-photon detectors.
Thus the existing instruments are commonly complicated and expensive. Here we suggest
an approach and report a device to measure the 1O2 luminescence using low-cost InGaAs
avalanche photodiode and simple electronics. The measurements can be performed in sta-
tionary (not time-resolved) mode in organic solvents such as tetrachloromethane (CCl4),
ethanol and DMSO. In particular, we performed spectral-resolved measurements of the sin-
glet oxygen luminescence in CCl4 with the device and demonstrated high complementarity
to literature data. The simple setup allows to evaluate the efficiency (or speed) of singlet
oxygen generation and hence facilitates the development and characterization of new pho-
tosensitizers and other photosensitive chemicals.
� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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Hardware in context

In its singlet state the molecular oxygen is extremely reactive and can effectively oxidate compounds crucial in cell biol-
ogy and chemical reagents. It is known that this excited molecule is the main active agent in many photodynamic reactions
in chemical and biological systems. Singlet oxygen is formed during photoexcitation of pigments (porphyrins, chlorophylls
etc.) and synthetic dyes (for instance, Rose Bengal) under aerobic conditions [1,2]. Photodynamic therapy of cancer tumors
and inactivation of pathogens is based on photosensitizers, a family of chemicals whose activation by light results in the gen-
eration of reactive oxygen species (ROS) including 1O2 [3]. However, in many other cases singlet oxygen and its ROS derivates
have negative, undesirable effect in breaking organic materials, terminating chemical reactions and therapeutic effects of the
light-triggered drugs [4] and causing the photobleaching of fluorescent probes. Thus, to optimize the molecular design of the
light-responsive chemicals, it is necessary to measure the efficiency of singlet oxygen generation upon photoexcitation.

The most direct way to estimate 1O2 is to measure its luminescence at 1270 nm. In an aqueous medium, the intensity of
this luminescence is very low, and therefore photomultiplier tubes (sometimes with cooling) are used for its detection in the
single-photon counting mode. This leads to the fact that instruments for measuring the luminescence of singlet oxygen are
complex and expensive [5,6]. That is why many laboratories use indirect methods for 1O2 estimation, such as fluorescent
sensors, for instance, the Singlet Oxygen Sensor Green (SOSG) [7–9].

On the other hand, advances in semiconductor technology have led to the emergence of sensitive detectors, which can be
used for the detection of 1O2 luminescence. Mizumoto et al [10] used InGaAs photodiode cooled to 77 K with charge inte-
gration system. Boso et al [11] described the negative-feedback avalanche diode operating in single photon mode, capable
of the 1O2 luminescence detection in biological medium. Finally, large-area photodiode can be used for 1O2 dosimetry
[12,13], including the time-resolved measurements [14]. Avalanche photodiodes, despite relatively small active area, have
internal amplification mechanism, which provides superior signal-to-noise ratio and even (in special circumstances) enables
single-photon detection. These devises also have great potential for manufacturing arrays and matrices, and some of them
are available on the market. In recent years, ultra-cheap infrared avalanche photodiodes have appeared. In this paper, we
show that such a photodiode can be used for measuring the luminescence of singlet oxygen and provide the detailed instruc-
tions how to do so.

Hardware description

The sensitivity of commercially available (very expensive) devices measuring the 1O2 luminescence is excessively high for
many practical tasks. In particular, if one aims to characterize the ability of newly synthesized substances to produce the
singlet oxygen, there is no need to carry out time-resolved measurements, and it is also possible to use solvents in which
the luminescence intensity is significantly higher than in water, in particular, tetrachloromethane / carbon tetrachloride
(CCl4) [15,16], ethanol, DMSO and D2O. Targeting above problems, the purpose of our study is to make reliable and simple
photonic setup for the characterization of novel compounds in their ability to generate the singlet oxygen. Therefore, we
hope that the device developed and described here would help researchers to develop novel photosensitizers and light-
responsive drugs.

The key features of the setup are as follows:

� The detector have pW sensitivity and is able to detect 1O2 luminescence;
� The setup is very cheap, so each laboratory that aims to measure in 1O2 can have it;
� No expensive consumables are required for the measurements.

