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Abstract 

In response to the limitation of classical Data Envelopment Analysis (DEA) models, the super efficiency 

DEA models, including Andersen and Petersen (1993)’s model (hereafter; AP model ) and Li et al. (2016)’s 

cooperative-game-based model (hereafter; L-L model ), have been proposed to rank efficient decision-making 

units (DMUs). Although both models have been widely applied in practice, there is a paucity of research 

examining the performance of the two models in ranking efficient DMUs. Consequently, it is unclear how close 

the rankings obtained by the two models are to the “true” ones. Among the very few studies, Banker et al. (2015) 

pointed out that the ranking performance of the AP model is unsatisfactory; Li et al. (2016) and Hinojosa et al. 

(2017) demonstrated the L-L model’s capability of ranking efficient DMUs without addressing the performance. 

This paper examines the ranking performance of the two super-efficiency models. In evaluating their 

performance, we carry out Monte Carlo simulations based on the well-known Cobb-Douglas production 

function and adopt Kendall rank correlation coefficient. Unlike Banker et al. (2015), we use the rankings 

obtained based on the two models and the “true” ones as the basis of performance evaluation in our simulations. 

Moreover, we consider several types of returns to scale (RS) and study the impact of changes of some parameters 

on the ranking performance. In view of the importance, we also carry out additional simulations to examine the 

influence of technical inefficiency on the two models’ ranking performance. Based on the simulation results, we 

conclude: (1) Under different RS, the ranking performance of the two models remains the same when changing 

parameters, e.g., the distribution of input variables; (2) Under different RS, when technical inefficiency 

(compared with random noise) is more important, the two models have satisfactory performance by providing 

rankings that are close to, or the same as, the “true” ones; (3) The L-L model has better performance than the 

AP model and is more robust. (4) Under different RS, when technical inefficiency is less important, both models 

have unsatisfactory ranking performance; and (5) The relative importance of technical inefficiency plays an 

important role in ranking efficient DMUs.  
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1 Introduction  

Based on the classical data envelopment analysis (DEA) models, such as the CCR model (Charnes 

et al., 1978) and the BCC model (Banker et al., 1984), the efficient scores calculated for efficient 

decision-making units (DMUs)1 are all one. Consequently, the classical DEA models are not able to 

differentiate or rank efficient DMUs. Several ranking methods, such as cross-efficiency-based (Doyle 

and Green, 1994), common weight-based (Cook et al., 1990), Benchmark-based (Nicole Adler et al., 

2002) and super-efficiency-based, have been proposed to rank efficient DMUs. these have been 

summarized in Appendix 1 along with their descriptions and limitations.  

Here we describe in detail the super-efficiency-based ranking models, which we consider in this 

study. Andersen and Petersen (1993) introduced a super-efficiency DEA model (called the AP model 

in this study) to rank efficient DMUs. Unlike the classical DEA models, the AP model allows the 

super-efficiency of an efficient DMU to be larger than 1. This feature can find differences among 

efficient DMUs. Thanks to its simplicity and practicability, the AP model has been applied to evaluate 

DMUs in diverse industries, such as banks (Avkiran, 2011; Minh et al., 2013; Zimková, 2014), 

hospitals (O'Neill, 2005; Yawe, 2010; Du et al., 2014), and production-oriented enterprises (Düzakın 

and Düzakın, 2007; Zhang et al., 2012). It has also been employed to carry out energy evaluation (Li 

et al. ,2012; Li and Shi, 2014), player selection（Adhikari et al., 2020), and fixed cost allocation (Li 

et al., 2009; Lin and Chen, 2016; Dai et al., 2016).  

Considering its popularity, Banker and Chang (2006) conducted simulations to evaluate the 

performance of the AP model in ranking efficient DMUs in a pioneering study. Based on the simulation 

results, they concluded that the AP model performs unsatisfactorily. A couple of years later, Banker et 

al. (2015) carried out an advanced simulation study to further test the AP model’s ranking performance 

and drew the same conclusion. In both studies, the authors estimated the super efficiencies of efficient 

DMUs based on the AP model and calculated the “true” ones. They further calculated the 

corresponding Pearson and Spearman correlation coefficients. Because the correlations coefficients 

were negative, the authors concluded that the AP model’s performance in ranking efficient DMUs is 

 
1 To be consistent with literature, in this study, efficient DMUs can be either strongly or weakly efficient.  
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not at all satisfactory. We doubt this conclusion because it is drawn based on the correlations of 

efficiencies, instead of rankings. First, the correlations of the “true” and super-efficiencies are not the 

same as these of the “true” rankings and the rankings obtained based on models. The results from (Xue 

and Harker, 2002) confirm this point. Second, even if the efficiencies are not correlated, the rankings 

from models might be close to the “true” ones. In relation to the above two points, the conclusion from 

Banker and Chang (2006) and Banker et al. (2015) may not be well grounded and needs to be further 

verified.   

Li et al. (2016) proposed a cooperative-game-based super efficiency DEA model (called the L-L 

model) to rank efficient DMUs. According to this model, an efficient unit can have a score greater than 

one and a cooperative game with transferable utility can be defined to construct a general platform for 

efficient DMUs. The set of all efficient DMUs is regarded as a grand coalition with each efficient unit 

being a player. Based on the axioms of fairness, Shapley values are obtained for the cooperative game 

and sort the decision units. The literature (Li et al., 2016; Hinojosa et al., 2017) has demonstrated the 

capability of the L-L model in ranking efficient DMUs. In addition, Li et al. (2016) calculated the 

rankings of efficient DMUs based on the AP model, and found out differences between the rankings 

obtained based on their model (i.e., the L-L model) and the AP model. As explained by the authors, the 

differences were caused because the AP model evaluated efficient DMUs based on different efficient 

frontiers, whereas the L-L model employed one common platform in evaluation. However, the authors 

did not shed light on the performance of their model in ranking efficient DMUs. In other words, how 

close the rankings obtained based on their model are to the “true” ones is unknown. Similarly, Hinojosa 

et al. (2017) did not examine the ranking performance of the L-L model. In view of the above 

questionable conclusion from Banker and Chang (2006) and Banker et al. (2015) and the ranking 

differences between the L-L model and the AP model, we find it both interesting and relevant to 

investigate the ranking performance of two models.  

To this end, in this study, we focus on the performance of the L-L model and the AP model in 

ranking efficient DMUs. Specifically, we carry out Monte Carlo simulations to examine their ranking 
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performance2. Unlike Banker and Chang (2006) and Banker et al. (2015), we calculate and compare 

the correlations of rankings, instead of efficiencies, of efficient DMUs in the simulations. This is 

because the correlations of rankings can well explain if the rankings are close to one another, which 

can, in turn, describe the two models’ ranking performance. Moreover, to include situations as 

comprehensive as possible, we consider several possible types of returns to scale (RS), including 

constant RS (CRS), decreasing RS (DRS), and increasing RS (IRS). (Note that RS is essential in 

calculating DMUs’ efficiencies.) We also carry out simulations to examine if the changes of some 

parameters, e.g., the distribution of input variables, affect the ranking performance of the two models. 

Being an important parameter, technical inefficiency affects DMUs’ efficiencies and further their 

rankings (Banker and Natarajan, 2008). Thus, we conduct additional simulations to examine the 

influence of the relative importance of technical inefficiency (to random noise) on the two models’ 

ranking performance. Based on the simulation results, we draw several conclusions. First, under all 

three types of RS, parameter changes do not influence the ranking performance of the two models. 

