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Abstract: For Er-doped fiber laser, for the first time, we demonstrate both experimentally 

and theoretically a novel mechanism of harmonic mode-locking based on the electrostriction 

effect leading to excitation of the torsional acoustic modes in the transverse section of the 
laser.  The exited torsional acoustic modes modulate the fiber birefringence that results in 

synchronization of oscillations at the harmonic modes and the linewidth narrowing with the 

increased signal-to-noise ratio of 30 dB. By adjusting the in-cavity birefringence based on 

tuning the polarization controller, we enable the selection of the harmonic mode to be 

stabilized.  

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing 

Agreement 

1. INTRODUCTION  

Ultrafast lasers with a high repetition rate constitute a versatile technology towards producing 

ultra-stable femtosecond pulse trains (optical frequency combs having fractional uncertainties 

of 10-18 and lower [1-9]) with characteristics required in metrology, high-resolution 
spectroscopy, microwave photonics, remote sensing, astronomy, and telecommunications [6-

9].  Typically, the repetition rate of such lasers is limited by hundreds of MHz that is imposed 

by the difficulty of shortening the laser cavity [1-9].  

The selective excitation of the harmonics of the fundamental frequency - harmonic mode-

locking (HML) - is a practical pathway to increase the repetition rate hundred times through 

the use of resonance with the acoustic phonons, four-wave mixing, pattern-forming 

modulation instability or/and through the insertion of a linear component featuring a periodic 

spectral transfer function [4, 5, 10-16].  

 

Fig.1 Acoustic modes in optical fiber core: a) radial mode R0m; b) torsional-radial mode TR2m.  

   The most attractive technique of a stable HML is based on the resonance of a harmonic 
of the fundamental repetition rate with the frequency of a transverse acoustic wave and leads 

to tunable mode-locking with repetition rates up to a few GHz while narrowing the RF line 

width down to 100 Hz [4, 5, 10, 11]. The HML originates from the multi-pulsing caused by 

the laser’s gain bandwidth constraint. The gain bandwidth limits the growth of the pulse 
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spectral bandwidth with increased pump power. As a result, many pulses emerge, and the 

energy is shared between pulses and pulses’ bandwidths satisfy the gain bandwidth constrain 

[5, 17]. The pulses propagating in the cavity excite the radial R0m and torsional-radial TR2m 

acoustic modes through perturbations of the fiber core refractive index and the fiber 

birefringence (Fig.1 (a), (b), [18-20]).  By adjustment of the in-cavity linear and circular 
birefringence with the help of in-cavity polarization controller, it was demonstrated an 

opportunity to control the interaction between the neighbored pulses and acoustic modes from 

attractive to repulsive forces and so the dynamics - from the vector soliton rain to HML 

driven by TR2m acoustic modes  [11, 21].   
   Recently,  for the ring fiber resonator without a saturable absorber, it a mode-locking 

was demonstrated based on the mechanism of vector resonance multimode instability 
(VRMI) [22]. Increased birefringence strength causes spatial modulation of the cavity 
parameters (with a period related to the birefringence beat length) and leads through the 
Faraday instability to a parametric resonance at the fundamental frequency that acting as the 
active mode-locking [22]. For the case of harmonic mode-locking, the TR2m modes perturb 
mainly the fiber birefringence only, and so acoustically induced oscillations of the fiber 
birefringence are relatively weak [18, 19]. Therefore, there is a challenging task of revealing 
the interplay between VRMI and TR2m acoustic modes-based perturbation towards the 
stabilization of HML.       

In this paper, for the first time, we demonstrate theoretically and experimentally a new 

mechanism of HML that doesn’t require the presence of a saturable absorber or Kerr-effect-

based nonlinear polarization rotation. Based on the vector model of MLFL developed by 

Sergeyev [22, 23] and results on fundamental frequency mode-locking based on VRMI [22], 

we reveal a novel vector HML mechanism that is based on an interplay of VRMI with 

birefringence distortions caused by TR2m. For the actual setup, the resonance occurred for the 

24th, 38th, and 45th harmonics and resulted in linewidth narrowing below the values 

previously reported by Grudinin and Gray [10].   

