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Thesis Summary 

The liquid-phase selective hydrogenation of bio-based platform molecules like furfural was studied 

with non-toxic Cu-based heterogeneous catalysts. The initial materials were synthesised via wet 

impregnation using various copper precursors (nitrate, acetate, and sulfate) at two different loadings. 

High Cu loading (5 wt%) led to the formation of well-defined nanoparticles, while lower loading (1 

wt%) generated highly dispersed atomic and dimeric Cu species on the non-porous nano-Al2O3 support. 

Copper sulfate derived catalysts severely reduced the selectivity of furfuryl alcohol from 94.6% to 0.8% 

and promoted acetalisation reactions instead. On the contrary, sulfur-free copper acetate derived 

catalysts were found optimal for catalysing this reaction.  

The research then focused on enhancing colloidally synthesised Cu catalysts by incorporating trace-

amounts of Pd atoms via galvanic replacement. These materials were referred as single atom alloy 

catalysts (SAA), as EXAFS confirmed they were atomically dispersed Pd atoms on Cu nanoparticles. 

These SAA catalysts improved the furfural conversion to furfuryl alcohol compared to the monometallic 

catalysts, as they presented the advantages of Cu (high selectivity) and Pd (superior activity) 

monometallic catalysts, without the drawbacks (copper’s low activity and palladium’s poor selectivity). 

As a result, SAA proved to be optimal green/atom efficient catalysts.  

Finally, the synthesised materials were tested for the hydrogenation of crotonaldehyde. 

Crotonaldehyde was chosen as it lacked the directing group present in furfural (furan ring), so the 

catalysts can be examined when the C ═ O hydrogenation is not specifically preferred. The SAA 

catalysts improved the normalised catalytic activity by nineteen-fold when compared to the Pd100 

benchmark catalyst, while maintaining the reactive pathway of the Cu nanoparticle host. In essence, the 

presence of Pd “fast-forwarded” the extent of the reaction. For the wet impregnation monometallic Cu 

materials, the acetate precursor catalysts (1 and 5 wt%) showed superior activity, while the 5 wt% sulfur-

based was the worst. 
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Introduction 

The global population growth and diminishing energy security requires new technological 

advancements to fulfil the ever-increasing demand for fuels and chemicals. The future market is 

searching for reduced reliance on fossil resources due to political and environmental issues prompted 

by carbon dioxide emissions and the ensuing global warming [1, 2]. To solve, or at least to delay the 

effects of our current unsustainable energy consumption, various forms of renewable resources have 

been explored to develop sustainable processes. A renewable non-fossil carbon fuel being investigated 

is biomass, as it is being considered an ideal alternative to fossil resources due to it being abundant and 

environmentally friendly [3]. In recent years, much interest has been spent on producing biochemical 

and biofuels from non-edible lignocellulosic biomass, which is ample in agriculture waste streams and 

residues [4]. The usage of lignocellulosic biomass circumvents the food against fuel argument and can 

significantly reduce carbon dioxide emissions. 

1.1 Catalysis 

Catalysis plays a central role in our society. Most of the fuels and chemicals produced in industry 

have been in contact in one way or another with a catalyst. Such materials play a significant role in 

green chemistry and are essential in controlling environmental pollution, with selective catalytic routes 

replacing stoichiometric processes that generate chemical waste problems. One obvious example that is 

used in everyday life is the three-way automotive catalyst, which converts the severe pollutants from 

internal combustion engines into nitrogen, carbon dioxide and water. These catalysts can be comprised 

of Rh/Pt and CeO2. If waste gasses were left untreated, large amounts of cancer-causing smog would be 

formed, which would affect the general populace [5].  

Fundamentally, a catalyst is a substance that accelerates a reaction but does not undergo unreversible 

chemical change itself [6]. This ‘substance’ can range from being an enzyme found in living tissue to 

inorganic metallic nanoparticles, and accelerates the reaction by lowering the activation energy (Ea) 

required for it to commence, and therefore offering an alternate route for the reaction to proceed at lower 

energy. Fig. 1.1.1 describes this premise of the reducing on Ea, where the multiple peaks indicate 
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different steps of the reaction e.g. reactant adsorption. For example, as catalysts enable a more energy-

efficient reaction path, they enable to work at lower temperatures and pressures than without a catalyst. 

In addition, most reactions do not just produce one single product, which would be preferred, so 

catalysts’ secondary job is to direct the reaction to produce the preferred product or product of interest. 

This increases the efficiency and selectivity of the process, while reduces costs derived from waste 

production and/or implementation of complex separation and purification steps downstream. 

 

 

Fig. 1.1.1 A general exothermic energy profile of the reaction X + Y →Z indicating the effect of a catalyst. The catalyst 

proposes an alternative reaction pathway (given in red) where the rate-determining step has a smaller Ea. The relative 

thermodynamic stabilities are unchanged [7]. 

 

Catalysts are typically broken down into two categories of homogeneous and heterogeneous catalysts 

(example shown in Fig. 1.1.2). The homogeneous catalyst is defined as existing in the same physical 

state as the reactants, with all molecules being generally in the liquid or gaseous phase. As both the 

reactant and the catalyst are in the same phase, there is greater interaction between the two species. This 

makes the catalyst very atom efficient, so the catalysts have a very high effective concentration, which 

allows for milder conditions and high selectivity [6]. The greater interactions arises from reactants 

directly interacting with the metal complexes and selectivity from modifiable ligands complexes which 
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promotes specific reaction pathways. Examples of such substances include organometallic complexes 

and enzymes [6]. The main disadvantage of such catalysts is the difficulty in separating and recovering 

the catalyst from the product, requiring demanding synthetic and purification protocols that affect the 

overall efficiency. 

 

Fig. 1.1.2 Schematic representation of a well-known catalytic reaction, the oxidation of carbon monoxide over noble metal 

catalysts: CO + ½ O2 → CO2. Redrawn from reference [8]. 

[9] 

However, heterogeneous catalysts can be facilely synthesised, and easily recovered once the reaction 

is complete by filtration, centrifugation or magnetism [10]. At industrial level, heterogeneous catalysts 

are also used in reactors as a packed bed or fluidised bed , so reactants enter and leave converted, while 

the catalyst remains inside until it is deactivated. This reduces even further the expenditure in separation 

and recovery steps.  

Heterogeneous catalysts typically consist of catalytically active species in solid bulk form, or 

deposited and dispersed on a high-surface-area supporting material, which can vary in surface area from 

200 to 1500 m2
 g-1 [11]. Alternatively, nanosized catalysts can also be used unsupported or even 
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deposited themselves on non-porous nanophase supports, but this results in surface areas of 1 to  

50 m2
 g-1 [12]. Surface area is an important factor in catalysis, as the larger the surface area the large the 

interface of contact between the solid-phase catalyst and the fluid-phase reactants. However, non-porous 

nano-crystalline supports may be preferred in some instances, as the active phase on the external surface 

of the support is always exposed and accessible during the reaction. On the contrary, porous materials 

with relatively larger surface area for reaction are not always fully accessible, as pore blockage or 

sterical effects may inhibit the access to the internal surface area of the support. Finally, the advantages 

of nanosized catalyst particles are that their reactivity differs vastly compared to their bulk state 

counterparts, which are due to various factors such as electronic and quantum size effects [13]. E.g., 

from discrete energy levels to a continuum in bulk materials. This can result in a very different atom 

efficiency, and selectivity compared to the catalyst in bulk form.   

 Due to their high reusability and simple synthesis, heterogeneous catalysts are seen as the greener 

and more environmentally-friendly choice, though heterogenized homogeneous catalysts have similar 

advantages. One of the problems of heterogeneous catalysts compared to their homogeneous 

counterparts is that they sometimes lack the selectivity factor. This is because catalytic reactions usually 

occur on the surface sites of the catalyst, and in a real catalyst, such sites are not equal, as the catalytic 

surface is not uniform [14]. Thus, specific sites may stabilise/destabilise some chemical intermediates 

while other sites may not.  

1.2 The use of precious metals in industry 

Precious metals [15] and rare earth elements (REEs) [16] take a significant role in catalytic 

systems for energy conversion and chemical transformations. The integral role of metals and REEs as 

catalysts include applications such as petroleum refining, fuel cells, automotive catalytic converters and 

productions of fine chemicals, pharmaceuticals and agrochemicals [17]. Precious metals such as 

palladium are not only vital to the green chemical industry; they are also used in automotive catalytic 

converters. REEs are also used in wind turbines, where approximately 2 tonnes of neodymium is 

required to make a single turbine [18]. However, REE extraction is one of the most environmentally 
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damaging and toxic practices of the mining industry. Excessive mining of REEs has resulted in clogged 

rivers, landslides, environmental pollution, causing considerable environmental impact and damage to 

people’s health and safety. Research conducted within Baotou [19], where China’s primary rare earth 

elemental extraction occurs, shows the region produces approximately 10 million tonnes of wastewater 

every year. Most of the wastewater is disposed of without being adequately treated. Precious metals and 

REEs are crucial to many green technologies, but there are enormous environmental implications of 

mining and processing them. 

Precious metals and REE are scarcely abundant in the earth’s crust as shown in Fig. 1.2.1 and are 

becoming a global issue due to element sustainability and the depletion of rich-deposits [20]. One 

promising approach to conserve these rare metals involves understanding the fewest number of atoms 

needed to catalyse a reaction and then crafting catalysts with the minimum number of atoms. This is 

key since much of catalytic reactions occur on the metallic surface, and any metallic atoms in the bulk 

are inaccessible by the reactant molecules and are essentially wasted.  

 

Fig. 1.2.1 Relative abundance of elements in the Earth's upper crust [21]. 
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1.3 Adsorption of species 

Adsorption of reactants on the catalytic surface is crucial for the reactions to proceed for 

heterogeneous catalysts. Adsorption can occur in two modes: physisorption and chemisorption. 

Physisorption, or also called physical adsorption, is a reversible process where the electronic structure 

of an atom or molecules is slightly distorted upon adsorption [22]. It also refers to the weakest adsorbate-

substrate interaction due to van der Waals forces, with typical binding energies of 10-100 meV [22]. 

From the Lennard-Jones diagram (Fig. 1.3.1) one can see that a shallow well is formed where the 

attractive forces are dominant and where the van der Waals forces are the strongest. When the adsorbing 

molecule is moved closer, the potential energy of the interaction is increased as the repulsive forces 

become dominant due to the overlap of the electron clouds of the surface and the molecule. 

 

Fig. 1.3.1 Schematic representation of the adsorbing molecule and-surface interactions via physisorption based on the 

Lennard-Jones potential energy diagram [23]. where r is the distance between the two interacting particles, ε is the depth 

potential of the potential well and σ is the distance at which the particle-particle potential energy V is zero. 

 

 Chemisorption or chemical adsorption occurs when an adsorbate forms strong chemical bonds with 

the substrate atoms. These bonds can either be covalent or ionic, and typical binding energies are in the 

order of 1-10 eV [22]. This interaction changes the adsorbate’s chemical state and, in the case of 
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chemisorption of molecules, it can occur associatively or dissociatively. Dissociative adsorption occurs 

when a molecule such as a diatomic is split, and the individual atoms adsorb onto the surface. 

Associative adsorption can also occur where during the molecule stays intact during adsorption. 

Chemisorption can also be activated and non-activated (Fig. 1.3.2), and in the activated process the 

molecule must overcome an energy barrier (requiring energy) before the molecule can adsorb onto the 

surface, whereas, in a non-activated process, the molecules must overcome a negligible barrier to 

transfer from a non-activated physisorption interaction to a chemisorption interaction. 

 

Fig. 1.3.2 Schematic representation of the hydrogen-surface interactions via activated (red dashed line) and non-activated 

chemisorption (green dotted) routes based on the Lennard-Jones potential energy diagram [23]. 

 

1.3.1 Hydrogen dissociation 

The dissociation of diatomic hydrogen onto the surface is essential for hydrogenation reactions. On 

low-index surfaces for metals such as Cu [24], Ni [25] and Fe [26], the hydrogen chemisorption is 

energetically activated (Fig. 1.3.2), and activation energy, Ea, must be applied to the molecule for the 

dissociation to take place. So, the dissociation probabilities are relatively small compared to systems 

with negligible activation energy.  
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However, on transition metals such as Pd, W and high-index plane Ni and Pt, the dissociative 

chemisorption is nearly spontaneous (non-activated chemisorption shown in Fig. 1.3.2) with high 

sticking dissociation probabilities [27]. Nakanishi et al. reports that the changes in the activation energy 

is dependent on whether the hydrogen 1s electrons are repelled by a specific metallic surface [28].High-

index surfaces for Cu have also shown a 0.1 eV difference in the dissociation of hydrogen against low-

index terrace sites [24]. However, the process is still activated, unlike Ni and Pt surfaces. Surfaces such 

as copper and iron cannot dissociate hydrogen at room temperature. This can be overcome by high 

temperatures, high hydrogen pressures to “force” hydrogen onto the surface, [29] or by addition of a 

second metal such as a Cu3Pt system, where it is shown to be just as active as pure Pt sites [30].  

1.4 Hydrogenation of unsaturated aldehydes 

Many fine chemicals, especially those used in the flavouring, fragrances [31], and pharmaceutical 

industry [32, 33] are synthesised by the selective hydrogenation of unsaturated carbonyl intermediates. 

