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Cronista logs the provenance of changes to the runtime model used by a system to a history model, with 

the aim to assist in diagnosing system faults and behaviours. 

  

Applying Cronista’s automated provenance  collection approach has negligible impact on the target 

system’s execution times whether storing provenance graphs on CDO or JanusGraph.  

  

We show how to investigate a seeded defect with provenance graphs stored in CDO and JanusGraph, 

and find that the declarative style in the Gremlin language of JanusGraph is easier to learn. 

ts (for review)

Jo
ur

na
l P

re
-p

ro
of



Manusc ces

Journal Pre-proof
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OWEN REYNOLDS, ANTONIO GARCÍA-DOMÍNGUEZ, and NELLY BENCOMO, SEA research

group, EPS, Aston University, United Kingdom

Context: Decision making by software systems that face uncertainty needs tracing to support understandability, as accountability is
crucial. While logging has been essential to support explanations and understandability of behaviour, several issues still persist, such
as the high cost for managing large logs, not knowing what to log, and the inability of logging techniques to relate events to each
other or to specific occurrences of high-level activities in the system.

Objective: Cronista is an alternative to logging for systems that act on top of runtime models. Instead of targeting the running
systems, Cronista automatically collects the provenance of changes made to the runtime models, which aim at leveraging high-level
representations, to produce more concise historical records. The provenance graphs capture causal links between those changes and
the activities of the system, which are used to investigate issues.

Method: Cronista ’s architecture is described with the current design and the implementation of its high-level components for
single-machine, multi-threaded systems. Cronista is applied to a traffic-simulation case study.The trade-offs of two different storage
solutions are evaluated, i.e. the CDO model repositories, and JanusGraph graph databases.

Results: Integrating Cronista into the case study requires only minor code changes. Cronista collected provenance graphs for the
simulations as they ran, using both CDO and JanusGraph. Both solutions highlighted the cause of a seeded defect in the system. For
the longer executions, both CDO and JanusGraph showed negligible overhead on the simulation times. Querying and visualisation
tools were more user-friendly in JanusGraph than in CDO.

Conclusion: Cronista demonstrates the feasibility of recording fine-grained provenance for the evolution of runtime models, while
using it to investigate issues. User convenience and resource requirements need to be balanced. The paper present how the available
technologies studied offer different trade-offs to satisfy the balance required.

CCS Concepts: • Software and its engineering→ Systemmodeling languages; Integration frameworks;Model-driven soft-
ware engineering.

Additional Key Words and Phrases: Provenance, runtime-models, multi-threading, self-adaptation, self-explanation

1 INTRODUCTION

The increasing complexity of software systems entails uncertainty, making it difficult to determine the causes of
behaviour at runtime [13]. An example of this can be seen in systems that offer concurrent activities, which present
uncertainty about the order of events and interaction of activities that may occur at runtime [9]. In other cases, a
system may need to make a decision over incomplete information, and it may be difficult to discern afterwards why
that decision was made [5, 46].

Algorithmic accountability and the right to explanation is an important topic for software developers and society in
general [47]. Explaining system behaviour requires runtime data to support the explanations [46, 52]. Event logging is
a typical approach to collecting runtime data, where logs are therefore analysed to establish sequences of events or
states [50]. Analyses of system behaviour can be supported by event logs [39]. However, analysis of logging data can
be difficult and resource-intensive due to size-related issues. Structuring log files eases analysis of large logs [26]: by
organising data (e.g., into typed columns), analysis can be simplified through sorting and filtering.

Authors’ address: Owen Reynolds, 180200041@aston.ac.uk; Antonio García-Domínguez, a.garcia-dominguez@aston.ac.uk; Nelly Bencomo, n.bencomo@
aston.ac.uk, SEA research group, EPS, Aston University, Birmingham, United Kingdom.
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Current approaches to logging can be time consuming, as they are hard to build and refine [54]. Structured log files
assist with analysis, but seem to offer little assistance when implementing logging. Part of the challenge with logging is
knowing which events to log, and what content to use as a description [17]. Log files are sequential by nature, which
presents additional challenges when trying to represent concurrent activities. Developers are left to overcome those
problems by themselves, such as indicating time intervals or relationships between events.

A runtime model [7] provides an abstraction of the runtime system at a certain level, which discards details not
relevant for its scope. Such a runtime model is available to the system itself to perform analysis [10]. The system is,
therefore, self-aware of those aspects represented and abstracted by that runtime model [31]. By logging the changes to
the model, rather than the changes to the system, we can abstract away details and therefore reduce the volume of the
logs. Knowing the provenance of the changes [41], (i.e. who made those changes and for what reasons), creates the
needed causal links that can help answer questions about the system behaviour. Such questions can be answered using
provenance graphs (Section 2.3), which relate system entities to the agents who produced them, and the activities they
were performing at the time of the change.

We argue that runtime models combined with provenance graphs can create a logging-based infrastructure that
solves some of the present issues with structured logs. For each change, it will be possible to track who did it, and which
activity caused it, within a concrete time interval. This approach to creation of logs can, therefore, be automated using
a provenance metamodel as a base, with system descriptions derived from the runtime model. Keeping the structure
of the provenance graph independent from that of the runtime models would allow for reusability. In this paper, we
present Cronista, a system that captures the changes of a runtime model into a provenance graph, which can, later on,
be queried to support explanation of causes for behaviour. We use Cronista on a multi-threaded system whose execution
is based on runtime models.

This paper extends an early version of our work [42], making the following additional contributions:

• The system architecture has been refined, separating the implementation details of the storage of the history
model into a new third type of component: a history model store.
• This capability has been leveraged to expand the traffic simulation case study in a new direction, studying the
trade-offs between the CDO model repository and the JanusGraph graph database when storing the provenance
graphs created by the Cronista curator. We compare their relative costs in time and space (using containers to
measure costs in a more holistic manner), and their relative capabilities and ease of use for investigating issues
and visualising the provenance graph.
• The discussion of the curator and observer has been updated and expanded with details about the design of the
messages and tracking transient versions of model elements that are not reflected in the model storage.

This paper is structured as follows. Section 2 sets out the research background, outlining the concepts that underlie
our research. Section 3 presents the architecture and design of Cronista. Section 4 applies the approach to a traffic
controller, states the research questions and justifies the selection of technologies and their configurations. Section 5
presents the concrete results obtained using the case study for each research question Section 6 lists the internal and
external threats to validity of the previous results. Related work is presented in Section 7. Finally, Section 8 presents the
conclusions, and outlines the areas of future work.
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2 BACKGROUND

The ideas underpinning the work emerge from several areas, which we present as background. As such, we introduce
autonomous and self-aware systems, and how the limitations of event logging motivate our work. Relevant concepts
from the areas of provenance, runtime models, model versioning, and model storage technologies are also discussed.

2.1 Autonomous and self-aware systems

Kephart and Chess presented their vision for autonomic computing back in 2001 [29], emphasising how software systems
would become so large and complex that architects would not be able to fully anticipate all the interactions in advance.
As such, many interactions and related concerns would need to be dealt with during execution. They presented a system
architecture known as the MAPE-K loop (Monitor, Analyze, Plan, Execute that works over a Knowledge base) [3], where
the system ran on top of models of its environment, its decisions, and their consequences, built over a feedback loop.

A system’s ability to make decisions on it’s own exacerbates the need for trust. This was already identified in [46],
where the authors argue that the system must garner the confidence of its users and developers by explaining why the
system acted in a particular way over time. Otherwise, the systems may not be adopted by users and general public [1].

