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Abstract

Previous research has highlighted the role of glutamate and gamma-aminobutyric acid

(GABA) in learning and plasticity. What is currently unknown is how this knowledge trans-

lates to real-life complex cognitive abilities that emerge slowly and how the link between

these neurotransmitters and human learning and plasticity is shaped by development. While

some have suggested a generic role of glutamate and GABA in learning and plasticity, oth-

ers have hypothesized that their involvement shapes sensitive periods during development.

Here we used a cross-sectional longitudinal design with 255 individuals (spanning primary

school to university) to show that glutamate and GABA in the intraparietal sulcus explain

unique variance both in current and future mathematical achievement (approximately 1.5

years). Furthermore, our findings reveal a dynamic and dissociable role of GABA and gluta-

mate in predicting learning, which is reversed during development, and therefore provide

novel implications for models of learning and plasticity during childhood and adulthood.

Introduction

Glutamate and gamma-aminobutyric acid (GABA) have been highlighted as reliable indices of

cortical excitability and inhibition, and thus critical for the mechanisms of neuroplasticity and

learning [1,2], including development using animal models [3,4]. Moreover, brain excitation

and inhibition levels are thought to be critical for triggering the onset of sensitive periods for

cognitive skill acquisition by shaping plastic responsiveness of underlying neural systems in

response to environmental stimulation [5,6]. Importantly, sensitive periods vary for different

functions, with relatively simple abilities (e.g., sensorimotor integration) occurring earlier in

development, while the sensitive period for acquiring more complex cognitive functions

extends into the third decade of life [5].

Several 1H-magnetic resonance spectroscopy (1H-MRS, henceforth MRS) studies in human

adults have demonstrated the role of glutamate and GABA in plasticity and learning [7–10], in
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neural activity [11,12], and in sensory and cognitive functions [13–17] using basic lab experi-

ments. However, it is unclear whether and how this knowledge on glutamate and GABA can

be applied to more complex human abilities that are slow to emerge. Moreover, it remains to

be determined how the link between these neurotransmitters and human learning and cogni-

tion varies across development, as suggested by animal models [18–20]. In this respect, educa-

tional achievement, such as mathematics (maths), provides a unique cognitive model to

examine these questions due to its protracted skill acquisition period that starts already from

early childhood and can continue for nearly two decades.

Children receive formal mathematical education from their first year in primary school,

and mathematical education can continue into the third decade of age as part of higher educa-

tion. Mathematical achievement (MA), the performance in mathematical tests, is based on

mathematical skills acquisition and is characterized by considerable variability. That is, while

some people find maths intuitive and excel in this topic, an estimated 1 in 5 people is consid-

ered to have difficulties with maths [21,22]. MA is associated with factors that are central to

the welfare of the entire society [23,24], including educational progress [25], socioeconomic

status [26], employment, salary, mental and physical health [22], and financial difficulties [27].

As such, MA is the foundation for a thriving society and an important tool for social mobility

[26,28].

Previous work suggested that cortical plasticity is underlined by developmental changes in

glutamatergic and GABAergic mechanisms, which, in turn, were shown to affect learning and

cognitive skills [17,29], making these neurotransmitters excellent candidates for tracking MA

across development. To this end, we examined the relationship between GABA and glutamate

concentrations in the left intraparietal sulcus (IPS) and the left middle frontal gyrus (MFG),

and MA from the beginning of formal schooling to university. Both left and right frontoparie-

tal regions were shown to underpin mathematical processing [30–33]. However, the left hemi-

sphere has shown more consistent involvement in response to mathematical training and

education [10,34–39]. We, therefore, focused on the left frontoparietal regions to keep the

duration of the study within an acceptable length.

Neural plasticity is a rather general term that can take different meanings (i.e., spanning cel-

lular to larger-scale plasticity) and forms, including the formation and elimination of synaptic

connections, the modification of synaptic weights, and the reorganization of the brain net-

works and connections [40,41]. Since we primarily investigate mathematical skills throughout

development, here we refer to experience-dependent plasticity, which involves lasting neural

changes in response to the environmental input, in this case, formal education [40], and may

be underpinned by LTP-like processes, the induction of which primarily involves glutamate

and GABA [42]. We focused on the IPS and MFG based on neuroimaging studies demonstrat-

ing that mathematical abilities are primarily underpinned by these regions [43–46] and have

demonstrated their role in mathematical learning difficulties, exceptional mathematical abili-

ties, and even in basic numerical processing in nonhuman animals [23,34,37,47–52]. We

employed a cross-sectional and longitudinal design in 255 participants, ranging from primary

school- to university-age. This design allowed us to investigate the link between glutamate and

GABA within the IPS and MFG and MA and whether and how it is shaped from early child-

hood to early adulthood (Fig 1). The longitudinal design allowed us to further examine

whether neurotransmitter concentration is linked to MA as well as predict MA in the future.

Crucially, adopting this design allowed us to discern the selective effect of glutamate and

GABA in response to natural (i.e., learning in school) rather than artificial environmental

stimulation, thus allowing us to test the knowledge gained from lab-based experiments in high

ecological settings. The overall aim of the present study was to examine the capacity of gluta-

mate and GABA within the IPS and MFG in tracking and predicting performance in a
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complex and slowly emerging cognitive ability, MA, and whether these relations are shaped

from early childhood to early adulthood; this aim was achieved.

