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applied to time-series data and provide valuable insight by forecasting the future values. The identification of the best

volatility technique is based on error measures. There is a plethora of error measures that provides decisions as to

whether a volatility model is suitable or not. However, error measures may provide contradictory results.

Applying two volatility models on a specific dataset, let us assume Model 1 and Model 2, based on the fact that the

best or the most suited volatility model cannot be determined. Therefore a methodology that provides a single measure

based on which volatility models are ranked, is needed. Using the data of IBM prices (yahoo.com) as explained in

Section 3, error measures for 198 volatility models are derived. Nevertheless, the problem that arises is that the best

volatility method cannot easily be determined.

Even though some error measures are frequently used more than others, it cannot be concluded that these error

measures are representative for all volatility models and for all data sets. A single aggregated measure can be deter-

mined if weights can be assigned to each error measure in order to rank volatility methods, nevertheless this ranking

would be a subjective one as by changing the weights on the error measures, different scores would be derived which

would eventually may lead to different rankings. In this paper a novel application of Slacks-Based Data Envelop-

ment Analysis (hereafter SBM - DEA) model is presented. With this SMB-DEA model, the volatility models are

ranked based on the efficiency score obtained from the linear programming. A comparison of the proposed method

is conducted with econometric approaches and the rankings are statistically analyzed. The efficiency scores of each

volatility model is subjected to a second stage analysis in order to examine which exogenous factors affect the score.

In the literature the ranking of forecasting models has been also examined with the use of Multi-Criteria Decision

Making (MCDA). However, the problem with the use of MCDA models is that these models require from the user(s)

to provide the rules based on which a criterion is better than another one by providing pairwise comparisons. In this

context, a group of experts could provide different pairwise comparisons from another panel of experts. This leads to

different rankings due to the fact of different subjective judgments. On the contrary, the model proposed in this paper

provides an objective score based on which the ranking of each technique/model is conducted.

The rest of the paper is organized as follows: in Section 2 the literature review is presented providing all the

relevant works in the field and background information. In Section 3, the methodology is presented providing an

introduction to classical DEA models in order to make a transition to the proposed model while in Section 4 the

case study demonstrates the applicability of the proposed method. This is followed by discussion of the results

and comparison with other statistical approaches in Section 5. In Section 6, the second stage analysis is presented,

including clustering analysis. Conclusions and direction for future directions are given in Section 7.

2. Literature review

Prioritizing or ranking forecasting models based on one or more criteria has been examined in the literature [1].

Duong (1988) [2], has applied Analytical Hierarchy Process (AHP) in order to prioritize forecasting models based

on AIC (Akaike Information Criterion), MS ES (Mean Forecast Squared Error one - step ahead), MAXE (Maximum

2
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Forecast Error one - step ahead), MS EL Mean Forecast Squared Error 10 or 11 - step ahead) and MS E (Average

Mean Squared Forecast error, from 1 to 11 steps). Decision based models have also been applied for the evaluation

of forecasting models based on decision makers and agents [3]. However applying a MDCM methodology like

AHP would result in different rankings if the pairwise comparison matrix is constructed from another set of decision

maker(s). Accuracy measures are the ones to be used as a means of comparing forecasting models and indicated their

importance [4]. A comparison of the forecasting models has also been conducted based on a variety of criteria; experts

provided their insight for forecasting models based on accuracy measures and ease of use. Results demonstrate that

researchers, from the group of experts, rated higher the accuracy component in comparison to ease of use. On the

contrary, decision makers consider higher the ease of use of each forecasting technique rather than the accuracy [5].

The problem of comparing forecasting models, and in particular volatility models, has been examined using a

selection of different methodologies. Out of sample volatility models are compared based on the values of R2 from

a Mincer – Zarnowitz (MZ) regression or logarithmic version which has been noted that is less sensitive to outliers

([6], [7]). However, taking R2 from MZ regression is not a representative measure as it was proved not to penalize

any biased terms. Some studies the supremacy of a volatility technique (or the corresponding family) towards other

models has been demonstrates through data application and empirical results. Using naive p – values Hansen and

Lunde (2005) [8] compared GARCH(1, 1) and ARCH(1) volatility models. The results show GARCH(1, 1) yield the

best results in all criteria except for MS E2. However the aforementioned technique is based on the comparison of the

all corresponding error measures of each technique. In the case where there is better performance in some measures

of one volatility technique but not in others then no agreement is extracted. A comparison between ARMA, ARFIMA

and GARCH models has also been proposed which applied to exchange rates of many currencies (e.g. Pound, Mark

and Yen) to the UD Dollar. The comparison of these models has been assessed based on single error measure (MS E)

regressed against R2 [9]. In the case where more than one error measures is used, a technique could perform better

in one and worse in another measure hence there would be no technique that would outperform in comparison to the

others.

Comparisons of hybrid forecasting – Artificial Neural Network (ANN) models have been applied on wind speed

data [10], on environmental science (river flow forecasting) [11] and in short term load ([12], [13]), but none of

these studies use all measurement errors, hence the need for a single score that would aggregate all error measures is

necessary.

Besides the study of volatility models comparison, the study of stochastic volatility (SV) models comparison has

also been examined through a WinBUGS implementation using Bayesian Statistics [14]. In this study SV models

have been applied to extract the error measures of exchange rate of New Zealand (NZ) dollar and US Dollar. The

empirical results demonstrate that the best specifications are those that allow for time-varying correlation coefficients.

Stochastic Volatility models have also been examined in the prism of an Euler discretization technique to compare

different methodologies [15].

Searching through the literature, the main approaches used for a comparison amongst two or more volatility or
3
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forecasting models based on a single or multiple error measures are statistical, MCDM and judgmental decision sup-

port systems. However, when comparing volatility models based on error measures, there is very little probability that

a technique to provide better results in almost all error measures against other volatility models [16]. An alternative

way of comparing volatility models is to measure the performance based on economic significance which could be

proxied by the gain or revenue that the decision maker will incur after applying different volatility models. Neverthe-

less, to the best of our knowledge, no technique has been proposed that would aggregate all error measures to provide

a ranking based on the efficiency score derived from this analysis. The proposed approach provides a unified score

for all volatility models which is very easy to be reproducible and can be applied to other models based on their error

measures. The proposed methodology has exhausted almost all volatility models and compares each other providing

an efficiency score, based on which, each technique is ranked.

3. Methodology

3.1. Introduction to DEA

Data Envelopment Analysis (DEA) is the most frequently used model for measuring efficiency and productivity

of decision making units (DMU), which been firstly been introduced by Charnes, Cooper, & Rhodes (1978) [17]

and Banker, Charnes, & Cooper (1984) [18]. Based on this technique, a Linear Programming (LP) model is solved

for each unit under investigation, hereafter called Decision Making Unit (DMU). Assuming that there are j DMUs

( j = 1, 2, ..., n) each consumes i (i = 1, 2, ...,m) inputs (xi, j) and produces r (r = 1, 2, ..., s) outputs (yr, j) in order to

assess efficiency, LP model (1) is solved for each DMU j. There are two main DEA models, depending on the nature

of the data, a decision maker aims at minimizing the inputs to produce more outputs (input oriented DEA model)

or to maximize the outputs while retaining the inputs to the same levels (output oriented models). LP model (1) is

solved n times (one for each DMU). The levels of decisions that are derived after each iteration, are efficiency scores

for each DMU under investigation (θ∗jo ) and the λ∗j for each DMU. Efficiency score θ∗jo yields a number in the range

of [0, 1]; a DMU with θ∗jo = 1 is efficient whereas a DMU with θ∗jo < 1 is inefficient. Model (1) is a Variable Returns

to Scale (VRS) model due to constraint
(∑n

j=1 λ j = 1
)
. This constraint implies that an increase in the inputs does

not imply same proportional increase in the outputs. Variables s−i and s+
r are slack variables which are associated

with inputs and outputs, correspondingly. They denote the further reduction in inputs and the increase in outputs in

order to be fully efficient. The variables are penalized in the objective function by an infinitesimal positive number,

ε (whereas ε ' 10−5). Once the LP model (1) is solved, the projected values for inputs and outputs are given as

follows: x̂i, j = xi, j · θ
∗ − s−,∗i and ŷr, j = yr, j + s+,∗

r (projected inputs, outputs are denoted with x̂ and ŷ correspondingly

while the optimal solutions for slack variables are denoted with s−,∗i , s+,∗
r ). A DMU is fully efficient if θ∗jo = 1 and

s−,∗i = 0, s+,∗
r = 0. In this instance, the DMU cannot improve any more the inputs and the outputs and it belongs to the

benchmark.

