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A fuzzy scenario-based optimisation of
supply network cost, robustness and shortages

Abstract

Supply network (SN) robustness has become an important issue in SN management. In this paper, we 

refer to SN as robust, if it maintains its performance in the presence of uncertainty in SN parameters, 

namely uncertain changes in customer demand. A customer forecasts its demand in terms of requested 

quantity and time of delivery. This forecasted demand can be changed until a certain time. After that, 

the customer is committed to its demand. However, a manufacturer has to order materials in advance to 

produce its product without knowing the exact changes in customer demand. The materials can be 

ordered either from a standard supplier, or, from an emergency supplier, if there is not enough material 

in stock and/or there is not enough time for a delivery from the standard supplier. We define a new 

concept of fuzzy scenarios that comprise uncertain changes in customer demand. These changes are 

specified by linguistic terms and modelled using fuzzy numbers. The robustness of an SN is measured 

in a novel way as the variance of costs incurred in all fuzzy scenarios. This means that the robust SN 

maintains its cost in the presence of uncertain changes in customer demand. A novel fuzzy multi-

objective optimisation model is developed, which determines quantities of materials to be ordered by a 

manufacturer from a standard supplier and times of ordering. The objectives considered simultaneously 

embed all fuzzy scenarios and include the minimisation of total SN cost, the maximisation of robustness 

and the minimisation of shortages. Various experiments are carried out to analyse the relationship 

between SN parameters and SN performance. Results obtained by applying the SN model demonstrate 

that robustness can be increased and shortages can be decreased, but, as expected, at a higher SN cost. 

In the case of the high ratio of the unit purchase cost from the emergency supplier to the unit surplus 

cost, a considerable increase of robustness and a decrease of shortages can be achieved. Finally, it is 

shown that the model can be applied to large-scale SNs.

Keywords: Supply Network Management, Robust Optimisation, Fuzzy Multi-objective Optimisation, 
Fuzzy Scenarios
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1. Introduction

In today’s global supply networks (SNs) identifying, understanding and managing various types and 

sources of uncertainty that can affect SNs have become very important. Traditional supply chains (SCs) 

emphasise the linear flow of products from suppliers to customers, while SNs focus on the web of 

connections. Still, these two terms are used interchangeably in the literature. In this paper, in line with 

the problem under consideration, we are going to use the term SN. Different concepts have been 

introduced to address SN behaviour and performance in the presence of uncertainty. One of them often 

used in the SN context is robustness (Monostori, 2018).

Generally, an SN is considered to be robust if it has consistent performance in an uncertain 

environment with very little variation in its output (Christopher and Rutherford, 2004). Robust 

optimisation provides good and stable solutions when dealing with uncertain parameters (Bertsimas and 

Thiele, 2004). Mulvey et al. (1995) classify robust optimisation based on two concepts, solution robust 

and model robust. A solution was defined as robust if it remained “close” to the optimal solution for all 

values of uncertain input data, and a model was robust if it remained “almost” feasible for all values of 

uncertain data. Uncertainty in SN optimisation has often been treated using a scenario-based 

optimisation method and concepts of probability theory. Each scenario is typically represented by 

uncertain SN parameters and their realisation. The scenario is assigned a corresponding probability of 

its occurrence. Scenarios have been developed to represent various SN uncertainties including: SN 

hazards (Klibi and Martel, 2012), suppliers’ disruptions (Gaonkar and Viswanadham, 2007), future 

economic states (Rahmani et al., 2013), uncertain future demand/return of products (Kaya et al. 2014) 

or social-distancing status during the Covid-19 pandemic (Perdana, et al., 2020). However, in the real 

world, it is not always possible to specify a probability distribution of uncertain parameters.

The development of our model is motivated by a real world manufacturer’s problem; however, as 

many companies face similar issues, the model has been constructed to be generic. The problem is that 

the customer forecasts its demand with respect to both quantity and time when the quantity is required 

and can alter its demand until a certain time, when the demand becomes fixed and can no longer be 

changed. The manufacturer has to order materials to produce its product without knowing the exact 

quantities and times that will be required. The manufacturer has to determine how many materials to 

order, and when, from a standard supplier in such a way as to be able to fully satisfy a fixed customer 

demand. Holding higher quantities of materials in stock increases the SN cost and materials can even 

become obsolete. However, if there is not enough material ordered from the standard supplier and/or 

there is not enough time for a delivery from the standard supplier, the materials have to be ordered from 

a more expensive emergency supplier with a shorter lead time. In order to try to address the 

manufacturer’s problem, we introduce a new concept of fuzzy scenarios that comprise descriptions of 

changes in both demanded quantity and time of delivery. These changes in forecasted customer demand 
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are specified in our research using linguistic terms, such as “more quantity than forecasted”, “at earlier 

time of delivery than forecasted”, etc. This approach can be very convenient to use in practice. 

We develop a novel multi-objective SN optimisation model, which minimises the total SN cost, 

maximises SN robustness, i.e., variations of costs incurred in all fuzzy scenarios, and minimises the 

shortages of materials in the presence of changes in customer demand. We consider the SN to be robust, 

if it maintains its cost in the presence of uncertainty in changes in customer demand. The fuzzy scenarios 

are embedded in the objectives. Various experiments are carried out which provide an insight into a 

trade-off between SN cost, robustness and shortages in the presence of fuzzy changes in customer 

demand. The impact of different probabilities of these fuzzy changes on SN performance is investigated. 

The model’s computational requirements are analysed as well.

The novelties proposed in this research are as follows: (1) A new concept of fuzzy scenarios is 

defined to model uncertainty in changes in customer demand, where changes include both those of 

requested quantity and time. Instead of dealing with the crisp historical data of demand changes and 

their probabilities, we define scenarios of demand changes using imprecise linguistic terms, which 

makes the approach more applicable in practice. To the best of our knowledge, scenario-based 

optimisation models developed so far have included crisp historical data with corresponding 

probabilities only and not linguistic terms. (2) A new measure of SN robustness is proposed as the 

variance of costs incurred in all fuzzy scenarios. (3) Experiments carried out bring useful managerial 

insights into SN performances, including cost, robustness and shortages, and a link/trade-off between 

them. The impact of different SN parameters and scenario probabilities on SN performance and order 

decisions are analysed.

The rest of the paper is organised as follows. The literature review is presented in Section 2. Section 

3 contains the problem statement, while Section 4 describes a fuzzy scenario-based multi-objective 

optimisation model for the real-world SN. Section 5 provides the results and their analysis, and Section 

6 outlines some practical and managerial insights obtained. Section 7 presents the conclusion and 

directions for future work. 

2. Literature review

Various optimisation models for SNs have been developed in recent years. The literature review is 

focused on three approaches to optimisation that consider uncertainty and are relevant to this research: 

robust SN optimisation, scenario-based SN optimisation and fuzzy SN optimisation.

A robust SN optimisation approach which has included both model robustness (almost feasible) and 

solution robustness (near to optimality) has been widely used. Different models for finding a trade-off 

between solution robustness and model robustness have been developed. For example, in the area of 

aggregate production planning (APP), Leung and Wu (2004) considered an uncertain manufacturing 

environment and proposed a robust optimisation model to minimise the total production cost. Mirzapour 
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Al-e-hashem et al. (2011) developed a robust, multi-objective, mixed-integer, non-linear programming 

model. The objectives were to minimise the total SN cost and to maximise the customer’s satisfaction 

level by minimising shortages, in such a way as to fulfil the product demand. Two objective functions 

were defined, where the first objective represented solution robustness, capturing the firm’s desire for 

low costs and its degree of risk aversion, while the second objective represented model robustness, 

penalising solutions that failed to meet demand in a scenario or violated constraints such as capacity. 

Some researchers have mainly concentrated on solution robustness. For example, Leung et al. (2007) 

investigated a production planning problem for perishable products and provided a robust solution for 

coping with different economic environments, with respect to cost minimisation, including setup, 

production and labour costs. Kazemi et al. (2010) addressed a multi-period, multi-product sawmill 

production planning problem under uncertainties in the quality of raw materials. A robust production 

plan was proposed regarding the minimisation of backorder size (i.e., service level) variability. Two 

robust optimisation models were proposed with a different variability of customer service level. A trade-

off between the expected backorder/inventory cost and the decision-maker risk-aversion level was 

considered. Alem and Morabito (2012) applied robust optimisation for lot-sizing and cutting stock for 

a furniture production planning. The authors found out that solution robustness could be achieved with 

a small probability of constraint violation, when there were uncertainties in the objective function 

coefficients only. Lim (2013) obtained a robust plan for the optimal bundle of price and order quantity 

for the retailer under uncertainties in demand and purchase costs. The author analysed the robustness 

of this solution by comparing it with deterministic case solutions in terms of the gains and losses in 

different uncertain settings. More recently, Fazli-Khalaf et al. (2019) considered laboratories and 

hospitals in a blood SN. Two methods were proposed to find robust and risk-averse solutions related to 

transportation decisions, when facing emergency situations. 

The scenario-based approach has typically been used to model uncertainty in parameters, where 

various realisations of parameters with associated probabilities have formed scenarios. For example, 

Pan and Nagi (2010) used scenarios to represent a collection of demands over time periods. The authors 

developed an optimisation model for an SN design in which the objective function included the 

weighted sum of solution robustness and model robustness. Rahmani et al. (2013) modelled all the 

uncertainties, including customer demand, production, inventory and subcontracting costs, in scenarios. 

They presented a robust mixed-integer programming optimisation model to determine a robust 

production plan for a multi-period, multi-product, multi-machine, two-stage production system. It was 

concluded that the proposed robust model was efficient in any system that required the minimisation of 

the total cost and low fluctuations when facing uncertainties. Baghalian et al. (2013) proposed a new 

stochastic mathematical formulation of a multi-product SN. Their work described supply uncertainty 

through scenarios and presented demand uncertainty as a random variable with a known disruption 

function. Kaya et al. (2014) formed scenarios to handle uncertainties in demand and returns of parts and 

products. They developed both a two-stage stochastic optimisation model and a robust optimisation 



5

model for capacity planning, and production and inventory decisions in a closed-loop manufacturing 

system for modular products. Salehi et al. (2017) applied such an approach to a blood SN design for 

dealing with a natural disaster, and proposed a robust two-stage, multi-period stochastic model. They 

generated scenarios for the demand of blood units of different types and their derivatives. Scenarios 

have also been used to describe disruptions, as in Jabbarzadeh et al. (2018). The authors modelled a 

closed-loop SC under the risk of disruption, using a stochastic, robust optimisation approach to 

determine facility locations and lateral transhipment quantities that minimised the total SC cost. 

