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Abstract

One of the most important effects that railways have on the environment

is noise pollution, notably in Europe. The purpose of this study is to evaluate

the environmental efficiency of railways in 22 European countries, considering

two factors; a country’s response in retrofitting their wagon fleet with more

silent braking technology and the number of people affected by railway noise.

The railway transport process efficiency is decomposed into assets and service

efficiency. The additive decomposition network Data Envelopment Analysis

(NDEA) approach is customised to account for intermediate and undesirable

outputs. Results suggest that Estonia, Germany and Poland are overall en-

vironmentally efficient and that except for Finland, asset efficient countries

are also service efficient; the inverse does not hold. Sensitivity analysis re-

vealed that efficiency rankings are robust to alterations in the decomposition

weight restrictions. This is the first study that uses DEA to incorporate the

noise-pollution problem in railway efficiency measurement.
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1 Introduction

An efficient transport system is critical for attaining economic growth; it allows for the

movement of people, goods and resources, provides access to services and facilities and

enhances the quality of life. Governments need to invest in transport infrastructure while

being considerate of sustainable development. During the last decades, the important

share of transport in energy consumption and air pollution increased concerns about the

impacts it will have on the natural ecosystem and climate change. Since railways are the

most eco-friendly means of transport while demonstrating the lowest traffic congestion

levels and high safety performance, they are becoming increasingly popular, and plans

regarding their improvement and broader adoption are included in many governmental

agendas.

However, railway noise generated by the wheel-rail contact, as well as aerodynamic

noise were proved to create a major environmental problem. Specifically in the European

Union (EU), railways are considered to be the second-highest source of noise pollution

after road, both inside and outside urban areas (EEA Report 22/2019, 2019). Prolonged

noise exposure is linked to well-being and health problems, such as sleep disturbances,

annoyance and higher risk of cardiovascular diseases (EEA Report 10/2014, 2014). Rail-

way noise is also related to economic costs, such as the depreciation of houses close to

rail lines and productivity decrease.

Efficiency evaluation of railways is very important in order to identify its sources

of inefficiency and further improve its operation. It is crucial for the society and the

economy to keep this sustainable mode of transport competitive and manage to form

the modal split in its favour. Data envelopment analysis (DEA) is a linear programming

technique, which is broadly used to measure the technical efficiency of Decision Making

Units (DMUs) relatively to an empirically constructed production frontier. Its great

advantage lies in its non-parametric nature which allows for the inclusion of multiple
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inputs and outputs in the production model. Therefore, there is a large number of

studies using DEA models to assess the efficiency of railways in different geographical

areas.

The purpose of this study is to evaluate the efficiency of railways in the European

countries during 2016-2017, considering the noise pollution generated and its impact

on humans. For this reason, a network DEA (NDEA) model with intermediate and

undesirable outputs is formulated upon the assumption of variable returns to scale (VRS).

As distinct from the conventional one-stage DEA approaches, there is a quite limited

number of studies in the DEA literature which consider the inner structure of railways’

operation. In this study, we suggest that the final output of the railway transport process,

i.e. passenger and freight movement, is a result of a two-stage process, the first one of

which is related to asset management and the second one to the service offering. Ignoring

the role of one of the two stages may result in misleading conclusions for the efficiency

level of a country’s railway system. The number of people exposed to high levels of railway

noise is considered as an undesirable output. Despite the extended DEA literature, to

the best of our knowledge, this is the first study that uses DEA to incorporate noise

effects on the operation of railway transport. Using the additive efficiency decomposition

approach, it is possible to define the source of inefficiency for each country. Furthermore,

a sensitivity analysis is performed to investigate how the different choices of stage weights

affect the efficiency scores and rankings of the countries.

The rest of this paper is structured as follows. Section 2 is a review of the rele-

vant DEA and NDEA literature on railway transport. In Section 3, DEA and efficiency

decomposition methodologies are explained. In Section 4, a two-stage NDEA model

with undesirable output is formulated. In Section 5, the properties of the decomposition

weights of the two stages, under the VRS assumption, are examined. In Section 6, the

empirical study is discussed. Finally, in the last section, conclusions, main contributions

of this study and some future research directions are provided.
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2 Literature Review

Many studies have aimed their attention at measuring the performance of the railway

transport industry. The first studies that used DEA in this direction were in the 1990s,

from Moesen (1994) and Oum and Yu (1994). Since then, many studies have assessed

railway performance in different regions. Graham (2008) assessed the efficiency and pro-

ductivity of 200 urban railways globally, non-parametrically, using VRS and CRS DEA,

and parametrically, by decomposing the total factor productivity (TFP) change. Yu

(2008) used directional distance functions and NDEA to measure the efficiency of 40

global railways. Yu and Lin (2008) measured passenger and freight services’ efficiency

and effectiveness of 20 railway companies using a multi-activity NDEA. Kutlar et al.

(2013) evaluated the technical and allocative efficiency of 31 railway companies using

CCR and BCC DEA models and used a second stage Tobit regression to test the impact

of outputs on the efficiency scores. Chapin and Schmidt (1999) measured the performance

of class I railroads using the CCR and BCC DEA models on panel data and Shi et al.

(2011) using sequential DEA and Malmquist index (MI). Marchetti and Wanke (2017)

used CCR and BCC DEA models to assess the efficiency of rail concessionaires in Brazil

and a second stage bootstrap truncated regression to measure the impact of exogenous

variables on the efficiency scores. Li et al. (2018) used CCR DEA and generalised DEA

to measure the efficiency of Chinese railway administrations and Kuang (2018) applied

BCC and super cross-efficiency DEA to assess the efficiency of China Railway Bureau.

Jitsuzumi and Nakamura (2010) used BCC DEA to identify the sources of inefficiency

in Japanese railways and calculate the optimal levels of subsidies. Mapapa (2004) ap-

plied CCR and BCC DEA and MI to evaluate the performance of sub-Saharan African

railways. Mohajeri and Amin (2010) combined DEA and analytical hierarchy process

(AHP) for the selection of the optimal railway station location in Mashhad. Rayeni and

Saljooghi (2014) assessed and compared the efficiencies of Iranian railways over a 30-

year period using cross-efficiency DEA. Azadeh et al. (2018) assessed the performance of

Tehran-Karaj railway electrification system using BCC DEA and considering resilience

engineering (RE). George and Rangaraj (2008) applied CCR and cross efficiency DEA
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to measure the performance of Indian railways. Bhanot and Singh (2014) used CCR

and BCC DEA to compare indicators of business performance of Indian Railway con-

tainer transport. Sharma et al. (2016) assessed the performance of 16 railway zones in

India in terms of the services they provide applying BCC DEA and Malmquist Index.

Kim et al. (2011) studied the modal shift to railways in Korea, as a more environmental

means of transport. They measured railway freight transport efficiency applying CCR

and BCC DEA models and made suggestions about how to expand the use of railways in

freight transportation. Reorganisation, incorporation or privatization as well as passenger

services, freight carriage, safety and energy consumption of railways are some common

research topics in DEA literature. Mahmoudi et al. (2020) provided an extended review

of DEA applications on the transportation and railway industry.

In the late 1980s, the need for increasing railways’ eroded modal market share and

coping with the new demands arising from globalisation sparked a series of reforms in

European railways. That stimulated many studies to assess the performance of the railway

system in Europe before and after such transformations, to extract useful conclusions

towards its efficiency improvement. Oum and Yu (1994) assessed the efficiency of railways

which were mainly focused on passenger services in 18 European countries and Japan,

during the time period from 1978 to 1989. They suggested that managerial autonomy

and less dependence on subsidies have a positive effect on the efficiency of a railway

system. UK, Ireland, Netherlands, Spain, and Sweden had the most efficient railway

systems during that period. According to Cantos et al. (1999), in the years that followed

- from 1985 to 1995 - the financial and managerial autonomy continued to have a positive

impact on the efficiency of railways and that reforms that took place, resulted in increasing

productivity. During the same time period, smaller European railway companies seemed

to have higher technical efficiency (De Jorge-Moreno and Garcia-Cebrian, 1999).

Coelli and Perelman (1999) investigated the efficiency of 17 European railway firms

from 1988 to 1993, using distance functions. De Jorge and Suarez (2003) used quadratic

functions to observe the efficiency of 19 railway firms in Europe for a long time period,

from 1965 to 1998. They concluded that the separation of railway operations from rail-
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way infrastructure management - introduced in 1991 - and the reductions in personnel,

affected the efficiency of firms. Hilmola (2007) studied the productivity and efficiency of

freight railways in 31 European countries, from 1980 to 2003. During the 1990s there was

an efficiency downfall of all the previously best-performing countries. Also, a high level

of divergence in freight transport among the European countries was observed (Hilmola,

2007; 2008; Salvolainen and Hilmola, 2009). Countries in the Baltic region, and notably

Estonia and Latvia, were performing better in freight transport. However, in passenger

transport, Netherlands, UK, Spain and Denmark were more efficient, while Eastern Euro-

pean countries were showing low performance (Hilmola, 2008). Salvolainen and Hilmola

(2009) suggested that an associated development of railway and airline passenger trans-

port would probably increase the efficiency. Growitsch and Wetzel (2009) used a DEA

super-efficiency model with bootstrapping on 54 railway European firms during 2000-2004

and found that vertical integration favours the performance improvement in the major-

ity of the railways included in the study. Cantos et al. (2010) studied the vertical and

horizontal separation of railways in 16 European countries for the time period 1985-2005.