Self-awareness implies the capture of the runtime system state in an explicit way, to therefore underpin decision-
making for self-adaptation, and other self* properties. One way to represent this current state and underpin self-
awareness it to use runtime models, which are presented in 2.4.

2.2 Event logging

A way to support explanations is to record or log the context of the time when a decision was made, i.e. record what
the system was seeing, doing, and “thinking” each time it made a decision. Traditional logging frameworks (e.g. Log4j
for Java [2]) can be used to produce a log of various events in the system. Log data may be used to identify system
states or sequence of steps in a process for analysis after an event. This process has its own difficulties, as Yuan et
al. [54] identified in a study of several high-profile open-source programs. Developers typically do not get their log
messages on the first try: many have to be modified as afterthoughts, being changed in 18% of all revisions. 26% of
those are related to the verbosity level, 27% are related to logging new variables, and 45% are about modifying the static
text. With better tools, this time could have been saved and reinvested into the system itself.

Structured logging tries to produce better logs by making them easier to parse with other tools, and by providing
more guidance on how to design the logged information. Legeza, Golubtsov, and Beyer briefly mention the use of
JSON/XML for logs, and focus more on the guidance about their content [33]. They consider that a log message is
divided into metadata (when, where, and its severity), and content (what happened, why, what’s next, and additional
details). Legeza et al. say that when/where can be automated, the severity needs to be manually picked, and the content
itself must be manually crafted in an iterative process.

Legeza et al. also mention the difficulties in correlating logs from different microservices in the same system,
suggesting the addition of unique request IDs which are passed along all data paths for this purpose. In general, relating
events (e.g. the start and end of an activity) can be difficult, especially in a highly concurrent system.

2.3 Provenance

When tracking the reasons that motivated an autonomous system to make a decision, a principled approach should
be followed as opposed to inserting log statements at the own discretion of the developer. We claim that the field of

Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
4 Owen Reynolds, Antonio García-Domínguez, and Nelly Bencomo

Entity

Activity Agent

wasDerivedFrom

wasAttributedTo

actedOnBehalfOf

wasAssociatedWith

us
edwa

sG
en
er
at
ed
By

wasInformedBy

Fig. 1. W3C PROV provenance graph structure

data provenance can provide such principles. Provenance can be defined as “all the information and relationships that
contributed to the existence of a piece of data” [41]. The Open Provenance Model (OPM) provides a standard reusable
ontology to record provenance information [35]. OPM was the foundation for the W3C PROV provenance ontology,
which is available in various notations: one of those is the PROV Data Model (PROV-DM) [23], which is used in our
proposal (Section 3.2).

As shown in Figure 1, W3C PROV provenance graphs are formed by Agent nodes, Activity nodes, and Entity
nodes. These nodes are connected with various kinds of edges that establish causal relationships, such as “used”,
“wasGeneratedBy”, or “wasDerivedFrom”.

• Agents identify who is performing an activity (“wasAssociatedWith” ): the exact level of granularity depends on
the system. In a multi-threaded system, for example, each thread could be an agent. Delegation can be described
as a relationship of trust between two agents (“actedOnBehalfOf” ), which may occur as the result of a user
interaction that results in a scheduled task. Agents generate entities through their activities (“wasAttributedTo” ).
• Activities identify high-level tasks performed by the system, and can be nested at multiple levels to represent
subtask relationships. Activities are related to entities through their inputs (“used” ) and outputs (“wasGener-
atedBy” ). An activity using an entity generated by another activity “wasInformedBy” that activity. An activity
takes place during a certain time interval.
• Entities represent systemmodel features at the attribute and value level. When the value for an attribute changes,
a new entity is created and related to its previous version (“wasDerivedFrom” ). These entities could be grouped
or categorised like sub-assemblies, which enable higher level of abstraction through a reduction in details.

Provenance can be automatically generated by a system at runtime [27]. We compare our approach with other
automated provenance collection methods in Section 7.

2.4 Runtime models

Initially, models were used to mainly support the documentation, development, and deployment of systems. More
recently, models have been used during the execution by the system itself, other systems or even humans [7]. Self-aware
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systems need to have a way to reflect upon their own behaviour or goals and manipulate them to adapt as needed to
meet their goal [12, 22]. To do this, they maintain a runtime model [10]: “a causally connected self-representation of the
associated system that emphasises the structure, behaviour, or goals of the system from a problem space perspective”.
“Causally connected” means that a change in the runtime model will impact the system, just like a change in the system
will be observable through the runtime model.

A recent survey from Bencomo, Götz and Song [7] identified and classified 275 papers on runtime models. Many of
these papers (123) used runtime models to build self-adaptive systems. 41 papers used runtime models to assure certain
non-functional properties in a system, and 32 used runtime models for self-optimisation and self-organisation. The
survey reports that most runtime models operate at high levels of abstraction (specifically, 131 at the architecture level,
and 32 at the goal level). However, there are still some runtime models at the process (12), context (20), and/or code (16)
levels.

2.5 Versioned model storage with model repositories and graph databases

Model-driven software development (MDSD) [49] of a complex system involves working in a team, frequently over a
large model. Such approaches to model development require people to work concurrently on model parts which can be
versioned and merged into a single model.

Persisting models to flat text files is one way that a mature file-based Version Control System (VCS), such as Git [48],
could be leveraged for tracking versions of a model to enable collaborative working. However, these tools compute
changes on a per-line basis, which does not translate well to common file-based model interchange formats such as
XMI [37]. Therefore, purpose-specific model repositories have been developed that persist large models to storage,
with model versioning capabilities and collaborative working, such as the Eclipse Connected Data Objects project
(CDO) [15].

Graph databases use nodes and edges to model data, unlike a relational database that uses tables; they can support a
high number of concurrent users accessing a large volume of data. Daniel et al. [14] developed NeoEMF, a multi-database
model persistence framework which included support for the Neo4j graph database management system (DBMS).
Barmpis et al. [4] showed that large collections of file-based model fragments could be indexed into a single graph
database for fast querying with their Hawk system.

More recently, the representation of the history of a model in a graph database has received attention. Haeusler et
al. [25] observed a gap in the capabilities of graph databases, which were lacking versioning features, and presented
ChronoSphere: a graph-based model repository with support for version control. Garcia-Dominguez et al. [18] showed
an extension of the Hawk system that indexed evolving collections of file-based model fragments into temporal graphs,
and provided a query language with the ability to navigate the history of the model.

3 CRONISTA: ARCHITECTURE AND DESIGN

The previous section discussed the challenges of traditional logging approaches when used for autonomous and self-
aware systems. More principled approaches to collecting runtime data using provenance ontologies were considered,
including the use of runtime models as a high-level abstract view of system state that could be used as a subject for
logging. Combining provenance and the high-level abstractions of a runtime model can therefore, produce a more
appropriate approach to logging for the case of autonomous and self-aware systems.
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In this section, Cronista1, an automated provenance-collector system for runtime models is presented. Its infras-
tructure is intended to be reusable across systems, and to be integrated with existing modelling frameworks to reduce
implementation costs. This section first outlines the general architecture of Cronista, with its high-level components
and their interactions. Next, the data representations produced and its features for storage management are discussed.
Finally, the details of the operation of these components are provided.

3.1 Software architecture

Cronista is designed to observe systems that explicitly maintain abstractions of their internal states at runtime to
underpin self-awareness [6, 31]. This internal representation of state is considered as a runtime model, which will be
referred to as the system model [11]. Tracking changes to a runtime model has been studied in the literature, using
approaches such as model versioning [24] or filmstrip models [28]. However, these approaches only capture the changes,
and do not associate them with the cause or reason (i.e. provenance) of the change. Therefore, an explicit explanation
for a change is not immediately available.