2. EXPERIMENTAL SETUP AND METHODS  

The experimental setup is shown in Fig.2 (a). The cavity includes 15.8 m of standard 

telecommunication fiber (SMF28) and 75 cm of Liekki Er80-8/125 gain fiber (EDF) with the 

anomalous dispersion of -20 fs2/mm and modal field diameter of 9.5 µm. The length of the 

whole cavity, taking into account the physical length of all components, was 17 meters. The 

pump diode (FOL14xx series with isolator) has the maximum optical power up to 250 mW, 

which was measured after the polarization controller POC1, optical isolator (not shown in 

Fig.2 (a)) and wavelength division multiplexer (WDM). A polarization controller POC1 and 

an optical isolator for 1560 nm were placed between the diode output and the WDM.  The 

isolator was used to improve the laser diode stability. The output coupler 80:20 was used to 

direct the light out of the cavity. In the first experiment, the laser was assembled with an 

optical isolator with 25 dB attenuation. In this configuration, it was impossible to obtain 
periodic pulsations, and the output exhibited noisy behavior. After installation of an isolator 

with 51 dB attenuation, the laser was successfully mode-locked. The backpropagated 

radiation was controlled through the auxiliary port (not shown in Fig.2 (a)), and the level of 

the backscattered power was measured to be -49 dB in comparison with the power measured 

from the port labeled with "OUTPUT C". The threshold was found to be close to 36 mW of 

the pump power using linear extrapolation of the signal versus pump power curve to zero 

value of the signal power, as illustrated in Fig.2 (b). To characterize the polarization laser 

dynamics at the time scales of  s – 20 ms (averaging over 10 roundtrips), we used a 

polarimeter (IPM5300, Thorlabs) to record the normalized Stokes parameters s1, s2, s3, the 

total output power S0, and degree of polarization (DOP). Those are related to the output 

powers of two linearly cross-polarized SOPs, Ix and Iy, and to the phase difference between 

them ∆ϕ [11, 22-24]  



𝑆0 = 𝐼𝑥 + 𝐼𝑦 , 𝑆1 = 𝐼𝑥 − 𝐼𝑦 , 𝑆2 = 2√𝐼𝑥𝐼𝑦 cos 𝜙, 𝑆3 = 2√𝐼𝑥𝐼𝑦 sin 𝜙,    

𝑠𝑖 = 𝑆𝑖 √𝑆1
2 + 𝑆2

2 + 𝑆3
2⁄ , (𝑖 = 1,2,3), 𝐷𝑂𝑃 = √𝑆1

2 + 𝑆2
2 + 𝑆3

2 𝑆0⁄ ,                           (1) 

As seen there, the absence of a polarizer and the presence of only one polarization controller 

inside the laser cavity, together with low pump powers (less than 200 mW), rule out the 

possibility of mode-locking through nonlinear polarization rotation. 

 

Fig.2. Operation of the laser at the fundamental frequency a) Erbium-doped fiber laser. 

EDF: erbium fiber; LD: l480 nm laser diode for the pump; POC1 and POC2: polarization 

controllers, OISO: optical isolator; WDM: wavelength division multiplexer (WDM), OUTPUT 

C: 80:20 output coupler. b) Average laser output power versus pump power; INSET:  the RF 

linewidth versus pump power (370 Hz at 220 mW pump power). The rectangle indicates the 

interval where unstable mode-locking patterns have been observed. c) The optical spectrum; 

inset: the same spectra plotted using a linear scale: 0.2 nm is a bandwidth at 3 dB level. d) The 

train of pulses at the fundamental frequency, INSET: time-resolved pulse. 