The hydrogenation of α, β-unsaturated carbonyls (Fig. 1.4.1) to their saturated counterparts is relatively 

easy, as the hydrogenation of the C ═ C bond is thermodynamically favourable; thus, much effort has 

been directed at reducing the carbonyl group [33, 34]. However, it is reported that if the hydrogenation 

of the unsaturated ketones is attempted, saturated ketones will be likely formed [33]. 

 

Fig. 1.4.1 Possible hydrogenation pathways for α, β-unsaturated carbonyls 
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Selective hydrogenations have in the past been achieved with stoichiometric quantities of reducing 

agents such as metal hydrides [35]. LiAlH4 has been utilised for the selective reduction of 

cinnamaldehyde to cinnamic alcohol at 99% selectivity [36]. However, these methods are only viable 

for small scale production of high-priced chemicals, as the reagents are costly [33]. Thus, subsequent 

research efforts have been focussed on homogeneous and heterogeneous catalysts, with the latter studied 

more intensively. Thus, the pioneering work on the hydrogenation of molecules like vanillin by Adams 

et al. [37] on Pt and Pd black catalysts in the 1920s paved the way for the current state-of-the art 

heterogeneous catalysts.  

1.5 Furfural valorisation 

Furfural is considered one of the top 30 biomass-derived platform by the U.S. Department of Energy 

by numerous factors such as the raw material, processing cost, market potential and technical 

complexity. Furfural, α, β-unsaturated carbonyl is primarily synthesised by the hydrolysis and 

dehydration of xylan, which exists in ample quantities in hemicellulose; which was first industrialised 

in 1921 by the Quaker Oat Company [38].  

The majority of furfural consumption (62%) is used to synthesise furfuryl alcohol [39] (Fig. 1.5.1). 

Furfuryl alcohol is industrially produced by the selective hydrogenation of furfural in both liquid and 

gas phase using Cu-based catalysts, with Cu-Cr being the most dominantly used catalyst [40-42]. 

However, the problem with using chromate catalysts is that it causes severe environmental problems 

due to its high toxicity and requires harsh reaction conditions to function commercially. Consequently, 

many chromium-free catalysts have been researched for furfural hydrogenation for both gas and liquid 

phase reactions. 
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Fig. 1.5.1 Reaction scheme for upgrading furfural. 

 

There has been extensive research on numerous more environmentally friendly metallic active sites 

(Cu, Pt, Pd, Ru, Rh, Co, Zn and Ni) that have been discussed both theoretically and experimentally in 

both liquid and gas-phase reactions. The advantages of using Pt over commonly used and researched 

metallic elements such as Cu, Co and Ni [43-48] are that Pt sites offer higher selectivity towards furfuryl 

alcohol, while functioning at significantly lower reaction conditions [12]. The reaction conditions 

involved are milder temperatures and pressures, which are both costly factors in large-scale commercial 

operations. Elements such as platinum can readily dissociatively adsorb diatomic hydrogen [28], which 

is, unfortunately, the rate-limiting step for hydrogenation reactions using solely copper catalysts. 

Alternatives to platinum such as palladium have been mainly used in hydrogenation reactions, in both 

heterogeneous and homogeneous catalysis, and often thought of as the industry standard for such 

reactions [49]. Unfortunately, it has been reported that Pd has certain selectivity towards one of the side 

products, methyl furan; but still can perform the catalysis at milder conditions than Cu [3, 50, 51]. Base 

metal Ni catalysts have lower activity but similar selectivity to Pd [52] with the selectivity shifting 

towards decarbonylation pathways at high temperatures [45]. Both Pt and Pd are precious metals and 

active towards the production of furfuryl alcohol, However, crafting catalysts solely on such elements 

are not sustainable in terms of cost. Therefore, engineering materials with low precious metal content 

are of critical importance. 
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Recent progress in the transformation of furfural into furfuryl alcohol (FFA) using heterogeneous 

catalysts is summarised in Table 1.5.1 and illustrated catalytically active nanoparticles in Fig. 1.5.2. 

Table 1.5.1 also shows that many bimetallic chromium-free heterogeneous catalysts have been explored 

to find an efficient environment-friendly alternative to chromium-based catalysts. 

 

Fig. 1.5.2 Schematic 3-dimensional structure of monometallic nanoparticles with their corresponding alloyed nanoparticle 

(left to right). 

 

For example, Merlo et al. investigated Pt-Sn bimetallic catalysts for the formation of furfuryl alcohol 

[53]. They reported a 96.2% selectivity and 100% conversion in 8 hours. The study, also optimised the 

Pt and Sn composition to Sn/Pt = 0.3 A comparison of the catalytic activities of Sn and Ge as the second 

metal for Pt-based bimetallic catalysts was also investigated by Merlo et al. [54]. It was observed that 

the subsequent conversion of Pt/SiO2, PtGe(0.2)/SiO2 and PtSn(0.2)/ SiO2 were 46%, 42% and 99%, 

respectively. Increasing the concentration of Ge to PtGe (0.6) was found to increase the catalytic activity 

to 74%. These datasets demonstrated the importance of the right composition of metals to exploit the 

advantages of using bimetallic catalysts.  
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Table 1.5.1 Batch liquid-phase hydrogenation of furfural to furfuryl alcohol (FFA) over non-Cr bimetallic catalysts. 

Catalyst Solvent H2 

pressure 

(Bar) 

T  

(°C) 

Time  

(h) 

Conversion 

(%) 

FFA 

selectivity 

(%) 

FFA 

yield 

(%) 

Ref. 

Pd-Cu/Al2O3
 H2O 20 90 6 94 56 - [55] 

Pd-Cu/MgO H2O 8 130 1.5 98.5 93 - [56] 

Pd-Cu/C H2O 6 120 0.42 100 91.2 - [56] 

Pd-Ir/SiO2 H2O 80 27 1 61 67 - [57] 

Pt-Co/C 2-Propanol 10 50 5 90 - 90 [58] 

Pt-Ge/SiO2 2-Propanol 10 100 8 42 - - [54] 

Pt-Sn/SiO2 2-Propanol 10 100 8 100 96.2 - [53] 

Pt-Sn/TiO2-ZrO2 Ethanol 50 130 8 98.3 47.8 - [59] 

Pt-Re/ TiO2-ZrO2 Ethanol 50 130 8 100 95.7 - [59] 

Pt-In/ TiO2-ZrO2 Ethanol 50 130 8 73.3 74.9 - [59] 

Pt-Cu/ γ-Al2O3 Methanol 20 150 12 100 100 - [60] 

Pt38-Cu62/ γ -Al2O3 Methanol 1.5 50 7 47.6 90.8 - [61] 

Pt38-Cu62/ γ -Al2O3 Methanol 10 50 7 90.9 97.9 - [61] 

Pt38-Cu62/ γ -Al2O3 Methanol 20 50 7 90 98.1 - [61] 

Cu-Pt 2-Propanol 69 250 1.5 16.4 86.8 - [52] 

Cu-Fe oxides Octane 90 220 4 99.4 - 51.1 [62] 

Cu-Co/SBA-15 2-Propanol 20 170 4 99 80 - [63] 

Cu-Co/C Ethanol 30 140 - 99 97.3 - [48] 

Cu-Ni/MgO Ethanol 40 150 3 54 99 - [47] 

Cu-Ni/MgAlO Ethanol 40 150 3 99 80 - [47] 

Cu-Ni/SiO2 2-Propanol 60 110 - 100 94 - [64] 

CuNiMgAl oxides Ethanol 10 220 2 84.8 89.4 - [65] 

Ni-Mo-B/ Al2O3 Methanol 50 80 3 91.5 95.5 - [66] 

Ni-Fe-B Ethanol 10 100 4 100 100 - [67] 

Ru-Sn/C H2O 12.5 95 5 91 90 - [68] 

Ir-ReOx/SiO2 H2O 60 50 - 99.9 - 97 [69] 

 

1.6 Crotonaldehyde hydrogenation 

Crotonaldehyde is another unsaturated aldehyde similar to furfural, which can be derived from 

soybean oils [40]. Crotonaldehyde is used often as a model compound for unsaturated aldehydes (see 

Fig. 1.6.1). This is because the absence of a directing group, like the furan ring in furfural, makes the 

selective hydrogenation of the aldehyde group comparatively more difficult [70]. Consequently, various 

options have been considered such as sulfur [71-74], NaCl [75], electrophilic sites [34], and ligands [76, 

77] that alter the electronic/steric environment of the catalytic surface. All these methods attempt to 

change the adsorption mode of the unsaturated aldehyde such that C ═ O adsorption is promoted and 

the C ═ C adsorption is hindered. 
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Fig. 1.6.1 Reaction scheme for the hydrogenation of crotonaldehyde. 

 

Therefore, the hydrogenation of the C ═ C bond to butanal and then likely to n-butanol cannot be 

avoided in some catalytic systems (Pt/Al2O3 [78], Pd/Al2O3 [78], Pd/PEG [79], PdCl2(TPPTS)2 [80] and 

Cu/Al2O3 [74]). Though, n-butanol is also an attractive product as it can be used as a solvent, chemical 

intermediate and considered as the next generation biofuel due to a 30% higher energy content  than 

ethanol [81]. 

1.7 Single-atom heterogeneous catalysts 

Nanoparticles can be shrunk more and more, until they cross a point where they become a few or an 

isolated atom (not a nanoparticle anymore). In this grey area, the traditional distinctions between 

homogeneous and heterogeneous catalysts are becoming gradually obscured [82]. The advantage of 

decreasing the nanoparticle sizes is that atoms below the surface of the nanoparticle typically act as 

spectator atoms. So are underutilised for catalytic reactions. As the nanoparticle size decreases the 

number of surface atoms to the number of atoms under the surface increases, thus the dispersion 

increases (Fig. 1.7.1). As a result, the decrease in nanoparticle size essentially increases the effective 

concentration of the active material. 
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Fig. 1.7.1 Plot of Cu atom dispersion against nanoparticle size. Dispersion was determined assuming the nanoparticles are 

spherical. The number of Cu atoms on the surface was determined using the area a Cu atom occupies (6.80 Å2) and the 

surface area of the nanoparticle. The number of atoms below the surface of the nanoparticle was determined by working 

out the volume of the nanoparticle without the surface atoms. Knowing the radius of the nanoparticle Rt, one can then 

determine the radius of the bulk Rb, by removing the contribution due to the surface atoms (Rb= Rt - atomic diameter Cu 

atom). The volume of the bulk is then determined using the volume of a sphere. The number of atoms inside the 

nanoparticles is then calculated by dividing the volume of the bulk with the volume of a Cu unit cell and since each Cu unit 

cell contains 4 atoms the number of atoms under the surface of the nanoparticle is known. Dispersion finally calculated by 

[number of surface atoms divided by (surface atoms + atoms under the surface)] times by 100. 
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There have been several studies considering whether a single atom attached to a support would 

function as an efficient catalyst [83-85]. Flytzani-Stephanopoulos et al. [86] stumbled onto single atoms 

of Au, present as surface Au-Ox species functioning as active catalysts for low-temperature water-gas 

shift reactions. Later work by Flytzani-Stephanopoulos et al. [87-89] reported advances in the 

preparation, characterisation, and catalytic activity of single-atom catalysts for several hydrogenation 

and oxidation reactions. Such work allowed the field of single atom catalysts to gather much interest 

over the years (Fig. 1.7.2). 

 

Fig. 1.7.2 Publications mentioning “single-atom catalysts” and “single-atom alloys” registered by Web of Science. 

 

Single-atom catalysts were also found to be highly selective and active compared to their 

nanoparticle counterparts. Wei et al. [90] reported single-atom Pt supported on FeOx catalysts for the 

chemoselective hydrogenation of nitroarenes. The authors reported that their nanoparticle counterparts 

suffer from low chemoselectivity when more than one reducible groups are present on the target 

molecule. However, their single-atom catalysts show high activity and high chemoselectivity, even 
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when the catalyst is reused for a variety of substituted nitroarenes. Specifically, for the hydrogenation 

of 3-nitrostyrene, Wei et al. reported a 20-fold increase in the turnover frequency than the best result 

found in the literature using the Pt single-atom catalyst with ⁓99% selectivity. The authors attributed 

the superior performance to the presence of positively charged platinum atoms and the absence of Pt-Pt 

metallic bonding, both of which promote the preferential adsorption of nitro groups. The process of 

creating single-atom catalysts creates a route to temper the reactivity of the very active platinum 

element. Wei et al. took advantage of this by constructing a very selective catalyst with almost trace 

amounts of precious metal (0.08% Pt). 

The whole field of single-atom precious metal catalysts (particularly Pt and Au) has been subject to 

many initial definitive studies by Flytzani-Stephanopoulos, Sykes and their co-workers [91-93]. A paper 

by Kyriakou et al. [94], reported the creation of a catalyst termed single atom alloys (SAA), in which 

isolated atoms of Pd deposited on a metallic Cu (111) single crystal, catalysed the selective 

hydrogenation of acetylene and styrene. Cu was shown to be not very active in its pure state due to its 

weak hydrogenation activity in dissociating diatomic hydrogen. However, when a small quantity of Pd 

is added, Cu’s hydrogen dissociation capability can be improved [94, 95]. Greater control of the reaction 

selectivity can also be achieved when using a catalyst designed in this way. The reason for this is that 

the selectivity of a reaction is most often accomplished by eliminating competitive reactions, which 

usually require the existence of two or more neighbouring sites. This in turn, improves turnover rate 

and/or yield for the favoured reaction. Thus, this effect is precisely exploited using single atom alloys 

for selective hydrogenations. Studies by Kyriakou et al. [94, 96] and Pei et al. [95] concluded that the 

conversion of acetylene to ethylene occurs due to H spillover from the single Pd sites to the Cu, where 

acetylene is adsorbed, and the product is released due to it being weakly adsorbed in the Cu regions. 