Apart from using probability distributions and scenarios to model uncertain parameters in SNs, an 

alternative approach based on fuzzy sets has been investigated. Uncertainty in SN parameters has been 

modelled using imprecise linguistic terms which are specified based on managerial experience and 

judgement (e.g., Niknejad and Petrovic, 2017). Various fuzzy SN optimisation models have been 

developed. For example, Petrovic et al. (1999) proposed a fuzzy optimisation model for a serial SN 

with fuzzy demand and fuzzy supply. In addition, Liang (2008) developed a fuzzy model for integrated 

multi-product and multi-time period production/distribution planning with the fuzzy objectives of the 

minimisation of total cost and delivery time. Mahnam et al. (2009) developed a fuzzy model for an 

assembly SN in which the uncertainties in customer demand variability and in the reliability of external 

suppliers were modelled using linguistic terms. Fuzzy sets have also been used in modelling multi-

objective optimisation problems. For example, Mohammed and Wang (2017) adopted the fuzzy 

optimisation approach to tackle a distribution planning problem for a food SN under multiple 

uncertainties in costs, demand and capacity levels of facilities, with multi fuzzy objectives such as the 

minimisation of transportation costs, CO2 emissions, the distribution time of products and the delivery 

rate. Mohammed et al. (2019) presented a fuzzy multi-objective programming model for SN design 

problems to determine the optimal number of facilities. The objectives included the minimisation of 

costs and environmental impacts and the maximisation of SC resilience. Mohammed (2019) developed 

an integrated fuzzy multi-objective approach for solving a two-stage supplier selection and order 

allocation problem in a meat SC, aiming to minimise the total costs, environmental impacts, travel time 

and, at the same time, to maximise social impact. 

In the papers reviewed above, concepts of solution robustness, scenario-based modelling and fuzzy 

optimisation have been used separately. SN robustness has been handled as a crisp optimisation 

objective, while scenario-based modelling has used a crisp realisation of uncertain SN parameters. 

Fuzzy SN optimisation models have dealt with fuzzy objectives and/or fuzzy constraints. This paper 

presents a novel model which combines these concepts in the following way. Imprecise linguistic terms 

are used to describe uncertain changes in demand and to generate fuzzy scenarios. A fuzzy scenario 

comprises fuzzy values of changes in both demand quantity and demand delivery time. Our fuzzy 

optimisation model considers multi-objectives, including SN cost, robustness and shortages. The 

robustness objective is focused on maintaining the SN cost in the presence of fuzzy changes in customer 
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demand. The model is based on a new measure of SN robustness which calculates the standard deviation 

of SN costs incurred in all fuzzy scenarios. 

3. Problem statement

This research is motivated by a real-world SN problem faced by Malvern Tubular Components 

(MTC), UK. The company produces pipe and tubing assemblies and supplies various industries 

including energy, utilities, transportation and aerospace. However, the problem under consideration is 

relevant to manufacturers in general, in particular, those that are first-tier suppliers or are in “the middle 

of SNs”. In addressing this problem, we adopted the terminology used in MTC.

MTC supplies subsequent members of SN, who act as its customers. Its problem is to determine the 

quantity of materials to order from its suppliers, and when it should take place, in order to fully satisfy 

customer demand. A customer forecasts its demand in terms of quantity and time when it is required, 

at the beginning of a planning period. The planning period comprises the “forecast” and the “fixed” 

period. The customer is not committed to the order during the forecast period and may change demand 

before it becomes fixed, i.e., before the fixed period starts. Typically, the fixed period is up to two 

weeks before the time when demand quantity is required, because the manufacturer’s production time 

is two weeks. Therefore, in order to have the required materials (raw materials and components) ready 

and at a lower cost, the manufacturer has to purchase the materials in advance, before the demand 

becomes fixed. Materials are purchased from a number of standard suppliers. Each supplier has a 

different lead time and price. A supplier with a longer lead time offers a lower price. Generally, it is 

assumed that the suppliers’ capacity is sufficient to produce orders from the manufacturer and deliveries 

are on time. Therefore, suppliers’ delivery performance is not an issue.

Currently, the manufacturer applies a made-to-stock policy and uses a “buffer stock” of materials 

for production, to fulfil customer demand. Materials are purchased in advance from the standard 

suppliers. Before the demand becomes fixed, customers are able to change the demand quantity and/or 

required time. If there are not enough materials in stock and not enough time to restock using the 

standard suppliers, the manufacturer has to approach emergency suppliers. These companies have a 

lead time of up to two weeks, so can meet production needs, but are more costly. However, on the other 

hand, if the manufacturer buys too many materials in advance (from the standard suppliers), this causes 

a high surplus cost and might eventually lead to stock obsolescence and a high holding cost. It is, 

therefore, a complex task to determine the required stock as demand quantity and required time of 

delivery are uncertain.

We define fuzzy scenarios to capture uncertainty in changes in customer demand in terms of demand 

quantity and required time of delivery. In order to make the SN robust, its cost has to be maintained in 

the presence of uncertainty in changes in demand. The proposed model determines the quantity of 

materials to be ordered from the standard suppliers and the time of ordering in such a way as to minimise 
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the SN cost, maximise SN robustness and minimise SN shortages. The decision what to order and when 

is to be made at the beginning of a planning period which starts when the customer places a forecasted 

demand for one type of product.

The following assumptions are made in line with the characteristics of the real-world problem under 

consideration:

 Customer demand must be satisfied.

 All suppliers are reliable in both quantity and time of delivery.

 Suppliers have sufficient capacities for providing ordered materials.

 The manufacturer has sufficient production capacity.

 Each order must be purchased from one supplier only, i.e., it cannot be split.

4. Fuzzy scenario-based multi-objective optimisation

The following notations are used:

Indexes

 𝑟 Materials 𝑟 = 1,…,𝑅

𝑠 Scenarios 𝑠 = 1,…,𝑆

Decision variables
𝑥𝑟 Quantity of material  to be ordered from the standard supplier in the planning period𝑟

𝑦𝑟 The time to order material  from the standard supplier in the planning period𝑟

Parameters

   𝐷 Forecasted demand quantity at the beginning of planning period

T Forecasted demand time at the beginning of planning period

𝑙𝑟 Lead time of the standard supplier for material  (in weeks)𝑟

𝑚𝑟 Unit purchase cost of material  from the standard supplier𝑟

𝑐𝑟 Unit purchase cost of material  from the emergency supplier (𝑟 𝑐𝑟 > 𝑚𝑟)

𝜃𝑟 Quantity of material  required for the manufacturing of one product𝑟

𝜋𝑟 Unit penalty cost for the surplus of material 𝑟

ℎ𝑟 Holding cost of unit quantity of material  per unit time period (one week)𝑟
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𝑞𝑠 Fuzzy change in demand quantity in scenario s

𝑡𝑠 Fuzzy change in demand time in scenario s (in weeks)

𝑝𝑠 Probability of scenario 𝑠

𝑣𝑖 Tolerance for achieving optimal objective’s value or violating fuzzy constraint, where 

i refers to a fuzzy set in an objective or a constraint

V Tolerance factor for all fuzzy objectives and fuzzy constraints

Other variables

𝜑 +
𝑠 Surplus of materials purchased from the standard supplier in scenario s

𝜑 ―
𝑠 Shortage of materials purchased from the emergency supplier in scenario s

𝑤𝑠 Total cost of scenario s

α Degree of satisfaction with objectives’ values achieved and constraints fulfilment.

4.1. Fuzzy scenarios

Uncertainty faced by the manufacturer is caused by changes that a customer can make in both 

quantity and time of forecasted demand. Typically, the company purchase manager will review the 

customer’s previous demand and can specify that a certain customer, for example, usually orders more 

quantity than forecasted or requires a similar time of delivery as forecasted. We define a new concept 

of fuzzy scenarios to describe uncertainty when customer demand is for Less, About the same or More 

quantity, and it is required Earlier, At about the same time or Later than forecasted. There are nine 

fuzzy scenarios, where each scenario consists of two uncertain changes: change in quantity  and 𝑞𝑠

change in time , as presented in Table 1. For example, Scenario 1 is “the requested quantity is Less 𝑡𝑠

than forecasted and it is requested Earlier than forecasted”.

Table 1. Fuzzy scenarios which represent uncertainty in demand change

Change in quantity 𝑞𝑠

Change in time 𝑡𝑠 Less About the same More

Earlier Scenario 1 Scenario 2 Scenario 3

At about 

the same time
Scenario 4 Scenario 5 Scenario 6

Later Scenario 7 Scenario 8 Scenario 9
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The linguistic terms are modelled using fuzzy sets. Change in demand quantity is described by three 

linguistic terms: Less, About the same and More which are modelled using fuzzy numbers presented in 

Figure 1. The term About the same is modelled using a symmetric triangular fuzzy number which 

assumes changes ± p0. Terms Less and More are modelled using semi-trapezoidal fuzzy numbers. The 

minimum change can be -D, i.e., the demand is changed from D to 0. It is certainly Less, with degree 

of belief 1, if the change is between –D and Ql and it has decreasing degrees of belief that it is Less 

from Ql to Ql+pl. Term More is defined in a similar way, where the maximum increase in demand can 

be Du. Parameters Ql, pl, p0, Qm, pm,and DU are determined subjectively by the purchase manager.

1

0𝑄�+ 𝑝�−𝑝�𝑄� 𝑄� − 𝑝� 𝑝� 𝑄�-D 𝐷�

Figure 1. Membership functions of change  in demand quantity𝑞𝑠

The change in demand quantity is Less, i.e., the fixed order quantity is Less than the forecasted 

demand in scenarios  (as presented in Table 1). The membership function is defined as:𝑠 = 1, 4, 7

𝜇𝑞𝑠
(𝑞) = {    1,                  𝑖𝑓 ― 𝐷 ≤ 𝑞 ≤ 𝑄𝑙

1 ―
𝑞 ― 𝑄𝑙

𝑝𝑙
,        𝑖𝑓 𝑄𝑙 < 𝑞 < 𝑄𝑙 + 𝑝𝑙

      0,                 𝑖𝑓 𝑄𝑙 + 𝑝𝑙  ≤ 𝑞     

The fixed order quantity is About the same as forecasted demand in scenarios , (as 𝑠 = 2, 5, 8

presented in Table 1) and it is defined as:

𝜇𝑞𝑠
(𝑞) = {1 +

𝑞
𝑝0

,          𝑖𝑓 ―𝑝0 ≤ 𝑞 ≤ 0

1 ―
𝑞
𝑝0

,          𝑖𝑓    0 < 𝑞 ≤ 𝑝0

Less About the same More

Change in quantity

Membership degree
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The fixed order quantity is More than the forecasted demand in scenarios  (as presented in 𝑠 = 3, 6, 9

Table 1) and it is defined as:

𝜇𝑞𝑠
(𝑞) = { 0,                     𝑖𝑓 𝑞 ≤ 𝑄𝑚 ―  𝑝𝑚

1 ―
𝑄𝑚 ― 𝑞

𝑝𝑚
,             𝑖𝑓 𝑄𝑚 ―  𝑝𝑚 < 𝑞 < 𝑄𝑚

      1,                    𝑖𝑓 𝑄𝑚 ≤ 𝑞 ≤ 𝐷𝑈      

Similarly, a change in demand time is represented using three linguistic terms: Earlier, At about the 

same time and Later (shown in Figure 2). Their membership functions are defined in the same way as 

the membership functions for changes in demand quantity.