3. Vector model of Er-doped fiber laser 

To understand the mechanism of vector mode-locking caused by stable self-mode locking and 

tunability of harmonic mode-locking and linewidth narrowing, we developed a new vector 

model of EDFLs as described in the section Appendix. The model accounts for the linear and 

circular birefringence and fast- and slow axis modulation caused by TR2m   acoustic modes. 

Without accounting for the gain dynamics, the SOP evolution in terms of the Stokes vector S 

and number of roundtrips caused by the interplay of the factors mentioned above can be 

described as follows: 

𝒅 𝑺 𝒅𝒕⁄ = 𝑹 ∙ 𝑾 × 𝑺,                                   (2) 

Here time is normalized to the roundtrip time, 𝑾 = (𝛽𝐿 , 0, 𝛽𝑐)𝑇  is the birefringence vector, 

𝛽𝐿 (𝐶) = 2𝜋 𝐿𝑏𝐿(𝑏𝐶)⁄  is the linear (circular) birefringence strength, 𝐿𝑏𝐿(𝑏𝐶)  is the beat length 

for linear (circular) birefringence. The matrix 𝑹 is the 3x3 matrix that defines the rotation of 

the birefringence vector around axis OS3 caused by TR2m excitation [20, 24]: 

a)                                              b)                                              

c)                                              
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𝑹 = [
𝐜𝐨𝐬 (𝜻(𝒕)) −𝐬𝐢𝐧 (𝜻(𝒕)) 𝟎

𝐬𝐢𝐧 (𝜻(𝒕)) 𝐜𝐨𝐬 (𝜻(𝒕)) 𝟎

𝟎 𝟎 𝟏

],                    (3) 

where 𝜁(𝑡) = 𝐴0 cos(2𝜋Ω𝑡). Here 𝜁(𝑡) is the angle of the birefringence vector rotation,  𝐴0 is 

the amplitude of rotation, and  Ω is the frequency of oscillations at the TR2m acoustic mode. In 

Eqs. 2 and 3, the contribution of TR2m was accounting for only in the birefringence 

modulation context.  The modulation of the refractive index was neglected.  

Previously it was illustrated [22] that the linear birefringence tuning results in the vector 

resonance multimode instability in a fiber laser. By adjusting the in-cavity and the pump 

wave polarization controllers, we were able to increase the birefringence strength, leading to 

the generation of two satellite lines around the q-harmonic frequency. When the beat length 

equals the cavity length, the frequencies of the satellites for q-harmonic were in resonance 

with the q+1-and q-1-harmonic that results in longitudinal modes synchronization. 

The complexity of the vector model (see the Appendix) exceeds the complexity of any 

known scalar or vector models of fiber lasers considered elsewhere.  As follows from [22], 
the linear stability analysis even for the simplified system without accounting for the circular 

birefringence and TR2m acoustic modes results in the number of eigenfrequencies with the 

ratio (with respect to the fundamental frequency f) of 1:10-1:10-2:10-3:10-4. It leads to necessity 

accounting for many time scales, and so vast computation resources will be required. Given 

the complexity of the problem, we introduced a few approximations to reveal the effect of the 

TR2m on the modulation of the output power at frequency Ω , resulting in HML if the 

frequency  Ω  coincides with the frequency of the harmonic q.  First, though the TR2m 

modulates all modes that result in HML stabilization shown in Fig. 3, in the theoretical 

analysis, we accounted for the only interplay of the linear and circular birefringence with the 

TR2m acoustic mode-based modulation for harmonic 𝑞 = 0 in terms of the ability of excitation 
of the output power oscillations at a frequency of TR2m  mode. Next, we combined Eqs. 2 and 

3 with our vector model of Er-doped fiber laser [22, 23]. 