Evidence for this hydrogen spillover has been experimentally observed by Lucci et al. [97] on Pt/Cu 

SAA (see Fig. 1.7.3) where they found Pt atoms in Cu act as both entrance and exit sites for H2 

dissociation and recombination, respectively. With DFT calculations predicting negligible barrier for 

H2 dissociation on Pt, which is consistent with the facile dissociative adsorption that was observed [98]. 
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They also interestingly found that the concentration of H2 desorbing off the surface was higher than the 

surface coverage of the Pt, indicating the H atoms are spilling over from the Pt sites to the adjacent Cu 

atom. This confirms the study by Jewels et al. [99] previous assignment that H atoms do indeed diffuse 

across the Cu surface. The single-atom conformation of Pd also gives the catalyst resistance from 

molecules that adsorb too strongly on two or three-fold sites of the highly active Pd metal. Therefore, 

the deactivation resistance (e.g. CO resistance) is improved by eliminating those ensembles [100].  

 

Fig. 1.7.3 Schematic diagram of H2 dissociation and spillover from isolated Pt atoms onto the Cu surface. 

 

Currently the literature is sparse on single-atom catalysts with only a few reactions and materials 

being studied. For example, currently, there is no published literature considering the use of single-atom 

alloy catalysts for the selective hydrogenation of furfural. Therefore, more research into designing 

different single-atom catalyst compositions and testing of such catalysts in essential reactions will 

strengthen the literature and unveil the real potential of single-atom catalysts. The crucial challenges 

outlined by Chen et al. [101] for single-atom catalysis are i) characterisation of such catalysts; ii) the 

strong anchoring of the single-atoms on their supports; iii) reproducible and robust synthesis.  
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1.8 Deactivation of supported metal catalysts 

1.8.1 Sulfur Poisoning 

The original premise of the study of the interaction of sulfur on Cu surfaces is that CO2 feedstocks 

usually contain sulfur contaminants. Theses sulfur atoms adsorb strongly onto the Cu surfaces, blocking 

the active sites for the desired reactions, which can result in the deactivation of the catalysts [102]. Since 

sulfur is a common poison for many metallic catalysts [103], the adsorption of the molecule has been 

intensively studied both experimentally [104] and theoretically [102]. 

İnoğlu et al. [105] observed that the S adsorption energy increases (get weaker) as the sulfur coverage 

increases, yielding the weakening of the metal-sulfur bond at high coverages. FCC and HCP sites were 

found to be the most stable sites for sulfur adsorption on Cu surfaces, with FCC sites offering the most 

stability. Metal d-states have a critical role in explaining the interactions of surface metal atoms with 

adsorbates. The authors found that surface d-bands were found to generally broaden with increasing 

sulfur coverage. Consequently, band widening results in a decrease in energy to conserving the d-states. 

Conversely, if the band narrows it must increase in energy to conserve the d-band state. For most of the 

highly coordinated sites, it was observed that an adsorbate-induced surface electronic structure 

modification causes the widening of the surface d-band and the decrease in the  

d-band centre. Thus, the reactivity of the catalysts is changed by the reduction of the electron-density in 

the d-states near the Fermi level of the surface, owing to the fundamental fact that sulfur is more 

electronegative than the metal atoms. Plainly, electron-density is withdrawn from the metal surface due 

to the difference in electronegativity [106]. Which is important, as the poisoned surfaces will have 

different electronic properties changing the reactivity of the catalyst. 

1.8.2 Thermal sintering 

Sintering is a major problem for supported catalysts, as the process causes the agglomeration of 

particles reducing the catalytic activity of the catalyst. Sintered catalysts have a reduced effective 

concentration of the active material as the reaction typically occurs at the surface. The larger particles 

will also have a larger quantity of terrace low index surfaces making the surface less reactive. 



39 

 

 

M. J. Islam, PhD Thesis, Aston University, 2021 

Consequently, hydrogen dissociation onto the surface will be reduced and in the case of hydrogenation 

reactions, the activity of the catalysts will be lower. 

The major sintering mechanism for metals in the bulk is vacancy diffusion, where it is suggested to 

be related to the cohesive energy [107]. Hughes [108] gave the following increasing order of stability 

for metals: 

Ag < Cu < Au < Pd < Fe < Ni < Co < Pt < Rh < Ru < Ir < Re 

Hughes [108] indicates that silver and copper will be the most susceptible to sintering, mirrored by 

copper’s low Hüttig temperature [109], which is the temperature where the surface atoms become 

significantly mobile  (Hüttig temperature = 0.3 × Tm, where Tm is the melting point). Therefore, a 

copper-based catalyst should be operated at temperatures below 300 °C [107] to halt significant 

sintering. 

1.8.3 Carbon deposition (coking) 

Possible effects of coking of the metal catalyst include the strong chemisorption of carbon onto the 

surface as mono or multi-layers. Therefore, blocking the access of reactants to the metallic sites and 

micro/mesopores. This deactivation mode generally affects catalysts containing Fe, Co and Ni [110]. 

Copper catalysts are not typically used for Fischer-Tropsch reactions, or processes involving carbonium 

ion chemistry, so are largely unaffected [107]. Also, copper has a very low activity for breaking C ― O 

bonds or forming C ― C, and consequently, wax formation is not a significant problem for CO/H2 

reaction [107]. Such potential problems are further reduced due to copper having to operate at milder 

temperatures to minimise thermal sintering.  
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1.9 Thesis Aims 

The aims of the thesis are to: 

• Investigate the effect of three metal precursors in the formation of Cu/Al2O3 catalysts via a simple 

wet impregnation method. Two different Cu loadings (1 wt% and 5 wt%) will also be investigated, 

this will give insight into the morphological/electronic changes that occur as the loading is altered. 

The catalysts will then be tested for the liquid-phase selective hydrogenation of furfural, where the 

effect of precursor/loading choice on the activity and product selectivity will be understood. 

 

• Investigate, optimise, and characterise the formation of PdCu single atom alloy catalysts 

synthesised by galvanic replacement techniques. These novel materials will be utilised for the 

selective hydrogenation of furfural. Consequently, the work will give an understanding of the 

promotional effect of isolated Pd atoms compared to their Cu and Pd monometallic counterparts.  

 

• Investigate the adoption of the catalysts synthesised throughout this thesis for hydrogenation of 

crotonaldehyde. The change of the reactant molecule will quantify possible changes in selectivity 

of the catalysts in the absence of directing groups unlike those present in furfural (furan ring).  
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2.1 Material synthesis 

2.1.1 Wet impregnation Cu catalyst synthesis 

Appropriate amounts of different Cu precursors including Cu(NO3)2. xH2O (Sigma-Aldrich, 

99.999%), Cu (CO2CH3)2 (Sigma-Aldrich, 98%) and CuSO4.5H2O (Sigma-Aldrich, ≥98.0%) were 

dissolved in deionised water (5 mL). The support, nanophase Al2O3 (1 g, Alfa Aesar, NanoArc™, 

99.5%, 32-40 m2 g-1) was then impregnated using the Cu solution. The mixture was stirred for 2 h to 

ensure homogeneity. The resulting mixture was then dried overnight at 100 °C.  Finally, the obtained 

solid was pulverised and calcined in air at 500 °C, 5 °C min-1, for 4 h. 

The synthesised catalysts were then denoted Cu (N), Cu (A) and Cu (S) for the materials synthesised 

from copper nitrate, copper acetate and copper sulfate precursors, respectively.  

2.1.2 Colloidal Cu nanoparticle catalyst synthesis 

Colloidal Cu nanoparticles were synthesised using a method reported earlier by Kanzaki et al. [1]. 

DL-1-Amino-2-propanol (AmIP, 2.93 mL, 99.9%, Acros Organics) was added to 7.73 mL of ethylene 

glycol. Cu (II) acetate (0.6811 g, 98%, Sigma-Aldrich) was then added to the mixture, forming a dark-

blue solution with sonication. Once the Cu (II) acetate was dissolved, hydrazine monohydrate (1.83 mL, 

98%, Alfa Aesar) was added under vigorous stirring (1100 RPM) and was left to react for approximately 

24 h at room temperature. The Cu nanoparticle mixture was then precipitated out by adding it to 25 mL 

of N, N- dimethylacetamide (DMA, 99%, Acros Organics) under gentle stirring. Subsequently, the Cu 

nanoparticles were collected via centrifugation and then purified using 25 mL of DMA, toluene (HPLC 

grade, Fisher Chemical) and hexane (HPLC grade, Fisher Chemical). The resulting nanoparticles were 

then suspended in 10 mL of ethanol by sonication. In the next step, Al2O3 (9.9 g, 99.5%, 32-40 m2 g-1, 

NanoArc™, Alfa Aesar) was impregnated with the nanoparticle solution (6.6 mL) after the support was 

mixed with 60 mL of ethanol. The ethanol was then evaporated at room temperature. Finally, the 

obtained Cu100/Al2O3 catalyst was calcined at 300 °C for 4 h in static air to remove the AmIP capping 

agent, followed by reduction at 230 °C for 3 h under flowing H2. 
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2.1.3 High loading SAA PdCu catalyst synthesis 

The same method as mention above (section 2.1.2) was used to synthesise the Cu nanoparticles but 

scaling up the Cu nanoparticle production 4 times as reported by Kanzaki et al. [1]. A final Cu loading 

of 12.5% was obtained. 

For the galvanic replacement (GR) procedure four different synthetic methods were used to 

investigate how changing the GR process affects their catalytic properties: 

Method 1 (0.1 mM HCl solution): The Cu/Al2O3 catalyst was initially reduced in-situ at 230 °C under 

flowing H2 for 3 h in a round-bottom flask. The vessel was then cooled to room temperature under 

flowing H2.  The gas was then changed to N2 and the same vessel was then heated to 100 °C and 18 mL 

distilled water was added, with stirring set to 700 RPM. The desired amount of Pd (II) nitrate hydrate 

(99.9%, Alfa Aesar) for an atomic Pd:Cu ratio of 1:90 was dissolved in an aqueous 2 mM HCl solution. 

2 mL of this solution was then added to the reduced Cu/Al2O3 mixture and allowed to react/reflux for 

20 min under an N2 atmosphere. The resulting mixture was cooled to room temperature where the 

catalyst was washed with 300 mL of distilled water via vacuum filtration and dried at 60 °C in an oven 

overnight.  

Method 2 (aqueous conditions and sonication): The Cu/Al2O3 catalyst was initially reduced in-situ 

at 230 °C under flowing H2 for 3 h in a round-bottom flask. The vessel was then cooled to room 

temperature under flowing H2. Then, the gas was changed to N2 and the same vessel was transferred to 

a preheated 50 °C ultrasonic bath. The desired amount of Pd (II) nitrate hydrate (99.9%, Alfa Aesar) for 

an atomic Pd:Cu ratio of 1:90 was dissolved in distilled water. 2 mL of this solution was added to the 

reduced Cu/Al2O3 mixture and allowed to react for 20 min under an N2 atmosphere. The subsequent 

mixture was cooled to room temperature where the catalyst was washed with 300 mL of distilled water 

via vacuum filtration and dried at 60 °C in an oven overnight. 

Method 3 (2 mM HCl solution): The Cu/Al2O3 catalyst was initially reduced in-situ at 230 °C under 

flowing H2 for 3 h in a round-bottom flask. The vessel was then cooled to room temperature under 
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flowing H2.  The gas was then changed to N2 and the same vessel was heated to 100 °C and 18 mL 

aqueous 2 mM HCl solution was added, with stirring set to 700 RPM. The desired amount of Pd (II) 

nitrate hydrate (99.9%, Alfa Aesar) for an atomic Pd:Cu ratio of 1:90 was dissolved in an aqueous  

2 mM HCl solution. 2 mL of this solution was added to the reduced Cu/Al2O3 mixture and allowed to 

react/reflux for 20 min under an N2 atmosphere. The obtained mixture was cooled to room temperature 

where the catalyst was washed with 300 mL of distilled water via vacuum filtration and dried at 60 °C 

in an oven overnight. 

Method 4 (0.1 mM HCl solution and sonication): The Cu/Al2O3 catalyst was initially reduced in-situ 

at 230 °C under flowing H2 for 3 h in a round-bottom flask. The vessel was then cooled to room 

temperature under flowing H2. The gas was then changed to N2 and the same vessel was transferred to 

a preheated 50 °C ultrasonic bath. The desired amount of Pd (II) nitrate hydrate (99.9%, Alfa Aesar) for 

an atomic Pd:Cu ratio of 1:90 was dissolved in an aqueous 2 mM HCl solution. 2 mL of this solution 

was added to the reduced Cu/Al2O3 mixture and allowed to react for 20 min under an N2 atmosphere. 

The subsequent mixture was cooled to room temperature where the catalyst was washed with 300 mL 

of distilled water via vacuum filtration and dried at 60 °C in an oven overnight. 

The resulting catalysts were denoted Pd1 Cun (12% MX) where n represents the proportion of Cu 

atoms per each atom of Pd incorporated, which was determined with ICP-OES, while X represents the 

synthetic method that was used (X = 1 to 4).  