Second, under all three types of RS, both models have satisfactory performance by providing rankings 

that are very close to, or the same as, the “true” ones when technical inefficiency is more important. 

Third, the L-L model performs better than the AP model does and is more robust. This is especially 

true when technical inefficiency is less important. Fourth, under all three types of RS, both models 

provide unsatisfactory performance when technical inefficiency is less important. Fifth, the relative 

importance of technical inefficiency plays an important role in ranking efficient DMUs. In accordance 

with the conclusions, we stress that (i) it is of paramount importance to determine suitable settings of 

technical inefficiency when ranking efficient DMUs and (ii) organizations are encouraged to apply the 

L-L model to rank their DMUs.     

This study makes several contributions to the related literature. First, it identifies a critical issue 

in the conclusion from Banker and Chang (2006) and Banker et al. (2015). Second, it examines the 

ranking performance of the L-L model and the AP model using a new approach different from the one 

in (Banker and Chang, 2006; Banker et al., 2015). Third, with the simulation results, it offers several 

 
2 The simulation procedure in this study can also be used to rank inefficient DMUs.   
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conclusions and implications (see above).  

The rest of this paper is organized as follows. In the next section, we provide a recap of the L-L 

model and the AP model. For details, the readers are referred to (Li et al., 2016) and (Andersen and 

Petersen, 1993). In Section 3, simulations and results are presented to evaluate the performance of the 

two models in ranking efficient DMUs. We present the additional simulations and results in Section 4 

to shed light on the influence of technical inefficiency on the two models’ ranking performance. In the 

last section, we summarize the results and contributions of our study and discuss possible avenues for 

future research.           

2 Recap of two super-efficiency DEA models  

Assume that there are 𝑛 independent DMUs in a set 𝑁. A DMU: 𝐷𝑀𝑈𝑗  (𝑗 ∈ 𝑁 = {1,2, … , 𝑛}) 

consumes 𝑚 inputs 𝑥𝑖𝑗  (𝑖 ∈ 𝑀 = {1,2, … , 𝑚}) and produces ℎ outputs 𝑦𝑟𝑗  (𝑟 ∈ 𝐻 = {1,2, … , ℎ}). 

Input-oriented CCR model 

For ease of reference, we first present the standard input-oriented CCR model as follows:  

         𝐸𝑓(𝑁) = 𝑀𝑖𝑛𝜃 

𝑠. 𝑡.    ∑ 𝜆𝑗𝑥𝑖𝑗

𝑗∈𝑁

≤ 𝜃𝑥𝑖𝑓 ,  𝑖 ∈ 𝑀 

        ∑ 𝜆𝑗𝑦𝑟𝑗

𝑗∈𝑁

≥ 𝑦𝑟𝑓,  𝑟 ∈ 𝐻 

        𝜆𝑗 ≥ 0, ∀𝑓, 𝑗 ∈ 𝑁,  𝜃:  𝑓𝑟𝑒𝑒 

(1) 

 Because the standard input-oriented CCR model cannot distinguish efficient DMUs, Andersen 

and Petersen (1993) proposed the AP model (see below). 

AP model 

         𝐸𝑓(𝑁) = 𝑀𝑖𝑛𝜃 

𝑠. 𝑡.    ∑ 𝜆𝑗𝑥𝑖𝑗

𝑗∈𝑁
𝑗≠𝑓

≤ 𝜃𝑥𝑖𝑓,  𝑖 ∈ 𝑀 

(2) 
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        ∑ 𝜆𝑗𝑦𝑟𝑗

𝑗∈𝑁
𝑗≠𝑓

≥ 𝑦𝑟𝑓,  𝑟 ∈ 𝐻 

        𝜆𝑗 ≥ 0, ∀𝑓, 𝑗 ∈ 𝑁, 𝑗 ≠ 𝑓,  𝜃:  𝑓𝑟𝑒𝑒 

If 𝐷𝑀𝑈𝑗  is efficient, its efficiency calculated based on the AP model is no lower than 1; otherwise, 

its efficiency is lower than 1. This is consistent with the classical DEA models. However, there is a 

major difference between the AP model and the classical DEA models in evaluating DMUs. Unlike 

the classical DEA models, the AP model does not include a DMU under evaluation in the reference set. 

As a result, the super efficiencies of DMUs are calculated using different efficiency frontier surfaces, 

resulting in a multiplatform problem (Li et al., 2016). As shown in Figure 1 adapted from (Li et al., 

2016), when evaluating B, the efficiency frontier surface is AB1C, whereas the efficiency frontier 

surfaces are A1BC and ABC1 for evaluating A and C, respectively. The efficiencies of these DMUs are, 

thus, calculated based on different efficiency frontiers. This implies that the evaluation criteria for 

DMUs are different based on the AP model. (Note that the two axes: X1 and X2 in Figure 1 represent 

two inputs of the three DMUs: A, B, and C.) 

    

Figure 1: Different efficiency frontier surfaces for evaluating DMUs. Adapted from (Li et al., 2016) 

Denote the set of efficient DMUs as 𝐸∗ = {𝑓: 𝐸𝑓(𝑁) ≥ 1}. 

L-L model  

With the definitions below, we summarize the L-L model.  

Definition 1: The influence value of DMU d in 𝐸∗ is called the efficiency change percentage (ECP), 

as defined below. 
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𝐸𝐶𝑃𝑑(𝑆) =
𝐸𝑑(𝑁/𝑆)

𝐸𝑑(𝑁)
− 1 = 𝐸𝑑(𝑁 𝑆⁄ ) − 1, ∀𝑑 ∈ 𝐸∗;  ∀S ⊂ 𝐸∗. (3) 

𝑁 𝑆⁄  is the subset of 𝑁 where 𝑆 is removed. Based on the standard input-oriented CCR model, 

𝐸𝑑(𝑁) = 1. Because S is a subset of 𝐸∗, 𝐸𝑑(𝑁/𝑆) is the super efficiency of DMU d based on the 

reference set 𝑁 𝑆⁄  . bbviously, if 𝑑 ∉ 𝑆, 𝐸𝐶𝑃𝑑(𝑆) = 0 ; if  𝑑 ∈ 𝑆  , 𝐸𝐶𝑃𝑑(𝑆) ≥ 0 . Therefore, 

𝐸𝐶𝑃𝑑(𝑆) indicates the influence degree of 𝑆 on DMU d. An efficient DMU is called a player and 𝐸∗ 

a grand coalition. 

Definition 2: A common platform cooperative game with transferable utility (TU-game) is denoted as 

< 𝐸∗, 𝐶 >: 

(1) a finite set 𝐸∗: the set of players (i.e., efficient DMUs), and  

(2) a function 𝐶 assigned to each subset S (i.e., a coalition) of 𝐸∗: ∀S ⊂ 𝐸∗; a real number 𝐶(𝑆) 

exists. 𝐶: 2𝐸∗
→ 𝑅 is denoted as the characteristic function, and 𝐶(𝑆) is the total payoff of coalition 

𝑆.  

Definition 3: Given a known 𝑆, the sum of 𝐸𝐶𝑃𝑠 of all the DMUs in 𝑆 is formulated below.  