4
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min θ jo − ε ·
( m∑

i=1

s−i +

s∑
r=1

s+
r

)
s.t.

n∑
j=1

λ j · xi, j + s−i = θ jo · xi, jo , i = 1, 2, ...,m

n∑
j=1

λ j · yr, j − s+
r = yr, jo , r = 1, 2, ..., s (1)

n∑
j=1

λ j = 1

λ j ≥ 0, j = 1, .., n

θ free

The dual model of LP model (1) is presented below; variables vi and ur are dual variables assigned to inputs and

outputs.

max
s∑

r=1

ur · yr, jo + ω

s.t.
m∑

i=1

vi · xi, j = 1, j = 1, 2, ..., n

s∑
r=1

ur · yr, j −

m∑
i=1

vi · xi, j + ω ≤ 0, j = 1, 2, ..., n (2)

ur ≥ ε, r = 1, ..., s

vi ≥ ε, i = 1, ...m

ω free

In this context, each DMU represents a volatility model where accuracy measures are the inputs. DEA assesses

volatility models based on a single objective score, unlike MCDM models that assess volatility models [2] with

multiple criteria or attributes based on the judgmental scores from a panel of experts. The errors based on which

volatility models are assessed are the following [19]:

1. Mean Absolute Percentage Error (MAPE) = 1
n
∑T

t=1 |100 · et
Yt
|

2. Root Mean Square Error (RMSE) =

√
1
T
∑T

t=1 e2
t

3. Mean Square Error (MSE) = 1
T
∑T

t=1 e2
t

4. Symmetric Mean Absolute Percentage Error (sMAPE) = 1
n
∑T

i=t
100·|et |

Yt+F
5
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5. Geometric Mean Absolute Error (GMAE) =
T

√∏T
t=1 |et |

6. Median Absolute Percentage Error (MdAPE) = median(
∑T

t=1 |100 · et
Yt
|)

7. Root Mean Squared Percentage Error (RMSPE) =
√

1
n
∑T

t=1 |100 · et
Yt
|

8. Root Median Absolute Percentage Error (RMdAPE) =
√

median(
∑T

t=1 |100 · et
Yt
|)

The error measures used in this analysis represent ratios; therefore application of standard DEA models may fail

to provide correct results. It has been shown in the literature that when using ratio data the Production Possibility Set

(PPS) is multiplicative and not additive ([20], [21]). If the PPS is denoted as P = {(x, y) : x → y} whereas x are the

inputs which produce outputs (y), according to convexity axiom any two points PA(xA, yA), PB(xB, yB) are represented

with the following combination P′ = λ · PA + (1− λ) · PB. Assigning values to λ, the new point that is created may not

belong to the standard PPS (Figure 1) ([22]).

Y2

Y1

PΑ

PC

P΄

P

PB

Figure 1: An output productivity possibility set.

The mathematical formulation for an input oriented without explicit output is shown in the following context:

6
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min θ jo

s.t.
n∏

j=1

(
(xi, j)λ j

)
≤ θ jo · xi, jo , i = 1, 2, ...,m

n∑
j=1

λ j = 1 (3)

λ j ≥ 0, j = 1, .., n

θ free

Model (3) is non-linear and uses products instead of summations as constraints in the model. In order to transform

this model to a linear one using log-linear transformation (4).

log10

( n∏
j=1

(
(xi, j)λ j

))
≤ log10

(
θ jo · xi, jo

)
⇐⇒ (4)

n∑
j=1

(log10(xi, j) · λ j ≤ log10(θ jo ) + log10(xi, jo )

Model (5) is a log-linear representation of a Geometrical DEA model. The log10 efficiency is denoted with θ̃ jo

while the log10 of inputs and outputs are denoted with x̃ and ỹ correspondingly. Using this transformation, LP model

(5) is a log-linear transformation of model (3). The efficiency of each DMU is calculated as 10θ̃
∗

(whereas θ̃∗ is the

optimal solution of LP model (5)).

min θ̃ jo

s.t.
n∑

j=1

λ j · x̃i, j ≤ x̃i, jo + θ̃i, jo , i = 1, 2, ...,m

n∑
j=1

λ j = 1 (5)

λ j ≥ 0, j = 1, .., n

θ̃ free

3.2. Geometrical Slacks-Based Model DEA without outputs

In this instance, we extend the standard DEA log linear model to the log linear Geometrical Slacks-Based Model.

The notion behind the use of such a model is because it is non-radial which takes into account non-zero slack values.
7
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The mathematical formulation for input-orinted SBM is presented below (6). A DMU is efficient if ρ = 1 and

inefficient if ρ < 1 [23], [24].

min ρ̃ jo = 1 −
1
m
·

m∑
i=1

s−i

s.t.
n∑

j=1

λ j · x̃i, j + s−i = x̃i, jo , i = 1, 2, ...,m

n∑
j=1

λ j = 1 (6)

λ j ≥ 0, j = 1, .., n

ρ̃ free

In this case study, each volatility model is considered as a DMU while the inputs are the error measures after

applying each one of the volatility models to financial data set described in Figure 2.
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Figure 2: IBM Adjusted Closing Prices

The volatility models used are shown in Table 1 while the conditional distributions assumed are shown in Table
8
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2. Combining each one of the volatility model with each conditional distribution produces a unique entity. For

example, the ARCH(1) assuming normal conditional distribution produces a different model (in our context, a DMU)

to ARCH(1) combined with skewed normal conditional distribution. Thus, there are 11 volatility models without an in-

mean-effect, and 11 volatility models assuming an in-mean-effect both categories assuming 9 conditional distributions.

The total combinations lead to (11 + 11) · 2 = 198 volatility models (DMUs).

9
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Table 1: Volatility models

Author Model name Equations

Engle,R.F.,(1982) [25] ARCH(p)

yt = xT
t β + et

e2
t = a0 +

p∑
i=1

ai · e2
t−i + vt

vt ∼ N(0, σ2
v)

Bollerslev,T.,(1986) [26] GARCH(p,q)

yt = xT
t β + et

σ2
t = a0 +

p∑
i=1

ai · e2
t−i+

q∑
j=1

σ2
t− j + ut

ut ∼ N(0, σ2
u)

Engle, R.F.et al.,(1987) [27] ARCH-M(p)

yt = µt + et

µt = β + δ · σ2
t

σ2
t = a0 +

p∑
i=1

aie2
t−i + rt

rt ∼ N(0, σ2
r )

Bollerslev,T.,(1986) [26] GARCH-M(p,q)

yt = λ0 + δ0σt(θ0)

εt = σt(θ0)ηt

ηt ∼ IID(0, 1)

σ2
t = ω +

p∑
i=1

αt−iε
2
t−i +

q∑
j=1

β jσ
2
t− j(θ0)

Ding.et al.,(1987) [28] APARCH(m,s)

yt = µt + αt

αt = σtεt

εt ∼ D(0, 1)

σδt = ω +

m∑
i=1

αi
(
| αt−i | +γiαt−i

)δ
+

s∑
j=1

β jσ
δ
t− j

Taylor,S.J.,(2007) [29], Schwert,W.G.(1990) [30] AV-GARCH(p,q) APARCH(m,s) when δ = 1 and γi = 0

Glosten,R.L et al., (1990) [31] GJR - GARCH(p,q) APARCH(m,s) when δ = 2

Zakoian,J.M,(1993) [32] T-GARCH(p,q) APARCH(m,s) when δ = 1

Bera,A.K, and Higgins,M.L (1993) [33] N-GARCH(p,q) APARCH(m,s) when γi = 0 and β j = 0

