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Highlights 

 Slow pyrolysis of biomass was modelled by nonlinear regression and artificial neuron network. 

 Nonlinear regressions models and the architecture of artificial neuron network were optimised. 

 Good prediction for char yield and properties by artificial neuron network was achieved. 

 

Abstract 

Char produced from lignocellulosic biomass via slow pyrolysis have become one of the most feasible 

alternatives that can partially replace the utilisation of fossil fuels for energy production. In this study, 

the relationship between compositions of lignocellulosic biomass, operating conditions of slow 

pyrolysis, and characteristics of produced char have been analysed by using multiple nonlinear 

regression (MnLR) and artificial neural networks (ANN). Six input variables (temperature, solid 

residence time, production capacity, particle size, and fixed carbon and ash content) and five 

responses (char yield, and fixed carbon, volatile matter, ash content, HHV of produced char) were 

selected. A total of 57 literature references with 393 - 422 datasets were used to determine the 

correlation and coefficient of determination (R2) between the input variables and responses. High 

correlation results (>0.5) existed between pyrolysis temperature and char yield (-0.502) and volatile 

matter of produced char (-0.619), ash content of feedstock and fixed carbon (-0.685), ash content 

(0.871) and HHV (-0.571) of produced char. Whilst the quadratic model was selected for the 

regression model, then the model was further optimised by eliminating any terms with p-values greater 

than 0.05. The optimised MnLR model results showed a reasonable prediction ability of char yield 

(R2=0.5579), fixed carbon (R2=0.7763), volatile matter (R2=0.5709), ash (R2=0.8613), and HHV 

(R2=0.5728). ANN model optimisation was carried out as the results showed “trainbr” training 
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algorithm, 10 neurons in the hidden layer, and “tansig” and “purelin” transfer function in hidden and 

output layers, respectively. The optimised ANN models had higher accuracy than MnLR models with 

the R2 greater than 0.75, including 0.785 for char yield, 0.855 for fixed carbon, 0.752 for volatile matter, 

0.951 for ash and 0.784 for HHV, respectively. The trained models can be used to predict and optimise 

the char production from slow pyrolysis of biomass without expensive experiments.   

Keywords: char, lignocellulosic biomass, slow pyrolysis, artificial neural network, multiple nonlinear 

regression 

 

1. Introduction 

Lignocellulosic biomass such as wood, forest residue and agricultural materials can be used to 

produce solid, liquid and gaseous products via chemical, thermochemical, and biochemical 

technologies [1]. Thermochemical processes, such as gasification, pyrolysis and hydrothermal 

liquefaction, are the most widely used technologies for biofuel production [2]. Pyrolysis is a thermal 

degradation process in which biomass is degraded in an oxygen-free medium with an inert carrier gas 

such as nitrogen to produce biofuels. Oxygen-free medium eliminates the combustion reaction and 

decreases the thermal stability of biomass at high temperature. The inert carrier gas can also purge 

the primary pyrolysis vapours out of the reactor to minimise secondary vapour phase cracking 

reactions. According to the heating rate and solid/vapour residence time, pyrolysis operations can be 

divided into two types, fast and slow pyrolysis. When liquid production is the focus, fast pyrolysis is 

typically applied with short solid/vapour residence times in the order of seconds (e.g. 1-2 s) and rapid 

heating rates (e.g. 500 W/m2 K). If the solid product (i.e. char) is the main aim, slow pyrolysis with 

longer solid/vapour residence times is preferred [3]. 

Slow pyrolysis operates at lower temperatures (300oC to 600oC) along with lower heating (5-20 

oC/s) and longer solid residence times (10-60 mins). Such process parameters allow the optimisation 

of char yield with ca. 30-50 wt% by reducing the secondary thermal cracking and volatile component 

releases from biomass. The char production by slow pyrolysis has been affected not only by the 

process parameters but also the properties of the feedstocks. As summarised by Tripathi et al. [4], 
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reaction conditions and feedstock composition are affecting product yield and the properties of the 

pyrolysis products. Critical operating conditions include pyrolysis temperature, pressure, reaction time, 

particle size etc. Increasing the pyrolysis temperature reduces the char yield as higher temperature 

leads to the release of the volatile components of biomass and the further thermal cracking of 

hydrocarbon materials. Around atmospheric pressures, in a broad range of 0.5 to 5 MPa, can be 

utilised for slow pyrolysis. Increasing the pressure will increase the gas yield, as well as the fixed 

carbon content and specific surface area of produced char. Long solid residence times (30-60 mins) 

provide sufficient time for the completion of secondary repolymerisation reactions and enhance the 

pore formation in char [4]. The use of inert gas can be optional, however, when utilised, the flow rate 

should be carefully maintained because a high flow rate will purge most of the vapour, resulting in 

lower vapour residence time. The preferable biomass particle size and the production capacity for 

slow pyrolysis are mainly dependent on the size of reactors. Usually, the biomass particle sizes in the 

range of 1 mm to 200 mm are preferred. Increasing the biomass particle size leads to thermally thick 

heat transfer regimes (Biot number>>1) reducing the formed primary pyrolysis vapours that travel 

through the biomass layer; this results in higher repolymerisation and char formation [5]. Slow 

pyrolysis has been investigated via various types of reactors, including fixed-bed (batch), auger and 

bubbling fluidised-bed (continuous).  

