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In the human brain, the corpus callosum is the major white-matter commissural tract enabling the transmission
of sensory-motor, and higher level cognitive information between homotopic regions of the two cerebral hemi-
spheres. Despite developmental absence (i.e., agenesis) of the corpus callosum (AgCC), functional connectivity
is preserved, including interhemispheric connectivity. Subcortical structures have been hypothesised to provide
alternative pathways to enable this preservation. To test this hypothesis, we used functional Magnetic Resonance
Imaging (fMRI) recordings in children with AgCC and typically developing children, and a time-resolved approach
to retrieve temporal characteristics of whole-brain functional networks. We observed an increased engagement
of the cerebellum and amygdala/hippocampus networks in children with AgCC compared to typically develop-
ing children. There was little evidence that laterality of activation networks was affected in AgCC. Our findings
support the hypothesis that subcortical structures play an essential role in the functional reconfiguration of the
brain in the absence of a corpus callosum.

1. Introduction Moreover, during prenatal and postnatal brain development, it is likely

that the corpus callosum contributes significantly in the lateralisation

With more than 190 million axon fibres, the corpus callosum is
the largest white matter pathway and serves as a bridge to connect
neurons between the two cerebral hemispheres of the human brain
(Edwards et al., 2014). Its plays a crucial role in the transmission and
integration of low-level sensory-motor, and higher-lever cognitive in-
formation between homotopic regions in the left and the right hemi-
spheres (Gazzaniga, 2000; Hofer and Frahm, 2006; Hofer et al., 2008).

and specialisation of function through the interplay of hemispheric in-
teraction (Gazzaniga, 2000; Jeeves and Temple, 1987; Mancuso et al.,
2019). In this context, studying individuals for whom the corpus callo-
sum never develops or only develops partially can provide useful in-
sights into how the two hemispheres communicate with each other
and coordinate their functions (Karolis et al., 2019; Mancuso et al.,
2019).
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Developmental absence or agenesis of the corpus callosum (AgCC)
is a congenital brain malformation and the most common disorder
of axonal guidance (Owen et al., 2013). Starting 11-12 weeks’ post-
conception, neurobiological mechanisms regulating corpus callosum
formation are complex (Edwards et al., 2014). Subsequently, AgCC can
result from alteration of numerous neurodevelopmental events from
early midline telencephalic patterning to neuronal migration and speci-
fication, axon guidance, and post-guidance development (Siffredi et al.,
2021a). This complexity reflects the heterogeneous nature of clinical
presentations of individuals with AgCC. It encompasses the complete or
partial failure of the callosal fibres to cross the midline and form con-
nections in the neocortex between the two hemispheres (Lassonde et al.,
1991; Paul et al., 2007). Studies also show that individuals with AgCC
are heterogeneous in terms of neurodevelopmental outcomes ranging
from normal to individuals attending special developmental school and
requiring assistance in daily living activities (D’Antonio et al., 2016;
Siffredi et al., 2013; 2018).

Brain connectivity can be explored using functional connectiv-
ity between distinct units within a nervous system (Rubinov and
Sporns, 2010). Studies investigating functional connectivity using
resting-state functional magnetic resonance imaging (fMRI) in indi-
viduals with AgCC have reported intact resting-state functional brain
networks, with typical lateralisation (Owen et al., 2013; Tovar-Moll
et al., 2014; Tyszka et al., 2011). A recent study also reported intra-
hemispheric and inter-hemispheric functional connectivity in children
with AgCC comparable to their typically developing peers (Shi et al.,
2021; Siffredi et al., 2021a). These findings are in line with the view
that resting-state functional connectivity reflects both direct and indi-
rect anatomical connections and is usually mediated by more than just
monosynaptic structural connectivity (Honey et al., 2009; Koch et al.,
2002; Tarun et al., 2020). Therefore, it is possible that in the case of
absence of callosal fibres, inter-hemispheric regions that are no longer
directly connected will use indirect pathways to maintain their level of
communication (Mancuso et al., 2019). In this context, evidence from
callosotomy studies (i.e., studying patients who have undergone full cal-
losotomy and described as split-brained) suggest that subcortical struc-
tures play a fundamental role in the functional reconfiguration of the
brain (Funnell et al., 2000; Gazzaniga et al., 1987; Savazzi et al., 2007;
Uddin et al., 2008).