4. RESULTS 

A. Experimental results 

The output power versus pump power, the emission spectrum, and the pulse train are shown 

in Fig.2 (b) to 2 (d). When the pump power exceeded 48 mW, stable mode-locked pulses 

could be observed on the oscilloscope. As seen in Fig.2 (d), the observed pulse train has the 

fundamental repetition rate of 12.21 MHz. The mean value of the RF linewidth at the 

fundamental frequency at the 3-dB level was only 370 Hz (see INSET of Fig.2 (b) and Table 

1 in Appendix). This value is much less than typical values of 10 KHz found for mode-locked 

lasers with a saturable absorber [1-9]. The transient time for stabilization of this regime varies 
from a fraction of a second to few minutes. The pulse trace with 20 ps pulse width is shown in 

INSET of Figure 2d (Details of pulse width measurements are found in Appendix). The 

signal-to-noise ratio (SNR) of four (6 dB), as shown in Fig.2 (d), indicates the partial mode-

locking. The most stable patterns observed in our experiments were at the fundamental 

frequency of 12.21 MHz and its high-order harmonics at frequencies of 293.16 MHz, 464.17 

MHz, and 549.7 MHz (Table I in Appendix). Previously it was shown that excitation of 

oscillations at such frequencies could be caused by the resonance structure of the spectrum of 

acoustic phonons excited by this comb through the electrostriction effect [4, 5, 10, 11].  

The dynamics of the harmonic mode-locking at 293.16 MHz is illustrated in Figs. 3 (a)-

(d). A segment of the RF spectra in the mode-locked regime is shown in Fig. 3 (a). The lines 

"A","B" and "C" correspond to the 23rd, 24th, and 25th harmonics of the fundamental 

frequency.  To understand the origin of the satellite lines, we changed birefringence in the 
laser cavity by turning the knob of the polarization controller POC2 and kept the pump power 

fixed at 160 mW. While the angle of the knob was tuned between 18 positions, the satellites 



of the adjacent lines “A” and “C” were moving closer to the line labeled "B" as shown in Fig. 

3 (a). To get insight into the linewidth compression, we show temporal traces and RF spectra 

for the last four steps (labeled with (15), (16), (17), and (18)) in Figs. 3 (b) and 3 (c), 

respectively. For position 15 in Figs. 3 (b) and 3 (c), the distance between the satellites is 

slightly less than 3 MHz and corresponds to the situation when the satellites completely 
vanish. The RF line corresponding to the fundamental comb frequency has changed in SNR 

from 6 dB to 30 dB. In position 16, the distance between satellites was diminished. In this 

position, the noise demonstrated a periodic pattern, and the RF spectrum became broader and 

had "three humps". After the knob of POC2 hs been turned again (position 17), the 

oscilloscope traces (Fig. 3 (b), (position 17)) showed regularly modulated oscillations at 

293.16 MHz and the bias period close to 20 ns (50 MHz). The RF spectrum now exhibited 

multiple peaks. 

 

Fig.3. Acousto-optical polarization-dependent locking of a high harmonics a) RF comb 

showing 24th harmonic along with satellites of 23rd, 24th, and 25th harmonics tuning with the 

help of in-cavity polarization controller POC2. b) Emergence of the 293.16 MHz pulse train 

for the positions 15, 16, 17, and 18 of the POC2. c) Evolution of the RF spectrum of the 

293.16 MHz line for the positions 15, 16, 17, and 18 of the POC2. d) The output SOPs for the 

POC2 positions 15 and 18 (measurements resolution is 1 s).  

Finally, after the last rotation of the knob (position 18), the modulation disappeared, and 

the regular oscillations pattern at the frequency of 293.16 MHz became visible. The RF 

spectrum showed a unique narrow resonance line with 60 dB SNR. The noise level was at -
120 dB (limit of the RF analyzer) as shown in Fig.3 (d). SOP is locked for POC2 positions 15 

and 18 that corresponds to the self-oscillation at the fundamental frequency (position 15) and 

harmonic mode-locking (position 18). The adjustment of polarization controller POC2 from 

position 15 to position 18 changes the linear and circular birefringence in the cavity due to 

induced fiber squeezing and twist [24]. As shown in Fig.3 (d), increasing DOP from 62 % 

a)                                              

c)                                              

b)                                              

d)                                              

POC2 pos. 15: 

DOP=62%

POC2 pos.18: 

DOP=86%



(position 15) to 86% (position 18) indicates SOP variations suppression and so more stable 

operation for 18th position as compared to the 15th position. In addition to these results, we 

have observed o locking at different acoustic frequencies, as shown in Table 1 of the 

Appendix B. The tuning between different harmonics was performed by adjusting POC2. 