From an architectural point of view, the automated collection of provenance can be considered to be orthogonal to
the functionality that the system needs to provide to its end users. Separating the provenance collection as much as
possible from the core system functionality would make it easier to reuse efforts on provenance collection between
systems. We propose to follow the component-based architecture shown in Figure 2, with a system whose runtime
model is being monitored by observers installed in each of its concurrently running agents: their model access is being
intercepted and notified to the curator through a message queue. The curator processes messages from the queue in
order of arrival, using one of the available history model stores to record the information in a specific storage technology:
this may be either a model repository, or a graph database. This separation across clear interfaces is designed to allow
observers, curators, and history model stores to be deployed across separate machines, and to allow for alternative
implementations (as in the case of the history model stores).

The observer components are at the edge of the architecture. They are responsible for the integration into the specific
technology/language used and observe what the system is doing, sending messages about system activities and model
access in the format expected by the curator to a queue. These components can be kept lightweight in memory, as they
do not need to store significant amounts of history, e.g., the observer may be part of a low-powered Internet of Things
(IoT) device with limited resources, or it may be in a server in a large data centre.

Curators take the messages sent by the observers, and interact with the history model storage API to maintain
Cronista’s own models about the history of the system: these history models will be described in Section 3.2. Unlike the
observers, curators do not need to tightly integrate with the system’s underlying technology: they are only interested
in taking the messages being sent into the queue and processing. The specific way to connect the curator and the
observers would depend on the system being observed: if the observers and curator can live in the same machine
(e.g. if they are running in a powerful machine at a data center), that connection could be a share memory queue to
maximize throughput. If this is not possible (e.g. the observers are deployed on remote resource-constrained hardware),
the observers could send messages over the network to a curator living in the data center. The basic functionality for
the curator remains unchanged across technologies: messages are processed into provenance graph nodes that are
stored into a history model.

1Cronista is Chronicler in Spanish. The term chronicler alludes to the writer who compiles and writes historical or current events, in the literary genre
that receives the name of chronicle. In some cases, he held an official position whose role it was to perform such functions.
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Fig. 2. Architecture of Cronista: top-level components and interconnections.

History model stores are the third and final type of component in the architecture of Cronista. They receive requests
of the curator through a History model storage API, and map them to a specific storage technology (Figure 2). A history
model store needs to handle the details about managing long histories of potentially very large models, while keeping
disk usage and processing times under control. Multiple implementations of the history model store may be needed,
based on varying needs across systems (e.g. differing throughput, model sizes, and retention periods). In addition, each
specific storage technology will come with their own ecosystem of tools, such as query languages, data visualisations,
or data protection.

3.2 Data representation

Figure 3 shows an outline of the history models that records the provenance data collected from a system at runtime.
This model is created alongside a running system in a way that it is independent of the system and its resources.
Creating a distinct separation between a system and history is the first step in managing the resource requirements for
a history model, which may affect the monitored system.

The history model creates a series of time windows in chronological order to represent the passage of time. A
time window can be seen as representing a block of time, which could range from seconds to days depending on the
application. Each time window refers to a base version of the system model at the point in time the window started. The
changes to the system model from this point in time are represented in an accompanying provenance graph. Therefore,
a sequence of changes to a model can be recalled using provenance to recreate a system model state, for any point in
time covered by a time window. Capturing a base model version breaks the dependency between time windows, as
earlier time windows are not required to establish the state of a system model. Independent time windows make it
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Fig. 3. History model

possible to simply “forget” time windows that are no longer relevant, enabling only a limited amount of history, e.g. a
day or week, to be stored.

In each time window, the provenance graph represents more than the changes to the base model version taken
at the start of the time window. The provenance graph also tracks the processes and responsibilities associated with
the concrete change, with the aim to enable explanations. The main questions that users may ask and the relevant
information to capture for each case are listed below:

• Whomade the change? The system (an executing thread) or a human interaction could be responsible, therefore
a graph should track the various “agents” participating in a system.
• What was happening when the change was introduced? A high-level overview of the processes in a system
is needed that can associate the activities that cause a change. Describing a process at a high-level may be more
useful than referencing a line of code that may not be available, or overly technical for the intended consumer of
an explanation. Furthermore, there may be concurrent activities taking place that may have complex interactions.
• Which parts of the systemmodel informed the change?Activities or process in a systemmake up a decision
process which is guided by information in a system’s model. Therefore, being able to recall the informing parts
of a model will help in analysis and explanation of a decision.

A formal structure is needed for creating a provenance graph that integrates this information; a provenance ontology
can be used. W3C PROV-DM (discussed in Section 2.3) is one such provenance ontology which has been established and
validated as a standard. The provenance graphs in Cronista conform to a metamodel that is based on W3C PROV-DM.

3.3 Data collection

Based on the general architecture and the intended representation of the collected historical data, this section provides
a more detailed description of how the observer and curator components operate in the current implementation of the
architecture in Figure 2. It must be noted that the current implementation for the observer components assumes that
the system to be observed is running in a single machine: its multiple agents are concurrent execution threads, which
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Listing 1. Java try-with-resources for activity scopes

1 try (var aScope = new ActivityScope ("ActivityName")) {
2 // ... model reads and writes ...
3 }

operate on a system model shared across all threads. The technology hosting the shared model is expected to isolate
concurrent model changes between the system threads, for example CDO, which supports ACID transactions. Likewise,
the current version of the curator lives in the same system process as the observer: the curator receives the messages
from the observer through a shared memory queue to avoid network overheads.

3.3.1 Observer. Observers intercept the atomic events such as the defined start/end of an activity and read/write
operations on the system’s runtime model during an activity. The observer produces messages that detail the agent,
activity, and entities involved. All messages are inserted into a single thread-safe bounded blocking queue that is read
by the curator. The rest of this section will outline how agents, activities, and entities are identified and described in the
messages.

Agents are represented in the messages with a unique ID, each system thread is treated as an agent, and is tracked
by a separate observer. The agent ID is based on its unique thread name. When a thread completes its execution, the
observer is stopped, and no more messages are sent about that agent.

Activities are performed by an agent, have an identifiable name, and run from a start time until an end time. If an
activity takes place repeatedly, each occurrence has its own unique ID. An agent is only capable of performing one
activity at a time, but activities can be nested inside each other. A stack structure can be used to track the activities
started by an agent, with the activity on top of the stack being the current focus of the agent, which is removed when
the activity ends. The observer is responsible for sending “activity started” and “activity ended” messages to the curator
when these events take place: the messages identify the activity that is taking place and the agent that is performing it.

A system developer has several options for denoting activities within a system. Annotation of activities can be an
automatic or manual process, with the trade-offs discussed in Section 2.3. An activity describes the execution of one
or more lines of code that perform actions via the system model. One approach might be to structure the code so
the activity is represented by specially designated functions, using the stack trace to track nested activities. However,
this approach may only be suitable for new systems being developed from scratch with provenance in mind: older
systems may require expert analysis to understand the stack traces produced. A second approach is to use some form
of code annotation, creating activity scopes or blocks within the code that enclose the work done by an activity. The
specific syntax to define these scopes or blocks of code would depend on the language being used, and would require a
developer to insert the start and end points for each activity into the code.

