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� Shear moduli of asphalt-filler
composite systems with filler
volumetric contents of 10% and 27%
are increased to 1.55 and 3.32 times
that of the asphalt binder matrix at
10 Hz, 20℃.

� Viscoelastic strengthening coefficient
without fatigue cracks (VSC)
decreases with frequency or
temperature, and increases with filler
volumetric content.

� Viscoelastic strengthening coefficient
with fatigue cracks (VSC-f) increases
with the filler volumetric content,
while decreases rapidly with fatigue
crack length.

� VSC and VSC-f of the asphalt-filler
composite system are independent of
strain level.
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Fatigue cracking of viscoelastic asphalt composite materials is one of the major distresses in asphalt pave-
ments. To quantify the weakening effect of the fatigue cracks on the mechanical properties of the vis-
coelastic asphalt composite materials, this study takes an asphalt-filler composite system as an
example, and micromechanics models are proposed by combining Eshbely’s equivalent inclusion theory
and Mori-Tanaka approach. Dynamic shear rheometer (DSR) tests are performed on the viscoelastic
asphalt-filler composite systems with two volumetric contents of inclusion (10% and 27%) at different fre-
quencies (0.1–100 Hz), temperatures (15℃, 20℃, 25℃) and strain levels (0.01%-0.1% for nondestructive
DSR tests; 5%, 6%, 7% for destructive DSR tests). Results show that the predicted shear modulus results
by a modified viscoelastic strengthening coefficient (VSC) model match with the test results at both
low and high filler contents. Then a viscoelastic strengthening coefficient with fatigue cracks (VSC-f)
model is proved being capable of accurately predicting the shear modulus for the viscoelastic asphalt-
filler composite systems at different strain levels, temperatures, filler contents and damage levels. Both
the VSC and the VSC-f model are derived to be dependent of loading frequency, temperature and filler
content, but independent of strain level.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Asphalt materials, such as asphalt mastic, asphalt mortar and
asphalt mixture, are widely used in pavement engineering to con-
struct the surface layers of roads, highways, ports, runways and car
parks. A large number of studies focused on the behaviors and
properties of asphalt materials and pavement structures from the
perspective of macroscopic [1–3,52]. However, asphalt materials
are typical viscoelastic composite materials, and they are com-
posed of asphalt binder matrix and several heterogeneous inclu-
sions like aggregates, fillers, and air voids. Under the effect of
moving vehicles load, the macroscopic mechanical response of
the viscoelastic asphalt composite system in pavement structures
is effected by the interaction of the asphalt binder matrix and
the various inclusions. Currently, a number of analytical models
were proposed to predict the macroscopic mechanical properties
of viscoelastic asphalt composite system, which can be divided into
three categories: (1) Empirical models; (2) Numerical simulation
micromodels; (3) Micromechanics models.

In the empirical models, prediction models reflecting the prop-
erties of the asphalt binder matrix and aggregate inclusion are usu-
ally obtained by regression analysis method. The mechanical
properties of the viscoelastic asphalt composite system are pre-
dicted based on the mechanical properties of the asphalt binder
matrix and aggregate inclusion in the empirical models [4–6].
These empirical models were obtained by statistical regression
analysis of test results at specific testing conditions. These empir-
ical models cannot reveal the interacting mechanism caused by the
asphalt binder matrix and the inclusions of the viscoelastic asphalt
composite system, which limits the development of these empiri-
cal models.

For the numerical simulation micromodels, some researchers
analyzed the macroscopic mechanical behavior of the viscoelastic
asphalt composite system using Finite Element models or Discrete
Element models [7–13]. Generally, the complex meso-structure
characteristics of the asphalt composite system are introduced into
the Finite Element models or Discrete Element models based on
the X-ray CT scanning, or the randomized aggregates which are
constructed through the image database of the aggregates and
the image-assisted random generation method. Then, the Finite
Element models and Discrete Element models were solved numer-
ically to predict the macroscale material properties [14–16]. How-
ever, analysis of the complex Finite Element models and Discrete
Element models requires a number of debugging and large-scale
computational costs.

In the micromechanics model, Eshelby proposed the elastic
solutions to the stress and strain fields of an elastic infinite med-
ium containing a single inclusion [17–18]. This groundbreaking
work provided a solid theoretical foundation for the later
micromechanics model of composite materials. Then, on the basis
of Eshelby’s research, a large number of classical micromechanics
models were proposed to predict the macroscopic mechanical
properties of composite materials, which including the self-
consistent model [19], generalized self-consistent model [20] and
Mori-Tanaka model [21], differential model [22–23], J-C model
[24], and so on. These models can be used to evaluate the local
stress and strain fields of composite materials under given macro-
scopic loading conditions and to predict the effective mechanical
properties of composite materials from the basic mechanical prop-
erties of each component. These physically-significant microme-
chanics models are also widely used in viscoelastic asphalt
composite materials [25–27].

The micromechanics models can overcome the limitations of
empirical models and do not require large amounts of computa-
tional costs, and they can provide reliable estimations of the
2

mechanical properties for the asphalt composite materials. How-
ever, most of these models are limited to predict the mechanical
properties of the viscoelastic asphalt composite system under a
nondestructive condition. The prediction of the mechanical proper-
ties is still lack of research for of the viscoelastic asphalt composite
system under a destructive condition, for example, a fatigue crack
propagation condition. Therefore, it is necessary to extend the
micromechanics model to the destructive condition such as fatigue
crack propagation when studying the macroscopic mechanical
properties for viscoelastic asphalt composite materials.

Asphalt mastic is a typical viscoelastic asphalt-filler composite
system which contains the mineral filler particle inclusion and
the viscoelastic asphalt binder matrix. Asphalt mastic is an impor-
tant component of asphalt mixtures, and plays a role of coating and
bonding the coarse aggregates in the asphalt mixtures. In this
study, the asphalt mastic is taken as an example of the viscoelastic
asphalt composite system and the objective of this study is to
investigate the influence of fatigue cracks on the mechanical prop-
erties of the viscoelastic asphalt-filler composite system and pro-
vide a theoretical support for the selection of asphalt materials.

This study is organized as follows. First, materials and laboratory
tests are introduced. Then, constitutive equations for the asphalt
binder matrix and the filler are presented, and micromechanics
models are introduced for the viscoelastic asphalt-filler composite
system. Next, a viscoelastic strengthening coefficient (VSC) model
is determined for the viscoelastic asphalt-filler composite system
under the nondestructive condition. Based on the micromechanics
theory, a viscoelastic strengthening coefficient with fatigue cracks
(VSC-f) model is derived for the viscoelastic asphalt-filler compos-
ite system, which coupled the reinforcement of filler inclusion
and theweakening of fatigue crack inclusion under destructive con-
dition. Furthermore, the VSC-fmodel coupledwith temperature, fil-
ler content and damage degree are established and verified. Finally,
a summary section concludes this study with the main results.

2. Materials and laboratory tests

2.1. Materials

In this study, a type of asphalt binder (AB) and two types of
asphalt mastic (AM1 and AM2) with different contents of mineral
powder filler were selected as the viscoelastic materials for analy-
sis. Notably, the AB was used as a viscoelastic matrix material, AM1
and AM2 were used as two viscoelastic composite materials with
different filler contents where AM1 had a low filler content of
10% and AM2 had a high filler content of 27%. The volumetric con-
tent of 27% (i.e., the mass ratio between the powder filler and
asphalt binders is 1.0) correspond to the typical ratio of the powder
filler to the asphalt binders in the asphalt mixture composition.
This volumetric content can be estimated by the gradation infor-
mation of the mixture, densities of the asphalt binder matrix and
filler inclusion. The volumetric content of 10% (i.e., the mass ratio
of between the powder filler and the asphalt binder is 0.3) was
used to evaluate the applicability of the micromechanical model
at different filler contents.

A virgin asphalt binder from Shell was used as the asphalt bin-
der matrix material. Basic properties of the virgin asphalt binder
are shown in Table 1, which meet technical requirements of the
national specification [28]. In particular, the wax content tests
using DSC method were performed on the asphalt binders, and
the wax content of the asphalt binders is 0.584%. A limestone from
Hubei Province, China was selected as the mineral filler and its
material properties were tested and checked against the national
specification [28], shown in Table 1. The fabrication of the
asphalt-filler viscoelastic composite system included the following



Table 1
Basic properties and requirements of the asphalt binder matrix and filler.

