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Abstract: Proteins and peptides, built from precisely defined amino acid sequences, are an important
class of biomolecules that play a vital role in most biological functions. Preparation of nanostructures
through functionalization of natural, hydrophilic proteins/peptides with synthetic polymers or upon
self-assembly of all-synthetic amphiphilic copolypept(o)ides and amino acid-containing polymers
enables access to novel protein-mimicking biomaterials with superior physicochemical properties
and immense biorelevant scope. In recent years, polymerization-induced self-assembly (PISA) has
been established as an efficient and versatile alternative method to existing self-assembly procedures
for the reproducible development of block copolymer nano-objects in situ at high concentrations
and, thus, provides an ideal platform for engineering protein-inspired nanomaterials. In this review
article, the different strategies employed for direct construction of protein-, (poly)peptide-, and amino
acid-based nanostructures via PISA are described with particular focus on the characteristics of the
developed block copolymer assemblies, as well as their utilization in various pharmaceutical and
biomedical applications.

Keywords: proteins; polypeptides; α-amino acids; block copolymers; polymerization-induced self-
assembly; protein–polymer conjugates; nanostructures; biomaterials

1. Introduction

Proteins and peptides are essential components in nature’s toolkit, since they are
responsible for the proper function, structural organization, and protection of cells, organs
and tissues. Their critical role in regulating the majority of biochemical processes, as well
as the transport and storage of nutrients and other signaling molecules within living or-
ganisms [1,2], has directed a significant part of scientific research toward understanding,
utilizing, and mimicking these biomacromolecules for various biomedical applications,
including nanomedicine [3–5], biocatalysis [6,7], enzyme-mediated therapy [8,9], and tissue
engineering [10,11]. Nonetheless, proteins and natural peptides often exhibit poor stability,
reduced circulation times in vivo and increased immunogenicity, considerably limiting
their applicability [12,13]. A common strategy employed to improve their biophysical
properties involves their functionalization with synthetic polymers for preparation of
protein/peptide–polymer conjugates and hybrid nano-assemblies [14–17]. Additionally,
alternative approaches for the development of advanced protein-inspired nanomateri-
als encompass either the synthesis of amphiphilic polypeptide- and polypeptoid-based
copolymers via ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides
(NCAs) [18–20] or the synthesis of amino acid-containing amphiphiles via controlled radi-
cal polymerization techniques [21,22], followed by their self-assembly in aqueous media
to yield biorelevant nanostructures of varying morphologies. However, until recently,
efforts to develop such self-assembled formulations have majorly focused on strenuous,
multi-step procedures at low polymer concentrations, which are often poorly reproducible.

Over the past decade, polymerization-induced self-assembly (PISA) has emerged as
a powerful method for the simultaneous synthesis and solution self-assembly of block
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copolymers in a range of media [23–25]. In contrast to traditional post-polymerization self-
assembly techniques, such as solvent-switch or thin-film rehydration, PISA enables the in
situ formation of block copolymer nano-objects at high solids contents (up to 50% w/w) [26].
Briefly, PISA involves the chain-extension of a functional solvophilic polymer with a range
of solvent-miscible or solvent-immiscible monomers to yield amphiphilic block copolymers
that spontaneously self-assemble during their synthesis due to the solvophobic nature of the
growing polymer block [27,28]. Importantly, PISA enables reproducible access to a diverse
set of block copolymer nanoparticles of controllable morphology, with spherical micelles,
worm-like (or cylindrical) micelles, and vesicles being the most commonly encountered
assemblies. Furthermore, PISA is extremely versatile: numerous monomer classes can
be polymerized via common controlled/living polymerization techniques [29] in a range
of polymerization media, such as water [23] and organic solvents [24]. These undoubted
advantages of the PISA process have been utilized to develop polymeric formulations
for various applications, including drug delivery [30,31], cell/organelle mimicry [32–34],
oil additives for friction [35] and viscosity [36,37] modification, chemical sensing [38,39],
latex-based films [40], Pickering emulsifiers [41,42], cryopreservation [43,44], and stem
cell storage [45], among others. Recently, the generality and versatility of PISA have been
further demonstrated and have been used for the preparation of protein-, (poly)peptide-
, and amino acid-based nanostructures. The main characteristics of these biomimetic
formulations and their great potential in a range of biotechnological and biomedical
applications will be discussed in detail in this review article.

2. Protein–Polymer Hybrid Nanostructures via PISA

Over the last few years, amphiphilic protein–polymer conjugates have received con-
siderable attention for use as a new class of nanocarriers for drug delivery [13], bioimaging
agents [46], and protein therapeutics [47] due to their exceptional degradability [48] and
biocompatibility [49]. Some native proteins display undesirable properties, such as reduced
stability under non-physiological conditions and enhanced susceptibility to enzymatic
degradation, thus giving rise to issues such as unfavorable immunogenic reactions [50].
Protein–polymer conjugates address these issues by providing improved properties; both
components render beneficial characteristics to the resulting conjugate (i.e., proteins offer
good bio-functionality, whereas polymers provide increased solubility and stability, as
well as improved circulation half-life and biodistribution) [51]. Hydrophilic proteins, such
as bovine serum albumin (BSA) and human serum albumin (HSA), have been typically
selected as the corona-forming component for preparation of amphiphilic protein–polymer
conjugates due to being abundantly present in living organisms and easy to isolate and
modify [13,52,53]. PISA has recently emerged as an efficient, facile strategy for generating
such protein–polymer hybrid nanostructures. PISA can be combined with a “grafting-
from” approach to synthesize protein–polymer conjugates, where a hydrophobic polymer
is formed from the surface of a hydrophilic, functionalized protein to generate amphiphilic
nano-objects that can encapsulate different (bio)molecules in situ, an advantageous prop-
erty for biomedical applications, such as drug and protein delivery.