1

0𝑇𝑒 + 𝑝𝑒−𝑝�
�𝑇𝑒 𝑇𝑚 − 𝑝�

� 𝑝�
� 𝑇𝑚-T 𝑇𝑈

Figure 2. Membership functions of change  in demand time𝑡𝑠

Each fuzzy scenario is associated with a corresponding crisp probability that can be determined 

based on historical data and the corresponding frequency distribution or specified by the purchase 

manager based on his/her experience.

4.2.Costs

The following costs are incurred:

 Purchase cost incurred using the standard supplier for order of quantity  of r materials:𝑥𝑟

       
𝑅

∑
𝑟 = 1

𝑚𝑟𝑥𝑟

Earlier
At about the
same time Later

Change in time

Membership degree
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 Holding cost incurred in scenario s = 7, 8, 9, when the fixed demand time is Later than the forecasted 

time and the order for material r is already made using the standard supplier; this means that 

quantity  is in inventory for  time periods:𝑥𝑟 𝑇 + 𝑡𝑠 ― 𝑦𝑟 ― 𝑙𝑟

       
𝑅

∑
𝑟 = 1

ℎ𝑟𝑥𝑟(𝑇 + 𝑡𝑠 ― 𝑦𝑟 ― 𝑙𝑟)

 Shortage cost for   quantity incurred in scenario s = 1, 2, 3, 6, 9, when the fixed demand time is 𝜑 ―
𝑠

Earlier than forecasted and the order is made using the emergency supplier and/or the fixed demand 

quantity is for More than forecasted; this means that the order is made using the standard supplier, 

and the emergency supplier is used for the additional quantity:

       
𝑅

∑
𝑟 = 1

𝜑 ―
𝑠 𝜃𝑟𝑐𝑟

 Surplus cost for   quantity incurred in scenario s = 1, 2, 3, 4, 7, when the fixed demand quantity 𝜑 +
𝑠

is for Less quantity than forecasted and the order is already made using the standard supplier and/or 

the fixed demand time is Earlier than forecasted and, therefore, the emergency supplier has to be 

used although the order is already made using the standard supplier:

       
𝑅

∑
𝑟 = 1

𝜑 +
𝑠 𝜃𝑟𝜋𝑟

The costs incurred in the nine scenarios are presented in Table 2.

Table 2. Costs incurred in scenarios

Change in quantity 𝑞𝑠

Change in time 𝑡𝑠 Less About the same More

Earlier

Scenario 1:

Shortage

Surplus

Scenario 2:

Shortage

Surplus

Scenario 3:

Shortage

Surplus

At about the same 

time

Scenario 4:

Surplus

Scenario 5:

-

Scenario 6:

Shortage

Later

Scenario 7:

Holding

Surplus

Scenario 8:

Holding

Scenario 9:

Holding

Shortage
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For example, in Scenario 3, when the fixed demand is for More quantity and Earlier than forecasted, 

the cost includes the shortage cost, because the order has to be made to the emergency supplier. 

However, the surplus cost is incurred too, because, at the beginning of planning period, the order is 

made to the standard supplier and it arrives, but later than needed.

4.3. Fuzzy multi-objective optimisation model

To address the problem under consideration, we have used a multi-objective optimisation approach. 

In addition to the standard objective, which is cost minimisation, two additional objectives are included: 

maximisation of SN robustness and minimisation of shortages. We measure robustness as the variance 

of the costs incurred in all the scenarios. The aim is to generate a robust solution which will perform 

well and incur a reasonable cost in all the uncertainty in scenarios. Shortages impact the manufacturer’s 

capability to operate when there is uncertainty in customer demand changes. Therefore, we calculate 

the sum of shortages of materials relative to demand in all the scenarios. Generally, higher robustness 

should incur a higher cost and reduce shortages. Also, a higher number of shortages should incur a 

higher cost. Therefore, a trade-off between SN cost, robustness and shortages has to be made. However, 

relationships between these SN performances in the presence of different changes in customer demand 

are not clear. 

The problem is to find the quantity of material , , to be ordered from the standard supplier, and 𝑟 𝑥𝑟

the time of ordering, , in the planning period, in such a way as to optimise the following objectives:𝑦𝑟

Fuzzy multi-objective optimisation model

Objective 1. To minimise the cost:

To minimise the expected total cost calculated as the sum of the purchase cost of all materials r, , 𝑚𝑟𝑥𝑟 

and the cost  of all scenarios s𝑤𝑠

f1 =   (1)∑𝑅
𝑟 = 1𝑚𝑟𝑥𝑟 + ∑𝑆

𝑠 = 1𝑝𝑠𝑤𝑠

Objective 2. To maximise robustness:

To minimise the variance of cost  incurred in all scenarios s𝑤𝑠

f2 =   (2)∑𝑆
𝑠 = 1𝑝𝑠[𝑤𝑠 ― ∑𝑆

𝑗 = 1𝑝𝑗𝑤𝑗]
2

Objective 3. To minimise shortages:
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To minimise the expected shortages  relative to demand quantity and changes in demand quantity, 𝜑 ―
𝑠

, in all scenarios s𝐷 + 𝑞𝑠

f3 =   (3)∑𝑆
𝑠 = 1𝑝𝑠

𝜑 ―
𝑠

𝐷 + 𝑞𝑠

subject to:

𝐷 + 𝑞𝑠 = 𝑥𝑟/𝜃𝑟 ― 𝜑 +
𝑠 + 𝜑 ―

𝑠 (4)

𝑦𝑟 + 𝑙𝑟 ≤ 𝑇 + 𝑡𝑠 (5)

, 𝑥𝑟, 𝑦𝑟, 𝜑 +
𝑠 , 𝜑 ―

𝑠 ,𝑤𝑠 ≥ 0 𝑠 = 1,2,…,𝑆,  𝑟 = 1,2,…,𝑅 (6)

where

 𝑤𝑠 =
𝑅

∑
𝑟 = 1

ℎ𝑟𝑥𝑟(𝑇 + 𝑡𝑠 ― 𝑦𝑟 ― 𝑙𝑟) +
𝑅

∑
𝑟 = 1

𝜑 ―
𝑠 𝜃𝑟𝑐𝑟 +

𝑅

∑
𝑟 = 1

𝜑 +
𝑠 𝜃𝑟𝜋𝑟 (7) 

Constraint (4) ensures that customer demand quantity and uncertain changes in demand quantity 

must be satisfied in each scenario; the sum of customer demand quantity and uncertain changes in 

demand quantity is equal to the sum of the quantity of materials purchased from the standard supplier 

and either a shortage of materials requiring purchase from the emergency supplier or the surplus of 

materials. Constraint (5) means that all materials ordered from the standard supplier should arrive before 

the forecasted customer demand time and uncertain change in time. Constraint (6) introduces non-

negativity of the variables. Equation (7) represents the cost of each scenario consisting of the holding 

cost, the shortage cost incurred by ordering from the emergency supplier and the surplus cost (penalty 

cost for surplus of materials).

Due to the fuzziness of changes in customer demand, including the quantity and time, constraints 

(4) and (5) and equation (7) become fuzzy too. By re-arranging the fuzzy parameters, they become as 

follows:

 
𝑥𝑟

𝜃𝑟
― 𝜑 +

𝑠 + 𝜑 ―
𝑠 ―𝐷 = 𝑞𝑠

(8)

, 𝑦𝑟 + 𝑙𝑟 ―𝑇 ≤ 𝑡𝑠 (9)

𝑤𝑠 ―
𝑅

∑
𝑟 = 1

ℎ𝑟𝑥𝑟(𝑇 ― 𝑦𝑟 ― 𝑙𝑟) ―
𝑅

∑
𝑟 = 1

𝜑 ―
𝑠 𝜃𝑟𝑐𝑟 ―

𝑅

∑
𝑟 = 1

𝜑 +
𝑠 𝜃𝑟𝜋𝑟 =

𝑅

∑
𝑟 = 1

ℎ𝑟𝑥𝑟𝑡𝑠 (10)

The fuzzy multi-objective model given above is a non-linear programming optimisation model with 

the following decision variables: quantities, , and times of ordering materials from the standard 𝑥𝑟

supplier, .𝑦𝑟
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4.4. Transformation of the fuzzy multi-objective model to a crisp single-objective model

Various approaches to solving fuzzy mathematical programming models and fuzzy multi-objective 

models have been proposed in the literature (Zimmermann, 2001; Baykasoglu and Gocken, 2008). We 

adapted the method presented by Niknejad and Petrovic (2014) to transform the fuzzy optimisation 

model given in Section 4.3 into a crisp optimisation model. First, tolerances for violation of fuzzy 

constraints are defined. Then, a satisfaction degree with regards to achieving the optimal objectives’ 

values and with regards to satisfaction of the fuzzy constraints is introduced. In this way, the original 

fuzzy optimisation model is transformed into a crisp model which maximises the satisfaction degree. 

Finally, a standard solver is used to find the optimal solution of the obtained crisp optimisation model.

In our fuzzy multi-objective model, both constraints and objectives are fuzzy and need to be 

transformed into the corresponding crisp counterparts.

Each fuzzy constraint g is transformed into a crisp constraint by introducing tolerance  of violating 𝑣

the constraint and the satisfaction degree of satisfying the constraint. The procedure for 𝛼 ∈ [0,1] 

transforming a fuzzy constraint into a crisp constraint is given in Appendix A. It is illustrated using as 

an example of one of the fuzzy constraints of the model.

The fuzzy multi-objectives are handled in a similar way as the fuzzy constraints by introducing the 

satisfaction degree . This method is proposed by Zimmermann (2001). If the optimisation problem is 𝛼

to minimise fuzzy objective , then it can be transformed into the crisp maximisation problem in 𝑓(𝑥)

which the satisfaction degree  has to be maximised. Therefore, the new crisp optimisation problem is 𝛼

to find the maximum  with added constraint (12):𝛼

Maximise ,   (11)𝛼 𝛼 ∈ [0,1]

Such that

𝑓(𝑥) ≤ 𝑓𝑚𝑖𝑛 + (1 ― 𝛼)(𝑓𝑚𝑎𝑥 ― 𝑓𝑚𝑖𝑛)  (12)

where f min and f max are the minimum and maximum values of objective , respectively. In this crisp 𝑓(𝑥)

optimisation problem, the satisfaction degree  reaches its maximum,  when , because 𝛼 𝛼 = 1, 𝑓(𝑥) = 𝑓𝑚𝑖𝑛

the problem is to minimise the fuzzy objective . The satisfaction degree  reaches its minimum, 𝑓(𝑥) 𝛼

 when . It decreases monotonously from value 1 to value 0.𝛼 = 0, 𝑓(𝑥) = 𝑓𝑚𝑎𝑥

In our model, the minimum and maximum values of the three fuzzy objectives are determined as 

presented in Appendix B.