𝐶(𝑆) = ∑ 𝐸𝐶𝑃𝑑(𝑆)

𝑑∈𝑆

, ∀𝑆 ⊆ 𝐸∗. 
(4) 

𝐸𝐶𝑃𝑑(𝑆)  measures the influence of S on DMU d, whereas 𝐶(𝑆) measures its effect on the 

original efficiency frontier. 𝐶(𝑆) has the following property.  

Property 1: Function C is super-additive: C(𝑆1 + 𝑆2) ≥ C(𝑆1) + C(𝑆2) for arbitrary 𝑆1 ⊂ 𝐸∗ and 

𝑆2 ⊂ 𝐸∗ as long as 𝑆1 ∩ 𝑆2 = ∅. 

As indicated by Property 1, Shapley value (Shapley, 1953) can be used to solve the cooperative 

game.  

𝜑𝑘(𝐶) = ∑
(𝑠 − 1)! (𝑝 − 𝑠)!

𝑝!
[𝐶(𝑆) − 𝐶(𝑆/{𝑘})]

𝑘∈𝑆,𝑆⊂𝐸∗

, 
(5) 

where 𝑝 and 𝑠 are the number of DMUs in 𝐸∗ and 𝑆, respectively. 𝑆 can be an arbitrary subset 

of 𝐸∗. 
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As highlighted in Definition 3, S cannot be equivalent to 𝐸∗ when there are no inefficient DMUs 

in 𝑁. This is because the Shapley value method needs at least one inefficient DMU to compute 𝐶(𝑆). 

In case inefficient DMUs do not exist, a new DMU: denoted as 𝐸− needs to be created with 𝑋𝑖
− =

max
𝑘∈𝐸∗

{𝑋𝑖𝑘} , 𝑖 = 1, … , 𝑚 and 𝑌𝑟
− = max

𝑘∈𝐸∗
{𝑌𝑟𝑘} , 𝑟 = 1, … , 𝑠.  

3 Ranking performance evaluation with Monte Carlo simulations  

Simulation experiments based on Monte Carlo are carried out to evaluate the performance of the 

AP model and the L-L model in ranking efficient DMUs. In the simulations, the Cobb-Douglas 

production function is adopted; the basis for evaluation is the rankings of efficient DMUs obtained 

based on the AP model and the L-L model. Considering various combinations of the sample size and 

the number of inputs, we include diverse cases in the simulations.     

Production function 

Being widely accepted in literature, the Cobb-Douglas production function can well describe the 

technological relationship between inputs and outputs (Banker and Natarajan, 2008; Banker et al., 

2004; Bjurek et al., 1990). In line with literature, the Cobb-Douglas production function (Eq. (6)) is 

adopted in this study.  

𝑌 = 𝐴𝑥1
𝛼1𝑥2

𝛼2 … 𝑥𝑚
𝛼𝑚𝑒𝑣−𝑢, (6) 

where 𝑌  is the output; 𝑥1, 𝑥2, … , 𝑥𝑚  are different inputs with m denoting the total number; 

𝛼1, … , 𝛼𝑚 are the elastic coefficients of m inputs.  

The function captures the maximum output that can be obtained based on m inputs under the 

current technological conditions. In this study, 𝑥1, 𝑥2, … , 𝑥𝑚  independently follow a uniform 

distribution of 𝑈(1, 4); 𝛼1, … , 𝛼𝑚 independently follow a uniform distribution of 𝑈(1/2𝑚, 2/𝑚); 

𝐴 is the comprehensive technology level and set to 1; 𝑢 represents technical inefficiency and follows 

a nonnegative half-normal distribution: |𝑁[0, 5.06]|; 𝑣 denotes random noise and follows a normal 

distribution of 𝑁(0, 0.36). The above settings are commonly adopted in literature (Chen and Delmas, 

2012; Giraleas et al., 2012). When 𝑣 − 𝑢 0 , a production process is efficient; otherwise, it is 

inefficient. 𝑒−𝑢, in fact, is the efficiency of a DMU under evaluation. 
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By following Chen and Delmas (2012), we transform Eq. (6) into Eq. (7), which is similar to Eq 

(12) in (Chen and Delmas, 2012).  

 [
log 𝑦1

⋮
log 𝑦𝑛

] = [
log𝐴 + 𝛼1 log 𝑥1 + ⋯ 𝛼𝑚 log 𝑥𝑚

⋮
log𝐴 + 𝛼1 log 𝑥1 + ⋯ 𝛼𝑚 log 𝑥𝑚

] + [

𝑣1

⋮
𝑣𝑛

] − [

𝑢1

⋮
𝑢𝑛

], (7) 

where 𝑦1, … , 𝑦𝑛  are the output obtained for 𝐷𝑀𝑈𝑗 ; 𝑥1, … , 𝑥𝑚  are m inputs; 𝛼1, … , 𝛼𝑚  are the 

elastic coefficients of m inputs; 𝑣1, … , 𝑣𝑛  are random noise for 𝐷𝑀𝑈𝑗 ; 𝑢1, … , 𝑢𝑛  are technical 

inefficiency for 𝐷𝑀𝑈𝑗.   

According to Coelli et al. (2005), the Cobb-Douglas production function exhibits three possible 

types of RS, including i) when 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑚 = 1, there are constant RS (CRS), ii) when 𝛼1 +

𝛼2 + ⋯ + 𝛼𝑚 > 1, there are increasing RS (IRS), and iii) when 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑚 < 1, there are 

decreasing RS (DRS). To include different situations as more comprehensive as possible, the ranking 

performance of the two models is evaluated based on all these assumptions about RS. The simulation 

parameter settings are summarized in Table 1.  

Table 1: Simulation parameter settings 

Parameters Value 

Sample size [10, 15, 20, 30] 

Number of inputs [4, 6, 8, 10] 

Returns-to-scale parameters ∑ 𝛼𝑖 = 1, ∑ 𝛼𝑖 > 1, ∑ 𝛼𝑖 < 1 

Distribution of input variables 𝑈 (1, 4) 

Distribution of 𝛼𝑖 𝑈(1/2𝑚, 2/𝑚) 

Technical inefficiency distribution | 𝑁 [0, 5.06] | 

Random noise distribution 𝑁 (0, 0.36) 

We also conduct experiments to examine if the changes of some parameters affect the ranking 

performance of the two models. With the setting above, the parameters to be changed in these 

experiments include the distribution of input variables and the distribution of 𝛼𝑖  (i.e., the elastic 

coefficients of input variables). These experiments are carried out under all three types of RS, including 

CRS (i.e., ∑ 𝛼𝑖 = 1 ), IRS (∑ 𝛼𝑖 > 1 ), and DRS (∑ 𝛼𝑖 < 1 ). Table 2 provides the settings of these 

parameters, whilst the other parameter settings remain the same as above. As shown in the table, in the 
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experiments, we i) change the distribution of input variables and ii) simultaneously change both 

distributions.        