Le Droumaguet and Velonia first reported the in situ preparation of bovine serum
albumin-graft-polystyrene (BSA-g-PS) giant amphiphiles via an efficient protein-initiated
atom transfer radical polymerization (ATRP)-mediated PISA approach in aqueous solution
without the requirement for an organic co-solvent, which would typically result in protein
denaturation [54]. A maleimido-capped ATRP initiator was conjugated to BSA to form a
BSA-based macroinitiator, which was used as the corona-forming block in the subsequent
ATRP-mediated “grafting-from” emulsion polymerization of styrene in phosphate-buffered
solution (PBS) (pH = 7.4) to form BSA-g-PS conjugate nanoparticles, where PS was the
core-forming block. This reaction was carried out both in the presence and in the absence
of dimethyl sulfoxide (DMSO) in two separate occasions. Here, spherical aggregates with
diameters ranging from 20 to 100 nm were formed, which were used as nanocarriers for the
encapsulation of various enzymes. The versatility of this method was further demonstrated
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using other hydrophilic proteins, such as HSA and reduced human calcitonin. The synthesis
of BSA-g-PS spherical nanostructures was also reported by Theodorou et al. in what was
the first oxygen-tolerant, photoinduced synthesis of protein–polymer bioconjugates via
an ATRP “grafting-from” approach (λ = 365 nm) in water or PBS, utilizing a similar
BSA-based macroinitiator [55]. This multifaceted method was shown to be compatible
with several proteins, including, but not limited to, HSA and glucose oxidase (GOx),
both of which formed spherical micelles, and four different monomer classes: acrylates,
acrylamides, styrenics, and methacrylates. Spherical micelles were also observed for
a BSA-graft-poly(2-(dimethylamino)ethyl methacrylate) (BSA-g-PDMAEMA) conjugate.
Importantly, this process did not disrupt the secondary structure of the protein and required
low amounts of catalyst. In a more recent report by the same group, the universal character
of this aqueous ATRP-mediated photo-PISA procedure was further exploited for the
synthesis of amphiphilic BSA-based spherical nano-objects utilizing a wide range of acrylic-
, methacrylic-, and acrylamide-based core-forming monomers [56].

In addition to the preparation of BSA–polymer hybrid assemblies via ATRP-mediated
PISA, BSA has been utilized as a macromolecular chain transfer agent (macro-CTA) for
reversible addition–fragmentation chain transfer (RAFT)-mediated PISA syntheses of
amphiphilic protein–polymer conjugates. Ma et al. reported an efficient way to synthesize
giant protein–polymer amphiphiles [57]. In this approach, a star BSA-based macro-CTA
was first synthesized in a water/DMSO mixture and was subsequently chain-extended with
2-hydroxypropyl methacrylate (HPMA) via aqueous photoinitiated RAFT-PISA at room
temperature using a blue light source (λ = 460 nm) (Figure 1A). The nanoparticle synthesis
was conducted at both 5 and 15 wt% solids content using different BSA macro-CTAs, both
of which yielded spherical nanostructures of approximately 200–250 nm in diameter. The
nanostructures generated at 5 wt% were further used to encapsulate doxorubicin (DOX),
Nile red, or deoxyribonucleic acid (DNA), with subsequent controlled protease-mediated
release demonstrating the potential of using this type of nanostructures in biomedicine.
Notably, encapsulation efficiencies of DOX and DNA reached 13.5% and 11.6%, respectively.

As well as using BSA, a number of research groups have utilized HSA in the devel-
opment of protein-based nanostructures via PISA. Gao and coworkers prepared HSA-g-
PHPMA conjugates with varying degrees of polymerization (DPs) of the core-forming
PHPMA block in order to tune the morphology of the developed nanostructures [58]. The
conjugates were formed through ATRP-mediated dispersion polymerization of HPMA
in PBS at 0 ◦C using an HSA-based macroinitiator. As the HPMA/HSA molar ratio was
increased, higher-order morphologies were accessed (i.e., the HSA-g-PHPMA nanoparticle
morphology transformed from spheres, to worms, to vesicles). Moreover, HSA-g-PHPMA
vesicles were shown to successfully encapsulate green fluorescence protein (GFP) with an
encapsulation efficiency of 11.7% (Figure 1B). An increased cellular fluorescence intensity
in the GFP-loaded vesicles relative to free GFP was observed, demonstrating the nanostruc-
tures’ practicality and potential use in protein/drug delivery and molecular imaging appli-
cations. HSA has also been used to develop pH-responsive protein–polymer hybrid nanos-
tructures. Li et al. described the formulation of HSA-graft-poly(2-(diisopropylamino)ethyl
methacrylate) (HSA-g-PDPA) conjugates via an aqueous ATRP-mediated “grafting-from”
PISA approach using an HSA-Br macroinitiator that, with increasing PDPA/HSA molar
ratio, yielded morphologies that transformed from spheres, to worms, to aggregates, and
finally to spherical vesicles [46]. Dispersion PISA for the synthesis of the conjugate was
allowed to progress overnight in PBS at 0 ◦C. When loaded with indocyanine green (ICG) to
form HSA-g-PDPA/ICG nanoprobes, these nanoparticles were utilized as effective tumor
imaging agents that may offer enhanced precision for tumor removal.