In more recent years, Sozen et al. (2012) and Sozen and Cipil (2018) compared Turkish

railways to the railways of 23 EU member countries. Rotoli et al. (2015) considered

accessibility among the European countries and suggested it could be improved by giving

importance to the increase of railway speed. Rotoli et al. (2018) ranked the efficiency of

Italian rail segments, from the standpoint of three different stakeholders; rail regulator,

rail operator and the infrastructure manager. Khadem Sameni et al. (2016) were the first

to implement DEA to assess the efficiency of 96 railway stations in Great Britain in terms

of how well they manage train stops considering the existing station capacity.

Although railways are one of the safest means of transport, reduction of existing safety

risks such as train collisions, derailments, level crossings or exposure of railway stuff to

moving trains and electricity of high voltage can further improve its sustainability. Con-

cerning railway safety in Europe, Noroozzadeh and Sadjadi (2013) measured the efficiency

of 25 European passenger railways in 2008. Djordjević et al. (2018) used a non-radial

DEA model to assess the efficiency of European railways regarding their level of safety
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in railway level crossings, during 2010-2012 and 2014. Roets et al. (2018) measured the

efficiency of railway traffic control centres in Belgium in 2015, using cost allocation re-

strictions and a metafrontier approach. In such studies, the number of accidents, number

of victims, surveillance staff, number of safety and non-safety interventions are some of

the variables used to measure railway safety.

Within the global movement towards decreasing greenhouse gas emissions, some stud-

ies used DEA models to assess the energy-environmental efficiency of transport consid-

ering CO2 emissions as an undesirable output. The majority of those studies refers to

China (Chang et al., 2013; Cui and Li, 2014; Zhou et al., 2014). Concerning railway

transport in China, Liu et al. (2016) used a non-radial DEA model, window analysis and

a second stage Tobit regression. Song et al. (2016) combined a non-radial DEA model

with a second stage panel beta regression, and Liu et al. (2017) applied a SBM DEA

model with parallel structure. Ha et al. (2011) measured the environmental inefficiency

of railway companies in Japan, considering CO2 emissions produced both during the train

operation and the infrastructure construction. The environmental efficiency of railways

in the EU countries during 2014-2016 was studied by Djordjević and Krmac (2019) using

a non-radial DEA model.

In most of the studies in the DEA transport literature, the production process is con-

sidered as a ‘black box’, where inputs are directly transformed to outputs. However, some

studies model the production process considering its inner structure. Yu (2008) measured

the efficiency and effectiveness of 40 railways globally, during 2002, using a NDEA model

with two sub-processes - production and consumption process - with shared, intermediate

and exogenous inputs. Yu and Lin (2008) assessed the efficiency and effectiveness of 20

selected railway companies during the same year. In this study, the production stage

was divided into two parallel processes - passenger and freight subprocesses - with stage-

specific and shared inputs. Mallikarjun et al. (2014) used a non-oriented four-stage series

NDEA model to study the performance of public railway transport in the US. Zhou and

Hu (2017) used an additive two-stage NDEA model to measure the performance of rail-

ways in China, considering dust as an undesirable output of the second stage. Similarly,
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the two stages are production and service related respectively. Wanke et al. (2018) ap-

plied directional distance functions in a multi-stage NDEA model combining series and

parallel structure, with an undesirable output - number of accidents - to evaluate the

efficiency of Asian railways.

3 The DEA framework

Suppose there is a set of N Decision Making Units (DMUs), each consuming P inputs

to produce S outputs. Let xj = (x1j, ..., xPj) ∈ RP
+ and yj = (y1j, ..., ySj) ∈ RS

+ denote

the non-negative input and output vectors of DMUj, j = 1, 2, ..., N . The production

possibility set (PPS) is defined as

P = {(x, y) ∈ RP+S
+ |x can produce y},

and it includes all the feasible input-output correspondences.

Definition 3.1 Let (x, y) ∈ P be the activity vector of DMUj, j = 1, 2, ..., N. DMUj is

strongly (weakly) efficient if and only if there is no other feasible activity (x′, y′) 6= (x, y),

such that x′ ≤ x (x′ < x) and y′ ≥ y (y′ > y).

For a weakly efficient DMU, it is possible to further improve its activity, without worsening

any other of its inputs or outputs. In this paper, both strongly and weakly efficient DMUs

are regarded as efficient.

In DEA, the boundary of the PPS is defined by the observed set of DMUs and some

assumptions that are made about the technology under which the DMUs operate. Let

PCRS and P V RS denote the PPSs under the assumptions of constant returns to scale

(CRS) and variable returns to scale (VRS), respectively. Then,

PCRS =
{

(x, y) ∈ RP+S
+ |

N∑
j=1

λjxj ≤ x,
N∑
j=1

λjyj ≥ y, λ ∈ RN
+

}
, (1)

P V RS =
{

(x, y) ∈ RP+S
+ |

N∑
j=1

λjxj ≤ x,

N∑
j=1

λjyj ≥ y,

N∑
j=1

λj = 1, λ ∈ RN
+

}
. (2)
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The basic DEA model, suggested by Charnes et al. (1978), is used to measure the

relative efficiency of a homogeneous set of DMUs, under the CRS. Banker et al. (1984)

extended their model to the VRS case. The feasible set of the CRS and VRS envelopment

models corresponds to PCRS and P V RS, respectively. Models (3) and (4) are the dual

forms of models (1) and (2) or the multiplier models, used to measure the input-oriented

relative efficiency of DMUj0 , under the CRS and VRS assumptions, respectively, where

j0 ∈ {1, ..., N} denotes the index of the DMU under evaluation.

θCRS∗j0 = max
S∑
s=1

usysj0

s.t.
P∑
p=1

vpxpj0 = 1 (3)

S∑
s=1

usysj −
P∑
p=1

vpxpj ≤ 0,

j = 1, ..., N,

us, vp ≥ 0, s = 1, ..., S, p = 1, ..., P

θV RS∗j0 = max
S∑
s=1

usysj0 + uj0

s.t.
P∑
p=1

vpxpj0 = 1 (4)

S∑
s=1

usysj −
P∑
p=1

vpxpj + uj0 ≤ 0,

j = 1, ..., N,

us, vp ≥ 0, s = 1, ..., S, p = 1, ..., P,

uj0 free in sign.

The optimal solutions (u∗p, u
∗
s) and (u∗p, u

∗
s, u

j0∗) for models (3) and (4), respectively,

satisfy the constraints and maximise the corresponding objective functions. The optimal

objective values θCRS∗j0
and θV RS∗j0

are the CRS and VRS-efficiency scores of DMUj0 .

Definition 3.2 A DMUj0 is CRS strongly efficient if the optimal solution (θCRS∗j0
, u∗p, u

∗
s)

satisfies θCRS∗j0
= 1 and all slacks are zero. It is weakly efficient if θCRS∗j0

= 1 and has

non-zero slacks. Otherwise, it is CRS-inefficient. DMUj0 is considered as VRS strongly

efficient if the optimal solution (θV RS∗j0
, u∗p, u

∗
s, u

j0∗) satisfies θV RS∗j0
= 1 and all slacks are

zero. It is weakly efficient if θV RS∗j0
= 1 and has non-zero slacks. In any other case, it is

VRS-inefficient.

In conventional DEA, the transformation of inputs to outputs is considered to occur in

one stage. Network DEA (NDEA) models deal with more complex production processes,
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where some inner structure needs to be taken into account. Consider the simple two-stage

production process illustrated in Figure 1. In the first stage, each DMUj, j = 1, 2, ..., N

uses P inputs xj = (x1j, ..., xPj) ∈ RP
+ to produce Q outputs zj = (z1j, ..., zQj) ∈ RQ

+,

which are referred to as intermediate products. In the second stage, intermediate products

obtained from the first stage, are inserted as inputs to the second stage, to produce S

final outputs yj = (y1j, ..., ySj) ∈ RS
+. Let θ0j be the overall efficiency, θ1j be the efficiency

of the first stage and θ2j be the efficiency of the second stage for DMUj, for j = 1, 2, .., N .

Figure 1: Two-stage process

There are two main decomposition approaches in two-stage NDEA literature used to

derive the overall efficiency of a DMU; the additive approach (Kao and Huang, 2008) and

the multiplicative approach (Chen et al., 2009).

Under the CRS, the first and second stage efficiency scores for DMUj0 in the input

orientation, can be calculated independently by solving the following mathematical mod-

els, respectively:

max θ1j0 =

∑Q
q=1 γ

A
q zqj0∑P

p=1 vpxpj0

s.t.

∑Q
q=1 γ

A
q zqj∑P

p=1 vpxpj
≤ 1 (5a)

vp, γ
A
q > 0, j = 1, ..., N,

max θ2j0 =

∑S
s=1 esysj0∑Q
q=1 γ

B
q zqj0

s.t.

∑S
s=1 esysj∑Q
q=1 γ

B
q zqj

≤ 1 (5b)

es, γ
B
q > 0, j = 1, ..., N.