10
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Table 2: Conditional distributions used

Distribution Parameters Density function

Normal Distribution mean =µ, variance = σ2 f (x) =
1

σ
√

2π
exp

(xi − µ)2

σ2

Student’s - t location =α, scale = β, shape=ν f (x) =
Γ( ν+1

2 )
√
βνπΓ( ν2 )

(
1 +

(
xi − α

)2

βν

)− ν+1
2

Generalized Error Distribution location =α, scale = β, shape=κ f (x) =
κe−0.5| xi−α

β |
κ

21+κ−1
βΓ(κ−1)

Skewed Normal Distribution skewness =ξ f (z | ξ) =
2

ξ + ξ−1

[
f (zξ)H(−z) + f (ξ−1z)H(z)

]
Skewed Generalized Error Distribution mean =µ, variance=σ2 , skewness=λ, scaling = k

f (x) =
C
σ

e

−
|xi−µ+δσ|k[

1−sgn
(

xi−µ+δσ

)
λθσ

]k

Skewed Student’s - t shape = β f (x) =
2β

1 + β2

[
tv(βxi)I(xi < 0) + tv(

xi

β
)I(x > 0)

]

Normal Inverse Gaussian location=µ, scale =δ, shape =α,β f (x) =
δαe

(
δ
√
α2−β2

)
K1

(
α

√
δ2 +

(
xi − µ

)2
)
ebeta

(
xi−µ

)
π

√
δ2 +

(
xi − µ

)2

Generalized Hyperblic Distribution location=µ, scale =δ, shape =α,λ,asymmetry=β f (x) =

√
α2−β2

δλ
√

2πKλ(δ
√
α2 − β2)

Johnson’s SU Distribution skewness = ν,kurtosis =τ, mean = µ, variance = σ2
f (x) =

τ

σ

e

1

2

[
ν+τlog

[
r+

(
r2+1

) 1
2
]]

(
r2 + 1

) 1
2
√

2π

11
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4. Case study

The applicability of the proposed methodology is demonstrated via a case study. In this example, 198 volatility

models have been considered as seen in Table 1. The accuracy measures that have been examined are MAPE, MSE,

RMSE, sMAPE, GMAE, MdAPE, RMSPE, and RMdAPE (the mathematical formula of which has been given above).

One of the problems of forecasting/volatility models is that their performance is based on accuracy measures in which

not all models may perform well. For example assuming that there are two volatility models VOL1, and VOL2 and

two accuracy measures (AM1 and AM2). If VOL1 is performing better than VOL2 in AM1 and worst than VOL2 in

AM2 then unless there is a weighting in the accuracy measures, there is no way to conclude which of the volatility

models should be used. The problem of selecting the best volatility technique can be addressed with the proposed

methodology as by solving the model for each DMU a single score is derived.

LP model (6) is analytically written below as follows using the accuracy presented above. As all of the accuracy

measures should be minimized, the accuracy measures presented above are considered as inputs.

12
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min ρ jo = 1 −
1
8
·
(
s−MAPE + s−MS E + s−RMS E + s−sMAPE + s−GMAE + s−MdAPE + s−RMS PE + s−RMdAPE

)
s.t.

198∑
j=1

λ j · M̃APE j + s−MAPE = M̃APE jo

198∑
j=1

λ j · M̃S E j + s−MS E = M̃S E jo

198∑
j=1

λ j · R̃MS E j + s−RMS E = R̃MS E jo

198∑
j=1

λ j · ˜sMAPE j + s−sMAPE = ˜sMAPE jo

198∑
j=1

λ j · G̃MAE j + s−GMAE = G̃MAE jo (7)

198∑
j=1

λ j · M̃dAPE j + s−MdAPE = M̃dAPE jo

198∑
j=1

λ j · ˜RMS PE j + s−RMS PE = ˜RMS PE jo

198∑
j=1

λ j · ˜RMdAPE j + s−RMdAPE = ˜RMdAPE jo

198∑
j=1

λ j = 1

λ j ≥ 0, j = 1, .., 198

ρ̃ free

A profiling of the data used is shown in Figure 3 and in Figure 4. In Figure 3 MAPE, MSE, RMSE and sMAPE

error measures are shown while in Figure 4, GMAE, MdAPE, RMSPE and RMdAPE. In both figures the common

outcome is that there is not a single criterion based on which the volatility models can be assessed and ranked. For

example, in Figure 3 in MAPE error measure, the first 20 volatility models show large fluctuation in comparison with

the corresponding values to MSE, RMSE and sMAPE error measures. Also, regarding sMAPE it can be seen that

almost all volatility models provide low scores except for two outliers. In Figure 4 the scores of volatility models

demonstrate a similar pattern but still there is not an error measure where all volatility models (shown in the x axis)

provide better results than another one.

In Table 3, a summary of descriptive statistics is provided per each error measure. It can be seen that the produced

volatility models’ mean absolute percentage error (MAPE) is quite small, with minimum value which reaches 0.83,

13
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mean value equal to 0.97 and maximum value equal to 1.19. All forecasting error measures for the volatility models

demonstrate no extreme values and small deviation except for symmetric mean absolute percentage error (sMAPE),

with a minimum value of 165.5 and a maximum value of 2061.
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Figure 3: Line plots of MAPE, MSE and RMSE and sMAPE error measures

5. Results

5.1. Prioritizing volatility models

In this section the results of the application of SBM. In Figure 5 a profile of the efficiency is shown; the DMUs

that are efficient are denoted with a red circle. The DMUs that are efficient are:

• ARCH(1)-skew student t

• ARMA(1,0)-csGARCH(1,1)-skew student t

• ARMA(1,0)-csGARCH(1,1)-normal inverse

• ARMA(1,0)-csGARCH(1,1)-Johnson’s SU

• apARCH(1,1)-skew normal
14
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Figure 4: Line plots of GMAE, MdAPE, RMSPE and RMdAPE error measures

• ARMA(1,0)-apARCH(1,1)-normal

It can be seen that most of the volatility models with higher efficiency scores are the ones that belong to the

ARMA(1, 0) − csGARCH(1, 1) family. This is attributed to the fact that, by construction, component GARCH

(csGARCH) is a more flexible specification compared with ARCH and GARCH models [34]. Specifically, the volatil-

ity component in the long - run is considered to be stochastic, while the short run, which is also called transitory

volatility part, is defined as the difference between the conditional variance and the trend. Therefore, it is developed

to account for long - run dependencies, assuming unconditional variance, as opposed to other GARCH models which

impose a constant variance constraint. Except for the component GARCH, Assymetric Power ARCH family volatility

models (APARCH) demonstrate improved efficiency scores. Assymetric Power ARCH as described in Table 1, con-

tains an extra parameter δ, which is called heteroscedasticity coefficient. This parameter in several studies(e.g [35]) is

found to be improving the discrepancies between GARCH high autocorrelations and observed ones.

15
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Figure 5: Efficiency analysis

Accordingly, the ranking for volatility models is presented in Appendix A.

5.2. Cluster analysis

To investigation the robustness of the efficiency scores derived from SBM DEA, cluster analysis is conducted.

Firstly a distance matrix for the error measures is constructed producing five clusters. The same procedure is carried

out for the results of efficiency scores producing the same number of clusters as can be seen in Figure 6. Between

the clusters derived by the aforementioned procedures, measures of similarity were applied to investigate the degree

of overlapping. Assuming a set of elements (S = {α1, ..., α194, β1, ...., β194}) two partitions of set S are constructed

(A, B); A = {α1, ..., α194} is the set of observations that are clustered with the error measures and B = {β1, ...., β194}

is the set of observations that are clustered with the efficiency scores. Three measures for calculating the degree of

overlapping elements were applied which are the Rand Index [36], Adjusted Rand Index (A.R.I) [37] and Normalized

Mutual Information (N.M.I) [38]. Based on Rand Index measure of similarity, the two partitions from the previously

described procedure concentrate a similarity index of 82.8%, based on the A.R.I a score of 44.5% and based on the

N.M.I 43.6%. From this finding it is obvious that groups produced by hierarchical cluster analysis which is applied

on the error measures are very similar to the ones produced by the cluster analysis on the efficiency scores derived

16
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from the proposed SBM DEA approach. This result enhances the reliability of the SBM DEA efficiency scores as it

produces same groups as the hierarchical cluster analysis which is a well defined statistical technique.