Results

Neurotransmitter measures and MA

Age moderated the relation between neurotransmitter concentration and MA. Given

the aforementioned aims of our study (i.e., examining learning and achievement across devel-

opment), we specifically focused on glutamate and GABA, and thus, the other extracted neuro-

chemicals were out of the scope of this study (S1 Text). We first examined the association

between MA and glutamate and GABA concentrations, and whether such relations are moder-

ated by age, which was indeed the case. In particular, the glutamate concentration in the IPS

was negatively associated with MA in younger participants but positively associated with MA

Fig 1. Information about the scanning and cognitive sessions and neurochemical spectra plots. (A) Scanning and (B) cognitive sessions were completed

both during Time 1 and Time 2 (approximately 1.5 years later) in each of the 5 age groups (6-year-olds, 10-year-olds, 14-year-olds, 16-year-olds, and 18+-year-

olds). The mean spectra from our sample at Time 1 for the (C) MFG and the (D) IPS. The thickness corresponds to ±1 SD from the mean (chemical shift

expressed in ppm, in x-axis). (E) Fit spectra for glutamate (black) and GABA (red) (For the spectra for each of the age groups separately, see S1 Fig). The data

underlying this figure can be found in S1 Data. GABA, gamma-aminobutyric acid; IPS, intraparietal sulcus; MFG, middle frontal gyrus; ppm, parts per million;

SD, standard deviation.

https://doi.org/10.1371/journal.pbio.3001325.g001
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in mature participants (Fig 2A, β = .13, t(225) = 4.54, standard error (se) = .03, PHC0 < .0001,

R2
ADJ = .85, dR2

ADJ = .01). In contrast, the opposite relationship was found in the same region

with GABA, which was positively associated with MA in younger participants but negatively

associated with MA in mature participants (Fig 2B, β = −.14, t(224) = −5.39, se = .03, PHC0 <

.0001, R2
ADJ = .85, dR2

ADJ = .01). Concerning the MFG, glutamate concentration was nega-

tively associated with MA in younger participants but positively associated with MA in mature

participants (Fig 2C, β = .11, t(220) = 3.59, se = .03, PHC0 = .0004, R2
ADJ = .85, dR2

ADJ = .01).

Contrary to the IPS, age did not moderate the relationship between GABA concentration and

MA in the case of MFG (Fig 2D, β = −.02, t(215) = −.58, se = .03, PHC0 = .56, R2
ADJ = .84,

dR2
ADJ = .00).

The associations above are not domain-general: MA versus general cognitive ability.

We then examined whether our findings were, or were not, domain-general by controlling for

general cognitive ability, using matrix reasoning. All the reported results in the case of the IPS

remained significant (glutamate�age: β = .09, t(221) = 3.33, se = .03, PHC0 = .001; GABA�age: β
= −.12, t(220) = −5.21, se = .02, PHC0 < .0001). For the MFG, the results were significant for

glutamate (glutamate�age: β = .07, t(216) = 2.45, se = .03, PHC0 = .015) and not for GABA

(GABA�age: β = −.03, t(211) = −.9, se = .03, PHC0 = .37). Overall, these results highlighted that

Fig 2. The moderating role of age in the relation between neurotransmitter concentration and MA at Time 1 (A–D) and at Time 2 (E–H). To depict the

interaction between the continuous variables (age and neurotransmitter concentration), we plotted the regression lines for ± 1 SD from the mean age [53].

Dark color concerns +1 SD above the mean, while light color concerns −1 SD below the mean. The average color represents the mean. (A) Glutamate�age and

(B) GABA�age in the left IPS at Time 1. (C) Glutamate�age and (D) GABA�age in the left MFG at Time 1. (E) Glutamate�age and (F) GABA�age in the left IPS

at Time 2. (G) Glutamate�age and (H) GABA�age in the left MFG at Time 2. The shaded area represents 95% confidence intervals. The data underlying this

figure can be found in S2 Data. GABA, gamma-aminobutyric acid; IPS, intraparietal sulcus; MA, mathematical achievement; MFG, middle frontal gyrus; SD,

standard deviation.

https://doi.org/10.1371/journal.pbio.3001325.g002
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the moderating role of age on the relation between IPS GABA and glutamate and MFG gluta-

mate and MA is not confounded by general cognitive ability and thus are not domain-general.

Regional and neurotransmitter specificity. To examine the regional as well as neuro-

transmitter specificity of the IPS glutamate�age and GABA�age in predicting MA, we used a

regression model that included all 4 neurotransmitter measures (neurotransmitters (GABA/

Glutamate) × region (IPS/MFG)) and their interactions with age, as well as the corresponding

main effects. Again, GABA and glutamate interacted with age in the IPS (glutamate�age: β =

.11, t(204) = 3.89, se = .03, PHC0 = .0001; GABA�age: β = −.14, t(204) = −5.68, se = .02, PHC0 <

.0001), and glutamate (glutamate�age: β = .08, t(204) = 2.87, se = .03, PHC0 = .005), but not

GABA (GABA�age: β = .02, t(204) = .75, se = .03, PHC0 = .46), interacted with age in the MFG.

Therefore, we showed that IPS glutamate and GABA and MFG glutamate had unique contri-

butions when interacting with age in explaining individual variation in MA.