The compositions of the lignocellulosic biomass also have a big influence on the char production 

and characteristics. The physicochemical properties of the lignocellulosic biomass are measured by 

using proximate and ultimate analysis. Proximate includes fixed carbon (5-25 wt%), volatile matter 

(50-80 wt%), ash (5-20 wt%), moisture contents (10-30 wt%) and high heating value (10-30 MJ/kg), 

whilst ultimate includes carbon (40-60 wt%), hydrogen (5-8 wt%), oxygen (30-55 wt%), nitrogen (<1 

wt%), and sulphur (<1 wt%) contents. Biomass may undergo various pre-treatment steps, such as 

torrefaction and solar drying, to reduce its moisture content to less than 10 wt% [6]. After slow 

pyrolysis, the fixed carbon content (50-80 wt%), elemental carbon content (50-80 wt%), ash content 

(10-50 wt%), and high heating value (15-35 wt%) significantly increases, while a decreasing trend in 

the volatile matter (10-25 wt%), moisture (<5 wt%), hydrogen (<5 wt%) and oxygen (5-30 wt%) 

contents can be observed. The aromaticity and stability of the char can be determined by the H/C 
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molar ratios. Whilst the polarity and surface oxidation of the char can be determined by the O/C molar 

ratios. One of the challenges of slow pyrolysis is that the produced char contains high ash content 

(10-50 wt%), involving alkali and alkaline earth metals (AAEMs). Such high ash contents in the form 

of char cause slagging, fouling, and corrosion behaviours in the combustion process [7].  

Modelling of biomass conversion processes is necessary for process scale-up, optimisation and 

control in industrial applications. Due to the complexity and heterogeneity of the physicochemical 

structure of the biomass, it is difficult to develop mathematical models to simulate biomass conversion 

processes from the first principles. Therefore, researchers have tried to apply other mathematic tools 

to tackle the problems, including multiple regression and artificial neural network. 

Multiple nonlinear regression (MnLR) is a statistical tool to analyse the correlation between the 

input variables and responses. The correlation models can be achieved by using different functions 

of the regression, including linear, linear with two-factor interaction (2FI), quadratic and cubic models 

[8]. The accuracy of the correlation models can be determined by the measures, such as the mean 

squared error and the coefficient of determination R2. The regression analysis has been widely used 

in the biomass conversion processes, such as predicting higher heating values [9], optimising 

hydrothermal carbonisation [10], pyrolysis [11][12], and gasification [13]. For example, Ates and 

Erginel found that the char yield of fast pyrolysis can be predicted by a logarithmic model of the 

pyrolysis temperature [11]. Figueiredo et al. also showed that the combined yield of monomeric 

aromatics and alkylphenolics in the pyrolysis oil were predicted accurately by a simple model based 

on the feedstock properties and reaction conditions [12].  

Artificial neural network (ANN) is a self-learning method that can be used on many applications 

such as facial recognition, self-driving cars, price prediction for financial markets, and the predictions 

of possible outcomes for industrial processes. ANNs analyse a large number of datasets and trains 

themselves to recognise patterns between datasets, then predicts the nonlinear relationships and 

correlation between the input variables and responses. In the research area of bioenergy, ANNs have 

been developed to predict the thermal properties of biomass [14–16], and model biomass gasification 

[17–19], torrefaction [20], hydrolysis [21] and pyrolysis [3,22,23] processes. Zhu et al. developed 

prediction models for the yield and carbon contents of char produced by pyrolysis of lignocellulosic 
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biomass using machine learning [3]. The input variables used in Zhu et al.’s study included properties 

of feedstock, such as contents of lignin, cellulose, hemicellulose and ash, elemental compositions 

and particle size, and pyrolysis conditions, such as heating rate, highest treatment temperature and 

residence time. 245 datasets of char yield and 128 datasets of carbon content in char were used for 

the model training. They found that pyrolysis temperature was the dominating factor in the char yield 

and carbon content of the product. One drawback of the research was the requirement of structural 

information and the elemental composition of the feedstock. Most of the research published on the 

pyrolysis of biomass only reported the proximate analysis results of feedstock, which had limited the 

dataset available for model training. The higher heating values of produced char was also not 

predicted but is relevant in the char production industry and energy-generating plants. Ozonoh et al. 

used ANN to optimise the torrefaction process of coal/biomass/waste tyre blends and predict char 

yield, enhancement factor and higher heating value using torrefaction temperature, torrefaction time 

and blend ratio [20]. It was shown that it was feasible to predict char yield and higher heating value of 

produced char using ANN models. 

To our best knowledge, there is no model to predict the char yield and char properties from a 

slow pyrolysis. The study aims to model the relationships between the input variables (operating 

parameters and biomass compositions) of a slow pyrolysis process and responses (char yield and 

characteristics of the solid product) by using multiple regression and artificial neuron network models, 

as well as to identify the most accurate models. The trained models can be used to predict and 

optimise the char production from slow pyrolysis of biomass without expensive experiments.  

2. Experimental data and analysis method 

2.1 Data collection 

The experimental results of char production from lignocellulosic biomass via slow pyrolysis were 

collected based on an extensive survey of the scientific literature. As summarised in Table 1, a total 

of 57 references were reviewed. Among them, 44 references were about batch operation and 13 

references were about continuous operation. The number of data sets for solid yield, fixed carbon, 

volatile matter, ash content and higher heating values were 419, 422, 422, 422 and 393, respectively. 

The complete set of collected data can be found in Table S1 in the supplementary information. 
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Table 1. Summary of the number of references and datasets 

Operation 
mode 

Number of 
references 

Char yield Fixed 
carbon 

Volatile 
matter 

Ash 
content 

Higher 
heating 
value 

Batch 44 350 349 349 349 340 
Continuous 13 69 73 73 73 53 
Total 57 419 422 422 422 393 

 

2.2 Input variables and responses 

In slow pyrolysis, various factors are affecting the product yields and their chemical/physical 

properties. Based on the literature investigation, seven variables were selected as the input variables, 

which were divided into two categories: operation parameters, involving pyrolysis temperature (oC), 

residence time (min), and production capacity (g), and feedstock properties, such as the particle size 

(mm), fixed carbon (wt% dry basis (db)) and ash content (wt% db)). The production capacity was the 

amount of biomass processed per batch for batch operations and the feeding rate of biomass (in g/hr) 

for continuous operations. Heating rate and carries gas flow rate were not selected as input variables 

because more than 30% of the selected references didn’t report these information. The volatile matter 

content of feedstock was not selected as it is dependent on the feedstock’s fixed carbon and ash 

contents. In the case of a range of particle size of the feedstock was reported in a certain article, a 

mean value was calculated and taken as the reference data. The selected responses included char 

yield (wt% db), fixed carbon (wt% db), volatile matter (wt% db), ash content (wt% db), and HHV (MJ 

kg-1) of the produced char. When no HHV but the elemental compositions were reported, the unified 

linear correlation (Eq.1)[24] was used to calculate the product’s HHV. The summary of the datasets 

is shown in Table 2, including the number of data points, minimum, maximum, mean, and standard 

deviation values of each variable.  