In order to take into consideration the series relationship between the two stages, Kao

and Huang (2008) assumed that the multipliers related to the intermediate products zqj,

are the same in both stages, i.e. γAq = γBq . That means that the optimal aggregated

outputs from the first stage become inputs to the second stage.

Kao and Huang (2008) defined the overall efficiency θ0j , j = 1, 2, ..., N as the product
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of stage efficiencies, i.e.

θ0j =

∑S
s=1 esysj∑P
p=1 vpxpj

=

∑Q
q=1 γqzqj∑P
p=1 vpxpj

·
∑S

s=1 esysj∑Q
q=1 γqzqj

= θ1jθ
2
j . (6)

In this case, the overall efficiency of DMUj0 is given by the following model:

θ0∗j0 = max θ1j0θ
2
j0

=

∑S
s=1 esysj0∑P
p=1 vpxpj0

s.t. θ1j =

∑Q
q=1 γqzqj∑P
p=1 vpxpj

≤ 1 (7)

θ2j =

∑S
s=1 esysj∑Q
q=1 γqzqj

≤ 1

es, vp, γq > 0, j = 1, ..., N.

From the constraints
∑Q

q=1 γqzqj∑P
p=1 vpxpj

≤ 1 and
∑S

s=1 esysj∑Q
q=1 γqzqj

≤ 1, it is implied that
∑S

s=1 esysj∑P
p=1 vpxpj

≤ 1.

Therefore, this last constraint is superfluous and is not included in model (7).

Applying the Charnes-Cooper transformation (Charnes and Cooper, 1962), model (7)

can be converted into a linear one. However, under the VRS assumption, the product of

stage efficiencies would be

∑Q
q=1 γqzqj + uA∑P

p=1 vpxpj
·
∑S

s=1 esysj + uB∑Q
q=1 γqzqj

. (8)

The above quantity cannot be linearised. Therefore, as Chen et al. (2009) noted, the

multiplicative approach is not applicable under the VRS.

If intermediate products are treated as outputs and inputs simultaneously, the overall

efficiency of DMUj is defined as

θ0j =

∑S
s=1 esysj +

∑Q
q=1 γqzqj∑P

p=1 vpxpj +
∑Q

q=1 γqzqj
. (9)

In the additive decomposition approach introduced by Chen et al. (2009), the overall
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efficiency (9), can be decomposed into a weighted average of the stage efficiencies:

∑S
s=1 esysj +

∑Q
q=1 γqzqj∑P

p=1 vpxpj +
∑Q

q=1 γqzqj
= w1j

∑Q
q=1 γqzqj∑P
p=1 vpxpj

+ w2j

∑S
s=1 esysj∑Q
q=1 γqzqj

(10)

and w1j + w2j = 1. (11)

The decomposition weights w1j and w2j can be defined endogenously by solving the

system of equations (10) and (11). Then, for DMUj0 under evaluation we have:

w1j0 =

∑P
p=1 vpxpj∑P

p=1 vpxpj +
∑Q

q=1 γqzqj
, and w2j =

∑Q
q=1 γqzqj∑P

p=1 vpxpj +
∑Q

q=1 γqzqj
. (12)

Intuitively, the decomposition weights w1j and w2j represent the relative contribution

of each stage to the overall efficiency. Therefore, in the input orientation, they are

defined as the ratio of the stage-specific inputs to the overall process inputs. In the

output orientation, endogenous decomposition weights would be defined similarly, as the

proportion of outputs consumed by each stage.

Then, the overall efficiency of DMUj0 can be derived by solving the following fractional

programme:

θ0∗j0 = max [w1j0θ
1
j0

+ w2j0θ
2
j0

] =

∑S
s=1 esysj0 +

∑Q
q=1 γqzqj0∑P

p=1 vpxpj0 +
∑Q

q=1 γqzqj0

s.t. θ1j =

∑Q
q=1 γqzqj∑P
p=1 vpxpj

≤ 1 (13)

θ2j =

∑S
s=1 esysj∑Q
q=1 γqzqj

≤ 1

vp, γq, es > 0, j = 1, ..., N.

Instead of defining the decomposition weights endogenously, fixed weights could be as-

signed to each stage. However, that would imply that for all DMUs each stage would be

of the same relative importance. However, by defining the decomposition weights endoge-

nously, their optimum values for each DMU can be obtained through linear programming,

avoiding any arbitrary decisions. Furthermore, endogenous decomposition weights allow
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the linearization of the fractional problem; using the Charnes-Cooper transformation,

model (13) can be transformed into a linear one.

Let θ0∗j0 be the overall efficiency score of DMUj0 , derived from the optimal solution

(v∗p, γ
∗
q , e
∗
s) of model (13). The efficiency of the stage that is given pre-emptive priority

is calculated while preserving the optimal overall efficiency level θ0∗j0 . Let θkp∗j , k = 1, 2

denote the optimal efficiency score of the priority stage. Suppose stage one is the priority

stage, then, we solve the following model to calculate the efficiency score of the first stage:

max θ1j0

s.t. θ1j ≤ 1

θ2j ≤ 1 (14)∑S
s=1 esysj0 +

∑Q
q=1 γqzqj0∑P

p=1 vpxpj0 +
∑Q

q=1 γqzqj0
= θ0∗j0

vp, γq, es > 0, j = 1, ..., N.

Replacing the optimal weights (v∗p, γ
∗
q , e
∗
s) obtained from model (13) to equations (12),

optimal decomposition weights for DMUj are derived. Then, from equation (10), the

efficiency of the second stage is calculated as

θ2∗j0 =
θ0∗j0 − w

∗
1j0
θ1p∗j0

w∗2j0
. (15)

Definition 3.3 DMUj0 is considered to be overall efficient if and only if θ0∗j0 = 1 and

θk∗j0 = 1, k = 1, 2. It is stage-k efficient if θk∗j0 = 1, k = 1, 2.

4 A two stage Network DEA model with undesirable outputs

The great advantage of the additive decomposition approach against the multiplicative

is that the first one can be used under VRS as in that case, the resulting models can be

transformed into linear ones. Chen et al. (2009) introduced the additive decomposition

method for a closed two-stage process with no external intermediate inputs or outputs. In

this section, the additive approach is going to be applied to an open two-stage production
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process, with external intermediate outputs and undesirable outputs. The assumption

introduced by Kao and Huang (2008), that the optimal level of outputs resulting from the

first stage is introduced unchanged to the second stage is also adopted. The formulation

of the models is done in the input orientation, and under the assumption of VRS.

Consider a production process consisted of two serially connected stages (see Figure 2).

Suppose there are N DMUs. Each DMUj, j = 1, ..., N consumes P inputs xpj, p = 1, ..., P

in the first stage to produce L final outputs (zf )lj, l = 1, ..., L andQ intermediate products

zqj, q = 1, ..., Q, which are then used as inputs in the second stage. From the second stage

S good outputs ysj, s = 1, ..., S and D bad outputs (yb)dj, d = 1, ..., D are produced.

Figure 2: Two-stage process with undesirable outputs

If undesirable outputs are treated as normal outputs, then a DMU with lower undesir-

able products would be falsely considered as less efficient. In this approach, bad outputs

produced from the second stage are treated as normal inputs to this stage, and thus,

through the optimisation process, the aim is to proportionally decrease inputs to the

second stage and undesirable outputs simultaneously. The first and second stage input-

oriented efficiency scores of the DMUj0 , under the VRS assumption, can be calculated

independently one from another as

max θ1j0 =

∑Q
q=1 γ

A
q zqj0 +

∑L
l=1ml(zf )lj0 + uA∑P

p=1 vpxpj0

s.t.

∑Q
q=1 γ

A
q zqj0 +

∑L
l=1ml(zf )lj0 + uA∑P

p=1 vpxpj0
≤ 1 (16)

vp, γ
A
q ,ml > 0, j = 1, ..., N

uA free in sign
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and

max θ2j0 =

∑S
s=1 esysj0 + uB∑Q

q=1 γ
B
q zqj0 +

∑D
d=1 kd(yb)dj0

s.t.

∑S
s=1 esysj0 + uB∑Q

q=1 γ
B
q zqj0 +

∑D
d=1 kd(yb)dj0

≤ 1 (17)

es, γ
B
q , kd > 0, j = 1, ..., N

uB free in sign.

In order to link the two stages, it is assumed that for the multipliers of the intermediate

products, γAq = γBq = γq. Treating intermediate products as outputs and inputs at

the same time, the overall efficiency of DMUj under VRS, is defined and additively

decomposed as

θ0j =

∑Q
q=1 γ

A
q zqj +

∑L
l=1ml(zf )lj + uA +

∑S
s=1wsysj + uB∑P

p=1 vpxpj +
∑Q

q=1 γqzqj +
∑D

d=1 kd(yb)dj
(18)

= w1j

∑Q
q=1 γqzqj +

∑L
l=1ml(zf )lj + uA∑P

p=1 vpxpj
+ w2j

∑S
s=1 esysj + uB∑Q

q=1 γqzqj +
∑D

d=1 kd(yb)dj
(19)

= w1jθ
1
j + w2jθ

2
j , (20)

where for the decomposition weights, it holds that w1j + w2j = 1, j = 1, 2, ..., N.