2.1.4 Low loading SAA PdCu catalyst synthesis 

The PdCu single atom alloy catalysts were synthesised using galvanic replacement [2, 3]. The 

Cu/Al2O3 catalyst was initially reduced in-situ at 230 °C under flowing H2 for 3 h in a round-bottom 

flask. The vessel was then cooled to room temperature under flowing H2.  The gas was then changed to 

N2 and the same vessel was heated to 100 °C and 18 mL of distilled water was subsequently added, with 

stirring set to 700 RPM. The desired amount of Pd (II) nitrate hydrate (99.9%, Alfa Aesar) was dissolved 

in an aqueous 2 mM HCl solution. 2 mL of this solution was added to the reduced Cu/Al2O3 mixture 

and allowed to react/reflux for 20 min under an N2 atmosphere. The subsequent mixture was cooled to 
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room temperature where the catalysts were washed with 300 mL of distilled water via vacuum filtration 

and dried at 60 °C in an oven overnight. The resulting catalysts were denoted Pd1 Cun (12% MX) where 

n represents the proportion of Cu atoms per each atom of Pd incorporated, which was determined with 

ICP-OES. 

2.1.5 Colloidal Pd nanoparticle catalyst synthesis 

Supported Pd nanoparticles on Al2O3 were synthesised using a method previously reported for Pt 

nanoparticles [3, 4]. Briefly, 10 mL of ethylene glycol and 50 μL of aqueous 1 M (NaOH) was refluxed 

at 120 °C. To the hot ethylene glycol, a solution of Na2PdCl4 (10.6 mM, 99.99%, Sigma Aldrich) and 

polyvinylpyrrolidone (PVP) (91 mM, 40,000 MW, Alfa Aesar) in a 9:1 per volume of ethylene 

glycol:water was added slowly over 1 h. The now turned black mixture was stirred for an additional 20 

min and cooled to room temperature. The nanoparticles were then collected by multiple acetone washes 

and centrifugation and the resulting solid pellet was dispersed in EtOH. The support (Al2O3, 

NanoArc™) was impregnated with the nanoparticle suspension and dried overnight. Finally, the 

Pd100/Al2O3 catalyst was calcined at 300 °C for 4 h in static air. 
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2.2 Material Characterisation 

2.2.1 Powder X-ray diffraction (XRD) 

XRD is a non-destructive quantitative technique, which involves x-rays being fired typically at a 

solid sample which then diffract by elastic scattering, so the diffracted electromagnetic radiation is of 

the same energy but varies in the direction compared to the incident beam (Fig. 2.2.1). The incident 

beam scatters on the crystals, giving rise to destructive and constructive interference depending on the 

angle of the incident beam. The type of interference is characteristic of a specific crystal structure. 

Bragg’s law (Equation 2.2.1) can be used to understand the constructive interference.   

 

 

Fig. 2.2.1 Bragg diffraction from a cubic crystal lattice [5].  

 

𝑛𝜆 = 2𝑑𝑠𝑖𝑛𝜃 

Equation 2.2.1 Bragg law where λ = wavelength of the x-ray, n = multiplication integer (order of reflection), d = inter-

planar distance and θ = diffraction angle -. 

 

The x-rays are generated in an x-ray tube consisting of two metal electrodes under vacuum (Fig. 

2.2.2a). Electrons are produced by heating a tungsten filament cathode, which then fires and accelerates 

electrons at the water-cooled anode. The accelerated electrons are then able to knock out the anode’s 
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core electrons, creating core holes that result in decay via x-ray fluorescence. X-ray fluorescence occurs 

when the electrons in the higher orbitals fall into the core-hole, releasing a characteristic x-ray photon 

that has the energy between the two orbitals involved. Consequently, different orbitals can be involved 

in the x-ray fluorescence, producing several characteristic x-rays being emitted from the anode (Fig. 

2.2.2b). Thus, a typical XRD x-ray source will contain three main wavelengths K  K and K each of 

which will give their own peak for each theoretical diffraction peak. Although a monochromatic x-ray 

source would be ideal, Ni Kβ filters (and Göbel mirrors) can be used to reduce the intensity of the Cu 

K radiation significantly. A Ni Kβ filter [6] consists of a 0.02 mm thin Ni foil where the Ni’s core 

electrons can absorb the Cu K radiation and eject the excited electron from the atom. The physics of 

this process is essentially x-ray absorption spectroscopy (section 2.2.3) where the probability of x-rays 

being absorbed by a certain element changes as the energy of the x-ray radiation is changed. But overall, 

Cu K radiation has enough energy to do this process while the Cu Kα radiation is not energetic enough 

to eject the Ni core electrons and thus, the Ni absorption edge lies between the Cu K and Cu 

K wavelengths. Therefore, the Cu K radiation intensity is selectively more reduced that the Cu K 

However, the K and K doublet is typically present in most diffractometers since expensive 

monochromators are required to filter out the K contamination. 
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Fig. 2.2.2 (a) Schematic of a basic x-ray tube and (b) electron transitions in an atom, which produce the characteristic K, 

K and K x-rays after core-hole creation. 

 

XRD not only can identify which crystals are present in the sample but also can determine the size 

of the crystallites. The arithmetic mean domain size of the nanoparticles was determined via the Whole 

Powder Pattern Modelling (WPPM) method [7, 8], utilising the PM2K software [9]. This procedure 

allows one to extract microstructural information from diffraction patterns via nonlinear least-squares 

routine, with the observed diffractions profile arising from a convolution of instrumental and sample-

related physical effects. Hence, the analysis is directly made in terms of physical models of 

microstructure and/or lattice defects [7, 10, 11]. The instrumental contribution was estimated by 

modelling the peak profiles from the NIST SRM 1976b corundum standard, according to the Caglioti 

et al. relationship [12]. The slight Gaussian micro-strain broadening arising from the SRM 1976b [13] 

was assumed negligible compared to the broadening from the nanosized copper phase. The background 

was synthesised using a combination of a Chebyshev polynomial and an exponential decay. The 

crystalline domains were assumed to be spherical and distributed according to a log-normal size 

distribution. The volume-weighted crystallite size was estimated with the Scherrer equation and the 
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integral breadth method, which use Equation 2.2.2 and the FWHM or the integrated intensity divided 

by the peak height for the Scherrer and integral breadth method, respectively. 

𝜏 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
 

Equation 2.2.2 Scherrer equation where τ = mean crystallite size, K = shape factor, λ = X-ray wavelength, β = full-width at 

half maxima (FWHM) or integral breadth and θ = Bragg angle. 

 

Powder X-ray diffraction data were collected using a Bruker D8 Advance Bragg–Brentano 

diffractometer equipped with a Lynxeye PSD detector and with Cu K1,2 radiation (40 kV and 40 mA, 

0.2 mm Ni K absorber, 2.5° Soller Slits, 10−80° 2θ range, a virtual step scan of 0.02° 2θ, virtual time 

per step of 1 or 8 s). The powdered samples were top-loaded into poly(methyl methacrylate) (PMMA) 

sample holders. In-situ XRD measurements were conducted with an Anton-Paar XRK-900 reaction 

chamber in the parallel beam geometry using a Göbel mirror, 0.2 mm slits and 2.5° Soller slits. 

Diffractograms were then collected with a virtual step scan of 2θ = 0.02° and virtual time per step of 2 

s in a flowing 20% H2/80% He atmosphere.  
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2.2.2 X-ray photoelectron spectroscopy (XPS) and x-ray excited Auger electron 

spectroscopy (XAES) 

XPS is a surface-sensitive technique where up to 10 nanometres of the sample (depending on the x-ray 

energy and the material) is probed to determine the oxidation state, depth profile, and surface elemental 

composition. XPS involves the sample being irradiated with x-rays (typically using monochromatic Al 

K1 radiation), which can eject core electrons (if sufficient energy is applied) and photoelectrons leave 

the sample (depicted in Fig. 2.2.3). The photoelectron is then detected, and the kinetic energy is 

measured. Upon ejection, an unstable core-hole is left, which then decays either by x-ray fluorescence 

or an Auger transition. The Auger transition involves the core-hole being filled by an electron transition 

from a less tightly bound electron in the upper electron levels. The transfer of this electron (often called 

the down electron) releases energy, which can be emitted once again as x-ray fluorescence or transferred 

to a third electron. The third electron is known as the Auger electron, which escapes to the vacuum 

which is then detected like the photoelectron in the XPS process. This process of detecting the Auger 

electron is called x-ray excited Auger spectroscopy (XAES) or Auger spectroscopy (AES) if the core-

hole is created by an incident electron [14]. 
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Fig. 2.2.3 Schematic illustration of photo-ionisation of a core electron and the subsequent decay of the core-hole via an 

Auger transition. Ekin = Kinetic energy of photoelectron/Auger electron, EB = electron binding energy, Φ = work function 

and EK, EL2, EL3 represent the binding energy of electrons in the K, L2 and L3 orbitals, respectively. 

 

The kinetic energy of the photoelectron is dependent on the energy of the x-ray radiation used, hν, 

the core electron’s binding energy, Eb, and the work function of the metal, 𝜙, (Equation 2.2.3).  

𝐸𝑘𝑖𝑛 = ℎ𝑣 − 𝐸𝑏 − 𝜙 

Equation 2.2.3 X-ray photoelectron spectroscopy equation. 

 

In contrast, the kinetic energy of the Auger electron is independent of the energy of the incident 

photon or electron. The kinetic energy is, however, dependent on the orbitals involved in the three-

electron process which is summarised in Fig. 2.2.3 and described by Equation 2.2.4. 

𝐸𝑘𝑖𝑛 = 𝐸𝐾 − 𝐸𝐿1
− 𝐸𝐿3

− 𝜙 

Equation 2.2.4 Auger spectroscopy equation. 
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The surface sensitivity of XPS and AES arises from the fact that these core-level spectroscopies only 

detect electrons that can escape the sample into the vacuum of the instrument and reach the detector. 

For the ejected electrons to escape the sample, inelastic scattering may occur in several discrete energy 

loss events such as plasmon excitations, electron-hole pair excitations and core-level ionisation events. 

The average distance that such electrons with a given energy can travel between successive inelastic 

collisions is defined by the inelastic mean free path (IMFP). So, only the ejected electron emissions near 

the surface of the material have the lowest probability of energy loss and escaping. 

The modified Auger parameter ’ was defined as the sum of the photoelectron binding energy and 

the Auger electron kinetic energy [15]. The extra-atomic relaxation energy was defined as half the 

change in the modified Auger parameter compared to bulk Cu [16]. The modified Auger parameter is a 

final state effect, which also provides an estimate of the relaxation energy/screening energy in the 

presence of core holes [17], while also not suffering from charging and inadequate calibration problems 

[14]. The relaxation energy can be interpreted as a secondary process where the surrounding electrons 

react to the sudden appearance of a positive core-hole after photoemission. The screening of the core-

hole by the influx of electrons lowers the measured Eb [18]. The relaxation energy can be partitioned 

into intra-atomic and extra-atomic relaxation energy; with the former remaining constant for core-

electrons in an atom, while the latter varies with changes in the chemical and physical states. The extra-

atomic relaxation energy is defined as half the change in the modified Auger parameter compared to 

bulk Cu [16]. Finally, the modified Auger parameter, ’, is defined as the sum of the photoelectron 

binding energy and the Auger electron kinetic energy [15]. A high ’ indicates higher relaxation energy 

or improved screening energy, which can be due to a greater number of atoms able to screen the core-

hole better after photoemission or due to the polarisability of the support.  
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The catalyst dispersion can also be calculated by XPS, which was first reported by Kerkhof et al. 

[19]. Their theoretical model for supported metal catalyst consists of an active phase located on sheets 

of support.  The thickness (t) of these sheets can be estimated from the density (ρs) and the surface area 

of the support (S0) shown in Equation 2.2.5: 

𝑡 =  
2

𝜌𝑠𝑆0

 

Equation 2.2.5 Thickness of support sheets. 

 

A dimensionless parameter (β) is also calculated from the thickness of the support sheets (t) and the 

inelastic mean free path of a photoelectron ejected from a Cu 2p3/2 orbital (⁓554 eV, catalytic active 

material) through the support phase (λs) which can be acquired from Tanuma et al. [20].  The expression 

is shown in Equation 2.2.6. 

𝛽 =  
𝑡

𝜆𝑠

 

Equation 2.2.6 Dimensionless parameter β. 

 

Theoretical XPS intensity ratio of supported phase (p) and the support (s) for the supported catalyst 

(
𝐼𝑝

𝑜

𝐼𝑠
𝑜⁄ ) [19], was predicted with a maximum error of 10% with Equation 2.2.7. 

(
𝐼𝑝

𝑜

𝐼𝑠
𝑜

) = (
𝑝

𝑠
)

𝜎𝑝

𝜎𝑠

𝛽

2

(1 +  𝑒−𝛽)

(1 −  𝑒−𝛽)
 

Equation 2.2.7 Theoretical XPS intensity ratio of supported phase (p) and the support (s) for a supported catalyst. 

 

Where (p/s) is the bulk atomic ratio of the supported phase (p) and the support (s). σp and σs are the 

Schofield photoelectron cross-sections for the supported phase and the support, respectively. 

The dispersion was determined according to Equation 2.2.8, reported by Park et al. [21], where Ip 

and Is are the integrated intensity of the Cu 2p3/2 peak and Al 2p (taking into account the transmission 
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function), respectively. Deconvolution of the overlapped Cu 3p and Al 2p signal was achieved by 

following the procedure outlined by Park et al. [21]. A similar process was carried out to find Pd 

dispersion, where in this case the Pd is the supported phase and the Cu is the support. 

𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 (%) = (
𝐼𝑝

𝐼𝑠

) ÷ (
𝐼𝑝

𝑜

𝐼𝑠
𝑜

) × 100 

Equation 2.2.8 XPS calculated dispersion. 

XP and XAE spectra were acquired on a Kratos AXIS Supra spectrometer, equipped with a charge 

neutraliser and monochromated Al K x-ray source (1486.7 eV) with energies referenced to 

adventitious carbon at 284.8 eV using CasaXPS version 2.3.19PR1.0. 
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2.2.3 X-ray absorption spectroscopy (XAS) 

XAS is another core-level spectroscopy that can give insight into structural and electronic 

information while requiring minimal sample preparation. XAS involves an incoming photon (that has a 

specific energy) interacting with a core-level electron, ejecting the electron into some unoccupied state 

above the Fermi energy propagating away, leaving behind a core-hole. The unstable core-hole then 

decays (1 to 2 femtoseconds) by x-ray fluorescence or an Auger transition in the same manner as 

described in the previous section. The absorption of this photon can then be quantified through the 

measuring of the reduction of intensity of the transmitted beam, or the x-ray fluorescence or Auger 

electrons emitted from the sample. The energy of the incident photons is then changed slightly, and the 

process is repeated, giving an x-ray absorption spectrum. Unlike the other core-level spectroscopies 

mentioned, XAS is mostly limited to purpose-built facilities at synchrotrons, as an x-ray source capable 

of being energy-tuneable, monochromatic, and having enough flux to get adequate signal: noise is 

difficult in laboratory-based systems. Although it is not impossible [22], they are limited to very 

concentrated samples. 

X-ray absorption spectra for the monometallic Cu catalysts were collected at B18 XAS beamline at 

Diamond Light Source. A double-crystal Si (111) monochromator was used to scan x-ray energies from 

-200 to 800 eV relative to the Cu K-edge (8979 eV). Each catalyst was reduced ex-situ, then the XAS 

measurement was conducted in transmission mode with 3 repeats; the data was subsequently merged 

for further XANES and EXAFS analysis using Athena and Artemis (FEFF6 code) software packages 

[23].  

Furthermore, the x-ray absorption spectra for the single atom alloy catalysts were also collected at 

B18 XAS beamline at Diamond Light Source, UK. A double-crystal Si (311) monochromator was used 

to scan x-ray energies from -200 to 800 eV relative to the Pd K-edge (24350 eV). Following ex-situ 

reduction, samples were loaded into 3 mm capillaries and the XAS measurement was conducted in 

fluorescence mode (multi-element Ge detector at 45° to the sample) with 5 scans. Pseudo-in-situ XAS 

was conducted using a gas-tight cell with aluminised Kapton windows (shown in Fig. 2.2.4); the 
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catalysts were pelletised and reduced in 5% H2/95% He at 300 °C. Subsequently, without exposure to 

atmospheric oxygen, they were loaded into the cell in an N2 filled glove box. Spectra were collected in 

fluorescence mode with 35 scans. XAS data were analysed with Athena and Artemis (FEFF6 code) [23], 

the accompanying reference spectra were calibrated to 24350 eV, aligned and merged before analysis. 

FEFF scattering paths were calculated using Cu and CuO CIF files, with the absorber replaced with Pd. 

Samples denoted re-oxidised and reduced represent samples measured ex-situ using a capillary and a 

gas-tight pellet cell, respectively. 

 

Fig. 2.2.4 Gas-tight cell for air-sensitive samples for XAS experiments. 
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2.2.4 Inductively coupled plasma optical emission spectroscopy (ICP-OES)  

In ICP-OES a liquid sample is pumped into a nebuliser and enters with a carrier gas (Ar) as a mist 

into a spray chamber (Fig. 2.2.5). The spray is then ionised by the inductively coupled plasma, and the 

analysed material is broken up into its constituent ionised atoms. The resulting ions recombine and 

produce electromagnetic emissions. The wavelength of these electromagnetic emissions is characteristic 

of the elements present in the sample, and their intensities are proportional to their concentration. 

Therefore, the concentration of elements can be determined by comparing the intensity of emissions 

with a set of standards samples with known amounts of the desired elements. Due to the elemental 

overlap of the emissions, at least three different emissions or wavelengths were investigated to obtain 

accurate results. 

 
Fig. 2.2.5 Typical ICP-OES schematic showing the process of the sample solution reaching the plasma torch. 

 

The bulk metal content was determined using ICP-OES on a Thermo Scientific iCAP 7400 Duo. The 

samples (10 mg) were digested with 2 mL of HCl (37%, VWR Chemicals) and 5 mL (>95%, Fisher 

Scientific) H2SO4; the mixture was then heated to 280 °C for 1 h to ensure complete dissolution of Al2O3 

support. After cooling to room temperature, 3 mL of HNO3 (68%, VWR Chemicals) was added to 

confirm the complete dissolution of Cu nanoparticles. The digestant was then topped up to 10 mL to 
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account for any evaporation losses. Finally, the digestant was diluted 10 times with deionised water 

before the ICP-OES analysis. However, for the case of the 1 wt% SAA catalysts, this final dilution step 

was not conducted. 
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2.2.5 Scanning transmission electron microscopy (STEM) 

Similar to transmission electron microscopy (TEM), STEM images are formed by electrons 

transmitting through the sample. However, unlike typical TEM, in STEM the electron beam is focused 

into a sub-nanometre sized spot which is scanned over the sample in a rastering fashion. The rastering 

of the beam is done with the scanning coils, and various signals can be collected as a function of the 

position of the probe to construct STEM images of the sample. It should be noted that in STEM, only 

the information of the transmitted beam is utilised. Bright-field (BF), dark-field (DF) and high-angle 

annular dark-field (HAADF) images can all be collected depending on the scattering angle of the 

transmitted electron beam. As shown in Fig. 2.2.6, the BF detector is aligned with the aperture and used 

for low angle scattering electrons. Surrounding the BF is the annular DF detector, for low to high 

scattering angle electrons. Finally, around them, there is the annular HAADF detector for collecting 

high scattering angle electrons.  With BF-STEM, the electrons that are collected have minimal/no 

change in the angular coordination after passing through the sample. The low scattering angle is due to 

these electrons having not travelled very close to the positively charged nucleus of the atoms. In some 

regard, BF-STEM is comparable to HRTEM but lacking the high signal-to-noise of the latter [24]. 

Nonetheless, BF-STEM is valuable as it can be acquired simultaneously with DF-STEM images. As 

mentioned earlier, DF-STEM involves collecting only those electrons that have been scattered away 

from their incident direction by the nucleus of the analysed atoms. A high signal-to-noise is achieved 

with these images, as only the deflected electrons by the sample are detected and because of the vacuum, 

electrons travelling through the column do not scatter and contribute to the image. Thus, the DF-images 

are good at distinguishing the nanostructures, with the empty spaces represented by the dark area of the 

images. In addition, DF-images also allow the discrimination of atoms as different atoms have unique 

scattering factors, giving rise to different STEM intensities. This leads to the so-called Z-contrast as the 

scattering factors are a strong function of Z. Therefore, atoms with a small difference in atomic numbers, 

like Cu (Z= 29) and Al (Z=13), are difficult to differentiate. Similarly, for HAADF, only electrons that 

have a very high scattering angle (e.g., those scattered from high Z atoms) are detected providing in-

depth information at the atomic scale.  
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Fig. 2.2.6 Schematic diagram of the operating principle of scanning transmission electron microscopy. Modified from 

referenced [24]. 

 

STEM images were acquired on a Cs aberration-corrected JEOL 2100F microscope operating at  

200 kV, using a Gatan Ultrascan 4000 digital camera. Samples were prepared by dispersion in methanol 

by sonication, followed by deposition on 300-mesh carbon-supported Cu grids and drying at 60 °C. 

ImageJ 1.52a software was used for image analysis. 
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2.2.6 N2 Porosimetry 

The surface area was determined by the Brunauer–Emmett–Teller (BET) equation (Equation 2.2.9) 

utilising N2 physisorption. N2 porosimetry is a technique that is used to acquire information about the 

textural properties of solid materials. This is done by N2 physisorption at -196 °C where N2 molecules 

get adsorbed onto the surface via weak van der Waals intermolecular forces, and then the amount of 

surface-bound N2 is used to determine monolayer coverage. Brunauer–Emmett–Teller (BET) model is 

an expanded version of the Langmuir model. The Langmuir model assumes the energy of adsorption is 

much higher for the first layer than any subsequent layers such that the formation of multi-layers only 

occurs at higher pressures. However, according to the BET model, the adsorbed molecules in the first 

layer act as sites for the second layer molecules and so on. It is also assumed that the adsorption 

interaction of all layers above the first is identical [25]. Consequently, Brunauer, Emmett and Teller 

were able to derive their linear BET equation (Equation 2.2.9), assuming that the multi-layer has an 

infinite thickness at p/p0 = 1.  

𝑝

𝑛(𝑝0 − 𝑝)
=

𝐶 − 1

𝑛𝑚𝐶
×

𝑝

𝑝0
+

1

𝑛𝑚𝐶
 

Equation 2.2.9 BET linear equation. 

 

where p is pressure, p0 is saturation pressure, n is the total number of adsorbed molecules, nm is the 

monolayer capacity, and C is an empirical constant that is assumed to be exponentially related to the net 

heat of adsorption (energy of the adsorption of the initial layer (E1) minus the energy of subsequent 

layers (EL)), determined by Equation 2.2.10. 

𝐶 ≈ 𝑒𝑥𝑝 (
𝐸1 − 𝐸𝐿

𝑅𝑇
) 

Equation 2.2.10 Determination of C, net heat of adsorption for the BET linear equation. 

 

The constant C was established to account for the interactions between the subsequent layers of N2. 

The specific surface area is calculated from the linear region of the BET plot (typically pressure range 
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p/p0 = 0.03 - 0.18), indicating monolayer coverage. The specific surface area was calculated according 

to Equation 2.2.11. 

𝑆𝑆𝐴 =
𝑛𝑚𝑁𝐴𝜎

𝑚𝑠
 

Equation 2.2.11 BET specific surface area calculation. where BET specific surface area (SSA) is related to nm utilising σ, 

the effective cross-sectional area of N2 (0.162 nm2) at −196 °C, NA, Avogadro’s number and ms, the mass of the sample (g). 

 

BET surface areas were determined via N2 physisorption using a Quantachrome Nova 4000 

instrument. Approximately 50 mg of the sample was degassed at 120 °C for 2 h before analysis at  

−196 °C.  
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2.2.7 H2-Temperature Programmed Reduction (H2-TPR) 

H2-TPR experiments give an insight into the consumption of H2 as the sample is heated. 

Consequently, the reducibility of the catalyst can be explored. A thermal conductivity detector (TCD) 

is used to understand the changes in the gas composition since it is correlated to the thermal conductivity 

of the gas. 

H2-TPR was conducted on a Quantachrome ChemBET Pulsar equipped with a TCD detector (150 

mA). 100 mg of catalyst was loaded into a quartz wool plugged u-shaped glass tube and degassed/dried 

under N2 flow at 100 °C for 30 min. TPR analysis was subsequently conducted under 5% H2/95% N2 

(40 mL min-1) at a heating rate of 6 °C min-1 to 300 °C. 

 

2.2.8 Thermal Gravimetric Analysis with Mass Spectrometry (TGA-MS) 

TGA involves analysing the mass change of a sample continuously as the temperature changes. Phase 

transitions, absorption, adsorption, and desorption, as well as chemical phenomena such as 

chemisorption, thermal decomposition, and solid-to-gas reactions (e.g., oxidation or reduction), can be 

studied using this measurement. Mass spectrometry can be coupled with a TGA instrument to determine 

the gaseous products released from the sample. 