To date, functional connectivity studies in AgCC have used only
static functional connectivity; i.e., the correlation between the activa-
tion in different brain regions over the whole scanning time. A limita-
tion of such static approaches is that they ignore the inherently dynamic
nature of brain activity, with potentially valuable information contained
in dynamic changes of activation and connectivity (Bolton et al., 2020;
Christoff et al., 2016; Hutchison et al., 2013; Preti et al., 2017). Dynamic
approaches are promising tools for the detection of subtle changes in
brain functional organisation in children with AgCC compared to typi-
cally developing controls (TDC). This understanding could inform cru-
cial questions about general cortical organisation and more particularly
about potential functional reconfigurations.

In the present study, we extract, for the first time, dynamic prop-
erties of neural activity in AgCC and compared them to TDC. We ex-
tracted the so-called ”innovation-driven co-activation patterns” (iCAPs)
(Karahanoglu and Van De Ville, 2015; 2017). These patterns are ob-
tained based on transient brain activity, or moments of activity changes
in the blood-oxygenation level dependent (BOLD) signal. These are re-
covered by undoing the effect of the haemodynamics through spatio-
temporal deconvolution combined with a regular derivative (Farouj
et al., 2017; Karahanoglu et al., 2013; Karahanoglu and Van De Ville,
2015). The result is a series of innovation frames that identify time-
points for when the brain undergoes an increase or decrease in activity.
By clustering these innovations, we obtain a decomposition of global
brain dynamics. Using these properties, we assessed the spatial and tem-
poral characteristics of networks in children with AgCC compared to
TDC.
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2. Methods and materials
2.1. Sample

This study used data from the Paediatric Agenesis of the Corpus Cal-
losum Project (Siffredi et al., 2018). A cohort of 28 children with AgCC
was recruited from clinics and radiology records at The Royal Children’s
Hospital (RCH), Melbourne. Inclusion criteria were: 1) aged 8 years 0
months to 16 years and 11 months; 2) evidence of AgCC on MRI con-
ducted as part of a routine clinical work-up; 3) English speaking; and 4)
functional ability to engage in the assessment procedure. MRI findings
were qualitatively reviewed by a paediatric neurologist with expertise
in brain malformations (RJL), who confirmed diagnosis of AgCC, includ-
ing complete and partial AgCC. A TDC group of 30 children comparable
in age and sex to the AgCC group was recruited from the community.

2.2. Procedure

This project was approved by the RCH Human Research Ethics Com-
mittee. Caregivers provided written informed consent prior to participa-
tion. Consenting families were seen at a research clinic at the Murdoch
Children’s Research Institute.

2.3. Material

2.3.1. Neuroimaging measures

Magnetic Resonance Imaging acquisition Images were acquired on a 3T
MAGNETOM Trio scanner (Siemens, Erlangen, Germany) at The RCH. A
32-channel head coil was used for transmission and reception of radio-
frequency and signals. A high-resolution 3D anatomical images was ac-
quired using a T1-weighted MP-RAGE sequence (TR = 1900 ms, TE =
2.71 ms, TI = 900 ms, FA = 9°i, FoV = 256 mm, voxel size = 0.7 x
0.7 x 0.7 mm). Resting-state gradient-echo EPI sequences was also ac-
quired (196 frames, TR = 2000 ms, TE = 30 ms, voxel size= 2.6 x 2.6 x
4 mm, FA = 90 deg, FoV= 250 mm x 250 mm). During the resting-state
fMRI sequence, participants were instructed to keep their eyes closed
and engage in mind wandering.

Preprocessing MRI scans were preprocessed using SPM12 (Well-
come Centre for Human Neuroimaging, University College London,
UK, http://www.fil.ion.ucl.ac.uk/spm/software/spm12) and functions
of the Data Processing Assistant for Resting-State fMRI (Chao-Gan and
Yu-Feng, 2010).