Listing 1 shows one way to implement these activity scopes for programs written in the Java language, taking
advantage of its try-with-resource blocks which automatically allocate and free a resource when entering and leaving
the block. In this case, the resource is an entry in the activity stack: the entry is added upon entering the block (activity
started), and removed when leaving it (activity ended). This block-based approach supports the idea of nesting activities
as well, through the nesting of try-with-resource blocks. The amount of code that a system developer wraps with a
block determines the granularity of a defined activity. A broad activity description would cover many lines of code,
providing a more abstract summary of many low-level operations. On the other hand, using several smaller blocks that
cover a few lines would provide a more detailed description of what the system is doing.
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Fig. 4. Subgraphs produced by each type of message

Entities refer to the parts of the system runtime model being accessed (e.g. the value of a specific attribute of a
specific model element). When such an entity is read, a “model read” message is sent: this message identifies the agent
and the activity, and includes an entity description mentioning the part of the model that was accessed and the value
that was read. Conversely, when a certain part of the model is modified, the observer sends a “model write” message
that includes the agent and activity descriptions, and two entity descriptions: one before the change, and one after the
change.

Providing consistent entity descriptions to the curator becomes complicated when concurrent activities are commit-
ting changes to a model repository. It is necessary to explicitly distinguish entities that are reflected in the persistent
storage of the model repository (a storage entity), from entities that are only in the memory of a specific agent and have
not been committed yet into the model repository (a memory entity). For that reason, the entities in the “model read”
and “model write” messages are qualified by a triple (𝑎, 𝑠,𝑚): 𝑎 identifies the agent whose memory space is being used,
𝑠 is the storage revision of the model repository the entity belongs to, and𝑚 is number of times the entity has been
changed in the agent’s memory space since it was last committed to the model repository (0 for a storage entity).

The concrete details for how to instrument a model to produce atomic events for model accesses depend on the
technology used to implement the system model. Ensuring manually that all model accesses report to the observer
would be error-prone and time-consuming: instead, some form of code generation would be ideal. Code generation is
already common in popular technologies such as the Eclipse Modelling Framework (EMF), where Java implementations
of modelling concepts are generated from a high-level description of the model structure (its metamodel): this is the
approach followed in the current implementation of Cronista.

3.3.2 Curator. The curator can process the messages from the observer in a stateless manner, as they contain all the
information needed to create graph representations. As such the messages from an observer contain duplicate data,
which provides some mitigation for potentially lost messages that would cause details in the graph to be lost. The
duplicated data is removed by the curation process, which reuses existing graph nodes whenever possible in order to
link together the results of processing each of the incoming messages. The messages include unique IDs that are used to
find and create the nodes as needed. Figure 4 shows the resulting subgraphs from processing each of the four message
types:
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Fig. 5. Options for representing an activity 𝐴 spanning time windows𝑇𝑊1 and𝑇𝑊2: a) keeping activities within the time window
they started in, b) letting messages populate different time windows.

• For an activity started message, the curator will ensure the activity node exists: this will be a new node
as each occurrence of an activity has a unique ID. If this the first activity started by an agent, then an agent
node will also be created. The agent and activity nodes are related using “wasAssociatedWith”. The resulting
subgraph is shown in Figure 4a.
• For activity ended messages, the curator will reuse the existing activity node from the previous activity
started message, and update the node to reflect its ending time. This would result in the subgraph in Figure 4b.
Interestingly, even if the activity started message was somehow missed (e.g. due to a network failure), this
would still result in the same subgraph being produced due to the stateless approach being followed.
• While processing model write messages, the curator will ensure the activity and agent are reflected on the
graph, and then create entity nodes to reflect the old and new entities. It is possible that the old entity node
may already exist, if it was accessed before: this will simply result in that node being reused. In such a case,
this message would only require creating the entity node for the new entity and linking it with the others. As
shown in Figure 4c, the new entity will be considered to have been generated by the current activity, it will be
attributed to the current agent, and it will be derived from the old entity.
• Processing a model read message results in the subgraph in Figure 4d, where the read entity is said to have
been used by the relevant activity of the agent. In the most extreme case, where an entity was read by the same
activity that created it (e.g. an activity setting a field and later retrieving it), all nodes would be reused and only a
“used” relation may need to be added. In addition, it may be possible to infer a “wasInformedBy” relation between
two activities if one activity used the entity that the other activity generated.

The reuse of existing nodes allows for capturing the information in a series of messages in a minimal number of
nodes and relationships. However, this approach requires a considerable amount of searching for existing nodes with
a matching ID. To keep message throughput high, a provenance graph could be built in memory, then committed to
storage and removed from memory when a new time window is created. Alternatively, search indexes for nodes and
IDs could be held in memory during a time window to reduce storage I/O for searches.

A provenance graph will become exceptionally large over prolonged periods of time, or when a busy system is rapidly
creating messages. Therefore, the ability to dynamically unload and load history model data is important. The use of
memory to construct a provenance graph is limited by the amount of system memory available. The time windows in
the history models overcome this problem by dividing a run time into blocks of time. However, an activity that spans
multiple time windows now presents a problem with how to distribute the provenance nodes between them.

Figure 5 presents two options for how provenance nodes could be arranged on multiple provenance graphs. In the
example, an activity𝐴 spans both time windows𝑇𝑊1 and𝑇𝑊2. The value of the entity 𝐸 is read in𝑇𝑊1, and it is written
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Fig. 6. Screenshot of the SUMO-based traffic simulation

as 𝐸 ′ in 𝑇𝑊2. Option a) would have the curator process all the nodes into the first-time windows where an activity
occurred. If an activity never finished (such as a continuous background task), it would not be possible to unload the
time window, further complicating the curation process. Option b) creates node representations in the time window in
which they occurred. The read operation in𝑇𝑊1 is shown as 𝐴1 and 𝐸1. When processing the write operation shown in
𝑇𝑊2, a search of existing nodes for 𝐴 and 𝐸 fails, resulting in the creation of 𝐴2, 𝐸2, 𝐸 ′2. There is an increase in storage
costs for this approach, but it does remove complications for long running activities and permits unloading of passed
time windows. The independence between time windows in this approach simplifies “forgetting” past history as each
time window represents information for events in a given period.

4 CASE STUDY

The previous section described Cronista, our system for automated provenance collection for runtime models. This
section will apply Cronista to an existing traffic simulation, which is controlled by several agents that coordinate through
a shared system model. The rest of the section introduces the case study, sets out the research questions, explains the
experimental process, and justifies our choices of technologies and their selected configurations.

4.1 Description of the case study

The system to be extended is a traffic simulation running on the open-source SUMO engine [21]. Figure 6 shows a partial
view of the simulation at hand, which consists of two 4-way junctions; each managed by its own junction controllers.
The controllers run concurrently, each using its own thread, and they share a connection to SUMO. The traffic lights in
each intersection follow a cycle of phases: when a phase ends, the next one starts. The controllers can intervene to end
phases earlier than the regular schedule. Each controller runs its own MAPE feedback loop:
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Fig. 7. Class diagram for the metamodel of the system model

• Monitor: reads the number of cars (yellow triangles) stopped at each lane area detector or LAD (blue rectangles).
Reads the current state of the traffic lights, and checks the last plan that the other junction controller used (it
may want to copy it). Records both pieces of information in the system model.
• Analyze: checks if traffic is “jammed” at one of the LADs, by comparing the number of cars against a threshold 𝐽

(initially set to 3). Checks if the other controller ended a phase for its traffic lights in its last MAPE loop iteration.
Records both pieces of information in the system model.
• Plan: based on the number of jammed LADs, it creates a plan for incrementing 𝐽 by one (if more than 2 are
jammed), or decrementing 𝐽 by one (if less than 2 are jammed). If more than 2 LADs are jammed, or if the other
junction controller ended a traffic light phase in its last iteration, then it creates a plan to end the current traffic
light phase. Records current plans in the system model.
• Execute: conducts valid plans set out in Plan by communicating to SUMO and updating the system model. To
protect against thrashing, Execute will block a phase change plan if the phase has been running for less than
half of its duration.