𝐻𝐻𝑉 (MJ Kg−1) = 0.3491𝐶 + 1.1783𝐻 + 0.1005𝑆 − 0.1034𝑂 − 0.0151𝑁 − 0.0211𝐴   (1) 

where C, H, S, O, N, and A are representing carbon (wt%), hydrogen (wt%), sulphur (wt%), oxygen 

(wt%), nitrogen (wt%) and ash content (wt% db), respectively.  

Table 2. Descriptive statistics of input variable and responses 

Variables Unit Count Min Max Mean Std. dev. 

Input Temperature oC 448 300 800 515.3 125.3 
Residence time min 448 1 180 34.2 29.4 
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Production capacity g 448 1 30000 950.6 3935.1 
Particle size mm 448 0.15 200 9.8 21.4 
Fixed carbon wt% (db) 448 0 27.8 15. 5.2 
Ash wt% (db) 448 0.2 38 6 5.8 

R
e
s
p
o
n
s
e
 

Char yield wt% (db) 419 11.2 59 32.5 8.5 
Fixed carbon wt% (db) 422 2.01 95.36 62.5 18.2 
Volatile matter wt% (db) 422 1.29 66.3 21.4 12.7 
Ash wt% (db) 422 0.6 67.7 15.1 13.8 
HHV MJ kg-1 (db) 393 6.47 39.9 26.3 5.5 

*db = dry basis 

The histograms of the input variables and responses are shown in Figures 1 and 2. The shape of the 

histograms indicated the most widely used operating conditions and their distributions of the literature 

experiments. The histograms showed that most experiments were conducted at pyrolysis 

temperatures of ca. 500 oC, solid residence times of ca. 60 minutes, production capacities of ca. 50 

grams, and particle sizes of ca. 3 mm. It also indicated that most experiments were on an experimental 

scale as small production capacity was conducted. On the other hand, the histograms of the biomass 

compositions were only indicated the distributions from the literature studies as biomass was 

depended on the type of the biomass, its harvest time, and pre-treatment process. For example, algal 

biomass usually contained less than 10 wt% db of fixed carbon, but the fixed carbon of hazelnut shell 

could be between 13.4 to 27.6 wt% db, which was mainly dependent on its harvest time. Whilst the 

produced char’s characteristics were depended on both operating conditions and composition of 

biomass, Figure 2 a-e showed the distribution and the highest counts of char yield (25-35 wt% db), 

fixed carbon (60-80 wt% db), volatile matter (5-20 wt% db), ash (0-5 wt% db), and HHV (27.5-28.5 

MJ/kg).  
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Figure 1. Histograms of the input variables. (a) pyrolysis temperature, (b) solid residence time, (c) 

production capacity, (d) particle size, (e) fixed carbon of feedstock, (f). ash of feedstock. 
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Figure 2. Histograms of the responses. (a) char yield (wt%), (b) fixed carbon (wt%) in char, (c) volatile 

matter (wt%) in char, (d) ash content in char (%), (e) HHV of char. 

2.3 Regression analysis 

The relationship between the input variables and the responses was evaluated by multiple 

regressions using the software Design Expert 12. The lack-of-fit tests and model summary statistics 

for linear, linear with two-factor interaction (2FI), quadratic and cubic models were investigated to 

choose the most suitable model. The selection criterion included model p-value, lack-of-fit p-value, 

adjusted coefficient of determination (R2) and predicted R2. The general form of the models is shown 

in Eq.2 to Eq.5 for linear, 2FI, quadratic and cubic models, respectively. 

𝑦 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖
𝑘
1 + 𝑒           (2) 

𝑦 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖
𝑘
𝑖=1 + ∑ ∑ 𝑎𝑖𝑗(𝑖<𝑗)𝑥𝑖𝑥𝑗

𝑘
𝑗

𝑘
𝑖=1 + 𝑒        (3) 

𝑦 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖
𝑘
𝑖=1 + ∑ ∑ 𝑎𝑖𝑗(𝑖<𝑗)𝑥𝑖𝑥𝑗

𝑘
𝑗

𝑘
𝑖=1 + ∑ 𝑎𝑖𝑖𝑥𝑖

𝑘
𝑖=1

2
+ 𝑒     (4) 

𝑦 = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖
𝑘
𝑖=1 + ∑ ∑ 𝑎𝑖𝑗(𝑖<𝑗)𝑥𝑖𝑥𝑗

𝑘
𝑗

𝑘
𝑖=1 + ∑ 𝑎𝑖𝑖𝑥𝑖

𝑘
𝑖=1

2
+ ∑ ∑ ∑ 𝑎𝑖𝑗𝑙𝑥𝑖𝑥𝑗𝑥𝑙

𝑘
𝑙

𝑘
𝑗

𝑘
𝑖=1 + 𝑒  (5) 

    

In the models, 𝑥1,𝑥2, and 𝑥𝑘 are terms for the input variables, 𝑎𝑖 , 𝑎𝑖𝑗, 𝑎𝑖𝑖 , 𝑎𝑖𝑗𝑙 are the coefficients of 

each term, and 𝑒 is the residual of the models. For the input variables, Production capacity and 

Particle size, a logarithmic transformation of the raw data was carried out as the data for these two 

input variables covered large range. For the rest input variables, raw data was used in the regression 

analysis. The analysis of variance (ANOVA) for selected models was studied to obtain the 

mathematical relationship between the input variables and the responses. The significance of 
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variables in the model was corrected based on p-values less than 0.05. To simplify the models, the 

automatic model selection feature in Design Expert was used to remove any terms with p-values 

greater than 0.05. 