Resting-state fMRI data were converted from the native DICOM
to NIFTI format using dcm2nii. We then followed the preprocess-
ing pipeline described by Preti and Van De Ville (Preti and Van
De Ville, 2017). For each participant, the first 5 (of the 196) volumes
were discarded to ensure magnetisation equilibrium, and the remainder
underwent spatial realignment and smoothing (5mm FWHM Gaussian
kernel). For resting-state fMRI data, the mean framewise displacement
for each frame was computed to quantify the extent of head motion from
volume to volume for each participant (Power et al., 2012; 2014). Fol-
lowing Power and colleagues’ recommendations, we implemented vol-
ume censoring (“scrubbing”) for motion correction using a framewise
displacement of 0.5 mm threshold for exclusion. Additionally, follow-
ing Zoller and colleagues’ preprocessing pipeline, participants with less
than 125 frames remaining after scrubbing were excluded (Zoller et al.,
2019). Following these recommendations, 6 AgCC and 1 TDC partic-
ipants were excluded for head-motion. Moreover, 1 AgCC and 5 TDC
participants were excluded because of bad coverage of the cerebellum;
3 AgCC participants were excluded due to mediocre registration to MNI
that could potentially bias the results, especially the clustering phase of
the iCAPs extraction; and 1 participant with AgCC was excluded due to
atypical commissural elements. The following steps were performed on
the scrubbed data of all remaining participants. Voxel-wise time-courses
were first detrended (linear and quadratic trends). The 6 motion param-
eters, as well as the average white matter and cerebrospinal fluid signals
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obtained from standard white matter and ventricular masks mapped
to the subjects’ fMRI space and masked with individual segmentation
maps, were regressed out using the DPARSF toolbox (Leonardi et al.,
2013). The time-courses were then band-pass filtered in the range of
[0.01 0.15 Hz] to enhance resting-state fluctuations.

Innovation-Driven Co-Activation Patterns (iCAPs) We tailored the
openly available MATLAB code (https://c4science.ch/source/iCAPs/)
MATLAB vR2016a (The MathWorks, Inc., Natick, MA) to apply the
iCAPs framework on children with AgCC. The overall routine is com-
posed of 4 steps (details can be found in the Supplementary Methods):

e Spatio-temporal deconvolution: In this first step a
hemodynamically-informed deconvolution (Farouj et al., 2017;
Karahanoglu et al., 2013) was applied to the fMRI timeseries in a
way that promotes the rareness of activity transients and spatially
coherent activations.

e Significant transients detection: Innovation signals are computed

as the temporal derivative of the deconvolved signals. The obtained

signals can be seen as a representation in terms of transients in
neural activity, where large amplitude transients implicitly identify
change-points. Significant transients were determined using a two-

step thresholding procedure. A temporal threshold estimated from a

surrogate distribution that keeps only transient larger than 95% or

lower than 5%. Then, a spatial thresholding procedure was applied,
in which a frame was considered significant if at least 5% of the gray
matter voxels were active. The frames showing significant transients
are called innovation frames, and allow to identify time-points when

a given region in the brain undergoes an increase or decrease in ac-

tivity.

Aggregation: The significant frames were warped into MNI (Mon-

treal Neurologic Institute) space via a specific DARTEL (Diffeo-

morphic Anatomical Registration using Exponentiated Lie algebra)
template (Klein et al., 2009). This normalisation method has been

demonstrated to be robust to age differences in participants of 7

years and above, as well as in abnormal brain development such

as AgCC (Ashburner and Friston, 1999; Burgund et al., 2002; Tyszka
et al., 2011). All frames were then aggregated for clustering.

Clustering: The retained innovation frames, underwent K-means

clustering that resulted in K centroids that are the spatial maps. The

optimum number of clusters was obtained using consensus cluster-
ing (Monti et al., 2003), a resampling-based technique for optimal
class discovery.

Static Analysis of iCAPs We extracted an activity time course for each
iCAP by spatio-temporal back-projection of the spatial maps onto the
activity-inducing signals (Zoller et al., 2018). This resulted in a set of
K signals for each run describing activity segments of each of the k
iCAPs. Afterwards, we then computed a static measure of inter-iCAPs
interactions, i.e., temporal correlation. The inter-iCAPs kxk correlation
matrices of each participant were then used for group comparisons.