Other antitumor agents have also been developed using similar PISA methodologies.
For instance, the Gao group reported the construction of amphiphilic interferon-α-graft-
(poly((oligoethylene glycol) methyl ether methacrylate)-block-PHPMA) (IFN-g-(POEGMA-
b-PHPMA)) conjugate micelles via aqueous ATRP-mediated PISA [47]. The spherical
micelles, at 65 nm diameter, were larger than both IFN and IFN-g-POEGMA by a factor of
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28 and 9.4, respectively. Interestingly, the spherical micelles completely suppressed tumor
growth in a mouse model and had a much higher (up to a factor of 21.5) in vitro bioactivity
than PEGylated interferon-α PEGASYS, an FDA-approved drug.
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PISA and subsequent in situ encapsulation of DOX and DNA. Adapted with permission from
reference [57]. Copyright 2017 American Chemical Society. (B) Synthesis of HSA-g-PHPMA hybrid
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More recently, Savin and coworkers reported the preparation of biohybrid protein–
polymer nanoparticles via aqueous photoinduced ATRP-mediated PISA at λ = 440–450 nm
(blue light) in PBS using a “grafting-from” approach that utilized a water-soluble super-
folder green fluorescent protein (sfGFP) with a genetically encoded ATRP initiator [59].
This sfGFP was selected as the steric stabilizer block due to its structural stability, as a result
of optimally designed mutations. Specifically, spherical sfGFP-g-PHPMA micelles were
produced using this strategy as confirmed by transmission electron microscopy (TEM) and
dynamic light scattering (DLS) analyses. As well as being employed as antitumor agents,
PISA-derived formulations involving PHPMA cores have been used to develop conjugates
for other biomedical applications, such as artificial enzyme complexes. Chiang et al. de-
scribed a polymerization-induced coassembly (PICA) process to form enzyme–polymer
hybrid nano-objects [60]. This was proposed as a novel, controlled method for the design of
artificial enzyme complexes, which ultimately did not adversely affect the secondary struc-
ture of the proteins. In this study, PICA was carried out using a model GOx/horseradish
peroxidase (HRP) system to achieve cascade activity in enzyme complexes. In this ATRP-
mediated PICA process, both enzymes were first used to form hydrophilic macroinitiators
and then employed to facilitate the in situ growth of PHPMA in PBS at 0 ◦C to yield
amphiphilic conjugates that self-assembled into spherical co-micelles (Figure 2). It was
found that the enzyme cascade reaction activities of the co-micelles were much higher (up
to a factor of 4.9) than that of the free enzyme mixtures. Interestingly, this enabled the faster
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detection of glucose over a much broader range of concentrations in comparison with a
commercially available glucose assay kit.
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In a different approach, Bao et al. reported the synthesis of a myriad of lipase–polymer
conjugates via Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) of
several monomers with differing hydrophilic/hydrophobic properties [61]. In this work,
a Candida antarctica lipase B (CALB) macroinitiator was initially synthesized to facilitate
the Cu(0)-RDRP of acrylamide and acrylate monomers, including N-isopropylacrylamide
(NIPAAm), N-tert-butylacrylamide (tBAm), and methyl acrylate (MA), among others. In the
case of hydrophobic monomers, the developed protein–polymer conjugates were able to
spontaneously self-assemble into spherical nanostructures in a water/methanol mixture,
where the CALB-based macroinitiator was the corona-forming block. The enzymatic
activity of the lipase–polymer conjugates was subsequently measured using UV–VIS
spectroscopy, demonstrating that in most cases the lipase–polymer conjugates displayed
a higher enzyme activity than their native lipase counterpart, as such, highlighting the
potential of this PISA method to develop protein–based nanostructures for nanoreactor
engineering and enzyme immobilization applications. Table 1 summarizes the main
features and breadth of applications of reported protein–polymer hybrid nanostructures
prepared by PISA.
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Table 1. Summary of corona- and core-forming blocks, reaction solvents, obtained morphologies, and applications of
protein–polymer hybrid nanostructures prepared via PISA.

Corona-Forming Block Core-Forming Block PISA Solvent Morphologies 1 Application Ref.

BSA, HSA, reduced
human calcitonin PS PBS (w. DMSO in

some cases) S Nanoreactors [54]

BSA, HSA, GOx,
β-galactosidase

PS, PDMAEMA,
substituted styrenes PBS, water S Nanoreactors [55]

BSA MA, MMA, tBA,
tBMA Water S - [56]

BSA PHPMA Water S Drug delivery [57]

HSA PHPMA PBS S/W/V Protein delivery [58]

HSA PDPA PBS S/W/A/V Bioimaging [46]

IFN-g-POEGMA PHPMA PBS S Antitumor agents [47]

sfGFP PHPMA PBS S - [59]

GOx/HRP PHPMA PBS S Glucose detection [60]

CALB NIPAAm, tBAm, MA Water/methanol S - [61]
1 Key: S—spherical micelles, W—worm-like micelles, V—vesicles, A—aggregates.