Replication of the results at Time 2. We then examined whether the associations we

detected at Time 1 are replicated at Time 2. First, we replicated our main finding showing that

age moderated the relation between neurotransmitters and MA (Fig 2E, IPS glutamate�age:

β = .17, t(159) = 4.47, se = .04, PHC0 < .0001, R2
ADJ = .81, dR2

ADJ = .02; Fig 2F, IPS GABA�age:

β = −.15, t(159) = −3.84, se = .04, PHC0 = .0002, R2
ADJ = .81, dR2

ADJ = .02; Fig 2G, MFG glutama-

te�age: β = .16, t(153) = 3.53, se = .05, PHC0 = .001, R2
ADJ = .80, dR2

ADJ = .02; Fig 2H, MFG

GABA�age: β = −.08, t(153) = −2.50, se = .03, PHC0 = .0135, R2
ADJ = .79, dR2

ADJ = .00). Second,

we replicated these results even after controlling for the matrix reasoning in the case of IPS

(glutamate�age: β = .14, t(158) = 3.64, se = .04, PHC0 = .0004; GABA�age: β = −.11, t(158) = −2.64,

se = .04, PHC0 = .009) and MFG (glutamate�age: β = .12, t(152) = 3.14, se = .04, PHC0 = .002;

GABA�age: β = −.05, t(152) = −1.41, se = .03, PHC0 = .16). Third, we found that our results were

regionally and neurotransmitter specific to the IPS. GABA and glutamate in the IPS, but not MFG,

explained unique variance of MA (IPS glutamate�age: β = .14, t(143) = 3.16, se = .04, PHC0 = .002;

IPS GABA�age: β = −.14, t(143) = −3.38, se = .04, PHC0 = .001; MFG glutamate�age: β = .08, t(143) =

1.43, se = .05, PHC0 = .15; MFG GABA�age: β = −.04, t(143) = −1.21, se = .03, PHC0 = .23).

Neurotransmitter measures and future MA

We then examined whether neurotransmitter concentrations can predict future MA approxi-

mately 1.5 years later.

We examined whether age at Time 1 moderates neurotransmitters’ effect at Time 1 on

future MA as assessed at Time 2. This was the case especially for the IPS (Fig 3A, glutamate�-

age β = .14, t(150) = 3.64, se = .04, PHC0 = .0004, R2
ADJ = .81, dR2

ADJ = .02; Fig 3B, GABA�age:

β = −.16, t(149) = −4.45, se = .04, PHC0 < .0001, R2
ADJ = .81, dR2

ADJ = .02), although we also

found the involvement of the MFG glutamate but not the MFG GABA (Fig 3C, glutamate�age:

β = .14, t(147) = 3.13, se = .04, PHC0 = .002, R2
ADJ = .80, dR2

ADJ = .01; Fig 3D, GABA�age: β =

.02, t(143) = .55, se = .04, PHC0 = .6, R2
ADJ = .78, dR2

ADJ = .00).

Further analysis that included all the neurotransmitters in the regression model indicated

that these results are regionally and neurotransmitter specific to the IPS and that GABA and

glutamate predicted unique variance in future MA (IPS glutamate�age: β = .14, t(130) = 3.33,

se = .04, PHC0 = .001; IPS GABA�age: β = −.19, t(130) = −5.43, se = .03, PHC0 < .0001; MFG

glutamate�age: β = .08, t(130) = 1.94, se = .04, PHC0 = .055; MFG GABA�age: β = .05, t(130) =

1.29, se = .04, PHC0 = .2).

Discussion

Our results reveal how glutamate and GABA, the neurotransmitters involved in brain excitation

and inhibition [9,54–56], are associated with MA and the feasibility of using them to predict
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future MA from childhood to adulthood. We provide such understanding by demonstrating

regional and neurotransmitter specificity of these neurotransmitters–MA relationships and

their moderation by age and showing that these associations are not domain-general. Notably,

Fig 3. Predicting MA at Time 2 from the interaction between age neurotransmitter concentration at Time 1. To depict the

interaction between the continuous variables, we plotted the regression lines for ± 1 SD from the mean age [53]. Dark color

concerns +1 SD above the mean, while light color concerns −1 SD below the mean. The average color represents the mean. (A)

Glutamate and (B) GABA in the left IPS; (C) glutamate and (D) GABA in the left MFG. The shaded area represents 95%

confidence intervals. For visualization purposes, the effect of age at Time 2 was not included when generated the panels of this

figure. The data underlying this figure can be found in S3 Data. GABA, gamma-aminobutyric acid; IPS, intraparietal sulcus; MA,

mathematical achievement; MFG, middle frontal gyrus; SD, standard deviation.

https://doi.org/10.1371/journal.pbio.3001325.g003
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we also showed that GABA and glutamate levels in the IPS can predict future MA as a function

of age.

These results provide a novel insight into the developmentally dependent manner in which

educational achievement relates to glutamate and GABA levels, which have been previously

associated with markers of cortical excitability and inhibition important for mechanisms of

learning and sensitive periods in development [5,9,10,12–15,56]. By using a large sample of

participants ranging from primary school age to university students, we were able to show

how variations in glutamate and GABA are associated with high-level cognition, namely MA,

and that the connection between glutamate and GABA and cognition is altered as a function

of development.