Finally, using the procedures described in Appendix A and B, the fuzzy multi-objective model is 

transformed into the single-objective crisp optimisation model of maximising the satisfaction degree  𝛼

as follows:
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Crisp single-objective maximisation model

Maximise ,    (13)𝛼 𝛼 ∈ [0,1]

Such that

𝑓1 ≤ 𝑓𝑚𝑖𝑛
1 + (1 ― 𝛼)(𝑓𝑚𝑎𝑥

1 ― 𝑓𝑚𝑖𝑛
1 ) ( )1𝑖

𝑓2 ≤ 𝑓𝑚𝑖𝑛
2 + (1 ― 𝛼)(𝑓𝑚𝑎𝑥

2 ― 𝑓𝑚𝑖𝑛
2 ) ( )2𝑖

1 ―  ≥  ∑
𝑠 = 1,4,7

 𝑝𝑠𝜑 ―
𝑠 (1 ― (1 ― 𝛼)(1 ―

1
𝐷 + 𝑄𝑙) ― (1 ― 𝛼)𝑣7)

1 ―  ≥  ∑
𝑠 = 2,5,8

 𝑝𝑠𝜑 ―
𝑠 ( 1

𝐷 ― 𝑝0
― (1 ― 𝛼)( 1

𝐷 ― 𝑝0
―

1
𝐷) ― (1 ― 𝛼)𝑣8)

1 ―  ≥  ∑
𝑆 = 3,6,9,

 𝑝𝑠𝜑 ―
𝑠 ( 1

𝐷 + 𝑄𝑚 ― 𝑝𝑚
― (1 ― 𝛼)( 1

𝐷 + 𝑄𝑚 ― 𝑝𝑚
―

1
𝐷 + 𝑄𝑚) ― (1 ― 𝛼)𝑣9)

( )3𝑖

( )3𝑖𝑖

( )3𝑖𝑖𝑖

The crisp constraints above are derived from three objectives, f1, f2 and f3, given in (1), (2) and (3), 

respectively. They are obtained following the procedure described in Appendix B. The first two crisp 

constraints ( ) and ( ) are derived from objectives f1 and f2, respectively, and the subsequent three 1𝑖 2𝑖

crisp constraints ( ), ( ) and ( ) from fuzzy objective f3.3𝑖 3𝑖𝑖 3𝑖𝑖𝑖

The crisp constraints from ( ) to (8vi) represent fuzzy constraint (8) and are obtained using the 8𝑖

procedure given in Appendix A.

𝑥𝑟

𝜃𝑟
― 𝜑 +

𝑠 + 𝜑 ―
𝑠 ― 𝐷 ≤ ―𝐷 + (1 ― 𝛼)(𝑄𝑙 ― ( ―𝐷)) + (1 ― 𝛼)𝑣1,    𝑠 = 1,4,7,    𝑟 = 1,2,…,𝑅

( )8𝑖

𝑥𝑟

𝜃𝑟
― 𝜑 +

𝑠 + 𝜑 ―
𝑠 ― 𝐷 ≥ 𝑄𝑙 + 𝑝𝑙 ― (1 ― 𝛼)𝑝𝑙 ― (1 ― 𝛼)𝑣1,                   𝑠 = 1,4,7,    𝑟 = 1,2,…,𝑅

( )8𝑖𝑖

𝑥𝑟

𝜃𝑟
― 𝜑 +

𝑠 + 𝜑 ―
𝑠 ― 𝐷 ≤ ― 𝑝0 + (1 ― 𝛼)𝑝0 + (1 ― 𝛼)𝑣2,                       𝑠 = 2,5,8,    𝑟 = 1,2,…,𝑅

( )8𝑖𝑖𝑖
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𝑥𝑟

𝜃𝑟
― 𝜑 +

𝑠 + 𝜑 ―
𝑠 ― 𝐷 ≥ 𝑝0 ― (1 ― 𝛼)𝑝0 ― (1 ― 𝛼)𝑣2,                         𝑠 = 2,5,8,    𝑟 = 1,2,…,𝑅

( )8𝑖𝑣

𝑥𝑟

𝜃𝑟
― 𝜑 +

𝑠 + 𝜑 ―
𝑠 ― 𝐷 ≤ 𝑄𝑚 ― 𝑝𝑚 + (1 ― 𝛼)𝑝𝑚 + (1 ― 𝛼)𝑣3,            𝑠 = 3,6,9,    𝑟 = 1,2,…,𝑅

( )8𝑣

𝑥𝑟

𝜃𝑟
― 𝜑 +

𝑠 + 𝜑 ―
𝑠 ― 𝐷 ≥ 𝐷𝑈 ― (1 ― 𝛼)(𝐷𝑈 ― 𝑄𝑚) ― (1 ― 𝛼)𝑣3,        𝑠 = 3,6,9,    𝑟 = 1,2,…,𝑅

( )8𝑣𝑖

The crisp constraints ( ), ( ) and ( ) represent fuzzy constraint (9) where M is a very large number. 9𝑖 9𝑖𝑖 9𝑖𝑖𝑖

They are obtained using the procedure given in Appendix A.

𝑦𝑟 + 𝑙𝑟 ― 𝑇 ≤ ―𝑇 + (1 ― 𝛼)(𝑇𝑒 ― ( ―𝑇)) + (1 ― 𝛼)𝑣4 + |𝑀 ∗ (𝑠 ― 1) ∗ (𝑠 ― 2) ∗ (𝑠 ― 3)|,

                                                                                                                         𝑠 = 1,2,3,    𝑟 = 1,2,…,𝑅

( )9𝑖

𝑦𝑟 + 𝑙𝑟 ― 𝑇 ≤ ― 𝑝′0 + (1 ― 𝛼)𝑝′0 + (1 ― 𝛼)𝑣5 + |𝑀 ∗ (𝑠 ― 4) ∗ (𝑠 ― 5) ∗ (𝑠 ― 6)|,

                                                                                                                        𝑠 = 4,5,6,    𝑟 = 1,2,…,𝑅 ( )9𝑖𝑖

𝑦𝑟 + 𝑙𝑟 ― 𝑇 ≤ 𝑇𝑚 ― 𝑝′𝑚 + (1 ― 𝛼)𝑝′𝑚 + (1 ― 𝛼)𝑣6 + |𝑀 ∗ (𝑠 ― 7) ∗ (𝑠 ― 8) ∗ (𝑠 ― 9)|,

                                                                                                                       𝑠 = 7,8,9,    𝑟 = 1,2,…,𝑅

The crisp constraints from ( ) to (10vi) represent fuzzy equation (10). They are obtained using 10𝑖

the procedure given in Appendix A.

( )9𝑖𝑖𝑖

𝑤𝑠 ― ∑𝑅

𝑟 = 1
ℎ𝑟𝑥𝑟(𝑇 ― 𝑦𝑟 ― 𝑙𝑟) ― ∑𝑅

𝑟 = 1
𝜑 ―

𝑠 𝜃𝑟𝑐𝑟 ― ∑𝑅

𝑟 = 1
𝜑 +

𝑠 𝜃𝑟𝜋𝑟

≤ ∑𝑅

𝑟 = 1
ℎ𝑟𝑥𝑟[ ―𝑇 + (1 ― 𝛼)(𝑇𝑒 ― ( ―𝑇)) + (1 ― 𝛼)𝑣4],    𝑠 = 1,2,3

( )10𝑖

𝑤𝑠 ― ∑𝑅

𝑟 = 1
ℎ𝑟𝑥𝑟(𝑇 ― 𝑦𝑟 ― 𝑙𝑟) ― ∑𝑅

𝑟 = 1
𝜑 ―

𝑠 𝜃𝑟𝑐𝑟 ― ∑𝑅

𝑟 = 1
𝜑 +

𝑠 𝜃𝑟𝜋𝑟 ≥ ∑𝑅

𝑟 = 1
ℎ𝑟𝑥𝑟[𝑇𝑒 + 𝑝𝑒

― (1 ― 𝛼)𝑝𝑒 ― (1 ― 𝛼)𝑣4],                𝑠 = 1,2,3
( )10𝑖𝑖

𝑤𝑠 ― ∑𝑅

𝑟 = 1
ℎ𝑟𝑥𝑟(𝑇 ― 𝑦𝑟 ― 𝑙𝑟) ― ∑𝑅

𝑟 = 1
𝜑 ―

𝑠 𝜃𝑟𝑐𝑟 ― ∑𝑅

𝑟 = 1
𝜑 +

𝑠 𝜃𝑟𝜋𝑟  

≤ ∑𝑅

𝑟 = 1
ℎ𝑟𝑥𝑟[ ― 𝑝′0 + (1 ― 𝛼)𝑝′0 + (1 ― 𝛼)𝑣5],                      𝑠 = 4,5,6

( )10𝑖𝑖𝑖



17

𝑤𝑠 ― ∑𝑅

𝑟 = 1
ℎ𝑟𝑥𝑟(𝑇 ― 𝑦𝑟 ― 𝑙𝑟) ― ∑𝑅

𝑟 = 1
𝜑 ―

𝑠 𝜃𝑟𝑐𝑟 ― ∑𝑅

𝑟 = 1
𝜑 +

𝑠 𝜃𝑟𝜋𝑟

≥ ∑𝑅

𝑟 = 1
ℎ𝑟𝑥𝑟[𝑝′0 ― (1 ― 𝛼)𝑝′0 ― (1 ― 𝛼)𝑣5],                         𝑠 = 4,5,6

( )10𝑖𝑣

𝑤𝑠 ― ∑𝑅

𝑟 = 1
ℎ𝑟𝑥𝑟(𝑇 ― 𝑦𝑟 ― 𝑙𝑟) ― ∑𝑅

𝑟 = 1
𝜑 ―

𝑠 𝜃𝑟𝑐𝑟 ― ∑𝑅

𝑟 = 1
𝜑 +

𝑠 𝜃𝑟𝜋𝑟                            

≤ ∑𝑅

𝑟 = 1
ℎ𝑟𝑥𝑟[𝑇𝑚 ― 𝑝′𝑚 + (1 ― 𝛼)𝑝′𝑚 + (1 ― 𝛼)𝑣6],           𝑠 = 7,8,9

( )10𝑣

𝑤𝑠 ― ∑𝑅

𝑟 = 1
ℎ𝑟𝑥𝑟(𝑇 ― 𝑦𝑟 ― 𝑙𝑟) ― ∑𝑅

𝑟 = 1
𝜑 ―

𝑠 𝜃𝑟𝑐𝑟 ― ∑𝑅

𝑟 = 1
𝜑 +

𝑠 𝜃𝑟𝜋𝑟

≥ ∑𝑅

𝑟 = 1
ℎ𝑟𝑥𝑟[𝑇𝑈 ― (1 ― 𝛼)(𝑇𝑈 ― 𝑇𝑚) ― (1 ― 𝛼)𝑣6],          𝑠 = 7,8,9

( )10𝑣𝑖

𝑥𝑟, 𝑦𝑟, 𝜑 +
𝑠 , 𝜑 ―

𝑠 ,𝑤𝑠 ≥ 0   (14)

The crisp model obtained is a mixed-integer non-linear optimisation model with a real decision 

variable α, integer  and real .𝑥𝑟 𝑦𝑟

Tolerances , i = 1,…,9, used in crisp constraints from ( ) to (10vi), are set as follows. Tolerance 𝑣𝑖 1𝑖

factor V is introduced to calculate acceptable violations of the fuzzy constraints. It is determined 

empirically; the higher the tolerance factor V, the higher the tolerance for the fuzzy constraints’ violation. 