Materials Sources Properties Units Requirements Results

Asphalt binder Shell Penetration at 25℃ 0.1 mm 60–80 66
Softening point ℃ >=46 49.0
Ductility at 15℃ cm >=100 >100
Wax content – – 0.584%

Filler Hubei Province, China Relative density g/cm3 >=2.50 2.765
Water content % <=1 0.49
Hydrophilic coefficient – <1 0.68
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steps: (1) dry the filler in an oven at a temperature of 110℃ for 4 h,
and heat the asphalt binder to 145℃ before adding the filler; (2)
blend the prepared hot asphalt binder by a high-speed shear dis-
persion instrument at a rotation speed of 1500 rotations per min-
ute; (3) add the weighed filler according to the designed mixing
content to the hot asphalt binder matrix; and (4) mix the filler with
the asphalt binder for 10 min to ensure they are fully mixed.
2.2. Laboratory tests

In this study, the DHR-2 of TA instrument was adopted to per-
form the following series of tests on the AB, AM1 and AM2. It con-
tains frequency sweep test, nondestructive test with different
shear strain levels and time sweep test.
2.2.1. Frequency sweep test
To explore the evolution of mechanical properties of the vis-

coelastic material under different loading frequencies, the fre-
quency sweep tests were conducted on the AB, AM1 and AM2.
The shear moduli were obtained to analyze the mechanical corre-
lation between the viscoelastic matrix material (asphalt binder)
and the corresponding viscoelastic composite systems (mastics)
in frequency domain. Three temperatures were selected for the fre-
quency sweep test in this study, i.e., 15 �C, 20 �C and 25 �C, and the
range of frequency domain was 0.1–100 Hz. In addition, a suffi-
ciently small nondestructive strain level of 0.01% was selected as
the strain level of the frequency sweep test.
2.2.2. Nondestructive test with different shear strain levels
To explore the evolution of mechanical properties of viscoelas-

tic composite materials under different strain levels, the nonde-
structive test with different shear strain levels were carried out
for the AB, AM1 and AM2. The shear moduli were obtained to ana-
lyze the mechanical correlation between viscoelastic matrix mate-
rial (asphalt binder) and the corresponding viscoelastic composite
materials (mastics) at different strain levels. For the nondestructive
test with different shear strain levels, three temperatures of 15 �C,
20 �C and 25 �C, one frequency of 10 Hz, and an increasing strain
levels within the range of 0.01%-0.1% were selected.
2.2.3. Time sweep test
To establish a micromechanics model for the viscoelastic

asphalt-fillers composite system under the destructive condition,
it is essential to obtain destructive results of the AB, AM1 and
AM2. Hence, the destructive time sweep tests were performed on
the AB, AM1 and AM2. Three testing temperatures (15 �C, 20 �C,
25 �C) and one loading frequency (10 Hz) were used. To ensure that
the time sweep tests are destructive, relatively high strain levels of
5%, 6% and 7% were applied to the AB, AM1 and AM2. Specific con-
ditions of the frequency sweep test, nondestructive test with dif-
ferent shear strain levels and time sweep test are shown in Table 2.
3

3. Micromechanics model for viscoelastic asphalt-filler
composite system

This section aims to reveal the correlation between the vis-
coelastic binder matrix, the mineral filler inclusion and the vis-
coelastic asphalt-filler composite system from the perspective of
micromechanics. It mainly consists of the following two parts:

(1) Construct the constitutive equations for the asphalt binder
matrix and the filler in Laplace domain;

(2) Introduce the micromechanics theory for the viscoelastic
asphalt-filler composite system in the Laplace domain.

3.1. Constitutive equation for the asphalt binder matrix and filler in the
Laplace domain

The asphalt binder is a typical viscoelastic material, and its lin-
ear viscoelastic constitutive equation can be expressed as follows:

r0
ij ¼

Z t

0
C0
ijkl t � sð Þ @e

0
kl

@s
ds ð1Þ

where r0
ij, e0kl are stress tensor and strain tensor of the asphalt binder

matrix, respectively; C0
ijkl is relaxation modulus tensor of the asphalt

binder matrix; tis time, and s is an arbitrary time between 0 and t.
The relaxation modulus tensor can be expressed by:

C0
ijkl ¼ k0dijdkl þ G0 dikdjl þ dildjk

� � ð2Þ

in which dij is Kronecker symbol; k0, G0 are Lame constant and shear
modulus of the asphalt binder matrix. Substituting Eqn 2 into Eqn 1,
yields:

r0
ij ¼ dij

Z t

0
k0 t � sð Þ @e

0
kk tð Þ
@s

dsþ 2
Z t

0
G0 t � sð Þ @e

0
ij tð Þ
@s

ds ð3Þ

Taking Laplace transformation on Eqn 3, the constitutive equa-
tion of the asphalt binder matrix in Laplace domain is obtained as:

r
�0

ij sð Þ ¼ sk
�0

sð Þe�0

kk sð Þdij þ 2sG
�
0 sð Þe�0

ij sð Þ ð4Þ

where s is Laplace parameter; r
�0

ij sð Þ, e�0

kk sð Þ, e�0

ij sð Þ,k
�0

sð Þ and G
�
0 sð Þare

stress tensor, volumetric strain tensor, deviatoric strain tensor,
Lame constant and shear modulus of the asphalt binder matrix in
Laplace domain. In this study, the variables with superscript hori-
zontal lines represent the Laplace transformed variable of the corre-
sponding variables in the time domain.

It is assumed that the filler embedded in the asphalt binder
matrix is an isotropic linear elastic material, and the linear elastic
constitutive equation can be expressed as follows:

rI
ij ¼ kIeIkkdij þ 2GIeIij ð5Þ

in which rI
ij, eIkk, eIij are stress tensor, volumetric strain tensor and

deviatoric strain tensor of the filler; kI , GI are Lame constant and
shear modulus of the filler.



Table 2
Schedule of laboratory tests.

Test type Materials* Temperature (�C) Frequency (Hz) Nondestructive strain level Destructive strain level

Frequency sweep test AB, AM1, AM2 15 0.1–100 0.01% –
20 0.1–100 0.01% –
25 0.1–100 0.01% –

Nondestructive test with different shear strain levels AB, AM1, AM2 15 10 0.01–0.1% –
20 10 0.01–0.1% –
25 10 0.01–0.1% –

Time sweep test AB, AM1, AM2 15 10 – 5%, 6%, 7%
20 10 – 5%, 6%, 7%
25 10 – 5%, 6%, 7%

* AB = Asphalt binder; AM1 = Asphalt mastic with filler content of 10%; AM2 = Asphalt mastic with filler content of 27%.
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Based on Eqn 4 and 5of the asphalt binder matrix and filler par-
ticle, it can be seen that the constitutive equation of the asphalt
binder matrix has the same form as that of the filler particle, a lin-
ear elastic material. Therefore, in the Laplace domain, the
micromechanics theory of the composite materials based on linear
elastic materials can be used to analyze the viscoelastic asphalt-
filler composite system.

3.2. Micromechanics theory for viscoelastic asphalt-filler composite
system in the Laplace domain

According to the equivalent inclusion theory, due to the pres-
ence of internal heterogeneous inclusion, the strain field in matrix
of elastic composites is different from that in uniform non-
inclusion matrix. The strain field in an arbitrary elastic matrix
can be expressed by the following formula [18]:

eme
ij ¼ e0eij þ edij ð6Þ

rme
ij ¼ r0e

ij þ rd
ij ð7Þ

where eme
ij , rme

ij represent strain tensor, stress tensor of the matrix

disturbed by inclusion, respectively; e0eij , r0e
ij are strain tensor, stress

tensor of the uniform non-inclusion matrix; edij, rd
ij are disturbed

stress and strain tensors caused by the inclusion.
In addition, the strain and stress field of the elastic inclusion are

also different from that of the elastic matrix. Assuming that the
stress and strain of the inclusion are different from the matrix,
the stress and strain of the inclusion can be expressed by [29]:

eneij ¼ e0eij þ edij þ e0ij ð8Þ

rne
ij ¼ r0e

ij þ rd
ij þ r0

ij ð9Þ
in which eneij , rne

ij are strain tensor and stress tensor of an arbitrary
elastic inclusion in the composite materials;e0ij, r0

ij are strain and
stress tensor of the difference, respectively.

The mastic material composed of the asphalt binder and filler is
a typical viscoelastic composite system, so the above-mentioned
equivalent inclusion theory of elastic material cannot be directly
adopted. However, according to the analysis in the above section,
it can be seen that the constitutive equation of the asphalt binder
matrix in the Laplace domain has the same form as that of the lin-
ear elastic material. In other words, the viscoelastic constitutive
equation can be converted into a new form in the Laplace domain
where the format of this new form remains the same as that of the
corresponding linear elastic constitutive equation. Thus the equiv-
alent inclusion theory in an elastic format can be used for analysis
of viscoelastic composite system in the Laplace domain [30].
Therefore, by substituting Eqn 4 into Eqn 6 and 7, the constitutive
equation of the asphalt binder matrix disturbed by the filler inclu-
sion can be obtained:
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r
�m

ij ¼ r
�0

ij þ r
�d

ij ¼ sk
�0

e
�0

kk þ e
�d

kk

� �
dij þ 2sG

�
0 e

�0

ij þ e
�d

ij

� �
ð10Þ

where r
�m

ij , r
�d

ij are stress tensor and disturbed stress tensor of the

asphalt binder matrix in the Laplace domain, respectively; e
�d

kk, e
�d

ij

are volumetric disturbed strain tensor, deviatoric disturbed strain
tensor, respectively.

Similarly, Eqn 8 and 9 are substituted into Eqn 5, and the con-
stitutive equation of the filler inclusion in the asphalt binder
matrix is obtained by performing the Laplace transformation as
follows:

r
�n

ij ¼ r
� I

ij þ r
�d

ij þ r0�
ij

¼ sk
�I

e
�I

kk þ e
�d

kk þ e0
�
kk

� �
dij þ 2sG

�
I e

�I

ij þ e
�d

ij þ e0
�
ij

� �
ð11Þ

where r
�n

ij, e0
�
kk, e0

�
ij, k

�I
sð Þ and G

�
I sð Þ are stress tensor, volumetric strain

tensor and deviatoric strain tensor of the difference, Lame constant
and shear modulus of the filler in the Laplace domain, respectively.