Table 2: Settings of parameter changes 

Experiment Parameter Value 

The first set of experiments Distribution of input variables | 𝑁 [0,2.5] | 

The second set of experiments 
Distribution of input variables | 𝑁 [0,2.5] | 

Distribution of 𝛼𝑖 | 𝑁 [1/2𝑚, 2/𝑚] | 

The third set of experiments Distribution of input variables 𝑈(1,6) 

The fourth set of experiments 
Distribution of input variables 𝑈(1,6) 

Distribution of 𝛼𝑖 𝑈(1/3𝑚, 3/𝑚) 

Simulation process and evaluation criteria  

With the simulation parameter settings, random input values for DMUs are generated and the 

corresponding output values are obtained based on Eq. (7). Further, the “true” efficiencies of DMUs 

(i.e., 𝑒−𝑢 ) and the corresponding “true” rankings of efficient DMUs are obtained. R1 is used to 

represent the “true” rankings. Subsequently, with the same input and output values, the efficiencies 

and rankings of efficient DMUs are obtained based on the AP model and the L-L model. The rankings 

from the AP model and the L-L model are denoted as R2 and R3, respectively. R1, R2, and R3 are 

employed as the basis for evaluating the ranking performance of the two models.   

Based on the Kendall rank correlation coefficient, the simulations compute the P-values of R1, 

R2, and R3. The smaller the P-value is, the closer the two rankings in consideration are. See Kendall 

and Gibbons (1990) for details about Kendall rank correlation. If the P-value is 0, the corresponding 

two rankings are identical. The P-value can, thus, indicate how close the rankings obtained based on 

the AP model and the L-L model are to the “true” ones. The P-value of R1 and R2 (or R3) is denoted 

as P1 (or P2). The test level is set to 0.05. If P1 (or P2) is larger than 0.05, there are statistically 

significant differences between R1 and R2 (or R3); otherwise, there is no statistically significant 

difference.  

Let K be the total number of experiments in the simulation (K is 300 in this study). Denote the 

probability that there is no statistically significant difference between R1 and R2 as #{P1 ≤ 0.05}/𝐾, 
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where #{A} is the total number of event A in K experiments. Similarly, denote the probability that 

there is no statistically significant difference between R1 and R3 as #{P2 ≤ 0.05}/𝐾. Consequently, 

the higher the probability is, the closer the corresponding ranking is to the “true” one. The values of 

P1 and P2 are compared. If P2 < P1, R3 is closer to R1 than R2 is. Accordingly, the L-L model has a 

better ranking performance than the AP model. If P2 > P1, R2 is closer to R1, indicating that the AP 

model performs better. If P2 = P1, two models exhibit the same ranking performance by generating 

identical rankings. In relation to the above three possible comparison results, three probabilities are 

defined. They are (i) the probability that the L-L model performs better: #{P2 < P1}/K , (ii) the 

probability that the two models have the same ranking performance: #{P2 = P1}/K, and (iii) the 

probability that the AP model performs better: #{P2 > P1}/K. The values of all five probabilities are 

calculated in the experiments.  

Representing the total number of DMUs, the sample size n is set to 10, 15, 20, and 30 (see Table 

1). For each sample size, we set the total number of inputs m to 4, 6, 8, and 10. Accordingly, there are 

sixteen different combinations of the sample size and the number of inputs. As per the three 

assumptions about RS, the experiments are classified into three groups. For the experiments involving 

CRS, we divide each of the randomly generated elastic coefficient values by the sum to get a new one. 

This step is to ensure the sum of the coefficient values to be 1, as required by CRS. Similarly, for the 

experiments involving IRS (or DRS), we divide the randomly generated coefficient values by the sum 

plus 1 (or by 0.8 times the sum). These two steps are to make the sum of the coefficient values less 

than 1 and greater than 1, respectively. In total, forty-eight cases are analyzed in the simulations.  

Results and analysis 

Tables 3-5 provide the results in terms of the values of the five probabilities under CRS/DRS/IRS. 

Further, the bar charts of the values of two probabilities #{P1 ≤ 0.05}/𝐾  and #{P2 ≤ 0.05}/𝐾 

represented by p1 and p2 are developed in Figures 3-5. The bar charts can visualize how close the 

rankings obtained based on the two models are to the “true” ones. Under IRS, unlike the other cases, 

the case of n =10 and m=8 has a value of 0.9967, which is different from the other values in the first 

two rows (see Table 5 and Figure 5). This different value is caused by the randomness of the data.   



 

12 

 

As shown in Tables 3-5 and Figures 3-5, the results under three assumptions: CRS, DRS, and IRS 

have very similar characteristics, e.g., both the increasing and decreasing trends of the probability 

values. For illustrative simplicity, the analysis of the results under CRS are provided below. (Note that 

the same conclusions are obtained from analyzing the results under IRS and DRS.)     

As shown in the first two rows of Table 3, no matter what values n and m take, all the probability 

values are 1. This indicates that there is no statistically significant difference between the two rankings 

and the “true” ones in all 300 experiments. As the rankings are the same as the “true” ones, we conclude 

that both models perform very well in ranking efficient DMUs under CRS. Moreover, both models 

perform well in ranking efficient DMUs when the number of DMUs (or inputs) increases.    

Regarding the comparison of the ranking performance of the two models, we have the following 

observations. First, the values of #{P2 ≤ 0.05}/𝐾 are no lower than those of #{P1 ≤ 0.05}/𝐾 in all 

sixteen cases, as shown in the first two rows. Second, when 𝑚 or n increases, the probability values 

pertaining to the two models remain unchanged (see p1 and p2 in Figure 2). Third, the sum of 

probability values in the third and fourth rows (𝑖. 𝑒. , #{P2 ≤ P1}/𝐾) in each case is larger than 0.5 with 

the highest value being 1 (in all cases when n=20 and 30) and the lowest one 0.9533 (in the case when 

n=10 and m=8). (Note that the sum of probability values in the third and fourth rows in each case is 

the same as 1-the corresponding probability value in the fifth row.) Fourth, when n=20 and 30, no 

matter what values m takes, the rankings obtained based on the two models are identical, as shown by 

the 1s in the fourth row. With these observations, we conclude that under CRS, in general the L-L 

model performs better in ranking efficient DMUs than the AP model does.  

We also obtain some other interesting observations. As shown in the fourth row, when the sample 

size n increases for the same number of inputs, the probability values increase in general. However, 

when the number of inputs m decreases for the same sample size, the probability values increase for 

most cases3. With these results, we conclude that when the sample size increases or the number of 

inputs decreases, the two models tend to generate same rankings. As proved in literature (Jenkins and 

Anderson, 2003; Pastor et al., 2002; Li and Liang, 2010), the number of efficient DMUs decreases in 

 
3 There are some exceptional cases, e.g., when n=10 and m=10.   
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the sample size or when the number of inputs decreases. The decreasing number of efficient DMUs 

may contribute to the higher probability of same rankings in our experiments. It is worth noting that 

when the sample size is large (n=20 or 30 in our simulations), the two models provide identical 

rankings.    

To summarize, the simulation results are consistent across three RS assumptions. This indicates 

that the ranking performances of the two models are very similar. Additionally, when the number of 

DMUs increases or the number of inputs decreases, the probability that the two models generate same 

rankings increases under all three assumptions. At last, under all assumptions, both models provide 

satisfactory ranking results, and the L-L model performs more stable than the AP model. 