Extraction of Temporal Properties For each iCAP, we computed the
number of contributing significant innovations and their percentage out
of the total nonmotion scanning time. By measuring the percentage of
innovations, we measured purely the contribution of each network in
resting-state in terms of spontaneous engagement while removing the
effect of BOLD signal variability.

Laterality of Brain Networks The standard MNI template space is not
symmetric and thus not suitable for laterality assessment. Therefore, we
co-registered the iCAPs maps to an MNI symmetrical template, available
at http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009,
before extracting two different laterality measures:

¢ Laterality of activity maps: The first measure of laterality aimed at
exploring possible asymmetry effect between the two hemispheres
by comparing lateralised amplitude maps of the iCAPs. The ampli-
tudes of these patterns reflect the mean activity amplitude for each
voxel when contributing to a certain network. Such measure have
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been used previously in the literature (see for example Karolis et al.,
2019). We flipped the left hemisphere maps and subtracted them
from unflipped right hemisphere maps in order to obtain an Am-
plitude Laterality Index (A-LI) for each voxel. Positive and negative
values in these A-LI maps reflect, respectively, right and left lateral-
isation. These maps were then averaged for each iCAPs in order to
obtain one A-LI for each iCAPs and each participant.

Laterality of activity occurrences : The second measure of lateral-
ity aimed at extracting possible asymmetries in terms of occurrences
rather than amplitude. To this end, we computed for each voxel the
number of times it was active when a given iCAP was active. The
obtained percentage of voxel-iCAP contribution was then used as an
Occurrence Laterality Index (O-LI) for comparisons. Similarly to the
first measure, we subtracted the left hemisphere maps from right
hemisphere maps and averaged then to obtain a global O-LI.

2.4. Statistical analyses

All analyses were performed using R software, version 3.5.2 (Allaire,
2012; Team et al., 2013). Given the small number of participants in the
partial AgCC group, we completed primary analyses on comparing the
complete AgCC and the TDC groups; and secondary analyses compared
the partial AgCC group to the complete AgCC and TDC groups.

Primary analyses: comparison of the complete AGCC and TDC groups
Group comparisons between complete AgCC and TDC were conducted
for the inter-iCAPs correlations (i.e., static analysis of iCAPs), as well
as for the percentage of innovations on the 12 retrieved networks (i.e.,
temporal properties) using Wilcoxon signed rank test. P values were
corrected for multiple comparisons with the false discovery rate (FDR,
q values <0.1) (Benjamini and Hochberg, 1995). Effect size were as-
sessed using Wilcoxon effect size (r). Linear models were used to evalu-
ate whether network laterality was different across groups for both lat-
erality of activity maps and laterality of activity occurrences. We mod-
elled the effects of network laterality using laterality indices, i.e., A-LI
and O-LI, as dependent variables and groups (i.e., complete AgCC, par-
tial AgCC and TDC) as independent variables. Considering the impor-
tance of handedness in networks laterality (Amunts et al., 1996; Kirsch
et al., 2018; Mazoyer et al., 2014), handedness was used as covariate in
the model. P values were corrected for multiple comparisons with the
false discovery rate (FDR, q values <0.1). Effect size were assessed using
Cohen’s f.

Secondary analyses: comparisons including the partial AgCC group
Group comparison between partial AgCC and complete AgCC, and par-
tial AgCC and TDC were conducted using Wilcoxon signed rank test, for
inter-iCAPs correlations and for the percentage of innovations on the
networks that show significant difference between complete AgCC and
TDC. P values were corrected for multiple comparisons with the false
discovery rate (FDR, q values <0.1) (Benjamini and Hochberg, 1995).
Effect size were assessed using Wilcoxon effect size (r). Linear models
described above were used to evaluate whether network laterality on
A-LI and O-LI was different across groups, including the partial AgCC

group.
3. Results
3.1. Sample characteristics

After quality checking, the current analyses included 12 children
with AgCC, including 8 with complete AgCC and 4 with partial AgCC, as
well as 23 TDC. Characteristics of the study participants in the AgCC and
the TDC groups are presented in Table 1 and in Supplementary Table
S1. Supplementary Table S2 also shows anatomical images of AgCC par-
ticipants. Considering the small number of children with partial AgCC,
group comparisons were conducted primarily with the complete AgCC
and TDC groups. In secondary analyses, we then explored differences
with the partial AgCC group.
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Table 1
Characteristics of the study participants in the Complete AgCC, Partial AgCC and TDC groups .
Complete AgCC Partial AgCC TDC
n 8 4 23
Age in years, mean (SD)[range] 11.43 (1.79)[8.67-14.42] 13.08 (3.68)[9.67-17.08] 11.65 (2.46)[8-16.42]
Sex, n 2 females, 6 males 2 females, 2 males 10 females, 13 males

