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Abstract

Bio-oil from biomass pyrolysis is a promising alternative and clean source of bio-
fuels, chemicals, and materials. Its chemical composition, physical and chemical
properties and multiphase behavior change over time because of aging, which
significantly affects its storage, handling, transportation, upgrading and application.
This review focuses on studying bio-oil aging, and its outlook, primarily covering the
following four parts: (1) the chemical composition, physical and chemical properties,
and multiphase behavior of bio-oil; (2) the indicators for measuring the degree of aging
and aging characteristics including physical and chemical properties change during
long-term and accelerated aging of bio-oil; (3) the aging mechanisms and kinetics
emphasizing the reactions during the aging process and different kinetic models based
on different aging indicators; (4) the potential methods for slowing down bio-oil aging
rate. This review comes up with highlights in developing aging mechanisms and
kinetics that will allow readers’ in-depth understanding of the effect of aging on bio-oil

properties and the approaches to improve the resistance of bio-oil aging.

Keywords: lignocellulosic biomass; pyrolysis; bio-oil; aging mechanisms; stability
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1 Introduction

The consumption of fossil energy in the world has been steadily increasing with
the development of the world economy and society, especially in the Asia-Pacific
region [1]. In recent years, environmental and ecological problems have been resulted
from the excessive utilization of nonrenewable fossil fuels, which are currently the
world’s primary energy source and set to meet over 80% of global energy demand [2].
To address those environmental and ecological problems, low carbon sustainable
development has been highly emphasized by most countries [3]. With the increasing
demand for energy and growing concerns regarding environmental and ecological
issues, the transformation from traditional fossil fuel to renewable energy is an urgent
need [4]. China plans to increase the percentage of its energy from renewable resources
during the 14™ Five-Year Plan (2021-25) period according to the National Energy
Administration.

Lignocellulosic biomass is a renewable energy source and an alternative to fossil
fuel with rapidly growing interest [5, 6]. It has the potential in terms of low cost,
abundance, energy security, and low carbon footprint [7]. Lignocellulosic biomass
typically contains three major biopolymer components: cellulose (30-35%),
hemicellulose (15-40%), lignin (15-35%), which are associated with each other in a
hetero-matrix to different degrees and varying relative contents [8]. There are various
biomass conversion technologies, which can be generally categorized into four main
types according to the used techniques and principal energy carrier produced in the
conversion process: thermal [9], thermochemical [10], biochemical [11] and chemical
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[12] conversion technologies (see Figure 1). Those technologies exist to convert the

energy stored in biomass to more useful forms of energy.

i
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Figure 1. Various conversion technologies of lignocellulosic biomass

Among various conversion technologies, pyrolysis is of particular interest, as it
converts solid lignocellulosic biomass into a liquid fuel (bio-oil), which is readily stored,
handled, and transported and can be conveniently used in versatile applications [13]. It
is the thermal decomposition of biomass in the partial or complete absence of oxygen.
The yield and chemical composition of bio-oil are fundamentally determined by
feedstock nature [14], pretreatment method [15], catalysts and their structures [16, 17],
reactor configurations [18], and process conditions [19, 20].

Bio-oil has a highly promising potential to be widely used considering its
advantages of renewability, CO2 neutrality, transportability, relatively high energy

density, and good secondary conversion performance [21-23]. Bio-oil can be utilized in
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different ways, which are summarized in Figure 2. Bio-oil is combustible but requires
significant energy for ignition [24], which has been verified by the performance tests
of bio-oil combustion in industrial boilers [25, 26], diesel engines [27] and gas turbines
[28-30]. It can be burned as a substitute for kerosene in gravity stove for cooking [31],
and also transport fuel in combination with diesel fuel by using emulsification [32, 33]
or micro-emulsification [34, 35]. Fractioned bio-oil can be upgraded into transportation
fuels by using catalytic cracking and hydrotreating [36]. The aqueous fraction of bio-
oil can be used to produce hydrogen by catalytic steam reforming [37, 38]. The heavy
fractions of bio-oil have similar composition and comparable rheological and adhesion
properties as the light fractions of petroleum bitumen [39]. Hence, they can be
potentially used as a substitute road material for petroleum-derived bitumen [40, 41] or
aged bitumen rejuvenator [42]. Some species rich bio-oil can be used as extracted
specific chemicals like sugars, sugar derivatives, carboxylic acids, and aromatic
hydrocarbons [43-46]. Some bio-oils can be used as preservatives and pesticides

because they contain acid, hexane, ketone, alcohol, and phenolic compounds [47, 48].
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Bio-Qil

Figure 2. Various applications of bio-oil

The chemical composition of bio-oil is very complicated. It contains a number of
mostly oxygen-containing chemical compounds with a wide distribution of physical
and chemical properties [49]. Oxygenated compounds in bio-oils includes acids,
alcohols, aldehydes, carbohydrates, esters, ethers, furans, ketones, phenols, etc. [50].
Since bio-oil is produced with rapid heating rate, short reaction time and fast cooling
rate from the moderate temperature (e.g., 400 — 650 °C), it is not a product of
thermodynamic equilibrium during biomass pyrolysis [51]. Chemical compounds,
especially those oxygenated compounds, in bio-oil are highly reactive and can lead to
undesirable reactions during storage. Therefore, the chemical composition, physical

and chemical properties of bio-oil tend to undergo changes. The instability of bio-oil is
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typically called as ‘aging’, which is defined as the process of irreversibly changing over
time [52]. Bio-oil aging would increase its viscosity and molecular weight, and lead to
phase separation, delayed ignition during combustion, corrosiveness inside the engine
[53], which would make it challenging to bio-oil’s storage, handling, transportation,
upgrading and commercialization application [54].

Generally, bio-oil aging is caused by the reactions (e.g., polymerization,
esterification, transesterification, hydration, hemiacetal formation, acetalization,
dimerization reactions) between bio-oil components under acidic and thermal
conditions catalyzed by nano-sized char particles or minerals in bio-oil [55, 56]. To
reduce the problems caused by bio-oil aging, some physical and chemical methods are
developed to slow aging. These methods include solvent addition, fraction separation,
emulsification, removal of solids, water and light volatiles, mild hydrogenation, and so
on [57].

Comprehensive reviews have been published on the recent progress of biomass
pyrolysis [13, 58], fuel properties [59, 60], chemical characterization [61] and its
quantitative analysis [62], upgrading [63-65] and applications [66, 67] of bio-oils,
norms and standards for the characterization of bio-oils [68], however, that is not
enough to describe characterization and mechanisms of bio-oil aging. Yang et al. [69]
conducted a review of strategies applied for improving the storage and transportation
stability of bio-oils and discussed economic and environmental issues and challenges.
Chen et al. [70] reviewed the testing parameters and technologies used for assessing
bio-oil stability. Recently, Oasmaa et al. [71] summarized the phase stability of bio-oils

9
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focusing on the bio-oil multiphase structure and behavior. However, aging
characteristics, aging mechanisms, aging kinetics as well as approaches to slow bio-oil
aging are missing in the literature.

Considering the above concerns, the review aims to provide a comprehensive
scenario and possible research approach to bio-oil aging and recent development in
technologies for slowing the aging process. The review paper will focus on four main
parts: physicochemical characteristics of fresh bio-oil, aging characteristics of bio-oil,

bio-oil aging mechanisms and kinetics, and approaches to slowing bio-oil aging.

2 Physicochemical characteristics of fresh bio-oil

The aging processes of bio-oil are strongly dependent on the physicochemical
characteristics of fresh bio-oil, including its chemical composition, physical and
chemical properties, and multiphase behavior, which are mutually dependent (see

Figure 3).
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20 181

22 182 Figure 3. Mutually dependent chemical composition, chemical and physical
25 183 properties, and multiphase behavior of bio-oil

184
30 185 2.1 Chemical composition
33 186 Bio-oil is derived from the depolymerization and fragmentation reactions of
35 187  structural components of lignocellulosic biomass. The elemental composition of bio-oil
38 188  correlates strongly with that of original biomass feedstock (see Table 1) [72].

189

43 190 Table 1. Typical elemental compositions of bio-oil and biomass

46 Element Bio-0il * / wt.% Biomass ° / wt.%

48 C 54— 58 38— 53
51 H 55-7 5-7
54 O 35—-40 34— 46

56 N 0.0-0.2 0-0.5
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ash 0.0-0.2 -

4 Data taken from Ref. [73].

® Data taken from Ref. [74]. On dry ash-free basis.

The bio-o0il chemical composition is strongly influenced by the nature of
lignocellulosic biomass feedstock [75], pyrolysis conditions [76], configuration of
pyrolysis reactor and liquid collection systems [77]. Typically, bio-oils contain over 400
chemical compounds with a wide distribution of properties and concentrations, which
include (1) water, (2) volatile organic compounds, (3) monolignols, (4) polar
compounds with moderate volatility, (5) anhydrosugars, (6) extractive-derived
compounds, (7) heavy polar compounds derived from cellulose and hemicellulose
decomposition, (8) heavy nonpolar compounds from lignin decomposition, and (9)
solid particle including char and ash [78].