Table 3: Simulation results under CRS 

Probability 

n=10 n=15 n=20 n=30 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

#{P1

≤ 0.05}/𝐾 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

≤ 0.05}/𝐾 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

< P1}/𝐾 

0.02

67 

0.06

33 

0.06

00 

0.05

00 

0.01

33 

0.01

67 

0.00

67 

0.02

00 
0 0 0 0 0 0 0 0 

#{P2

= P1}/𝐾 

0.94

67 

0.90

00 

0.89

33 

0.91

00 

0.97

33 

0.98

00 

0.97

67 

0.97

00 
1 1 1 1 1 1 1 1 

#{P2

> P1}/𝐾 

0.02

67 

0.03

67 

0.04

67 

0.04

00 

0.01

33 

0.00

33 

0.01

67 

0.01

00 
0 0 0 0 0 0 0 0 

 

Figure 3: Probability bar charts under CRS 
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1.0

n=15

m=4 m=6 m=8 m=10
0.0

0.2

0.4

0.6

0.8

1.0

 p1   p2

n=20

m=4 m=6 m=8 m=10
0.0

0.2

0.4

0.6

0.8

1.0
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Table 4: Simulation results under DRS 

Probabilit

y 

n=10 n=15 n=20 n=30 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

#{P1

≤ 0.05}/𝐾 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

≤ 0.05}/𝐾 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

< P1}/𝐾 

0.02

33 

0.03

33 

0.03

67 

0.07

00 

0.01

67 

0.00

67 

0.01

33 

0.01

00 
0 0 0 0 0 0 0 0 

#{P2

= P1}/𝐾 

0.96

00 

0.91

33 

0.89

33 

0.91

00 

0.98

33 

0.99

00 

0.98

00 

0.98

67 
1 1 1 1 1 1 1 1 

#{P2

> P1}/𝐾 

0.01

67 

0.05

33 

0.07

00 

0.02

00 
0 

0.00

33 

0.00

67 

0.00

33 
0 0 0 0 0 0 0 0 

 

 

Figure 4: Probability bar charts under DRS 

Regarding the results of the experiments where we changed the distribution of input variables and the 

distribution of 𝛼𝑖, they are consistent under all three types of RS. Thus, for illustrative simplicity, we 

provide the results under CRS in Tables 6-9 and Figures 6-9 below. (See the results under IRS and 

DRS in Appendix 2 and 3, respectively.) More specifically, Table 6 and Figure 6/Table 7 and Figure 

7/Table 8 and Figure 8/Table 9 and Figure 9 correspond to the first/second/third/fourth set of 

experiments shown in Table 2. As shown in the first two rows of Table 6-9, the probability values are 

either 1 or very close to 1. This indicates that there is no statistically significant difference between the 

two rankings and the “true” ones in all 300 experiments.  

 

m=4 m=6 m=8 m=10
0.0

0.2

0.4

0.6

0.8

1.0

n=10

m=4 m=6 m=8 m=10
0.0

0.2

0.4

0.6

0.8

1.0

n=15

m=4 m=6 m=8 m=10
0.0

0.2

0.4

0.6

0.8

1.0
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m=4 m=6 m=8 m=10
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0.4

0.6

0.8

1.0
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Table 5: Simulation results under IRS  

Probability 

n=10 n=15 n=20 n=30 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

#{P1

≤ 0.05}/𝐾 
1 1 

0.99

67 
1 1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

≤ 0.05}/𝐾 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

< P1}/𝐾 

0.02

67 

0.03

00 

0.06

67 

0.05

00 

0.00

33 

0.01

67 

0.02

67 

0.00

67 
0 0 0 0 0 0 0 0 

#{P2

= P1}/𝐾 

0.96

33 

0.93

00 

0.88

67 

0.91

33 

0.99

33 

0.96

67 

0.96

67 

0.98

33 
1 1 1 1 1 1 1 1 

#{P2

> P1}/𝐾 

0.01

00 

0.04

00 

0.04

67 

0.03

67 

0.00

33 

0.01

67 

0.00

67 

0.01

00 
0 0 0 0 0 0 0 0 

 

 
Figure 5: Probability bar charts under IRS 

Consequently, we can conclude that both models have satisfactory ranking performance under CRS 

when the distributions of input variables and of 𝛼𝑖 change. Moreover, by carefully examining the 

values in all the rows of the tables and figures, we found the same patterns as these in Tables 3-6 and 

Figures 3-6. Thus, we reach the final conclusion: When the distribution of input variables and the 

distribution of 𝛼𝑖 change under CRS (as well as DRS and IRS), the two model’s ranking performance 

does not change and remains the same as in the earlier simulations.    

m=4 m=6 m=8 m=10
0.995

0.996

0.997

0.998

0.999

1.000

n=10

m=4 m=6 m=8 m=10
0.995

0.996

0.997

0.998

0.999

1.000

n=15

m=4 m=6 m=8 m=10
0.995

0.996

0.997

0.998

0.999

1.000

n=20

m=4 m=6 m=8 m=10
0.995

0.996

0.997

0.998

0.999

1.000

 p1   p2

n=30
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Table 6: Results of the first set of experiments (x~| 𝑁 [0,2.5] |) 

Probability 
n=10 n=15 n=20 n=30 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

#{P1

≤ 0.05}/𝐾 

0.99

00 

0.99

67 

0.98

67 

0.99

00 
1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

≤ 0.05}/𝐾 

0.99

00 

0.99

67 

0.99

00 

0.99

67 
1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

< P1}/𝐾 

0.20

00 

0.32

00 

0.36

67 

0.40

33 

0.17

33 

0.24

67 

0.27

00 

0.34

67 

0.01

00 

0.04

33 

0.07

67 

0.06

33 
0 0 0 0 

#{P2

= P1}/𝐾 

0.65

33 

0.54

67 

0.48

33 

0.44

33 

0.78

33 

0.68

33 

0.61

33 

0.58

67 

0.98

00 

0.95

33 

0.92

00 

0.92

00 
1 1 1 1 

#{P2

> P1}/𝐾 

0.14

67 

0.13

33 

0.15

00 

0.15

33 

0.04

33 

0.07

00 

0.11

67 

0.06

67 

0.01

00 

0.00

33 

0.00

33 

0.01

67 
0 0 0 0 

 
Figure 6: Probability bar charts corresponding to the first set of experiments 

Table 7: Results of the second set of experiments (𝑥~| 𝑁 [0,2.5] | and 𝛼~| 𝑁 [1/2𝑚, 2/𝑚] | ) 

Probability 

n=10 n=15 n=20 n=30 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

#{P1

≤ 0.05}/𝐾 

0.98

33 

0.99

00 

0.98

33 

0.98

00 
1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

≤ 0.05}/𝐾 

0.98

67 

0.99

00 

0.99

00 

0.98

67 
1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

< P1}/𝐾 

0.16

33 

0.32

67 

0.36

67 

0.39

00 

0.14

33 

0.26

67 

0.32

00 

0.34

00 

0.02

67 

0.05

33 

0.08

00 

0.13

00 
0 0 0 

0.0

033 

#{P2

= P1}/𝐾 

0.71

33 

0.54

67 

0.47

33 

0.42

00 

0.78

00 

0.64

67 

0.56

67 

0.57

33 

0.97

00 

0.92

67 

0.90

00 

0.85

33 
1 1 1 

0.9

967 

#{P2

> P1}/𝐾 

0.12

33 

0.12

67 

0.16

00 

0.19

00 

0.07

67 

0.08

67 

0.11

33 

0.08

67 

0.00

33 

0.02

00 

0.02

00 

0.01

67 
0 0 0 0 
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Figure 7: Probability bar charts corresponding to the second set of experiments 

Table 8: Results of the third set of experiments (𝑥~𝑈(1,6) ) 