6. Second stage analysis

6.1. β Regression model

In this section the statistical model which is used to evaluate the factors which affect the efficiency scores is

analytically described. Let y j be the efficiency scores (ρ∗j) which are produced by applying SBM DEA method. Due to

the fact that yi ∈
[
0, 1

]
and assuming that its mean is associated linearly with a set of predictors, beta regression [39] is

the most appropriate model to analyze how external factors have an impact on the efficiency scores. The name is given

due to the hypothesis that response variable which receives values in the standard unit interval is assumed to be beta

distributed. [40]. One of the commonly used link functions, is the logit transformation (i.e ỹ = log( y
1−y )) however there

are several disadvantages, concerning the way that estimated parameters are interpreted and that the response variable

suffers from heteroscedasticity. Assuming that the efficiency scores for each combination of volatility model with

conditional distributions (y1,y2,...,yn) are beta distributed and denoting φ the precision parameter which is negatively

linked to y’s variance, (i.e y j ∼ B
(
µ j, φ

)
) the beta model is the following:

g
(
µ
)

= xT
j β = η j (8)

where β =
(
β1, ..., βp) denote the vector of unknown parameters to be estimated and x j =

(
x j1

⊕
, ...,

⊕
x jp

)
the matrix

of p independent variables and
⊕

denotes concatenation of variables, while ηi describes the linear predictor. Thanks

to model’s 8 flexibility several link functions can be implemented. The available options which can best describe the

potential association between the response and the independent variables are the: a)the logit link g
(
µ
)

= log
(

µ
1−µ

)
,

b)the probit g
(
µ
)

= Φ
(
µ
)−1

, c) the log - log function g
(
µ
)

=
(
−log

(
−log

(
µ
)))

and other commonly used functions. The

selection of the appropriate link function is based on the values of information criteria (i.e AIC, BIC). Coefficients of

8 are estimated using Maximum Likelihood method (ML). The likelihood function which is optimised is given below:

l j
(
β, φ

)
=

n∑
j=1

[
log Γ − log Γ

(
µiφ

)
− log Γ

((
1 − µ j

)
φ
)

+
(
µ jφ − 1

)
log

(
y j

)
+

[(
1 − µi

)
φ
]

log
(
1 − y j

)]]
(9)

where Γ
(
.
)

is the Γ function, φ is the precision parameter and β unknown coefficients to be estimated.

In order to assess the goodness of fit, McFadden’s pseudo R2 index is used [41]. Let LL f ull be the value of log -

Likelihood function evaluated on all independent variables and LL0 the value of log - Likelihood function when the

model contains no covariates but the intercept; McFadden’s pseudo R2 is defined as follows:

R2 = 1 −
LL f ull

LL0
(10)

McFadden’s pseudo R2 values are considerably lower than those obtained by estimating a linear model using Ordinary

Least Squares
(
OLS

)
. Typical values which demonstrate excellent fit for a binary logistic model, span from 0.2 to 0.4.

[42].
17
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The choice of the McFadden’s pseudo R2 index as a goodness of fit over others(e.g Cox - Snell) [43] is ought to

the fact that it satisfies almost all of Kvålseth’s eight criteria [44]. A proper R2 statistic should
(
a
)

be easily interpreted

and serve as a measure of good fit,
(
b
)

not depend on units of measurements of the variables,
(
c
)

be bounded within

a range of values, the maximum of which indicates a perfect fit and the lower, lack of fit,
(
d
)

be generic, namely be

able to be applied to any type of type of model,
(
e
)

not be depended on the method by which the model is estimated(
e.g maximum likelihood, ordinary least squared

)
,
(
f
)

be easily comparable when models are estimated using different

datasets, big(g
)

be comparable with values of other goodness of fit criteria and
(
h
)

take into account equally the sign

of residuals.

6.2. Description of Independent variables

A total of 198 combinations of volatility models assuming different conditional distribution have been estimated

using the rugarch package in R (CRAN). The response variable is the efficiency scores which were obtained by

applying SBM DEA, while independent variables concern models’ specific attributes. In this section the factors

which are assumed to be associated with increasing or decreasing models’ efficiency scores are analyzed.

Elapsed time in seconds
(
Time

)
: The complexity of the model is negatively associated with the estimation time.

However, model’s complexity does not always ensure accurate forecasted values, rather than good fit of the model,

due to the fact that it explains a considerable amount of unknown variation of dependent variable. Given the fact

that out-of-sample forecasting is based on the coefficients that have been calculated using data points in-sample, then

model’s good fit has an effect on the forecasting accuracy and therefore its efficiency.

Log - Likelihood
(
Log.Lik

)
: The value of Log - Likelihood function evaluated on the vector of estimated coef-

ficients provides information about model’s good fit to the available time series data. A value of Log-Likelihood

function which is extremely negative signals a good fit to the data. Hence, it is expected that models which exhibit

good fit to the data tend to be more efficient in terms of forecasting.

Error Sum of Squares
(
ESS

)
: Error

(
or residual

)
sum of squares

(
ESS hereafter

)
is measured as the difference

between the observed value of dependent variable and the expected one.Let rt be the actual returns at time t and r̂t the

expected returns at time t produced by an estimated volatility model using a set of T data points. The ESS is defined

as:

ES S =

T∑
t=1

(
rt − r̂t

)2
(11)

Error Sum of Squares index measures the amount of dependent’s unknown variation which is not explained by

the independent variables. Large values of
(
ESS

)
indicate that a model does not fit data appropriately, as the amount

of unknown variance increases and potentially the inclusion of exogenous variables is needed. Based on the previous

and assuming that in-sample estimation affects the out-of-sample forecasting efficiency, models with increased
(
ESS

)
will perform poor forecasting accuracy and will be less efficient.
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Number of significant coefficients
(
No.sig.coeffs

)
: Another measure which provides information about the appro-

priateness of the model to the data is the Number of significant coefficients. Estimated coefficients, may not always

have the expected signs, based on the literature and lead to confusing conclusions. In those cases, coefficients are not

statistically significant. The number of statistically significant of a model reflects the extent to which attributes of time

series are captured by the applied volatility model.

Number of significant bias terms
(
No.sig.bias

)
: Time series of stock markets tend to be characterized by violent

breaks, due to spread of positive or negative information. This type of fluctuation is attributed partially to current

news however, can be caused either by domestic factors and concern monetary policies announced by countries

central banks, or fiscal strategies followed by governments. In other cases, they may come from domestic incidents,

such as legislation regulating the framework by which firms operate inside a nation’s market. These asymmetries
(
or

shocks
)

are incorporated into volatility models and are tested using Enge’s test [45], by estimating lagged positive or

negative shocks against squared residuals. If zt be the standardized residuals at time t, Iut−1<0 indicate negative shock

in the market, while Iut−1≥0 the positive ones, then the following regression is estimated:

z2
t = b0 + b1 · Iut−1<0 + b2 · Iut−1<0 · ut−1 + b3 · Iut−1≥0 · ut−1 + εt (12)

After estimating 12, coefficients’ statistical significance is tested for each parameter separately
(
H0 : bi = 0, i =

1, 2, 3
)

and jointly
(
H0 : b1 = b2 = b3 = 0

)
. The number of statistically significant bias terms are recorded.

Number of significant groups
(
No.sig.groups

)
: Except for the number of statistically significant terms which

incorporate market’s anomalies, the number of statistically significant groups of standardized residuals which are not

normally distributed are taken into account as well [46]. The evaluation of standardized residuals’ distribution is based

on the value of χ - square goodness of fit test.