3. Peptide–Polymer Hybrid Nanostructures via PISA

Peptide–polymer conjugates and hybrid nano-objects from self-assembled peptide–
polymer amphiphiles provide a means to combine the robust nature and diverse func-
tionality of polymers with the important biological properties of natural and synthetic
oligopeptides [62,63]. Importantly, peptide–polymer hybrid nanostructures have been of
significant biomedical interest due to their stimulus-responsive behavior, particularly in
the presence of specific enzymes, improved stability and biocompatibility [64–66]. Indeed,
enzyme-responsive peptide-containing block copolymer nanoparticles have shown great
promise in therapeutic formulations and enhanced bioimaging for severe conditions, such
as heart disease [67] and cancer [68–70]. PISA provides a convenient and scalable route
to functional amphiphilic block copolymer nano-objects and, thus, offers an attractive
synthetic approach to such responsive peptide–polymer hybrid nanoparticles.

In 2016, Convertine and coworkers were the first to utilize a peptide-functional
macromonomer that formed a solvophobic block during PISA [71]. First, the stabilizer block
was synthesized via RAFT copolymerization of 2-hydroxyethyl methacrylate (HEMA)
and poly(ethylene glycol) methyl ether methacrylate (O300) prior to the RAFT disper-
sion copolymerization of a peptide-modified methacrylamide macromonomer (MAm-
AhxWSGPGVWGASVK) with a zwitterionic sulfobetaine (2-(N-3-sulfopropyl-N,N-dimethyl
ammonium)ethyl methacrylate, DMAPS) in acetic acid at 70 ◦C, which yielded kinetically
trapped spherical micelles.

Subsequently, Gianneschi’s group developed diblock copolymer formulations that
utilized pure oligopeptide-based solvophilic stabilizer or solvophobic structure-directing
blocks by ring-opening metathesis polymerization-induced self-assembly (ROMPISA) [72,73].
Their initial peptide–polymer conjugate formulation employed room-temperature ROMP-
ISA using Grubbs third generation catalyst and norbornenyl (NB) monomers in N,N-
dimethylformamide (DMF)/methanol mixtures [72]. Specifically, spherical, wormlike,
and vesicular nano-objects composed of diblock copolymer amphiphiles containing a
solvophilic oligo(ethylene glycol)-based PNB stabilizer block (PNB-OEG) and a protected
peptide-functionalized PNB-based core-forming block were generated. The peptide-
functional norbornene macromonomer contained the amino acid sequence GPLGLAG-
GERDG (Figure 3).
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Later, the same group developed a wholly aqueous ROMPISA methodology [74],
whereby employing a water-soluble Hoveyda–Grubbs second-generation catalyst en-
abled PISA to be conducted directly in aqueous media at room temperature without
the requirement of oxygen removal (i.e., open-to-air). This allowed for the synthesis of
peptide–polymer hybrid nanostructures with coronal peptide functionality by utilizing a
hydrophilic stabilizer block formed of a 15-peptide-modified norbornene dicarboximide
with the sequence GPLGLAGGWGERDGS, where the core-forming monomer was a qua-
ternary amine-based phenyl norbornene dicarboximide (NB-APh) [73]. Here, spheres and
so-called framboidal vesicles were obtained that exhibited enzyme-responsive aggregation
on the addition of the proteolytic enzyme thermolysin, which may render these nanomate-
rials useful as delivery scaffolds for tissue imaging. Importantly, the peptide functionality
was positioned in the corona-forming domain of the nanoparticles to maximize accessibility
to cell surface receptors.

As highlighted above, RAFT is the most common polymerization technique employed
to mediate PISA [27,75], which Semsarilar and coworkers utilized in a plethora of studies
to prepare oligopeptide-functional hybrid nano-objects via aqueous PISA. In the group’s
first report [76], a water-soluble steric stabilizer was initially prepared via conjugation
of a chain transfer agent (CTA) and an amino-terminated oligopeptide chain comprising
three lysine residues (i.e., KKK). The resulting tripeptide-functional macro-CTA was then
chain-extended with water-miscible HPMA at 70 ◦C to yield aqueous dispersions of
spheres, worms, and vesicles upon varying the PHPMA DP and total solids content. Such
nanoparticles were subsequently used to engineer antimicrobial thin film membranes
that successfully purified water containing Staphylococcus epidermidis bacteria. The same
group later incorporated peptide-containing methacrylamide units (MAm-GFF) within a
hydrophilic poly(glycerol monomethacrylate) (PGMA) corona-forming block to produce
peptide-based P(GMA-stat-(MAm-GFF))-b-PHPMA block copolymer assemblies in situ
via aqueous RAFT-mediated dispersion PISA [77]. In this case, dendritic, flower-like
fibers were formed in a self-assembly behavior that was predominantly governed by non-
covalent interactions between peptide-decorated monomeric units within coronal chains
(Figure 4A), similar to that observed in self-assembling peptides (SAPs) [78]. Interestingly,
these fibers transformed into worm-like micelles at 70 ◦C and lower-order spheres at 4 ◦C.