Probability 

n=10 n=15 n=20 n=30 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

#{P1

≤ 0.05}/𝐾 
1 1 1 

0.99

67 
1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

≤ 0.05}/𝐾 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

< P1}/𝐾 

0.04

00 

0.08

00 

0.07

67 

0.07

67 

0.01

33 

0.02

33 

0.00

67 

0.02

33 
0 0 0 0 0 0 0 0 

#{P2

= P1}/𝐾 

0.92

00 

0.87

33 

0.86

00 

0.85

00 

0.98

67 

0.97

00 

0.98

33 

0.97

00 
1 1 

0.99

67 
1 1 1 1 1 

#{P2

> P1}/𝐾 

0.04

00 

0.04

67 

0.06

33 

0.07

33 

0.00

00 

0.00

67 

0.01

00 

0.00

67 
0 0 

0.00

33 
0 0 0 0 0 

 
Figure 8: Probability bar charts corresponding to the third set of experiments 

 

Table 9: Results of the fourth set of experiments (𝑥~𝑈(1,6) and 𝛼~𝑈(1/3𝑚, 3/𝑚)) 

Probability 

n=10 n=15 n=20 n=30 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 
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#{P1

≤ 0.05}/𝐾 
1 1 1 

0.99

67 
1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

≤ 0.05}/𝐾 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

< P1}/𝐾 

0.05

33 

0.10

00 

0.09

33 

0.08

00 

0.03

00 

0.03

67 

0.00

67 

0.03

33 
0 0 0 0 0 0 0 0 

#{P2

= P1}/𝐾 

0.90

67 

0.86

00 

0.84

00 

0.86

00 

0.95

67 

0.95

00 

0.97

00 

0.95

33 
1 1 1 1 1 1 1 1 

#{P2

> P1}/𝐾 

0.04

00 

0.04

00 

0.06

67 

0.06

00 

0.01

33 

0.01

33 

0.02

33 

0.01

33 
0 0 0 0 0 0 0 0 

 

 
Figure 9: Probability bar corresponding to the fourth set of experiments 

4 Simulation extension and result comparison  

In the above simulations, being consistent with literature, we set 

𝑢~|𝑁[0, 5.06]| and 𝑣~𝑁(0, 0.36).  With these settings, the ratio of the variances of 𝑢  and 𝑣  is 

  
𝜎𝑢

2

𝜎𝑣
2 =

5.06

0.36
> 10. This ratio, in fact, captures the relative importance of 𝑢 to 𝑣. A high (or low) ratio 

indicates that u is more (or less) important (and accordingly, v is less (or more) important). When the 

ratio is high (or low), the two models may have satisfactory (or unsatisfactory) ranking performance. 

To find out the influence that the ratio may impose on the two models’ ranking performance, additional 

simulations are carried out where the ratio values lie in two intervals: (1, 10) and (0, 1)4 . More 

specifically, we conduct the simulations based on different settings of u while fixing v and the other 

parameters. Because the simulation results pertaining to different ratio values in each interval have the 

exactly same behaviors, we provide below the results and analysis related to i) 𝑢~|𝑁[0, 2.56]|  and 

ii) 𝑢~|𝑁[0, 0.16]| . For Case i), the ratio is 
𝜎𝑢

2

𝜎𝑣
2 =

2.56

0.36
∈ (1,10), and for Case ii) 

𝜎𝑢
2

𝜎𝑣
2 =

0.16

0.36
∈ (0, 1). 

 
4 The results and conclusions remain the same when different intervals, e.g., (0, 2), (2, 11), are used.   
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The simulation results are provided in Tables 10-12 and Figures 10-12 when 
𝜎𝑢

2

𝜎𝑣
2 =

2.56

0.36
 and in Tables 

13-15 and Figures 13-15 when  
𝜎𝑢

2

𝜎𝑣
2 =

0.16

0.36
.  

Table 10: Simulation results under CRS when 𝑢~| 𝑁 [0,2.56] | 

Probability 

n=10 n=15 n=20 n=30 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

#{P1

≤ 0.05}/𝐾 

0.99

00 

0.98

33 

0.99

33 

0.99

00 
0.99

67 

1 1 1 1 1 1 1 1 1 1 1 

#{P2

≤ 0.05}/𝐾 

0.98

67 

0.98

33 

0.99

33 

0.99

33 
0.99

67 

1 1 1 1 1 1 1 1 1 1 1 

#{P2

< P1}/𝐾 

0.10

00 

0.13

00 

0.11

67 

0.14

00 
0.06

67 

0.12

00 

0.12

33 

0.13

33 
0.00

67 

0.00

67 

0.02

00 

0.01

33 

0 0 0 0 

#{P2

= P1}/𝐾 

0.83

00 

0.80

00 

0.78

00 

0.77

33 
0.87

00 

0.79

67 

0.81

33 

0.80

00 
0.99

00 

0.98

33 

0.96

33 

0.98

00 

1 1 1 1 

#{P2

> P1}/𝐾 

0.07

00 

0.07

00 

0.10

33 

0.08

67 
0.06

33 

0.08

33 

0.06

33 

0.06

67 
0.00

33 

0.01

00 

0.01

67 

0.00

67 

0 0 0 0 

 

 

Figure 10: Probability bar charts under CRS when 𝑢~| 𝑁 [0,2.56] |   

Table 11: Simulation results under DRS when 𝑢~| 𝑁 [0,2.56] | 

Probability 

n=10 n=15 n=20 n=30 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

#{P1

≤ 0.05}/𝐾 

0.99

00 

0.98

33 

0.98

67 

0.99

00 

1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

≤ 0.05}/𝐾 

0.99

00 

0.98

33 

0.99

67 

0.98

67 

1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

< P1}/𝐾 

0.09

33 

0.12

67 

0.16

00 

0.15

00 
0.08

00 

0.12

33 

0.11

67 

0.17

00 
0.02

00 

0.00

67 

0.02

33 
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Figure 11: Probability bar charts under DRS when 𝑢~| 𝑁 [0,2.56] | 

Table 12: Simulation results under IRS when 𝑢~| 𝑁 [0,2.56] | 
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Figure 12: Probability bar charts under IRS when 𝑢~| 𝑁 [0,2.56] | 

Table 13: Simulation results under CRS when 𝑢~| 𝑁 [0, 0.16] | 
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Figure 13: Probability bar charts under CRS when 𝑢~| 𝑁 [0, 0.16] | 

Table 14: Simulation results under DRS when 𝑢~| 𝑁 [0, 0.16] | 
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Figure 14: Probability bar charts under DRS when 𝑢~| 𝑁 [0, 0.16] | 

Table 15: Simulation results under IRS when 𝑢~| 𝑁 [0, 0.16] | 

Probability 

n=10 n=15 n=20 n=30 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

#{P1

≤ 0.05}/𝐾 

0.08

00 

0.08

00 

0.10

00 

0.05

00 
0.12

00 

0.12

33 

0.10

67 

0.13

67 

0.14

67 

0.12

33 

0.14

00 

0.21

67 

0.18

67 

0.1

867 

0.2

067 

0.2

433 

#{P2

≤ 0.05}/𝐾 

0.07

67 

0.08

00 

0.10

67 

0.04

67 
0.13

00 

0.12

33 

0.11

00 

0.13

33 

0.14

67 

0.11

67 

0.13

00 

0.19

67 

0.19

67 

0.1

900 

0.2

100 

0.2

467 

#{P2

< P1}/𝐾 

0.22

33 

0.31

33 

0.29

33 

0.36

33 
0.24

00 

0.35

33 

0.42

00 

0.43

67 
0.26

00 

0.35

67 

0.32

67 

0.39

33 

0.33

00 

0.4

333 

0.4

433 

0.4

100 

#{P2

= P1}/𝐾 

0.57

67 

0.36

00 

0.41

00 

0.28

67 
0.50

00 

0.34

00 

0.26

67 

0.25

33 
0.48

00 

0.31

33 

0.24

33 

0.22

00 

0.37

33 

0.2

233 

0.1

400 

0.1

900 

#{P2

> P1}/𝐾 

0.20

00 

0.32

67 

0.29

67 

0.35

00 
0.26

00 

0.30

67 

0.31

33 

0.31

00 
0.26

00 

0.33

00 

0.43

00 

0.38

67 

0.29

67 

0.3

433 

0.4

167 

0.4

000 

 