In-mean-effect
(
in.mean

)
: This is a dummy binary variable; if the value of this variable is 1, the forecasts have

been based on an in-mean model and 0 otherwise. This family of models provide an explicit link between conditional

volatility and the optimum forecast of time series. As explained in Table 1 the returns are assumed to be an ARMA(p,q)

process and the residuals follow several specific ARCH or GARCH processes.

Skewed distributions
(
skew

)
: In Table 2 several conditional distributions are used in order to perform accurate

forecasts. If a distribution is skewed then this variable takes a value of
(
1
)

and
(
0
)

if its central .

Family GARCH models
(
fGARCH

)
: The last potential factor which is examined in this paper is the fact that the es-

timated model which produces forecasts, come from the GARCH family
(
1
)

or not
(
0
)
. This family of models has been

firstly introduced by Hentschel [47] and incorporates shifts and rotation concerning the news impact curve. Thresh-

old GARCH
(
T-GARCH

)
, GJR-GARCH, Non - linear GARCH

(
N-GARCH

)
, Non - linear Asymmetric GARCH(

NA-GARCH
)

and Absolute Value GARCH model
(
AV-GARCH

)
are included in this family of models.

In Table 4 the Pearson pairwise correlation index between the covariates is demonstrated, the effect of which

is investigated in this study. Correlation values are low enough and therefore the simultaneous inclusion in the β

regression model will not cause multi-collineality [48]. Specifically, a relative high negative correlation has been
20
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Table 3: Descriptive statistics of the error measures

MAPE MAE MSE RMSE sMAPE GMAE MdAPE RMSPE RMdAPE

Minimum 0.8257 1.055 1.382 1.176 165.6 0.4486 0.9082 0.9031 0.9082

Q1 0.9452 1.085 1.472 1.213 182.7 0.7159 0.9851 0.9521 0.9851

Median 0.9717 1.093 1.496 1.223 190.1 0.7404 0.9928 0.9735 0.9928

Mean 0.9738 1.092 1.487 1.219 212.8 0.7359 0.9931 0.9811 0.9931

Q3 0.9930 1.097 1.502 1.226 197.3 0.7580 0.9980 0.9931 0.9980

Maximum 1.1850 1.115 1.529 1.236 2061.0 0.8667 1.0530 1.2470 1.0530

Table 4: Correlation matrix and descriptive statistics for covariates

[
1
] [

2
] [

3
] [

4
] [

5
] [

6
] [

8
] [

8
] [

9
]

VIF

Time
[
1
]

1 -0.05 -0.05 -0.15 0.15 -0.11 0.04 -0.06 0.09 1.05

Log.lik
[
2
]

-0.05 1 0.02 0.04 -0.63 0.48 -0.07 0.09 -0.05 1.82

No.sig.coefs
[
3
]

-0.05 0.02 1 0.19 0.09 -0.05 -0.03 0.02 0.20 1.17

No.sig.groups
[
4
]

-0.15 0.04 0.19 1 -0.12 0.26 -0.003 0.005 -0.32 1.24

No.sig.bias
[
5
]

0.14 -0.63 0.09 -0.12 1 -0.58 0.05 -0.03 0.14 2.15

ESS
[
6
]

-0.11 0.48 -0.05 0.26 -0.58 1 -0.02 0.11 -0.58 2.67

in.mean
[
7
]

0.04 -0.07 0.03 -0.003 0.05 -0.02 1 -0.09 -0.02 1.02

skew
[
8
]

-0.06 0.09 0.02 0.005 -0.03 0.11 -0.09 1 -0.10 1.04

fGARCH
[
9
]

0.09 -0.05 0.20 -0.32 0.14 -0.58 -0.02 -0.10 1 1.95

Mean 12 -2829.7 5.45 7.97 1.96 29993.92 - - -

Variance 12.7 1.34 · 105 1.49 3.09 0.22 19.45 - - -
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observed between the value of Log-Likelihood function and the number of significant bias terms
(
r = -0.63

)
, as well

as between the number of significant bias term with the error sum of squares ESS
(
r = -0.58

)
. The values for product

moment correlation indices between all other pairs are extremely low
(
from -0.10 to 0.11

)
. However, correlations may

be misleading regarding the intensity of the linear association between two independent variables. For that reason,

variance inflation index
(
VIF

)
is computed.

VIF =
1(

1 − R2
j
) (13)

where R2
j denotes the partial coefficient of determination. It expresses the proportion of explained variance of x j

which is explained by all other independent variables. Values of
(
VIF

)
above 10 signals existence of multi-collineality

which causes inability of model’s estimation [48] In table 4, VIF values for all independent variables are depicted.

The maximum value of VIF has been computed for error sum of squares ESS, still it is considerably lower than 10

which is the threshold value, above which multi–collineality in the estimated model exists and results are unreliable.

For all other covariates which are used in textitbeta regression model values of VIF do not exceed 2. This suggests

that the examined factors can be simultaneously introduced into the model.

6.3. β Regression model estimation results

The estimation of β regression using maximum likelihood method are presented in this section. Four different

models have been employed; the first model
(
Model 1

)
includes only covariates (b) which are associated with the

complexity and the appropriateness of the estimated volatility model, namely model’s estimation time, log - like-

lihood’s function and residual sum of squares
(
ESS

)
. The second model

(
Model 2

)
includes independent variables

which provide information about the statistical significance of parameters and are the number of statistical significant

volatility models’ coefficients, the number of statistical significant volatility models’ bias terms and the number of sta-

tistical significant volatility models’ groups of residuals. The third estimated model
(
Model 3

)
contains factors which

potentially have an effect on the efficiency scores of volatility models and are associated with specific characteristics

of the models, such as if the estimated volatility model is in - mean, if the conditional distribution assumed is skewed

or if the model belongs to the general GARCH family. Lastly, the fourth model
(
Model 4

)
assesses the effect of all the

previous factors simultaneously on the efficiency of volatility model’s forecasting capability.

The selection of the link function which best describes the data for each model has been based on information

criteria
(
i.e AIC,BIC

)
and the value of log - Likelihood function. Logit and log - log link functions outperformed other

possible specifications which associated the mean value with the covariates.

The time
(
Table 5

)
needed for software to estimate the available models affects negatively the efficiency of fore-

casting and this effect is statistically significant
(
b = −0.61, p < 0.1

)
. The higher the time it takes software to estimates

indicates high complexity of the model and inefficiency of the implementation. As stated above, values of log - Like-

lihood function indicate good fit of the model to the data. Hence, it would be expected that increasing functional
22
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Table 5: Estimation results for β regression models

Model 1 Model 2 Model 3 Model 4

Time −0.61∗ - - −0.58

Log-likelihood 0.07 - - −0.02

ESS 0.01∗∗∗ - - 0.009∗∗

No.significant coefs - 0.07∗ - 0.07∗∗

No.significant bias terms - −1.65∗∗∗ - −1.34∗∗∗

No.significant groups - −0.004 - −0.02

In mean effect
(
1:yes

)
- - 0.15 0.19∗∗

Conditional distribution
(
1:skewed) - - 0.03 −0.26∗∗∗

Family GARCH
(
1:yes

)
- - −0.30∗∗∗ 0.19

N 198 198 198 198

Mc Fadden’s R2 0.27 0.21 0.01 0.27

*** p < 0.01, ** p < 0.05, * p < 0.1
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adjustment to lead to more accurate forecasts. However, values of log - Likelihood function do not affect efficiency

of volatility models’ forecasting ability
(
b = 0.07, p > 0.1

)
and a good adjustment of a model to the data does not

guarantee forecasted values being close to the observed ones. On the contrary, ESS tends to increase the volatility

models’ efficiency scores
(
b = 0.01, p < 0.01

)
. This finding is interesting in two ways: first it cancels out an implied,

though never formally tested, notion that models good fit leads to improved forecasting ability and second that in this

case, as unexplained variance increases, models’ forecasting efficiency increases as well. Model’s 1 goodness of fit is

very satisfactory, due to the fact that Mc Fadden’s pseudo R2 exceeds 20%.