Design files

The wiring diagram (Fig. 2) provides the necessary information on how to connect all the components to make a ready-to-
use detector. As the diagram is rather simple, the reader can use solderless board, solderable breadboard or any other board
of choice. The firmware for Arduino DUE provides the reading of inputs, compensation for DC component and data transfer to
the PC. The Python reading script receives data from the detector, makes a graph and allows one to set hardware parameters
such as background level and the illumination LED state (on/off).

Bill of Materials

Our setup utilizes the low-cost avalanche photodiode LSIAPD-S200 Fig. 1, with following key parameters:

� Material: InGaAs
� Wavelength range: 800–1700 nm
� Photosensitive area diameter: 200 um
2



Fig. 2. The schematic diagram. PD – photodetector. The points which should be connected to Arduino DUE pins are marked by the corresponding orange
text. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 1. The LSIAPD-200 avalanche photodiode.
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� Breakdown voltage Vbr: ~30 V
� Avalanche multiplication gain M: 10 at Vbr � 4, 30 at Vbr � 1 (1550 nm)
� Sensitivity (not amplified, M = 1): 0.85 mA/mW @ 1550 nm
� Dark current: 10–30nA at M = 10.

To our knowledge, the only place where this photodiode is available is Aliexpress (see two different links in the table).
Other main building blocks are the Arduino DUE microcontroller board, which reads the data and transfer it to PC, the DC-

DC converter which sets the reverse bias voltage for the photodiode, and the operational amplifier. The amplifier is made
around the LM-358 integrated circuit using several simple components (resistors and capacitors) which are listed in the
table. For these components, marked as ‘‘elementary parts” in the table, probably the best source is the local electronics
store. Therefore, the prices in the table are only approximate.
Build instructions

Basic structure

The schematic diagram is shown in the Fig. 2. We have chosen the Arduino DUE board (#2 in Table 2) because of two
reasons. First, it has 12-bit resolution of ADC and so provides better precision. Second, it has DAC which is used to compen-
sate for the background component of detector photocurrent. This ability is critical because it eliminates the need to control
environmental parameters such as temperature so that the dark current would be fixed. Instead, the influence of external
parameters are compensated using active circuit: for each measurement the Arduino board compares the signal with upper
Table 1
Design Files Summary.

Design file name File type Open source license Location of the file

Schematic diagram (Fig. 2) image CC BY 4.0 available with the article
Arduino Firmware .ino CC BY 4.0 available with the article
Python script to read data from PC .py CC BY 4.0 available with the article
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Table 2
Bill of materials.

Designator Component Number Cost per unit
-currency

Total cost -
currency

Source of materials Material
type

Detector Avalanche photodiode LSIAPD-S200 1 $108-$150 $110.92 https://aliexpress.ru/item/
4000515543491.html

https://aliexpress.ru/item/
32842314109.html

semi-
conductor

Electronics –
building block

Arduino Due 1 $40.30 $40.3 https://store.arduino.cc/
usa/due

other

Electronics –
building block

XL6009 DC-DC boost module
(converts 5 V DC to ~ 30–40 V DC)

1 $4.5 $4.5 https://www.chipdip.ru/
product/xl6009-dc-dc-module

other

Electronics –
elementary
part

LM358 dual operational amplifier
integrated circuit

1 $0.2 $0.2 semi-
conductor

Electronics –
elementary
part

Resistor, 100 k Ohm 0.25 W 2 $0.04 $0.08 other

Electronics –
elementary
part

Resistor, 68 k Ohm 0.25 W 1 $0.04 $0.04 other

Electronics –
elementary
part

Resistor, 300 Ohm 0.25 W 3 $0.04 $0.12 other

Electronics –
elementary
part

Capacitor, 1 uF 1 $0.1 $0.1 other

Electronics –
elementary
part

Capacitor, 2.2 uF 1 $0.06 $0.06 other

Electronics –
housing
(optional)

Solderless breadboard 1 $7.5 $7.5 other

Electronics –
housing
(optional)

PLS-40R right angle pin 1 $0.2 $0.2 other

TOTAL: $164.72
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and lower bounds (set as 4000 and 500, respectively) and increases/decreases the DAC output if necessary (see the firmware
file, #2 in Table 1). This solution is much simpler than the temperature control. The board is connected to the main circuit by
four pins (Fig. 3A) and to the PC via USB cable.