B. Theoretical results 

The results of the theoretical analysis are shown in Fig. 4 (a-i). As follows from Figs. 4 (a), 

(b); (d), (e), the output power I and Ix, Iy are oscillating at frequency 𝜔 = √𝛽𝐿
2 + 𝛽𝑐

2  [24], 

whereas oscillations at the frequency Ω have almost been suppressed. Only for the case when 

the frequency Ω = 14π is a multiple of frequency 𝜔 = 2𝜋, the oscillations at the frequency 𝜔 

disappear, and the output power is modulated at frequency Ω.  This is like the experimental 

data shown in Fig. 3, where HML is stabilized only when 𝜔 = 2𝜋, i.e. when the satellites’ 

frequencies are matching the frequency spacing between harmonics.   The HML mechanism 

looks like the vector mode-locking at the fundamental frequency [22]. By adjusting the in-

cavity polarization controller POC2, we were able to increase the circular birefringence 

strength that leads to the generation of two satellite lines around the q=0 harmonic frequency. 

When the birefringence-based modulation frequency 𝜔  approaches the fundamental 

frequency, the modulation of the harmonic at the frequency 𝜔  disappears, and TR2m is 

activation results in modulation of q=0 cavity mode with the frequency of TR2m. The 

amplitude of the output power (Fig. 4 g) along with the Stokes parameters shown was small, 

and so SOP was locked (Fig. 4 (i) ).  

 

Fig. 4. Results of the numerical modeling. a), d), g) The output power vs time for two linearly 

cross-polarized SOPs Ix  (blue line) and Iy (black) and total power I=Ix+Iy(red);  b), e), h) 

Spectrum of the oscillations; c), f), i) trajectories on the Poincare sphere.  

Parameters: time is normalized to the roundtrip time, frequency Ω  – to the fundamental  

frequency; birefringence strengths  𝛽𝐿 ,  𝛽𝐶   - to the fiber length;  a)-i) Ω = 7, 𝐴0 =

0.1; ellipticity of the pump wave = a)-c) 𝛽𝐿 = 2𝜋 √5⁄ , 𝛽𝐶 = 0; d)-f)  𝛽𝐿 = 2𝜋 √5⁄ , 𝛽𝐶 =

2𝜋√2 √5⁄ ; g)-i)  𝛽𝐿 = 2𝜋 √5⁄ , 𝛽𝐶 = 2𝜋√4 √5⁄ . The other parameters are found in Appendix 

C.  
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The trajectories on the Poincare sphere shown in Fig. 4 (c) and (f) are different from the 

experimentally observed (Fig. 3 (d)). However, the DOP=62 % in Fig. 3 (d) indicates that the 

SOP evolves at the time scale faster than the polarimeter resolution of 1 s and, after 

averaging over 10 roundtrips, can shrink to the dot at the Poincare sphere [11].  By using a 

low-pass filter with the Hanning window (Transmission spectrum 𝑇(𝑓) =
(1 + 𝑐𝑜𝑠(𝜋𝑓 𝑓𝑐⁄ )) 2,  𝑓 ≤ 𝑓𝑐⁄ = 1𝑀𝐻𝑧) we have  processed time domain waveforms shown in 

Fig.4 (c) [25]. As a result, the SOP in the form of circle was transformed to the dot with 
DOP=61.7 % that is close to the experimental results.  The suppression of the oscillations at 

the frequency  indicates that the linewidth is narrowing due to oscillations only at the 

frequency  (Fig. 4 h)).   