The IPS has been highlighted as a key brain region in numerical and mathematical cogni-

tion and learning as supported by methodologically diverse studies including nonhuman pri-

mates, neurological and neurodevelopmental populations, and mathematical experts based

primarily on neurofunctional and structural studies in healthy humans [46,57–61]. Our results

expanded this understanding by showing that the developmental stage influences the relation

between IPS neurotransmitter concentration and MA. Specifically, mature individuals show a

positive association between glutamate concentration and MA, while younger participants

show a negative association. This suggests that higher parietal glutamate concentration is

related to higher MA later in development, but the opposite is true earlier in development. By

including children from the age of 6 to university students and examining this sample approxi-

mately 1.5 years later, we showed that the association between MA and IPS glutamate is

switched from negative to positive during development.

Furthermore, we were able to extend our findings and show the inverse effect for IPS

GABA; mature individuals showed a negative association between GABA concentration and

MA, while younger participants show a positive association. Maturation of GABA circuits and

in particular that of parvalbumin cells, a positive subtype of GABA neurons, is thought to be

one of the molecular signatures triggering the onset of sensitive periods and plasticity whereby

experimental increase or reduction of GABA triggers precocious and delayed onset of sensitive

periods in animal studies, respectively [5]. Therefore, elevated GABA early in development

may indicate a greater plasticity leading to greater MA. Regarding the relation between GABA

levels and learning in mature individuals, our findings indicate a negative association. Previous

studies on GABA and learning in adults, using modest sample sizes, yielded some conflicting

results in that some studies found reduced GABA levels to be associated with learning

improvement, while others found the opposite pattern. For example, reduced GABA was asso-

ciated with learning improvement in the motor system [62–64] and the visual system [14,65],

although some types of visual learning, and sensory learning in the tactile system, were associ-

ated with increased GABA [13,65–67]. In the realm of cognition, several studies found

increased GABA to be indicative of learning improvement [10,68,69], while others found the

opposite pattern [70]. However, there are several reasons for these apparent discrepancies. For

example, it is important to mention that the target MRS brain regions vary between these stud-

ies, and one cortical area may not represent or generalize to other cortical areas concerning

the association of neurotransmitter levels and the process under investigation. Besides these

discrepancies, our findings in the mature participants suggest that lower GABA concentration

within the IPS leads to enhanced learning, thus extending the involvement of GABA in the

acquisition of a slowly emerging complex cognitive function in a highly ecological setting.

Taken together, our finding of developmental switches in the link between GABA and glu-

tamate and MA may highlight a general principle of plasticity. According to our findings,

GABA and glutamate concentrations enhance or constrain the plasticity of a given cognitive

function depending on the sensitive period of that cognitive function (i.e., early sensitive
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period versus late sensitive period). We suggest that increased GABA levels during the early

sensitive period, which based on research in animals [5] may reflect the maturation of paralbu-

min-based GABAergic networks, lead to greater MA, but that increased GABA levels in the

later sensitive period impair MA. Therefore, in contrast to previous studies on humans or ani-

mals that focused on narrower developmental stages, our cross-sectional longitudinal study

suggests that the link between plasticity and brain excitation and inhibition across different

stages is unlikely to be immutable, a finding that has implications for basic and translational

research. Crucially, both glutamate and GABA in the IPS, but not in the MFG, explained

unique variance in MA during development, a result that demonstrates their dissociated role

in the current research context. While MFG glutamate was a significant predictor in some

analyses, it was a weaker predictor and less consistent than the IPS GABA and glutamate,

which strongly predicted future MA as a function age. Overall, unlike the IPS, the neurochemi-

cal contribution of MFG did not track MA to the same extent. Meta-analyses suggested a hier-

archical contribution of the prefrontal cortex in numerical cognition [44]. Namely, the inferior

frontal gyrus was typically engaged in relatively simple numerical tasks, while the MFG is

involved in more complex tasks, which require several procedural steps or increase storage

load [44]. This role of the MFG likely reflects shared links to working memory, which is beha-

viourally related to numerical performance [71,72] and supported by the prefrontal cortex

[73,74]. Indeed, a recent functional MRS study found elevated glutamate levels in the dorsolat-

eral prefrontal cortex during the execution of a 2-back task compared to passive visual fixation

[75]. Given this contribution of the MFG in demanding computations that mirror the compu-

tations underlying the present cognitive tasks at least in case of early childhood, one potential

reason we did not find such a strong association between MFG neurotransmitter levels and

MA, compared to the IPS, may be accounted for the fact that neurotransmitter levels were

measured at baseline rather than during the execution of the numerical tasks. However, our

results do not exclude the role of the MFG in mathematical cognition. For example, in a recent

study, we showed a reduction in MFG GABA due to the lack of mathematical education in

adolescents [10]. However, such finding is orthogonal to the current results that show the link

between MA and GABA and glutamate, and the ability of the latter to predict future MA.

In arithmetic problem solving, a frontoparietal network comprising the prefrontal cortex

and the IPS (task-positive network) is initially involved due to the reliance on working mem-

ory, which is associated with reduced proficiency in children. In contrast, the frontoparietal

network becomes less involved with increased proficiency and a shift to fact retrieval strategies

involving episodic and semantic memory systems in angular guys and hippocampus, which

are critical for long-term memory formation [30,76–78]. This well-documented developmen-

tal change in processing strategies underpinned by the shift in the recruitment of large brain

circuits may be reflected by the differential relation between glutamate and GABA concentra-

tions in the MFG and IPS, which are key seeds of the frontoparietal networks. One potential

mechanism is that the developmental reduction in glutamate and increase in GABA in both

the MFG and the IPS from childhood to adulthood may reduce the reliance on the frontopar-

ietal network as the aforementioned semantic and episodic regions become more relevant.