The DC-DC converter (#3 in Table 2) should output the regulated voltage of around 30–40 V with the input voltage of 5 V.
It is the only important feature, the reader can use any converter which can do the job. The current would be very small, so
the maximal output power is not significant. Much of the converters would look like the one we used (Fig. 3B).

Assembling the amplifier

The amplifier is probably the most complicated part of our setup. It is based on the LM358 integrated circuit. The wiring
diagram is shown in Fig. 4A. The reader may prefer any connection approach (for instance, soldering board). Fig. 4B shows
the whole electronic unit assembled on a solderless breadboard, and below are the assembling instructions.

Place the LM358 on the breadboard as shown in Fig. 4B.
Fig. 3. A: Arduino DUE microcontroller board and the inputs/outputs used in the described setup. B: DC-DC converter which provides the reverse bias
voltage for the photodiode.
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Fig. 4. A: The wiring diagram showing how to assemble the amplifier. B: The detector/electronics unit ready to connect to the Arduino DUE board.
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Connect the 68 K Ohm resistor to #1 and #2 pins of LM358 (lines #7 and #8 in the upper half).
Connect the 1 mF capacitor to same lines. The capacitor is needed to filter out AC noises as we are interested only in the
stationary signal.
Connect the 300 Ohm resistor to #2 and #4 (ground) pins of LM358 (lines #8 and #10 in the upper half). Now you have
assembled the feedback loop for the first amplifying cascade.
Pin #3 will accept the signal from the photodiode. Leave the hole on top of line #9 for this purpose. Connect this line to
ground (pin #4) via 100 K Ohm resistor.
Connect the #1 and #5 pins of LM358 by a jumper wire (line #7 in the upper half to line #10 in the lower half). Now you
have connected the output of the first amplifying cascade to the input of the second one.
However, the output contains significant background component which should not be amplified (otherwise the result
would be above threshold of the amplifier). To subtract the background component, connect the #6 pin of LM358 to
the DAC0 pin of Arduino DUE (lines #5 and #9 in the lower half) via 300 Ohm resistor.
Connect the 100 K Ohm resistor to #6 and #7 pins of LM358 (lines #8 and #9 in the lower half).
Connect the 2.2 mF capacitor to same lines.
Connect the #6 pin of LM358 (line #9, lower half) to line #12 (lower half) via 300 Ohm resistor.
Connect the #12 line (lower half) to the GND (#22 line, lower half). Also connect this line to #11 and #10 lines on the
upper half to provide ground for the LM358 and the photodiode.
Finally, connect the +5 V Arduino pin and #8 pin of LM358 (line #23 and #7, lower half).

Connecting the photodiode

The avalanche photodiode needs the reverse bias voltage to function. The reverse bias voltage should be in order of Vbr-
� 4 to Vbr � 1, where Vbr is the breakdown voltage (typically 30–40 V, written on the package of photodiode). Connect
the + 5 V Arduino pin with line #28 (upper half) and the GND pin to its lower half. Then place the DC-DC converter to
the breadboard. You may need to solder pins to its inputs and outputs. Place the IN + pin to line #28 (upper half),
OUT + pin should be connected to line #12 (upper half), OUT � pin would be also on line #12 (lower half). Caution: avoid
short-circuit because line #11 is very close and is connected to ground. You need to adjust the output voltage of DC-DC con-
verter to the appropriate level (e.g., 30 V). For this purpose, connect the +5 V and GND pins to the 5 V power source and
measure the output voltage. Adjust the screw on the blue resistor to get the desired output. Disconnect the power source.

Now it is ready to connect the photodiode. It has three pins: case, anode and cathode. Carefully connect cathode to the
OUT + pin of DC-DC converter (line #12, upper half), case to ground (line #11, upper half) and anode to the #3 pin of LM358
(line #9, upper half). Remember that the photodiode is sensitive to static charges.