2.4 Artificial neural network model 

An artificial neural network (ANN) is a mathematical model which analyses a large number of 

datasets and trains itself to recognise patterns between datasets. It then predicts the nonlinear 

relationships and correlation between the input data and responses. As shown in Figure 3, an ANN 

structure consists of three layers, input, hidden and output layers. The hidden layer contains several 

neurons connected to the input and target parameters by adjustable weighted linkages, and the 

transfer function in the hidden layer introduces the nonlinearity to the network.  

 

Figure 3. The architecture of an artificial neural network 

In this study, MATLAB was used to develop the ANN models to determine the relationship 

between the input variables and the responses. To build successful ANN models, the architectures of 

the ANN model had to be optimised, including the training algorithms, number of neurons, and transfer 

functions. The experimental datasets from the literature search were randomly divided into training, 

validation and testing. In the training phase, 70% of the datasets were used, whilst the validation and 

testing phase used 15% each. Large datasets for the training phase allowed the ANN model to be 

trained and recognised. The validation phase determined the reliability of the model, and the testing 

phase evaluated the outcome of the model. The input datasets were normalised into a specified range 
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between -1 to 1 before incorporating into the network training to avoid numerical overflow due to 

excessively huge or small weights (Eq. 6):  

𝑁𝑝 = 2
(𝐴𝑝−𝑚𝑖𝑛𝐴𝑝)

(𝑚𝑎𝑥𝐴𝑝−𝑚𝑖𝑛𝐴𝑝)
− 1              (6) 

where 𝑁𝑝  is the normalised parameter, 𝐴𝑝  is the actual parameter, 𝑚𝑖𝑛𝐴𝑝 is the minimum value of 

the actual parameter and 𝑚𝑎𝑥𝐴𝑝 is the maximum value of the actual parameter. Whilst the response 

datasets were unchanged to predict the actual results from the model. 

In MATLAB, twelve different training algorithms are available, including Levenberg-Marquardt 

(“trainlm”), Bayesian Regularization (“trainbr”), BFGS Quasi-newton (“trainbfg”), Resilient 

Backpropagation (“trainrp)), Scaled Conjugate Gradient (“trainscg”), Conjugate Gradient with 

Powell/Beale Restarts (“traincgb”), Fletcher-Powell Conjugate Gradient (“traincgf”), Polak-Ribiere 

Conjugate Gradient (“traincgp”), One Step Secant (“trainoss”), Variable Learning Rate Gradient 

Descent (“traingdx”), Gradient Descent with Momentum (“traindm”), and Gradient Descent (“traingd”). 

MATLAB codes were developed to determine which algorithm was the best for the model in terms of 

their R2 and low MSE values. During the optimisation of the training algorithms, the other parameters 

were kept constant, including 5 as the number of neurons in the hidden layer, tangent sigmoid (“tansig”) 

function as the transfer function and HHV as the response.  

After the most suitable training algorithm was determined, the number of neurons in the hidden 

layer was needed to decide. The numbers of hidden neurons in the hidden layer are needed to 

determine. If the numbers of hidden neurons selected are too less as compared with the complexity 

of the problem, underfitting might occur where the neurons are unable to detect signals on a 

complicated date. If excessive hidden neurons are used, overfitting will take place, and the 

generalisation capability will be degraded. The number of neurons in 1 to 15 were evaluated for R2 

and MSE values. Same as the optimisation of the training algorithms, the other parameters were kept 

constant, including Bayesian Regularization (“trainbr”) as the training algorithm, tangent sigmoid 

(“tansig”) function as the transfer function and HHV as the response.  
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The transfer function in the hidden layer was also optimised using the same principle. Fifteen 

transfer functions were provided in MATLAB, including competitive transfer function (“compet”), Elliot 

sigmoid transfer function (“elliotsig”), positive hard limit transfer function (“hardlim), symmetric hard 

limit transfer function, (“hardlims”), logarithmic sigmoid transfer function (“logsig”), inverse transfer 

function (“netinv”), positive linear transfer function (“poslin”), linear transfer function (“purelin”), radial 

basis transfer function (“radbas”), radial basis normalised transfer function (“radbasn”), positive 

saturating linear transfer function (“satlin”), symmetric saturating linear transfer function (“satlins”), 

soft max transfer function (“softmax”), symmetric sigmoid transfer function (“tansig”), and triangular 

basis transfer function (“tribas”). The most suitable transfer function was determined when Bayesian 

Regularization (“trainbr”) was the training algorithm, 5 was the number of neurons in the hidden layer, 

and HHV was the response.  

After the architecture of the ANN model was optimised, the same parameters were applied to 

develop the models for all the responses, including char yield, char’s fixed carbon, volatile matter, ash 

content and HHV. All MATLAB codes are included in the supplementary information. 

3 Results and discussion 

3.1 Raw data analysis 

A correlation analysis between the input variables and responses was carried out. The Pearson’s 

correlation coefficients and the significance level (p-value) are shown in Table 3. High correlation 

coefficients (>0.5) existed between pyrolysis temperature and volatile matter of produced char, ash 

content of feedstock and fixed carbon, volatile matter of produced char, and HHV of produced char. 

The scatter plots of the pairs with high correlation coefficients are shown in Figure 4. The analysis 

shows that the correlation coefficient of pyrolysis temperature between char yield and char’s volatile 

matter is -0.502 and -0.619, respectively, meaning as increasing pyrolysis temperature, the char yield 

and the volatile matter of the char will decrease. Whilst the ash content of biomass had a significant 

correlation with the fixed carbon (0.685), ash content (0.871), and HHV (-0.571) of produced char, 

meaning higher ash content in biomass could lead to higher ash content in char but lower fixed carbon 

and HHV of char. Sakulkit et al. studied the characteristics of pyrolysis products from oil palm trunk 

biomass [25]. They showed that, with increasing pyrolysis temperature from 400 oC to 500 oC, the 
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volatile matter of the produced char decreased from 19.26% to 14.15 wt%. Yang et al. indicated that 

the fixed carbon content rapidly increased from 63.18 wt% to 79.98 wt% when temperature increased 

from 300 oC to 500 oC. They also showed high temperature (>500 oC) favours the decomposition of 

alkaline metals of biomass to produce ash which decreases the fixed-carbon content of produced 

char [26].  