 

Fig. 5 Results of the numerical modeling. The difference as compared to the Fig. 4 (g-i) is in 

the increased ellipticity of the pump wave =  

While ellipticity of the pump wave increasing from = to = the oscillations at the 

frequency   were persisting as shown in Fig. 5 (a-c).  The increased ellipticity resulted in the 

reduced coupling of the orthogonal SOPs and so prevented synchronization and so 

suppression of the oscillations at frequency   

 We highlight that the analysis of HML based on the excitation of TR2m   provides just a 

qualitative approach to the linewidth suppression. The presence of oscillations of the output 

power at the frequency of TR2m   mode and cancelation of the oscillations at the frequency 

related to the linear and circular birefringence results in narrowing the RF line and increased 

SNR of 30 dB. Quantification of the linewidth suppression at the fundamental and 293.16 

MHz, 464.17 MHz, 549.7 MHz harmonic frequencies would require an improved jitter model 

that accounts for the state of polarization, dispersion, and contribution of phonons excited by 

this comb through the electrostriction effect and it lies beyond the scope of this paper.  

5. CONCLUSION 
   In conclusion, we demonstrated a new vector HML mode-locking mechanism 

experimentally confirmed for an Er-doped fiber ring cavity. By adjusting the in-cavity 

polarization controller and the pump power, we could switch the stable fundamental mode 

operation at 12.21 MHz to the harmonic mode-locked operation at 293.16 MH 464.17 MHz 

and 549.7 MHz along with linewidth narrowing from thousands of Hz to a few Hz followed 

by 30 dB increasing of the SNR. To explain stable HML mode operation and the linewidth 

narrowing with increased birefringence strength, we developed a new vector model that 

accounts for the interplay of linear and circular birefringence with birefringence modulation 

caused by excitation of the radial-torsional acoustic mode TR2m.  In the future extension of 

the vector model given in the section Appendix, we will develop a vector model of jitter for 

mode-locked fiber lasers to quantify the linewidth narrowing and repetition rate tunability. 

6. APPENDIX  

A. Pulse measurement technique 



The pulse duration was too large to be measured with an auto-correlator. To estimate the 

pulse parameters, we used an ultrafast photodetector XPDV232OR with a bandwidth of 50 

GHz. This detector in turn was connected to DSO-X93204A oscilloscope with a bandwidth of 

32GHz. The pulse width of 20 ps was obtained using the oscilloscope trace and the 

interpolation software supplied by Agilent. This algorithm gave us the effective resolution of 
781 fs/point. The pulse energy was estimated to be 1.4 nJ. The time-bandwidth product 

(TBWP) K was calculated to be 0.5 using the formula 𝐾 = (𝑐𝑇Δ𝜆) 𝜆2⁄   , where T is the pulse 

duration,  is the width of the optical spectrum and is the central optical wavelength. Since the 

TBWP for Gaussian pulse K=0.441, we have assumed that pulses have are slightly chirped. 

B. Harmonic frequencies  

Table 1 Frequencies observed in the experiments 

Frequency, 

MHz. 

RF peak 

width, Hz. 

Temporal 

jitter, ppm3 

Long term 

drift 

12,21 [210, 370, 530] 1,2 40 Yes 

97.7 Unstable Unstable - 

207.6 Unstable Unstable - 

293.16 [9, 38, 155]1 1.4 Yes 

464.17 [22, 38, 150]1 0.9 Yes 

549.7 [1, 13, 97]1 0.5 Yes 

842.5  Unstable Unstable - 

903.5 Unstable Unstable - 

1Asymmetric interval of confidence 0. 95 [min, mean, max] 

2At pump power of 220mW 

3 Parts per million with respect to the main value of frequency. The jitter has been 
quantified using ARIMA (0, 1, 0) (random walk with drift) model with the interval of confidence 0.95. 