In general, the water in bio-oils is mainly derived from the inherent moisture and
the dehydration reactions among oxygenated monomers and oligomers of
lignocellulosic biomass [79]. The oxygenated compounds contained in bio-oils include
carboxylic acids, esters, alcohols, anhydrosugars, furans, phenolics, aldehydes, and
ketones, which are related to the lignocellulosic components of biomass (see Figure 4)
[46, 80]. In general, acetic acid and formic acid are the principal acid components [81],
and furfural and furfuralcohol are major furans products [82]. Pyrolysis of cellulose

results in the formation of carboxyl, carbonyl and hydroperoxide groups, pyrolysis of
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hemicellulose produces depolymerization products and monomeric anhydrosugars, and
pyrolysis of lignin produces catechols, vanillins, guaicols, propyl guaicols, phenols,
aromatic hydrocarbons and others [83, 84]. The chemical compounds in bio-oils can be

classified into different chemical families as shown in Table 2.

e o
7 A Pyrolytic lignin
- T Light aromatic :'\) =
- " hydrocarb 4 i > I
Lignin = 9% (e, ~ %
(250-500°C) - & o .
= Monomeric
phenolic compounds

g sheont, guaiacnl, syngsl]

56

Hemicellulose
o= (200-300°C)

Figure 4. Pyrolysis of biomass and chemical composition of bio-oil (reprinted from

Arnold et al. [80] with permission of Elsevier)

Table 2. Chemical families and their contents of bio-oils ?

Chemical family Content / wt.%
Water 19-30
C2 — C4 light molecules 10-22
Anhydrosugars 10-20
Mono-phenols 1-5
13
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Mono-furans ~1
Pyrolytic lignin 15-17
Humins 3-7
Hybrid oligomers 11-18

4 Data taken from Ref. [46].

Bio-oil from catalytic pyrolysis shows better quality in terms of high hydrocarbon,
less oxygenating and reactive species than that of non-catalytic pyrolysis [10]. The
presence of catalyst can promote deoxygenation, oligomerization, and aromatization
reaction in pyrolysis and thus, the proportion of oxygenates decrease with increasing
catalyst loading [85, 86]. Besides, bio-oil from the co-pyrolysis of biomass and
hydrogen-rich substrate (e.g., waste rubber, waste plastics) over catalyst has relatively
better quality because of a higher amount of aliphatic and aromatic hydrocarbon, lower
fraction of polyaromatic hydrocarbons, oxygenates and nitrogen-containing
compounds in bio-oil [87, 88]. In co-pyrolysis, the addition of hydrogen-rich substance
donate hydrogen and increase the overall H/Cefr, which significantly improves the
production of aromatic hydrocarbon in bio-oil [8§9-92].

There is no standard or widely accepted specification to classify the bio-oil, as the

compositions of bio-oil are continuously changed over storage period and conditions.
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2.2 Physical and chemical properties

The physical and chemical properties of bio-oil are important to evaluate its quality
and potential uses, and to choose proper methods for upgrading [93]. These properties
include water content, acidity, density, viscosity, heating value, solubility, char content,
carbon residue, ash content, inorganics, pour point, flash point, thermal conductivity,
specific heat capacity and refractive index [94, 95].

Usually, the physical and chemical properties of bio-oil are characterized by using
the analytical techniques for conventional petroleum-based fuels with/without some
minor modifications. Oasmaa and Peacocke [96] tested the applicability of standard
methods developed for petroleum-based fuels to bio-oil characterization and presented
minor modifications of those standard methods (e.g., avoiding sample preheating and
prefiltration during characterization). Stas et al. [61] summarized the chromatographic
and spectroscopic methods for bio-oil chemical characterization and presented
corresponding analytical procedures. In general, chromatographic techniques allow the
analysis of individual components, whereas spectroscopic methods used for the
identification of chemical groups. Due to bio-oils' chemical complexity, these analytical
techniques face some limitations regarding homogeneity, component separation, and
multiple analyses [97]. Although many analytical techniques were more or less
successfully applied, only some of them were subjected to round-robin testing. Thus,
further research leading to the standardization of analytical techniques for the physical
and chemical characterization of bio-oils is necessary. Table 3 summarizes the
analytical standard methods for some physical and chemical properties of bio-oil.

15
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259
260 Table 3. Physicochemical characterization of bio-oil

Physical and Standard Apparatus

chemical

property

Heat of ASTM D240: Standard Test Method Bomb Calorimeter

combustion for Heat of Combustion of Liquid

Water content

Solids content

Kinematic

viscosity

Density

Hydrocarbon  Fuels by Bomb
Calorimeter

ASTM E203: Standard Test Method for
Water using Volumetric Karl Fischer
Titration

ASTM D7579: Standard Test Method
for Pyrolysis Solids Content in
Pyrolysis Liquids by Filtration of
Solids in Methanol

ASTM D445: Standard Test Method
for Kinematic Viscosity of Transparent
and Opaque Liquids

ASTM DA4052: Standard Test Method

for Density, Relative Density, and API

Karl Fischer Volumetric

Titrator

Filter

Viscometers (Glass

capillary type)

Digital Density

Analyzer

16
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Gravity of Liquids by Digital Density

Meter

oNOYULT B WN =

Ash content ASTM D482: Standard Test Method Evaporating Dish or
12 for Ash from Petroleum Products Crucible, Electric
15 Muffle Furnace

17 pH value ASTM D70: Standard Test Method for pH meter

20 pH of Aqueous Solutions with the

Glass Electrode

25 Flash point ASTM D93: Standard Test Methods for Pensky-Martens Closed
28 Flash Point by Pensky-Martens Closed Cup Apparatus

30 Cup Tester

33 Pour point ASTM D97: Standard Test Method for Test jar, Thermometers,
Pour Point of Petroleum Products etc.

38 Carbonyls ASTM E3146: Standard Test Method Potentiometric Titrator
21 content for Determination of Carbonyls in

43 Pyrolysis Bio-Oils by Potentiometric

46 Titration

261
51 262 The homogeneity of bio-oil is associated with the reactivity and solubility of
54 263  chemical compounds in bio-oil. Typically, bio-oil is separated into a more dense, more

26 264  viscous phase and a less dense, less viscous (aqueous) phase depending on storage time
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and temperature [98]. Bio-oil primarily contains polar compounds, which make it
immiscible with petroleum oils. Bio-oil contains more or less solids, mainly solid
inorganics and char particles in the range of 1-200 pw [99]. When bio-oil is heated up,
evaporation takes place in the temperature range of 100 — 280 °C, and stops at about
320 °C, and a solid residue of 20 — 30 wt.% of the bio-oil sample is formed [100]. The
remaining residue consists of heavy molecular weight molecules, ash, and solids, which
is considered as a measure of the char in bio-oil [101]. Thermogravimetric analysis
(TGA) is usually used to determine the solid residue content of bio-oil [102]. The
heating value of bio-oil is 14 — 18 MJ kg!, which is much lower than that of petroleum
fuels (41 —43 MJ kg™') [59, 95] because of its relatively high oxygen and water contents.
Since bio-oil contains some acids (mainly acetic and formic acids, 8 — 10 wt.%), it has
alow pH value of 2 —4 [43, 103], and hence it is corrosive to carbon steel and aluminum
materials [104]. The density of bio-oil is typically 1200 to 1350 kg m~, and the bio-oil
with lower water content has relatively higher density [94]. Generally, bio-oil is
Newtonian fluid in the temperature range of 25 — 80 °C and the shear rate range of 0.1
— 1000 s [105]. Temperature and water content are major factors affecting bio-oil’s
viscosity varying from about 25 to 1000 cP at 40 °C [66]. According to our previous
study [106], the dependence of bio-oil viscosity on temperature can be described by the
William-Landel-Ferry model. The flash and pour points of bio-oils are in the ranges of
40 to 110 °C and -9 to -36 °C, respectively [94]. Unlike petroleum-based fuels, typical
bio-oil is non-flammable and non-distillable, and can ignite only at high temperature.
To sum up, bio-oil is a low-grade liquid fuel with high contents of oxygen, water,

18
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solids and ash, low heating value and pH, high viscosity, instability, and poor
combustion properties. Currently, it is technically suitable for replacing heavy fuel oil
without upgrading.

In order to evaluate the applicability of bio-oil in different situations, bio-oil
quality should be standardized. Nowadays, there is still only one standard specification
for bio-oil: ASTM D7544-12 (Standard Specification for Pyrolysis Liquid Biofuel).
Hence, more national or international standards, norms, specifications and guidelines
covering a range of applications with different requirements on the physical and

chemical properties of bio-oil should be studied and established urgently.

2.3 Multiphase behavior

Bio-oil may be formed by one, two or more phases during pyrolysis, depending
on biomass feedstock as well as pyrolysis and condensation operation parameters. Slow
pyrolysis generally produces a two-phase bio-oil, while fast pyrolysis result in a single
phase bio-oil [71]. Through centrifugation, bio-oil can be separated into two layers. The
upper layer shows low water, ash and char contents as well as low acidity and density,
high calorific value and viscosity, whereas the bottom layer contains greater contents
of water and ash[107]. According to Garcia-Pérez et al. [108], the complex multiphase
behavior of bio-oil is related to the presence of char particles, waxy materials (mainly
including fatty acids, fatty alcohols, sterols, hydrocarbons), aqueous and other droplets,
micelles which resulted from holocellulose-derived heavy compounds matrix (see
Figure 5).
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Figure 5. Multiphase structure of bio-oil (reprinted from Oasmaa et al. [71] with

permission of American Chemistry Society)

The multiphase behavior of bio-oil is strongly influenced by its complex and ever-
changing chemical composition, especially the contents of water, pyrolytic lignin and
compounds derived from extractives, and reactions between bio-oil components during
aging [71].

Besides, in the micrometre scale, bio-oil shows a nanostructure, which is
constituted by a complex continuous phase and nanoparticles mainly formed by the
association of units of pyrolytic lignin [109]. These microstructures grow and form
relatively heavy oligomeric compounds during aging. The complex multiphase
structure of bio-oil is strongly affected by temperature. The temperature effect will
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terminate when it reaches to melting point of the three-dimensional structures
contained in the bio-oil. Aging will lead to the increase in oligomers and the reduction
in low-molecular-weight reactive species in bio-oil, which act as solvents influence the
growth of microstructure [71].