Handedness, n
Full-Scale IQ, mean (SD)[range]

SR, 2L, 1M
73 (5.66)[67-84]

3R, 1L
95.25 (23.37)[73-126]

20R,3L
111.96 (11.86)[88-136]

Note: Full-scale Intellectual Quotient (IQ) was measured using the Wechsler Abbreviated Intelligence Scale
(WASI) or the Wechsler Intelligence Scale for Children, 4th edition (WISC-IV; n=3) where the mean standardized
score is M= 100 and SD=15; Handedness was estimated using the Edinburgh Handedness Inventory where right-
handed (R)=+40 to +100, left-handed (L)= - 40 to - 100, and mixed handed (M)= - 40 to +40

3.2. Extracted spatial maps correspond to known resting-state networks

The iCAPs framework was applied to resting-state fMRI scans of both
AgCC (complete and partial) and TDC children. We identified 12 iCAPs
that corresponded to well-known resting-state networks, including: a)
sensory-related networks such as primary visual, secondary visual, sen-
sorimotor/auditory networks; b) default-mode network (DMN) decom-
posed into ventral, anterior and precuneus/ventral DMN; c) attention
and executive related network, including the frontoparietal network
(FPN) and visuospatial (VSN) network; d) networks implicating regions
commonly considered as the salience network (SN) such as the anterior
insula (Antl) and dorsal anterior cingulate cortex together with dorso-
lateral prefrontal cortex (dACC/dIPFC), e) subcortical structures net-
works including cerebellum and amygdala/hippocampus (AMY/HIP),
see Fig. 1 and Supplementary Table S4. These well-known networks
were identified in both the AgCC (complete and partial) and the TDC
groups.

3.3. Static properties of inter-iCAPs interactions

To probe alterations in the static properties of the networks, we com-
pared the complete AgCC group to the TDC group in terms of inter-iCAPs
temporal correlation for the 12 identified networks. There was no group
difference for all of the inter-iCAPs interactions, see Supplementary Ta-
ble S3.

3.4. Temporal properties of networks

3.4.1. Comparison of the complete AgCC and TDC groups

To investigate alterations in the temporal properties of the networks,
we compared the complete AgCC group to the TDC group in terms of
the innovation frames as percentage of the total nonmotion scanning
time for the 12 identified networks, see Fig. 2 and Supplementary Ta-
ble S4. The percentage of innovation corresponds to the engagement
in a given brain state. In comparison to the TDC group, children with
complete AgCC showed a significant increase in the percentage of inno-
vation for both subcortical networks, including the cerebellum (iCAP4:
Complete AgCC median = 13.5 ; TDC median = 7.33) and the amyg-
dala/hippocampus (iCAP10: Complete AgCC median = 3.53; TDC me-
dian = 8.06) compared to the TDC group (W =142, Z = -2.27, p = 0.023,
q (FDR adjusted p-value) = 0.093,r=0.41; W= 39, Z=-2.42, p=0.016,
q = 0.093, r = 0.43). A significant reduction in the engagement of the
frontoparietal network was also observed in complete AgCC compared
to TDC (iCAP9: Complete AgCC median = 10.4; TDC median = 7.62; W
=148,Z =-2.57, p = 0.01, q (FDR adjusted p-value) = 0.093, r = 0.45).

3.4.2. Group comparisons including the partial AgCC group

We compared the complete AgCC group to the partial AgCC group, as
well as the partial AgCC to the TDC group on the percentage of innova-
tion for the networks that show a significant difference in engagement
between the complete AgCC and the TDC groups, i.e., iCAP4 - amyg-
dala/hippocampus, iCAPS8 - frontoparietal and iCAP10 - cerebellum. We

found no significant differences in terms of engagement in these 3 net-
works between the complete and the partial AgCC groups, as well as
between the partial AgCC and the TDC groups, see Fig. 2 and Supple-
mentary Table S5.