 

C. Vector model of Er-doped fiber laser 

Evolution of the laser SOPs and population of the first excited level in Er3+ doped active 

medium was modeled using the following equations derived from the vector theory developed 

by Sergeyev and co-workers [25, 26]: 

 

𝑑𝑆0

𝑑𝑡
= (

2𝛼1𝑓1

1 + 𝛥2
− 2𝛼2) 𝑆0 +

2𝛼1𝑓2

1 + 𝛥2
𝑆1 +

2𝛼1𝑓3

1 + 𝛥2
𝑆2, 

𝑑𝑆1

𝑑𝑡
= 𝛾𝑆2𝑆3 +

2𝛼1𝑓2

1 + 𝛥2
𝑆0 + (

2𝛼1𝑓1

1 + 𝛥2
− 2𝛼2) 𝑆1 − 𝛽𝑐𝑆2 − (

2𝛼1𝑓3𝛥

1 + 𝛥2
− 𝛽𝐿𝑠𝑖𝑛(𝜻(𝒕))) 𝑆3 + 𝜎1, 

𝑑𝑆2

𝑑𝑡
= −𝛾𝑆1𝑆3 +

2𝛼1𝑓3

1 + 𝛥2
𝑆0 + 𝛽𝑐𝑆1 + (

2𝛼1𝑓1

1 + 𝛥2
− 2𝛼2) 𝑆2 + (

2𝛼1𝑓2𝛥

1 + 𝛥2
− 𝛽𝐿𝑐𝑜𝑠(𝜻(𝒕))) 𝑆3

+ 𝜎2, 

𝑑𝑆3

𝑑𝑡
= (

2𝛼1𝛥𝑓3

1 + 𝛥2
− 𝛽𝐿𝑠𝑖𝑛(𝜻(𝒕))) 𝑆1 − (

2𝛼1𝛥𝑓2

1 + 𝛥2
− 𝛽𝐿𝑐𝑜𝑠(𝜻(𝒕))) 𝑆2 + (

2𝛼1𝑓1

1 + 𝛥2
− 2𝛼2) 𝑆3

+ 𝜎3, 
𝑑𝑓1

𝑑𝑡
= 𝜀 [

(𝜒𝑠 − 1)𝐼𝑝

2
− 1 − (1 +

𝐼𝑝𝜒𝑝

2
+ 𝑑1𝑆0) 𝑓1 − (𝑑1𝑆1 +

𝐼𝑝𝜒𝑝

2

(1 − 𝛿2)

(1 + 𝛿2)
) 𝑓2 − 𝑑1𝑆2𝑓3] , 



𝑑𝑓2

𝑑𝑡
= 𝜀 [

(1 − 𝛿2)

(1 + 𝛿2)

𝐼𝑝(𝜒𝑠 − 1)

4
− (

𝐼𝑝𝜒𝑝

2
+ 1 + 𝑑1𝑆0) 𝑓2 − (

(1 − 𝛿2)

(1 + 𝛿2)

𝐼𝑝𝜒𝑝

2
+ 𝑑1𝑆1)

𝑓1

2
] , 

𝑑𝑓3

𝑑𝑡
= −𝜀 [

𝑑1𝑆2𝑓1

2
+ (

𝐼𝑝𝜒𝑝

2
+ 1 + 𝑑1𝑆0) 𝑓3].                                                                                     (C1) 

Here time and length are normalized to the round trip  and cavity length, respectively; Si 

(i=0,1,2,3) are the Stokes parameters (S0 is the output power, pump and lasing powers are 
normalized to the corresponding saturation powers); 𝛽