Then for a DMUj, the decomposition weights w1j, w2j can be defined as the proportion

of inputs consumed by each stage, as

w1j =

∑P
p=1 vpxpj∑P

p=1 vpxpj +
∑Q

q=1 γqzqj +
∑D

d=1 kd(yb)dj
, (21)

w2j =

∑Q
q=1 γqzqj +

∑D
d=1 kd(yb)dj∑P

p=1 vpxpj +
∑Q

q=1 γqzqj +
∑D

d=1 kd(yb)dj
. (22)

The overall VRS efficiency of DMUj0 is given by solving the following fractional pro-
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gramme:

θ0∗j0 = max

∑Q
q=1 γ

A
q zqj0 +

∑L
l=1ml(zf )lj0 + uA +

∑S
s=1wsysj0 + uB∑P

p=1 vpxpj0 +
∑Q

q=1 γqzqj0 +
∑D

d=1 kd(yb)dj0

s.t.

∑Q
q=1 γqzqj +

∑L
l=1ml(zf )lj + uA∑P

p=1 vpxpj
≤ 1 (23)∑S

s=1wsysj + uB∑Q
q=1 γqzqj +

∑D
d=1 kd(yb)dj

≤ 1

vp, ws, γq,ml > 0, j = 1, ..., N

uA, uB free in sign.

The constraint
∑Q

q=1 γ
A
q zqj0+

∑L
l=1ml(zf )lj0+u

A+
∑S

s=1 wsysj0+u
B∑P

p=1 vpxpj0+
∑Q

q=1 γqzqj0+
∑D

d=1 kd(yb)dj0
≤ 1 is omitted, as it is im-

plied by the two constraints included in model (23).

Applying the Charnes-Cooper transformation, the fractional model (23) can be trans-

formed into a linear one:

θ0∗j0 = max

Q∑
q=1

ηqzqj0 +
L∑
l=1

µl(zf )lj0 + u1 +
S∑
s=1

ξsysj0 + u2

s.t.
P∑
p=1

πpxpj0 +

Q∑
q=1

ηqzqj0 +
D∑
d=1

cd(yb)dj0 = 1

Q∑
q=1

ηqzqj +
L∑
l=1

µl(zf )lj −
P∑
p=1

πpxpj + u1 ≤ 0 (24)

S∑
s=1

ξsysj −
Q∑
q=1

ηqzqj −
D∑
d=1

cd(yb)dj + u2 ≤ 0

πp, µl, ηq, ξs, cd > 0, j = 1, ..., N

u1, u2 free in sign.

Let (θ0∗j0 , π
∗
p, µ

∗
l , η
∗
q , ξ
∗
s , c
∗
d) be the optimal solution to model (24). The optimal decompo-

sition weights are

w∗1j0 =

∑P
p=1 π

∗
pxpj0∑P

p=1 π
∗
pxpj0 +

∑Q
q=1 η

∗
qzqj0 +

∑D
d=1 c

∗
d(yb)dj0

, (25)
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w∗2j0 =

∑Q
q=1 η

∗
qzqj0 +

∑D
d=1 c

∗
d(yb)dj0∑P

p=1 π
∗
pxpj0 +

∑Q
q=1 η

∗
qzqj0 +

∑D
d=1 c

∗
d(yb)dj0

. (26)

If stage one is considered as the priority stage, then, the first stage efficiency of

DMUj0 is calculated by maximising θ1pj0 , while maintaining optimal overall efficiency θ0∗j0 ,

as follows:

θ1∗j0 = max

∑Q
q=1 ηqzqj0 +

∑L
l=1 µl(zf )lj0 + u1∑P

p=1 πpxpj0

s.t.

∑Q
q=1 ηqzqj0 +

∑L
l=1 µl(zf )lj0 + u1∑P

p=1 πpxpj0
≤ 1∑S

s=1 ξsysj0 + u2∑Q
q=1 ηqzqj0 +

∑D
d=1 cd(yb)dj0

≤ 1 (27)∑Q
q=1 ηqzqj0 +

∑L
l=1 µl(zf )lj0 + u1 +

∑S
s=1 ξsysj0 + u2∑P

p=1 πpxpj0 +
∑Q

q=1 ηqzqj0 +
∑D

d=1 cd(yb)dj0
= θ0∗j0

πp, µl, ηq, ξs, cd > 0, j = 1, ..., N

u1, u2 free in sign.

The equivalent linear model is

θ1p∗j0 = max

Q∑
q=1

ηqzqj0 +
L∑
l=1

µl(zf )lj0 + u1

s.t.
P∑
p=1

πpxpj0 = 1

Q∑
q=1

ηqzqj +
L∑
l=1

µl(zf )lj + u1 −
P∑
p=1

πpxpj ≤ 0 (28)

S∑
s=1

ξsysj + u2 −
Q∑
q=1

ηqzqj −
D∑
d=1

cd(yb)dj ≤ 0

(1− θ0∗j0 )

Q∑
q=1

ηqzqj0 − θ0∗j0
D∑
d=1

cd(yb)dj0 +
L∑
l=1

µl(zf )lj0 +
S∑
s=1

ξsysj0 + u1 + u2 = θ0∗j0

πp, µl, ηq, ξs, cd > 0, j = 1, ..., N

u1, u2 free in sign.

17



The second stage efficiency score of DMUj0 is obtained from equation (15), where w∗1j0

and w∗2j0 are calculated from formulas (25) and (26) respectively.

Similarly, if stage two is considered as the priority stage, then

θ2p∗j0 = max
S∑
s=1

ξsysj0 + u2

s.t.

Q∑
q=1

ηqzqj0 +
D∑
d=1

cd(yb)dj0 = 1

Q∑
q=1

ηqzqj +
L∑
l=1

µl(zf )lj + u1 −
P∑
p=1

πpxpj ≤ 0 (29)

S∑
s=1

ξsysj + u2 −
Q∑
q=1

ηqzqj −
D∑
d=1

cd(yb)dj ≤ 0

Q∑
q=1

ηqzqj0 +
L∑
l=1

µl(zf )lj0 + u1 +
S∑
s=1

ξsysj0 + u2 − θ0∗j0
P∑
p=1

πpxpj0 = θ0∗j0

πp, µl, ηq, ξs, cd > 0, j = 1, ..., N

u1, u2 free in sign.

Then, using the optimal decomposition weights given by (25) and (26), the efficiency of

the first stage is calculated as

θ1∗j0 =
θ0∗j0 − w

∗
2j0
θ2p∗j0

w∗1j0
. (30)

Remark 4.1 If w∗1j = 0 or w∗2j = 0 are obtained for some DMUj, then, some restrictions

can be imposed on the decomposition weights, i.e w1j ≥ κ and w2j ≥ κ, where κ ∈ (0, 0.5],

for j = 1, 2, ..., N,. Therefore, for DMUj0 under evaluation, the following two constraints

need to be added to model (24):

(κ− 1)
P∑
p=1

πpxpj0 + κ

Q∑
q=1

ηqzqj0 + κ
D∑
d=1

cd(yb)dj0 ≤ 0

κ
P∑
p=1

πpxpj0 + (κ− 1)

Q∑
q=1

ηqzqj0 + (κ− 1)
D∑
d=1

cd(yb)dj0 ≤ 0

κ ∈ (0, 0.5], j = 1, ..., N.
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Since by definition w1j +w2j = 1, when both decomposition weights are restricted to

take values greater than a value κ, κ can only take values in the interval (0, 0.5].

Concerning the relationship between the decomposition weights in this network struc-

ture, by making use of the first inequality constraint of the linearised model (24), the

following inequality holds true:

w1j − w2j =

∑P
p=1 πpxpj −

∑Q
q=1 ηqzqj −

∑D
d=1 cd(yb)dj∑P

p=1 πpxpj +
∑Q

q=1 ηqzqj +
∑D

d=1 cd(yb)dj

≥
∑L

l=1 µl(zf )lj + u1 −
∑D

d=1 cd(yb)dj∑P
p=1 πpxpj +

∑Q
q=1 ηqzqj +

∑D
d=1 cd(yb)dj

. (31)

If using model’s (24) constraints resulted in the last fraction of inequality (31) being

greater (less) than 0, then it would hold that w1j ≥ w2j (w1j ≤ w2j), for all j = 1, ..., N.

That would imply that the relative importance of the stages in the efficiency evaluation

of DMUj would be biased, in favour of the first (second) stage. Nevertheless, the sign of

the last fraction in inequality (31) varies among the different DMUs. Therefore, in this

case, no stage is favoured against the other by definition. That means that endogenous

decomposition weights can be used without incorporating arbitrary restrictions into the

production process.

5 Decomposition weight properties in the two-stage process,

under the VRS

Ang and Chen (2016) and Despotis et al. (2016) showed that under the CRS, the en-

dogenous definition of the decomposition weights results in a non-increasing relationship

between them, i.e. w1j ≥ w2j, for j = 1, ..., N , for some series network structures. This

results in giving higher priority to the first stage in the efficiency decomposition. To over-

come this problem, Ang and Chen (2016) suggested the use of constant decomposition

weights, while Despotis et al. (2016) introduced a novel overall efficiency composition ap-

proach. In the previous section, it was shown that for the network structure elaborated

in this paper (see Figure 2), under the VRS, the non-increasing relationship between the

endogenous decomposition weights (w1j ≥ w2j, j = 1, ..., N) cannot be established. In
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this section, we are going to show that the same result holds for all the four types of

two-stage series network structures under the VRS.