A class diagram for the metamodel that the system model conforms to is shown in Figure 7. In general, a Manager
program runs several concurrent SmartControllers. Each of the MAPE phases is represented by a type that collects
its inputs (e.g. MonitorControls), and a type that collects its outputs (e.g. MonitorResults). There are also entities
which represent the elements managed by each controller: the TrafficLights and the LaneAreaDetectors.

This simulation is a proof-of-concept of a simple traffic management scenario, yet it captures the basic elements of
a more realistic simulation of city traffic. For the purposes of the case study, it shows a system which monitors the
environment, analyses the situation, sets out plans to adjust itself, and attempts to execute those plans by interacting
with the other participants. This creates information flows within the system that users and developers will want to
follow through a provenance graph (e.g. to answer questions such as “why did the traffic lights end their phase at this
point?”). It also has multiple concurrent agents interacting with the system model.

4.2 Research questions

A goal of this case study is to answer the following research questions about the proposed reusable provenance layer:
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(RQ1) What are the costs involved in the use of the provenance layer, depending on the chosen storage implementation?
This includes developer effort, additional processing time, and the use of system memory and disk space.

(RQ2) What advantages can be gained from the collected provenance information, depending on the chosen storage
implementation? The chosen storage approach will provide its own querying and reporting tools, which may
follow an imperative style mandating specific traversals, or a declarative style that only specifies the pattern of
interest and leaves the traversal strategy up to the tool.

RQ1 will be evaluated by running the simulation without the reusable provenance layer, with the provenance layer
using a model repository to store the provenance graph, and with the provenance layer using a graph database to store
the provenance graph: space/time usage and the number of lines of code involved will be measured and compared. RQ2
will be evaluated by developing sample queries illustrating common use cases across both storage layers.

4.3 Storage technology selection

A model repository and graph database were selected from the available open-source projects. Open-source projects
make their source code available, which is beneficial for transparency and evaluation purposes of research. They can
also benefit from large communities both using and contributing to a project.

Model Repository, CDO [15] is a mature model repository, hosted by the Eclipse Foundation, who host open-source
MDE projects. The development of CDO is active, with no feature restrictions, it also has native support for EMF,
making it a familiar technology for the modelling community, which reduces the learning curve for Cronista.

Graph Database, As discussed in 2.5, there are many different graph databases with distinct characteristics, having
the flexibility to change between them is desirable. TinkerPop is a vendor-agnostic API that enables supporting databases
to be interchanged. JanusGraph is a TinkerPop-enabled graph database, that is mature, open-source and supports
horizontal scaling with a variety of database backends; for these reasons JanusGraph was selected for the initial
implementation.

An in-memory database configuration was used for JanusGraph, so that the curator could keep pace with the
messages received from the observer. A series of short experiments, where 10 batches of 1000 vertices were created in
the graph database in quick succession, confirmed different database configurations effect responsiveness to requests
as seen in the literature [32]. However, the curator with a default CDO (disk-based) configuration had no problem in
keeping pace with the messages receive rate.

5 RESULTS

This section presents the results of the case study for each of the research questions in Section 4.2. The costs involved
are presented first, showing the metrics collected during the development of the system and its execution. This is
followed by an account of the process to create provenance queries that were used to identify a fault in the traffic
control system.

5.1 RQ1: costs involved

Developer costs. The integration of Cronista into the Java-based traffic controller (the instrumented controller or IC
from now on) required manually adding 16 activity scopes in two levels. First, an activity scope encloses each of the
MAPE phases. Next, each MAPE phase contained a further 3 nested activity scopes (e.g. Monitor had “monitor traffic
light”, “monitor LAD”, and “monitor phase end from the other controller”). This required wrapping the relevant parts of
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200 ticks 1000 ticks 5000 ticks
Metric History model store Mean SD Mean SD Mean SD
IC time No provenance 32.67s 0.22s 152.90s 0.24s 753.72s 0.16s

CDO 33.31s 0.32s 153.83s 0.34s 765.53s 0.93s
JanusGraph 40.87s 0.63s 155.89s 0.22s 758.98s 0.64s

IC memory None 10.94MiB 0.03MiB 11.51MiB 0.08MiB 14.74MiB 0.35MiB
CDO 18.30MiB 0.82MiB 55.20MiB 0.71MiB 227.65MiB 3.74MiB
JanusGraph 17.85MiB 0.04MiB 36.33MiB 0.48MiB 127.44MiB 3.24MiB

HMS memory CDO 232.63MiB 15.720MiB 380.32MiB 10.85MiB 559.85MiB 17.24MiB
JanusGraph 870.28MiB 6.47MiB 900.64MiB 6.70MiB 986.99MiB 13.59MiB

HMS net I/O CDO 1.85MB 0.38MB 10.69MB 0.29MB 53.58MB 0.82MB
JanusGraph 10.12MB 0.10MB 53.20MB 0.96MB 262.40MB 6.52MB

Table 1. RQ1: means and standard deviations of execution times and maximum memory usage for the instrumented controller (IC)
and maximum memory usage and network I/O for each history model store (HMS), over 10 simulations across 200/1000/5000 ticks.

the junction controller code in 16 try-with-resources blocks, as in Listing 1. Commits to CDO were modified manually
so they would go through the observer for the current agent: this is needed to manage the distinction between memory
and storage versions. The base class for the generated classes implementing the system metamodel was changed from
the default CDOObjectImpl to our LoggingCDOObjectImpl. Finally, the simulation had to notify the curator about its
completion, so it would safely shut down the history model store (HMS).

The simulation grew after these changes from 823 lines of Java code to 846, as measured by sloccount 2.26 [53]
while ignoring generated code. These 23 lines of manually written code represent less than a 3% increase in code.

Runtime costs. During each experiment, four processes were running on the same machine. The IC and the SUMO
1.4.0 traffic simulation ran as standard applications. The system runtime model was managed by a CDO 4.12.0 Docker
container2. The HMS was managed by a second Docker container, using the same CDO Docker image or the JanusGraph
0.5.3 Docker image3.

The simulation was run 10 times over 200/1000/5000 ticks, using three different configurations: without Cronista,
with Cronista using the CDO HMS, and with Cronista using the JanusGraph (TinkerPop) HMS. These experiments
were done on an Ubuntu 20.04 system with a Linux 5.4.0 kernel, using Oracle JDK 11 for the IC. The system ran on a
Thinkpad X1 Carbon laptop with an i7-6600U CPU (dual-core with hyperthreading), with 16GB of RAM and an SSD.
The Java-based IC was run with an initial heap size of 256MiB, and a maximum heap size of 512MiB. Execution times
and memory usage of the IC were measured from a background thread in the traffic controller application, up to the
point where the simulation had completed, all messages from the observer had been processed by the curator, and the
HMS had been shut down. Memory usage and network I/O of the HMSs were collected through the docker stats

command while the experiment was running, to cover all processes running in each Docker container.
Table RQ1 provides statistics on the execution times for the IC, the memory usage for the IC and HMSs, and the

network I/O of the HMSs. The mean IC time for JanusGraph on 200 ticks is nearly 10 seconds longer than the time
without Cronista. This is mostly due to the fact that JanusGraph takes longer to process the first burst of messages from
the observer: while the curator can provide enough throughput to keep up with the rest of the messages, processing
this initial backlog requires spending additional time after the simulation has completed. On the other hand, the CDO
2https://gitlab.com/sea-aston/cdo-docker
3https://github.com/JanusGraph/janusgraph-docker.git
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HMS is fast enough to finish processing all messages less than a second after the 200 ticks of the simulation ended.
Regardless, this is not an issue for longer simulations JanusGraph speeds up after the first few thousand vertices have
been added, and becomes comparable to CDO in insertion speed.