The filler inclusion is different from the asphalt binder matrix,
and belongs to heterogeneous inclusion. If the material properties
of the filler in Eqn 11 are replaced by the material properties of the
asphalt binder matrix, an eigenstrain will arise [17–18]. Therefore,
Eqn 11 can be transformed into:

sk
�I

e
�0

kk þ e
�d

kk þ e0
�
kk

� �
dij þ 2sG

�
I e

�0

ij þ e
�d

ij þ e0
�
ij

� �

¼ s k
�0

e
�0

kk þ e
�d

kk þ e0
�
kk � e

��
ij

� �
dij þ 2G

�
0 e

�0

ij þ e
�d

ij þ e0
�
ij � e

��
ij

� �� �
ð12Þ

in which e
��
ij is the eigenstrain caused by the filler inclusion in the

Laplace domain.
According to the Eshelby inclusion theory, there is the following

relationship between e0
�
ij and e

��
kl [17]:

e0
�
ij ¼ Sijkle

��
kl ð13Þ

in which Sijkl is the Eshelby tensor related to the shape of inclu-
sion and the Poisson’s ratio of matrix.

Besides, according to the concept of average stress of Mori-

Tanaka approach [29], the disturbed strain e
�d

ij caused by the filler

inclusion can be expressed by the eigenstrain e
��
kl as below:

e
�d

ij ¼ �v1 Sijkl � Iijkl
� �

e
��
kl ð14Þ

where v1 is the volumetric content of the inclusion (i.e., filler) in the
viscoelastic asphalt-filler composite system; Iijkl is a unit fourth
order tensor.

Eqn 12, 13 and 14 can be solved simultaneously:
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G
�
I e

�I

ij � v1 Sijkl � Iijkl
� �

e
��
kl þ Sijkle

��
kl

� 	
¼ G

�
0 e

�0

ij � v1 Sijkl � Iijkl
� �

e
��
kl þ Sijkle

��
kl � e

��
ij

� 	
ð15Þ

Substituting the volumetric content for the asphalt binder
matrix v0 ¼ 1� v1 into Eqn 15, the eigenstrain strain in the
Laplace domain can be determined:

e
��
ij ¼ G

�
0 � G

�
I

h i
G
�
I � G

�
0

� 	
v0Sijkl þ V1Iijkl
� �� G

�
0

h i�1
e
�0

ij ð16Þ

In this study, it is assumed that the shear modulus of the filler is

much larger than that of the asphalt binder matrix, i.e.,k
�0

� k
�I
,

G
�
0 � G

�
I , therefore, Eqn 16 can be simplified as below:

e
��
ij ¼ � v0Sijkl þ v1Iijkl

� ��1e
�0

kl ð17Þ
Finally, based on the average theory of composite materials, the

statistically uniform stress field and strain field can be determined
as [30]:

r
�
ij

D E
¼ 1

V

ZZZ
V

r
�
ijdV ð18Þ

e
�
ij

D E
¼ 1

V

ZZZ
V

e
�
ijdV ð19Þ

in which r
�
ij

D E
, e

�
ij

D E
are uniform stress and strain of the composite

materials in the Laplace domain; V is volume of the composite
materials.

In the Laplace domain, both viscoelastic composite materials
and linear elastic composite materials have linear constitutive
relationship:

r
�
ij

D E
¼ C

�
ijkl e

�
kl

D E
ð20Þ

where C
�
ijkl is stiffness matrix of the composite materials in the

Laplace domain.
Therefore, by performing the Laplace transformation on the

constitutive equations of the asphalt binder matrix, the equivalent
inclusion theory for elastic materials will be extended to the vis-
coelastic composite system. In addition, Huang et, al also intro-
duced the micromechanics theory into the asphalt mixtures [30].
Next, the nondestructive and destructive correlation between the
viscoelastic composite system, matrix and inclusion under shear
fatigue load will be analyzed, emphatically.

4. Viscoelastic strengthening coefficient for asphalt-filler
composite system

To study the correlation between the viscoelastic asphalt-filler
composite system, asphalt binder matrix, and inclusion under the
destructive shear fatigue load, the influence of the filler inclusion
on the asphalt binder matrix must be first formulated under the
nondestructive condition. This subsection mainly consists of the
following three parts:

(1) Formulate a viscoelastic strengthening coefficient (VSC)
model effected by the filler inclusion and asphalt binder
matrix;

(2) Determine model parameters of the VSC model based on the
viscoelastic Poisson’s ratio of the asphalt binder matrix;

(3) Modify the VSC model with high filler content by percolation
theory.
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4.1. Derivation of viscoelastic strengthening coefficient for asphalt-
filler composite system

The viscoelastic asphalt-filler composite system is composed of
the asphalt binder matrix and filler inclusion. Comparing with the
asphalt binder matrix, the stiffness of the viscoelastic asphalt-filler
composite system will be strengthened because of the existence of
the rigid filler inclusion. In this subsection, a physical interpretation
model representing the enhancement of the filler inclusion will be
derived. First, in the Laplace domain, the statistically uniform stress
and strain within the viscoelastic asphalt-filler composite system
are equal to the corresponding volumetric mean values under the
cyclic shear load. Based on Eqn 18, the statistically uniform stress
of the viscoelastic asphalt-filler composite system can be calculated
as (a detailed derivation is shown in Appendix I):

r
�eA

12

D E
¼ 2

3
C
�0

1212e
�0

12 ð21Þ

where r
�eA

12

D E
, e

�0

12, C
�0

1212 are statistically uniform apparent stress,

apparent shear strain, apparent shear modulus of the viscoelastic
asphalt-filler composite system in the Laplace domain, respectively.

Similarly, the statistically uniform strain of the viscoelastic
asphalt-filler composite system can be obtained based on Eqn 19,
which is present as follows (a detailed derivation is shown in the
Appendix I):

e
�eA

12


 �
¼ 2

3
�v1 v0S1212 þ v1I1212ð Þ�1 þ I1212
h i

e
�0

12 ð22Þ

in which e
�eA

12


 �
is statistically uniform apparent shear strain of the

viscoelastic asphalt-filler composite system in the Laplace domain.
Dividing Eqn 21 by Eqn 22 and performing the inverse Laplace

transformation, the relationship between the viscoelastic asphalt-
filler composite system and the asphalt binder matrix is shown:

CeA
1212 ¼ �v1 v0S1212 þ v1I1212ð Þ�1 þ I1212

h i�1
C0A
1212 ¼ KC0A

1212 ð23Þ

where CeA
1212, C

0A
1212 are apparent shear modulus of the viscoelas-

tic asphalt-filler composite system and the asphalt binder
matrix, respectively; K is strengthening coefficient, and

K ¼ �v1 v0S1212 þ v1I1212ð Þ�1 þ I1212
h i�1

.

In this study, the shape of the filler particle inclusion is assumed
spherical. Hence, the Eshebly tensor Sijkl is purely related to a Pois-
son’s ratio cof the asphalt binder matrix, and the Eshebly tensor
component S1212 can be expressed [29]:

S1212 ¼ 4 - 5c
15 1 - cð Þ ð24Þ

Substituting Eqn 24 into K, yields:

K ¼ 1þ 15v1 1� cð Þ
v0 4� 5cð Þ ð25Þ

Eqn 25 shows that the strengthening coefficient is related to the
Poisson’s ratio of the asphalt binder matrix and the volumetric
content of the filler inclusion, and it increases with the filler inclu-
sion content and the Poisson’s ratio of the asphalt binder matrix.
Because the stiffness of the filler particle is much larger than that
of the asphalt binder matrix, the increase of the filler inclusion con-
tent will lead to the enhancement of the asphalt binder matrix. In
addition, the smaller the Poisson’s ratio of the matrix, the smaller
the transverse deformation under the same vertical deformation,
i.e., the greater stiffness of the matrix material. If the stiffness of
the matrix and filler inclusion remains same, the filler inclusion
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will have no strengthening effect on the matrix. If the stiffness of
the matrix exceeds the stiffness of the filler inclusion, the filler
inclusion will weaken stiffness of the matrix material. In sum,
the larger the Poisson’s ratio of the matrix, the stronger the rein-
forcement caused by the filler inclusion.

For the above analysis, one can conclude that the Poisson’s ratio
of the matrix is particularly important for the enhancement of
inclusion, which needs to be accurately characterized. The asphalt
binder matrix is particularly sensitive to the temperature and fre-
quency. Therefore, the Poisson’s ratio of the asphalt binder matrix
is also closely affected by temperature and frequency. To calculate
the strengthening coefficient accurately, the Poisson’s ratio of the
asphalt binder matrix is formulated as a viscoelastic variable that
is a function of temperature and frequency. To obtain the vis-
coelastic strengthening coefficient (VSC), the Carson transforma-
tions is performed for Eq. (25), which yields:

s K
�

sð Þ ¼ 1þ
15v1 1� s c

�
sð Þ

� 	
v0 4� 5s c

�
sð Þ

� 	 ð26Þ

where K
�

sð Þ, c� sð Þ are the Laplace transformations of the strengthen-
ing coefficient of the viscoelastic asphalt-filler composite system
and the Poisson’s ratio of the asphalt binder matrix.