TGA was conducted on a Mettler Toledo TGA/DSC1 Star System under an N2 purge gas  

(60 ml min-1) interfaced to a ThermoStar TM GSD 301 T3 mass spectrometer. The colloidally capped 

Cu/Al2O3 catalyst (20 mg) was loaded into an alumina crucible and heated from 40 to 800 °C with a 

heating rate of 10 °C min-1. 
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2.3 Catalytic testing 

2.3.1 Hydrogenation of furfural using monometallic Cu catalysts 

In-situ reduction and catalytic reactions were performed in a H.E.L DigiCAT high-pressure reactor 

system operating 3 × 50 mL stainless steel autoclaves (Fig. 2.3.1). The reactors were loaded with 30 mg 

of catalyst and reduced under flowing H2 at 300 °C for 0.5 h (ramp rate: 5 °C min-1). After cooling to 

room temperature under flowing H2, the autoclaves were purged with He and then sealed to prevent 

oxidation. While He was flowing, 10 mL of the reaction mixture consisting of MeOH (Fisher Scientific, 

HPLC grade), furfural (0.02 M, Sigma Aldrich, 99%) and the internal standard decane (0.02 M, Sigma 

Aldrich, 99%), were injected into each reactor. The mixtures were degassed for 10 min in flowing He 

before pressurising with H2 (BOC, 99.995%). The reactors were then heated to 50 °C and stirred at 600 

RPM using magnetic stirrers. The reaction was carried out for 7 h before being cooled and depressurised 

to atmospheric pressure. Aliquots of the reaction mixture (0.2 mL) were taken and analysed offline 

without further dilution using a Bruker Scion 456 GC equipped with a Zebron ZB-5 (5%-phenyl-95%-

dimethylpolysiloxane, 30 m × 0.53 mm × 1.50 μm) capillary column and a flame ionisation detector 

(FID). The concentration of the products was determined through the normalisation of the individual 

peak areas with the internal standard, as well as the use of 5-point calibration standards of the pure 

compounds. All peaks in the chromatograph were identified by GC-MS (Shimadzu GC-MS QP2010 

SE). The carbon mass balance of the catalytic testing was determined to be ∼97%. 
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Fig. 2.3.1 Schematic diagram of the H.E.L. Digicat reactor system 

 

2.3.1.1 Sulfur leaching and homogenous catalytic tests 

The sulfur was leached off the calcined Cu sulfate derived catalyst by ageing it in MeOH at 50 °C 

for 7 h. The resulting catalyst and supernatant fluid were collected via centrifugation. The leached 

catalyst was then dried overnight and was reduced in-situ before the catalytic testing. The catalytic 

activity of the dissolved species in the supernatant fluid was investigated by adding furfural and decane 

to the liquid before starting the reaction.  
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2.3.2 Hydrogenation of furfural using single atom alloy catalysts 

In-situ reduction and catalytic reactions were performed in a H.E.L DigiCAT high-pressure reactor 

system operating 2 × 50 mL stainless steel autoclaves (Fig. 2.3.1). The reactors were loaded with 30 mg 

of catalyst and reduced under flowing H2 at 300 °C for 0.5 h (ramp rate: 5 °C min-1). After cooling to 

room temperature under flowing H2, the autoclaves were purged with H2 and then sealed to prevent 

oxidation. While H2 was flowing, 10 mL of the reaction mixture consisting of MeOH (Fisher Scientific, 

HPLC grade), furfural (0.02 M, Sigma Aldrich, 99%) and the internal standard butanol (0.02 M, Alfa 

Aesar, 99%), was injected into each reactor. The mixtures were degassed for 10 min in flowing He 

before pressurising with H2 (BOC, 99.995%). The reactors were then heated to 50 °C and stirred at 600 

RPM using magnetic stirrers. The reaction was carried out for 7 h before being cooled and depressurised 

to atmospheric pressure. Aliquots of the reaction mixture (0.2 mL) were taken and analysed offline after 

a 1:10 dilution (with MeOH) using a Shimadzu GC-FID 2010 Plus equipped with a ZB-WAX 

(polyethylene glycol, 30 meters × 0.32 mm × 0.50 μm) capillary column. The concentration of the 

products was determined through the normalisation of the individual peak areas with the internal 

standard, as well as the use of 5-point calibration standards of the pure compounds. All peaks in the 

chromatograph were identified via GC-MS (Shimadzu GC-MS QP2010 SE).  
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2.3.3 Hydrogenation of crotonaldehyde 

In-situ reduction and catalytic reactions were performed in a H.E.L DigiCAT high-pressure reactor 

system operating 2 × 50 mL stainless steel autoclaves (Fig. 2.3.1). The reactors were loaded with 30 mg 

of catalyst and reduced under flowing H2 at 300 °C for 0.5h (ramp rate: 5 °C min-1). After cooling to 

room temperature under flowing H2, the autoclaves were purged with H2 and then sealed to prevent 

oxidation. A reaction solution was made consisting of crotonaldehyde (0.02 M, Sigma Aldrich, ≥99.5%) 

and the internal standard dioxane (0.02 M, anhydrous, Sigma Aldrich, 99.8%) in MeOH. The reaction 

solution was then placed in an ultrasonic bath for 5 minutes to ensure solubility and the dissolved gases 

are removed. Under H2 flow, 10 mL was injected into each reactor. The mixture was then pressurised 

with 1.5 bar of H2 (BOC, 99.995%). Subsequently, the reactors were heated to 50 °C and stirred at  

600 RPM using magnetic stirrers. The reaction was carried out for 7 h before being cooled and 

depressurised to atmospheric pressure. Aliquots of the reaction mixture (0.2 mL) were taken and 

analysed offline after a 1:4 dilution (with MeOH) using a Shimadzu GC-FID 2010 Plus equipped with 

a ZB-WAX capillary column. The concentration of the products was determined through the 

normalisation of the individual peak areas with the internal standard, as well as the use of 5-point 

calibration standards of the pure compounds. All peaks in the chromatograph were identified via  

GC-MS (Shimadzu GC-MS QP2010 SE). 

 

2.3.4 Recyclability tests 

After the catalysts were recovered by centrifugation, they were washed with MeOH three times. The 

materials were then dried overnight at 100 °C and in-situ reduced before testing. The reaction scale was 

adjusted depending on the amount of catalyst recovered. 
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2.3.5 Calculations for the catalytic experiments 

Conversion of the reactant was calculated according to Equation 2.3.1. 

'Conversion (%) = (
[𝑅]0 − 𝑅𝑡

𝑅0

)  × 100 

 

Equation 2.3.1 Conversion calculation. where [R]0 is the concentration of the reactant at time 0 and [R]t is the 

concentration of the reactant at time t. 

 

Products selectivity were calculated according to Equation 2.3.2.  

Sproduct (1) (%) = (
Cproduct (1)

∑ Cproduct

)  × 100 

  

Equation 2.3.2 Selectivity calculation. where S is the selectivity (%) and C is the concentration (M). 

 

Initial rates of reactant consumption were calculated according to Equation 2.3.3. The reported initial 

rate was determined after the induction period for a time range of 1 hour. 

′𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑎𝑡𝑒 (𝑚𝑜𝑙 ℎ−1) =  − (
∆𝑚𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡(𝑚𝑜𝑙)

∆𝑡 (ℎ)
) 

  Equation 2.3.3 Initial rate calculation. where mreactant is the mol of reactant and t is time in hours.  

 

Active Cu sites per catalyst were calculated using Equation 2.3.4. 

𝐴𝑐𝑡𝑖𝑣𝑒 𝐶𝑢 𝑠𝑖𝑡𝑒𝑠 (𝑚𝑜𝑙) =  (
𝐷𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛 (%)

100
 × 𝑚𝑜𝑙 𝑜𝑓 𝐶𝑢 𝑖𝑛 𝑡ℎ𝑒 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡) 

Equation 2.3.4 Moles of Cu active sites. where dispersion was calculated from the XPS data and mol of Cu in the catalyst 

was determined from ICP-OES.  

 

Turnover frequencies were calculated according to Equation 2.3.5. 

′𝑇𝑂𝐹 (ℎ−1) =  (
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝑚𝑜𝑙 ℎ−1)

𝐴𝑐𝑡𝑖𝑣𝑒 𝐶𝑢 𝑠𝑖𝑡𝑒𝑠 (𝑚𝑜𝑙)
) 

 Equation 2.3.5 Turnover frequency calculation 
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Furfuryl alcohol/metal mole ratio per hour or simply called productivity was determined according 

to Equation 2.3.6. 

′𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (ℎ−1) =  (
𝑚𝑜𝑙 𝑜𝑓 𝑓𝑢𝑟𝑓𝑢𝑦𝑙 𝑎𝑙𝑐𝑜ℎ𝑜𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑚𝑜𝑙 𝑜𝑓 𝑚𝑒𝑡𝑎𝑙 𝑖𝑛 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 × 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (ℎ)
) 

Equation 2.3.6 Furfuryl alcohol/metal mole ratio per hour calculation 

 

Turnover frequency* (TOF*) was determined according to Equation 2.3.7. 

′𝑇𝑂𝐹∗  (ℎ−1) =  (
𝑚𝑜𝑙 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

𝑚𝑜𝑙 𝑜𝑓 𝑝𝑟𝑜𝑚𝑜𝑡𝑖𝑛𝑔 𝑚𝑒𝑡𝑎𝑙 𝑖𝑛 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 × 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 (ℎ)
) 

Equation 2.3.7 Turnover frequency* (TOF*) and metal content was determined from ICP-OES. 
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Chapter 3  The effect of metal precursor on 

copper phase dispersion and nanoparticle 

formation for the catalytic transformations of 

furfural. 
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3.1 Introduction 

Current industrial practices for the manufacture of furfuryl alcohol in various countries such as the 

Dominican Republic, Brazil, South Africa and China all use copper chromate [1, 2]. Such materials 

have been a benchmark for the past 90 years [3-6] using temperatures of ~200 °C and pressures of 

greater than 30 bar. But, there has been increasing concern about the environmental friendliness of 

chromite-based catalysts, as they lead to the formation of toxic chromic oxide causing severe 

environmental problems. Also on the industrial scale, this contributes to safe large-scale disposal 

challenges (especially with countries with less stringent environmental regulations) and contamination 

of the products downstream. So, there is a drive for energy-efficient and environmentally friendly 

alternative processes and materials, which can perform at milder temperature and pressure constraints.  

In the literature, many chromate substitute catalysts have been investigated for the gas and liquid-

phase transformation of furfural implementing Ir, Pd, Pt, Ru, Ni, Co and Cu [7-12]. Such investigations 

have shown that the catalytic reaction is dependent on the affinity of reactants for the metal, both in 

terms of hydrogen-metal and furfural-metal interaction [13, 14]. Taylor et al. [15] investigated the effect 

of support on the Pt catalysed liquid phase hydrogenation of furfural to furfuryl alcohol. The authors 

studied a variety of supports of different acidity, surface-area, and crystallinity. Despite their major 

physicochemical differences, supports like MgO, CeO2 and γ-Al2O3 were reported to perform well. The 

absence of strong metal-support interactions was reported, however, the support selection appeared to 

be important to achieve a good dispersion of the metal. In the current work, crystalline nano-Al2O3 was 

used to allow the active Cu phase to be more accessible to the substrate as compared, for instance with 

standard porous aluminas (same with other mesoporous materials) which regularly suffer from mass 

transfer problems as well as the blocking of pores and deterioration of the surface area at high 

temperatures/prolonged use.  

The modification of copper surfaces with sulfur was thoroughly studied for the hydrogenation of 

crotonaldehyde, both on single crystals and dispersed catalysts [16-20]. Lambert and co-workers [17, 

21] found that sulfur atoms activate the copper surface towards the chemoselective transformation of 
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crotonaldehyde. It was reported this was due to sulfur-induced rehybridization of the adsorbed reactant, 

which lead to the weakening of the intermolecular bonding and tilting of the C ═ O and C ═ C groups 

with respect to the surface, thus facilitating the interaction with adsorbed hydrogen. Their observations 

also support earlier investigations by Hutchings et al. [16, 19, 20], sulfur promotes crotyl alcohol 

formations using Cu/Al2O3 catalysts. Conversely, May et al. [22] reported that sulfur addition can act 

as a poison, since it changes the electron characteristics of the surface, such as the work function, altering 

the metal-metal distances in the top-most atomic row.  

This chapter investigates the effect of metal precursors in the generation of Cu/Al2O3 catalysts via a 

simple wet impregnation method as is commercially used to synthesis heterogeneous catalysts. The 

synthesis was investigated in two separate Cu loadings the first one leading to the creation of metal 

nanoparticles. The second one, leading to the formation of a highly dispersed Cu phase consisting mostly 

of single atoms and dimers on the alumina surface. By utilising a mechanism by which Cu binds to the 

alumina’s surface before the catalytically necessary reduction, rows of copper ions are formed at low 

coverage. As the loading/calcination temperature increases paracrystalline and finally crystalline CuO 

is generated [23]. The role of sulfur impurities on the catalyst surface was also investigated by 

comparing Cu/Al2O3 catalysts prepared using two sulfur-free precursors and one sulfur-containing 

precursor. The role of sulfur was studied as the literature lacked studies examining Cu catalytic systems 

on the hydrogenation of furfural, as in some cases, as mentioned earlier, sulfur can act as a promoter or 

a poison. Consequently, the structure sensitivity of the reaction and the effect of the chosen metal 

precursor was also explored which has not been previously. 
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3.2 Characterisation of Cu-based catalysts 

3.2.1 Elemental and Surface Area Analysis 

Table 3.2.1 shows the elemental analysis and the surface area measurements of the supported 

catalysts after calcination and reduction. The Cu loading was found close to the nominal loading but the 

observable differences in loading between the precursors are due to the differences in the thermal 

stability and reducibility of the precursors [24-26]. It is reported by Ghose et al. [24] that decomposition 

of Cu(NO3)2. 3H2O in air is followed by the melting of nitrate crystals then the formation of  

[Cu(NO3)2. 3Cu(OH)2] crystals and finally, with the formation of CuO at 310 °C. Also, the breakdown 

of Cu(CO2CH3)2 .H2O occurs under 500 °C [25], where dehydration takes place, forming peroxides 

which decompose into a mixture of Cu, Cu2O and CuO. Cu and Cu2O are then oxidised to CuO between 

302-500 °C in air. In contrast, CuSO4 higher thermal stability in air results in a decomposition 

temperature of 598 °C [27], with CuO.SO3 intermediate compounds also being formed. In a reductive 

H2 atmosphere, CuO is facilely reduced to Cu between 200-300 °C, while CuSO4 starts to reduce at 300 

°C [28]. Examining the isotherms of the reduced materials shows Type II isotherms (Fig. 3.2.1), 

suggesting they are non-porous/macroporous, however, the small noticeable hysteresis may have arisen 

from experimental error or slight defects in the structure or the Cu/Al interfaces causing filling (by N2 

molecules) of such voids/steps. While the surface area measurements of the catalytic materials are 

observed to be largely unchanged to the bare support. However, the lower noticeable surface of the 5 
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wt% Cu/Al2O3 (S) may likely be due to the formation of low surface area Al2(SO4) through the reaction 

with the Al2O3 and SO3 [29].  