 

m=4 m=6 m=8 m=10
0.00

0.05

0.10

0.15

0.20

0.25

n=10

m=4 m=6 m=8 m=10
0.00

0.05

0.10

0.15

0.20

0.25

n=15

m=4 m=6 m=8 m=10
0.00

0.05

0.10

0.15

0.20

0.25

n=20

m=4 m=6 m=8 m=10
0.00

0.05

0.10

0.15

0.20

0.25

 p1   p2

n=30



 

23 

 

 

Figure 15: Probability bar charts under IRS when 𝑢~| 𝑁 [0, 0.16] |  

When 
𝜎𝑢

2

𝜎𝑣
2 =

2.56

0.36
 ∈ (1,10),  the results under CRS, DRS and IRS exhibit very similar 

characteristics. Thus, the analysis of the results under CRS and their comparison with those of the 

initial simulations are provided below. As shown in the first two rows of Table 10, the probability 

values are very close to 1, and in more than a half of the cases they are 1. This indicates that the two 

models perform very well in ranking efficient DMUs when 
𝜎𝑢

2

𝜎𝑣
2 ∈ (1,10). By comparing Table 10 with 

Table 3 where the probability values of the first two rows are all 1, we conclude that the ranking 

performance of the two models increases in the ratio of the variances of 𝑢 and 𝑣. Based on the first 

two rows, we can also conclude that the ranking performance of both models increases with the sample 

size n. Despite some irregular cases, e.g., when n=10 and m=6 for the L-L model, when n=10 and 

m=10 for the AP model, the two models generally present improved ranking performance when the 

number of inputs m increases. After examining the probability values in the rest three rows of Table 

10, we conclude that in general the L-L model performs better than the AP model. Same as in the initial 
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As shown in the first two rows, most probability values are close to 0 with the highest one being 

0.2767 for the AP model (when n=30 and m=6) and the lowest 0.0733 for both models (when n=10 

and m=6). Such low values indicate that the rankings in consideration are inconsistent with the “true” 

ones. We, therefore, conclude that both models have unsatisfactory ranking performance when 

technical inefficiency is less important. Despite the unsatisfactory performance, the probability values 

present an increasing trend in the sample size n (or the number of inputs m). Thus, we draw a similar 

conclusion to the earlier one; that is, when 
𝜎𝑢

2

𝜎𝑣
2 ∈ (0, 1), the ranking performance of the two models 

increases in the sample size (or the number of inputs). Based on the probability values in the last row 

(or the sum of the corresponding values in the third and fourth rows) and the comparison of the first 

two rows, we conclude that under CRS, the L-L model performs better than the AP model. Moreover, 

as shown in the third row, with the increase of the sample size or the number of inputs, the probability 

values increase, indicating that the L-L model performs better and better. Based on the above analysis, 

we point out that the L-L model is more robust than the AP model when technical inefficiency is less 

important.  

Finally, we summarize all the simulation results and conclusions. Under CRS, DRS, and IRS, 

when   
𝜎𝑢

2

𝜎𝑣
2 > 10 and 

𝜎𝑢
2

𝜎𝑣
2 ∈ (1,10)  where technical inefficiency is more important, the two models 

generate rankings, which are close to, or the same as, the “true” ones. However, when 
𝜎𝑢

2

𝜎𝑣
2 ∈ (0, 1) 

where technical inefficiency is less important, they generate inconsistent rankings. We, therefore, 

conclude: (i) Under all types of RS, when technical inefficiency is more important, both models have 

satisfactory ranking performance, and provide rankings, which are close to, or the same as, the “true” 

ones; and (ii) Under all types of RS, when technical inefficiency is less important, both models perform 

unsatisfactorily in ranking efficient DMUs. Moreover, we conclude that in general, the L-L model 

performs better than the AP model. This is especially true when technical inefficiency is less important. 

This conclusion implies that organizations should try to employ the L-L model to rank their efficient 

DMUs. Last, we stress that the relative importance of technical inefficiency plays an important role in 

ranking efficient DMUs. In practice, it is, thus, of paramount importance to determine suitable settings 

of 𝑢 when either of the two models is applied to rank efficient DMUs.   
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5 Conclusions 

In literature, two super-efficiency DEA models proposed by Andersen and Petersen (1993) and 

Li et al. (2016) have been widely applied to differentiate or rank efficient DMUs. In this study, we 

called these two models the AP model and the L-L model, respectively. Monte Carlo simulations to 

evaluate the performance of the two models in ranking efficient DMUs were carried out. Some of these 

simulations were carried out to check if the changes of parameters (e.g., the distribution of input 

variables) affect the ranking performance of the two models. In view of its importance, we conducted 

additional simulations to examine the influence of technical inefficiency’s variability on the two 

models’ ranking performance. In the simulations, to include situations as comprehensive as possible, 

we considered three types of RS, including CRS, DRS, and IRS. The simulation results highlighted: 

(i) Under all three types of RS, the ranking performance of the two models remains the same when 

changing the parameters. (ii) Under the three types of RS, when technical inefficiency is more 

important, both models have satisfactory performance; (iii) The L-L model performs better than the 

AP model does and is more robust. This is especially true when technical inefficiency is less important; 

(iv) Under the three types of RS, both models provide unsatisfactory ranking performance when 

technical inefficiency is less important; and (v) The relative importance of technical inefficiency plays 

an important role in ranking efficient DMUs. With the results, we suggested that (a) Organizations 

might apply the L-L model in evaluating their DMUs and (b) Suitable settings of technical inefficiency 

are required to evaluate DMUs. 

In the simulations, we assumed that the distribution of random noise remained the same. As 

random noise may affect DMUs’ efficiencies, researchers interested could determine the suitable 

settings of random noise for optimizing the ranking performance of the L-L model. Furthermore, in  

this study, we used a maximum of 30 DMUs in the simulation, even though with 30 DMUs the 

calculation is very timely, thus, it would be interesting to design algorithms/mechanisms so that the 

number of DMUs can be increased in larger experiments while incurring acceptable simulation time. 