In both of these RAFT-PISA formulations, the peptide-rich moieties were located within
the solvent-accessible stabilizer block, something that Gianneschi and collaborators further
emulated in a room-temperature RAFT-mediated photo-PISA method in acetate buffer
(pH = 5.0) [79]. In this study, a peptide-functionalized acrylamide-based macromonomer
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(Am-KLAKLAKKLAKLAK) was first copolymerized with N,N-dimethylacrylamide (DMA)
via photoinitiated RAFT-mediated polymerization (λ = 450 nm) to form a hydrophilic
P(DMA-stat-(Am-KLAKLAKKLAKLAK)) macro-CTA prior to its one-pot chain-extension
with DMA and diacetone acrylamide (DAAm) under similar reaction conditions. This
approach yielded spherical peptide–polymer conjugate nanoparticles of tunable size con-
taining surface pro-apoptotic “KLA”-type peptides that demonstrated enhanced proteolytic
resistance and cellular uptake compared with the oligopeptide alone.
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from reference [77]. Copyright 2020 American Chemical Society. (B) Synthesis of PGMA-b-P(MAm-FGD) block copolymer
nanostructures via aqueous RAFT-mediated PISA (top), and representative TEM images of prepared dendritic fibers
(bottom). Adapted with permission from reference [80]. Copyright 2021 Royal Society of Chemistry.

The versatility of RAFT-mediated PISA for the preparation of oligopeptide-based as-
semblies was further demonstrated by Dao et al. [80], who synthesized nano-objects with
complex morphologies whose structure-directing solvophobic blocks comprise purely peptide-
functional methacrylamide units. In particular, solvophilic PGMA macro-CTAs were initially
used to chain-extend the core-forming MAm-GFF methacrylamide macromonomer by ethano-
lic emulsion PISA to yield dendritic, micrometer-sized structures akin to SAP-type ag-
gregates. Nevertheless, copolymerizing the less solvophobic HPMA monomer within
the core-forming block promoted the formation of colloidally stable short worms and
spherical vesicles. An alternative RAFT-PISA approach to produce stable, well-defined
P(MAm-GFF)-based nanoparticles (spheres or vesicles) involved the utilization of a wa-
ter/acetonitrile mixture, which is a good solvent system for the MAm-GFF macromonomer
and thus overcomes non-covalent peptide–peptide interactions. In the same work, a second,
less hydrophobic peptide-modified MAm macromonomer was also used (MAm-FGD),
which facilitated RAFT-mediated dispersion PISA in pure water to produce dendritic fibers
similar to those previously reported (Figure 4B) [77]. In these cases, the formation of such
complex assemblies was primarily governed by the secondary structure that the utilized
peptides adopt in solution. In summary, the main characteristics and application scope of
currently reported peptide–polymer hybrid nanostructures prepared by PISA are given in
Table 2.
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Table 2. Summary of corona- and core-forming blocks, reaction solvents, obtained morphologies, and applications of
peptide–polymer hybrid nanostructures prepared via PISA.

Corona-Forming Block Core-Forming Block PISA Solvent Morphologies 1 Application Ref.

P(HEMA-stat-O300) P(DMAPS-stat-(MAm-
AhxWSGPGVWGASVK)) Acetic acid S - [71]

PNB-OEG P(NB-
GPLGLAGGERDG) DMF/methanol S/W/V - [72]

P(NB-
GPLGLAGGWGERDGS) PNB-APh Water S/V Biomimicry [73]

KKK PHPMA Water S/W/V Antibacterial
membranes [76]

P(GMA-stat-(MAm-
GFF)) PHPMA Water DF/S 2/W 3 - [77]

P(DMA-stat-(Am-
KLAKLAKKLAKLAK)) P(DMA-stat-DAAm) Acetate buffer S Therapeutics/biomimicry [79]

PGMA P((MAm-GFF)-stat-
HPMA) Ethanol W/V - [80]

PGMA P(MAm-GFF) Water/acetonitrile S/V - [80]

PGMA P(MAm-FGD) Water DF - [80]
1 Key: S—spherical micelles, W—worm-like micelles, V—vesicles, DF—dendritic fibers. 2 Formed on cooling to 4 ◦C. 3 Formed on heating
to 70 ◦C.

4. Polypeptide- and Polypeptoid-Based Nanostructures via PISA

In addition to the solid-phase synthesis of short (oligo)peptides (typically between 3 and
20 amino acid residues) with precision sequence and functionality [81,82], a widely utilized
alternative strategy for the preparation of protein-mimicking polymeric materials involves
the ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs) for
the synthesis of well-defined co-polypept(o)ides of controlled molecular weight and low dis-
persity [83–85]. Similar to proteins, these biocompatible, synthetic macromolecules are able
to respond to externally applied stimuli and adopt three-dimensional secondary structures,
such as α-helices and β-sheets, that can determine their solution properties and potential
biomedical applications [86]. Over the past decade, engineering of amphiphilic polypeptide-
and polypeptoid-based nanostructures was primarily achieved through conventional self-
assembly techniques in dilute solutions [87,88], whereas in situ fabrication of such assemblies
by PISA has only very recently been reported, providing a powerful platform for facile access
to hybrid polypeptide/polypeptoid-containing biomaterials.