The four types of two-stage series structures of a DMUj, j = 1, ..., N, are depicted in

Figure 3. Let xpj, p = 1, ..., P be the inputs to the first stage, (zf )lj, l = 1, ..., L the final

outputs resulting from the first stage, zqj, q = 1, ..., Q the intermediate products, used

as inputs to the second stage, xdj, d = 1, ..., D the external intermediate inputs to the

second stage, and ysj, s = 1, ..., S the final outputs of the second stage.

Under the CRS, for the decomposition weights of structures of type 1 and 3, in

the input-oriented, additive decomposition model, Ang and Chen (2016) showed that

w1j ≥ w2j, for all j = 1, ..., N. The relation between the decomposition weights for the

four types of two stage structures, under the VRS, is investigated below.

Type 1 Type 2

Type 3 Type 4

Figure 3: The four types of two-stage series structures

Type 1 structure:

Type 1 structure is the same as the one presented in the previous section (Figure 2),

as in that case, undesirable outputs were treated as external inputs to the second stage.

Therefore, it holds that

w1j − w2j ≥
∑L

l=1 µl(zf )lj + u1 −
∑D

d=1 cdxdj∑P
p=1 πpxpj +

∑Q
q=1 ηqzqj +

∑D
d=1 cdxdj

. (32)
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Type 2 structure:

w1j − w2j =

∑P
p=1 πpxpj −

∑Q
q=1 ηqzqj∑P

p=1 πpxpj +
∑Q

q=1 ηqzqj
≥

∑L
l=1 µl(zf )lj + u1∑P

p=1 πpxpj +
∑Q

q=1 ηqzqj
. (33)

Type 3 structure:

w1j − w2j =

∑P
p=1 πpxpj −

∑Q
q=1 ηqzqj −

∑D
d=1 cdxdj∑P

p=1 πpxpj +
∑Q

q=1 ηqzqj +
∑D

d=1 cdxdj

≥ u1 −
∑D

d=1 cdxdj∑P
p=1 πpxpj +

∑Q
q=1 ηqzqj +

∑D
d=1 cdxdj

. (34)

Type 4 structure:

w1j − w2j =

∑P
p=1 πpxpj −

∑Q
q=1 ηqzqj∑P

p=1 πpxpj +
∑Q

q=1 ηqzqj
≥ u1∑P

p=1 πpxpj +
∑Q

q=1 ηqzqj
. (35)

In all four cases, the denominator of the final fraction is positive, whereas the sign of the

nominator varies, depending on the values of the optimal weights and the value and sign

of the scalar u1.

Remark 5.1 In the input-oriented additive decomposition model, under the VRS as-

sumption, the order relation between the endogenously defined decomposition weights is

not fixed, but it depends on the optimal input output mix and the first stage scalar (u1)

of each DMUj, j = 1, ..., N.

Hence, unlike the CRS case, under the VRS assumption, the decomposition weights can

be defined endogenously without introducing any bias in the production process.

6 Empirical Study

6.1 Railway noise pollution in Europe

The most serious problem that railways cause to the environment is noise pollution.

Notably in Europe, after road traffic noise, noise generated from railways is the second

highest environmental health problem. According to 2017 estimations, about 22 million

people were exposed to high levels of railway noise inside and outside urban areas (EEA
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Report 22/2019, 2019).

Railway noise mainly comes from the wheel and rail vibrations, which are generated

by the contact of the rolling wheel with the rail (Kitagawa, 2009, pg. 1). Bad rolling

conditions originating from the poor maintenance of the rail lines or wheel flats, result

in augmented noise levels. The braking technology that is used, also plays an important

role; cast iron brake blocks corrugate the wheel surface resulting in higher rolling noise

levels, while composite and sinter material blocks cause low roughness to the wheel, and

thus, produce less noise (Pyrgidis, 2016, pg. 428-429). Until the mid 2000s, cast iron

brakes was the only brake technology used in freight wagons, due to their lower cost.

On the other hand, the disc brake technology that is used in passenger trains, which

are usually high-speed trains, generates lower rolling noise levels (Thomson and Gautier,

2006, pg. 400). In this type of trains, aerodynamic noise seems to be the major problem

(Thomson et al., 2015).

In contrast to passenger trains which are mainly operating during the day, the major-

ity of freight wagons operate during the night hours, and are therefore considered, under

the current brake technology, as the main source of noise pollution in Europe (ERA

006REC1072 Impact Assessment, 2018). In 2006, the technical specifications for inter-

operability (TSI) which were introduced by the European Commission (EC), set noise

emission limits for new wagons and implicitly prohibited the use of cast iron blocks (Com-

mission Decision 2006/66/EC, 2006). However, since the lifetime of wagons can be over

40 years, the renewal procedure would be very slow. Therefore, in 2008, the Commission

announced new measures for noise emissions reduction, which suggested the retrofitting

of the existing wagon fleet with composite brake blocks (Council Directive 2008/57/EC,

2008). This would result in up to 10dB noise reduction.

Depending on its duration and intensity, noise can affect human health, causing from

mild problems such as annoyance, sleeping disturbances or stress to the body to more

serious problems such as increased blood pressure, insomnia and risk for cardiovascular

diseases. Environmental noise in the classroom - coming from the road, rail and air traffic

- is also related to children cognitive impairment (Clark and Stansfeld, 2007; EEA, 2010).
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The Environmental Noise Directive (END) (Council Directive 2002/49/EC, 2002)

defined Lden indicator to be used as a threshold against which human exposure to envi-

ronmental noise is monitored. Lden is defined as the yearly average sound pressure level

during all days, evenings and nights, where evening sound pressure value has a penalty

of 5dB and night value has a penalty of 10 dB, where dB is considered as an A-weighting

scale, used to measure loudness corresponding to the frequencies that human ear can

perceive. Lden is calculated by the following formula:

Lden = 10·log 1

24

(
(day hours)·10

Lday
10 +(evening hours)·10

Levening+5

10 +(night hours)·10
Lnight+10

10
)
,

where Lday, Levening, and Lnight are the yearly average sound pressure levels over day,

evening and night hours, respectively.

According to the END, EU member states should keep environmental noise at levels

where Lden ≤ 55 dB and Lnight ≤ 50 dB. According to the World Health Organization

(WHO) guidelines, noise should not exceed 40 dB during night (WHO, 2009, pg. 108-109).

6.2 Railway model considering the impact of environmental noise

Railways is a capital-intensive industry that relies a lot on investments to maintain, im-

prove and expand its assets, rolling stock and infrastructure, aiming to provide passenger

and freight services of high quality and continue to be competitive in the modal market

share. Therefore, from the operational perspective, the railway transport process is di-

vided into two stages; the asset related and the services related. The first stage is related

to the acquirement of rolling stock that satisfies EC standards and the development of a

rail network with adequate line length. In the second stage, the quality of the services

offered is evaluated by measuring the passenger and freight carriage as well as the impact

that noise generated from the moving trains had on the population.

In this study, the infrastructure investment costs and the operating and maintenance

costs are considered as inputs, and the length of operating lines, the number of total rail

wagons and the number of wagons that are compliant with the noise standards specified

in TSI, are regarded as outputs of the first stage. The length of the operating lines
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and the total number of wagons are then introduced as inputs to the second stage, to

produce two desirable outputs, million-tonne freight-kilometres (MT-km) and million

passenger-kilometres (M-km), and one undesirable output, the total number of people

exposed to high levels of railway noise (Lden ≥ 55 dB) inside and outside urban areas (see

Figure 4). The passenger-km and tonne freight-km are calculated as the total distance

travelled divided by the number of passengers or tonnes of freight carried and represent

the transport of one passenger or one tonne of freight, respectively, over one kilometre.

Figure 4: Railways model structure

This study assesses the environmental efficiency of railway systems in 22 European

countries in 2016-2017. During that time, 20 of the countries under investigation were

members of the European Union (EU) - United Kingdom left the EU on 31st January

2020. Switzerland and Norway are also included in the dataset, as they belong to the

Schengen area. Concerning the rest of the EU members not included in this study, some

of them have missing data and some others, such as Malta and Cyprus, have no railway

system.

Data provided in Table 1, were collected from various sources. Infrastructure invest-

ment and operational and maintenance costs were extracted from the 2019 European

Commission report (van Essen et al., 2019, pg. 153) and are both measured in billion

euros. The number of new and retrofitted wagons which are compliant with the TSI, as

well as the total number of wagons in each country, were found in the 2018 report of the

European Union Agency for the Railways (ERA) on the noise TSI (ERA 006REC1072

Impact Assessment, 2018, pg. 23). The length of operating lines, passenger M-km and

freight MT-km were extracted from the Eurostat (2016) database. The number of people

exposed to noise levels higher than those established by the END as acceptable was found
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in Noise Country Fact Sheets 2019, in the European Environment Agency (EEA) web-

page (EEA, 2020). It should be noted that until 1st January 2019 - when common noise

assessment methods (CNOSSOS-EU) started to be applied by all the EU member states -

each country was using its own methods for noise pollution measurement, which involved

the use of different parameters to capture meteorological conditions, ground absorption

or population assignment to buildings (EEA Report 22/2019, 2019). All variables refer

to 2016 measurements, except for the last one, which refers to 2017, since noise pollution

impact measurements took place in 2007, 2012 and 2017.