Although the complex nature of bio-oil multiphase behavior has been studied over
the years, more work is still needed to explore its intrinsic mechanisms (e.g., the
discrepancy between the dispersed phase and the continuous medium of bio-oil is not

apparent due to viscous and multiphase colloidal nature).

3 Aging characteristics of bio-oil

The term “aging” has been used to describe the unstable nature of bio-oil which
leads to changes in its chemical composition, physical and chemical properties, and
multiphase behavior of bio-oil [57]. Till now, there is no standardized method for
measuring the degree of bio-oil aging. In literature, some indicators were used to
represent the degree of bio-oil aging. In addition, there were various aging tests at
different aging temperatures and over different periods. They can be divided into two

types: long-term aging test and accelerated aging test.

3.1 Aging indicators

The simple indicator for bio-oil aging is the phase separation by the visual

observation [71]. It is not a quantitative analysis for measuring aging. Thus, the method

is usually used in combination with other indicators.
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Some researchers directly used an increase in the viscosity of bio-oil as the degree

of bio-oil aging [93, 110-112], which was usually called as the aging index [113]:

v, -V

Al= -

x100% (1)
A%

where Al is the aging index, v. is the viscosity after aging, and vi is the initial viscosity.

Based on the aging index, a simple viscosity-based test was developed to
characterize the aging processes of different bio-oils [111]. In the test, the bio-oil is
placed in a container at a fixed temperature for a fixed period of time (e.g., 80 °C for
24 h), to measure the change in viscosity. The viscosity-based test method was verified
by an international round-robin test [114].

The change in molecular weight of bio-oil is linearly dependent on the change in
its viscosity during aging according to several studies [111, 112, 115]. Therefore, the

apparent weight-average molecular weight is served as an approximate measure of the

progress of bio-oil aging processes [112]:

L M-M,
Moo _MO

(2)
where a is the aging parameter, Mo, M, and M« are the weight-average molecular weight
of bio-oil at the initial time of storage, at the time 7, and the infinite time of storage,
respectively. The above molecular weight-based aging indicator was used to assess the
stability of bio-oils from the pyrolysis of biomass biopolymer components [116] and
poplar wood [117].

Besides viscosity and molecular weight, an extended aging index was proposed by
Meng et al. [118]:
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P, —P

AIE = 224" 100% (3)

FH

where AIE is the extended aging index, P refers to a particular bio-oil property (e.g.,
viscosity, molecular weight, water content, acidity), the subscripts FH and AA represent
the fresh and aged bio-oils, respectively.

In the study on the polymerization mechanisms of bio-oil water-soluble fraction
during accelerated aging by Luo et al. [119], a new aging index based on the yield of

the final residue of bio-oil has been proposed:

M M
Aglng indeX — aged—s;\r;}le fresh-sample % 100% (4)

fresh-sample

where M denotes the yield residue of fresh and aged bio-oils.

During aging, the change in carbonyl content of bio-oil would occur because of
the reactions between aldehydes and ketones during storage. Oasmaa et al. [120]
developed a titration method of identifying carbonyl groups based on the changes in
aldehydes and ketones contents to represent the degree of instability during bio-oil
aging. The carbonyl titration method is easier to carry out in the laboratory, since the
test can be conveniently conducted with standard common laboratory glassware than
the viscosity and molecular weight-based methods. Recently, the carbonyl titration
method for tracking bio-oil aging was verified by Black and Ferrell [121]. Hence, the
change of carbonyl content can be considered as an indicator for bio-oil aging.

According to Sundqvist et al. [122], heat is generated during bio-oil aging, and
depends on the temperature, bio-oil reactivity, and addition of alcohol and catalysts,
which were verified by the aging experimental results of typically good quality bio-oils

23

ACS Paragon Plus Environment



oNOYULT B WN =

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Energy & Fuels

in a reaction calorimeter. Therefore, heat generation during aging can also be suggested
as an indicator of bio-oil stability.

In addition to the change in viscosity, water content, molecular weight, and
carbonyl content, the aging of bio-oil also results in the change in free radicals [116].
Meng et al. [101] investigated the effect of free radicals on bio-oil aging severity with
the addition of radical scavengers and found that radical scavengers had negligible
effects to control the pyrolytic lignin condensation and only a mild free progressive
concentration reduction occurred during bio-oil accelerated aging. According to Kim et
al. [116], those free radicals in bio-oil are highly concentrated in bio-oil fractions from
lignin pyrolysis. Free radicals in chemical systems can be relatively identified and
characterized by electron paramagnetic resonance or electron spin resonance
spectroscopy. The relationship between free radicals in bio-oil and its aging is still
missing in the literature. Here the authors hypothesize that free radicals in bio-oil could
be considered as another indicator for bio-oils propensity to aging.

Table 4 summarizes the above indicators and their analytical methods for bio-oil
aging. Currently, there is no specification for the indicators to represent the degree of
bio-oil aging. Hence, more work on the bio-oil aging indicators and the corresponding

standard test methods for them are needed.

Table 4. Aging indicators and analytical methods for bio-oil aging

Aging indicator Analytical method Reference
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Viscosity

Water content

Functional group and chemical
structure
Chemical  composition  of
volatiles

Chemical composition of bio-
oils (identification of highly

reactive oil components)

Weight-average molecular
weight

Thermochemical properties
(e.g., decomposition
temperature)

pH value

Free radicals

Rotational rheology test
Karl Fischer titration
Fourier transform infrared
spectroscopy (FTIR) and nuclear
magnetic resonance (NMR) analyses
Gas  chromatography /  mass
spectrometry (GC/MS) analysis

/ mass

Liquid chromatographic

spectrometric analysis
Gel permeation chromatography
(GPC)

Thermogravimetric analysis (TGA)

pH measurement
Electron paramagnetic resonance

(EPR) or electron spin resonance

(ESR) spectroscopy

[56]

[56]

[56]

[56]

[123]

[123]

[124]

[125]

[101, 116]
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3.2 Long-term aging

The purpose of the long-term aging test is to measure the changes in
physicochemical properties of bio-oil at ambient temperature during a long period of
storage (e.g., several months and even several years), which can simulate bio-oil aging
for long time during storage at natural conditions.

The long-term aging of the bio-oil samples from the fast ablative pyrolysis of oak
wood at the vortex reactor wall temperature of 625 °C was conducted by Czernik et al.
[112]. Seven bio-oil samples were placed in caped glass vessels and stored at thermal
chamber at 37 °C for 24 weeks. The results showed that the bio-oil samples remained a
single phase, the pH value was not affected by storage, the water content increased with
the length of storage because some condensation or dehydration reactions occurred
during storage.

Oasmaa and Kuoppala [111] found that the high-molecular-mass (HMM) fraction
in bio-oil from forestry residue pyrolysis increased during 6 months of long-term aging
because of polymerization and condensation reactions of carbohydrate compounds,
aldehydes, and ketones. The increase in HHM fraction resulted in the main
physicochemical properties changes, including the increase in viscosity, molecular
weight, flash point, pour point and density.

Meng et al. [118] investigated the long-term aging of bio-oils from the pyrolysis
of raw and torrefied loblolly pinewood sawdust and found that raw bio-oil completely
phase-separated after 6 months, while torrefaction bio-oil maintained a stable uniform
oil phase during the even entire 12-month storage, which indicated that the torrefaction
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pretreatment of bio-oil production raw biomass could potentially slow down the bio-oil
aging rate. The reason is that torrefaction mainly removes hemicellulose and reduce the
yield of sugar fractions in bio-oil which is the positive effect on bio-oil stability. It can
be noted that a high fraction of pyrolytic sugars in bio-oil, including anhydrosugar,
oligo/polysaccharide and even aliphatic hydroxyl acid are reactive and increase the
viscosity of bio-oil during storage condition.

Bio-oil from the vacuum pyrolysis of mixed hardwood feedstocks were studied for
aging at room temperature for 5 months [126] and the results showed that the viscosity
of bio-oil increased by approximately a factor of 2.5 and the water decreased by about
4% due to evaporation over 5 months.

The IEA round-robin study on the long-term aging of bio-oils at three temperatures
(21, 5, and -17 °C) for one year revealed that a lower temperature can slow down the
reaction mechanism to increase the viscosity of the bio-oil [54].

Interestingly, an increase in viscosity was prolonged over the first 6 months of
storage at 20 °C, and after that bio-oil’s viscosity was found to increase dramatically,
the yield of the evaporative residue of bio-oil increased with increasing storage time
[102]. However, an increase in evaporative residue started more slowly and picked up
after a year of aging (especially for 18 to 24 months) [102].

The aging of the bio-oil samples from Tunisian almond shell fast pyrolysis at room
temperature over 5 years investigated by Grioui et al. [127] showed that the
methodxylated aromatic compounds were the major compounds in the aged bio-oil
samples, and that the viscosity greatly increased due to esterification and
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decarboxylation reactions while the pH value, water content and higher heating value
(HHV) remained unchanged during long-term storage.

Biomass pyrolysis system coupled with fractional condensation systems can yield
multi-stage bio-oils, which show different aging behaviors. The bio-oil gathered from
higher condensing temperature contains more lignin pyrolytic oligomers and phenols,
while the bio-oil collected by lower temperature contains more water and aliphatic
compounds [128]. The bio-oil obtained from higher condensing temperature presents
fewer changes in physical and chemical properties and chemical composition during
long-term storage and is more appropriate for combustion and further processing.