For example, V = 0.1, 0.2 and 0.3 mean that 10%, 20% and 30% of the constraint violation are 

acceptable, respectively. Tolerances , i =1,…,9, are calculated as the product of the corresponding 𝑣𝑖

membership functions of the fuzzy constraints, i.e., the supports of membership functions and tolerance 

factor V. For example, let us consider the case when the change in customer demand is for Less quantity 

than forecasted (see Figure 1); the support of the corresponding membership function is

. In this case, the tolerance for the violation of fuzzy constraint (8) that ensures that (𝑄𝑙 + 𝑝𝑙) ― ( ―𝐷)

customer demand is satisfied when a change in quantity is for Less quantity than forecasted is calculated 

as . Further on, when, for example, V = 0.1, it means that 10% of the 𝑣1 = ((𝑄𝑙 + 𝑝𝑙) ― ( ―𝐷)) ∗ 𝑉

constraint violation is acceptable; this implies that tolerance . When𝑣1 =  ((𝑄𝑙 + 𝑝𝑙) ― ( ―𝐷)) ∗ 0.1

V = 0.2, tolerance  is extended to , or when V = 0.3, tolerance  is extended 𝑣1 ((𝑄𝑙 + 𝑝𝑙) ― ( ―𝐷)) ∗ 0.2 𝑣1

even more by . Similarly, if customer demand is for About the same quantity ((𝑄𝑙 + 𝑝𝑙) ― ( ―𝐷)) ∗ 0.3

as forecasted (see Figure 1), the support of the corresponding membership function is . Therefore, 2 ∗ 𝑝0

. The remaining tolerances  are set in the same manner as follows:𝑣2  =     (2 ∗ 𝑝0) ∗ 𝑉 𝑣𝑖

𝑣1  =      ((𝑄𝑙 + 𝑝𝑙) ― ( ―𝐷)) ∗ 𝑉
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𝑣2  =     (2 ∗ 𝑝0) ∗ 𝑉

𝑣3  =    (𝐷𝑈 ― (𝑄𝑚 ― 𝑝𝑚)) ∗ 𝑉

𝑣4  =    (𝑇𝑒 + 𝑝𝑒 ― ( ― 𝑇)) ∗ 𝑉

𝑣5  =    (2 ∗ 𝑝0′) ∗ 𝑉

 𝑣6  =    (𝑇𝑈 ― (𝑇𝑚 ― 𝑝′𝑚)) ∗ 𝑉

𝑣7  =   (1 ―
1

(𝐷 + 𝑄𝑙)
) ∗ 𝑉

𝑣8  =   (
1

𝐷 ― 𝑝0
―

1
𝐷) ∗ 𝑉

(15)𝑣9  =   (
1

𝐷 + 𝑄𝑚 ― 𝑝𝑚
―

1
𝐷 + 𝑄𝑚

) ∗ 𝑉

A flow chart of the proposed method is given in Figure 3.

Calculate tolerances , i = 1,…,9, for fuzzy constraints 𝑣𝑖
and achievement of objectives’ values (eq. (15))

Fuzzy multi-objective optimisation problem with 

objectives (1) (2) (3) and constraints (4) to (7)

Rearrange fuzzy constraints (4), (5), (7) into 

constraints (8) to (9)

Triangular and trapezoidal membership functions to 

represent demand changes, see Figure 1 and Figure 2

Start

Estimate minimum and maximum objective values
, (eq. (A.7)), , (eq. (A.10)) 𝑓1

𝑚𝑖𝑛 𝑓1
𝑚𝑎𝑥

, (eq. (A.11)), , (eq. (A.13)) 𝑓2
𝑚𝑖𝑛 𝑓2

𝑚𝑎𝑥

, (eq. (A.14)), , (eq. (A.15))𝑓3
𝑚𝑖𝑛 𝑓3

𝑚𝑎𝑥

Solve crisp single objective maximisation problem with
objective (13) and constraints (1i) to (10vi) and (14)

End
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Figure 3. Flow chart of the proposed method

5. Analyses of results

Carefully designed experiments are carried out to gain a better understanding of the impact of SN 

parameters and multi-objectives on SN cost, robustness and shortages. SN hypothetical parameter 

values in line with the real-world manufacturer data are given in Table 3.

Table 3. SN parameter values

Number of materials 𝑅 6

Number of scenarios 𝑆 9

Lead time of the standard supplier for material r 𝑙𝑟 12

Unit purchase cost of material  from the standard supplier 𝑟 𝑚𝑟 7

Unit purchase cost of material r from the emergency supplier  𝑐𝑟 28

Quantity of material r required for one product  𝜃𝑟 1

Unit penalty cost for the surplus of material r 𝜋𝑟 18

Holding cost of unit quantity of material r per week  ℎ𝑟 4

Forecasted demand quantity D 200

Forecasted demand time T 24 weeks

Fuzzy change in demand quantity Less 𝑞𝐿𝑒𝑠𝑠 [-D, -D,  ,  + ]𝑄𝑙 𝑄𝑙 𝑝𝑙

= [-200, -200, -150, -150+150*0.5]

= [-200, -200, -150, -75]

Fuzzy change in demand quantity

About the same  𝑞𝐴𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒

[ ] = [-100, 0, 100]―𝑝0, 0, 𝑝0

Fuzzy change in demand quantity More 𝑞𝑀𝑜𝑟𝑒 [  -  , , , ]𝑄𝑚 𝑝𝑚 𝑄𝑚 𝐷𝑈 𝐷𝑈

= [150-150*0.5, 150, 200, 200]

= [75, 150, 200, 200]

Fuzzy change in demand time Earlier 𝑡𝐸𝑎𝑟𝑙𝑖𝑒𝑟 [-T, -T,  ,  + ]𝑇𝑒 𝑇𝑒 𝑝𝑒

= [-24, -24, -12, -12+12*0.5]

= [-24, -24, -12, -6]

Fuzzy change in demand time At about the same 

𝑡𝐴𝑡 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑡𝑖𝑚𝑒

[ ] = [-8, 0, 8]―𝑝0′, 0, 𝑝0′

Fuzzy change in demand time Later 𝑡𝐿𝑎𝑡𝑒𝑟 [  -  , , , ]𝑇𝑚 𝑝𝑚′ 𝑇𝑚 𝑇𝑈 𝑇𝑈

= [12-12*0.5, 12, 20, 20]

= [6, 12, 20, 20]
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Probabilities of 9 scenarios = = = = = = = =0.11, =0.12𝑝1 𝑝2 𝑝3 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9 𝑝4

The obtained crisp optimisation model is run using AIMMS (Advanced Integrated Multidimensional 

Software). This is a general-purpose software for building decision support and optimisation 

applications. We used a standard laptop Processor Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz, 2401 

Mhz, 16.0 GB (RAM).

The impact of the following parameters on SN cost, robustness and shortages is investigated:

(1) tolerance factor V for violating the constraints, (2) unit purchase cost from the emergency supplier, 

(3) unit surplus cost and (4) scenarios’ probabilities. Furthermore, in order to analyse the impact of the 

multi-objective setting, within each experiment, the model is run for four cases: (a) Case 1+2+3  which 

includes all three objectives, (b) Case 1+2  which includes the cost and robustness objectives, (c) Case 

1+3  which includes the cost and shortages objectives and (d) Case 1  which includes the cost 

objective, only. Finally, experiments are carried out to analyse computational requirements of the 

proposed model.

5.1 Impact of tolerances for violating the constraints

The aim of the first experiment is to analyse the impact of the tolerance factor on SN cost. We 

considered different tolerance factors,  = 0.1, 0.2 and 0.3, which imply 10%, 20% and 30% of 𝑉

achievement of objectives’ values and violation of the constraints. Their impact on the costs incurred 

in the four cases (a) to (d) defined above is given in Figure 4.
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Figure 4. Total cost incurred for different tolerance factors

We may conclude that the total cost incurred depends on the tolerance factor V. When  = 0.1, the 𝑉

costs incurred in the four cases are smaller than when  = 0.2, and are similar to the costs when𝑉
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 = 0.3. As the tolerance factor V is subjectively determined and setting V = 0.3 would allow a high 𝑉

constraints violation, we decided to set  to 0.1 in the rest of the experiments. The orders recommended 𝑉

by the model when  = 0.1 for all four cases are given in Table 4. It might be interesting to observe that 𝑉

in this particular SN including robustness as Objective 2 increased the order considerably (from 49 or 

50 to 106). In all four cases, yr = 0, r =1,...,6, i.e., it is recommended to order all the materials at the 

beginning of planning period.

Table 4. Order quantities when V = 0.1

 Order quantity 

Material r Case 1+2+3 Case 1+2 Case 1+3 Case 1

1 106 106 50 49
2 106 106 50 49
3 106 106 50 49
4 106 106 50 49
5 106 106 50 49
6 106 106 50 49

5.2 Impact of the unit purchase cost from the emergency supplier

The aim of these experiments is to analyse the impact of the unit purchase cost from the emergency 

supplier on SN performance. The experiments are run for three different unit purchase costs from the 

emergency supplier ,  = 28,  = 70 and  = 130. The unit surplus cost is the same in all three 𝑐𝑟 𝑐𝑟 𝑐𝑟 𝑐𝑟

experiments,  = 18. The ratio  in the three experiments is 1.6, 3.9 and 7.2, respectively. Incurred 𝜋𝑟
𝑐𝑟

πr

cost, robustness and shortages are presented in Figures 5, 6 and 7, respectively. With respect to our 

measure of robustness, the smaller the variance the more robust the solution. With respect to shortages 

relative to demand quantity, the smaller the shortages the higher the SN capability to handle changes in 

customer demand. 
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Figure 5. Total cost for different unit purchase costs from the emergency supplier  and  = 18𝑐𝑟 𝜋𝑟 
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Figure 6. Robustness for different unit purchase cost from the emergency supplier  and = 18𝑐𝑟 𝜋𝑟 
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Figure 7. Shortages for different unit purchase costs from the emergency supplier  and = 18𝑐𝑟 𝜋𝑟 
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We can observe that the total cost in all the experiments is the highest when all three optimisation 

objectives are included (Case 1+2+3). Furthermore, when the ratio  is high, i.e., when the unit 
𝒄𝒓 
𝝅𝒓 

purchase cost from the emergency supplier  is high compared to the unit surplus cost, (  = 70 and𝒄𝒓 𝒄𝒓

 = 130, and  = 3.9 and  = 7.2, respectively), the costs incurred in all four cases are higher compared 𝒄𝒓
𝒄𝒓 
𝝅𝒓 

𝒄𝒓 
𝝅𝒓 

to the costs when the ratio  is smaller (  = 70, and  = 1.6) (Figure 5).
𝒄𝒓 
𝝅𝒓 𝒄𝒓

𝒄𝒓 
𝝅𝒓 

Furthermore, a higher impact of the three objectives on SN performance, including total cost, 

robustness and shortages, can be observed when the ratio  is high, i.e., the unit purchase cost from the 
𝑐𝑟

𝜋𝑟

emergency supplier  is high (  = 70 and  = 130). Robustness is higher when it is included as 𝑐𝑟 𝑐𝑟 𝑐𝑟

Objective 2 as in Case 1+2; this means that the variance of the costs incurred in all the scenarios is 

smaller compared to the other cases (Case 1+2+3, Case 1+3 and Case 1) (Figure 6). Also, when the 

ratio  is high, a smaller number of shortages is achieved when the shortages are considered as 
𝑐𝑟

𝜋𝑟

Objective 3 as in Case 1+3 (Figure 7). This means that the higher percentage of demand quantity is 

satisfied using the standard supplier, i.e., the smaller percentage of demand quantity has to be satisfied 

using the emergency supplier.