Of note, previous work suggested that glutamate and GABA concentrations might not

reflect the same levels of cortical inhibition and excitation across brain development [79]. In

particular, it has been shown in the immature nonhuman brain that GABA is excitatory, and

GABA-releasing synapses are formed before glutamatergic contacts in a wide range of species

and structures [79]. GABA becomes inhibitory by the delayed expression of a chloride exporter

[80]. Indeed, from animal research, it is known that in the case of chloride, the reversal poten-

tial shifts as the animal matures, in that it is more depolarized in the younger animals (−40

mV) than in adulthood (−65 mV). Critically, MRS cannot currently distinguish between
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intracellular and extracellular neurotransmitter concentrations or even a portion of these

based on the MRS signal alone [81]. Consequently, making direct inferences of cortical excit-

ability/inhibition and plasticity based on the neurotransmitter concentrations alone should be

done with caution. Indeed, several potential mechanisms have been proposed in the context of

MRS concentration changes for both GABA (e.g., decreased GABA metabolism, increased

catabolism, and a shift of GABA into an MRS-invisible pool) and glutamate (e.g., glutamate

levels were closely related to transcranial magnetic stimulation measures of local excitability)

[42]. Nonetheless, our results suggest that the interaction between IPS glutamate and age and

between IPS GABA and age exert differential influences shaping educational achievement,

even at the younger age groups.

In addition, our findings allow us to conclude that these associations are not confounded

by general cognitive ability. The link between IPS neurotransmitters and MA was still signifi-

cant when we included matrix reasoning in our multiple regression analysis, concluding that

our findings are not domain-general. The value of adding matrix reasoning lies in its link to

fluid intelligence, which is associated with mathematical abilities [82]. Our findings may also

highlight a general principle that the developmental dynamics of regional excitation and inhi-

bition levels in regulating the sensitive period and plasticity of a given high-level cognitive

function (i.e., MA) may be different compared to another high-level cognitive function (i.e.,

general intelligence) that draws on similar, albeit not identical, cognitive and neural

mechanisms.

While our research focused on a healthy population, it motivates further research to under-

stand how alteration in glutamate and GABA are linked to neurodevelopmental deficits [5,83]

and whether modulation of those neurotransmitters can improve interventional outcomes

[84], potentially by expanding or reopening sensitive period processes [5]. By shedding light

on the developmental trajectories in elucidating the effect of glutamate and GABA on educa-

tional achievement, and the putative sensitive periods in development where the relationship

between these neural and cognitive measures switches, our study provides a novel understand-

ing of the human brain and its impact on formal education.

Materials and methods

Participants

We recruited 255 participants (demographic information for both the first assessment and the

second assessment is shown in S1 Table). The imaging session lasted approximately 60 min,

and the mathematical assessment and general cognitive ability testing lasted approximately 30

min; these sessions were part of a more extensive battery that included several other cognitive

and behavioral assessments. All imaging data were acquired in a single scanning session. Dur-

ing the scanning acquisition, participants watched the LEGO movie [85]. All participants were

predominantly right-handed, as measured by the Edinburgh Handedness Inventory [86] and

self-reported no current or past neurological, psychiatric, or learning disability or any other

conditions that might affect cognitive or brain functioning. Adult participants received £50

compensation for their time, and children participants, depending on their age, received £25

(6-year-olds) and £35 (10-, 14-, and 16-year-olds) in Amazon or iTunes vouchers, and addi-

tional compensation for their caregiver if the participant was below 16 years. Informed written

consent was obtained from the primary caregiver, and informed written assent was obtained

from participants younger than 16 years, according to approved institutional guidelines. Our

sample was reassessed approximately 1.5 years later (mean = 20.97, SD = 3.83 months). We

refer to the first assessment as Time 1 and to the second assessment as Time 2. This study was

approved by the University of Oxford’s Medical Sciences Interdivisional Research Ethics
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Committee (MS-IDREC-C2_2015_016) and adhered to the principles expressed in the Decla-

ration of Helsinki. Approximately 31% of the participants who completed the first assessment

did not participate in the second assessment.

MRI data acquisition and preprocessing

All MRI data were acquired using a 3T Siemens MAGNETOM Prisma MRI System equipped

with a 32 channel receive-only head coil.

Structural MRI. Anatomical high-resolution T1-weighted scans were acquired consisting of

192 slices, repetition time (TR) = 1,900 ms; echo time (TE) = 3.97 ms; voxel size = 1 × 1 × 1 mm).

Magnetic resonance spectroscopy. Spectra were measured by semi-adiabatic localization

using an adiabatic selective refocusing (semi-LASER) sequence (TE = 32 ms; TR = 3.5 s; 32

averages) [87,88] and variable power RF pulses with optimized relaxation delays (VAPOR),

water suppression, and outer volume saturation. Unsuppressed water spectra acquired from

the same volume of interest were used to remove residual eddy current effects and to recon-

struct the phased array spectra with MRspa (https://www.cmrr.umn.edu/downloads/mrspa/).

Two 20 × 20 × 20 mm3 voxels of interest were manually centered in the left IPS and the MFG

based on the individual’s T1-weighted image while the participant was lying down in the MR

scanner (S2 Fig). Acquisition time per voxel was 10 to 15 min, including sequence planning

and shimming. MRS neurotransmitters were quantified with the LCmodel [89], using a basis

set of simulated spectra generated based on previously reported chemical shifts and coupling

constants based on a versatile simulation, pulses, and analysis (VeSPA) simulation library [90].