To assess the aging performance of bio-oil heavy factions for potential use as bio-
binder, the pre-treated bio-oil samples were tested by using a pressure aging vessel
(PAV) procedure, which is commonly adopted to study the long-term aging of
petroleum-derived bitumen [129]. Since there are considerable differences between bio-
oil and bitumen in compositions and properties, the test conditions (e.g., aging duration
in PAV oven, test temperature of degassing container) should be changed to comply
with the bio-oil properties. In future research, to measure the long-term aging
characteristics, the standardization of the long-term aging test for bio-oil should be

investigated.

3.3 Accelerated aging

In natural conditions, bio-oil aging is a slow process [130]. Elevated temperatures

can increase the aging rate of bio-oil [56]. It is possible to design the experiment in

28

ACS Paragon Plus Environment

Page 28 of 107



Page 29 of 107

oNOYULT B WN =

474

475

476

477

478

479

480

481

482

483

Energy & Fuels

which aging can reach deep degrees of transformation during a reasonable time. Such
technique of aging test is called accelerated aging [131], which is the most common
method to measure bio-oil stability. Accelerated aging has usually been performed by
storing bio-oil samples at an elevated temperature (e.g., 80 °C) for a specified period of
time (from a few hours up to several days). The high temperature in the accelerated
aging experiments can increase the bio-oil aging rate [111]. Table 5 summarizes some

studies on the accelerated aging of bio-oils.

--- Table 5 ---
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According to the results of the IEA round robin on bio-oil aging in 2012 [54], the
increase in bio-oils viscosity during the accelerated aging test at 80 °C for 24 h was
found to be similar to the rise measured in the natural long-term aging test of 6 months
at room temperature. Czernik et al. [112] also found the increase in bio-oil viscosity at
60 °C for 4 days and at 90 °C for 6 h was equivalent to that of bio-oil after 3 months of
treatment at 37 °C. Ortega et al. [126] presented that the oils aged at 65 °C showed
increases in viscosity similar to the oils aged for 5 months at room temperature.

The effect of accelerated aging at 80 °C on the physical and chemical properties
of the bio-oil from the fast pyrolysis of hardwood under different periods of 1, 3, 5, and
7 days in sealed vessels was investigated and analyzed by Alsbou and Helleur [56]. The
bio-oils remained a single phase through the first 6 days, while a clear phase separation
occurred on day 7. The water content, viscosity, decomposition temperature, and ash
content of the bio-oil increased with the increase of aging period (see Figure 6). The
authors inferred that the esterification, ectherification, and olefinic condensation

reactions were the main mechanisms of bio-oil accelerated aging.

w

o
w
o

o ] (@ Water content (%) (b) Viscosity (cSt)
. M Ash 1 Birch ” MW Ash = Birch
B ”
|-
Esa { g 15
§33 1 g 10
32 A
I S
31+
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Aging period (day) Aging period (day)

Figure 6. Changes in water content and viscosity of bio-oil from hardwood pyrolysis
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(reprinted from Alsbou and Helleur [56] with permission of American Chemistry

Society)

To avoid the possible risk of releasing volatiles or from transferring bio-oil
samples between the experimental oven and rheometer during aging, a novel method
was developed to perform real-time viscosity measurements during bio-oil accelerated
aging by using a concentric cylinder rheometer [132]. The aging period of 8, 16, and
24 h with continuous stirring at 90 °C resulted in increased viscosity by 57, 300, and
720 %, respectively. The water content showed a slight decrease, while the average
molecular weight showed a slight increase.

The accelerated aging tests of bio-oils produced from the fast pyrolysis of pine
wood in the presence of CaO, MgO, and ZSM-5 as in situ upgrading catalysts showed
that the CaO-catalyzed bio-oil had the lowest aging index compared to other bio-oils
[133]. One of the main reasons was that the bio-oil produced using CaO as the catalyst
had reduced acidic components, which indicate the presence of organic acids in bio-oil
can accelerate the aging of bio-oil.

Char removal before condensation has been found to decrease the rate of bio-
oil aging. The impacts of post-condensation filtration on the 3-week accelerated (80 °C)
aging of the pine wood derived bio-oil showed that the removal of char particles by
post-condensation serial filtration prior to aging could prevent the general trend of
viscosity increase during aging [134].

Different bio-oil fractions have different accelerated aging behaviors. The
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accelerated aging tests of water-soluble and water-insoluble fractions of rice straw
pyrolysis bio-oil at different temperatures (80, 90, 100 and 110 °C) for 24 h by Luo et
al. [119] showed that the aging rate of the bio-oil water-soluble fraction was higher than
that of the bio-oil water-insoluble fraction according to the changes in water content
and viscosity before and after aging. Meng et al. [136] also studied the accelerated aging
of bio-oil fractions. They revealed that (1) the increased molecular weight was found
with increasing aging temperature and the presence of acids for all bio-oil fractions
(including water-soluble, ether-soluble and pyrolytic lignin fractions); (2) solid residue
was generated when water soluble and ether insoluble fractions were aged; (3) the aging
index of water-soluble fraction increased 2-fold at the aging temperature of 110 °C
compared to 80 °C.

The aging at elevated temperatures would accelerate phase separation of bio-oil.
According to Siriwardhana [135], the bio-oil from the fast pyrolysis of hardwood was
phase-separated after 15 h of aging under accelerated aging conditions at 80 °C and the
proportion of the viscous bottom phase increased during prolonged aging, which was
caused by the polymerization or condensation reactions between the phenolic, sugar,
ester, acid, ketone, furan, and aldehyde components in the light fraction with heavy
fraction of bio-oil [135].

Due to the compositional and structural complexity of bio-oils, the role of bio-oil’s
main components to the polymerization reactions has not been well understood yet.
Siriwardhana [ 135] used bio-oil model compounds to investigate the chemical reactions
during accelerated aging. Possible reactions have been noted as (1) conversion of
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carboxylic acids to esters over alcohol and esters is stable at elevated temperatures for
prolonged periods of time; (2) decomposition of most of the derivatives from linear
ketones and aldehydes into other products or reacted to form components with higher
molecular weight, and (3) reactions of furan and aldehydes.

The accelerated aging characteristics of bio-oils from the pyrolysis of hardwood
and softwood in a water-saturated environment at 65 °C showed that the water content
of the aged bio-oil slightly increased, the pH value decreased, and the viscosity of the
aged bio-oil doubled in 3~4 days of aging [126].

Besides, the presence of surfactants has a noticeable effect on the accelerated aging
characterization of bio-oil and its fractions. For example, IGEPAL CO890 and soap
with high hydrophilic-lipophilic balance (HLB) values have led to phase separation of
the bio-oil into dark and bright fractions [137].

Based on the basic assumption that accelerated aging can imitate the natural aging
process, the accelerated aging tests were developed for the assessment of the aging
performance of bio-oils in a short time. However, the assumption was established on
the change in viscosity during aging . There exist some differences between long-term
and accelerated aging not only in the aging rate but also in aging reaction mechanisms,
which can lead to different chemical composition of aged bio-oils after different aging
tests. Accelerated aging tests are conducted at high temperatures, they are unsuitable
for simulating in-service aging: the processes induced are relatively different from those
observed in utilization. And even for accelerating aging tests, the consistency in oven
specification and corresponding operation of accelerating aging should be standardized
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and normalized [113].

The bio-oil heavy fractions have the potential to use as bio-bitumen [138]. There
are standard methods to assess the short-term and long-term aging of bitumen [139].
The Pressure Aging Vessel (PAV) and Rolling Thin-Film Oven (RTFO) procedures
provide simulated long- and short-term aged bitumen binder for physical property
testing, respectively [140]. The applicability of the conventional aging techniques and
equipment of the petroleum-derived bitumen or their modification used for the

evaluation of the aging performance of bio-oil can be studied in the future.

4 Bio-oil aging mechanisms and Kkinetics

To control chemical reactions and assist researchers onwards bio-oil stabilization
strategies, understanding of bio-oil aging mechanisms and kinetics are inevitably
necessary [56, 57]. Although some reviews have summarized the possible reactions
between bio-oil components during aging. Meanwhile, most recent studies of bio-oil
aging have been focused on characterizing the aging behavior and seeking methods to
slow down the aging rate. [55, 69, 70]. In order to solve the post-processing problems
of bio-oil during storage, transportation, handling, feeding and combustion, systematic

analysis of the aging mechanisms and kinetics of bio-oil needs to be considered.

4.1 Aging mechanisms

During the storage of bio-oil, the chemical composition change leading to the

changes in physical and chemical properties of bio-oil [73, 141]. The whole scenario of
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bio-oil stability is very intricate, and notably, there is no solo clarification for all the
phenomena related to bio-oil aging. Different reactive and unsaturated components
undergo through a series of reactions (polymerization, esterification,
dimerization/oxidization, and acetalization) during aging to form larger molecules and
result in undesirable physical properties of bio-oil like high viscosity [111].

Diebold [55] explained several reactions among compounds of bio-oil during the
aging process, and it has been found water, organic acid, aldehyde, alcohol and even
phenols are very reactive to form oligomer, ester, acetal, resin, and polyolefin.
Furthermore, the air oxidation of bio-oil results in the peroxide formation, which causes
polymerization of unsaturated compounds. For instance, phenol and formaldehyde in
bio-oil undergo reaction during the aging period to form phenyl hemiformal, which is
finally converted to ortho-methyl phenol. Furthermore, the reaction of phenol or

substituted phenol and aldehyde hydrate produces resin in bio-oil (see Figure 7).