So that, the VSC model can be calculated as follows:

K� xð Þ ¼ s K
�

sð Þ
h i

s¼ix
¼ 1þ

15v1 1� s c
�

sð Þ
� 	

v0 4� 5s c
�

sð Þ
� 	

2
4

3
5

s¼ix

ð27Þ

in which x is loading frequency; and i is an imaginary number.

4.2. Determination of model parameters for viscoelastic strengthening
coefficient model

To determine the VSC in Eqn 27, the viscoelastic Poisson’s ratio
of the asphalt binder matrix must be determined. A time-
dependent viscoelastic Poisson’s ratio model is adopted for the
asphalt binder matrix, which is shown as follows [31]:

c tð Þ ¼ c0 þ
XM
i¼1

ci 1� e�
t
qi

� 	
ð28Þ

where c tð Þ is time-dependent viscoelastic Poisson’s ratio of the
asphalt binder matrix;c0, ci and qi are model parameters; and M
is the number of the Maxwell element.

Performing Laplace transformation on Eqn 28 yields:

c
�

sð Þ ¼ c0
s
þ
XM
i¼1

ci
s sqi þ 1ð Þ ð29Þ

Substituting Eqn 29 into Eqn 27, a parameterized VSC model
can be obtained:

K� xð Þ ¼ s K
�

sð Þ
h i

s¼ix
¼ 1þ

15v1 1� s c0
s þ

PM
i¼1

ci
s sqiþ1ð Þ

� 	� 	
v0 4� 5s c0

s þ
PM

i¼1
ci

s sqiþ1ð Þ

� 	� 	
2
4

3
5

s¼ix

ð30Þ
Eqn 30 shows K� xð Þ is a complex number, the real part and the

imaginary part of K� xð Þ can be separated as:

K 0 xð Þ ¼ 1þ 3v1

v0

þ
3v1 4� 5c0 � 5

PM
i¼1

ci
x2q2

i
þ 1ð Þ

� �

v0 4� 5c0 � 5
PM

i¼1
ci

x2q2
i

þ 1ð Þ
� �2

þ PM
i¼1

5qicix
x2q2

i
þ 1ð Þ

� �2
 !

ð31Þ
6

K 00 xð Þ ¼
�3v1

PM
i¼1

5qicix
x2q2

i
þ 1ð Þ

� �

v0 4� 5c0 � 5
PM

i¼1
ci

x2q2
i

þ 1ð Þ
� �2

þ PM
i¼1

5qicix
x2q2

i
þ 1ð Þ

� �2
 !

ð32Þ

Hence, the magnitude of the VSC is K� xð Þj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 0 xð Þ2 þ K 00 xð Þ2

q
.

To determine the VSC in Eqn 31 and 32, the model parameters c0, ci
and qi of the viscoelastic Poisson’s ratio are needed. Below will
explain how these model parameters will be determined from
the complex Poisson’s ratio.

First, the complex Poisson’s ratio of the asphalt binder matrix
can be calculated by the following expression [32]:

c� xð Þj j ¼ c00 þ c0 � c00ð Þ G� xð Þj j � G00

G0 � G00
ð33Þ

in which c00, c0, G00 and G0 are model parameters; G� xð Þj j is the
magnitude of the frequency-dependent complex modulus which
are measured by the frequency sweep tests. Besides, the values of
the model parameters (in Eqn 33) can be found in the study [32].

Second, the shear modulus of the asphalt binder matrix at dif-
ferent temperatures and frequencies can be obtained by perform-
ing the nondestructive frequency sweep test. Then the master
curve of the complex Poisson’s ratio is modeled by a sigmoidal
function [33]:

c� xð Þj j ¼ d þ j
1þ gexp k� blog aTð Þ½ � ð34Þ

where j,d, g,b are model parameters of the sigmoidal function of
the complex Poisson’s ratio; aT is time–temperature shifted factor

modelled by the WLF function, and log aTð Þ ¼ � C1 T�Trefð Þ
C2þT�Tref

; C1, C2 are

model parameters of the shift factor; T , Tref are absolute tempera-
ture and reference temperature, respectively. These model parame-
ters of the mastic curve of the complex Poisson’s ratio of the asphalt
binder matrix are shown in Table 3.

Fig. 1 shows measured complex Poisson’s ratio at 15℃, 20℃,
25℃ and constructed master curve of the complex Poisson’s ratio
at 20℃ for the asphalt binder matrix. Fig. 1 shows that the complex
Poisson’s ratio of asphalt binder matrix decreases with the increase
of the frequency, while it increases with the temperature. More-
over, the complex Poisson’s ratio is close to 0.5 at a high tempera-
ture or a low frequency. This is because the asphalt binder matrix
exhibits fluidic behavior at the high temperature or the low
frequency.

Third, a theoretical relation shown in Eqn 35 exists between the
complex Poisson’s ratio model and the time-dependent viscoelastic
Poisson’s ratio model [34]:

c� xð Þj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 þ

XM
i¼1

ci �
XM
i¼1

x2q2
i ci

1þx2q2
i

" #2
þ

XM
i¼1

xqici
1þx2q2

i

" #2vuut
ð35Þ

Using the master curve data from Eqn 34 and 35, the model
parameters (c0, ci and qi) of the time-dependent viscoelastic
Poisson’s ratio model can be determined by the ‘‘Solver” function
in Microsoft Excel, as shown in Table 4.

Finally, the VSC model can be obtained by substituting ci and qi

from Table 3 into Eqn 31 and 32. Fig. 2 presents evolution of the
VSC with frequency at 15℃, 20℃, 25℃ and the master curve of
the VSC for the AM1. The evolution trend of the VSC is similar to
that of the complex Poisson’s ratio. It can be seen that the VSC
increases with the increase of the frequency, because the asphalt
material is closer to the elastic solid under high frequencies, while
it is closer to the fluid under low frequencies. It can be predicted



Table 3
Model parameters of the master curve and shift model.

Model parameters C1 C2 j b g d k

Complex Poisson’s ratio 7.630 79.059 0.500 0.0031 �1.240 0.0001 0.185
Viscoelastic strength coefficient (VSC) model (asphalt mastic with filler content of 10%) 7.654 79.566 1.554 0.0007 �1.172 0.0022 0.114
Viscoelastic strength coefficient (VSC) model (asphalt mastic with filler content of 27%) 7.654 79.566 3.337 0.0015 �1.130 0.0042 0.122
Viscoelastic strengthening coefficient with fatigue cracks (VSC-f) model 0.025 1.796 0.736 3.87E9 3.999 – –
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that when the asphalt binder matrix is soft, the enhancement effect
of the filler to the asphalt binder matrix is relatively higher com-
pared to that when the asphalt binder matrix is stiff. In this study,
to obtain the VSC model coupled with frequency and temperature,
the sigmoidal function is used to formulate the mastic curve model
for the VSC at different temperatures, which is expressed as below:

K� xð Þj j ¼ dk þ jk

1þ gkexp kk � bklog aTð Þ½ � ð36Þ

where dk, jk, gk, bk are VSC model parameters; and aT is the same
time–temperature shifted factor as the complex Poisson’s ratio.

Fig. 2 presents that calculated results have an agreement with
the sigmoidal function, and model parameters of the mastic curve
of the VSC are shown in Table 3. Furthermore, the VSC is multiplied
by the shear modulus of the asphalt binder matrix to obtain the
predicted shear modulus of the viscoelastic asphalt-filler compos-
ite system at different frequencies, temperatures, and strain levels.
Fig. 3 compares tested shear modulus and predicted shear modulus
modulus of the AM1 at different frequencies, temperatures and
strain levels. It can be seen that the predicted results by the VSC
model match with the test results for the AM1. Fig. 3a shows that
shear modulus of the AM1 increases with the increase of the fre-
Table 4
Model parameters of the time-dependent viscoelastic Poisson’s ratio of the asphalt binder

Model parameters Temperature (℃)

15 20

c0 0.43852 0.45610
c1 0.00679 0.00681
c2 0.00389 0.00417
c3 0.00594 0.00636
c4 0.02845 0.01898
c5 0.01393 0.00618
c6 0.00091 0.00119
c7 0.00219 0.00010
c8 0.00689 0.00537
c9 0.29113 0.28449
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quency or the decrease of the temperature. Fig. 3b presents that
shear modulus of the AM1 remains unchanged when the strain
level increases. This is because the strain levels used in the nonde-
structive test are small and the asphalt material is in an undam-
aged condition at these strain levels. It is found that the VSC
model can predict the shear modulus of the composite materials
at different strain levels, thus it is independent of the strain level.

4.3. Modified viscoelastic strengthening coefficient at a high filler
content

By substituting the filler volumetric content into Eqn 31 and 32,
the VSC with high filler content (e.g., AM2 with filler content of
27%) can be obtained. Predicted shear modulus can be obtained
by multiplying the VSC by the shear modulus of the asphalt binder
matrix. Fig. 4a compares the predicted and measured shear modu-
lus of the AM2 at different temperatures. It is indicated that the
predicted shear moduli are smaller than the experimental results.
This is because the Eshelby tensor is established for a single inclu-
sion embedded in an infinite matrix based on the concept of Mori-
Tanaka equivalent principle, which is true only when the inclusion
matrix.