Number of model’s statistically significant parameters
(
Model 2

)
improve the efficiency of forecasting ability(

b = 0.07, p < 0.1
)
, however this effect is marginally statistically significant. On the other hand, the number of

volatility model’s statistically significant bias terms
(
e.g positive or negative shocks

)
affect efficiency score of volatility

equation forecasting ability negatively
(
b = −1.65, p < 0.01

)
. The results for p-values imply, that in the case where

a model explains abrupt rises or falls of return values, its forecasting ability worsens. The number of statistically

significant groups of residuals, which are not independent and identically distributed, does not have any effect on the

efficiency scores of volatility models
(
b = −0.004, p > 0.1

)
. Model’s 2 goodness of fit measured by the Mc Fadden’s

pseudo R2 is satisfactory as the value of R2 reaches 21%.

Model 3 investigates whether efficiency scores can be explained by the volatility equations’ specific characteristics.

Mean values of efficiency scores for ARCH or GARCH - M models
(
i.e in mean effects

)
are not statistically from those

volatility equations which do not assume existence of ARMA
(
p, q

)
for the mean of returns

(
b = 0.15, p > 0.1

)
. In

volatility models, where skew conditional distribution is assumed, the efficiency scores are not significantly different

from those in which such an assumption is not done
(
b = 0.01, p > 0.1

)
. However, volatility models which belong

to the family of GARCH equations tend to perform lower efficiency scores than those which do not belong to it(
b = −0.30, p < 0.01

)
although this difference is marginally statistically significant. The dummy variables do not

seem to explain a great amount of efficiency scores variance due to the fact that R2 is only 1%, considerably lower

than the threshold value which indicates satisfying fit.

In Model 4, the joint effect of all covariates on efficiency scores is examined. The employed model is robust as

the coefficient values and their signs do not change. Specifically the time needed to estimate forecasting retains the

same value and sign as in Model 1 and the effect on the efficiency score is negative, though not statistically significant(
b = −0.58, p > 0.1

)
. Forecasting volatility equations which do not explain a great amount of returns’ variability,

leading to increased ESS, tend to achieve higher efficiency than others, which fit the data better. On the contrary,

the number of statistically significant equation’s terms lead to greater efficiency
(
b = 0.07, p < 0.05

)
, however the

amount of volatility equation’s bias terms which are statistically significant is associated with lower ranking in terms

of forecasting efficiency
(
b = −1.34, p < 0.01

)
.

A point of great interest is the joint effects of the independent variables on the forecasting efficiency of volatility

models when controlling the dummy variables. For that reason, three more models are estimated, which incorporate

not only main effects but also interaction terms of the independent variables by the control variables. Model 5 is
24
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estimated using the existence of an in - mean effect as a control variable. Models 6 and 7 are estimated using as control

variables the existence of skewed conditional distribution and whether the model belongs to the family GARCH.

Table 6: Estimation results for beta regression models with interactions

Model 5 Model 6 Model 7

Time −0.66∗ −1.47∗∗∗ −1.02∗

Log-likelihood −0.06 12.12∗∗∗ −0.022

ESS 0.012∗∗∗ 0.008∗∗ 0.016∗∗∗

No.significant coefs 0.04 0.18∗∗∗ 0.22∗∗∗

No.significant bias terms −1.66∗∗∗ 1.64∗∗∗ −0.84∗∗

No.significant groups −0.051∗ 0.014 −4.67 × 10−4

Log-likelihood × Control 15.34∗∗∗ −12.34∗∗∗ 2.69

Time × Control −0.84 0.76 0.39

ESS × Control −4.73 × 10−5 3.28 × 10−4∗∗∗ −0.025∗∗

No.significant coefs × Control −0.18∗∗ −0.17∗∗ −0.21∗∗

No.significant bias × Control 1.16 −5.20∗∗∗ 0.037∗∗

No.significant groups × Control 0.05 −0.08∗∗ −0.027

N 198 198 198

Mc Fadden’s R2 0.27 0.45 0.30

*** p < 0.01, ** p < 0.05, * p < 0.1

In
(
Table 6

)
, the results of the estimated models are presented. Log - likelihood for volatility equations in which

an in - mean effect is assumed, tends to increase their efficiency in terms of forecasting errors
(
b = 15.34, p < 0.01

)
.

Furthermore, volatility equations, which incorporate an in - mean effect and the number of statistically significant

coefficients is large, achieve a lower efficiency score for forecasting error measures
(
b = −0.18, p < 0.05

)
. Model’s 6

fit is satisfying, as Mc Fadden’s pseudo R2 exceeds 20%. When controlling for the existence of skewed conditional

distribution
(
Model 6

)
, it seems that increased volatility equation’s log - Likelihood tends to decrease the efficiency

of forecasting measures
(
b = −12.34, p < 0.01

)
. Given a skewed conditional distribution, volatility equations which

have many statistically significant coefficients, bias term or groups of residuals, tend to achieve a lower efficiency in
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terms of forecasting accuracy and large efficiency when ESS increases.
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Figure 7: Joint density distributions of ESS and Efficiency scores (ρ)

Based on the results of second stage analysis derived from 6, ESS is statistically significant. The joint density

distributions of ESS and efficiency scores (ρ) is shown in Figure 7. It can be seen from density plot on top of the

figure, that the largest concentration of values of ESS variable is reported in the range of [29972.98, 30000]. The

largest value (mode) equals to 30000, whereas the largest value derived from the density plot on the right-hand side

of Figure 7, is 0.57 and the second largest value that is reported is 0.5. It can be also seen from the scatter plot in the

center of the figure that the majority of the points lie in the range of [29972.98, 30000] for ESS and between [0.5, 0.8]

regarding efficiency scores ρ.

7. Conclusions and direction for future research

Global socioeconomic situations around the world affect in a direct or indirect way markets creating uncertainty.

The higher the uncertainty, the higher the volatility of the stock prices traded in markets around the world. Based
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on this fact, a framework to assess and provide the best volatility model based on certain criteria is needed. Several

models and methodologies have been proposed to outrank or prioritize forecasting models. One of the methodologies

proposed lie in the area of Multi Criteria Decision Making (MCDM) analysis. However, the deficiency of applying

this kind of analysis lies in the subjective participation of the decision maker (or the groups of experts), who provides

weights on the importance of each criterion. Thus, if different decision makers apply the same technique to the

same criteria then another prioritization of volatility models will come up. In the absence of a framework that will

serve as a decision support system in order to prioritize the volatility models objectively, an SBM DEA model is

proposed. Several combinations of volatility models and conditional distributions have been examined. Values for

error measures (namely MAPE, MSE, RMSE, sMAPE, GMAE, MdAPE, RMSPE, RMdAPE) have been derived

after having applied all the combinations to IBM stock prices data set. Each error measure has been treated as an

input while the 198 combinations of volatility models with conditional distributions as DMUs. As the values of the

error measures express ratios, the data have been log-normalized using log10 transformation. Solving the SBM DEA

model, minimizing the slack variables for each input, an efficiency score (ρ ∈ [0, 1]) is extracted for each DMU; a

score of ρ = 1 and s−i = 0 indicates that this DMU is fully efficient whereas if ρ < 1 the corresponding DMU is

inefficient. From the application to volatility models, the majority of ARMA(1, 0) family (models csGARCH(1, 1)

and apGARCH) were prioritized high (1), as the efficiency score was ρ = 1. The second stage analysis, shed light

to the factors that affect the forecasting efficiency of volatility models. These factors consist of volatility models

and attributes, which regard the: (a) appropriateness of fit, (b) dummy variables which indicate the family in which

models belong to, (c) skewness of the conditional variance assumed and (d) the existence of an in - mean effect. The

time needed for a model to be estimated, is consistently negatively associated with the forecasting efficiency of the

volatility equations. On the other hand, increasing percent of unexplained total variance leads to higher efficiency.