OH o OCH,OH OH
+ HQ—H - H CH,OH
Phenol ~ Formaldehyde Phenyl hemiformal Ortho-methylol phenol
OH OH OH OH
OH + CHZ CHz
‘ H +1
(n+2) +  (1+2) LC—OH —— + (ntl)
Phenol/ n CH,0H
€no Aldehyde hydrate :
substituted phenol Resin

Figure 7. Reactions between phenol and aldehyde compounds in bio-oil during aging

[55]
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The oxygen-rich compounds such as carboxylic acids and aldehydes undergo
several aging reactions such as polymerization, acetalization, oxidation, esterification,
and dimerization. Xiong et al. [142] studied the preliminary aging mechanisms of bio-
oil. They reported that the aliphatic acids, alcohols, and aldehydes are prone to
esterification and acetal reactions, which accompanied by the formation of esters and
acetals which involve a small amount of water and some acids (Figure 8(a)). The
quality impact is not particularly large but may result in stratification due to change in
the polarity of the bio-oil molecules. However, the aromatics compounds, as well as
sugar derivatives, follow polymerization/self-condensation reactions through acid
catalysis or radical polymerization forming polymer compounds (Figure 8(b)). This

polymer compounds particularly affect the viscosity of bio-oil.
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Figure 8. (a) Possible chemical reactions of aliphatic compounds, and (b)

polymerization of aromatics and sugar compounds in bio-oil during aging [142]

According to Meng et al. [136], intrinsic reaction mechanisms during accelerated
aging of bio-oil include (a) sugar decomposition and condensation to solid humin, (b)

aldol condensation of furfural and ketone, (c) acid-catalyzed lignin condensation, (d)
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free radical lignin condensation, and (e) phenol glycolaldehyde condensation (see
Figure 9). Phenolic compounds are significant culprits to accelerate the aging rate. To
slow down bio-oil aging rate, the fraction of oxygenated aromatics (phenolic

compounds) in bio-oil should be low by converting into aromatics.

(a) OH 0 0
o W HORS 3H,0 oV w0 ot
HO _— HO% _ \ EEE——
HO OH H,0 HO on OH -HCOOH 0

Condensawion\\ / Condensation

Solid humins

? o . OH 0O . . 0
0 - .0 - . X
S A WR 3 WR

H,0

(b)

(© |

+CH

HC
. OCH;
O\
OCH;4 OCHj ocH
O\ O\ O\

O] OH OH OH OH

OH
OH

Figure 9. Possible reaction mechanisms during accelerated aging of bio-oil (reprinted

from Meng et al. [136] with permission of American Chemistry Society)

Bio-oil contains water and some light-reactive volatiles. Evaporation of volatile
components in bio-oil would result in an increase in viscosity and flash point [143],

which is another mechanism of bio-oil aging. On the other hand, air oxidation of
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alcohols and aldehydes in bio-oil may form carboxylic acids, which could easily be
esterified with alcohols in bio-oil [134, 144]. During the storage of bio-oil,
hydroperoxides and alkyl peroxide can be formed by autoxidation with air [55]. The
peroxides are not very stable and decompose to free radicals, which can catalyze the
polymerization of olefins and the additional of mercaptans to olefins. Many of these
reactions can be catalyzed by the organic acids and char in bio-oil [111]. Therefore,
exposure to air would facilitate the formation of polyolefins during storage.

Besides, chemical reactions during bio-oil aging can change the polarity of the
bio-oil components [71]: the polarity of the organic components decrease and the
content of extremely polar water increases. The difference in polarity among the aged
bio-oil components increases and the mutual solubility of the aged bio-oil components
decreases because of the formation of larger molecules during aging, which increases
the tendency of phase separation [110].

The phase-separation of bio-oil reported between 4 and 6 days of the study period
at 85 °C [126] indicates that char-free characteristics and high water content turn to
slow polymerization reactions. However, it is quite dreadful to show more stability of
bio-oil which has treated hydrothermally compared to fast pyrolysis bio-oil which
produced from fixed-bed catalytic hydrotreater [ 145]. Concerning aging, anhydrosugar
is considered as a mostly stable compound. At the same time, significant compositional
changes have been reported for xylose, glucose, arabinose as well as other presumed
carbohydrate-like compounds especially, hemicellulose-derived sugars and the
disappearance of certain furanose-ring sugars. Some of the sugars are assumed to be the
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result of aging-induced of lignin-carbohydrate oligomers [123].

It can be summarized that bio-oil aging during the storage period is a continuous
process due to a number of reactive species produced from the biomass. It is impossible
to stop the formation of oxygen-containing species (acid, aldehyde, ketone, alcohol,
furan and phenol) which are mostly unstable, react and causes undesirable changes in
the physicochemical properties of bio-oil. In addition, the solid content of bio-oil
increases the aging process. Therefore, in addition to the treatment of biomass, other
process parameters should be optimized to reduce the amount of oxygen-containing
species and solid content in bio-oil. In parallel, the storage conditions, like low
temperature and the absence of air could be suggested to slow down the aging process
of bio-oil. Nonetheless, several upgrading processes can be applied to increase the
stability of bio-oil.

To bring in the stabilized method for bio-oil upgrading, it is inevitably crucial to
know why and how polymerization reactions take place. Several cabalistic approaches
have been taken into account to clarify the reason behind the polymerization and other
reactions between alcohol (solvent) and bio-oil. To date, it is unclear that the
contribution of parent compounds towards polymerization reactions. To understand the
aging mechanism and use of bio-oil and essential features of the bio-oil compound

under specific aging temperature, it is inevitably necessary to study the aging kinetics.

4.2 Aging kinetics

The aging kinetics of bio-oil is fundamental for the prediction of the aging rate and

40

ACS Paragon Plus Environment

Page 40 of 107



Page 41 of 107

oNOYULT B WN =

683

684

685

686

687

688

689

690

691

692

693

694

695

Energy & Fuels

the properties of bio-oil over different aging periods, and the estimation of the required
time to reach different aging degrees, which is helpful for the application of bio-oil and
the validation of various approaches for slowing down bio-oil aging rate.
In literature, there were two kinds of bio-oil aging kinetic models: viscosity-based
model and molecular weight-based model.
Nolte and Liberatore [132] used an exponential decay function to fit the
experimental data of an oak pyrolysis bio-oil accelerated aging at 90 °C:
n(t)=n.(1-¢") 5)
where 7(¢) is the viscosity at the time ¢, #+ is the infinite time steady-state viscosity, and
b is the decay constant. Figure 10 shows the comparison between the experimental data
of the oak bio-oil aging and the curve predicted by the model with the parameters #« =

0.013 Pasand »=0.035h"".
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Figure 10. Aging kinetics of oak bio-oil (reprinted from Nolte et al. [132] with

permission of American Chemistry Society)

According to the above empirical model (5), when =0, then #=0. That contradicts
the fact that the viscosity of bio-oil is not zero at the beginning of aging. In this aspect,
the empirical viscosity-based model has some theoretical drawbacks and has no
physical meaning.

Czernik et al. [112] presented a molecular weight-based model for bio-oil aging:

_h{l_M} ke (©)
M

— Mo
where M(t) is the molecular weight at the aging time ¢, Mo is initial molecular weight,

M is the infinite time steady-state molecular weight, and & is the aging rate constant,
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which is dependent on the aging temperature.
k=dAe 't @
where T is the aging temperature, 4 and E are the aging frequency factor and aging
activation energy, respectively. From Equations (6) and (7), the following equation

can be obtained:

M=M,+(M,, —MO)[l—exp(—A-e‘%T r)} )
By fitting the aging experimental data of oak pyrolysis bio-oils at three
temperatures (37, 60 and 90 °C), Czernik et al. [112] obtained the values of M« at
different aging temperatures, and In4 and E: M, 37°c = 930, Mx, 60°c = 950, Mw, 90°c =
980, In4 = 35.1, E = 102 kJ mol’!. Figure 11 shows the change of weight-average
molecular weight of bio-oil at different aging temperatures based on the kinetic model
with the given parameter values above. From Figure 11, it can be observed that the
molecular weight of bio-oil increases with increasing aging time, and high temperatures

favor the increase of molecular weight.
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Figure 11. Variation of weight-average molecular weight with aging time at different
aging temperatures for oak bio-oil aging (aging model (7) with parameters from Ref.

[112))

Zhang et al. [117] successfully employed the above molecular weight-based model
to analyze the aging kinetics of bio-oil from poplar wood pyrolysis at different aging
temperatures and presented an advanced procedure for bio-oil aging kinetic modeling
by simultaneously considering the experimental data at various aging temperatures and

using the pattern search method (see Figure 12).
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Figure 12. Aging kinetic analysis using molecular weight-based model for bio-oil
from poplar wood pyrolysis (reprinted from Zhang et al. [117] with permission of

American Chemistry Society)

The carbonyl groups are the most reactive species in bio-oils, but its amount
gradually decreased during bio-oil aging which correlates with the increased viscosity
and molecular weight [120]. Black and Ferrell [121] considered that the total carbonyl
content is a much better metric for tracking bio-oil aging, as it has a significantly lower
measurement variability, and can also be applied to samples that have phase separated.
However, there is no aging kinetic model to describe the variation of total carbonyl
content with time during bio-oil aging. According to the changing trend of the carbonyl
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content, the following carbonyl-based aging kinetic model has been proposed in this

review:

C(t)=G,—(G,-C,)(1-e™) )

where C is the carbonyl content, Co and C. are the initial carbonyl content and the
carbonyl content at the aging steady-state, m is the aging rate constant. The curves
predicted by the above carbonyl based aging kinetic model are also plotted in Figure
13, where it is suffice to verify that the proposed model can fit the experimental data

obtained from Oasmaa et al. [120] sufficiently well.