3.5. Lateradlity of brain networks

¢ Laterality of activity maps: There were no significant differences
in Amplitude Laterality Index (A-LI) between the complete AgCC,
the partial AgCC and the TDC groups for any of the O-LI of 12 iCAPs
networks, see Supplementary Table S6.

Laterality of activity occurrences: There were no significant differ-
ences in Occurrences Laterality Index (O-LI) between the complete
AgCC, the partial AgCC and the TDC groups for any of the 12 iCAPs
networks, see Supplementary Table S7.

4. Discussion

This is the first study to explore the dynamic features of network
brain activity in individuals with AgCC. We used the iCAPs framework
to go beyond static connectivity analyses which enabled examination of
the dynamic engagement of different large-scale functional brain net-
works. Our findings suggest that comparable dynamic large-scale brain
networks can be observed in children with AgCC and TDC, despite com-
plete or partial absence of the major commissural track in the human
brain, i.e., the corpus callosum. In line with the hypothesis of subcor-
tical involvement in individuals with AgCC, examination of temporal
properties of subcortical networks showed increased engagement of the
cerebellum and amygdala/hippocampus networks in children with com-
plete AgCC compared to TDC. Comparable laterality, both in terms of
amplitude and occurences of activity, was found for each of the 12 ex-
tracted dynamic large-scale brain networks between the AgCC and the
TDC groups.

Using innovation-driven coactivation patterns for dynamic large-
scale brain network analysis, we uncovered comparable patterns of
brain network activation in children with AgCC (complete and partial)
and TDC. The qualitative spatial organisation of the 12 well-known dy-
namic networks retrieved were all bilateral. Moreover, using a static
functional connectivity approach, inter-iCAPs interactions were compa-
rable between the AgCC and the TDC groups. These results are in line
with previous resting-state fMRI studies using static analysis methods
and showing similar static spatial organisation of brain networks in in-
dividuals with AgCC and healthy controls (Owen et al., 2013; Tovar-
Moll et al., 2014; Tyszka et al., 2011). These findings provide further
evidence that despite major structural alteration with complete or par-
tial absence of the corpus callosum, typical functional brain networks
can be realised. It is likely that substantial reorganisation occurs and
indirect pathways are found to maintain typical brain states, as well as
inter-hemispheric functional communication in these atypically devel-
oping brains (Honey et al., 2009; Koch et al., 2002).

To explore potential functional reorganisation in individuals with de-
velopmental absence of the corpus callosum, we compared the temporal
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Fig. 1. Spatial patterns of the 12 innovation-
driven coactivation patterns (iCAPs) retrieved
from all subjects. Locations denote displayed
slices in Montreal Neurological Institute coor-
dinates. For each iCAPs, pie charts show the
innovation frames per group as a percentage of
the total nonmotion scanning time, including
complete AgCC, partial AgCC and TDC. Spatial
patterns of the 12 iCAPs include: Antl, anterior
insula; SecVIS, secondary visual; PREC/vVDMN,
precuneus/ventral default mode network;
Cerebellum; VSN, visuospatial network;
SM/AUD, sensorimotor/auditory; aDMN, ante-
rior default mode network; FPN, frontoparietal
network; vDMN, ventral default mode net-
work; AMY/HIP, amygdala/hippocampus;
dACC/dIPFC, dorsal anterior cingulate cor-
tex/ dorsolateral prefrontal cortex; PrimVIS,
primary visual.
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Fig. 2. Percentage of innovations showing significant group
differences for iCAP4-Cerebellum, iCAP8-Fontoparietal net-
work and iCAP10-Amygdala/Hippocampus. The mean for
each iCAP and each group is represented by a grey line; * in-
dicates significant difference between group with p<0.05 and
q<0.1 (FDR adjusted p-value).
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properties of the networks between the AgCC and the TDC groups. A sig-
nificant and specific increase in network engagement was found for both
subcortical networks, i.e., cerebellum and amygdala/hippocampus net-
works, in children with complete AgCC compared to TDC. These findings
support the hypothesis of the contribution of subcortical structures to
functional reorganisation in AgCC. Callosotomy studies provide strong
evidence that subcortical structures play a fundamental role in the func-
tional reconfiguration of the brain (Funnell et al., 2000; Gazzaniga et al.,
1987; Savazzi et al., 2007; Uddin et al., 2008). According to the theory
of Sperry (1984), because of the absence of the CC, the functional organ-
isation of the two hemispheres have become independent and appear to
bifurcate from a unified root of subcortical structures (Sperry, 1984).
Notably, this pattern of increased subcortical engagement was specific
to complete AgCC and was not observed in children with partial AgCC.
In complete AgCC, disruption of programmed callosal formation pro-
cesses occurs very early in brain development; while in partial AgCC,
callosal formation begins and the disruption occurs after the pioneer-
ing axons cross the midline and grow into the contralateral hemisphere
towards their designated target region (Paul et al., 2007). It is possible
that the earlier the disruption occurs, the more likely that brain reorgan-
isation takes place through subcortical networks (Anderson et al., 2011;
Kennard, 1938).