Simulations were performed using the same RF pulses and sequence timings as in the 3T sys-

tem described above. Absolute neurotransmitter concentrations were extracted from the spec-

tra using a water signal as an internal concentration reference. The exclusion criteria for data

were (i) Cramér–Rao bounds and the (ii) signal-to-noise ratio (SNR). Neurotransmitters

quantified with Cramér–Rao lower bounds (CRLBs, the estimated error of the neurotransmit-

ter quantification) >50% were classified as not detectable. Additionally, we excluded cases

with an SNR beyond 3 standard deviations and a concentration value that was beyond 3 stan-

dard deviations at the age-group level per region and neurotransmitter. Absolute neurotrans-

mitter concentrations were then scaled using the structural properties of the selected regions

[89]; therefore, the scaling values were determined before the data collection. Namely, we seg-

mented the images into different tissue classes including gray matter (GM), white matter

(WM), and cerebrospinal fluid (CSF) using the SPM12 segmentation facility. Next, we calcu-

lated the number of GM, WM, and CSF voxels within the 2 masks of interest separately around

the left MFG and the left IPS in native space. Subsequently, we divided these 6 numbers (GM,

WM, and CSF for IPS and MFG) by the total number of GM, WM, and CSF voxels creating

the corresponding GM, WM, and CSF fraction values per participant and region. As a final

computation step, we scaled the absolute neurotransmitter values to these structural fractions

using the following LCmodel [89] computation as can be seen in MRS-Eq 1:

Tissue � corrected concentration
¼ ðð43300=55556 � GM fractionþ 35880=55556 �WM fractionþ 1 � CSF fractionÞ=ð1
� CSF fractionÞÞ � absolute neurotransmitter concentration ðMRS� Eq 1Þ

To minimize the potential confounding effects of T2 relaxation times, we additionally

report the results when an alternative neurochemical quantification was used (S2–S5 Tables).

These concentration values were scaled based on the T2 values, as can be seen in MRS-Eq 2.

T2 values were acquired by obtaining spectra using 13 different echo times (32 ms, 42 ms, 52

ms, 85 ms, 100 ms, 115 ms, 150 ms, 250 ms, 450 ms, 850 ms, 1,650 ms, 3,250 ms, and 4,040
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ms).

T2 � corrected concentration ¼ tissue � corrected concentration � exp �
TE
T2

� �

ðMRS� Eq 2Þ

Of note, the mean cross-correlation between the neurotransmitter pairs Glutamate-Gln

and Glutamate-GABA in both regions of interest (MFG and IPS) was <.5, suggesting that

there was not a significant overlap between these neurotransmitters and allows to report these

concentrations separately [91]. For the neurochemicals included in the basis set, please see S1

Text. Apart from glutamate and GABA, we did not have any specific predictions about the

other extracted neurochemicals in respect to learning and achievement, and, therefore, they

were out of the scope of this study.

MA

Participants completed the numerical operation and the mathematical reasoning subtests of

the Wechsler Individual Achievement Test (WIAT), second edition [92], and the tempo test

Rekenen [93]. The numerical operation subtest is composed of written arithmetic problems,

which require the implementation of arithmetic procedures. The mathematical reasoning sub-

test is composed of maths problems, which require participants to create a mental model of

the math problem, extract relevant information, and then select and execute the appropriate

operation [94]. Both tests are completed without a time restriction. We calculated the propor-

tion of correct responses for the numerical operations and the mathematical reasoning sub-

tests. These 2 tests present problems that are ordered with increasing difficulty. Participants

start by responding to questions that are appropriate for their age and, in case of 6 consecutive

wrong responses, the administration was interrupted. Therefore, young children were unlikely

asked to solve questions that were not appropriate for their age.

The tempo test, instead, entails 5 columns (addition, subtraction, multiplication, division, and

mixed), each composed of 40 arithmetic problems (e.g., 7 + 8 = . . ..). Each column is presented

sequentially with the instruction to solve as many problems as possible within 60 s. The time con-

straint makes the tempo test a widely used measure of arithmetic fluency. For the tempo test

instead, we calculated the proportion of correct responses in the first 2 columns (additions and sub-

tractions; because only these 2 columns were completed by all age groups), and then we divided this

score by the individual solving time divided by total time at disposal (i.e., 300 s). This efficiency

score increases in case a participant completed all the arithmetic problems in a column within 60 s.

Finally, we z-scored and averaged the above 3 values into a single individual MA score. Such a score

allowed us to provide a measure that is not based on a single MA measure. For the results using

each of the 3 tests separately, which mainly converge with the main text results, see S3–S8 Tables.

General cognitive ability

Participants completed the matrix reasoning subtest of the Wechsler Abbreviated Scale of

Intelligence (WASI II) [95] as an index of fluid intelligence, which has been previously related

to MA [96]. Accordingly, MA and the scores in matrix reasoning were highly correlated both

at Time 1 (rS(248) = .81, P< .001) and at Time 2 (rS(173) = .8, P< .001), and after controlling

for age (Time 1: r(247) = .47, P< .001; Time 2: r(172) = .43, P< .001).

Statistical analyses

For statistical analyses, we used SPSS (v25), R package (v3.5.3), and MATLAB (R2020a). To

assess the moderating role of age, we ran linear regression models, and the effect of interest
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was the interaction between neurotransmitter concentration and age. To assess the moderating

role of age in shaping the relation between neurotransmitter concentration and MA at Time

1, we employed equation 1, and to assess the same association at Time 2, we employed equa-

tion 2.