On the other hand, the memory usage of the IC does grow over time with the current implementation. We anticipate
that this increase over time is due to implementation details of the curator component, which suggests that there is
room for further optimisation. This also shows that if the IC needs to run in a memory-constrained environment, it may
be wise to deploy the curator on a different machine and have the observer and curator communicate over a network
connection. Further experimentation will be required on this aspect, but in any case it is clear that the JanusGraph
HMS required less memory on the IC.

There are noticeable differences between the CDO and JanusGraph (TinkerPop) HMSs in terms of resource usage.
It must be noted that the Docker-based measurements cover every layer of both options, and JanusGraph has a very
different architecture to CDO. CDO is persisting the graph to disk, which allows it to unload unused parts of it, while
JanusGraph in its in-memory configuration is always keeping the entire graph in system memory.

The disk space used by CDO increased in a linear manner, and disk usage figures stabilised across runs for longer
histories. On average, each tick took about 35.88KB of disk space in the HMS for the longest runs of 5000 ticks. While
this shows that a modern hard disk could potentially record the simulation for a long time, there would still be a need
to prune old unwanted history at some point in order to limit disk usage.

5.2 RQ2: leveraging provenance

Provenance graphs can become very large and complex: a combination of several approaches is needed to extract
information from them. In our previous work [43], graph visualisations were used to explore the information, but these
quickly grew too large and complex to be of practical use. For that reason, this work focuses on query-based approaches
to extract information. For example, the survey by Herschel [27] mentions searching by item/time/type of element
tracked, navigation (e.g. by following relationships or changing granularity levels), and structured query languages.

The provenance graphs collected in the history model contain knowledge of how the system ran, and why it reached
its current state. This information could be used by the system itself (enabling a degree of history-awareness about its
operation, as mentioned in Section 2.4), or by the developers and users of the system. In this paper we will focus our
attention on the use of the provenance graph by system administrators and developers to analyse the behaviour of the
system. This analysis may be done while the system is running, or after the system has failed or has been stopped after
an event of interest.

As a diagnostic aid, the snapshots and provenance graphs in the history model can be used to reconstruct the state of
a system. The reconstructed system could be animated using the entity state changes and activities, thus enabling the
moment of failure to be observed. Beyond the simple playback provided by a step-by-step recording of the execution of
the system, a provenance graph can also show the information that a particular activity used to introduce a certain
change in the system, or how a particular part of information was changed over time by the various processes in the
system. In short, the history model allows developers and users to know why something changed, rather than just seeing
a sequence of snapshots of its history.

As a concrete example, in the rest of this section we will show how to investigate the root cause of a defect that we
have deliberately introduced in the traffic controllers of Section 4, and to check that it has been fixed. We will perform
this task from the point of view of a new developer in Smart Traffic Inc.: on our first day, we are told to investigate an
issue with a recent update to a smart junction controller. The report says that the traffic lights are changing too often.
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Listing 2. Excerpt of query Q1: find information used when a phase was ended

1 // 1. When was PhaseEnded set to true?
2 var ePhaseEnded = Entity.all.select(ed |
3 ed.attr() == 'PhaseEnded' and ed.bool() and ed.isWrite());
4 for (entJT in ePhaseEnded) {
5 entJT.printLayer(0);
6 // 2. Where did the EndPhase this activity used come from?
7 for (entUsed1 in entJT.wasGeneratedBy()?.Used
8 ?.selectOne(e | e.attr() == 'EndPhase')) {
9 entUsed1.printLayer(1);
10 // 3. What information was used when EndPhase was set?
11 for (entUsed2 in entUsed1.wasGeneratedBy()?.Used) {
12 entUsed2?.printLayer(2);
13 }
14 '\n=end='.println();
15 }}

Listing 3. Example of output of Q1 with faulty system

1 L0: PhaseEnded true > GenBy > executeEndPhase
2 L1: EndPhase true > GenBy > planEndPhase
3 L2: AnalysisResults AnalysisResults@OID268
4 L2: PlanToExecute PlanToExecute@OID267
5 L2: LADsJammed 5 > GenBy > analysisLADJammed
6 =end=

All the developer knows is that the junctions follow a feedback loop, and that they have a provenance graph. We will
see how this investigation can be done through the capabilities of the CDO and TinkerPop HMSs.

5.2.1 Forensic analysis with CDO. Assuming the system had been configured to use the CDO HMS, a CDO model
repository would be storing the provenance graph that we need to query: the next step is to run a few queries on it
to get the information we need, and for that a query language is needed. In the present case study, CDO was being
used with its default H2 backend (a relational database), so SQL could be used: unfortunately, this would not directly
translate to other backends. Instead, we can write the query with any of the existing model query languages, such as
OCL (supported out of the box by CDO), or the Epsilon Object Language (EOL) [30]. For the case study at hand, we
chose to work with EOL, as it has recently gained support for transparent parallel execution [34]. Further, EOL can
access models stored in CDO through the use of an Epsilon extension developed by one of the authors of this paper [19].

The developer would query the provenance graph to find the activity where the phase changed (PhaseEnded in
ExecutionResults was set to true). Then, the developer would ask for the information used to make such a change, at
several levels or layers. The developer would run the EOL query in Listing 2: the printLayer EOL context operation
prints the name and value of the entity, and the name of the activity that generated it. The query would produce outputs
such as those in Listing 3. The outputs show that PhaseEnded was set to true in the executeEndPhase activity, which
was informed by EndPhase, which was set to true in planEndPhase after checking LADsJammed, which was set to 5 in
analysisLADJammed. This is odd: LADsJammed should never be larger than 4, the number of LADs at each junction.
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Listing 4. Excerpts of seeded fault located by Q1

1 // activity scope
2 try (var s = new ActivityScope("analysisLADJammed")) {
3 analysisLADs(sc.getLaneAreaDetectors(),
4 sc.getMonitorResults(), sc.getAnalysisControls(),
5 sc.getAnalysisResults());
6 }
7 // method being called
8 public void analysisLADs(...) {
9 //sysAR.setLADsJammed(0); //← FAULT
10 for (LaneAreaDetector sysLAD : sysLADs) {
11 if (sysMR.getLADSeen().contains(sysLAD.getSumoID())) {
12 if (sysLAD.getJamLength() > sysAC.getJamThreshold()) {
13 sysAR.setLADsJammed(sysAR.getLADsJammed() + 1);
14 }}}}

Listing 5. Examples of output of Q1 with fixed system

1 L0: PhaseEnded true > GenBy > executeEndPhase
2 L1: EndPhase true > GenBy > planEndPhase
3 ...
4 L2: LADsJammed 3 > GenBy > analysisLADJammed
5 =end=
6 L0: PhaseEnded true > GenBy > executeEndPhase
7 L1: EndPhase true > GenBy > planEndPhase
8 ...
9 L2: LADsJammed 2 > GenBy > analysisLADJammed
10 L2: PlanToCopyPhaseEnd true > GenBy > analysisPhaseEndEvent
11 =end=

The developer then knows that the problem is in the analysisLADJammed activity. At this point, the developer can
look at the code (see Listing 4), to find out that someone inadvertently commented out an important line which resets
the LADsJammed counter before recalculation. After fixing the query, the developer can then let the system run further,
to then re-run the query and check that the phases are ending for the correct reasons, producing an output such as in
Listing 5. The output shows valid cases when the phase should end, i.e. when LADsJammed is above the threshold (set at
2 by default), as in line 4, or when copying the behaviour of the other controller as in line 10.