Furthermore, when  = 70 and  = 130, the total cost when both robustness and shortages are 𝑐𝑟 𝑐𝑟

optimised simultaneously (Case 1+2+3) is considerably higher than in other cases. This implies that 

maximising the robustness and minimising shortages of an SN simultaneously can be costly. 

Table 5 presents the orders recommended when the unit cost from emergency supplier  is high,𝑐𝑟

 = 70 and  = 130. The orders are considerably higher in all the cases; for example, orders are for 𝑐𝑟 𝑐𝑟

340 and 384 quantities, in Case 1, respectively, compared to orders when  is lower,  = 28; when the 𝑐𝑟 𝑐𝑟

orders are for 49 quantities in Case 1 (Tables 4 and 5, respectively). This is expected as the high orders 

lead to less use of the emergency supplier due to its high cost.

Table 5. Order quantities when the unit purchase costs from the emergency supplier are  = 70 and  = 130 and 𝑐𝑟 𝑐𝑟
the unit surplus cost is = 18, r = 1,…,6𝜋𝑟 

 Order quantity 

   = 70cr  =130cr

Material r
Case 

1+2+3

Case 

1+2

Case 

1+3
Case 1

Case 

1+2+3

Case 

1+2

Case 

1+3
Case 1

1 331 290 305 340 366 303 320 384

2 331 290 305 340 366 303 320 384

3 331 290 305 340 366 303 320 384

4 331 290 305 340 366 303 320 384
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5 331 290 305 340 366 303 320 384

6 331 290 305 340 366 303 320 384

5.3 Impact of the unit surplus cost

These experiments are carried out to analyse the impact of the unit surplus cost on SN performance. 

The experiments are run for three different unit surplus costs,  = 10,  = 18 and  = 50, when the 𝜋𝑟 𝜋𝑟 𝜋𝑟

unit emergency purchase cost is  = 70. The ratio  is 7, 3.9 and 1.4, respectively. The incurred cost, 𝑐𝑟
𝑐𝑟

𝜋𝑟

robustness and shortages are presented in Figures 8, 9 and 10, respectively. 
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Figure 8. Total cost for different unit surplus costs and  = 70𝜋𝑟 𝑐𝑟
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Figure 9. Robustness for different unit surplus costs and  = 70𝜋𝑟 𝑐𝑟
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Figure 10. Shortages for different unit surplus costs and  = 70𝜋𝑟 𝑐𝑟

In these experiments, we notice that improving robustness and reducing shortages can be costly. For 

example, the total costs when robustness and shortages are included as Objectives 2 and 3, respectively 

(Case 1+2+3), are highest when the ratio  is low, i.e., the unit surplus cost  is high (  = 18 and
𝑐𝑟

𝜋𝑟
𝜋𝑟 𝜋𝑟

 = 50), compared to Case 1+2, Case 1+3 and Case 1 (Figure 8).𝜋𝑟

We can conclude that including robustness as Objective 2 in Case 1+2 leads to better SN robustness 

than when it is not considered, such as in Case 1+3 and Case 1, only when the ratio  is high (  = 10, 
𝑐𝑟

𝜋𝑟
𝜋𝑟

or  = 18 and  = 7 and  = 3.8, respectively) (Figure 9). This can be explained as follows. The high 𝜋𝑟
𝑐𝑟

𝜋𝑟

𝑐𝑟

𝜋𝑟

unit emergency purchase cost,  = 70, results in a small number of shortages and the emergency 𝑐𝑟

supplier is rarely used. At the same time, when the unit surplus cost  is low (  = 10, or  = 18), its 𝜋𝑟 𝜋𝑟 𝜋𝑟

impact on the total cost is small. Therefore, the cost variance in all scenarios is small, which means that 

robustness is high. With respect to shortages, we can conclude that there are fewer shortages when the 

minimisation of shortages is included as Objective 3 (Case 1+3) compared to other cases, only when 

the ratio  is high (Figure 10), i.e., the unit surplus cost is low (  = 10 and  = 18). When the ratio  
𝑐𝑟

𝜋𝑟
𝜋𝑟 𝜋𝑟

𝑐𝑟

𝜋𝑟

is not high, i.e.,  = 1.4 and the unit surplus cost  is similar to the unit emergency purchase cost 
𝑐𝑟

𝜋𝑟
𝜋𝑟 = 50

, orders are decreased due to the high unit surplus cost and, consequently, the number of 𝑐𝑟 = 70

shortages is increased.

5.4. Impact of scenarios’ probabilities

In all the experiments presented in the previous sections, it is assumed that the probabilities of all 

possible changes in demand quantity and time are equal. However, in practice, the purchase manager 

might have a subjective experience about which customers are likely to change their forecasted demand 
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and how. Therefore, experiments presented in this section are designed to investigate the impact of the 

changing probabilities of the scenarios on the decision to be made, i.e., the order quantity and the order 

time. In two sets of experiments, the unit purchase cost from the emergency supplier cr is set to cr = 28 

and cr = 70, respectively, and the unit surplus cost is  = 18. All other parameters are set to the same 𝜋𝑟

values as shown in Table 3. All three objectives, namely the cost, robustness and shortages, are included 

in the model. In each experiment, the probabilities of nine scenarios are set as follows. In Case i, when 

cr = 28 (Table 6) and cr = 70 (Table 7), the purchase manager is almost sure that the actual demand 

quantity placed by the customer will be Less than the forecasted demand quantity, the probabilities of 

scenarios 1, 4 and 7 are set to be 0.33, 0.34 and 0.33, respectively. In this case, the customer can make 

any changes in the demand time. It is worth mentioning that the sum of these scenarios’ probabilities 

equals to 1. In Case iv, when the purchase manager is almost sure that the actual demand time placed 

by the customer will be Earlier than forecasted, the probabilities of scenarios 1, 2 and 3 are set to be 

0.33, 0.34 and 0.33, respectively. The customer can make any change in the demand quantity. Similar 

explanations can be provided for other experiments. Given the short planning period and long lead time 

in these experiments, the model suggests that orders should be made at the beginning of the planning 

period.

Results obtained in the two sets of experiments are given in Tables 6 and 7. The following 

conclusions can be made:

(a) The scenarios’ probabilities can have an impact on the quantities and times of ordering, in particular 

when the ratio   of the unit purchasing cost from the emergency supplier cr to the unit surplus cost of 
𝑐𝑟

𝜋𝑟

materials πr is not high. For example, when cr = 28 and πr = 18, the recommended order quantity is

xr = 106 in all cases, but drops to xr = 58 when the purchase manager is almost sure that the customer 

will require Less quantity than forecasted. When this ratio is high, for example, cr = 70 and πr = 18, 

then the model recommends higher order quantities from the standard supplier (331). However, the 

impact of the scenarios’ probabilities on the order quantities is not evident in all the cases.

(b)The scenarios’ probabilities have a big impact on the total cost incurred. When the ratio  of the 
𝑐𝑟

𝜋𝑟

unit purchasing cost from the emergency supplier to the unit surplus cost of materials is not high, for 

example, when cr = 28 and πr = 18, the cost incurred when the purchase manager is almost sure that the 

customer will place the fixed order Later than forecasted, is 3.5 times higher compared to the cost 

incurred when it is likely that the customer will place the fixed order Earlier (see Cases vi and iv, Table 

6). In the former Case, when the emergency supplier has to be used, both the holding cost and shortage 

cost are incurred. Also, the impact on the total cost is higher when the purchase manager is almost sure 

that the customer will require More quantity than forecasted, compared to Less quantity than forecasted, 

because a bigger purchase has to be made from the emergency supplier. The ratio of the two total costs 

incurred is 3.45 (see Cases i and iii, Table 6). Furthermore, when the ratio  of the unit purchasing cost 
𝑐𝑟

𝜋𝑟
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from the emergency supplier to the unit surplus cost of materials is high, for example, when cr = 70 and 

πr = 18, the impact of the scenarios’ probabilities on the total cost becomes even more evident. For 

example, when the purchase manager is almost sure that the customer will place the fixed order Later 

than forecasted, the total cost incurred is 7.6 times higher than the cost incurred when the purchase 

manager is almost sure that the customer will place the fixed order Earlier (see Cases iv and vi, Table 

7). Interestingly, the total cost is smaller if it is likely that the customer will place the fixed order for 

More rather than Less quantity. This is because, in the former case, the higher quantity ordered from 

the standard supplier at the beginning of the planning period leads to a lower quantity of materials 

purchased from the emergency supplier with a high unit purchase cost. However, there is a higher 

surplus cost. 