𝐿 (𝐶)
= 2𝜋 𝐿𝑏𝐿(𝑏𝐶)⁄  is the linear 

(circular) birefringence, 𝐿𝑏𝐿(𝑏𝐶)  is the linear (circular) birefringence beat length; 𝜁(𝑡) =
𝐴0 cos(2𝜋Ω𝑡). Here 𝜁(𝑡) is the angle of the birefringence vector rotation,  𝐴0 is the amplitude 

of rotation, and  Ωis the frequency of oscillations at the TR2m acoustic mode; α1 is the total 

absorption of erbium ions at the lasing wavelength, α2 is the total insertion losses in the 

cavity; δ is the ellipticity of the pump wave, ε=R/Er is the ratio of the round trip time R to 

the lifetime of erbium ions at the first excited level Er; p,s=(a
(s,p)+ e

(s,p))/a
(s,p),(a

(s,p) and 

e
(s,p)are absorption and emission cross-sections at the lasing (s) and pump (p) wavelengths); 

Δ is the detuning of the lasing wavelength with respect to the maximum of the gain spectrum 

(normalized to the gain spectral width); 𝑑1 = 𝜒𝑠 𝜋(1 + Δ2)⁄ ; i are Stokes parameters of the 

injected −correlated stochastic signal: 

〈𝜎𝑖(𝑡)〉𝑡 = 0, 〈𝜎𝑖(𝑡)𝜎𝑗(𝑡 − 𝜏)〉𝑡 = Σ2𝛿𝑖,𝑗𝛿(𝜏),     𝛿𝑖,𝑗 = {
1, 𝑖 = 𝑗,
0 𝑖 ≠ 𝑗.

 𝛿(𝜏) = {
∞, 𝜏 = 0,
0 𝜏 ≠ 0.

                    

(C2) 

Here 𝛿𝑖,𝑗 is the Kronecker symbol, () is the Dirac function, 2 = 1/c, c is the correlation 

time.  

   Eqs. (C1) have been derived under approximation that the dipole moments of the absorption 
and emission transitions for erbium-doped silica are located in the plane that is orthogonal to 

the direction of the light propagation. This results in the angular distribution of the excited 

ions n(), which can be expanded into a Fourier series as follows: 

𝑛(𝜃) =
𝑛0

2
+ ∑ 𝑛1𝑘 𝑐𝑜𝑠(𝑘𝜃)

∞

𝑘=1

+ ∑ 𝑛2𝑘 𝑠𝑖𝑛(𝑘𝜃)

∞

𝑘=1

, 

𝑓1 = (𝜒
𝑛0

2
− 1) + 𝜒

𝑛12

2
, 𝑓2 = (𝜒

𝑛0

2
− 1) − 𝜒

𝑛12

2
, 𝑓3 = 𝜒

𝑛22

2
.                                      (C3) 

Eqs. (C3) means an approximation application where the dipole moments of the absorption 

and emission transitions for Er-doped silica are located in the plane orthogonal to the 

direction of the light propagation [25, 27]. In contrast to a more general approximation with 

3D orientation distribution of the dipole orientations [28, 29], this approximation results in 

the finite dimension system presented by Eqs. (C1) where only n0, n12, and n21 components 
contribute to the laser dynamics.  

Unlike the other vector models, the vector model in a more simple form with 

approximations considered in our previous publications [22], [23], [25], [26] is justified by 

experimental data on the mode-locked laser polarization dynamics at the time scales from one 

round trip to thousands of round trips. The main obstacle to use our model with including fast 

(pulse width) and slow (round trips) time scales have been mentioned in our previous 

publication related to VRMI [22].  

   To obtain results shown in Figs. 4, we used the following parameters: a)-i) Ω = 7, 𝐴0 =

0.1; a)-c)  𝛽𝐿 = 2𝜋 √5⁄ , 𝛽𝐶 = 0 ; d)-f)  𝛽𝐿 = 2𝜋 √5⁄ , 𝛽𝐶 = 𝜋√2 √5⁄ ; g)-i)  𝛽𝐿 =

2𝜋 √5⁄ , 𝛽𝐶 = 𝜋√4 √5⁄ . The other parameters: a)-i) α1=21.5, α2=2.53, Ip=30,=0.5 

(elliptically polarized pump SOP)  =0.1, ε=10-4, p=1/0.75, s=2.3, =10-3.  
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