To save space, in this example we had the developer write the query in Listing 2 all at once. However, in practice
the developer would most likely follow a number of steps to iteratively build the query: i) look for the cases when
PhaseEnded was set, ii) look for what informed those cases, and finally iii) focus on EndPhase at layer 1 and then
look for what informed its value at the time. From Herschel’s point of view, there are elements of search, step-wise
navigation, and structured querying in the example. As such, we believe EOL is expressive enough to cover most
scenarios, and the ability to extend types with context operations (such as printLater or attr, which are not part
of the history metamodel) would make it feasible to create a reusable library of functions to cover various scenarios.
This library would also abstract away some of the complexities of the provenance graph, e.g. the use of discrete time
windows. It may be possible to package these queries themselves into a UI for domain experts that covers the most
common cases. Still, EOL may not be the most concise language for certain queries: for instance, a user may just want
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Listing 6. Example Gremlin query and output for counting how often a traffic light phase ended, as seen from the Gremlin console.

1 gremlin> g.V().
2 has('Entity','AttributeName','PhaseEnded').
3 has('AttributeValue','true').count()
4 ==>234

Listing 7. Example Gremlin query showing the properties of the entities used by an activity that caused a traffic light phase to end.

1 g.V().
2 has('Entity','AttributeName','PhaseEnded').has('AttributeValue','true').
3 limit(1).
4 out('WasGeneratedBy').out('Used').valueMap()

to see if there is a connection from a particular entity to a particular activity. For that case, the path expressions in
graph query languages may be better suited.

5.2.2 Forensic analysis with Tinkerpop. If a TinkerPop HMS is used, then several options are available for querying
the provenance graph. For this case study, the Gremlin language included in TinkerPop was used to run queries from
the Gremlin console, which is based on the Groovy scripting language. Gremlin is available for other programming
languages, such as Java, Scala, Python, or Rust, but the basic primitives are the same.

The general steps to investigate the issue in the TinkerPop HMS would be similar to those in the CDO HMS. First,
the developer would write a query to check how many times the phase ended and see to what degree there were
anomalies with their frequency. The query in Listing 6 searches the graph for a vertex of type Entity, whose property
AttributeName has the value PhaseEnded, and whose property AttributeValue has the value True. Repeating this
query while looking for AttributeValue = False and comparing the results shows a potential problem with the
phase being ended more frequently than expected.

When exploring the graph in Gremlin, having convenient functions such as valueMap() that can display the
properties on a vertex are helpful. Accessing the next layer of nodes in the provenance graph through a relationship
can be done with out(). In combination, these can be used to explore the graph in a stepwise fashion, starting from a
specific point of interest. Listing 7 shows an example of a query to explore the edges step by step. While exploring
provenance information, accessing the entities used by an activity and then stepping into their related activities will
likely be a common operation in any investigation. The simple and repeatable pattern of combining this two operations
is friendly to new developers, and it is closely related to the navigation approaches mentioned by Herschel [27].

As the developer navigates through the provenance graph, the path expands from the effect and approaches the cause.
The repetition of a few simple query patterns can be built up to reach the source of a fault, without expert knowledge
of the query language. The query in Listing 8 was built up this way, tracing back the phase endings to readings of
LADsJammed above 4, which should be impossible as there are only 4 lane detectors. This is the same problem that
was highlighted by Listing 2, but with a much simpler query created step by step. Knowing that the issue is with the
LADsJammed counter not being reset (as in Listing 4), the problem can be fixed.

Comparing the EOL query in Listing 2 and the Gremlin query in Listing 8, it is interesting to note that while
they achieve the same goal of finding the erroneous data that caused the unwanted traffic light changes, they follow
very different styles. Where the imperative nature of EOL required loops and conditional checks, the declarative and
pattern-oriented nature of Gremlin simply required adding more steps to the traversal of the graph. While the author of
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Listing 8. Example Gremlin query tracing the excessive count of traffic light phase endings back to its cause.

1 g.V ().
2 has (' Entity ',' AttributeName ',' PhaseEnded ').
3 has (' AttributeValue ',' true ').
4 out ('WasGeneratedBy').out ('Used ').
5 has ('AttributeName ',' EndPhase ').
6 out ('WasGeneratedBy').out ('Used ').
7 has ('AttributeName ',' LADsJammed').
8 valueMap()

these queries was new to both EOL and Gremlin, writing the EOL queries required the assistance of an experienced
user of EOL, whereas the Gremlin query did not require more than some cursory exploration of the Gremlin primitives.
These impressions would need to be confirmed empirically by a broader study with external participants, which we
consider to be a valuable line of future work.

As a last note, it is important to remark that with its broader acceptance by industrial practitioners, the graph
database community has a wider arrange of options for visualisation. Within the TinkerPop ecosystem, one such
graphical visualisation tool is Graphexp [44]. Using Graphexp to follow the relationships between highly connected
vertices caused severe slowdown and clutter, requiring frequent restarts making it impractical for a full investigation.
However, it can help when writing queries, by enabling a quick visualisation of vertices of interest and their neighbours.

6 THREATS TO VALIDITY

The threats to validity are considered against the classification provided by Feldt et al. [16].Internal validity focuses on
how sure we can be that the treatment actually caused the outcome. External validity is concerned with whether we
can generalise the results outside the scope of our study.

Internal. The simulations used to create the history model data in the experiments were run for up to 5000 ticks to
obtain averages. Therefore, the metrics collected may not be representative of a simulation that ran for a longer period,
which could expose unseen resource leaks or stresses that may cause a system to fail.

For RQ1, the direct comparison of resources required by JanusGraph and CDO is exacerbated by JanusGraph, as it
needs an in-memory configuration to keep pace. In future work, alternative disk-based configurations will be tested to
provide a more direct comparison of performance. However, the difference between disk and memory storage, did not
significantly affect the findings in RQ2 which explored the collected provenance data.

External. CDO and JanusGraph were chosen due to their prominent status in the model repository and graph database
communities, and their state-of-the-art selection of features and reported performance in the literature. Regardless, it is
still true that only one model repository and one graph database have been tested. Other model repositories and graph
databases could be explored, as well as alternative configurations and optimisations.

Cronista has only been evaluated with one application, using one specific type of runtime model in one domain.
However, it has been designed to be reusable, with explicit separations between the system, the curator, the observer,
and the HMS components, and with a metamodel of the history model that is independent of the metamodel of the
system runtime models. Regardless, this reusability has not been tested across multiple applications, system runtime
models and/or domains yet. Additional case studies would be needed. Further, these case studies would also help clarify
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the throughput levels that need to be supported in various domains. In this case study, the curator kept pace with the
observer, but a system with much higher event throughput could pose challenges.