This is about reducing computational complexity. Additionally, one possible avenue for future research 

is to adopt other types of production functions in simulations and to examine if same results can be 

obtained.  
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Appendix 1: Ranking methods for sorting DMUs and their limitations 

The cross-efficiency sorting method was first proposed by Doyle & Green (1994). In the DEA 

background, this method is to sort the DMUs based on a cross-efficiency matrix. The cross-efficiency 

matrix was originally developed by Sexton et al. (1986), who started the theme of DEA ranking. Doyle 

and Green (1994) pointed out that decision makers do not always have a reasonable mechanism for 

ranking units and, thus, recommended the cross-efficiency matrix as a hierarchical unit. The cross-

efficiency ranking method uses the optimal weights evaluated by n linear programs (LPs) to calculate 

the efficiency score of each DMU n times. The results of all DEA cross efficiency scores can be 

organized as the cross-efficiency matrix. The cross-efficiency soring method allows each DMU to 

selfishly choose an optimal set of input and output weights and defines the average of a DMU’s 

efficiencies based on the optimal weights as its cross efficiency. However, cross-efficiency scores are 

generally not unique and depend on the alternative optimal solutions to the LPs used (Liang and Wu 

et al., 2008b). The efficiency obtained by this method is, thus, not unique.  

The Common weight-based method is also used for ranking DMUs proposed in (Cook et al., 

1990). It attempts to find a common set of weights to calculate efficiencies for all DMUs and further 

ranks them based on their efficiencies. Compared with the cross-efficiency method, this method 

evaluates the DMUs based on a common platform, i.e., the set of common weights. In this regard, the 

efficiency scores of units are comparable. The problem with this ranking method is that it is very 

difficult to find an inclusion principle to choose a common weight set. Consequently, the different 

principles adopted result in different common weight sets and grades between DMUs.  

Nicole Adler et al. (2002) discussed the Benchmark ranking method, which sorts DMUs in two 

stages. In the first stage, the efficient units are ranked by simply counting the number of times they 

appear in the reference sets of inefficient units. The inefficient units are then ranked, in the second 

stage, by counting the number of DMUs that needs to be removed from the analysis before they are 

considered efficient. However, a complete ranking cannot be assured because many DMUs may 

receive the same ranking score. Another problem with this ranking method is that a DMU is highly 

ranked if it is chosen as a useful target for many other DMUs.   
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Appendix 2: Results of simulation where parameters are changed under DRS 

Table 16: Results of the fifth set of experiments (x~| 𝑁 [0,2.5] |) 

Probability 
n=10 n=15 n=20 n=30 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

#{P1

≤ 0.05}/𝐾 

0.99

00 

0.98

67 

0.97

67 

0.99

00 
1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

≤ 0.05}/𝐾 

0.99

00 

0.99

67 

0.99

00 

0.99

67 
1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

< P1}/𝐾 

0.25

33 

0.36

33 

0.40

33 

0.38

33 

0.15

00 

0.28

67 

0.34

33 

0.34

67 

0.04

33 

0.07

00 

0.09

00 

0.06

33 
0 0 

0.0

033 
0 

#{P2

= P1}/𝐾 

0.62

67 

0.54

33 

0.48

67 

0.50

33 

0.78

00 

0.61

67 

0.57

67 

0.58

67 

0.94

00 

0.91

33 

0.90

67 
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00 
1 1 

0.9

967 
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#{P2

> P1}/𝐾 

0.12

00 

0.09
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0.11

00 

0.11

33 

0.07

00 
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00 
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0.00
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0.01

67 
0 0 0 0 

 
Figure 16: Probability bar charts corresponding to the fifth set of experiments 
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Table 17: Results of the sixth set of experiments (𝑥~| 𝑁 [0,2.5] | and 𝛼~| 𝑁 [1/2𝑚, 2/𝑚] | ) 

Probability 

n=10 n=15 n=20 n=30 

m=

4 

m=

6 

m=

8 

m=

10 

m=
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m=
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m=
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m=
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m=

4 

m=

6 

m=
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m=
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m=

6 

m=

8 

m=

10 

#{P1

≤ 0.05}/𝐾 

0.99

67 
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67 

0.98

00 
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67 
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67 
1 1 

0.99

67 
1 1 1 1 1 1 1 1 

#{P2

≤ 0.05}/𝐾 

0.99
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0.99
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0.99

00 

0.99

00 
1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

< P1}/𝐾 

0.21
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0.35
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0.33
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0.39
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0.17
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0.31
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Figure 17: Probability bar charts corresponding to the sixth set of experiments 

  

m=4 m=6 m=8 m=10
0.975

0.980

0.985

0.990

0.995

1.000

n=10

m=4 m=6 m=8 m=10
0.975

0.980

0.985

0.990

0.995

1.000

n=15

m=4 m=6 m=8 m=10
0.975

0.980

0.985

0.990

0.995

1.000

n=20

m=4 m=6 m=8 m=10
0.975

0.980

0.985

0.990

0.995

1.000

 p1   p2

n=30



 

31 

 

Table 18: Results of the seventh set of experiments (𝑥~𝑈(1,6) ) 

Probability 

n=10 n=15 n=20 n=30 
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6 

m=
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#{P1

≤ 0.05}/𝐾 
1 1 1 
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1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

≤ 0.05}/𝐾 
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Figure 18: Probability bar charts corresponding to the seventh set of experiments 
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Table 19: Results of the eighth set of experiments (𝑥~𝑈(1,6) and 𝛼~𝑈(1/3𝑚, 3/𝑚)) 

Probability 

n=10 n=15 n=20 n=30 
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0.01

33 
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0.00

33 
0 0 0 0 0 0 

#{P2

= P1}/𝐾 
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Figure 19: Probability bar corresponding to the eighth set of experiments 
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Appendix 3: Results of simulation where parameters are changed under IRS.  

Table 20: Results of the ninth set of experiments (x~| 𝑁 [0,2.5] |) 

Probability 
n=10 n=15 n=20 n=30 

m=
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0.15

33 

0.22

00 

0.33

33 

0.37

67 
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0.14

67 
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Figure 20: Probability bar charts corresponding to the ninth set of experiments 
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Table 21: Results of the tenth set of experiments (𝑥~| 𝑁 [0,2.5] | and 𝛼~| 𝑁 [1/2𝑚, 2/𝑚] | ) 

Probability 

n=10 n=15 n=20 n=30 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

#{P1

≤ 0.05}/𝐾 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

≤ 0.05}/𝐾 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

< P1}/𝐾 

0.16

33 

0.28
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0.30
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0.14
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0.07

67 
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Figure 21: Probability bar charts corresponding to the tenth set of experiments 
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Table 22: Results of the eleventh set of experiments (𝑥~𝑈(1,6) ) 

Probability 

n=10 n=15 n=20 n=30 

m=
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m=
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m=

8 

m=
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4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

#{P1

≤ 0.05}/𝐾 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

≤ 0.05}/𝐾 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

< P1}/𝐾 
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0.05

00 

0.10

00 
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Figure 22: Probability bar charts corresponding to the eleventh set of experiments 
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Table 23: Results of the twelfth set of experiments (𝑥~𝑈(1,6) and 𝛼~𝑈(1/3𝑚, 3/𝑚)) 

Probability 

n=10 n=15 n=20 n=30 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

m=

4 

m=

6 

m=

8 

m=

10 

#{P1

≤ 0.05}/𝐾 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

≤ 0.05}/𝐾 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

#{P2

< P1}/𝐾 

0.08

00 

0.03

00 

0.09

33 

0.08

00 

0.02

00 

0.02

67 

0.02

00 

0.03

33 
0 0 0 0 0 0 0 0 
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= P1}/𝐾 
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67 

0.95
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0.94

67 
1 1 1 1 1 1 1 1 

#{P2
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Figure 23: Probability bar corresponding to the twelfth set of experiments   
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