Table 3. Pearson’s correlation coefficients between the input parameters and the responses. 

Significance between the parameters is indicated by * p<0.05, ** p<0.01, *** P<0.001. ns indicates no 

significant correlation (p>0.05). High correlation coefficients (<-0.5 or >0.5 are in bold). 

 

                       Response 
Input variable  

Char yield 
Fixed 
carbon 

Volatile 
matter 

Ash 
content 

HHV 

Pyrolysis temperature -0.5023*** 0.3901*** -0.6187*** 0.0541ns 0.1208** 
Residence time -0.0597ns 0.1434*** -0.1873*** -0.0127ns -0.0962ns 
Production capacity -0.0185ns 0.0400ns 0.1193* -0.1534** 0.0864ns 
Particle size -0.0720ns 0.0559ns -0.0657ns -0.0376ns 0.0610ns 
Fixed carbon 0.0565 ns 0.4084*** -0.1155** -0.3968*** 0.4525*** 
Ash content 0.3884*** -0.6850*** 0.0409ns 0.8706*** -0.5710*** 
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Figure 4. Scatter plots of the pairs of input variables and responses with high correlation coefficients 

(>0.5). (a) char yield vs pyrolysis temperature, (b) char’s volatile matter vs pyrolysis temperature, (c) 

char’s fixed carbon vs feedstock’s ash content, (d) char’s ash content vs feedstock’s ash content, (e) 

char’s HHV vs feedstock’s ash content. 

3.2 Optimisation of MnLR model 

To determine the appropriate MnLR models and to represent the relationship between the input 

variables and responses, the R2, adjusted R2 and predicted R2 values were calculated for linear, 2FI, 

quadratic and cubic models, as shown in Table 4. The degrees of freedom of each model, i.e. the 

numbers of model coefficients, are also listed in the table. As expected, increased degrees of freedom 

in the models, from linear to cubic, led to higher R2 values. However, when adjusted R2 and predicted 

R2 values were evaluated, it shows that the cubic model has over-fitted the dataset and cannot predict 

unseen inputs because of its negative predicted R2 values. Therefore, the quadratic model, the one 

with the highest adjusted R2 and predicted R2 values, were selected for further optimisation. The 

quadratic models had a degree of freedom of 27. To simplify the models, any terms with p-values 
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greater than 0.05 were removed. After the optimisation, the predicted R2 values were further improved, 

as shown in Table 4. 

Table 4. Model Summary Statistics of MnLR model 

Response 
Model  

Char Yield Fixed carbon Volatile matter Ash HHV 

Linear 

DoF 6 6 6 6 6 
R2 0.4310 0.6467 0.4256 0.7818 0.4288 
Adjusted R2 0.4227 0.6416 0.4173 0.7787 0.4199 
Predicted R2 0.4088 0.6317 0.4038 0.7705 0.4015 

2FI 

DoF 21 21 21 21 21 

R2 0.5319 0.7156 05598 0.8233 0.5223 
Adjusted R2 0.5072 0.7007 0.5367 0.8140 0.4953 
Predicted R2 0.4728 0.6564 0.4931 0.7795 0.4178 

Quadratic 

DoF 27 27 27 27 27 

R2 0.5746 0.7783 0.6242 0.8640 0.5926 
Adjusted R2 0.5452 0.7631 0.5984 0.8547 0.5625 
Predicted R2 0.5048 0.7356 0.5500 0.8355 0.4989 

Cubic 

DoF 82 82 82 82 82 

R2 0.7299 0.8597 0.7582 0.9223 0.7888 
Adjusted R2 0.6639 0.8258 0.6997 0.9035 0.7330 
Predicted R2 -0.1017 0.6490 -0.8481 0.5979 -0.0664 

Optimised 

DoF 13 21 8 16 12 

R2 0.5579 0.7763 0.5709 0.8613 0.5728 
Adjusted R2 0.5437 0.7646 0.5626 0.8558 0.5594 
Predicted R2 0.5256 0.7444 0.5486 0.8420 0.5344 

 

The optimised models are listed in Eq. 7-11 for all five responses. The actual values and the 

predicted values using the optimised models are plotted in Figure 5. 

𝐶ℎ𝑎𝑟 𝑦𝑖𝑒𝑙𝑑 = 64.4973 − 0.135679 ×  𝐴  − 0.00549408 ×  𝐵 +  0.463384 ×  𝐶  − 8.50056 ×  𝐷 +

 0.532823 ×  𝐸 +  1.16931 ×  𝐹 +  0.0103204 ×  𝐴 × 𝐶 +  0.060061 ×  𝐵 × 𝐶  − 0.00924671 ×  𝐵 ×

𝐸 − 0.315338 ×  𝐶 × 𝐹 +  0.491981 ×  𝐷 × 𝐸 +  7.62325 × 10−5  × 𝐴2   − 1.21077 ×  𝐶2  (7) 

𝐹𝐶 = 12.8171 +  0.174061 ×  𝐴 +  0.0972342 ×  𝐵 +  7.05841 ×  𝐶  − 2.39589 ×  𝐷 +

 0.0192259 ∗  𝐸  − 4.17954 ×  𝐹 +  0.000630967 ×  𝐴 × 𝐵  − 0.0201853 ×  𝐴 × 𝐶 +  0.0226548 ×
 𝐴 × 𝐷  − 0.00267746 ×  𝐴 × 𝐹 +  0.0584058 ×  𝐵 × 𝐷  − 0.0135689 ×  𝐵 × 𝐸 +  0.0157766 ×  𝐵 ×