Relaxation time (s)

25

0.45757
0.01307 q1 0.00001
0.00655 q2 0.0001
0.00649 q3 0.001
0.01237 q4 0.01
0.00334 q5 0.1
0.00052 q6 1
0.00005 q7 10
0.00081 q8 100
0.13996 q9 1000



a. Measured shear modulus vs. predicted shear modulus of

 the AM1 at different loading frequencies and temperatures 

b. Measured shear modulus vs. predicted shear modulus 

of the AM1 at different strain levels 

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.0E-01 1.0E+00 1.0E+01 1.0E+02

Sh
ea

r m
od

ul
us

 (P
a)

Loading Frequency (Hz)

15°_Test Data
15°_Predicted Results
20°_Test Data
20°_Predicted Results
25°_Test Data
25°_Predicted Results

0.00E+00

8.00E+06

1.60E+07

2.40E+07

3.20E+07

0.00 0.02 0.04 0.06 0.08 0.10

Sh
ea

r m
od

ul
us

 (P
a)

Oscilla�on shear strain (%)

15°_Test Data 15°_Predicted Results
20°_Test Data 20°_Predicted Results
25°_Test Data 25°_Predicted Results

Fig. 3. Measured shear modulus vs. predicted shear modulus of the AM1
(AM1 = asphalt mastic with filler content of 10%) at different loading frequencies,
temperatures and strain levels.

a.Predicted shear modulus by unmodified VSC model and 

tested shear modulus of the AM2 at different temperatures

b.Predicted shear modulus by modified VSC model and 

tested shear modulus of the AM2 at different temperatures

0.0E+00

4.5E+07

9.0E+07

1.4E+08

1.8E+08

0.0E+00 4.5E+07 9.0E+07 1.4E+08 1.8E+08

Pr
ed

ic
te

d 
sh

ea
r m

od
ul

us
 (P

a)

Tested shear modulus (kPa)

15 _Unmodified model

20 _Unmodified model

25 _Unmodified model

0.0E+00

4.5E+07

9.0E+07

1.4E+08

1.8E+08

0.0E+00 4.5E+07 9.0E+07 1.4E+08 1.8E+08

Pr
ed

ic
te

d 
sh

ea
r m

od
ul

us
 (P

a)

Tested shear modulus (kPa)

15 _Modified model

20 _Modified model

25 _Modified model

Fig. 4. Comparison among the predicted shear modulus by unmodified VSC model,
the modified VSC model and tested shear modulus of the AM2 (AM2 = asphalt
mastic with filler content of 27%) at different temperatures (VSC = Viscoelastic
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content is low. However, the matrix surrounding each particle
inclusion is not an infinite matrix due to the relatively high inclu-
sion content for the AM2.

In view of this deviation, the VSC is modified by percolation the-
ory in this study. The percolation theory shows that when the vol-
umetric content of the inclusion is low, the distribution of
inclusions in the matrix is random and these inclusions do not
affect each other, thus, the matrix materials are continuous, which
is called percolated phase [35]. When the volumetric content of the
inclusions is high, the probability of interactions among inclusions
increases. Therefore, when the filler content is high, the distribu-
tion of the inclusions in the matrix are not random and some of
the matrix are completely wrapped by the filler particles. The
asphalt binder matrix wrapped by the filler combines with the sur-
rounding filler particles and forms a larger inclusion. In this case,
an effective matrix volumetric content is smaller than a true
matrix volumetric content, while the effective inclusion volumetric
content is larger than the true inclusion volumetric content.

Research has shown that when the inclusion volumetric content
exceeds 20% (a critical volumetric content is denoted as /fpt), the
damping factor of the composite materials decreases sharply
[36]. In addition, an upper limit volumetric content is related to
the gradation of the inclusion (the upper limit volumetric content

/fmax ¼ 1� 0:47 d=Dð Þ0:2, where d and D represent the minimum
8

and maximum particle sizes of the inclusion, respectively [35]).
Furthermore, when the volumetric content of the matrix /m has
the relationship 1� /fmax

� �
< /m < /fpt , the effective inclusion vol-

umetric content can be calculated by [37]:

/eff ¼ 1� 1� /f

� � 1� /f =/fmax

1� /fpt=/fmax

 !0:4

ð37Þ

Substituting the parameters/f , /fmax, /fpt into Eqn 37, the effec-
tive inclusion volumetric content can be determined
/f ¼ min /fmax;/eff

 � ¼ 31:8%. Then, substituting the effective
inclusion volumetric content into the Eqn 31 and 32, the modified
effective inclusion volumetric content with high inclusion content
can be obtained.

Fig. 4b compares the shear modulus predicted by the modified
VSC model with the measured shear modulus of the AM2 at differ-
ent temperatures. It is demonstrated that the predicted shear mod-
ulus from the modified VSC model match with the experimental
results. In addition, Fig. 5 presents the evolution of the modified
VSC at 15℃, 20℃, 25℃ and the master curve of the modified VSC
for the AM2. It shows that evolution trend is similar to that of
the viscoelastic Poisson’s ratio. Hence, sigmoidal function is used
to establish the mastic curve for the modified VSC of the AM2,
and model parameters are shown in Table 3. It can be seen from
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Fig. 6. Measured shear modulus vs. predicted shear modulus of the AM2
(AM2 = asphalt mastic with filler content of 27%) at different frequencies,
temperatures and strain levels.
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Fig. 5 that the sigmoidal function can effectively model the modi-
fied VSC.

Fig. 6 shows measured shear modulus and predicted results of
the AM2 at different frequencies, temperatures and strain levels.
It can be seen from Fig. 6a that the predicted results based on
the modified VSC and tested data have a good agreement with
the measured results at different temperatures and frequencies,
and Fig. 6b presents the VSC is independent of strain level. It is
indicated that the conclusions obtained in Fig. 3 for low inclusion
volumetric content are applicable for that of the high inclusion vol-
umetric content.

5. Viscoelastic strengthening coefficient with fatigue cracks for
asphalt-filler composite system

The effects of the asphalt binder matrix and fillers inclusion
have been considered in Section 4, but fatigue cracks have not been
considered when fatigue cracks exist in the composite system. In
this section, the composite system without the fatigue cracks is
regarded as the matrix material, and the fatigue cracks are
regarded as the inclusions. To formulate the micromechanics
model for the asphalt-filler composite system with fatigue cracks,
two parts are contained in this subsection:

(1) Derive a viscoelastic strengthening coefficient with fatigue
cracks (VSC-f) for the asphalt-filler composite system;

(2) Formulate a VSC-f model coupled with the temperature, fil-
ler content, and damage degree under destructive condition.

5.1. Derivation of viscoelastic strengthening coefficient with fatigue
cracks for asphalt-filler composite system

In this study, the linear elastic constitutive equation is used to
model the fatigue crack, which is shown as below:

rII
ij ¼ kIIeIIkkdij þ 2GIIeIIij ð38Þ

in which rII
ij is stress tensor of the fatigue crack; kII , GII are Lame con-

stant and shear modulus of the fatigue crack.
Taking the Laplace transform for Eqn 38, obtains:

r
� II

ij sð Þ ¼ sk
�II

sð Þe�II

kk sð Þdij þ 2sG
�
II sð Þe�II

ij sð Þ ð39Þ
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Fig. 5. Evolution of the modified viscoelastic strengthening coefficient with
frequency at 15℃, 20℃, 25℃ and master curve of the modified viscoelastic
strengthening coefficient for the AM2 (AM2 = asphalt mastic with filler content of
27%).
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For fatigue crack, it is assumed that the fatigue crack is an inclu-
sion embedded in the asphalt-filler composite system, and the
inside of the fatigue crack contains gas, whose stiffness is very
small and can be regarded as zero. Thus, the mechanical properties
of the fatigue crack are also different from the asphalt binder
matrix, and it is regarded as heterogeneous inclusion compared
with the asphalt binder matrix. The fatigue crack is regarded as a
type of inclusion, and the same model as the filler inclusion is
adopted. Similarly, in the Laplace domain, stress and strain field
of the matrix have the following relationship:

r
�mc

ij ¼ r
�m0

ij þ r
�md

ij ¼ sC
�mc

ijkl e
�m0

kl þ e
�md

kl

� �
ð40Þ

where r
�mc

ij , r
�md

ij are stress tensor and disturbed stress tensor of the

matrix in the Laplace domain, respectively; e
�md

kk , e
�md

ij are volumetric
disturbed strain tensor, deviatoric disturbed strain tensor in the

Laplace domain, respectively; C
�mc

ijkl is stiffness tensor of the matrix
in the Laplace domain.

Furthermore, the relationship between the stress and strain
field of the fatigue crack inclusions can be expressed by:

r
� c

ij ¼ r
�m0

ij þ r
�md

ij þ r
�00
ij ¼ sC

�c

ijkl e
�m0

kl þ e
�md

kl þ e
�00
kl

� �
ð41Þ
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in which r
� c

ij, r
�00
ij, e

�00
kl,C

�c

ijkl are stress tensor, volumetric stress tensor
and deviatoric stress tensor of the difference caused by the fatigue
crack inclusions, stiffness tensor of the fatigue crack in the Laplace
domain, respectively.