MA ðTime 1Þ ¼ b0þ b1neurotransmitter ðTime 1Þ þ b2age ðTime 1Þ

þ b3neurotransmitter ðTime 1Þ � age ðTime 1Þ þ ε

MA ðTime 2Þ ¼ b0þ b1neurotransmitter ðTime 2Þ þ b2age ðTime 2Þ

þ b3neurotransmitter ðTime 2Þ � age ðTime 2Þ þ ε

To show that our findings are not domain-general, we reran variants of equation 1 and

equation 2 and controlled for the main effect of matrix reasoning score during the respective

time of testing by adding it as a covariate. Similarly, to examine the neurotransmitter and

neuroanatomical specificity of our findings, we included all 4 neurotransmitter measures (neu-

rotransmitters (GABA/Glutamate) × region (IPS/MFG)) and their interactions with age

to equation 1 (for Time 1) and equation 2 (for Time 2). Finally, to examine how age and

neurotransmitters at Time 1 predicted MA approximately 1.5 years later, we employed equa-

tion 3.

MA ðTime 2Þ ¼ b0þ b1neurotransmitter ðTime 1Þ þ b2age ðTime 1Þ

þ b3neurotransmitter ðTime 1Þ � age ðTime 1Þ þ b4age ðTime 2Þ þ ε

In the main text, we additionally report the adjusted R2 (R2
ADJ) for each of the main models,

as shown in equations 1, 2, and 3. Since the present study is focused on the confluence of age

and neurotransmitter levels, we additionally report the adjusted R2 difference (dR2
ADJ)

between the models shown in equations 1, 2, and 3 versus the corresponding models when

omitting the interaction term.

Since the assumption of homoscedasticity was violated in our analyses (see S9 Table), we

report P values derived from statistical tests that are robust to the assumption of homoskedasti-

city, which are techniques to obtain unbiased standard errors of ordinary least squares coeffi-

cients under heteroscedasticity (HC0 termed PHC0) [97,98]. All P values in the results section

correspond to the interaction term between age and the corresponding neurotransmitter mea-

sure. The normality of the residuals assumption was not violated in the main models as

assessed with the Shapiro–Wilk test (S10 Table). The multicollinearity assumption was also

not violated as assessed with the variance inflation factor (S11 Table).

When significant interactions were present, we also reported the results using the Johnson–

Neyman Technique (JNT), which allowed us to clarify the nature of an interaction that

includes continuous variables [99] (S12 Table). In the Results section, we refer to “younger

participants” and to “mature participants.” In each of these instances, the exact cutoff value

expressed in age in months (as well as age in years in parenthesis) can be found in S12 Table.

The table contains the lower threshold JNT value and the upper threshold JNT value, which

are expressed in the units of the moderator (i.e., age in months and age in years). For the analy-

ses described in the main text after controlling for gender, please see S13 and S14 Tables.

Supporting information

S1 Table. Gender and mean age (standard deviation in parentheses) during the first (Time

1, top half) and the second (Time 2, bottom half) assessment.

(DOCX)
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S2 Table. Table depicting the results of the main text using a different neurotransmitter

quantification method (MRS-Eq 2; see Materials and methods section). All values concern

the interaction term between age and the neurotransmitter, as labeled in the first column. The

models that included general intelligence as a covariate are labeled accordingly in the first col-

umn. df = degrees of freedom; P = P value; se = standard error; t = T-statistic; β = standardized

regression coefficient.

(DOCX)

S3 Table. Table depicting the results of the main text using a different neurotransmitter

quantification method (MRS-Eq 2; see Materials and methods section) except that the

dependent variable is the “numerical operations score”. All values concern the interaction

term between age and the neurotransmitter, as labeled in the first column. The models that

included general intelligence as a covariate are labeled accordingly in the first column.

df = degrees of freedom; P = P value; se = standard error; t = T-statistic; β = standardized

regression coefficient.

(DOCX)

S4 Table. Table depicting the results of the main text using a different neurotransmitter

quantification method (MRS-Eq 2; see Materials and methods section) except that the

dependent variable is the “mathematical reasoning score”. All values concern the interac-

tion term between age and the neurotransmitter, as labeled in the first column. The models

that included general intelligence as a covariate are labeled accordingly in the first column.

df = degrees of freedom; P = P value; se = standard error; t = T-statistic; β = standardized

regression coefficient.

(DOCX)

S5 Table. Table depicting the results of the main text using a different neurotransmitter

quantification method (MRS-Eq 2; see Materials and methods section) except that the

dependent variable is the “tempo score”. All values concern the interaction term between

age and the neurotransmitter, as labeled in the first column. The models that included general

intelligence as a covariate are labeled accordingly in the first column. df = degrees of freedom;

P = P value; se = standard error; t = T-statistic; β = standardized regression coefficient.

(DOCX)

S6 Table. S6–S8 Tables differ from corresponding S3–S5 Tables in respect to the neuro-

transmitter quantification method used, in that for S3–S5 Tables, we used the MRS-Eq 2,

and for S6–S8 Tables, we used the MRS-Eq 1 (see Materials and methods section).