Table 3.2.1. Bulk elemental analysis and surface area measurements. Catalysts synthesised using copper nitrate, copper 

acetate and copper sulfate pentahydrate were denoted (N), (A) and (S), respectively. 

Catalyst 

Nominal Cu 

loading 

Actual Cu 

loadinga 

Surface areab 

 

(wt%) (wt%) (m2g-1) 

Cu/ Al2O3 (N) 1.0 0.83 ± 0.04 36 ± 2 

Cu / Al2O3 (A) 1.0 0.91 ± 0.05 35 ± 2 

Cu/ Al2O3 (S) 1.0 0.66 ± 0.08 39 ± 2 

Cu/Al2O3 (N) 5.0 4.22 ± 0.32 34 ± 2 

Cu / Al2O3 (A) 5.0 4.56 ± 0.36 33 ± 2 

Cu/ Al2O3 (S) 5.0 4.22 ± 0.31 30 ± 2 

Al2O3 - - 38 ± 2 

a ICP-OES, b BET 
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Fig. 3.2.1 Isotherm for Cu/Al2O3 catalysts as well as the bare support. 
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3.2.2 Powder X-Ray Diffraction (PXRD) 

Fig. 3.2.2 (a) illustrates ex-situ XRD diffractograms from the copper catalysts used in this study after 

reduction at 300 °C for 0.5 h. The characteristic of nano-crystalline -Al2O3 (JCPDS card No. 29-0063) 

and δ-Al2O3 (JCPDS card No. 46-1215), as well as a small impurity of -Al2O3 phase (JCPDS card No. 

11-0517) broad reflections but visible reflections are observed. Qualitatively examining the 

diffractograms, the nano-crystalline alumina’s long-range order appears to be unchanged after Cu 

deposition. This suggests the copper phase did not appreciably alter the alumina morphology after the 

various thermal processing steps. In the case of 5 wt% Cu catalysts, the estimated Cu lattice parameters 

of 3.628 Å (Table 3.2.2) were found to be close to that of bulk Cu (JCPDS card No. 40836). The 

observation of Cu reflections indicates the Cu phase is predominately is in its metallic state after ex-situ 

reduction since diffraction peaks of CuO and Cu2O at 35.5° and 42.7° could not be resolved [30]. 

Diffraction peaks associated with Cu species were not detected for the 1 wt% Cu samples in both their 

calcined and reduced state (Fig. 3.2.2); in agreement with STEM, suggesting the Cu phase is highly 

dispersed resulting in extremely broad diffraction peaks.   
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Fig. 3.2.2 XRD patterns of (a) reduced and (b) calcined Cu/Al2O3 catalysts synthesised from their respective copper nitrate 

(N), copper acetate (A) and copper sulfate (S) precursors at loadings of 5 wt% and 1 wt%. 

 

Table 3.2.2 Tabulated crystallite sizes, particle sizes, lattice parameters and bond lengths. Catalysts synthesised using 

copper nitrate, copper acetate and copper sulfate pentahydrate were denoted (N), (A) and (S), respectively. 

Catalyst 

Nominal Cu 

loading 

Cu 

crystallite 

sizea 

Cu 

crystallite 

sizeb 

Cu 

particle 

sizec 

Cu lattice 

parameterb 

WPPM Fit 

(wt%) (nm) (nm) (nm) (Å)  

Cu/Al2O3 (N) 1 - - - -  

Cu/Al2O3 (A) 1 - - - -  

Cu/Al2O3 (S) 1 - - - -  

Cu/Al2O3 (N) 5 19.6 ± 4.1 13.2 ± 9.5 3.9 ± 1.9 3.628 4.3%d, 67.7e 

Cu/Al2O3 (A) 5 19.7 ± 4.3 13.0 ± 9.4 6.8 ± 5.5 3.628 4.3%d, 67.7e 

Cu/Al2O3 (S) 5 24.7 ± 2.8 18.7 ± 12.9 12.8 ± 9.3 3.627 4.2%d, 69.5e 
a Integral breadth method via XRD, b WPPM via XRD, c STEM, d Rwp and d WSS. 

 

To examine composition changes of the Cu phase during the reduction step, in-situ XRD diffraction 

experiments were conducted on one sulfur-free and sulfur containing catalysts.  Fig. 3.2.3a shows CuO 

forms after calcination for the 5 wt% Cu/Al2O3 (A) catalyst. And it only starts to reduce into metallic 

Cu between 100 to 200°C with both the features of CuO and Cu at 200 °C. At 300 °C, the CuO phase 

is fully reduced to Cu. Increasing the temperature further appears to not considerably increase the 
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crystallite size but increase the Cu crystallinity (monitored by the increased Cu (111) reflection 

intensity). In contrast, the 5 wt% Cu/Al2O3 (S) catalyst (Fig. 3.2.3b) shows CuSO4 reflections at 25 °C, 

indicating the calcination at 500 °C for 4 h cannot reduce CuSO4 completely to CuO. In a similar manner 

as for the sulfur-free catalyst at 200 °C both the CuSO4 and Cu is present, and at 300 °C CuSO4 is 

reduced to Cu. 
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Fig. 3.2.3 In-situ XRD diffractograms of (a) 5 wt% Cu/Al2O3 (A), (b) 5 wt% Cu/Al2O3 (S) catalysts and (c) the change in 

volume-weighted Cu crystallite size in a reductive atmosphere (20% H2/80% He gas flow) between 25-700 °C.  

  



96 

 

 

M. J. Islam, PhD Thesis, Aston University, 2021 

3.2.3 Scanning Transmission Electron Microscopy (STEM) 

Investigation of the 1 wt% Cu/Al2O3 catalysts with STEM could not establish the existence of any 

Cu regions. Possibly owing to the combination of low Z-contrasts between Cu and Al entities and the 

presence of highly dispersed Cu phase embedded onto the Al2O3 superstructure are not resolved. The 

interpreted EXAFS data, discussed later, suggests the Cu atoms exist mostly as single/dimer species on 

the surface of the Al2O3 support. In contrast, STEM images of the 5 wt% catalysts (Fig. 3.2.4) show the 

detection of Cu particles after ex-situ reduction. The calculated particle sizes (assuming 

monocrystallinity) by PXRD of the 5 wt% Cu/Al2O3 (N) and (A) appears to be similar when calculated 

through both methods (integral breadth and WPPM). But, the trend is not seen in the STEM measured 

particle sizes, due to the low Z-contrast ratios active-phase and alumina support and the difficulty of 

identifying small species. Resulting in the overestimating particle size. The conjunction of the PXRD 

and STEM analysis of the 5 wt% Cu/Al2O3 (N) and (A) catalysts imply that part of the copper-phase is 

absent of consistent geometric structure. The strange structure is attributed to the mechanism by which 

the Cu2+ species are bound to the alumina surface, whereby the Cu2+
 species (from CuO) proceeding 

calcination are coordinated as rows of copper ions in a tetrahedral/octahedral symmetry via alumina’s 

oxygen atoms, extending alumina’s oxide network [23, 31]. As a result, an isolated or paracrystalline 

CuO phase is formed on the alumina’s surface, observed by the estimated ⁓100% Cu dispersion of the 

1 wt% calcined catalyst in Table 3.2.4. In the case of their higher loaded counterparts. Marion et al. [31] 

suggest increasing the loading causes the Cu to oversaturate the alumina’s surface, such that the 

octahedral Cu species begin to sinter into particles from a layered structure during calcination. 

Consequently, explaining why both layered structures and particles are reported. After reduction, the 

Cu dispersion is discovered to decrease which is thought to be due to the breakdown of the strong Cu-

O links to the support. Thus, allowing Cu atoms to be more mobile resulting in the layered and particle 
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arrangement. The measured lattice spacing of such layered structures shown in Fig. 3.2.4b is found to 

be 0.205 nm, indicative of the Cu (111) lattice plane [32].  

In contrast, the 5 wt% Cu/Al2O3 (S) displays large distinct particles approximately 12.8nm with a 

large standard deviation of 9.3 nm. The larger particle size, when compared to the other Cu precursors, 

is credited to the incomplete CuSO4 decomposition to CuO (CuSO4 reflections at 20.7° and 24.6° are 

observed in the calcined sample, Fig. 3.2.2b). Causing the remaining CuSO4 to reduce completely from 

CuSO4 to Cu into larger particles. The particle size distributions from STEM and computed from XRD 

using WPPM (Fig. 3.2.5) was found to quite consistent considering XRD has a tough time measuring 

very small crystallite sizes (below 3 nm). Since broad reflections arising from small crystallites become 

difficult to resolve from the background (due to destructive interference of the signal). One can also 

observe that the simple line profile analysis via the integral breadth method is inadequate in this system 

as a volume-weighted crystallite size is calculated. This leads to crystallite or particle size (assuming 

particles are monocrystalline) considerably larger than particle size determined from STEM and WPPM 

(Fig. 3.2.5). 
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Fig. 3.2.4 Bright and Dark field STEM images and interplanar spacing measurement of (a) 5 wt% Cu/Al2O3 (A), (b) lattice 

spacing of 5 wt% Cu/Al2O3, area of measurement indicated by a yellow line. (c) 5 wt% Cu/Al2O3 (A, low magnification), (d) 

5.0 wt% Cu/Al2O3 (N) and (e) 5.0 wt% Cu/Al2O3 (S). 

 

 

Fig. 3.2.5 Copper size distribution for 5 wt% Cu/Al2O3 catalysts after reduction. STEM (histogram, roughly 100 particles 

counted for each catalysts) and WPPM result (lognormal distributions). 
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3.2.4 X-ray Photoelectron Spectroscopy (XPS) and X-ray excited Auger Electron 

Spectroscopy (XAES) 

Fig. 3.2.6a displays XPS spectra of catalysts reduced ex-situ along with the CuO and Cu2O reference 

standards. All six catalytic materials show the characteristic Cu 2p doublet with the Cu 2p3/2 transition 

centred at ⁓932.8 eV. The absence of the strong shake-up satellites at ⁓942.6 eV and ⁓962.3 eV, 

particularly for the nominal 1 wt% Cu/Al2O3 catalysts, suggests the absence of Cu2+ species (CuO or 

CuSO4) and that the Cu is mainly in its Cu0 or Cu+ oxidation state. Catalysts with a nominal copper 

loading of 5 wt% but, show a noticeable presence of the shake-up satellite, suggesting that these 

materials contain more CuO than the 1 wt% Cu/Al2O3 catalysts. Oxidation of the catalyst is expected as 

the samples have been exposed to the atmosphere before analysis. The compositional differences 

between 1 wt% and 5 wt% can be due to the mechanism of Cu nanoparticle oxidation, where initially it 

forms Cu2O [33] and then transforms into CuO (on the surface) [34, 35] and since the 5 wt% have more 

Cu available, the faster the full oxidation occurs. The Cu 2p binding energies of Cu+ and Cu0 are very 

similar, and deconvolution of the spectra is difficult, however, the chemical shift in Auger spectroscopy 

is more prominent. The L3VV Auger spectrum of the reference Cu2O spectrum is found shifted 

substantially to lower kinetic energies compared to bulk metallic Cu. Though it should be noted, x-ray 

induced reduction can occur, altering the observed composition. 
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Fig. 3.2.6 High resolution stacked XPS and XAES spectra of the (a) Cu 2p and (b) Cu L3VV for the six Cu/Al2O3 catalysts 

after calcination and reduction at 500 °C and 300 °C respectively. Reference spectra of the Cu, CuO and Cu2O [36] are 

also presented. 

 

Auger spectra of the catalysts are attenuated compared to the bulk reference materials, and the peaks 

found shifted to lower kinetic energies (Fig. 3.2.6b and Table 3.2.3). This observation was also reported 

previously [37-40], finding that the binding energies, Auger lines and consequently the modified Auger 

parameter, ’ is very sensitive to the metal-support effects and particle size. The modified Auger 

parameter is a final state effect, providing an estimate of the relaxation energy/screening energy in the 

presence of core holes [41], while also not suffering from charging and inadequate calibration 

aberrations [42]. The relaxation energy can be interpreted as a secondary process where the surrounding 

electrons react to the sudden appearance of a positive core-hole after photoemission. The screening of 

the core-hole by the influx of electrons lowers the measured Eb [43]. The relaxation energy can be 

partitioned into intra-atomic relaxation energy and extra-atomic relaxation energy; with the former 

remaining constant for core-electrons in a given atom, while the latter varies with changes in the 

chemical and physical states. A high ’ indicates higher relaxation energy or improved screening 



101 

 

 

M. J. Islam, PhD Thesis, Aston University, 2021 

energy. This can be caused by a greater number of atoms able to screen the core-hole better after 

photoemission when examining differently size copper structures or different polarizable supports.  

Table 3.2.3. Summarised binding energies for Cu 2p3/2, kinetic energies for the Auger Cu L3VV transitions, modified Auger 

parameters for copper catalysts and change in relaxation energy compared to bulk Cu for catalysts and reference 

materials. 