Setting up the Arduino board

To connect the detector/electronics unit to the Arduino board, insert right-angle connectors to lines #5, 6, 22 and 23 in the
lower half. Before connection, load the firmware (Table 1) from your PC (for the instructions please refer to the specific Ardu-
ino resources into the Internet). You may also want to fasten the board to some holder, for instance, we used Thorlabs post
and post holder for this purpose. Finally, connect all that you have assembled in previous steps to the Arduino board. Fig. 5
shows how the fully assembled setup looks like in our laboratory.

Operation instructions

The setup should be kept in dark place during operation (otherwise the weak luminescence signal cannot be measured).
To avoid the influence of visible light, it is better to use infrared filter (for instance, 1–1.5 mm bandpass) in all experiments.
5



Fig. 5. Fully assembled setup.
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Additionally the detector can be preceded by monochromator (if one needs to measure the spectrum) or the optical filter
specifically for the 1O2 luminescence [17].

As the setup is connected to PC via USB cable, it continuously measures the signal from photodiode. It is visible in the
system as COM-port and is ready to perform the following actions on demand:

� If the PC sends ‘‘r”: transfer current detector output to the PC.
� If the PC sends ‘‘d”: decrease the background level.
� If the PC sends ‘‘u”: increase the background level.
� If the PC sends ‘‘l”: enable pin 31 (logical 1, HIGH).
� If the PC sends ‘‘o”: disable pin 31 (logical 0, LOW).

The last two commands are needed to switch the excitation light source on/off. For instance, you can control laser or LED-
based devise with the corresponding input or you can assemble you own circuit which uses high-current electronic switch
opened/closed by the Arduino output (pin #31). Connection of light source directly to Arduino output is not recommended
because it would consume current and change the voltage on DAC0 pin, shifting the background level.

The Python script which manages the setup is provided with this paper (#3 in Table 1). It reads the detector value every
0.2 s, makes a real-time plot (last 100 points) and stores all data to a specified file. The user will need only to change the
number of COM port because it differs between systems and set the filename before measurements. The screenshot of
the program is shown in Fig. 6. As it can be seen, the program has very basic interface, but the user can easily add what
is needed for the particular experiment. The capability of Arduino board to switch the excitation light source on/off allows
one to make an automated measurement procedure so that the difference between signals before/during illumination would
be calculated by the script. In our case, we also performed the monochromator control by the same script to achieve an auto-
mated measurement of the luminescence spectrum.
Fig. 6. Screenshot of the Python program for data reading and control of the setup.
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Validation and characterization

Spectral-resolved measurements

To test our setup in real-life experiments, we first assembled the optical setup which includes monochromator, focusing
optics, excitation LED (525 nm, 3 W) and cuvette holder (Fig. 7). The excitation LED was connected to the electronic switch
controlled by the Arduino board so that we could switch it on/off from the PC.

The MDR-204 monochromator used in this work have an f-number f/6. Both slits were opened to 5 mm. We placed the
cuvette directly next to the entrance slit, and the luminescence was additionally collected by concave mirror with 10-cm
focal length. Alternatively, in some experiments we placed the condenser lens (Thorlabs ACL2520, 25 mm diameter,
20 mm focal length) between the cuvette and the entrance slit. Another condenser lens was placed between the exit slit
and the detector, which was either the same Thorlabs ACL2520 or Avantes COL-UV/VIS (6 mm diameter, 8.7 mm focal
length). The positions of the detector and all other elements were carefully adjusted to provide the maximal signal.

First, the monochromator was set to 1270 nm. There was no reaction of the detector to LED light in the absence of the
cuvette or in presence of the cuvette with solvent. However, we observed significant signal for cuvette with the air-
equilibrated solution of Rose Bengal in CCl4 (~80 mM).

Fig. 8A shows the observed data. The first rapid decrease is due to the manual background level setup using the corre-
sponding button in the PC software (Fig. 6). If the background is low, the measurements can be performed without satura-
tion. Upon turning on the excitation LED, the gradual rise of the signal can be seen. The rise time depends on the capacitors
used in the amplifier circuit.