The non-parametric Spearman correlation analysis (Table 2) indicates that there is

a positive relationship between the input and output variables. This can be interpreted

as that an increase in the amount of inputs consumed results in a certain increase in the

amount of outputs produced.

Because the efficiency scores calculated with the DEA methodology are relative and

not absolute measures of the performance of a DMU, as the number of inputs and outputs

increases, the discrimination power of the model diminishes and a number of inefficient

DMUs may be falsely rated as efficient. There are several rules of thump in the DEA

literature for relating the number of inputs and outputs to the sample size (Charles et al.,

2019). Following the threshold N ≥ max{p×q×s, 3(p+q+s)}, where N is the number of

observations, p is the number of inputs, q the number of the first stage outputs, and s the

number of second stage outputs, and given that in this case, due to data unavailability,

the number of observations is not possible to be increased, there is a need to reduce

the model dimensions. Here, the aggregation of the infrastructure investment costs and

operation and maintenance costs by simple addition is applied, since these two variables

are both measuring different types of costs and are highly correlated (Podinovski and

Thanassoulis, 2007).

According to Peterson (1996), among the western European railway companies in-

cluded in the study, the smallest operators showed increasing returns to scale (IRS), the

medium sized operators showed CRS and the largest operators showed decreasing returns

to scale (DRS). Since there are CRS, IRS, and VRS operators, the VRS DEA model was

25



adopted in this study to provide a more equitable efficiency analysis, regardless of the

size of railway operators1.

Table 1: Data Set

DMU
Invest.
Costs
(bn e)

O&M
Costs
(bn e)

TSI
Wagons

Total
Wagons

Length
of Lines

(km)

Freight
MT-km

Pass.
M-km

Lden ≥
55 dB

1 Austria 2.61 1.66 6511 23345 5491 21361 12497 1081900
2 Belgium 1.78 0.38 2312 12013 3607 0 10025 324400
3 Bulgaria 0.30 0.25 568 16915 4029 3434 1455 42300
4 Croatia 0.19 0.30 383 2274 2604 2160 827 26400
5 Czech Rep. 1.35 1.36 8000 42199 9564 15619 8738 268500
6 Denmark 0.39 0.13 225 366 2045 2616 6332 84300
7 Estonia 0.06 0.14 0 20849 1161 2340 316 6100
8 Finland 0.41 0.18 200 9942 5926 9456 3868 119400
9 France 5.09 3.67 8558 77678 28364 32569 90612 3780000

10 Germany 7.74 3.92 59626 165653 38623 126686 95465 6390500
11 Ireland 0.16 0.21 100 254 1931 101 1991 42600
12 Latvia 0.11 0.17 0 11888 1860 15873 584 40600
13 Lithuania 0.22 0.31 0 14828 1911 13790 280 11600
14 Netherlands 2.73 1.02 9000 21226 3058 6641 17483 312500
15 Poland 3.50 0.69 2750 83500 19132 50650 19067 419700
16 Portugal 0.71 0.26 3123 3313 2546 2774 4266 137100
17 Slovenia 0.23 0.18 226 3230 1209 4360 611 47600
18 Spain 5.23 0.73 6781 20833 16167 10550 26646 69300
19 Sweden 1.07 0.45 931 11000 10882 21406 12800 549400
20 UK 6.46 3.45 15467 18246 16253 17053 68010 1709400
21 Norway 0.52 0.48 516 1623 3895 3312 3695 123400
22 Switzerland 2.50 1.58 19236 21200 3650 12447 20657 482400

Table 2: Non-parametric Spearman correlation matrix

Invest.
Costs

O&M
Costs

TSI
Wagons

Total
Wagons

Length
Lines

Freight
MT-km

Pass.
M-km

Lden ≥
55 dB

Invest. Costs 1.000
O&M Costs 0.864 1.000
TSI Wagons 0.903 0.882 1.000

Total Wagons 0.657 0.707 0.645 1.000
Length Lines 0.840 0.766 0.715 0.586 1.000

Fr. MT-km 0.597 0.637 0.479 0.689 0.674 1.000
Pass. M-Km 0.951 0.810 0.888 0.591 0.831 0.561 1.000
Lden ≥ 55dB 0.862 0.801 0.822 0.536 0.764 0.616 0.886 1.000

1For a review of the different models used to assess the efficiency of railways under different returns
to scale assumptions see Mahmoudi et al. (2020).
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6.3 Results

In the model described above, the first stage measures the performance of European coun-

tries in building and maintaining their railway infrastructure and rolling stock, while the

second stage efficiency measures their performance in providing passenger and freight ser-

vices considering the less possible environmental noise impact on humans. The efficiency

of the whole process and the two sub-processes is evaluated using the additive decom-

position methodology elaborated in the previous section while assuming that railways

operate under the VRS technology.

Through the optimisation process, for five countries, namely France, Lithuania, Poland,

Spain and the UK, the optimal decomposition weights take values w∗1 = 0 and w∗2 = 1,

whereas for Portugal and Switzerland it results that w∗1 = 1 and w∗2 = 0. That means that

for these countries, one of the two stages’ contribution to the overall process is ignored.

Therefore, the decomposition weight restrictions given in remark 4.1 are incorporated

into model (24).

Sensitivity analysis of the overall efficiency scores was performed for different given

values of the lowest allowed level κ of decomposition weights, i.e. wij, w2j ≥ κ, κ ∈ S,

S = {0.01, 0.02, 0.03, ..., 0.48, 0.49, 0.5}. Results reveal that although for some countries

overall efficiency has a very slight downward tendency as κ increases, for the majority

of countries, overall efficiency scores and optimal decomposition weights are generally

stable. Furthermore, for all countries, stage efficiency scores are stable.

Efficiency scores start to be more sensitive to changes of κ, as κ exceeds some thresh-

old, and they are completely destabilised when κ = 0.5. For κ = 0.5, Austria and the

Netherlands show infeasibility in the stage efficiency models.

Rankings based on the overall efficiency score seem not to be significantly affected

for most of the countries, even for large values of κ. Portugal, Switzerland, Latvia,

UK, Bulgaria and Finland are the most sensitive to weight restrictions. Estonia and

Germany are overall efficient for all κ ∈ S, and Poland is overall efficient for all κ ∈

S\{0.47, 0.48, 0.49, 0.5}. For space-saving, rankings of the countries for half of the κ val-

ues - with κ step change being 0.02 - are given in Table 3.
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Table 3: Overall efficiency rankings for different decomposition weight restrictions

κ
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0.02 21 22 15 17 16 12 1 14 4 1 13 8 6 19 1 10 18 5 11 7 20 9
0.04 21 22 15 17 16 12 1 14 4 1 13 7 6 19 1 10 18 5 11 8 20 9
0.06 21 22 15 17 16 12 1 14 4 1 13 5 7 19 1 11 18 6 10 8 20 9
0.08 21 22 15 17 16 12 1 14 4 1 13 5 7 19 1 11 18 6 10 8 20 9
0.10 21 22 15 17 16 12 1 14 4 1 13 5 7 19 1 11 18 6 10 8 20 9
0.12 21 22 15 17 16 12 1 14 4 1 13 5 7 19 1 11 18 6 10 8 20 9
0.14 21 22 15 17 16 12 1 14 4 1 13 5 7 19 1 11 18 6 10 8 20 9
0.16 21 22 15 17 16 12 1 14 4 1 13 5 7 19 1 11 18 6 10 8 20 9
0.18 21 22 15 17 16 11 1 14 4 1 13 5 7 19 1 12 18 6 10 8 20 9
0.20 21 22 15 17 16 11 1 14 5 1 13 4 7 19 1 12 18 6 10 8 20 9
0.22 21 22 15 17 16 11 1 14 5 1 13 4 7 19 1 12 18 6 10 8 20 9
0.24 21 22 15 17 16 11 1 14 5 1 13 4 7 19 1 12 18 6 9 8 20 10
0.26 21 22 15 17 16 11 1 14 5 1 12 4 7 19 1 13 18 6 9 8 20 10
0.28 21 22 15 17 16 11 1 14 5 1 12 4 7 19 1 13 18 6 9 8 20 10
0.30 21 22 15 17 16 10 1 14 5 1 12 4 7 19 1 13 18 6 9 8 20 11
0.32 21 22 14 17 16 10 1 13 5 1 12 4 7 19 1 15 18 6 8 9 20 11
0.34 21 22 14 17 16 10 1 13 5 1 11 4 7 19 1 15 18 6 8 9 20 12
0.36 21 22 13 17 16 10 1 12 5 1 11 4 7 19 1 15 18 6 8 9 20 14
0.38 21 22 13 17 16 10 1 12 5 1 11 4 7 19 1 15 18 6 8 9 20 14
0.39 21 22 13 17 16 9 1 12 5 1 11 4 8 19 1 15 18 6 7 10 20 14
0.40 21 22 13 17 16 9 1 12 5 1 11 4 8 19 1 15 18 6 7 10 20 14
0.42 21 22 13 16 14 9 1 12 5 1 11 4 8 19 1 17 18 6 7 10 20 15
0.44 21 22 13 15 14 9 1 12 5 1 11 4 8 19 1 17 18 6 7 10 20 16
0.46 21 22 13 15 14 9 1 12 5 1 11 4 8 19 1 17 18 6 7 10 20 16
0.48 21 22 12 15 14 9 1 10 5 1 13 4 8 19 3 17 18 6 7 11 20 16
0.50 21 22 11 15 14 9 1 10 5 1 13 3 7 19 4 17 18 6 8 12 20 16

Portugal and Switzerland are the only countries in the set, for which, for all the

different weight restrictions, efficiency decomposition is not unique and changing the

priority stage yields different stage efficiency scores. As κ increases and restrictions on

the decomposition weights become more severe, the optimisation process is forced to

assign greater optimal values to some decomposition weights. Therefore, the optimal

values of the decomposition weights tend to coincide with the values of κ and 1 − κ

for a growing number of countries. In this analysis, this upturn starts happening for

κ ≥ 0.14. Therefore, above that threshold, for some countries the relative contribution of

each stage to the overall process is forced to change. However, for most countries, this

does not affect their rankings significantly. Nevertheless, as κ increases, the number of

countries for which it is not possible to have a unique efficiency decomposition raises. For

example, four countries do not have unique efficiency decomposition for κ = 0.2, and ten

countries for κ=0.5.