In a seminal study, Varlas, O’Reilly, and collaborators reported the development
of polypeptoid-based block copolymer nano-objects through the combination of ROP of
NCAs and aqueous RAFT-mediated photo-PISA [89]. Specifically, a poly(sarcosine) (PSar)
homopolymer was first synthesized by living ROP of sarcosine NCA and was subsequently
functionalized with a small-molecule CTA to yield a water-soluble PSar-based macro-CTA.
A variety of amphiphilic PSar-b-PHPMA diblock copolymer nanostructures were formed
following chain-extensions of the developed PSar macro-CTA with HPMA via aqueous
photo-PISA (λ = 405 nm) under mild reaction conditions (Figure 5A). As typically observed
in most PISA formulations, self-assembled morphologies progressed from spheres, to
worms, to vesicles in a predictable manner when increasing both the DP of the core-forming
PHPMA block and the solids concentration (Figure 5B). Notably, a direct comparison of
empty and HRP-loaded PSar-stabilized vesicles with their PEG-based counterparts was
also conducted, with their long-term colloidal stability and the ability of such biomimicking
nanoreactors to resist proteolytic degradation being evaluated. The PSar-based vesicles
exhibited superior properties, highlighting the great potential of PSar as an alternative
hydrophilic block to widely employed PEG-based nanomaterials.

In 2019, Yu et al. prepared analogous spherical PSar-b-PHPMA block copolymer
nanoparticles following a similar two-step approach, involving NCA ROP for the synthesis
of a PSar steric stabilizer block and RAFT-mediated dispersion PISA of HPMA in a 2:10 v/v
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ethanol/water mixture at 55 ◦C [90]. In this work, it was crucial that the targeted PHPMA
DP was considerably short (≤21 units) in order to minimize the cytotoxicity of the prepared
nanoparticles and maintain their size below 200 nm for use as potential drug delivery vehi-
cles. At a next stage, anticancer drug DOX was encapsulated within the solvophobic core
of the nanoparticles, and its pH- and temperature-triggered release was assessed, showing
that enhanced DOX release was achieved at mildly acidic microenvironments (pH = 5.0)
and solution temperatures above 41 ◦C. The increase in solution temperature also resulted
in a noticeable size decrease of the nanoparticles together with their transformation to more
anisotropic assemblies. Finally, empty particles were found to be non-cytotoxic against
three different breast cancer cell lines, whereas DOX-loaded ones exhibited pronounced
cell death capabilities and desired characteristics for controlled drug release applications.
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Furthermore, Du and coworkers were the first to develop amphiphilic polypeptide-
containing block copolymer nano-objects by ring-opening polymerization-induced self-
assembly (ROPISA) of α-amino acid NCAs in organic media [91]. In this report, an amino-
terminated poly(ethylene glycol) (PEG-NH2) macroinitiator was initially utilized for open-
to-air ROPISA of core-forming L-phenylalanine (Phe) NCA in tetrahydrofuran (THF) at low
reaction temperature (10 ◦C), leading to the in situ formation of PEG-b-PPhe nanostructures.
Upon increasing the Phe NCA/PEG-NH2 molar ratio and solids content, morphologies
transitioned from kinetically frozen spherical core-shell nanoparticles to larger unilamellar
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vesicles. Further investigation focusing on the biodegradability of the vesicular assemblies
showed that the particles presented good long-term colloidal stability after their post-PISA
transfer into aqueous media, while they progressively degraded and disassembled over a
96 h period in the presence of the proteolytic enzyme trypsin. Importantly, the described
methodology was also applied for ROPISA of β-benzyl L-aspartic acid (BLA) NCA as the
core-forming monomer, with the resulting PEG-b-PBLA diblock copolymer nano-objects
exhibiting similar properties to their PEG-b-PPhe analogues.

Recently, Lecommandoux, Bonduelle, and colleagues moved one step further by
implementing a similar NCA ROPISA process directly in aqueous media for fabrication
of hybrid block copolymer nano-objects with polypeptide-based hydrophobic segments,
expanding the biorelevant scope and applicability of the method [92]. Block copolymer
amphiphiles were developed via ROPISA of either γ-benzyl L-glutamate (BLG) or Nε-tert-
butyloxycarbonyl-L-lysine (NBocLys) NCA in an aqueous sodium bicarbonate (NaHCO3)
solution (pH = 8.5) at 4 ◦C, using a water-soluble PEG-NH2 macroinitiator. The authors
exploited the key advantages of PISA, such as the high local monomer concentration within
the formed nanoparticle cores linked to fast polymerization kinetics, as well as quantitative
conversions to limit the undesired NCA hydrolysis and allow for the construction of a
series of self-assembled PEG-b-PBLG and PEG-b-P(NBocLys) nanostructures. Interestingly,
elongated needle-like and worm-like micellar morphologies were obtained irrespective of
the targeted hydrophobic core-block length and solids content, highlighting the significance
of the secondary structure of the polypeptidic domains of the assemblies in directing
the extent of chain stretching and regulating the overall ROPISA behavior. The main
characteristics and applications of currently reported polypeptide- and polypeptoid-based
block copolymer nano-objects prepared by PISA are summarized in Table 3.

Table 3. Summary of corona- and core-forming blocks, reaction solvents, obtained morphologies, and applications of
polypeptide- and polypeptoid-based nanostructures prepared via PISA.

Corona-Forming Block Core-Forming Block PISA Solvent Morphologies 1 Application Ref.