Table 6. Impact of different scenario probabilities on the costs and decisions on order quantity and order time,

when  = 18 and  = 28𝜋𝑟 𝑐𝑟

Case Scenarios’ probabilities Total cost Order 
quantity

i p1=0.33 p4=0.34 p7=0.33 (scenarios 1, 4, 7 for Less quantity) 25434 58

ii
p2=0.33 p5=0.34 p8=0.33 (scenarios 2, 5, 8 for About the same

quantity)
57403 106

iii p3=0.33 p6=0.34 p9=0.33 (scenarios 3, 6, 9 for More quantity) 88666 106

iv p1=0.33 p2=0.34 p3=0.33 (scenarios 1, 2, 3 for Earlier time) 19237 106

v
p4=0.33 p5=0.34 p6=0.33 (scenarios 4, 5, 6 for At about the same 

time)
40284 106

vi p7=0.33 p8=0.34 p9=0.33 (scenarios 7, 8, 9 for Later time) 67389 106

vii p1=p2=p3=p5=p6=p7=p8=p9=0.11 p4=0.12 (all 9 scenarios) 57007 106

Table 7. Impact of different scenario probabilities on the costs and decisions on order quantity and order time,

when  = 18 and  = 70𝜋𝑟 𝑐𝑟

Case Scenarios’ probabilities Total 
cost

Order 
quantity

i p1=0.33 p4=0.34 p7=0.33 (scenarios 1, 4, 7 for Less quantity) 137195 331

ii
p2=0.33 p5=0.34 p8=0.33 (scenarios 2, 5, 8 for About the same 

quantity)
127606 331

iii p3=0.33 p6=0.34 p9=0.33 (scenarios 3, 6, 9 for More quantity) 114300 331
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iv p1=0.33 p2=0.34 p3=0.33 (scenarios 1, 2, 3 for Earlier time) 28277 331

v
p4=0.33 p5=0.34 p6=0.33 (scenarios 4, 5, 6 for At about the same 

time)
124903 331

vi p7=0.33 p8=0.34 p9=0.33 (scenarios 7, 8, 9 for Later time) 215009 333

vii p1=p2=p3=p5=p6=p7=p8=p9=0.11 p4=0.12 (all 9 scenarios) 126481 331

5.5 Computational requirements

In order to assess the computational requirements of the proposed model, we are changing the 

number of materials from 6 to 2000 and record the required computation time. As expected (Figure 11), 

the computation time increases with the increase of the number of materials ordered. However, even 

when number of materials is 2000, it only takes 57.52 seconds to make the computation. Therefore, it 

can be concluded that the proposed model can be used effectively in real-world SN decision-making 

problems with a high number of suppliers/materials to be ordered.
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Figure 11. The computation time required for handling different numbers of materials

6. Practical and managerial insights

We carried out various experiments in order to get an insight into SN behaviour in the presence of 

uncertainty in changes in customer demand quantity and time. The impact of different parameters on 

the SN performance measures is analysed. The following conclusions are made:
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 Different tolerances for constraints’ violation have an impact on SN performances. In particular, 

their impact on SN robustness is evident. The setting of a suitable tolerance value depends on various 

SN parameters and can be determined empirically.

 The robustness metric can be defined as the variance of the costs incurred in different scenarios. It 

should be considered as an objective in the multi-objective SN model.

 As expected, robustness and shortages can be costly. The proposed model can be used to calculate 

possible improvements of robustness and reductions of shortages at the price of a higher SN cost.

 The unit purchase cost from the emergency supplier, the unit surplus cost, and, in particular, their 

ratios are identified as important factors that have an impact on SN cost, robustness and shortages. The 

impact is higher when this ratio is high, i.e., when the unit purchase cost from the emergency supplier 

is much higher than the unit surplus cost. In this case, including the objectives of robustness and 

shortages into the optimisation model can lead to a considerable improvement of these two SN 

performances. 

 Scenarios’ probabilities can have a considerable impact on the recommended order quantity and the 

total cost incurred. The impact is more evident when the ratio of the unit purchase cost from the 

emergency supplier and unit surplus cost is high.

 The model can be applied to large-scale SNs with a high number of suppliers/materials to be ordered.

7. Conclusions and directions for further research

We consider an SN and different SN performance measures, including cost, robustness and 

shortages. A new concept of fuzzy scenarios is defined, which represent uncertainty in changes in 

demand quantity and demand time. Uncertain values of these changes are described by imprecise 

linguistic terms and modelled using fuzzy sets. We define a new measure of robustness as the variance 

of the cost incurred in different scenarios. We develop a novel fuzzy multi-objective optimisation model 

which considers all the fuzzy scenarios. Each objective optimises one of the SN performances, namely 

total cost, robustness and shortages.

Various experiments are carried out to provide a practical and managerial insight into the 

relationship between SN parameters and SN performance including cost, robustness and shortages. 

Results obtained by applying the SN model proved that robustness can be increased and shortages 

minimised at a higher SN cost. In the case of the high ratio of the unit purchase cost from the emergency 

supplier to the unit surplus cost, including the objectives of robustness and shortages into the SN 

optimisation model can lead to a considerable increase of robustness and a decrease of shortages. Also, 

in this case, the recommended order’s quantity and the total SN cost are increased. Finally, it is 

demonstrated that the model can be applied to large-scale SNs.

Potential future work includes: (1) developing a procedure for generating the fuzzy sets which 

describe scenarios based on historical data, (2) expanding the model to accommodate uncertainty in 
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probabilities of scenarios which will be specified using linguistic terms, for example, probability is high 

or probability is around 0.5, (3) expanding the model to include multi-products and batch discounts and 

(4) comparing the results obtained using the model to decisions made by the manufacturer to identify 

potential benefits of the model.

Appendix A. Transformation of a fuzzy constraint into a crisp constraint

We consider three types of fuzzy constraints: (1) , (2)  and (3) , where  𝑔(𝑥) ≤ 𝑏 𝑔(𝑥) ≥ 𝑏 𝑔(𝑥) = 𝑏 𝑏

is a fuzzy triangular number or a fuzzy semi-trapezoidal number.

(1)  Fuzzy constraint , where  is a triangular fuzzy number , is transformed into the 𝑔(𝑥) ≤ 𝑏 𝑏 [𝑏1,𝑏2,𝑏3]

following crisp constraint:

𝑔(𝑥) ≤ 𝑏1 + (1 ― 𝛼)(𝑏2 ― 𝑏1) + (1 ― 𝛼)𝑣 (A.1)

where v is the tolerance for constraint violation and  is degree of constraint satisfaction.𝛼

If the constraint satisfaction is fully relaxed, , then .𝛼 = 0 𝑔(𝑥) ≤ 𝑏2 +𝑣

If there is no relaxation of constraint satisfaction, , then .𝛼 = 1 𝑔(𝑥) ≤ 𝑏1

Fuzzy constraint , where  is a semi-trapezoidal fuzzy number [ ], is transformed 𝑔(𝑥) ≤ 𝑏 𝑏 𝑏1,𝑏1,𝑏2,𝑏3

into the crisp constraint using the same formula (A.1).

(2)  Fuzzy constraint , where  is a triangular fuzzy number [ ], is transformed into 𝑔(𝑥) ≥ 𝑏 𝑏 𝑏1,𝑏2,𝑏3

the following crisp constraint:

𝑔(𝑥) ≥ 𝑏3 ― (1 ― 𝛼)(𝑏3 ― 𝑏2) ― (1 ― 𝛼)𝑣 (A.2)

where v is the tolerance for constraint violation and  is degree of constraint satisfaction.𝛼

If the constraint satisfaction is fully relaxed, , then .𝛼 = 0 𝑔(𝑥) ≥ 𝑏2 ― 𝑣

If there is no relaxation of constraint satisfaction, , then .𝛼 = 1 𝑔(𝑥) ≥ 𝑏3

Fuzzy constraint , where  is a semi-trapezoidal fuzzy number [ ], is transformed 𝑔(𝑥) ≥ 𝑏 𝑏 𝑏1,𝑏1,𝑏2,𝑏3

into the crisp constraint using the same formula (A.2).

(3)  Constraint  is transformed into two constraints,  and . They are 𝑔(𝑥) = 𝑏 𝑔(𝑥) ≤ 𝑏 𝑔(𝑥) ≥ 𝑏

transformed into the crisp constraints following the procedure described above.

In all these cases tolerance v is set to v  , where V is the tolerance factor.=  (𝑏3 ― 𝑏1)𝑉
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Following this procedure, fuzzy constraints (8), (9) and fuzzy equation (10) of the fuzzy model are 

transformed into the crisp constraints. For example, let us consider fuzzy constraint (8):

.
𝑥𝑟

𝜃𝑟
― 𝜑 +

𝑠 + 𝜑 ―
𝑠 ―𝐷 = 𝑞𝑠

In scenarios s = 1, 4 and 7, change in demand quantity  is Less than forecasted and modelled by a 𝑞𝑠

semi-trapezoidal fuzzy number [b1, b1, b2, b3] = [ ]. Fuzzy constraint (8) for these ―𝐷, ― 𝐷,𝑄𝑙,𝑄𝑙 + 𝑝𝑙

scenarios is transformed into two crisp constraints, ( ) and ( ), as follows:8𝑖 8𝑖𝑖

𝑥𝑟

𝜃𝑟
― 𝜑 +

𝑠 + 𝜑 ―
𝑠 ― 𝐷 ≤ ―𝐷 + (1 ― 𝛼)(𝑄𝑙 ― ( ―𝐷)) + (1 ― 𝛼)𝑣1,                  𝑟 = 1,2,…,𝑅

𝑥𝑟

𝜃𝑟
― 𝜑 +

𝑠 + 𝜑 ―
𝑠 ― 𝐷 ≥ 𝑄𝑙 + 𝑝𝑙 ― (1 ― 𝛼)(𝑄𝑙 + 𝑝𝑙 ― 𝑄𝑙) ― (1 ― 𝛼)𝑣1,  𝑟 = 1,2,…,𝑅

where .𝑣1 = (𝑏3 ― 𝑏1) 𝑉 = (𝑄𝑙 + 𝑝𝑙 + 𝐷) 𝑉

Further on, in scenarios s = 2, 5 and 8, change in demand quantity  is About the same as forecasted, 𝑞𝑠

and is modelled by a triangular fuzzy number [ ]. Fuzzy constraint (8) is transformed into two ―𝑝0,0,𝑝0

crisp constraints, ( ) and (8iv), as follows:8𝑖𝑖𝑖

𝑥𝑟

𝜃𝑟
― 𝜑 +

𝑠 + 𝜑 ―
𝑠 ― 𝐷 ≤ ― 𝑝0 + (1 ― 𝛼)𝑝0 + (1 ― 𝛼)𝑣2,                                     𝑟 = 1,2,…,𝑅

𝑥𝑟

𝜃𝑟
― 𝜑 +

𝑠 + 𝜑 ―
𝑠 ― 𝐷 ≥ 𝑝0 ― (1 ― 𝛼)𝑝0 ― (1 ― 𝛼)𝑣2,                                        𝑟 = 1,2,…,𝑅

where .𝑣2 = 2 𝑝0𝑉

A similar transformation of fuzzy constraint (8) into crisp constraints is done for scenarios s = 3, 6 and 

9, where change in demand quantity is More than forecasted, leading to crisp constraints (8v) and (8vi).

Appendix B. Determining the minimum and maximum values of the three objectives

The minimum and maximum values of objective f1
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The minimum cost is incurred when there is no change in quantity or time in the forecasted demand 

and, therefore, it is equal to the purchasing of quantity.𝐷𝜃𝑟 

𝑓1
𝑚𝑖𝑛 =

𝑅

∑
𝑟 = 1

𝑚𝑟𝐷𝜃𝑟

(A.3)

The maximum cost is incurred in one of the three scenarios: (a) scenario 3, when the customer’s 

fixed demand is Earlier and for More quantity than forecasted and it incurs both the shortage and the 

surplus costs, or (b) scenario 7, when the customer’s fixed demand is Later and for Less quantity than 

forecasted and both the holding and the surplus costs are incurred or (c) scenario 9, when the customer’s 

fixed demand is Later and for More quantity than forecasted and both the holding and the shortage costs 

are incurred (see Table 2). However, considering that the unit surplus cost is generally lower that the 

unit purchasing cost from the emergency supplier, the cost incurred in scenario 7 is lower than the cost 

incurred in scenario 9, and is, therefore, not considered here.