- oty aging of pine bio-oil 1 - ity aging of pine bio-oil 2
_m e aging temperature: 80 °C _CD feln aging temperature: 80 °C
g 0404 2 0404 ™8
E’ 0.354 é 0.354
I= =
L 0.304 28 0.304
= =
8 0.25 = 3 0.25 ;
= C,=0.210 mmol g ) C_=0.165 mmol g
£ 0.204 m = 4.705x10% h” 5 020+ m=2.943%107 p’
< 0.15 s 0.15
m = R =0.9939 a R = 0.9907
0.10+ T T T T T 0.10+ T T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 60
aging time (h) aging time (h)

Figure 13. Comparison between aging experimental data of pine bio-oils and
carbonyl based aging kinetic modelling (experimental data taken from Oasmaa et al.

[120])

There are many aging kinetic models developed to describe the aging kinetics of
petroleum-derived bitumen, which consider the effect of the aging time, aging
temperature, gas pressure, and diffusion on aging [139]. Some kinetic models for bio-

oil aging have been proposed, but most of them are empirical models and only consider
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the effect of temperature and period on aging. In the future, those bitumen aging kinetic
models can be employed to analyze the aging kinetics of bio-oil aging since the heavy
fractions of bio-oil has the potential to use as bio-bitumen and has the similar aging
kinetic behaviors. And more parameters can be considered in the kinetic modeling of

bio-oil aging, for example, water content, solid and char content, and pH value.

5 Approaches to slowing bio-oil aging

Bio-oil aging is one of the key problems that limit its upgrading and application
[66, 68, 146, 147]. Slow and unstable combustion has been observed against an
increased viscosity and phase separation of bio-oil [93, 94]. The performance and
emission results from the use of aged bio-oil in a direct-injection diesel engine showed
that it would deteriorate engine performance and increase emission levels at the exhaust
[123]. The change in bio-oil properties over time would need adjustments to fuel
feeding and to inject system and changes in operational conditions for using in a
combustor [148, 149]. The properties of the liquid fuel for commercial energy use
should be constant during storage at ambient temperature for at least 6 months [68].
Currently, bio-oils without upgrading can’t meet the above requirement. Besides, the
heavy fractions of bio-oils have the potential to substitute some fractions of the bitumen
which is the binder in asphalt for road surface construction [40]. Bio-oil aging during
storage results in the increased amount of high-molecular-weight fractions, and increase
the adhesive properties of bio-oil. After that improve the applicability of those fractions
used as bio-binders. Therefore, heat pre-treatment of bio-oils has been used by several
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researchers to use as a binder [150-153]. It is critical to develop practical approaches to
slowing down bio-oil aging rate and maintaining the stability of bio-oil during storage
and transportation based on the understanding of bio-oil aging mechanisms and kinetics
[154]. The keys to slow down bio-oil aging rate are associated with the following
mechanisms [55, 69]: (a) reducing viscosity (e.g., solvent addition), (b) eliminating the
highly reactive components (e.g., converting reactive aldehydes into moderate weight
and less reactive compounds), (c) mild modifying bio-oil to reduce its reactivity and
acidity (e.g., converting organic acids in bio-oil to low molecular weight esters); (d)

removing solid char residue [54,157].

5.1 Solvent addition

The addition of less viscous solvents, such as methanol, ethanol, and acetone,
combats the polymerization of reactive species and, therefore, retards increasing the
viscosity and aging rates of bio-oil [69, 70, 110, 155]. The reactive molecules of bio-
oil, like organic acid and aldehyde, react with methanol or ethanol known as
esterification and acetalization and are converted to esters and acetals, respectively (see

Figure 14).
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Figure 14. Esterification and acetalization between bio-oil component and alcohol

([156])

Bio-oil from Calophyllum inophyllum deoiled seed cake was mixed with 10%
(w/w) methanol to reduce the aging rate, and it has been found that the addition of
methanol reduces the aging rate to 0.04 and 0.13 ¢St h! for thermal and oxidative aging
and improves the stability of bio-oil by decreasing the viscosity [157]. To investigate
the impact on the viscosity of bio-oil water contents as high as 30 wt % and methanol
as high as 10 wt % were added to a hardwood bio-oil and found that the viscosity was
lowered from 76 cP to 12 cP with 30% water and 10% methanol at 25°C while methanol
was slightly more effective than water [158]. Oasmaa et al. [159] investigated 2, 5, 10,
and 20 wt % ethanol to a hardwood bio-oil. The bio-oil's initial viscosity decreased
from 50 ¢St to 10 cSt at 50 °C with 20% ethanol. After aging at 50 °C for as long as 7
days, the neat bio-oil's viscosity increase was 3.5 c¢St/day compared to 0.4 cSt/day for
a mixture of 5 wt % ethanol in bio-oil, for a reduction in the aging rate by a factor of
8.5. Diebold and Czernik [110] investigated bio-oil by adding 10 wt % methanol,
ethanol, acetone, ethyl acetate, a 1/1 mixture of acetone and methanol, or a 1/1 mixture
of methanol and methyl iso-butyl ketone. The study reported that the initial viscosities
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decreased from 30 cP to about 15 cP at 40°C for the bio-oil/solvent mixtures. These
experiments were carried out at 90 °C to investigate the ability to preheat the stabilized
bio-o0il before combustion and reduce the amount of time required for aging studies.
The viscosities for the bio-oil/solvent mixtures and aged neat bio-oil varied linearly
with time. Methanol was found as one of the most influential and cheapest organic
solvents to reduce the rate of viscosity while the aging rate was reduced by 17 with 10%
methanol, compared to the neat bio-oil aged at the same temperature. Among several
alcohols, like methanol, ethanol, and isopropanol used in bio-oil stability, methanol is
the most effective to reduce the aging rate of bio-oil because methanol has high
extractability in compare with ethanol. Additionally, methanol and its polarity work on
a vast number of phytochemicals including polar and non-polar compounds [160]. Bio-
oil with a compound additive including 1.0 wt.% methanol, 5.1 wt.% dimethyl furan
(DMF), and 1.94 wt.% acetone has found with low moisture and viscosity, and high pH
after aging at 80 °C for 24h [161]. After aging, the relative proportion of sugars and
esters significantly increased, but a number of reactive species, mainly 2-ethoxy-5-(1-
propen-1-yl) and 5-hydroxy-2-methylbenzaldehyde were utterly disappeared in bio-oil.
The addition of ethanol and ethyl acetate at a mass ratio of 1:1 can significantly improve
the stability of the fractional bio-oil from the pyrolysis of rice husk according to Yi et
al. [162]. The addition of solvent increases bio-oil stability by the following
mechanisms [157, 163]: (1) reaction with active species in bio-oil to produce low
molecular weight ester compounds and acetal-based compounds and prevent the
generation of large-chain polymers, (2) decreasing the concentration of reactive species
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or changing the microstructure of reactive components, and (3) physical dilution of bio-
oil without affecting any chemical reactions.

Moreover, the selection of efficient solvent is the key challenges towards the large
implication of bio-oil. It is worth pointing here that the stored oil mustn’t be exposed to
high temperature for a long duration as it leads to influence the viscosity and acidity of
bio-oil. However, based on the above scrutiny, it can be stated that to improve the bio-

oil stability, solvent addition is an efficient approach compared to other techniques.

5.2 Fraction separation

Bio-oil is a complex chemical mixture containing various chemical functional
groups with different chemical composition and physicochemical properties and can be
divided into several fractions (Table 6). Fraction separation is one of the effective
mechanism of bio-oil due to its ability to avoid the interaction between those fractions
once it is separated into several fractions [46, 164]. Different approaches have been
previously used to separate crude bio-oils, of which the standard methods for the

separation of bio-oil fractions are liquid-liquid extraction and distillation [46].

Table 6. Major fractions of bio-oil [122]

Fraction of Chemical composition Typical properties

bio-oil

Hydrophilic Water » High oxygen
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fraction

Hydrophobic

fraction

Co-solvent

fraction

Anhydrosugars, polyols, and compounds

containing multiple hydroxyl groups

Lignin decomposition products along

with some extractives (e.g., fatty acids

and resin acids)

Ci1-Cs oxygenated molecules containing

aliphatic and aromatic acids, aldehydes,

ketones, alcohols and phenols

content
Immiscibility
with mineral oils
High density and
viscosity

Poor storage
stability

Acidity

Poor thermal
stability

Solubility

5.2.1 Liquid-Liquid extraction

The addition of water and an organic solvent to bio-oil can enhance the separation
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and extraction of different fractions [165, 166]. There are two liquid-liquid extraction
methods: sequential and combined extractions. The steps of sequential extraction
include: 1) adding water into crude bio-oil; 2) centrifuging mixture of crude bio-oil and
water to obtain aqueous phase and organic phase; 3) adding selected solvent into
organic bio-oil phase; 4) centrifuging mixture of organic bio-oil and selected solvent to
obtain solvent-insoluble phase and solvent-soluble phase. For combined extraction,

both water and organic solvent are mixed with crude bio-oil, and the mixture is
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centrifuged to get a water phase, solvent-insoluble phase, and solvent-soluble phase at
the same time. The sequential and combined liquid-liquid extractions are presented in

Figure 15.