For the cases when decomposition weight restrictions are needed, there is no rule for

choosing a value for κ and the choice depends on what the managerial preferences are.
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Large values of κ may be too restrictive, impacting on the efficiency scores and sometimes

resulting in infeasibility problems. Therefore, there is a range of smaller κ values for which

efficiency scores and optimal decomposition weight values are not significantly affected.

That means that for this range of κ values, efficiency scores show low volatility.

In order to deduce the sensitivity threshold, a volatility measure of the overall effi-

ciency scores was evaluated as follows2:

1. We calculate the overall efficiency scores of each DMUj, j = 1, ..., N, for all κ ∈ S

2. For a small r ∈ Z+ we calculate the volatility index as the sum of the standard devia-

tions of the overall efficiency scores of each DMU, i.e. Vκ =
∑N

j=1 sd{θ0∗j,κ−r, ..., θ0∗j,κ+r}

3. We choose the range of κ values which minimise Vκ.

Here, the above algorithm is repeated for r = 1, 2, 3, 4. Lower values of the volatility

index indicate greater stability of the efficiency scores. The resulting volatility indices

are presented in Table 5 in the Appendix. As it is shown in Table 5, the volatility index

is low and stable for all κ ≤ 0.15 for all r = 1, 2, 3, 4. Volatility increases for κ ≥ 0.19,

κ ≥ 0.18, κ ≥ 0.17 and κ ≥ 0.16 for r = 1, 2, 3, 4 respectively. Therefore, κ = 0.15 is

deduced as an overall sensitivity threshold in this analysis.

However, if κ is too small, for some DMUs one stage will be assigned a very low

contribution to the overall process. There is a range of κ values which are not too

restrictive, but also ensure that no stage will be ignored. Table 4 shows the overall and

stage efficiency scores, as well as the decomposition weights for the case when κ = 0.1,

where the exponent p indicates the priority stage. By imposing w1j, w2j ≥ 0.1, we prevent

one of the two stages to undertake the weight of the whole process, and secondly, κ = 0.1

lies below the defined sensitivity threshold.

According to the results, four countries, Estonia, Finland, Germany and Poland are

first-stage efficient. These countries are also efficient in the second stage, except for

Finland which shows a relatively low performance in the second stage. In total, 11

2This algorithm is based on the algorithm suggested by Politis et al. (2001) for the selection of
subsample size when applying subsampling bootstrap.
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out of 22 countries are efficient in the second stage - without including Switzerland.

These countries constitute half of the sample, which seems to be a great difference to

the number of first-stage efficient countries. However, performing Wilcoxon signed-rank

test for the efficiency scores of the two stages, we fail to reject the null hypothesis that

the scores of the two stages do not differ significantly, for any level of significance. Also,

the Spearman correlation between the stage efficiency scores is zero, indicating that an

increase (decrease) in one stage’s efficiency score does not imply an increase (decrease)

in the other stage’s score.

Table 4: Efficiency scores and optimal decomposition weights, when w1j, w2j ≥ 0.1

DMU θ0∗ w∗1j w∗2j θ1p∗ θ2∗ θ1∗ θ2p∗

1 Austria 0.4336 0.6219 0.3781 0.2748 0.6949 0.2748 0.6949
2 Belgium 0.3974 0.6892 0.3108 0.3332 0.5397 0.3332 0.5397
3 Bulgaria 0.7038 0.6206 0.3794 0.9088 0.3685 0.9088 0.3685
4 Croatia 0.6653 0.7025 0.2975 0.7270 0.5195 0.7270 0.5195
5 Czech Rep. 0.6673 0.6950 0.3050 0.7356 0.5116 0.7356 0.5116
6 Denmark 0.7629 0.5592 0.4408 0.5760 1 0.5760 1
7 Estonia 1 0.4310 0.5690 1 1 1 1
8 Finland 0.7051 0.5351 0.4649 1 0.3657 1 0.3657
9 France 0.9882 0.1000 0.9000 0.8822 1 0.8822 1

10 Germany 1 0.8531 0.1469 1 1 1 1
11 Ireland 0.7313 0.6844 0.3156 0.7373 0.7181 0.7373 0.7181
12 Latvia 0.9773 0.2785 0.7215 0.9186 1 0.9186 1
13 Lithuania 0.9493 0.1000 0.9000 0.4932 1 0.4932 1
14 Netherlands 0.5480 0.8053 0.1947 0.4387 1 0.4387 1
15 Poland 1 0.4198 0.5802 1 1 1 1
16 Portugal 0.7873 0.9000 0.1000 0.8250 0.4480 0.7995 0.6769
17 Slovenia 0.6600 0.8027 0.1973 0.5764 1 0.5764 1
18 Spain 0.9559 0.1000 0.9000 0.5594 1 0.5594 1
19 Sweden 0.8058 0.3903 0.6097 0.8628 0.7692 0.8628 0.7692
20 UK 0.9380 0.1000 0.9000 0.3804 1 0.3804 1
21 Norway 0.4676 0.7176 0.2824 0.4818 0.4317 0.4818 0.4317
22 Switzerland 0.8936 0.9000 0.1000 0.9552 0.3398 0.8818 1

Bulgaria, Croatia, Czech Republic, Finland, Portugal, Sweden and Switzerland - con-

sidering the first stage as priority stage - have significantly lower second stage efficiency

score. To investigate whether their lower second stage efficiency is due to the number of

people affected by noise, Lden variable is excluded from the model. In this case, Switzer-

land and the Netherlands show infeasibility when the first stage is considered as the

priority stage. According to the results (see Table 6 in the Appendix for the case when
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w1j, w2j ≥ 0.1), overall efficiency scores are lower for all countries except for Estonia and

Germany, which remain overall efficient. However, it is not possible to extract a safe

conclusion about whether this happens because countries perform relatively well in terms

of the number of people affected by railway noise or because the reduction of the model

dimensions results in increasing its discrimination power. Similarly, for the majority of

the countries, the second stage efficiency scores are the same or lower than those when

Lden is included in the model. Austria and Belgium are the only countries whose second

stage efficiency increases when Lden variable is omitted.

6.4 Policy Implications

Based on the optimal decomposition weights obtained, it is possible to specify which

stage is of the highest relative importance for each country. In other words, the optimal

decomposition weights can be used by the countries included in the data set as guidance

about defining the optimal portion of inputs that they should devote to each stage.

According to the results, 13 out of 22 countries included in the study, namely Portu-

gal, Switzerland, Germany, the Netherlands, Slovenia, Norway, Croatia, Czech Republic,

Belgium, Ireland, Austria and Bulgaria, should give more importance to their assets

investment, operation and maintenance to improve their efficiency, since, for these coun-

tries, the contribution of the first stage to the overall process is higher.

On the other hand, railway industries in France, Spain, the UK and Lithuania, should

focus their operation management almost completely on the services they provide, aiming

to optimise their freight and passenger carriage, while reducing its noise effects on the

environment. Railway operation in Latvia and Sweden should also be more services-

related, while Denmark, Finland, Estonia and Poland should give approximately the

same balance in their assets and services operation.

Considering the interoperability framework in which European railways operate, to

limit the railway noise pollution problem and improve environmental efficiency, changes

and measures should be planned and adopted in a cross-country context. Abatement of

the railway noise sources in a single country would not resolve the problem and could
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even harm the competitiveness of railways against other means of transport. Therefore,

the common standards set by the European Commission through the Directives can help

in this direction. Cooperation and exchange of expertise among the European countries

could further foster efficiency improvement of the railway sector.

Furthermore, in reducing railway noise, countries should also focus both on the good

maintenance of rail tracks and the increase of the number of wagons that are compliant

with the EC standards to achieve the maximum possible noise reduction.

The multiplier model, which was formulated in previous sections, is used to calculate

the efficiency scores of DMUs. In NDEA, it is also possible to provide targets for the

input/output variables of each DMU by solving the envelopment form of the model, which

is based on the PPS. However, this study focuses on the efficiency evaluation of European

railways, and the formulation of the envelopment model is beyond its scope.

7 Conclusion

Railways have unarguably many advantages, such as higher safety, less energy consump-

tion, less pollution and less traffic congestion, compared to other means of transport.