PSar PHPMA Water S/W/V Nanoreactors/biomimicry [89]

PSar PHPMA Ethanol/water S Drug delivery [90]

PEG PPhe, PBLA THF S/V - [91]

PEG PBLG, P(NBocLys) aq. NaHCO3 W - [92]
1 Key: S—spherical micelles, W—worm-like micelles, V—vesicles.

5. Amino Acid-Based Nanostructures via PISA

Over recent years, a different approach to develop protein/peptide-mimicking syn-
thetic polymers and self-assembled nanostructures, involving the functionalization of
vinyl monomers and their corresponding polymers with various amino acid moieties,
has attracted particular research interest [21,93,94]. To date, the most commonly utilized
strategy encompasses the synthesis of amphiphilic side group-functionalized (co)polymers
from amino acid-containing (meth)acrylate/acrylamide-based monomers via a controlled
radical polymerization technique, such as ATRP [95,96] and RAFT polymerization [97,98],
followed by their self-assembly in aqueous media. Despite the fact that this class of poly-
mers does not adopt secondary structural motifs similar to those encountered in proteins
and (poly)peptides (i.e., α-helices or β-sheets), owing to the absence of a polyamide-based
backbone, they still possess the ability to undergo reversible conformational changes and
self-assembly in response to externally applied stimuli [99,100]. The inherent stimuli-
responsiveness of amino acid-based polymers and nanostructures, as well as their interac-
tion capabilities with metal ions and tunable physicochemical properties, have rendered
these biomimetic materials excellent candidates for drug delivery, catalysis, and biosensing
applications, among others [94,100].
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Contrary to the numerous post-polymerization self-assembly methodologies reported
thus far for fabrication of amino acid-containing block copolymer nano-objects, PISA
has only very recently emerged as an efficient process that enables direct access to such
“smart” nanomaterials. In an initial study, Ladmiral, Armes, and coworkers reported the
synthesis of water-soluble poly(L-cysteine methacrylate) (PCysMA) and poly(L-glutathione
methacrylate) (PGSHMA) macro-CTAs and their subsequent chain-extension via aqueous
RAFT-mediated dispersion PISA at 70 ◦C using HPMA as the core-forming monomer [101].
A series of PCysMA-b-PHPMA, PGSHMA-b-PHPMA, and (1:9 PCysMA/PGSHMA +
PGMA)-b-PHPMA diblock copolymer nano-objects were obtained upon varying both the
DP of the solvophobic PHPMA block and the total solids content in each case. Higher-
order morphologies, such as worm-like micelles and vesicles, could be accessed when
PCysMA or binary mixtures of PGMA with either PCysMA or PGSHMA were utilized
as the steric stabilizer blocks, whereas only kinetically trapped spherical micelles were
developed when using the PGSHMA macro-CTA alone owing to its anionic character.
Furthermore, the authors investigated the pH-dependent and thermoresponsive behavior
of the worm-like micelles, demonstrating that these nano-objects exhibited positive surface
charge at pH < 3.5 and negative coronal charge at pH > 3.5, while they were also able to
undergo reversible gelation–degelation on cooling below 4 ◦C due to a worm-to-sphere
morphological transition. It should be noted that the potential redox-responsive character
of these nano-objects could not be explored since the free thiol groups of Cys and GSH were
utilized as the reactive sites for the preparation of the respective methacrylate monomers
by thia-Michael addition.

In a similar manner, De and coworkers prepared diblock copolymer nano-assemblies
by RAFT-mediated dispersion polymerization of benzyl methacrylate (BzMA) in methanol
at 65 ◦C using Boc-protected poly(L-alanine methacryloyloxyethyl ester) (PBLAEMA) or
poly(L-leucine methacryloyloxyethyl ester) (PBLEMA) macro-CTAs in two separate stud-
ies [102,103]. In both instances, a diverse set of pure nano-object morphologies, spanning
from spherical and worm-like micelles to long fibers and polymersomes, was obtained by
systematically varying the length of the core-forming PBzMA block. In the former case, the
thermo-reversible gelation–degelation behavior of the formed soft PBLAEMA-stabilized
worm gels was also studied, which was shown to be accompanied by a worm-to-sphere
transition upon heating the solution from 25 to 65 ◦C. Moreover, the chiral nature of the
nanostructures was demonstrated by circular dichroism spectroscopy, whereas in situ
Boc-group deprotection of PBLAEMA units of vesicular formulations resulted in their
transition towards lower-order morphologies (i.e., worm-like micelles or spheres) in both
alcoholic and acidic aqueous media due to the introduction of cationic primary ammonium
moieties within the corona of the particles and the subsequent increase of their interfacial
curvature (Figure 6).