Crude bio-oil

Water addition

phase

Solvent addition

(b) Crude bio-oil

(a)

\ 4

Combined water and
solvent addition

Solvent-soluble
bio-oil phase

Solvent-insoluble
bio-oil phase

‘ Solvent-insoluble

‘ Solvent-soluble
bio-oil phase

bio-oil phase

Figure 15. Separation of bio-oil fractions. (a) sequential extraction and (b) combined
extraction (reprinted from Park et al. [167] with permission of American Chemistry

Society)

Two different types of liquid-liquid extraction of bio-oil based on the polarity and
acidity of bio-oil fractions are shown in Figure 16. The choice of the organic solvent
for liquid-liquid extraction of bio-oil is mainly dependent on its immiscibility with
water to facilitate separation and its efficiency in extracting the expected components
[167]. The polarity of solvent is an important parameter to consider in selecting
appropriate solvents. In general, polar solvents are more suitable for the extraction of
bio-oil considering the abundance of polar components in bio-oil [168], which was

confirmed by the study on successive extractions of bagasse pyrolysis bio-oil using
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solvents with different polarity by Garia-Preze et al. [169]. The liquid-liquid extraction

of bio-oil and its phase stability is usually investigated by using the ternary phase

diagram [71, 170-172], a handy tool to study liquid-liquid phase equilibrium. Table 7

summaries the studies on the liquid-liquid extraction of bio-oil fractions.

a)

Pyrolysis Oil
1. N-Hexane extraction

] N-Hexane Soluble ‘ | N-Hexane Insoluble
Extractive derived compounds

Water Soluble
4. Diethyl ether extraction

2. Cold Water Precipitation (1:10)

Waterinsoluble
3 CH,CL, washing

| Ether soluble | | Etherinsoluble | ‘ CH,Cl; soluble ‘ CH,Cl, insoluble
Aldehyde, ketones, Meono and Oligo- Low Molecular High Molecular
mono-phenols anhydrosugars, Mass (LMM) Lignin Mass (HMM)
Hydroxyl Acids Lignin
b) Pyrolysis oil
1. Ethyl Acetate extraction

| Ethyl Acetate Soluble | ‘ Ethyl Acetate Insoluble

; 2. Five stepsalkaline extraction

) |

A 2 A4
Ethyl Acetate layer ‘ { Basic Aqueous phase ‘
3. Acidificationto pH 6
4. Five Ethyl Acetate Extractions
' |
Ethyl Acetate layer rich in | Aqueous layer ‘
Phenols

Figure 16. Two common schemes used for liquid-liquid extraction of bio-oil based (a)

polarity and (b) acidity (reprinted from Pinheiro et al. [46] with permission of

American Chemistry Society)

In general, liquid-liquid extraction can be used for separating bio-oil into an

aqueous bio-oil phase and an organic phase. The aqueous bio-oil phase can be used to

produce hydrogen by microbial electrolysis [173] or catalytic reforming [174, 175], and
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901  to obtain value-added chemicals (e.g., phenols and organic acids) [176, 177]. The

902  organic phase is usually used for obtaining value-added chemicals and fuel additives

oNOYULT B WN =

9 903  [178].
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5.2.2 Distillation

Another method for the separation of bio-oil fractions is distillation, which is also
used for the bio-oil chemical characterization and water removal [186]. It is widely used
in petroleum refining, which likely makes it an incidental candidate for industrial-scale
bio-oil fractionation [168].

Distillation can be ascribed as a heating process of liquid until it boils, then
condensing and collecting the resultant hot vapors. There are various methods of
distillation: fractional distillation, vacuum distillation, steam distillation, and molecular
distillation. Fractional distillation can separate components having different boiling
points from each other [168]. Vacuum distillation works under pressure to lower the
boiling points separating components at lower temperatures and prevent possible
decomposition of some components [187, 188]. Steam distillation uses steam to reduce
the partial pressure of substance operating at temperatures lower than the usual boiling
points of components [189]. Molecular distillation uses reduced pressures to separate
components without the pressure exerted by the gaseous phase, which is used for the
separation of thermally unstable substances [190].

Different distillations were used for the separation of bio-oil fractions. For the
atmospheric and vacuum distillation of bio-oil derived from corn stover, water,
aromatic and oxygenated compounds are concentrated in both light and middle
fractions, whereas the phenolic compounds are distributed only in the heavy fraction
[191]. For the distillation of microalgae pyrolysis bio-oil at both atmospheric and
vacuum pressures, bio-oil was fractionated into three fractions: the light fraction
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showed a significant reduction in acidity and viscosity and contained most aromatic
compounds, and the middle fraction has the highest yield [192]. Vacuum distillation can
achieve cleaner separation of bio-oil fractions compared with atmospheric distillation.
Continuous and atmospheric distillation was suggested for fractionating
chemicals(benzene, toluene, and xylene) from partially deoxygenated pyrolysis oils
[193]. Steam distillation can be used to fractionate a phenol-rich fraction from bio-oil
derived from woody biomass pyrolysis, resulting in thermally stable fractions [194].
Molecular distillation can efficiently separate the bio-oil fractions at low temperatures
to minimize thermal decomposition, and different fractions of bio-oil can be enriched

with various chemical families by molecular distillation (see Figure 17) [195].

; Steam reforming,

Bio-oil Light ﬁaclion ng&m Loy

| Cambiflommiong: o

Catalyiic esterification,

— oH %) ! Hydrotreatment
Middle fraction : k@
= J\u ( 7“’ H

: -

E Extraction Fermentation Hydrotreatment

Molecular distillation

Figure 17. Separation of bio-oil fractions by molecular distillation (reprinted from

Wang et al. [195] with permission of Elsevier)

Distillation process is efficient only when the contained compound of bio-oil
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having different boiling temperature. Implication of this process will not be effective
when the bio-oil compound having similar boiling point. And the bio-oil compound is
largely influenced by several factors like temperature, heating rate and catalyst. Hence,
before chose any upgrading process a regression model including those influencing

factors needs to pay utmost attention.

5.3 Emulsification

Emulsification of bio-oil with some chemicals or other fuels (like diesel or bio-
diesel) is another efficient, easy, and inexpensive approach to decrease the bio-oil aging
rate. In emulsification, two immiscible liquids are subjected to mix in the presence of
an emulsifying agent or surfactant, which makes a monolayer interface onto immiscible
liquid droplets with sufficient mechanical strength to avoid the phase separation as well
coalescence of droplets [33, 196]. However, the quality of mixture largely depends on
the ratio of liquid, agitation intensity, surfactant concentration, and operation
temperature [197]. The hydrophilic-lipophilic balance (HLB) depends on chemical
structure and surfactant properties which is an essential parameter for choosing
emulsifier. Lipophilic surfactant is featured by low HLB value, whereas a higher HLB
value for hydrophilic surfactant. Usually, surfactants with HLB values of 4-8 are used
in water-in-oil emulsification while surfactants with HLB values of 9-12 used in oil-in-
water emulsification [198]. According to Zhang et al. [199], direct emulsification of
bio-oil and crude glycerol via ultrasound and mechanical agitation can improve the
stability of bio-oil, and the aged crude glycerol/bio-oil emulsion fuel showed only
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minor changes [199]. In recent studies, emulsification of bio-oil with diesel or bio-
diesel has been gained much attention in bio-oil stability, and a number of emulsifiers,
such as span 20, span 60, span 80, span 80 with n-butanol, n-pentanol, n-hexanol, n-
heptanol and n-octanol, and span 100 have been used in the emulsification of bio-oil
with diesel [141, 200-202]. Emulsification of bio-oil with 60 vol.% of bio-diesel
revealed that viscosity of mixture increased between first 10 and 60 h due to the
production of high molecular weight compounds and then gradually decreased up to
180 h [203]. Ultrasonic and ultrasonic-mechanical emulsification was applied to
prepare emulsion of bio-oil with conventional diesel with a mass ratio of bio-oil: diesel:
emulsifier of 10:85:5. The stability of bio-oil and diesel emulsion was longer rather than
an emulsion of different bio-oil fractions [204]. The emulsification mechanism model

for bio-oil and diesel has been presented in Figure 18.

& — Emulsifier B — Waber & —— Soall molecules

Figure 18. Mechanism of emulsification for bio-oil and diesel (reprinted from Guo et

al. [204] with permission of Elsevier)

Typically, bio-oil contains 23.30 wt.% water, small oxygenates, and large

molecular sugar derived oxygenates. In the presence of an emulsifier, water in bio-oil
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exerts strong emulsifying capacity with diesel compared to small molecular oxygenates.
Sugar derived oxygenates do not undergo emulsification with diesel alone. Ultrasonic
and ultrasonic-mechanical emulsification result in some special structural units from
bio-o0il components, and the existence of structural units promote the stability of crude
bio-o0il emulsion. Emulsifying bio-oil from rice husk with diesel using a mixer of
emulsifiers of Span 20 (20wt.%), Span 80 (20wt.%) and Span 100 (60wt.%) results in
improved anti-wear, friction-reducing, and extreme pressure of emulsion [200]. In the
bio-oil stability study through emulsification of ether-extracted bio-oil (EEB) and diesel,
it could be observed that EEO/diesel emulsion is stable without phase separation up to
40 days [196]. Similarly, emulsion from wood pyrolysis oil and methyl ester of Jatropha
has been suggested to use as the alternative fuel in diesel engine [205]. Therefore,
emulsification of bio-oil and other petroleum fuels could be suggested to reduce the
aging rate and promote bio-oil stability during the storage, transportation, and
application stage.