In order to prove that the observed signal is indeed the luminescence of singlet oxygen generated by the Rose Bengal pho-
toactivation with green LED, we performed spectral-resolved measurement. Fig. 8B shows the obtained intensity versus
wavelength and the Gaussian fit. This result perfectly agrees with the literature data [18].

To estimate the sensitivity of our detector, we tried to measure the same signal as in Fig. 8A with the Thorlabs PDA30B-EC
detector (Ge Switchable Gain Detector, up to 70 dB amplification). The resulting signal was ~ 1 mV, which according to the
parameters of the detector allows us to estimate the luminescence intensity as 2� 10-10 W and the sensitivity of our detector
as 1–10 pW. This is quite a poor sensitivity compared to many commercially available detectors (see e.g. fW sensitivity
detector Thorlabs PDF10C used in [13] to measure 1O2 luminescence in water). But this level of sensitivity already gives
the opportunity to make some conclusions from experiments, as we show in the next section.
Measurements in ethanol and DMSO

As the signal was high enough, we tried to measure the luminescence in solvents other than CCl4 because it is more
related to the biological system with high water content. First, we modified the measurement scheme, replacing the
monochromator by optical filter (Edmundoptics #87–852, 1275 nm central wavelength, 50 nm half-maximum width
[17]). Thus, instead of spectral-resolved measurements, we enabled the integration of luminescence signal in a window
which corresponds to the peak in Fig. 8B, increasing the signal/noise ration. Moreover, the use of filter allowed us to increase
the collection angle, that drastically increased the signal. Similar approach was used in [13]. As a result, we observed the
luminescence of 1O2 during the photoexcitation of Rose Bengal millimolar solution in ethanol and dimethyl sulfoxide (DMSO,
a solvent which is frequently used in biological studies to dissolve organic compounds which can then be dissolved in water).
The results are shown in the Fig. 9. We also studied tetraphenylporphyrin (TPP) solution in DMSO using the appropriate exci-
tation wavelength (430 nm). All the samples were air-equilibrated. While the signals are quite low, those can be accumu-
lated over many runs to obtain reasonable signal-to-noise ratio. The bottom plot in the Fig. 9 shows the absence of signal
in pure DMSO.

These experiments clearly show that the described setup can provide information on the ability of 1O2 generation by the
compound under study. To demonstrate this, we measured the luminescence during the photoexcitation of porphyrin 1
Fig. 7. Experimental setup for spectral-resolved measurement of singlet oxygen fluorescence.
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Fig. 8. A: the representative recording of the singlet oxygen luminescence during photoexcitation with green LED (525 nm) of the saturated solution of Rose
Bengal. B: Spectrum of the measured luminescence signal and Gaussian fit. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Fig. 9. The signals measured with the setup using optical filter instead of monochromator. The plots are vertically shifted for convenience. Top line:
tetraphenylporphyrin (TPP) solution in CCl4 (the illumination intensity was set to minimal, otherwise the signal was saturated). Other plots are for the
solutions of TPP, RB and 1 in other solvents.
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(Scheme 1, [19]), a novel compound with no known data concerning the 1O2 generation. The absorbance at the photoexci-
tation wavelength was matched to that for the TPP solution, and the luminescence signal was higher for the compound 1,
indicating that the quantum yield of 1O2 generation is higher.
Scheme 1. The ‘‘unknown” compound 1 used in experiment.
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Concerning the further improvement of signal-to-noise ratio, larger-area photodiode can be used (LSIAPD-S500, 0.5 mm
active area diameter). There is also available version of LSIAPD-S200 with built-in transimpedance amplifier (LSIAPDT-S200-
155M-L0A), which potentially provides better signal-to-noise ratio. Another limitation of the current setup is limited
dynamic range. In our experience, we had to decrease the excitation LED current to make the signals not saturated for some
chemicals. It complicates the intercomparison between samples. This problem can be solved using hardware control of
amplification gain and/or the ADC scale. However, in this paper we aimed at the demonstration of the reported approach
and tried to make everything as simple as possible, leaving further improvements for the future. As the system is described
in detail, it can be easily adjusted for the particular application, including the dosimetry of 1O2 during photodynamic therapy.
Although, for that last application, additional work is needed to improve the sensitivity of the detector to apply it in real
systems.
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