In a later report, Chen et al. constructed temperature- and pH-responsive multicom-
partment block copolymer nanoparticles by RAFT-mediated dispersion PISA, utilizing
a dual poly(N-acryloylsarcosine methyl ester) (PNASME)/poly(4-vinylpyridine) (P4VP)
macro-CTA system for chain-extension of a core-forming styrene monomer in a 80:20
w/w ethanol/water mixture at 70 ◦C [104]. Following PISA, the developed AB/CB-type
spherical nanostructures were successfully transferred into aqueous milieu via dialysis,
whilst maintaining their initial size and shape. Upon exploiting the thermo-sensitive
character of PNASME, the ability of its terminal ester groups to be hydrolyzed in alkaline
aqueous solutions to yield poly(N-acryloylsarcosine) (PNAS), as well as the pH-dependent
properties of P4VP, multicompartment nano-objects with tunable size and surface topology
were accessed. In particular, fully extended P4VP and PNASME coronal chains were
formed in acidic solutions (pH = 2.0) at room temperature, whereas these stabilizing
blocks transitioned into their collapsed state at near-neutral pH and elevated temperatures
(85 ◦C), respectively. Combinations of pH and temperature variations, along with ester
group hydrolysis of PNASME for PNAS synthesis, resulted in a wide range of core-shell
nanoparticles with intriguing microdomain characteristics.
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mediated PISA and subsequent Boc-group cleavage for the preparation of respective PLAEMA-
b-PBzMA nanostructures. (B) Representative SEM images of PBLAEMA-b-PBzMA vesicles and
their corresponding lower-order nano-object morphologies in methanol and water, following in situ
Boc-group deprotection of PBLAEMA, along with a schematic illustration of the process. Reproduced
with permission from reference [102]. Copyright 2015 Royal Society of Chemistry.

More recently, Zhao et al. prepared thermoresponsive polyion complex (PIC) nanostructures
through polymerization-induced electrostatic self-assembly (PIESA) of a cationic arginine-like
core-forming monomer, namely, N-(2-guanidinoethyl)methacrylamide (GEMA), and simultane-
ous non-covalent structural locking with anionic poly(2-acrylamido-2-methylpropanesulfonic
acid) (PAMPS) by H-bonding [105]. Visible light-initiated RAFT polymerization of GEMA
was performed in an acidic aqueous solution of PAMPS at 25 ◦C using a hydrophilic
poly(N-2-hydroxypropylmethacrylamide) (PHPMAm) macro-CTA as the corona-forming
block. Amphiphilic PIC-based block copolymer nano-objects were developed thatevolved
from spheres to worms with an increasing DP of PGEMA. In addition, the authors explored
the heating-induced morphological transition of originally prepared nano-objects toward
higher-order morphologies, attributed to the dehydration of PHPMAm and increased
H-bonding interactions with PGEMA units. This process was shown to be reversible in
the case of spherical micelles, formed at PGEMA DP ≤ 30, which were able to evolve
to cylindrical structures upon heating to 70 ◦C, whereas an irreversible worm-to-vesicle
transition occurred at a higher PGEMA DP owing to increased electrostatic complexa-
tion and effective structural locking. Interestingly, the formation of structurally locked
assemblies was further demonstrated by conducting the same PIESA methodology at
different reaction temperatures, while always targeting the same core-block DP, revealing
that stable higher-order morphologies, such as jellyfish and vesicles, could be obtained by
progressively increasing the temperature at which PIESA was conducted.
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6. Conclusions and Outlook

In recent years, PISA has attracted immense research interest for the development
of self-assembled block copolymer nanostructures for various applications owing to its
numerous advantages over conventional self-assembly techniques. Consequently, this has
also resulted in the emergence of PISA as a highly efficient platform for the preparation
of advanced protein-inspired nanomaterials with biotechnological and biomedical scope.
In particular, an increasing number of PISA studies have focused on protein–polymer
hybrid nano-objects, whereby hydrophilic proteins/enzymes are typically functionalized
with radical polymerization-initiating moieties, followed by their chain-extension with
selected monomers known to undergo PISA in aqueous media. Expectedly, only kinet-
ically trapped spherical particles were accessed in the majority of these reports due to
the large molecular weight of protein-based stabilizer blocks that limit morphological
evolution towards higher-order assemblies. Furthermore, PISA has been exploited for the
formulation of peptide–polymer hybrid nanostructures of common morphologies, such
as spheres, worms and vesicles, but also assemblies of higher complexity, such as den-
dritic fibers. In these examples, both corona- and core-forming macromonomers bearing
oligopeptide functionalities were prepared through solid-phase peptide synthesis and
subsequent modification with (meth)acrylamide or norbornene groups for their use in
RAFT- or ROMP-mediated PISA, respectively. Importantly, there also exist a limited num-
ber of reports on protein-mimicking block copolymer nano-objects prepared via PISA of
purely synthetic polypeptide- and amino acid-based amphiphiles. In the former case, the
inherent limitations associated with ROP, such as the stringent reaction conditions and
specialty equipment required, need to be overcome in future studies in order to increase
the practicality of ROPISA as a viable strategy for the synthesis of polypept(o)ide-based
nanoparticles. In the latter instance, existing reports were centered on investigating the
stimuli-responsiveness of amino acid-containing assemblies on a more fundamental level
with no real-time applications shown for these nanomaterials. Ultimately, it is evident that
the full potential of PISA for construction of protein-, (poly)peptide-, and amino acid-based
nanostructures has yet to be explored. We believe that future research in this field will
primarily focus on understanding the effect of secondary structure-adopting (poly)peptides
on the chain packing and morphology of obtained nano-objects, as well as engineering
stimuli-responsive block copolymer nanoparticles with “on-demand” shape-shifting and
cargo-release capabilities for therapeutic applications. Moreover, future in vitro and in vivo
investigations utilizing such nanomaterials are expected to reveal their biocompatible and
biodegradable character, whilst industrially viable scale-up procedures will need to be
developed with the end target of their commercial and clinical use.
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