The current version of Cronista is dependent on EMF and its EObjects for instrumentation, which limits Cronista
to model-based systems that use EMF. Using a more generalised approach to instrumentation, like aspect-oriented
programming, would overcome the limitations by encapsulating the instrumentation. However, relaxing the modelling
tool requirement introduces the potential for systems with partial or no runtime models to be instrumented. Cronista is
dependent on the type and quality of abstractions within a system. For instance, the provenance graph of a system
that does not keep track of its own structure and/or goals in its runtime model will be less insightful, as it will not be
possible to know why those have changed. In other cases, the runtime model may only be understandable to a system
developer. In these cases a mapping to a more understandable form for other audiences would be required. Furthermore,
if the system has no runtime model (i.e., it only keeps track of its internal state at an implementation level), such a
runtime model would need to be introduced to have the system work with Cronista. A system must also be causally
connected with its runtime model, such that changes in the runtime model like self-representations, cause changes to a
system’s state and vice-versa; to enable an accurate reflection of the system’s evolution in the history model.

7 RELATEDWORK

There are other approaches aimed at automating provenance collection. The survey by Herschel et al. on provenance [27]
states that there are three groups of solutions for automated collection of provenance in general programming languages.
The first group requires explicit annotations to be added to the code. The second group collects provenance without
requiring changes (e.g. via static analysis). A third group combines both approaches, with the more abstract and easier
to understand information from manual annotations acting as a summary and the transparently collected information
as a detailed record that can be explored. Ideally, a provenance collection approach should use this third approach as
we have done in this work.

The provenance collected by Cronista is application-level provenance similar to SPADE [20]. SPADE is an open-
source provenance middleware with more flexible capabilities: it also runs as a system service in the background,
capturing operating system-level provenance (e.g. open files and connections), or application-level provenance. For
application-level provenance, SPADE allows developers to manually introduce provenance information in a dedicated
DSL, or to use compiler instrumentation to automatically track the provenance of certain function calls (e.g. via LLVM
compiler options). Cronista, is different as provenance of a runtime models is collected automatically; an approach we
believe is unique.

Zhao et al. integrated SPADE with the distributed file system FusionFS to track changes in a distributed file system
used by a high-performance computing (HPC) system [55]. They reported negligible overheads for coarse-grained
provenance, when using a 32-node cluster filesystem. However, fine-grain provenance had a much higher overhead, on
their single-node experiments, but did better on the 32-node configuration.

Pinheiro et al. used a graph database to store the provenance of data in bioinformatics experiments [40], opting
for Neo4J and PROV-DM. Their choice of a graph database was based on the availability of existing query languages,
visualisation tools and flexible data schema. The overhead of collecting provenance for the genomics workflows, added
less than 1.5% of the total disk usage. Cronista ’s provenance collection is more fine-grained, thus produces more data.

Beyond automated provenance collection, there are other approaches that capture historical information about
the evolution of a system. Parra et al. [38] demonstrated an approach that creates a temporal graph from a system’s
structured logs, which a user can query. They also present a 4-level roadmap for introducing time-awareness for
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self-adaptive systems. On their roadmap Cronista achieves level-1 (forensic explanations), with the potential for level-2
(live history-aware explanation). Level-2 would require the ability to perform rapid queries: the InTempo querying
scheme by Sakizloglou et al. [45] could be one way to enable rapid history recalls from the Cronista HMSs.

8 CONCLUSIONS AND FUTUREWORK

This paper has presented Cronista, an approach for tracking the behaviour of self-adaptive and autonomous software
systems that runs using runtime models, by automatically collecting the provenance of changes to those runtime models.
Specifically, rather than recording everything that happens in the system, the approach abstracts away from details and
records only the access to the higher-level system runtime model.

Cronista follows a modular architecture, with an explicit separation between its key components: a set of observers,
a curator, and a history model store. The structure of the history model is independent of the structure of the system
runtime model, allowing Cronista to be reusable across multiple systems without requiring changes to its code, as long
as they are based on the same modelling technology.

Cronista supports multi-threaded systems through the use of multiple concurrent observers. The curator processes
accesses in a stateless way while splitting them over time windows. The chronologically-ordered time windows represent
a history model based on the system’s execution, and can be deleted by users if not all the past history is desired: this is
currently left to users as a manual step however, we plan to introduce automated history pruning (which would save
resources by forgetting time windows) in future versions of Cronista.

In addition to providing updated and expanded descriptions of the observer and curator components, this paper has
expanded the evaluation by comparing the trade-offs involved in storing the provenance graph in a model repository
(CDO) and graph database (JanusGraph over the vendor-agnostic TinkerPop API). This comparison has been enabled
by the improved architecture since our prior work [42]. The JanusGraph-based history model store introduced a
more user-friendly query language with Gremlin. The latter and made it possible to leverage the graph analysis and
visualisation tools in the TinkerPop community. On the other hand, it used considerably more resources than CDO and
required more fine-tuning before it showed the throughput needed to keep up with the model access in our case study.

There are several areas for further investigation. In its current version, the queries require knowing how to write
queries, and the answers can be technical in nature. Given that Cronista now supports the popular TinkerPop API, it
may be possible to leverage results from the graph visualisation community on how to allow less technical users to
investigate the proveanance graph. We also foresee that our approach can support autonomy of the system, as the
running system can use its own provenance graph to perform self-diagnosis when its system model becomes invalid.
For instance, a watchdog agent in the case study could have detected the invalid LADJammed value, and then it would
have identified the responsible activity through a query, disabling it temporarily before warning a system operator.

The case study in this paper uses an architectural system model designed around the MAPE-K feedback loop, which
is a popular type of runtime model, as shown in the survey by Bencomo et al [7]. Future case studies will explore the
application of Cronista against larger systems, against systems with different runtime models such as goal-level or
process-level models, and against systems with partial or no runtime models. To enable these case studies, additional
system instrumentation techniques may be required such as aspect-oriented programming. These case studies would
provide additional insights into how a system’s internal abstractions can be leveraged, to gain insight into the systems
such as how they evolve their goals and processes; as well as exposing more dependencies between Cronista and a
system’s internal abstractions.
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On the infrastructure side, a future line of work is to revisit the need for discrete time windows. The use of disjoint
provenance graphs for each time window can complicate the writing of queries: some of the context operations in
Listing 2 required additional code to handle discontinuities between time windows. We plan to compare the use of
“continuesIn” links between activities and entities that span windows with the use of a single rolling provenance graph
that is automatically pruned by a background process. Either way, users may wish to protect certain activities or entities
from pruning, or specify different retention periods. As an alternative approach to solving these complexities for users, a
high-level provenance language could be created that abstracts away the time windows: this could avoid the challenges
that pruning would introduce.

Finally, this work has considered only a system running on a single machine: for systems with higher numbers of
event throughputs, or systems where the observer is running in a resource-constrained machine (e.g., an IoT device), it
could be necessary to run the curator and observer in different machines. The curator and observer could communicate
over a network, using a reliable messaging protocol such as MQTT [36] to handle message delivery complexities (e.g.,
redelivery). In a distributed system, different machines may have their own clocks: this lack of a global time may
complicate the order of the incoming messages. To solve this, we will investigate approaches for event ordering in
distributed systems such as the work on XVector by Beschansnickh et al. [8], which creates vector-timestamped logs
for concurrent and distributed systems: specifically, XVector uses local vector-clocks on each node to establish the
partial causal ordering of events. Having a single central curator could present a bottleneck for larger systems: in
this case, distributing the work across multiple curators would be needed. One source of inspiration is the work on
runtime megamodels by Vogel and Giese [51], where multiple local runtime models are integrated into a global runtime
megamodel. Cronista would have one curator (and local provenance graph) per local runtime model, and a curator (and
provenance graph) for the runtime megamodel. This would split the work across multiple levels of runtime models.
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