𝐹 +  0.414499 ×  𝐶 × 𝐸  − 0.651785 ×  𝐷 × 𝐸 +  0.431926 ×  𝐷 × 𝐹 +  0.0732588 ×  𝐸 × 𝐹  −

9.20812 × 10(−5)  ×  𝐴2   − 0.00203088 × 𝐵2   − 1.72217 ×  𝐶2  +  0.0811854 × 𝐹2  

         (8) 

𝑉𝑀 = 94.1817 − 0.210606 ×  𝐴  − 0.0806182 ×  𝐵  − 5.06399 ×  𝐶 +  5.05081 ×  𝐷 +

 0.480784 ×  𝐹  − 0.858883 ×  𝐷 × 𝐹 +  0.000137518 × 𝐴2  +  1.51123 ×  𝐶2   (9) 

𝐴𝑠ℎ = −13.3307 +  0.0644936 ×  𝐴 +  0.013061 ×  𝐵  − 2.77813 ×  𝐶  − 1.2763 ×  𝐷  −

0.323806 ×  𝐸 +  2.79003 ×  𝐹  − 0.000204887 ×  𝐴 × 𝐵 +  0.00125605 ×  𝐴 × 𝐹  − 0.0533454 ×

 𝐵 × 𝐷  − 0.0115856 ×  𝐵 × 𝐹 +  0.21633 ×  𝐶 × 𝐸 +  0.30372 ×  𝐶 × 𝐹  − 0.0263193 ×  𝐸 × 𝐹  −

5.07695 × 10−5 ×  𝐴2  +  0.00143485 ×  𝐵2  − 0.0518208 ×  𝐹2           (10) 

𝐻𝐻𝑉 = 19.5416  − 0.000701126 ×  𝐴 +  0.0367686 ×  𝐵  − 0.191607 ×  𝐶  − 2.47057 × 𝐷 +

 1.23483 ×  𝐸  − 1.186 × 𝐹 +  9.82155 × 10−5 ×  𝐴 × 𝐵 +  0.00748975 ×  𝐴 × 𝐷  − 0.045769 ×  𝐵 ×

𝐶 +  0.253446 ×  𝐶 × 𝐹  − 0.0332786 ×  𝐸2  +  0.0198405 ×  𝐹2                           (11) 
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where A, B, C, D, E and F are pyrolysis temperature (oC), residence time (min), the common logarithm 

of production capacity (g), the common logarithm of feedstock particle size (mm), fixed carbon (wt% 

db), and ash content (wt% db), respectively. The MnLR models showed poor performance for 

predicting char yield, volatile matter and HHV with low R2 values. It indicates that further improvement 

is required for accurate predictions. 

 

   

  

 
 
Figure 5. Plots of the actual and predicted values obtained from the regression model: (a) char yield 

(wt%), (b) fixed carbon in char (wt% db), (c) volatile matter in char (wt% db), (d) ash content in char 

(wt% db) and (e) HHV of char (MJ kg-1). 

3.3 Optimisation of ANN model 
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As summarised in Table 5, twelve training algorithms and their analysis results including the 

number of iterations, mean square error (MSE) and R2 values of training, validation, testing and overall 

are shown. A model with the lowest overall MSE and highest overall R2 value is considered the best 

algorithm. Among all the training algorithms from Table 5, “trainbr” had the lowest MSE overall of  8.4 

and highest R2 overall of 0.703. Whilst “traincgp” was the second-best algorithm with MSE overall of 

10.3 and R2 overall of 0.657. A few literatures of using “trainbr” algorithms for ANN model have been 

reviewed. Nasrudin et al. found “trainbr” was the best algorithm among eleven training algorithms in 

modelling microwave pyrolysis of biomass [27]. It indicated the “trainbr” algorithm exhibits the best 

performance in predicting the weight of output and the accuracy between actual and predicted output. 

Serrano et al. used “trainbr” for modelling gasification in fluidised bed [28]. It showed “trainbr” achieved 

the highest R2 of 0.94 for gas yield. On the other hand, fewer literatures have been proposed “trainlm” 

and “trainbfg” were alternative algorithms. Antwi et al. compared “trainbfg” with other ten algorithms 

for estimation of biogas and methane yields [29]. It showed the “trainbfg” and “traincgp” were the best 

algorithms among eleven training algorithms with R2 of 0.987 and 0.979 for biogas and methane yield, 

respectively. Sun et al. suggested “trainlm” has an excellent performance in the prediction of pyrolysis 

products from industrial waste biomass [23]. It discussed “trainlm” algorithm combining with sigmoid 

transfer function minimised the MSE value and optimal the ANN model. Demuth et al. explained 

“trainbr” algorithm randomise with specified distribution variables for the weights and biases of the 

ANN network, then using statistical techniques to estimate the results [30]. It showed “trainbr” provides 

better estimation on multivariable models due to regularisation quality and early stopping of “trainbr” 

can ensure network to tolerate large iteration to reach its convergence. It also suggested “trainbr” 

works best when the dataset is normalised between -1 to 1. Therefore, “trainbr” algorithm was 

selected, and used as constant model variable for determine the optimum number of neurons and 

transfer function for this ANN model. 

Table 5. Summary of training algorithm statistic (Tr: training, V: validation, T: test, O: overall) 

Training algorithm 
Number of 
iterations 

Mean square error (MSE) R2 

Tr V T O Tr V T O 

 trainlm  63 10.9 13.3 11.3 11.3 0.638 0.630 0.569 0.624 
 trainbr  117 8.4 12.1 8.4 8.9 0.730 0.593 0.706 0.703 
 trainbfg  112 9.3 11.9 19.5 11.2 0.708 0.521 0.369 0.630 
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 trainrp  68 18.1 16.8 11.8 17.0 0.407 0.494 0.563 0.439 
 trainscg  160 14.2 18.0 16.7 15.2 0.517 0.437 0.460 0.494 
 traincgb  67 16.9 17.4 19.0 17.3 0.421 0.422 0.441 0.422 
 traincgf  76 14.8 12.4 15.9 14.6 0.528 0.425 0.497 0.512 
 traincgp  196 9.1 13.2 12.8 10.3 0.717 0.443 0.534 0.657 
 trainoss  113 13.4 19.1 16.4 14.7 0.563 0.410 0.401 0.510 
 traingdx  394 13.5 16.9 16.0 14.4 0.537 0.516 0.455 0.520 
 traingdm  154 30.2 26.5 35.1 30.4 0.012 0.002 0.166 0.032 
 traingd  50 1144.4 1201.2 1056.5 1139.7 0.013 0.035 0.081 0.024 