While recognising that the development and maintenance of railways should be given

priority, it is vital to take into consideration the impact that railways have on the envi-

ronment in order to be able to mitigate it. Acknowledging that noise pollution is a major

environmental problem caused by railways, this paper focused on incorporating it in the

efficiency evaluation of the railway transport process.

The railway industry is capital-intensive, and its purpose is to optimise its passenger

and freight services. For this reason, the railway transport process was divided into two

stages, assets and services. The problem of noise pollution is linked to both stages. In

the asset stage, good maintenance of the rail lines and retrofitting of the rail wagons

with more silent, composite brake technology can mitigate the noise generation. On the

other hand, high-quality railway services should entail the minimisation of the number of

people affected by railway noise. Therefore, both these factors were taken into account

when building the model.
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We extended the NDEA additive decomposition approach to account for intermediate

and undesirable outputs. This allowed us to have a better insight into the railways’

operation, detect which part of the production process is the main source of inefficiency,

and which stage has the highest relative importance for each country.

The performance of railways in 22 European countries during 2016-2017 was studied

since the railways’ pollution problem seemed to be more significant in this area. The as-

set, services and overall efficiency scores obtained, revealed that there was no significant

difference in the performance of European railways in total, between the two stages. An

interesting result is also that, except for Finland, countries which show efficient perfor-

mance in the asset stage are also efficient in services provision. However, although many

countries seemed to be efficient in the second stage, they got a low asset efficiency score,

indicating that the inverse relationship did not hold.

The overall efficiency rankings were not significantly affected by imposing different

constraints on the decomposition weights of each stage. Consequently, changing the

relative importance of each stage, in general, did not affect its relative performance sig-

nificantly.

A limitation of this study is that due to data unavailability, the collected variables

refer to consecutive years, and this has probably affected the accuracy of the results

reported. Furthermore, due to missing data, some European countries were not included

in the data set. Since DEA provides relative efficiency measurement, the inclusion or

omission of DMUs impacts the efficiency scores of the sample. Therefore, the obtained

efficiency scores can only be indicative of the real noise-pollution picture in European

railways, as the complete data set of European countries would be needed to have a more

accurate efficiency measurement.

This research can be extended by using DEA models to study the railway noise pollu-

tion problem in different regions other than Europe. Furthermore, a future study could

distinguish between the noise generated by the passenger high-speed trains, and freight

wagons or between the impact that railway noise has inside and outside urban areas.

Finally, another future research may consider the impact of railway noise on wildlife.
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Djordjević, B., Krmac, E., Mlinarić, T.J., 2018. Non-radial DEA model: A new approach to evaluation

of safety at railway level crossings. Safety Science, 103, 234-246.

European Environmental Agency, 2010. Good Practice Guide on Noise Exposure and Potential Health

Effects. EEA Technical Report No. 11/2010, European Environment Agency: Copenhagen, Denmark.

[dataset] EEA, 2020. Noise country fact sheets 2019.

https://www.eea.europa.eu/themes/human/noise/noise-fact-sheets.

EEA Report No 10/2014. Noise in Europe 2014. Luxembourg: Publications Office of the European

Union.

EEA Report No 22/2019. Environmental noise in Europe-2020. Luxembourg: Publications Office of the

European Union.

ERA 006REC1072 Impact Assessment, 2018. Revision of the Noise TSI: Application of Noise TSI re-

quirements to existing freight wagons.

[dataset] Eurostat, 2016. Transport/Railway transport. Viewed on November 2020,

https://ec.europa.eu/eurostat/data/database.

George, S.A., Rangaraj, N., 2008. A performance benchmarking study of Indian Railway zones. Bench-

marking, 15, 599-617.

Graham, D.J., 2008. Productivity and efficiency in urban railways: parametric and non-parametric

estimates. Transportation Research Part E: Logistics and Transportation Review, 44(1), 84–99.

35



Growitsch, C., Wetzel, H., 2009. Testing for economies of scope in European railways. Journal of Trans-

port Economics and Policy, 43(1), 1-24.
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Appendix

Table 5: Volatility indices for the overall efficiency scores

Vκ
κ r=1 r=2 r=3 r=4

0.01 - - - -
0.02 0.02677 - - -
0.03 0.02677 0,04233 - -
0.04 0.02677 0.04233 0.05784 -
0.05 0.02677 0.04233 0.05784 0.07332
0.06 0.02677 0.04233 0.05784 0.07332
0.07 0.02677 0.04233 0.05784 0.07332
0.08 0.02677 0.04233 0.05784 0.07332
0.09 0.02677 0.04233 0.05784 0.07332
0.10 0.02677 0.04233 0.05784 0.07332
0.11 0.02677 0.04233 0.05784 0.07332
0.12 0.02677 0.04233 0.05784 0.07332
0.13 0.02677 0.04233 0.05784 0.07332
0.14 0.02677 0.04233 0.05784 0.07332
0.15 0.02677 0.04233 0.05784 0.07332
0.16 0.02677 0.04233 0.05784 0.07402
0.17 0.02677 0.04233 0.05863 0.07590
0.18 0.02677 0.04328 0.06073 0.07837
0.19 0.02799 0.04568 0.06343 0.08152
0.20 0.03076 0.04861 0.06679 0.08501
0.21 0.03313 0.05189 0.07025 0.08857
0.22 0.03466 0.05437 0.07335 0.09201
0.23 0.03547 0.05569 0.07564 0.09498
0.24 0.03565 0.05651 0.07696 0.09710
0.25 0.03606 0.05695 0.07780 0.09877
0.26 0.03636 0.05738 0.07875 0.10020
0.27 0.03647 0.05822 0.07986 0.10183
0.28 0.03727 0.05915 0.08139 0.10451
0.29 0.03817 0.06060 0.08401 0.10747
0.30 0.03923 0.06326 0.08690 0.11042
0.31 0.04167 0.06576 0.08964 0.11324
0.32 0.04344 0.06782 0.09186 0.11582
0.33 0.04381 0.06903 0.09364 0.11816
0.34 0.04381 0.06941 0.09507 0.12042
0.35 0.04404 0.07007 0.09624 0.12344
0.36 0.04493 0.07123 0.09882 0.12848
0.37 0.04602 0.07416 0.10432 0.13448
0.38 0.04895 0.08015 0.11065 0.14099
0.39 0.05523 0.08615 0.11691 0.14779
0.40 0.05894 0.09112 0.12280 0.15471
0.41 0.05940 0.09439 0.12823 0.16276
0.42 0.06059 0.09649 0.13406 0.17116
0.43 0.06270 0.10101 0.13990 0.18142
0.44 0.06707 0.10686 0.14910 0.19375
0.45 0.07175 0.11558 0.16147 0.20728
0.46 0.07844 0.12697 0.17421 0.22148
0.47 0.08775 0.13726 0.18658 -
0.48 0.09380 0.14618 - -
0.49 0.09634 - - -
0.50 - - - -
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Table 6: Efficiency scores and optimal decomposition weights, when Lden is omitted from
the model, and w1j, w2j ≥ 0.1

DMU θ0∗ w∗1j w∗2j θ1p∗ θ2∗ θ1∗ θ2p∗

1 Austria 0.4204 0.7703 0.2297 0.2748 0.9089 0.2748 0.9089
2 Belgium 0.3655 0.8872 0.1128 0.3328 0.6226 0.3328 0.6226
3 Bulgaria 0.6985 0.6430 0.3570 0.9081 0.3210 0.9081 0.3210
4 Croatia 0.6650 0.7123 0.2877 0.7421 0.4742 0.7421 0.4742
5 Czech Rep. 0.6431 0.7890 0.2110 0.7356 0.2970 0.7356 0.2970
6 Denmark 0.6490 0.7700 0.2300 0.5735 0.9016 0.5735 0.9016
7 Estonia 1 0.9000 0.1000 1 1 1 1
8 Finland 0.7006 0.5678 0.4322 1 0.3072 1 0.3072
9 France 0.9474 0.4462 0.5538 0.8822 1 0.8822 1

10 Germany 1 0.9000 0.1000 1 1 1 1
11 Ireland 0.7261 0.7161 0.2839 0.7339 0.7065 0.7339 0.7065
12 Latvia 0.9473 0.6478 0.3522 0.9186 1 0.9186 1
13 Lithuania 0.5885 0.7721 0.2279 0.4932 0.9117 0.4932 0.9117
14 Netherlands 0.4454 0.9000 0.1000 0.5146 -0.1774 0.3838 1
15 Poland 0.8495 0.4829 0.5171 1 0.7089 1 0.7089
16 Portugal 0.7826 0.9000 0.1000 0.8250 0.4008 0.7943 0.6769
17 Slovenia 0.6537 0.8174 0.1826 0.5764 1 0.5764 1
18 Spain 0.4528 0.6516 0.3484 0.4851 0.3926 0.4851 0.3926
19 Sweden 0.7696 0.4717 0.5283 0.8628 0.6863 0.8628 0.6863
20 UK 0.5788 0.6567 0.3433 0.3586 1 0.3586 1
21 Norway 0.4620 0.7717 0.2283 0.4808 0.3985 0.4808 0.3985
22 Switzerland 0.7207 0.9000 0.1000 0.9552 -1.3899 0.6896 1
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