This finding is interesting as it actually means that models, which do not fit data appropriately, tend to exhibit higher

efficiency. The value of log - Likelihood does not appear to affect significantly the forecasting efficiency of the

volatility models. The number of estimated coefficients, which are statistically significant, seem to have a positive

effect on the efficiency, while models whose bias terms are significant, are characterized by decreasing efficiency

scores. The number of statistically significant groups of normally distributed standardized residuals is not affecting the

efficiency scores. Models that assume an (in - mean) effect tend to exhibit increasing efficiency scores, while models in

which a skewed unconditional distribution is hypothesized demonstrate lower efficiency scores, compared with those

models in which a non - symmetric conditional distribution is assumed. Furthermore, the estimation of β regression

models using interaction effects using the dummy variables as control, resulted in some intriguing findings. Values of

log - Likelihood for volatility models in which an (in - mean) effect is assumed, lead to a greater probability that they

perform increasing efficiency scores, while in models in which skewed conditional distribution is used, a potential

increase in log - Likelihood results in a higher probability of decreasing efficiency scores. Duration of volatility

models’ estimation does not seem to affect efficiency scores significantly, in either of the three control variables.

On the contrary, there is a consistent pattern of the number of statistically significant parameters. More specifically,
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the number of statistically significant coefficients of volatility models tend to affect negatively the efficiency scores,

independent of the existence of an (in - mean) effect, skewed conditional distribution or the fact that the volatility

model belongs to GARCH family.

The proposed approach has been applied on a single data set (Historical adjusted close prices of IBM for time

period 1995 – 2016), as seen in Figure 2, therefore the ranking extracted for the proposed volatility models concerns

only this dataset. The proposed work can be applied to a selection of datasets in order to provide a more robust

ranking. Furthermore, as a future direction, composite indicators which would include error measures and would take

into account other characteristics of each volatility model could be constructed.
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Appendix A.

In Table A.7, the ranking of the volatility models is presented based on the efficiency derived from SBM model.
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Table A.7: Ranking of volatility models based on ρ∗ values.