The fatigue crack is heterogeneous inclusion in viscoelastic
asphalt-filler composite system. When the strain field of the fati-
gue crack inclusion is represented by that of the matrix, an eigen-

strain e
���
kl caused by the fatigue crack inclusion needs to be

introduced. The Eqn 41 can be rewritten as below:

r
� c

ij ¼ C
�c

ijkl e
�m0

kl þ e
�md

kl þ e
�00
kl

� �
¼ C

�mc

ijkl e
�m0

kl þ e
�md

kl þ e
�00
kl � e

���
kl

� �
ð42Þ

Similarly, according to the Eshelby inclusion theory, has:

e
�00
ij ¼ Scijkle

���
kl ð43Þ

in which Scijkl is Eshelby tensor caused by the fatigue crack inclusion.
Based on the average stress concept from the Mori-Tanaka

approach, the disturbed stress is self-consistent, i.e., the volume
average of the disturbed stress should be zero:

vc rmd þ r00� �þ 1� vcð Þrmd ¼ 0 ð44Þ
Combining Eqn 40, 41, 42, 43 and 44 can be obtained:

e
�md

ij ¼ vc I � Scijkl
� 	

e
���
kl ð45Þ

It is assumed that the fatigue crack has a linear elastic constitu-
tive relationship in this study, however, the inside of the fatigue
crack contains gas, whose stiffness is very small and can be
ignored. Therefore, the fatigue crack can deform, but there is no
internal stress, the following formula holds:

r
� c

ij ¼ C
�mc

ijkl e
�m0

ij þ e
�md

ij þ e
�00
ij � e

���
ij

� �
¼ 0 ð46Þ

The stiffness matrix C
�mc

ijkl in Eqn 46 must not be zero, thus:

e
�m0

ij þ e
�md

ij þ e
�00
ij � e

���
ij ¼ 0 ð47Þ

Solving Eqn 43, 45 and 47 simultaneously, yields:

e
���
ij ¼ � 1

1� vc
Scijkl � I
� 	�1

e
�m0

kl ð48Þ

When the destructive time sweep test is performed on the vis-
coelastic asphalt-filler composite system, the following expression
can be obtained:

C
�eA

1212 ¼ e
�m0

12 e
�m0

12 þ vce
���
12

� 	�1

C
�m0

1212 ð49Þ

Eqn 24 and 48 are substituted into Eqn 49, and performing the
inverse Laplace transformation, which yields:

CeA
1212 ¼ I1212 � vc

1� vc
Sc1212 � I1212
� ��1

� ��1

KC0A
1212 ¼ KcC

0A
1212 ð50Þ

where Kc is viscoelastic strengthening coefficient of the viscoelastic
asphalt-filler composite system under the destructive condition.

It can be found that Kc can be expressed as the product of

I1212 � vc
1�vc

Sc1212 � I1212
� ��1

n o�1
and the VSC. Moreover,

I1212 � vc
1�vc

Sc1212 � I1212
� ��1

n o�1
contains the fatigue crack volumet-

ric content and Eshelby tensor component of the fatigue crack
inclusion. This value is less than one because the fatigue crack
inclusion has a weakening effect on the composite materials. In
addition, according to the previous analysis, calculated value of
10
the VSC is always greater than one, because the filler inclusion
has an enhanced effect on the composite materials.
5.2. Determination of viscoelastic strengthening coefficient with
fatigue cracks for asphalt-filler composite system

The variables of the VSC-f of the viscoelastic asphalt-filler com-
posite system contain the fatigue crack volumetric contentvc , the
Eshebly tensor Sc1212 of the fatigue crack and the VSC. The fatigue
crack will propagate, fatigue crack volumetric content and mor-
phology affected the VSC-f will change when performing the
destructive time sweep test on the viscoelastic asphalt-filler com-
posite system. In addition, the fatigue crack is initiated from the
edge of the specimen, then grows toward the sample center to
form an edge crack [38–41,50,51]. It is difficult to determine the
Eshelby tensor component of the edge crack. Therefore, another
method is adopted to obtain the VSC-f model in this section. First,
based on Eqn 50, the Sc1212 can be back-calculated by using the ini-
tial shear modulus of the asphalt binder matrix and the shear mod-
ulus of the composite system at different crack lengths which are
determined using a model developed by author from a previous
study [38].

Fig. 7a shows an example of evolution of Sc1212 with crack length
for the viscoelastic asphalt-filler composite system with different
filler contents. It presents that Sc1212 increases with the crack length
and Sc1212 increases with the filler content at the same crack length.
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This is because Sc1212 depends on the fatigue crack morphology and
Poisson’s ratio of the asphalt binder matrix which decreases with
the filler content. It is indicated that Sc1212 increase with the Pois-
son’s ratio. Besides, Fig. 7b presents an example that comparison
between predicted results and test data of the shear modulus of
AM2 at three temperatures, 5% of strain level. It can be seen that
the predicted results match with the test results. It is showed that
the back-calculated Eshelby tensor is valid.

Fig. 8a and b show the VSC-f of the AM1 and AM2 at different
temperatures, strain levels and fatigue crack lengths, respectively.
It is indicated that the VSC-f decreases with the increase of the fati-
gue crack length. When the VSC-f is close to zero, the viscoelastic
asphalt-filler composite system is near completely damaged.
Because the shear modulus of the viscoelastic asphalt-filler com-
posite system decreases rapidly with the fatigue crack, while the
fatigue crack cannot bear the load. In addition, the VSC-f of two
type of composite materials is unchanged at different strain levels
(5%, 6%, 7%) of 15℃ and 25℃. It is showed that the VSC-f is indepen-
dent of strain level, same as the observations from Fig. 3b and 6b.

To establish the VSC-f model coupled with temperature, filler
content and damage degree, a shift factor function should be first
modeled. The only difference from the shift factor function of the
complex Poisson’s ratio is that the term of the filler content is
added in this model. Moreover, the VSC-f decreases rapidly with
the increase of the crack length which is shown in Fig. 9a.
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Fig. 8. Evolution of the viscoelastic strengthening coefficient with fatigue cracks of
the AM1 (AM1 = asphalt mastic with filler content of 10%) and AM2 (AM2 = asphalt
mastic with filler content of 27%).
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Therefore, the VSC-f model and the corresponding shift factor func-
tion adopted are present below:

Kc ¼ b aT rA � c
� �� �g ð51Þ

aT ¼ 10
�

C1 T�Trefð Þ
C2þT�Tref þ jv1 ð52Þ

where rA is radius of the specimen; c is crack length of the speci-
men; j,b,g are model parameters, and j contains the effect of the
filler content. These model parameters are shown in Table 3.

Fig. 9 presents calculation results and shift model of the VSC-f of
the AB, AM1 and AM2 at different temperatures, and a shifted
crack length is defined as cT ¼ rA � aT rA � c

� �
. Four conclusions

can be drawn from Fig. 8a and b: (1) the VSC-f decreases rapidly
with the increase of crack length. The reason is that the fatigue
crack inclusion weakens the strength of the composite system,
and this weakening effect increases with the fatigue crack length;
(2) the VSC-f increases with the temperature, because the complex
Poisson’s ratio of the asphalt binder matrix increases with temper-
ature. Moreover, Eqn 51 shows that the VSC increases with the
complex Poisson’s ratio; (3) the VSC-f increases with the filler con-
tent at the same temperature and crack length. This is due to that
the VSC increases with the increase of the filler content; and (4) the
a. Calculation results of the viscoelastic strengthening coefficient 
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Fig. 9. Calculation results and shift model of the viscoelastic strengthening
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Table 5
Influence factors not covered in this study and their references.

Influence factors References

Time-dependency Traxler et al. [42]; Struik [43]; Bahia and Anderson [44]
Thermal stress Saleh et al. [45]; Hiltunen et al. [46]; Velasquez et al.

[47]
Strain rate Li et al. [48]
Initial instability

flow
Anderson et al. [49]
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shifted model for the VSC-f can be established by taking the filler
content into account, and Eqn 52 which considers the effect of
the filler volumetric content and temperature can match the
shifted VSC-f well.

Finally, to validate the VSC-f model coupled temperature, filler
content and damage degree, the shear modulus of the viscoelastic
asphalt-filler composite system at different strain levels and crack
lengths are predicted based on Eqn 51 and 52. Fig. 10 shows pre-
dicted and measured shear moduli of the AB, AM1 and AM2 at dif-
ferent strain levels and crack lengths of 20℃. The results show that
the model can well predict the shear modulus of the viscoelastic
asphalt-filler composite system under the destructive fatigue load.
It is indicated that the shifted model Eqn 52 and power function
Eqn 51 can predict the shear modulus at different strain levels,
temperatures, filler contents and damage degrees under the
destructive condition.

6. Conclusions and future work

To address the challenge that accurately predicting mechanical
properties for the viscoelastic asphalt composite materials, this
study takes an asphalt-filler composite system as an example,
and proposes a viscoelastic strengthening coefficient (VSC) model
for the material at nondestructive condition (no fatigue cracks)
and a viscoelastic strengthening coefficient with fatigue cracks
(VSC-f) model at destructive condition (with fatigue cracks). This
was achieved by using the Eshbely’s equivalent inclusion theory
and Mori-Tanaka approach. The established VSC model can reflect
the strengthening effect of the filler inclusion on the asphalt binder
matrix from the perspective of micromechanics. The established
VSC-f model contains the reinforcement effect due to the filler
inclusion and the weakening effect resulting from the fatigue
cracks in the viscoelastic asphalt composite materials. Besides,
the VSC and VSC-f contain the effect of complex Possion’s ratio.
The main findings of this study are listed below:
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� Shear moduli of the asphalt-filler composite systems with filler
volumetric contents of 10% and 27% are increased to 1.55 and
3.32 times that of the asphalt binder matrix at 10 Hz, 20℃.