Table depicting the results of the main text except that the dependent variable is the “numeri-

cal operations score”. All values concern the interaction term between age and the neurotrans-

mitter, as labeled in the first column. The models that included general intelligence as a

covariate are labeled accordingly in the first column. df = degrees of freedom; P = P value;

se = standard error; t = T-statistic; β = standardized regression coefficient.

(DOCX)

S7 Table. Table depicting the results of the main text except that the dependent variable is

the “mathematical reasoning score”. All values concern the interaction term between age

and the neurotransmitter, as labeled in the first column. The models that included general

intelligence as a covariate are labeled accordingly in the first column. df = degrees of freedom;

P = P value; se = standard error; t = T-statistic; β = standardized regression coefficient.

(DOCX)
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S8 Table. Table depicting the results of the main text except that the dependent variable is

the “tempo score”. All values concern the interaction term between age and the neurotrans-

mitter, as labeled in the first column. The models that included general intelligence as a covari-

ate are labeled accordingly in the first column. df = degrees of freedom; P = P value;

se = standard error; t = T-statistic; β = standardized regression coefficient.

(DOCX)

S9 Table. Results from the Breusch–Pagan test assessing the presence of heteroscedasticity.

P = P value; T = t-Statistic. The models correspond to the ones presented in the main text.

For brevity, we label each column merely by the name of the neurotransmitter value. The mod-

els that included general intelligence as a covariate are labeled accordingly in the first column.

(DOCX)

S10 Table. Table depicting the results of the assumption of residual normality using the

Shapiro–Wilk test. P = P value; se = standard error; W = Shapiro–Wilk statistic. The first 2

value columns refer to the results when MRS-Eq 1 was used, and the last 2 value columns refer

to the results when MRS-Eq 2 was used.

(DOCX)

S11 Table. Table depicting the results of the multicollinearity assumption using the VIF.

The values presented concern the maximum variance inflation factor from all the predictors.

The first VIF column refers to the results when MRS-Eq 1 was used, and the second VIF col-

umn refers to the results when MRS-Eq 2 was used. In the prediction analyses (last 4 rows), we

did not consider the VIF of age at Time 2, as age at Time 2 and age at Time 1 are expected to

be very highly correlated. VIF = variance inflation factor.

(DOCX)

S12 Table. Table depicting the boundaries of the JNT (expressed in age in months and

age in years in parenthesis after rounding). When no values are shown, it means that no

JNT value was obtained. JNT (L) = JNT lower threshold, a significant relationship existed

between the neurotransmitter measure and MA for individuals with age below this threshold.

JNT (U) = JNT upper threshold, a significant relationship existed between the neurotransmit-

ter measure and MA for individuals with age above this threshold. JNT = Johnson–Neyman

Technique; MA = mathematical achievement.

(DOCX)

S13 Table. Table depicting the results of the main text using a different neurotransmitter

quantification method (MRS-Eq 2; see Materials and methods section) when controlling

for gender. All values concern the interaction term between age and the neurotransmitter, as

labeled in the first column. df = degrees of freedom; P = P value; se = standard error; t = T-sta-

tistic; β = standardized regression coefficient.

(DOCX)

S14 Table. Table depicting the results of the main text when controlling for gender. All val-

ues concern the interaction term between age and the neurotransmitter, as labeled in the first

column. df = degrees of freedom; P = P value; se = standard error; t = T-statistic; β = standard-

ized regression coefficient.

(DOCX)

S1 Fig. The average spectrum from each of the 5 groups separately at Time 1. The spectrum

thickness corresponds to ± 1 SD from the mean. (A) MFG 6-year-olds; (B) IPS 6-year-olds;

(C) MFG 10-year-olds; (D) IPS 10-year-olds; (E) MFG 14-year-olds; (F) IPS 14-year-olds; (G)
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MFG 16-year-olds; (H) IPS 16-year-olds; (I) MFG 18+-year-olds; (J) IPS 18+ year-olds.

IPS = intraparietal sulcus; MFG = middle frontal gyrus; SD = standard deviation.

(DOCX)

S2 Fig. Positions of the 2 regions for the MRS displayed in a T1-weighted image for (A) IPS

and (B) MFG are shown on axial and sagittal slices, respectively. IPS = intraparietal sulcus;

MFG = middle frontal gyrus; MRS = magnetic resonance spectroscopy.

(DOCX)

S1 Text. Additional information regarding the neurochemicals included in the basis set

and how macromolecules were handled. The chemicals in the basis set that were automati-

cally extracted from the analysis pipeline were as follows: GABA, glutamate, glutamine, ala-

nine, ascorbate, aspartate, creatine, phosphocreatine, creatine+phosphocreatine, glucose,

glycerophosphocholine, phosphocholine, glutathione, inositol, scyllo-Inositol, scyllo, lactate,

phosphoethanolamine, NAA, NAAG, taurine, phophocholine+glycerophosphocholine, NAA

+NAAG, glutamine+glutamate, and glucose+taurine. LCModel-simulated macromolecule res-

onances were included in the basis set: Macromolecule 09, Macromolecule 12, Macromolecule

14, Macromolecule 17, and Macromolecule 20.

(DOCX)

S1 Data. An excel spreadsheet (S1_Data.xlsx) representing the data underling Fig 1.

(XLSX)

S2 Data. An excel spreadsheet (S2_Data.xlsx) representing the data underling Fig 2.

(XLSX)

S3 Data. An excel spreadsheet (S3_Data.xlsx) representing the data underling Fig 3.

(XLSX)
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