Volatility Model SBM Efficiency score Rank Volatility Model SBM Efficiency score Rank
ARCH(1)-normal 0.416252664 192 ARMA(1,0)-csGARCH(1,1)-normal 0.576798451 149
ARCH(1)-skew normal 0.570361227 156 ARMA(1,0)-csGARCH(1,1)-skew normal 0.622429811 116
ARCH(1)-student t 0.718598849 40 ARMA(1,0)-csGARCH(1,1)-student t 0.971325072 8
ARCH(1)-skew student t 1 1 ARMA(1,0)-csGARCH(1,1)-skew student t 1 1
ARCH(1)-generalized error 0.543240223 180 ARMA(1,0)-csGARCH(1,1)-generalized error 0.612170538 122
ARCH(1)-skew generalized error 0.493762064 186 ARMA(1,0)-csGARCH(1,1)-skew generalized error 0.661960673 90
ARCH(1)-normal inverse 0.849614224 13 ARMA(1,0)-csGARCH(1,1)-normal inverse 1 1
ARCH(1)-generalized hyperbolic 0.902439168 11 ARMA(1,0)-csGARCH(1,1)-generalized hyperbolic 0.930402071 10
ARCH(1)-Johnson’s SU 0.585775322 140 ARMA(1,0)-csGARCH(1,1)-Johnson’s SU 1 1
ARMA(1,0)-ARCH(1)-normal 0.572601739 152 apARCH(1,1)-normal 0.638924998 106
ARMA(1,0)-ARCH(1)-skew normal 0.572380134 153 apARCH(1,1)-skew normal 1 1
ARMA(1,0)-ARCH(1)-student t 0.172627153 194 apGARCH(1,1)-student t 0.300312457 193
ARMA(1,0)-ARCH(1)-skew student t 0.487924678 188 apARCH(1,1)-skew student t 0.56176432 173
ARMA(1,0)-ARCH(1)-generalized error 0.986009275 7 apARCH(1,1)-generalized error 0.957032382 9
ARMA(1,0)-ARCH(1)-skew generalized error 0.599560585 132 apARCH(1,1)-skew generalized error 0.734673009 36
ARMA(1,0)-ARCH(1)-normal inverse 0.488318341 187 apARCH(1,1)-normal inverse 0.536042039 181
ARMA(1,0)-GARCH(1,1)-generalized hyperbolic 0.435214693 191 apARCH(1,1)-generalized hyperbolic 0.55981384 176
ARMA(1,0)-ARCH(1)-Johnson’s SU 0.568662677 172 apARCH(1,1)-Johnson’s SU 0.708897722 45
GARCH(1,1)-normal 0.530567459 182 ARMA(1,0)-apARCH(1,1)-normal 1 1
GARCH(1,1)-skew normal 0.688696357 58 ARMA(1,0)-apARCH(1,1)-skew normal 0.437615441 190
GARCH(1,1)-student t 0.494711511 185 ARMA(1,0)-apARCH(1,1)-student t 0.651583281 98
GARCH(1,1)-skew student t 0.451396782 189 ARMA(1,0)-apARCH(1,1)-skew student t 0.65528532 96
GARCH(1,1)-generalized error 0.65646576 95 ARMA(1,0)-apARCH(1,1)-generalized error 0.8287124 14
GARCH(1,1)-skew generalized error 0.671088604 81 ARMA(1,0)-apARCH(1,1)-skew generalized error 0.768036157 21
GARCH(1,1)-normal inverse 0.639510342 104 ARMA(1,0)-apARCH(1,1)-normal inverse 0.741183473 31
GARCH(1,1)-generalized hyperbolic 0.638327836 108 ARMA(1,0)-apARCH(1,1)-generalized hyperbolic 0.729932154 37
GARCH(1,1)-Johnson’s SU 0.669444138 83 ARMA(1,0)-apARCH(1,1)-Johnson’s SU 0.764541091 22
ARMA(1,0)-GARCH(1,1)-normal 0.682413418 74 TARCH(1,1)-normal 0.773768045 19
ARMA(1,0)-GARCH(1,1)-skew normal 0.545160492 179 TARCH(1,1)-skew normal 0.613112819 121
ARMA(1,0)-GARCH(1,1)-student t 0.609469586 124 TGARCH(1,1)-student t 0.663292074 89
ARMA(1,0)-GARCH(1,1)-skew student t 0.593107874 138 TARCH(1,1)-skew student t 0.640827231 102
ARMA(1,0)-GARCH(1,1)-generalized error 0.594176983 137 TARCH(1,1)-generalized error 0.671085415 82
ARMA(1,0)-GARCH(1,1)-skew generalized error 0.710313125 44 TARCH(1,1)-skew generalized error 0.723809297 39
ARMA(1,0)-GARCH(1,1)-normal inverse 0.691128245 56 TARCH(1,1)-normal inverse 0.855774416 12
ARMA(1,0)-GARCH(1,1)-generalized hyperbolic 0.695068743 52 TARCH(1,1)-generalized hyperbolic 0.78680167 18
ARMA(1,0)-GARCH(1,1)-Johnson’s SU 0.665271511 87 TARCH(1,1)-Johnson’s SU 0.764446775 23
jgrGARCH(1,1)-normal 0.657314063 94 ARMA(1,0)-TARCH(1,1)-normal 0.744943557 30
jgrGARCH(1,1)-skew normal 0.697704653 49 ARMA(1,0)-TARCH(1,1)-skew normal 0.787391789 17
jgrGARCH(1,1)-student t 0.711677052 43 ARMA(1,0)-TARCH(1,1)-student t 0.797859793 16
jgrGARCH(1,1)-skew student t 0.638361058 107 ARMA(1,0)-TARCH(1,1)-skew student t 0.647111379 101
jgrGARCH(1,1)-generalized error 0.619465518 117 ARMA(1,0)-TARCH(1,1)-generalized error 0.672348733 80
jgrGARCH(1,1)-skew generalized error 0.600191423 131 ARMA(1,0)-TARCH(1,1)-skew generalized error 0.64819414 100
jgrGARCH(1,1)-normal inverse 0.598485014 133 ARMA(1,0)-TARCH(1,1)-normal inverse 0.675095698 79
jgrGARCH(1,1)-generalized hyperbolic 0.738427871 34 ARMA(1,0)-TARCH(1,1)-generalized hyperbolic 0.751448043 26
ARMA(1,0)-jgrGARCH(1,1)-normal 0.568940809 157 AVARCH(1,1)-normal 0.687871527 59
ARMA(1,0)-jgrGARCH(1,1)-skew normal 0.568940809 157 AVARCH(1,1)-skew normal 0.687871527 59
ARMA(1,0)-jgrGARCH(1,1)-student t 0.582529683 145 AVGARCH(1,1)-student t 0.725004287 38
ARMA(1,0)-jgrGARCH(1,1)-skew student t 0.58297213 144 AVARCH(1,1)-skew student t 0.746136118 29
ARMA(1,0)-jgrGARCH(1,1)-generalized error 0.583474777 143 AVARCH(1,1)-generalized error 0.74659859 28
ARMA(1,0)-jgrGARCH(1,1)-skew generalized error 0.568940809 157 AVARCH(1,1)-skew generalized error 0.687871527 59
ARMA(1,0)-jgrGARCH(1,1)-normal inverse 0.568940809 157 AVARCH(1,1)-normal inverse 0.687871527 59
ARMA(1,0)-jgrGARCH(1,1)-generalized hyperbolic 0.568940809 157 AVARCH(1,1)-generalized hyperbolic 0.687871527 59
ARMA(1,0)-jgrGARCH(1,1)-Johnson’s SU 0.568940809 157 AVARCH(1,1)-Johnson’s SU 0.687871527 59
eGARCH(1,1)-normal 0.568940809 157 ARMA(1,0)-AVARCH(1,1)-normal 0.687871527 59
eGARCH(1,1)-student t 0.568940809 157 ARMA(1,0)-AVARCH(1,1)-student t 0.687871527 59
eGARCH(1,1)-skew student t 0.568940809 157 ARMA(1,0)-AVARCH(1,1)-skew student t 0.687871527 59
eGARCH(1,1)-generalized error 0.572276972 154 ARMA(1,0)-AVARCH(1,1)-generalized error 0.681185715 76
eGARCH(1,1)-skew generalized error 0.574394892 150 ARMA(1,0)-AVARCH(1,1)-skew generalized error 0.692586132 55
eGARCH(1,1)-normal inverse 0.574102625 151 ARMA(1,0)-AVARCH(1,1)-normal inverse 0.699054119 47
eGARCH(1,1)-generalized hyperbolic 0.568940809 157 ARMA(1,0)-AVARCH(1,1)-generalized hyperbolic 0.687871527 59
eGARCH(1,1)-Johnson’s SU 0.568940809 157 ARMA(1,0)-AVARCH(1,1)-Johnson’s SU 0.687871527 59
ARMA(1,0)-eGARCH(1,1)-normal 0.568940809 157 NAGARCH(1,1)-normal 0.687871527 59
ARMA(1,0)-eGARCH(1,1)-skew normal 0.568940809 157 NAGARCH(1,1)-skew normal 0.687871527 59
ARMA(1,0)-eGARCH(1,1)-student t 0.568940809 157 NAGARCH(1,1)-student t 0.687871527 59
ARMA(1,0)-eGARCH(1,1)-skew student t 0.584951873 142 NAGARCH(1,1)-skew student t 0.734874096 35
ARMA(1,0)-eGARCH(1,1)-generalized error 0.600504299 130 NAGARCH(1,1)-generalized error 0.692975653 54
ARMA(1,0)-eGARCH(1,1)-skew generalized error 0.586440851 139 NAGARCH(1,1)-skew generalized error 0.682076848 75
ARMA(1,0)-eGARCH(1,1)-normal inverse 0.58094634 147 NAGARCH(1,1)-normal inverse 0.667886338 85
ARMA(1,0)-eGARCH(1,1)-generalized hyperbolic 0.601441434 129 NAGARCH(1,1)-generalized hyperbolic 0.69103787 57
ARMA(1,0)-eGARCH(1,1)-Johnson’s SU 0.606575042 126 NAGARCH(1,1)-Johnson’s SU 0.695121854 51
iGARCH(1,1)-normal 0.514926173 184 ARMA(1,0)-NAGARCH(1,1)-normal 0.596308646 136
iGARCH(1,1)-skew normal 0.568731546 171 ARMA(1,0)-AVARCH(1,1)-skew normal 0.639694868 103
iGARCH(1,1)-student t 0.554333954 177 ARMA(1,0)-NAGARCH(1,1)-student t 0.627984651 112
iGARCH(1,1)-skew student t 0.553302818 178 ARMA(1,0)-AVARCH(1,1)-skew student t 0.638972123 105
iGARCH(1,1)-generalized error 0.653933267 97 ARMA(1,0)-NAGARCH(1,1)-generalized error 0.704347615 46
iGARCH(1,1)-skew generalized error 0.598424383 134 ARMA(1,0)-AVARCH(1,1)-skew generalized error 0.739494253 33
iGARCH(1,1)-normal inverse 0.613553374 120 ARMA(1,0)-NAGARCH(1,1)-normal inverse 0.694196927 53
iGARCH(1,1)-generalized hyperbolic 0.596865796 135 ARMA(1,0)-AVARCH(1,1)-generalized hyperbolic 0.680840876 77
iGARCH(1,1)-Johnson’s SU 0.585370395 141 ARMA(1,0)-NAGARCH(1,1)-Johnson’s SU 0.660971537 93
ARMA(1,0)-iGARCH(1,1)-normal 0.609760867 123 NGARCH(1,1)-normal 0.687262498 73
ARMA(1,0)-iGARCH(1,1)-skew normal 0.61820696 119 NGARCH(1,1)-skew normal 0.696959399 50
ARMA(1,0)-iGARCH(1,1)-student t 0.519271511 183 NGARCH(1,1)-student t 0.607146225 125
ARMA(1,0)-iGARCH(1,1)-skew student t 0.571788975 155 NGARCH(1,1)-skew student t 0.624043171 115
ARMA(1,0)-iGARCH(1,1)-generalized error 0.560048246 175 NGARCH(1,1)-generalized error 0.605824241 127
ARMA(1,0)-iGARCH(1,1)-skew generalized error 0.560231269 174 NGARCH(1,1)-skew generalized error 0.631843199 111
ARMA(1,0)-iGARCH(1,1)-normal inverse 0.667471663 86 NGARCH(1,1)-normal inverse 0.697853087 48
ARMA(1,0)-iGARCH(1,1)-generalized hyperbolic 0.64937997 99 NGARCH(1,1)-generalized hyperbolic 0.818249977 15
ARMA(1,0)-iGARCH(1,1)-Johnson’s SU 0.664078336 88 NGARCH(1,1)-Johnson’s SU 0.761725314 25
csGARCH(1,1)-normal 0.636347201 109 ARMA(1,0)-NGARCH(1,1)-normal 0.740555319 32
csGARCH(1,1)-skew normal 0.624178256 114 ARMA(1,0)-AVARCH(1,1)-skew normal 0.711996325 42
csGARCH(1,1)-student t 0.668087969 84 ARMA(1,0)-NGARCH(1,1)-student t 0.761890074 24
csGARCH(1,1)-skew student t 0.676917848 78 ARMA(1,0)-AVARCH(1,1)-skew student t 0.769597439 20
csGARCH(1,1)-generalized error 0.618219442 118 ARMA(1,0)-NGARCH(1,1)-generalized error 0.626477528 113
csGARCH(1,1)-skew generalized error 0.602970292 128 ARMA(1,0)-AVARCH(1,1)-skew generalized error 0.661629878 92
csGARCH(1,1)-normal inverse 0.581598268 146 ARMA(1,0)-NGARCH(1,1)-normal inverse 0.633212836 110
csGARCH(1,1)-generalized hyperbolic 0.580391879 148 ARMA(1,0)-AVARCH(1,1)-generalized hyperbolic 0.66165135 91
csGARCH(1,1)-Johnson’s SU 0.71370953 41 ARMA(1,0)-NGARCH(1,1)-Johnson’s SU 0.74947053 27
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