� The VSC decreases with loading frequency or temperature, and
increases with filler content. However, the VSC is independent
of strain level.

� The predicted shear modulus results by the VSC model are in a
good agreement with the tested shear modulus results at the
low filler content, while they underestimate the shear modulus
results at a high filler content. The predicted shear modulus
results by a modified VSC model match the test shear modulus
results at high filler content.

� The VSC-f model predictions matched with the test results
under the destructive conditions. This model can predict shear
modulus for the viscoelastic asphalt-filler composite system at
different strain levels, temperatures, filler contents and damage
levels.

� The VSC-f increases with the filler content, while decreases
rapidly with fatigue crack length. The VSC-f is independent of
strain level, and this is consistent with the VSC.

In this study, some factors affected the behavior of asphalt
materials were not considered, such as time-dependency harden-
ing of thermo-rheologically complex asphalt materials due to
wax precipitation, thermal stress due to the temperature varia-
tions, strain rate and initial instability flow. These influence factors
not covered in this study and their references are listed in Table 5.

These influence factors can be considered in future research. For
example, the time dependency of the shift factors for the WLF rela-
tionship will be considered for some thermo-rheologically complex
asphalt materials in the future. When studying the fatigue cracking
of pavement structures in the future, the thermal stress should not
be ignored (because of the temperature difference). In addition,
more different asphalt binders, such as SBS asphalt binder, rubber
asphalt binder, high-modulus asphalt binder and their composites
mixed by different fillers, will be analyzed based on the microme-
chanics model developed in this study.
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Appendix A

It is assumed that the apparent shear stress, strain and dis-
turbed stress, strain and stress, strain difference of the asphalt bin-
der matrix and viscoelastic asphalt-filler composite system linearly
increase from the loading center to the edge of the specimen under
the controlled-strain cyclic shear load, and the filler particles are
uniformly distributed in the asphalt binder matrix. Therefore, the
volumetric integrals of these stresses and strains have the same
operation. Taking the apparent shear strain of asphalt binder
matrix as an example, the volumetric integral of the apparent
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shear strain of the viscoelastic asphalt-filler composite system can
be obtained based on Eqn 19:

1
V

ZZZ
V

e
�0A

12 t0; rð ÞdV ¼ 1

p rAð Þ2h
2ph

Z rA

0

r2
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e
�0A
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¼ 2
3
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�0A
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3
e
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12 ðA:1Þ

where e
�0A

12 t0; rð Þ is apparent shear strain of the asphalt binder matrix
at loading time t0, any radius r in the Laplace domain; h is height of
the asphalt binder matrix specimen. For the sake of simplicity, the

e
�0A

12 t0; rð Þ is denoted as e
�0

12, the same definition is applied to the
stresses and strains listed below.

Therefore, in the Laplace domain, the statistically uniform stress

r
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of the viscoelastic asphalt-filler composite system is shown

as follows:
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Then, the statistically uniform strain can be calculated by:

e
�eA

12


 �
¼ 1

V

RRR
V
e
�eA

12dV

¼ 2
3 v0 e

�0

12 þ e
�d

12

� �
þ v1 e

�0

12 þ e
�d

12 þ e0
�
12

� �� �

¼ 2
3 1� v1ð Þ e

�0

12 þ e
�d

12

� �
þ v1 e

�0

12 þ e
�d

12 þ e0
�
12

� �� �

¼ 2
3 e

�0

12 þ e
�d

12 þ v1e0
�
12

� �

¼ 2
3 e

�0

12 � v1 S1212 � I1212ð Þe��
12 þ v1S1212e

��
12

h i
¼ 2

3 e
�0

12 þ v1e
��
12

h i
¼ 2

3 v1 G
�
0 � G

�
1

h i
G
�
1 � G

�
0

� 	
v2S1212 þ v1I1212ð Þ � G

�
0

h i�1
þ I1212

� �
e
�0A

12

ðA:3Þ

In addition, k
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<< k
�1
, G

�
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�
1, Eqn A.3 can be simplified as

below:

e
�eA

12


 �
¼ 2

3
- v1 v0S1212 þ v1I1212ð Þ½ ��1 þ I1212

n o
e
�0

12 ðA:4Þ
References

[1] X. Luo, B. Birgisson, R.L. Lytton, Kinetics of healing of asphalt mixtures, J.
Cleaner Prod. 252 (2020) 119790.

[2] X. Luo, H. Li, Y. Deng, Y. Zhang, Energy-Based kinetics approach for coupled
viscoplasticity and viscofracture of asphalt mixtures, J. Eng. Mech. 146 (9)
(2020) 04020100.
13
[3] E.L. Omairey, F. Gu, Y. Zhang, An equation-based multiphysics modelling
framework for oxidative ageing of asphalt pavements, J. Cleaner Prod. 280
(2021) 124401.

[4] M.W. Witczak, O.A. Fonseca, Revised predictive model for dynamic (complex)
modulus of asphalt mixtures, Transp. Res. Rec. 1540 (1) (1996) 15–23.

[5] J. Bari, M. Witczak, Development of a New Revised Version of the Witczak E*
Predictive Model for Hot Mix Asphalt Mixtures (With Discussion), J. Assoc.
Asphalt Paving Technol. 75 (2006).

[6] F. Bonnaure, G. Gest, A. Gravois, P. Uge, A new method of predicting the
stiffness of asphalt paving mixtures, Proc. Assoc. Asphalt Paving Technol. 46
(1977) (1977) 61–100.

[7] M.H. Sadd, Q. Dai, V. Parameswaran, A. Shukla, Microstructural simulation of
asphalt materials: modeling and experimental studies, J. Mater. Civ. Eng. 16 (2)
(2004) 107–115.

[8] Y. Zhang, T. Ma, M. Ling, D. Zhang, X. Huang, Predicting dynamic shear
modulus of asphalt mastics using discretized-element simulation and
reinforcement mechanisms, J. Mater. Civ. Eng. 31 (8) (2019) 04019163.

[9] H. Wang, W. Huang, J. Cheng, G. Ye, Mesoscopic creep mechanism of asphalt
mixture based on discrete element method, Constr. Build. Mater. 272 (2021)
121932.

[10] P. Karki, Y.R. Kim, D.N. Little, Dynamic modulus prediction of asphalt concrete
mixtures through computational micromechanics, Transp. Res. Rec. 2507 (1)
(2015) 1–9.

[11] J. Chen, H. Wang, H. Dan, Y. Xie, Random modeling of three-dimensional
heterogeneous microstructure of asphalt concrete for mechanical analysis, J.
Eng. Mech. 144 (9) (2018) 04018083.

[12] J. Li, J. Zhang, G. Qian, J. Zheng, Y. Zhang, Three-dimensional simulation of
aggregate and asphalt mixture using parameterized shape and size gradation,
J. Mater. Civ. Eng. 31 (3) (2019) 04019004.

[13] X. Ding, T. Ma, W. Zhang, D. Zhang, T. Yin, Effects by property homogeneity of
aggregate skeleton on creep performance of asphalt concrete, Constr. Build.
Mater. 171 (2018) 205–213.

[14] K. Anupam, S.K. Srirangam, A. Varveri, C. Kasbergen, A. Scarpas,
Microstructural analysis of porous asphalt concrete mix subjected to rolling
truck tire loads, Transp. Res. Rec. 2575 (1) (2016) 113–122.

[15] J. Chen, H. Wang, L. Li, Virtual testing of asphalt mixture with two-dimensional
and three-dimensional random aggregate structures, Int. J. Pavement Eng. 18
(9) (2017) 824–836.

[16] M. Salemi, H. Wang, Image-aided random aggregate packing for computational
modeling of asphalt concrete microstructure, Constr. Build. Mater. 177 (2018)
467–476.

[17] Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal
inclusion, and related problems. Proceedings of the royal society of London.
Series A. Mathematical and physical sciences, 241(1226), 376-396.

[18] J.D. Eshelby, The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. Lond.
A 252 (1271) (1959) 561–569.

[19] R. Hill, A self-consistent mechanics of composite materials, J. Mech. Phys.
Solids 13 (4) (1965) 213–222.

[20] R.M. Christensen, K.H. Lo, Solutions for effective shear properties
in three phase sphere and cylinder models, J. Mech. Phys. Solids 27 (4)
(1979) 315–330.

[21] T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of
materials with misfitting inclusions, Acta Metall. 21 (5) (1973) 571–574.

[22] R. Roscoe, The viscosity of suspensions of rigid spheres, Br. J. Appl. Phys. 3 (8)
(1952) 267.

[23] R. McLaughlin, A study of the differential scheme for composite materials, Int.
J. Eng. Sci. 15 (4) (1977) 237–244.