In parallel to the increased engagement of subcortical networks, we
observed a significant reduction of engagement of the frontoparietal net-
work in the complete AgCC group compared to TDC. Tyszka and col-
leagues (2011) also observed an atypical pattern in the frontoparietal
network in adults with AgCC, with the frontoparietal network split into
anterior and posterior networks (Tyszka et al., 2011). In typically devel-
oping brains, bilateral frontal and parietal cortices are highly connected
by the corpus callosum (Hofer and Frahm, 2006). In the absence of the
corpus callosum, it is possible that these regions are less able to en-
gage in a functional network that is comparable to typically developing
brains.

As the major inter-hemispheric connections in the human brain, cal-
losal connectivity has long being considered a key contributor to the
architecture of functional lateralisation in the human brain (Gazzaniga,
2000; Jeeves and Temple, 1987; Mancuso et al., 2019). In the present
study, the 12 dynamic large-scale brain networks retrieved showed
comparable laterality between the AgCC and the TDC groups, both
in terms of amplitude and occurences of activity. Findings are con-
sistent with a previous resting-state study showing similar lateral-
ity of static networks between individuals with AgCC and healthy
controls (Tyszka et al., 2011). This suggests that inter-hemispheric
functional integration can occur in the absence of the corpus
callosum.

In the current study, findings showed an increased engagement of the
contribution of subcortical networks in brain reorganisation in the AgCC
compared to the TDC group. Other neuroplastic responses have also
been proposed, in particular, the contribution of the anterior and pos-
terior commissures as alternative commissural pathways is of interest
(Hung et al., 2019; Siffredi et al., 2021b; 2019; Tovar-Moll et al., 2014).
It is possible that these structures also play a role in the establishment of
typical large-scale functional brain networks and their functional later-
alisation, but further studies are needed to explore these questions. Fur-
thermore, in future works, extracting networks separately from the two
hemispheres could allow the investigation of asymmetries. Another po-
tential advantage of performing the analysis at the hemisphere level, is
the possibility to assess the couplings between activity patterns in homo-
topic regions using state-of-the art methods for information flow anal-
ysis (Frassle et al., 2021). Such analyses will certainly benefit from the
continuous improvement of fMRI data acquisition speed. On the struc-
tural level, there was an important variability in terms of anatomical
profiles. In particular, some children have isolated AgCC, while others
have AgCC with additional brain malformations (i.e., complex AgCC).
Further investigations with larger samples of each phenotypic group,
possibly achieved through recruitment across multiple sites, are neces-
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sary to better understand the impact of such additional malformations
on brain functioning.

4.1. Conclusion

The present findings showed typical spatial patterns of large-scale
functional brain networks in children with complete and partial absence
of the corpus callosum. Increased engagement of subcortical networks
in children with complete AgCC are in line with the hypothesis of func-
tional brain reconfiguration through subcortical routes. Moreover, de-
spite the loss of callosal connectivity, the laterality of brain networks
retrieved were comparable in the AgCC and the TDC groups. This work
provides novel evidence that comparable dynamic resting-state func-
tional networks can be realised on different structural architectures, at
least in a developmental context that permits substantial reorganisation,
such as AgCC.
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