 

As summarised in Table 6, the number of neurons ranged from 1 to 15. Their analysis results, 

including the number of iterations, mean square error (MSE) and R2 values of training, validation, 

testing and overall are shown. The optimum number of neurons for the model was determined by the 

lowest overall MSE and highest overall R2 value. Ten neurons in the hidden layer were the most 

suitable for the model, with the lowest MSE overall of 6.6 and the highest R2 overall of 0.781. Whilst 

nine neurons in the hidden layer were the second suitable for the model with an MSE overall of 6.8 

and R2 overall of 0.773. Decreasing the number of neurons in the hidden layer resulted in higher MSE 

and lower R2 values. On the other hand, increasing the number of neurons in the hidden layer, the 

MSE and R2 overall values were very close to five neurons, but the R2 value of testing was reduced. 

Cheng et al. discussed the optimum number of hidden neurons was not determined by any formulae; 

it was determined by the MSE from different nodes within the range [31]. Therefore, ten neurons in 

the hidden layer were selected and were used as a constant model variable to determine the optimum 

training algorithm and transfer function for this ANN model.  

Table 6. Summary of the number of neurons statistic (Tr: training, V: validation, T: test, O: overall) 

Number of neurons Number of iterations 
Mean square error (MSE) R2 

Tr V T O Tr V T O 

1 57 16.1 16.9 21.5 17.0 0.450 0.307 0.461 0.433 
2 62 14.3 14.1 17.7 14.8 0.541 0.587 0.224 0.507 
3 67 11.4 13.2 19.6 12.9 0.650 0.505 0.221 0.573 
4 74 8.3 10.8 17.2 10.0 0.722 0.609 0.519 0.665 
5 67 9.6 11.6 11.4 10.2 0.662 0.611 0.710 0.662 
6 77 8.2 10.9 9.9 8.9 0.719 0.668 0.710 0.705 
7 53 15.5 18.6 14.2 15.7 0.511 0.425 0.489 0.493 
8 81 7.3 14.4 9.1 8.6 0.757 0.596 0.643 0.712 
9 110 6.0 6.3 11.0 6.8 0.815 0.790 0.430 0.773 
10 108 4.6 14.9 7.4 6.6 0.829 0.623 0.788 0.781 
11 76 9.0 12.2 25.5 12.0 0.689 0.613 0.328 0.601 
12 72 7.0 11.6 10.6 8.2 0.797 0.449 0.562 0.730 
13 111 4.7 6.8 23.5 7.9 0.849 0.750 0.416 0.746 
14 99 6.8 10.8 5.4 7.2 0.781 0.610 0.823 0.761 
15 80 7.1 10.5 16.4 9.0 0.741 0.787 0.475 0.701 

As summarised in Table 7, fifteen transfer functions and their analysis results including number 

of iterations, mean square error (MSE) and R2 values of training, validation, testing and overall are 
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shown. Among all the transfer function in Table 7, “tansig” was the best transfer function for the model 

with the lowest MSE overall of 6.7 and the highest R2 overall of 0.776. Whilst “elliotsig” had the MSE 

overall of 8.1 and R2 overall of 0.731. In this model, “tansig” transfer function was used in the hidden 

layer, and “purelin” was used in the output layer. Cakman et al. discussed the “tansig” in the first 

hidden layer and “purelin” in the second hidden layer increased the ability of the ANN model to 

determine for both linear and nonlinear relationships between the input on the target variables [32]. 

Zhong et al. compared six different activation function sets in modelling fast pyrolysis via fluidised-

bed and found “tansig” function was suitable for both hidden and output layer [33]. Therefore, “tansig” 

function was selected in the hidden layer, and “purelin” was selected in the output layer.  

 

 

 

Table 7. Summary of transfer functions statistic (Tr: training, V: validation, T: test, O: overall) 

Transfer 
functions 

Number of 
iterations 

Mean square error (MSE) R2 

Tr V T O Tr V T O 

 compet  11 25.7 33.4 40.1 29.0 0.056 0.008 0.018 0.037 
 elliotsig  130 6.7 12.4 10.3 8.1 0.789 0.571 0.638 0.731 
 hardlim  78 22.4 18.4 29.9 22.9 0.278 0.201 0.209 0.253 
 hardlims  80 20.7 12.2 28.2 20.5 0.270 0.364 0.443 0.315 
 logsig  75 8.1 7.8 17.1 9.4 0.740 0.714 0.464 0.689 
 netinv  81 13.4 15.4 58.1 20.4 0.574 0.586 0.000 0.370 
 poslin  64 12.4 12.4 15.9 12.9 0.611 0.537 0.437 0.571 
 purelin  1000 17.4 17.5 23.7 18.4 0.412 0.488 0.411 0.426 
 radbas  124 4.4 11.8 27.8 9.0 0.852 0.652 0.199 0.700 
 radbasn  60 9.9 15.5 15.5 11.6 0.633 0.650 0.535 0.616 
 satlin  60 13.1 7.6 12.5 12.2 0.594 0.664 0.551 0.594 
 satlins  35 15.4 14.8 16.6 15.5 0.520 0.163 0.501 0.484 
 softmax  72 8.8 11.0 10.5 9.4 0.748 0.509 0.478 0.687 
 tansig  95 5.7 9.3 8.7 6.7 0.802 0.735 0.717 0.776 
 tribas  122 10.7 12.5 11.4 11.1 0.648 0.630 0.561 0.632 

 

As summarised in Table 8, the response variables and their analysis results from ANN models 

including number of iterations, mean square error (MSE) and R2 values of training, validation, testing 

and overall are shown. The plots of the ANN training, validation and test can be found in the 

supplementary information as Figure S1-S5. The optimised model variables were used to obtain the 
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results of the responses, including “trainbr” as training algorithm, ten neurons in a hidden layer, and 