The cost of scenario 3 includes the emergency purchasing costs for More quantity that is fixed 

Earlier, and, also, the surplus cost, because the order is initially made to the standard supplier. The 

order arrives, but later than needed. Therefore, 

Standard purchase cost + scenario 3 cost =
𝑅

∑
𝑟 = 1

𝑚𝑟𝐷𝜃𝑟 +
𝑅

∑
𝑟 = 1

𝑐𝑟(𝐷 + 𝐷𝑈)𝜃𝑟 +
𝑅

∑
𝑟 = 1

𝜋𝑟𝐷𝜃𝑟

(A.4)

The cost of scenario 9 includes the emergency purchasing costs for More demand, and the order 

from the standard supplier. However, this order is needed Later than forecasted and, consequently, 

incurs the holding cost. Therefore,

Standard purchase cost + scenario 9 cost =
𝑅

∑
𝑟 = 1

𝑚𝑟𝐷𝜃𝑟 +
𝑅

∑
𝑟 = 1

𝑐𝑟𝐷𝑈𝜃𝑟 +
𝑅

∑
𝑟 = 1

ℎ𝑟𝐷𝜃𝑟(𝑇 + 𝑇𝑈 ― 𝑙𝑟)
(A.5)

Finally, the maximum cost is the maximum of these two costs:

𝑓𝑚𝑎𝑥
1 = max {

𝑅

∑
𝑟 = 1

𝑚𝑟𝐷𝜃𝑟 +
𝑅

∑
𝑟 = 1

𝑐𝑟(𝐷 + 𝐷𝑈)𝜃𝑟 +
𝑅

∑
𝑟 = 1

𝜋𝑟𝐷𝜃𝑟, 

𝑅

∑
𝑟 = 1

𝑚𝑟𝐷𝜃𝑟 +
𝑅

∑
𝑟 = 1

𝑐𝑟𝐷𝑈𝜃𝑟 +
𝑅

∑
𝑟 = 1

ℎ𝑟𝐷𝜃𝑟(𝑇 + 𝑇𝑈 ― 𝑙𝑟)} (A.6)
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The minimum and maximum values of objective f2

The minimum robustness is achieved when all the scenarios incur the same cost, i.e., the variance of 

the scenario costs is 0.

𝑓2
𝑚𝑖𝑛 = 0 (A.7)

The maximum robustness is achieved when the variance of all scenario costs ws, s = 1,...,9 is the 

maximum. We approximate the variance to be the maximum when the cost of one scenario reaches its 

minimum and the cost of another scenario reaches its maximum, with equal probabilities. The minimum 

of all the scenario costs, ws, is incurred in scenario 5 when the quantity and the time of fixed and 

forecasted demand are similar. Therefore,

𝑚𝑖𝑛 𝑤𝑠 = 0,  for 𝑠 = 5 (A.8)

The maximum costs ws of all scenarios is incurred either in scenario 3 or in scenario 9, as discussed 

when calculating . It is assumed that the probability of scenario 5 is 0.5 and the probability of both 𝑓1
𝑚𝑎𝑥

scenario 3 and scenario 9 is 0.5.

Therefore,

𝑓2
𝑚𝑎𝑥 = 0.5 ∗ (𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑜𝑠𝑡 𝑖𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 3 +  𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑐𝑜𝑠𝑡 𝑖𝑛 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 9 )

                 = 0.5 ∗ (∑𝑅

𝑟 = 1
𝑐𝑟(𝐷 + 𝐷𝑈)𝜃𝑟 + ∑𝑅

𝑟 = 1
𝜋𝑟(𝐷 + 𝐷𝑈)𝜃𝑟)2

                  + 0.5 ∗ (∑𝑅

𝑟 = 1
𝑐𝑟𝐷𝑈𝜃𝑟 + ∑𝑅

𝑟 = 1
ℎ𝑟𝐷𝜃𝑟(𝑇 + 𝑇𝑈 ― 𝑙𝑟))2 (A.9)

The minimum and maximum values of objective f3

The minimum and maximum shortages relative to demand quantity are:

𝑓3
𝑚𝑖𝑛 = 0 (A.10)

𝑓3
𝑚𝑎𝑥 = 1 (A.11)
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However, objective f3 =  is fuzzy and, therefore, it has to be transformed into the ∑𝑆
𝑠 = 1𝑝𝑠

𝜑 ―
𝑠

𝐷 + 𝑞𝑠

corresponding crisp objective. First, fuzzy division  is calculated for all scenarios s = 1,2,…,9 when 
𝜑 ―

𝑠

𝐷 + 𝑞𝑠

the change in demand quantity  is described as Less, About the same and More as follows.𝑞𝑠

In scenarios s = 1, 4, 7, the change in demand quantity  is for Less quantity; this is modelled as a 𝑞𝑠

semi-trapezoidal fuzzy number . Therefore,  is also a semi-trapezoidal ( ― 𝐷, ― 𝐷,𝑄𝑙,𝑄𝑙 + 𝑝𝑙) 𝐷 + 𝑞𝑠

fuzzy number . Consequently,  becomes a semi-trapezoidal fuzzy (0, 0, 𝐷 + 𝑄𝑙,𝐷 + 𝑄𝑙 + 𝑝𝑙)  
1

𝐷 + 𝑞𝑠

number . We conveniently set the boundaries which involve division by 0 to 1  (
1

𝐷 + 𝑄𝑙 + 𝑝𝑙
,  

1
𝐷 + 𝑄𝑙

,  
1
0,  

1
0)

(Figure A.1. (a)).

In scenarios s = 2, 5, 8, the change in demand quantity  is About the same; this is presented as a 𝑞𝑠

triangular fuzzy number . Therefore,  becomes a triangular fuzzy number ( ― 𝑝𝑜,0,𝑝0) 𝐷 + 𝑞𝑠  (𝐷 ― 𝑝𝑜

 and  becomes a fuzzy number  (Figure A.1. (b)).,𝐷,𝐷 + 𝑝0)
1

𝐷 + 𝑞𝑠
( 1

𝐷 + 𝑝0
,
1
𝐷,

1
𝐷 ― 𝑝0)

In scenarios s = 3, 6, 9, the change in demand quantity  is for More quantity; this is modelled as a 𝑞𝑠

semi-trapezoidal fuzzy number , and, therefore,  becomes (𝑄𝑚 ― 𝑝𝑚,𝑄𝑚,𝐷𝑈,𝐷𝑈) 𝐷 + 𝑞𝑠

 and  becomes a semi-trapezoidal fuzzy number (𝐷 + 𝑄𝑚 ― 𝑝𝑚,𝐷 + 𝑄𝑚,𝐷 + 𝐷𝑈,𝐷 + 𝐷𝑈)
1

𝐷 + 𝑞𝑠
(

1
𝐷 + 𝐷𝑈

, 

 (Figure A.1 (c)).
1

𝐷 + 𝐷𝑈
,

1
𝐷 + 𝑄𝑚

,
1

𝐷 + 𝑄𝑚 ― 𝑝𝑚
)

Therefore, fuzzy objective 3 in (3) can be transformed into a crisp objective as follows:

, i.e.,𝑓3 ≤ 𝑓𝑚𝑖𝑛
3 +(1 ― 𝛼)(𝑓𝑚𝑎𝑥

3 ― 𝑓𝑚𝑖𝑛
3 )

, i.e.,∑𝑆
𝑠 = 1𝑝𝑠

𝜑 ―
𝑠

𝐷 + 𝑞𝑠
≤ 0 + (1 ― 𝛼)(1 ― 0)

∑𝑆
𝑠 = 1𝑝𝑠𝜑 ―

𝑠
1

𝐷 + 𝑞𝑠
≤  1 ― 𝛼

(A.12)

Following the procedure given in Appendix A, fuzzy constraint (A.12) is transformed into the 

following three crisp constraints for different scenarios s=1,…,9. They are given in the crisp 

optimisation model as constraints ( ), ( ) and ( ):3𝑖 3𝑖𝑖 3𝑖𝑖𝑖

1 ―  ≥  ∑
𝑠 = 1,4,7

 𝑝𝑠𝜑 ―
𝑠 (1 ― (1 ― 𝛼)(1 ―

1
𝐷 + 𝑄𝑙) ― (1 ― 𝛼)𝑣7) (A.13)

1 ―  ≥  ∑
𝑠 = 2,5,8

 𝑝𝑠𝜑 ―
𝑠 ( 1

𝐷 ― 𝑝0
― (1 ― 𝛼)( 1

𝐷 ― 𝑝0
―

1
𝐷) ― (1 ― 𝛼)𝑣8) (A.14)
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1 ―  ≥  ∑
𝑆 = 3,6,9,

 𝑝𝑠𝜑 ―
𝑠 ( 1

𝐷 + 𝑄𝑚 ― 𝑝𝑚
― (1 ― 𝛼)( 1

𝐷 + 𝑄𝑚 ― 𝑝𝑚
―

1
𝐷 + 𝑄𝑚) ― (1 ― 𝛼)𝑣9)

(A.15)

where  are violations introduced for three different changes in demand quantity : 𝑣7, 𝑣8,  𝑣9 𝑞𝑠

Less, About the same and More than forecasted given in eq (15). 

                                 
1

𝐷 + 𝑄𝑙 + 𝑝𝑙

1
𝐷 + 𝑄𝑙

1

(a) Fuzzy number  where  is for Less quantity
1

𝐷 + 𝑞𝑠
𝑞𝑠

                                                     
1

𝐷 + 𝑝0
   

1
𝐷                

1
𝐷 ― 𝑝0

Change in quantity

0

1

Change in quantity

Membership degree

0

1

Membership degree
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(b) Fuzzy number  where  is for About the same quantity
1

𝐷 + 𝑞𝑠
𝑞𝑠

                                                                                          
1

𝐷 + 𝐷𝑈

1
𝐷 + 𝑄𝑚

1
𝐷 + 𝑄𝑚 ― 𝑝𝑚

(c) Fuzzy number  where  is for More quantity
1

𝐷 + 𝑞𝑠
𝑞𝑠

Figure A.1. Fuzzy number  in objective f3
1

𝐷 + 𝑞𝑠
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 Multi-objective model of supply networks optimises cost, robustness and shortages.
 Uncertain changes in customer demand are modelled using fuzzy scenarios.
 Robustness is measured as variance of costs incurred in fuzzy scenarios.
 Impact of uncertainty in demand changes and multi-objectives is analysed.
 Impact of probabilities of fuzzy scenarios is discussed.
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