[24] J.W. Ju, T.M. Chen, Micromechanics and effective moduli of elastic composites
containing randomly dispersed ellipsoidal inhomogeneities, Acta Mech. 103
(1–4) (1994) 103–121.

[25] J. Zhang, Z. Fan, H. Wang, W. Sun, J. Pei, D. Wang, Prediction of dynamic
modulus of asphalt mixture using micromechanical method with radial
distribution functions, Mater. Struct. 52 (2) (2019) 49.

[26] C. Peng, J. Feng, S. Feiting, Z. Changjun, F. Decheng, Modified two-phase
micromechanical model and generalized self-consistent model for predicting
dynamic modulus of asphalt concrete, Constr. Build. Mater. 201 (2019) 33–41.

[27] R. Luo, R.L. Lytton, Self-consistent micromechanics models of an asphalt
mixture, J. Mater. Civ. Eng. 23 (1) (2011) 49–55.

[28] China, M. (2011). Standard Test Methods of Bitumen and Bituminous Mixtures
for Highway Engineering: JTG E20-2011.

[29] T. Mura, Micromechanics of Defects in Solids, Martinus Nijhoff Publ, 1987.
[30] X. Huang, H. Li, Y. Zhang, Micromechanics analysis of viscoelasticity for asphalt

mixtures considering influences of coarse aggregates and voids, Journal of
South China University of Technology (Natural Science) 37 (7) (2009) 31.

[31] A. Roatta, R.E. Bolmaro, An Eshelby inclusion-based model for the study of
stresses and plastic strain localization in metal matrix composites I: General
formulation and its application to round particles, Mater. Sci. Eng., A 229 (1–2)
(1997) 182–191.

[32] P.A. Cundall, Computer simulations of dense sphere assemblies, Studies in
Applied Mechanics 20 (1988) 113–123.

[33] Y. Zhang, R. Luo, R.L. Lytton, Anisotropic characterization of crack growth in
the tertiary flow of asphalt mixtures in compression, J. Eng. Mech. 140 (6)
(2014) 04014032.

[34] H.D. Benedetto, B. Delaporte, C. Sauzéat, Three-dimensional linear behavior of
bituminous materials: experiments and modeling, Int. J. Geomech. 7 (2) (2007)
149–157.

http://refhub.elsevier.com/S0264-1275(21)00537-2/h0005
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0005
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0010
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0010
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0010
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0015
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0015
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0015
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0020
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0020
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0025
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0025
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0025
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0030
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0030
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0030
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0035
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0035
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0035
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0040
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0040
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0040
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0045
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0045
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0045
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0050
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0050
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0050
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0055
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0055
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0055
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0060
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0060
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0060
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0065
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0065
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0065
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0070
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0070
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0070
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0075
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0075
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0075
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0080
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0080
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0080
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0090
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0090
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0095
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0095
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0100
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0100
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0100
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0105
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0105
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0110
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0110
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0115
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0115
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0120
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0120
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0120
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0125
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0125
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0125
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0130
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0130
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0130
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0135
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0135
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0145
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0145
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0150
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0150
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0150
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0155
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0155
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0155
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0155
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0160
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0160
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0165
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0165
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0165
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0170
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0170
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0170


H. Li, X. Luo, F. Ma et al. Materials & Design 209 (2021) 109983
[35] Pellinen, T. K., Witczak, M. W., and Bonaquist, R. F. (2002). ‘‘Asphalt mix master
curve construction using sigmoidal fitting function with nonlinear least
squares optimization.” Proc., Pavement Mechanics Symp. at the 15th ASCE
Engineering Mechanics Division Conf., ASCE, Reston, VA.

[36] V.K. Shante, S. Kirkpatrick, An introduction to percolation theory, Adv. Phys. 20
(85) (1971) 325–357.

[37] N.D. Alberola, P. Mele, Viscoelasticity of polymers filled by rigid or soft
particles: theory and experiment, Polym. Compos. 17 (5) (1996) 751–759.

[38] H. Li, X. Luo, W. Yan, Y. Zhang, Energy-Based Mechanistic Approach for Crack
Growth Characterization of Asphalt Binder, Mech. Mater. 103462 (2020).

[39] Y. Zhang, Y. Gao, Predicting crack growth in viscoelastic bitumen under a
rotational shear fatigue load, Road Materials and Pavement Design (2019) 1–
20.

[40] H. Li, X. Luo, Y. Zhang, A kinetics-based model of fatigue crack growth rate in
bituminous material, Int. J. Fatigue 148 (2021) 106185.

[41] L. Li, Y. Gao, Y. Zhang, Crack length based healing characterisation of bitumen
at different levels of cracking damage, J. Cleaner Prod. 258 (2020) 120709.

[42] Traxler R.N. & Schweyer H.E. (1936). Increase in viscosity of asphalts with
time. Proc. Thirty-Ninth Annual Meeting, American Society for Testing
Materials 36(I1): 544- 550.Atlantic City, New Jersey, United States.

[43] Struik, L. C. E. (1977). Physical aging in amorphous polymers and other
materials.

[44] Bahia, H.U. & Anderson, D.A. (1991). Isothermal lowtemperature physical
hardening of asphalt. Proc. Intern.Symp. Chemistry of Bitumens 1: 114-147,
Rome, Italy.
14
[45] N.F. Saleh, B. Keshavarzi, F.Y. Rad, D. Mocelin, M. Elwardany, C. Castorena, Y.R.
Kim, Effects of aging on asphalt mixture and pavement performance, Constr.
Build. Mater. 258 (2020) 120309.

[46] D.R. Hiltunen, R. Roque, A Mechanics-Based Prediction Model For Thermal
Cracking Of Asphaltic CoNCrete Pavements, J. Assoc. Asphalt Paving Technol.
63 (1994) 81–117.

[47] R. Velasquez, H. Bahia, Critical factors affecting thermal cracking of asphalt
pavements: towards a comprehensive specification, Road Materials and
Pavement Design 14 (sup1) (2013) 187–200.

[48] Q. Li, X. Ma, F. Ni, G. Li, Characterization of strain rate and temperature-
dependent shear properties of asphalt mixtures, J. Test. Eval. 43 (5) (2015)
20140056.

[49] D. Anderson, Y. Hir, M. Marasteanu, J.P. Planche, D. Martin, G. Gauthier,
Evaluation of fatigue criteria for asphalt binders, Transportation Research
Record Journal of the Transportation Research Board 1766 (2001) 48–56.

[50] H. Li, X. Luo, Y. Zhang, Pseudo Energy-based Kinetic Characterization of Fatigue
in Asphalt Binders, China Journal of Highway and Transport 33 (10) (2020)
115–124, https://doi.org/10.19721/j.cnki.1001-7372.2020.10.006.

[51] H. Li, X. Luo, Y. Zhang, R. Xu, Stochastic Fatigue Damage in ViscoelasticMaterials
using Probabilistic Pseudo J-Integral Paris’ Law, Engineering FractureMechanics
245 (1) (2021), https://doi.org/10.1016/j.engfracmech.2021.107566 107566.

[52] F. Gu, R. Moraes, C. Chen, F. Yin, D. Watson, A. Taylor, Effects of Additional
Antistrip Additives on Durability and Moisture Susceptibility of Granite-Based
Open-Graded Friction Course, Journal of Materials in Civil Engineering 33 (9)
(2021), https://doi.org/10.1061/(ASCE)MT.1943-5533.0003862 04021245.

http://refhub.elsevier.com/S0264-1275(21)00537-2/h0180
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0180
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0185
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0185
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0190
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0190
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0195
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0195
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0195
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0200
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0200
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0205
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0205
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0225
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0225
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0225
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0230
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0230
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0230
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0235
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0235
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0235
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0240
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0240
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0240
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0245
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0245
http://refhub.elsevier.com/S0264-1275(21)00537-2/h0245
https://doi.org/10.19721/j.cnki.1001-7372.2020.10.006
https://doi.org/10.1016/j.engfracmech.2021.107566
https://doi.org/10.1061/(ASCE)MT.1943-5533.0003862

	Micromechanics modeling of viscoelastic asphalt-filler composite system with and without fatigue cracks
	1 Introduction
	2 Materials and laboratory tests
	2.1 Materials
	2.2 Laboratory tests
	2.2.1 Frequency sweep test
	2.2.2 Nondestructive test with different shear strain levels
	2.2.3 Time sweep test


	3 Micromechanics model for viscoelastic asphalt-filler composite system
	3.1 Constitutive equation for the asphalt binder matrix and filler in the Laplace domain
	3.2 Micromechanics theory for viscoelastic asphalt-filler composite system in the Laplace domain

	4 Viscoelastic strengthening coefficient for asphalt-filler composite system
	4.1 Derivation of viscoelastic strengthening coefficient for asphalt-filler composite system
	4.2 Determination of model parameters for viscoelastic strengthening coefficient model
	4.3 Modified viscoelastic strengthening coefficient at a high filler content

	5 Viscoelastic strengthening coefficient with fatigue cracks for asphalt-filler composite system
	5.1 Derivation of viscoelastic strengthening coefficient with fatigue cracks for asphalt-filler composite system
	5.2 Determination of viscoelastic strengthening coefficient with fatigue cracks for asphalt-filler composite system

	6 Conclusions and future work
	Declaration of Competing Interest
	Acknowledgements
	Appendix A 
	References