On the other hand, redundant chemical transformations are not necessarily
required for all instance of the emulsification process. Still, energy consumption input
and high cost and cannot be neglected. The accompanying corrosiveness and the
subassemblies are inevitably serious to the engine. Based on the above findings it is
necessary to control the erosion that takes place at certain parts of the diesel engine at
the time of operation. Therefore, to solve the key problems associated with bio-oil
during feeding, storage, and combustion stage multiphase nature of bio-oil is crucial to
take into account for future.
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5.4 Removal of solids, water, and light volatiles

The solid content in bio-oil includes incompletely separated coke, char, ash, and
impurities from biomass or attained during collection and storage of bio-oil, and the
amount is less than 1wt.% [163]. However, a higher fraction of solid is another reason
for bio-oil instability because metal ions, like sodium, potassium, calcium, and
magnesium present in the solid fraction may catalyze polymerization and condensation
of reactive species and consequently increase the viscosity of bio-oil [69, 206]. Besides,
char in bio-oil may offer plenty of catalytic sites for promoting some reactions [207].
Ortega et al. [126] also found that bio-oil with char-free characteristics showed slow
aging rate. Elliott et al. [54] led the [EA Round Robin study on long-term aging of bio-
oils and also found that the storage of a filtered bio-oil can minimize the amount of
change in viscosity. However, several approaches, such as cyclone separator, hot gas
vapor filtration, microfiltration, and nano-filtration have been studied to separate the
solid and reduce its content in bio-oil [208]. Cyclone separator is not practical to trap
very fine particles (<10um). Hot gas filtration can efficiently reduce the solid content
in bio-oil and thereafter improve the stability of bio-oil [209]. Generally, two filter
elements, namely porous sintered stainless-steel and sintered ceramic power are used
in hot gas vapor filtration, and viscosity increase rate of bio-oil is only one-tenth
compared to the cyclone system. On the other hand, microfiltration and nano-filtration
have been found promising to remove char particles in size less than 10pm from bio-
oil [113, 210]. However, a fraction of minerals is solubilized due to high pH of bio-oil,
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which cannot be removed by filtration, and solubilized minerals might be related to
aging-related instability [134].

Also, the quality of bio-oil can be improved by removing water and reducing the
light reactive volatiles in bio-oil by evaporation, especially in homogeneity, viscosity,

and stability [143].

5.5 Mild hydrogenation

The presence of oxygenated compounds in bio-oil is another influencing factor for
bio-oil aging [211, 212]. Therefore, the removal of oxygenated compounds can improve
bio-oil stability by mild hydrogenation. Mild hydrogenation is the hydrodeoxygenation
(HDO) process of bio-oil at a mild temperature using catalysts under high hydrogen
pressure [213-218].

A series of C-C, C-O-C, and C-OH bond cleavage and hydrodeoxygenation
reactions expel the oxygen in the form of water during hydrogenation [219, 220]. The
produced alcohol undergoes further esterification with carboxylic acid. During
hydrogenation of carboxylic acids in bio-oil, it undergoes two major reaction pathways
as follows: (1) decarbon(x)ylation with formation of alkanes, and (2)
hydro(deoxy)genation to produce aldehyde, alcohol, alkene, and alkanes [221, 222].

In literature, the studies on mild hydrogenation for bio-oil stabilization are focused
on (1) hydrogenation of bio-oil model compound, (2) catalytic hydrogenation of bio-
oil, and (3) electrocatalytic hydrogenation of bio-oil. To pull in polymerization and
following catalyst deactivation stabilization of mild methods are crucial. Homogenous

67

ACS Paragon Plus Environment



oNOYULT B WN =

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

Energy & Fuels

catalytic hydrotreatment of pyrolytic oil at low temperature (e.g., <100 °C) and low
pressure (10-30 bar) of hydrogen has also been scrutinized as a mild stabilization
method.

Hydrogenation of propionic acid (a bio-oil model compound) over a Ni-Cu
catalyst was studied for bio-oil stabilization [216]. Similar to carboxylic acid,
decarbonylation of propionic acid produce ethane. Hydrogenolysis of C-O bond in
propionic acid produces propionaldehyde, which followed by hydrogenation to 1-
propanol. The dehydration of propanol produces propane, then converts to propene
through hydrogenation. The stabilization of woody bio-oil can be achieved by the mild
hydrogenation over Ru/TiOz catalyst at 120 — 160 °C [217]. Catalytic hydrogenation
can remove some reactive species in bio-oil through some reactions, which is an
efficient way to stabilize bio-oil (see Figure 19). Electrocatalytic hydrogenation was
considered a new approach for bio-oil stabilization [218]. After electrocatalytic
hydrogenation treatment, aldehydes and ketones in bio-oil are converted to their
corresponding alcohols, which can stabilize bio-oil against polymerization. Besides the
stabilization of bio-oil, valuable products (such as ethylene glycol and propylene glycol)
and hydrogen are produced during electrocatalytic hydrogenation. Electrocatalytic
hydrogenation provides a dynamic way of approach to a certain extent of upgrading

water-soluble pyrolysis oil into durable fuel intermediates and chemicals.
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(Sugars, sugar anhydrides —bPonoI?
Aldehydes, Ketones == Alcohols
Phenolics == Cycloalkanols
Acetic Acid == CH,, CO,, Alcohol

) Fuel
Hydrogenation 4 HDO
m) Stabilized
Bio-oil

Bio-oil 120-160°C, H,

Figure 19. Stabilization of woody bio-oil by catalytic mild hydrogenation (reprinted

from Wang et al. [217] with permission of American Chemical Society)

Mild hydrogenation can result in a lower fraction of chemically unstable
compounds, oxygenates and water content, and therefore, slow down the aging rate of
bio-oil and improve its stability. Despite having an advantage of reducing bio-oil
oxygen content, mild hydrogenation may result in a significant decrease of liquid yields

and appears to be a cost-effective technique.

5.6 Other approaches

A number of antioxidants, like butylated hydroxyanisole (BHA), and tert-
butylhydroquinone (TBHQ) have been studied which improved the stability of bio-
diesel [223, 224]. Despite using antioxidants in bio-diesel stability, a few studies on
bio-oil stability with antioxidants can be found in past years. The addition of
antioxidants to the bio-oil increases the oxidative stability and slow down the aging rate
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of bio-oil [225]. To improve the overall oxidative stability of bio-oil, three different
antioxidants, = namely  propyl  gallate, tert-butyl  hydroquinone, and
butylatedhydroxyanisole were added to bio-oil in 1000 ppm concentration where the
addition of antioxidants was found to slow down the bio-oil aging rate [226]. Several
studies have been focused on the antioxidant activity of bio-oil due to a fraction of
phenolic compounds [227-230], but that is not enough for its stabilization. The reaction
chemistry in bio-oil stabilization upon the addition of antioxidants remains as a scope
of study.

Bio-oil comes in contact with air during collection as it is produced in the absence
of air. Oxidation of bio-oil produces peroxide that promotes the polymerization of
olefins [231]. A small amount of air locates in the headspace of bio-oil jar which does
not improve the aging rate [55]. However, access to air to bio-oil should be limited to
retard the increase in viscosity as well as the aging process.

In closing, based on above-discussed techniques to slow down the bio-oil aging
solvent addition and mild hydrogenation is aroused as practical techniques, although
they both have some challenges to overcome. It is necessary pointing here that selection
of appropriate and efficient solvent is the key challenge to work. In contrast, mild
hydrogenation is the cost-effective approach, while a significant decrease of liquid yield

is the main limitation to research on further to overcome these challenges.

6 Conclusions and outlook

Bio-oil from the pyrolysis of lignocellulosic biomass can be used as a liquid fuel
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to substitute petroleum-derived fuels and a feedstock for the production of chemicals.

However, there are challenges in utilizing bio-oil due to its low quality and instability

caused by aging. The profound understanding of bio-oil aging is required for its storage,

handling, transportation, upgrading and application. The summaries of this review and
the recommendations for future research on bio-oil aging are as follows:

» Bio-oil has complex chemical composition, physicochemical properties, and
multiphase behavior.

» There are several aging indicators of which the change in viscosity, molecular
weight, and carbonyl content are commonly used to characterize the degree of
aging during storage. In addition, the change in water content, acidity, heat
generation, and free radicals can be considered in future research.

» There are two types of aging test methods: long-term (natural) aging and
accelerated aging. The accelerated aging test can quickly determine the change in
viscosity during aging. However, it cannot replace long-term aging test because of
their different reaction mechanisms. The apparatus and test procedures for aging
tests of bio-oil should be standardized and can be referred to the corresponding
standard methods for testing the aging behaviors of petroleum-derived bitumen.

» Bio-oil contains reactive chemical functional groups and free radicals. Some
reactions, including polymerization, condensation, esterification, and oxidation,
likely happen between the chemical compounds in bio-oils. Moreover, air oxidation
of alcohols and aldehydes in bio-oil and autoxidation of some bio-oil components
to form acids, and hydroperoxides and alkylperoxides are other mechanisms of bio-
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oil aging.

The kinetic behaviors of bio-oil with prolonged aging time can be described by the
aging kinetic models based on the form of an exponential function of aging time
and temperature. In the future research on the aging kinetics of bio-oil, the kinetic
models for bitumen aging are suggested to address more parameters.

Main approaches to slow bio-oil aging include the reduction of viscosity by
solvents addition, fractions separation, and emulsification with bio-diesels, the
removal of char by filtration, and microfiltration, the removal of light volatile
components by evaporation, and the removal of reactive functional groups by mild
hydrogenation. On the recovery of organic solvents and emulsification surfactants
is crucial for further research. Although mild hydrogenation for reducing the
oxygen content in bio-oil and improving bio-oil stability has been proposed, yet it
significantly decreases the yields of target products because of uncontrollable
product selectivity, thus it is economically unavailable at the current stage. Future
studies might be paid more attention to develop combined processes with catalytic
technologies to make the target product more selective and produce more stable
bio-oil with controlled components.

The techno-economic analysis is a timely approach to know the process and
product feasibility, and it involves capital cost, operating cost and minimum fuel
selling price. Unfortunately, techno-economic analysis research directly involved
with bio-oil aging is limited in the available literature. Generally, stabilization or
upgrading of bio-oil incurs high capital cost. Aging process of bio-oil will add an
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additional cost in the process in order to have stable bio-oil or store the bio-oil for
a long period without its quality deterioration as the aging itself an upgrading
process. Therefore, it is a matter of urgent to take into account the techno-economic

analysis of bio-oil aging for further study.
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