“tansig” and “purelin” transfer function in hidden and output layers, respectively. To ensure the 

reliability of the R2 overall value, all the R2 values of training, validation, and testing were achieved 

with less than maximum of 0.1 different between the values. The results showed that high R2 values 

were obtained for all response variables, including char yield (0.785), fixed carbon (0.855), volatile 

matter (0.752), ash (0.951), and HHV (0.784). The actual values and the predicted values using the 

ANN models are plotted in Figure 6. The ANN models in the MATLAB script format are included in 

the supplementary information, containing all the weights and bias for the networks. The accuracy of 

the prediction of the char yield is close to the ones (R2= 0.8462, 0.8049 and 0.8548 for different sets 

of inputs) reported by Zhu et al. [3] using the random forest method.  

 

Table 8. Summary of responses statistic of ANN model (Tr: training, V: validation, T: test, O: overall) 

Response 
Number of 
iterations 

Mean square error (MSE) R2 

Tr V T O Tr V T O 

Char yield 194 12.8 25.8 17.5 15.500 0.830 0.612 0.743 0.785 

Fixed carbon 128 42.3 58.8 64.3 48.1 0.879 0.782 0.809 0.855 

Volatile matter 123 37.1 49.3 43.7 39.9 0.770 0.720 0.697 0.752 

Ash 144 5.0 20.2 18.4 9.3 0.974 0.889 0.900 0.951 

HHV 115 6.5 6.9 6 6.5 0.764 0.847 0.751 0.784 
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Figure 6. Plots of the actual and predicted values obtained from ANN model: (a) char yield (wt%), (b) 

fixed carbon in char (wt% db), (c) volatile matter in char (wt% db), (d) ash content in char (wt% db) 

and (e) HHV of char (MJ kg-1). 

3.4 Comparison of ANN and MnLR models 

The model comparison was made by comparing the R2 overall value of the ANN and MnLR 

models. The MnLR model obtained the R2 overall values of char yield (0.5579), fixed carbon (0.7763), 

volatile matter (0.5709), ash (0.8613), HHV (0.5728) shown in Table 4. Whilst the ANN model 

determined the R2 overall values of char yield (0.785), fixed carbon (0.855), volatile matter (0.752), 

ash (0.951), and HHV (0.784) shown in Table 8. The results showed that all the response variables 

from the ANN model had higher R2 overall values than MnLR models. It can be concluded that ANN 

model has a higher ability to analyse and evaluate the datasets to achieve better results. Although 

the MnLR models had lower R2 values than ANN models, it indicated a similar relationship as ANN 

model, including ash had the highest R2 overall value among all the response variables, whilst fixed 

carbon had the second-highest R2 overall value. Some literature reviews that compared regression 

and ANN models were reviewed. Tosun et al. compared the linear regression and ANN models of 

Jo
ur

na
l P

re
-p

ro
of



22 
 

biodiesel [34]. They showed that the ANN model with “trainlm” algorithm, “logsig” in the hidden layer 

and “purelin” in output layers obtained lower mean absolute percentage error (MAPE) values than 

linear regression. Kumar et al. also compared the linear regression and ANN models of soybean 

biodiesel yield [35]. It was concluded that ANN model with “trainlm” algorithm and “logsig” transfer 

function were more accurate than linear regression (R2 values were 0.9899 and 0.4198, respectively). 

However, Mesroghli et al. showed the results of US coal’s HHV estimation from ANN, and regression 

did not have much different [36]. They suggested that using common and understood techniques as 

regression was better than using a more complicated method as ANN.  

4. Conclusions 

In this study, the relationship between the compositions of lignocellulosic biomass and operating 

parameters for slow pyrolysis and produced char’s characteristics were successfully carried out based 

on a modelling work. Seven input variables, including temperature, residence time, production 

capacity, particle diameter, fixed carbon, ash, and moisture contents, and five response variables 

including char yield, fixed carbon, volatile matter, ash, and HHV were evaluated by using an artificial 

neuron network (MATLAB) and multiple nonlinear regression models (Design Expert 12). A total of 

565 literature datasets were searched and normalised in the range of -1 to 1 for ANN model 

analysation. High correlation results (>0.5) existed between pyrolysis temperature and volatile matter 

of produced char (-0.639), ash content of feedstock and fixed carbon (-0.690), ash content (0.882) 

and HHV (-0.663) of produced char were analysed by the ANN model. Model optimisation and 

comparison were carried in both models. The determination coefficient R2 was used to compare the 

results and determine the accuracy of the models. All twelve training algorithms, neurons ranged from 

1 to 10, and fifteen transfer functions were evaluated for the ANN model. The results showed the most 

suitable model parameters for the ANN model were “trainbr” training algorithm, five neurons in the 

hidden layer, and “tansig” and “purelin” transfer functions in hidden and output layers, respectively. 

Then the optimised model parameters for ANN were used to determine the results of the response 

variables. The results showed high R2 for all responses, including char yield (R2=0.7333), fixed carbon 

(R2=0.833), volatile matter (R2=0.726), ash (R2=0.943), and HHV (R2=0.746). Whilst four models were 
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compared in the MnLR model, and it was shown that the quadratic models had the highest R2, 

adjusted R2, and predicted R2 among all the models. The quadratic models were further optimised by 

eliminating any terms with p-values greater than 0.05, and the optimised equations for MnLR were 

achieved. The optimised MnLR model results showed a good prediction ability of char yield 

(R2=0.6410), fixed carbon (R2=0.8148), volatile matter (R2=0.6163), ash (R2=0.9005), and HHV 

(R2=0.6551). Among all the results obtained from ANN and MnLR models, it can be concluded that 

ANN models had higher accuracy than MnLR models in predicting the relationship between input and 

response variables. The models developed in the study can be used to estimate and optimise the 

char production and quality by slow pyrolysis of biomass. 
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