Sample 

Cu 2p 3/2 Eb Cu L3VV 

Ek 

Modified Auger 

parameter  

’ 

Change in relaxation 

energy 

R 

(eV) (eV) (eV) (eV) 

Cu/Al2O3 (N) 1 wt% 932.82 914.09 1846.91 2.24 

Cu/Al2O3 (A) 1 wt% 932.97 913.76 1846.73 2.33 

Cu/Al2O3 (S) 1 wt% 933.13 913.41 1846.54 2.42 

Cu/Al2O3 (N) 5 wt% 932.78 914.93 1847.71 1.84 

Cu/Al2O3 (A) 5 wt% 932.68 914.69 1847.37 2.01 

Cu/Al2O3 (S) 5 wt% 932.88 914.73 1847.61 1.88 

CuSO4 935.42 915.40 1850.82 0.28 

CuO 933.62 917.78 1851.40 -0.01 

Cu2O 932.29 916.70 1848.99 1.20 

Cu** 932.63 918.75 1851.30 0.00 
** Cu 2p 3/2 was calibrated to the ISO standard of 932.63 eV. 

In agreement with the current work, the Auger parameter of the catalysts to be on average ⁓1847.0 

eV, drastically lower than that of bulk copper (’bulk = 1851.3 eV, shown in Table 3.2.3). The shift is 

contributed largely to the polarizability of the support [40]. Assessing the modified Auger parameter 

between the catalysts of different loadings, summarised in Table 3.2.3, the ’ is observed to increase 

with increasing copper ensemble size. A similar trend is seen in the change of the relaxation energy in 

reference to bulk copper, R. All catalysts exhibit stark changes in their relaxation energies compared 

to bulk copper. Remarkably, the 1 wt% Cu/Al2O3 catalysts exhibit larger changes in their approximated 

R values compared to their higher Cu loading counterparts. Assumed to be due to the diminishing 

number of Cu atoms in their nanostructures and the greater interaction with the support due to the higher 

dispersion (Table 3.2.4). Consequently, the Auger parameter can give an insight into the 

dispersion/oxidation state of the active phase which crucial for active catalytic materials. As mentioned 

previously (section 3.2.3), the XPS calculated Cu dispersion decreases considerably after the reduction 

of the catalyst which can be understood by the reduction of the Cu-O support links, allowing the Cu 

species to be more mobile and sintering into larger structures. The stacked spectra in Fig. 3.2.6 possibly 
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suggest an oxidised outer surface layer comprised mostly of CuO, especially for the 5 wt% Cu/Al2O3 

catalysts, and an underlying Cu0 bulk which was confirmed by XRD in Fig. 3.2.2a. The data endorse 

Rhodin’s findings that at room temperature, oxidation occurs swiftly for the first few seconds or 

minutes. After which a thin oxide layer forms (~0.5 nm) and the rate of oxidation falls to negligible 

values [44]. Thus, explaining why an oxide layer is not detected in the diffractogram (Fig. 3.2.2a).  

Table 3.2.4 Calculated particle size and dispersion from XPS for the six monometallic catalysts in both their calcined and 

reduced (ex-situ) state. 

Catalyst 
Bulk Cu 

loading (wt%) 
Treatment 

XPS particle 

size (nm) 
Dispersion (%) 

Cu/Al2O3 (N) 1 wt% 0.8 
Calcined - 100.0 ± 10.0 

Reduced 0.8 ± 0.1 67.3 ± 6.7 

Cu/Al2O3 (A) 1 wt% 0.9 
Calcined - 99.6 ± 10.0 

Reduced 0.6 ± 0.1 74.7 ± 7.5 

Cu/Al2O3 (S) 1 wt% 0.6 
Calcined - 99.7 ± 10.0 

Reduced 0.9 ± 0.1 60.2 ± 6.0 

Cu/Al2O3 (N) 5 wt% 4.2 
Calcined 3.4 ± 0.3 28.8 ± 2.9 

Reduced 5.4 ± 0.5 18.8 ± 1.9 

Cu/Al2O3 (A) 5 wt% 4.6 
Calcined 2.1 ± 0.2 41.4 ± 4.1 

Reduced 5.1 ± 0.5 19.8 ± 2.0 

Cu/Al2O3 (S) 5 wt% 4.2 
Calcined 4.2 ± 0.4 23.9 ± 2.4 

Reduced 5.1 ± 0.5 19.6 ± 2.0 

 

The S 2p region was also probed (Fig. 3.2.7a), catalysts derived from copper sulfate displayed a peak 

at ⁓169.2 eV, indicative of sulfate species (bulk sulfur has a binding energy of 164.0 eV [45]). However, 

it should be reiterated that in-situ PXRD measurements Fig. 3.2.3b did not show any reflections that can 

be assigned to CuSO4 when reduced at 300 °C and above. It is also known that Al2(SO4)3 could also be 

formed from the decomposition of CuSO4 via the reaction between SO3 and Al2O3 [46]. The XPS results, 

however, suggest that sulfate species may remain in an amorphous fashion on the copper surface at 300 

°C. In contrast, the N 1s region of the XPS did not detect nitrate compounds (Fig. 3.2.7b), indicating the 

nitrate precursor decomposed fully without leaving trace nitrates. 
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Fig. 3.2.7 High resolution stacked XPS of the (a) S 2p and (b) N 1s for the six Cu/Al2O3 catalysts after calcination and 

reduction at 500 °C and 300 °C respectively. Reference spectra of the CuSO4 and Al2(SO4)3 are also presented. 
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3.2.5 X-ray Absorption Spectroscopy (XAS)  

Linear combination fitting (LCF) was performed on the Cu K-edge XANES spectra (Fig. 3.2.8) and summarised in  

Table 3.2.5. The disparity in the metallic Cu composition between the 5 wt% Cu/Al2O3 is due to 

particle size, as the larger the particle, the lower the surface area and less oxidation occurs. LCF did 

not show the presence of a metallic Cu phase for the 1 wt% catalysts. While an inadequate fit was 

deconvoluted with CuO but even so, the absorption edge was observed to be shifted to higher energies 

suggesting the presence of Cu ions, possibly bound to the alumina support. 

 

Fig. 3.2.8 Normalised Cu-K edge XANES spectra of six Cu/Al2O3 catalysts (reduced ex-situ) and reference standards. 

 

Table 3.2.5 Cu K edge energies and XANES linear combination fitting. 

Sample 
Edge energy 

(eV) 
Cu (%) CuO (%) Cu2O (%) R factor 

Cu/Al2O3 (N) 1 wt% 8980.9 0 100 0 0.027 

Cu/Al2O3 (A) 1 wt% 8980.0 0 100 0 0.022 

Cu/Al2O3 (S) 1 wt% 8980.4 0 100 0 0.023 

Cu/Al2O3 (N) 5 wt% 8979.4 32.6 67.4 - 0.008 

Cu/Al2O3 (A) 5 wt% 8979.7 18.6 81.4 - 0.01 

Cu/Al2O3 (S) 5 wt% 8979.7 41.5 24.2 34.4 0.001 

Cu2O 8980.6 - - - - 

CuO 8983.9 - - - - 

Cu 8979.0 - - - - 
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EXAFS model fitting displayed in Fig. 3.2.9 and summarised in Table 3.2.6 reinforce the earlier 

characterisation data. The EXAFS spectra in R-space (phase uncorrected) presented in Fig. 3.2.9b imply 

the 1 wt% Cu/Al2O3 catalysts lack long-range order as the signal quickly attenuated after the Cu-O shell 

(1.96 Å). In contrast, the Cu foil spectrum has a strong photon scattering 6 Å away from the absorbing 

atom. Though the scattering signal is expected to attenuate quickly with disordered/less-coordinated 

systems like nanoparticles [47]. In addition, the coordination number of these oxidised catalysts suggest 

the Cu atoms are almost entirely coordinated to oxygen. Also, the lack of the Cu-Cu scattering path 

(arising from Cu-O-Cu bonds at 2.90 Å) normal for CuO, together with the XANES implies that the Cu 

atoms are likely coordinated with oxygen atoms on the alumina support. The copper impregnation 

process was investigated by Cheah et al. [48, 49] via XAS suggests the Cu/-Al2O3 system consists of 

octahedral Cu2+ (O, OH)6 species. These species are appearing on the surface as monomeric, dimeric 

and oligomeric hydroxo-bridged with Cu-O equatorial bond lengths of 1.95 Å. Further operando XAS 

studies by Cassinelli et al. [50] indicates that once the catalyst is calcined the octahedral Cu2+ (O, OH)6 

structure persists. Proceeding reduction (250 °C in an H2/He atmosphere) however, they report the 

incomplete reduction of the Cu2+ species to Cu+ and Cu0. In the present case (reduction at 300 °C in H2), 

the reduction of the Cu2+ species follows with the reduction of such hydroxo-bridges leaving behind a 

metallic Cu-Cu bond, creating a paracrystalline structure (as discussed earlier in section 3.2.3) and when 

exposed to the atmosphere (during sample transfer), an oxide passivation layer forms. The lack of Cu-

Cu coordination for the 1 wt% catalyst (N) (Table 3.2.6) suggests the Cu atoms after reduction are 

atomically dispersed (single-atom catalyst) while the remaining 1 wt% catalysts comprise isolated/dimer 

Cu atoms (due to the average coordination being <1 for Cu-Cu)  on the alumina’s surface [23]. The 5 

wt% Cu/Al2O3 (A) catalyst’s Cu-Cu bond seems to be noticeably more strained (longer bond lengths) 

and lower coordination compared to its similar loaded counterparts. This suggests that this catalyst has 

a transitional morphology between the other 5 wt% catalysts and the 1 wt% catalysts. The shorter Cu-

O bond lengths observed for the 5 wt% is explained by the presence of sintered particles with an oxide 

layer consisting of Cu2O (1.88 Å) and CuO (1.96 Å). 
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Fig. 3.2.9 EXAFS spectra in (a) k-space (k-weight = 3) and (b) R-space (k-weight = 3) for the ex-situ reduced Cu/Al2O3 

catalysts along with Cu and CuO reference foil/powder. A k range of 3.0 – 12.8 Å was used to Fourier transform and 

analyse the data.  
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Table 3.2.6 EXAFS model fitting of reduced ex-situ Cu/Al2O3 catalysts, Cu and CuO reference foil/powder. 

Sample Shell CN R (Å) 2 (Å2) ΔE0 (eV) R factor 

Cu foil Cu-Cu 12 2.551 ± 0.054 9.3 ± 0.8 2.96 ± 0.84 0.0270 

CuO Cu-O 4 1.956 ± 0.004 3.2 ± 0.5 5.74 ± 0.50 0.0013 

Cu/Al2O3 (N) 1 wt%* Cu-O 3.0 ± 0.3 1.953 ± 0.010 4.9 ± 1.3 -2.93 ± 1.46 0.0087 

Cu/Al2O3 (N) 1 wt%# 
Cu-Cu 0.4 ± 0.3 2.569 ± 0.024 8.0 ± 6.5 

-3.40 ± 1.0 0.0097 
Cu-O 3.0 ± 0.2 1.950 ± 0.007 4.8 ± 0.9 

Cu/Al2O3 (A) 1 wt%*# Cu-O 2.9 ± 0.6 1.959 ± 0.020 5.1 ± 2.5 -1.78 ± 2.62 0.0265 

Cu/Al2O3 (A) 1 wt% 
Cu-Cu 0.9 ± 0.3 2.577 ± 0.011 8.9 ± 3.0 

-3.14 ± 0.93 0.0081 
Cu-O 2.8 ± 0.2 1.950 ± 0.007 4.9± 0.8 

Cu/Al2O3 (S) 1 wt%*# Cu-O 3.2 ± 0.6 1.967 ± 0.019 6.7 ± 2.6 -2.85 ± 2.46 0.0242 

Cu/Al2O3 (S) 1 wt% 
Cu-Cu 0.7 ± 0.6 2.605 ± 0.024 11.7 ± 7.5 

-3.82 ± 1.31 0.0141 
Cu-O 3.1 ± 0.3 1.960 ± 0.010 6.3 ± 1.3 

Cu/Al2O3 (N) 5 wt% 
Cu-Cu 3.7 ± 0.6 2.554 ± 0.012 8.9 ± 1.3 

-7.69 ± 1.93 0.0111 
Cu-O 2.7 ± 0.6 1.919 ± 0.017 9.2 ± 3.2 

Cu/Al2O3 (A) 5 wt% 
Cu-Cu 2.0 ± 0.4 2.564 ± 0.011 8.5 ± 1.7 

-5.11 ± 1.74 0.0120 
Cu-O 2.8 ± 0.3 1.938 ± 0.013 7.1 ± 1.7 

Cu/Al2O3 (S) 5 wt% 
Cu-Cu 4.8 ± 0.8 2.543 ± 0.012 8.5 ± 1.4 

2.00 ± 1.84 0.0145 
Cu-O 1.7 ± 0.7 1.884 ± 0.024 11.8 ± 8.3 

CN, average coordination number; R, the distance between the absorber and backscattered atoms. 2
 multiplied by 103, 

Debye-Waller factor; ΔE0, the photoelectron energy origin; R-factor, the closeness of fit. * Model assuming Cu atoms are 

atomically dispersed, and #model assumed not to represent Cu local environment. 

 

  



108 

 

 

M. J. Islam, PhD Thesis, Aston University, 2021 

3.3 Catalytic testing 

The performance of the Cu-based catalysts created by wet impregnation was explored for the 

selective furfural hydrogenation at 50 °C in methanol at 1.5 and 10 bar of hydrogen. The catalyst 

characterisation has been summarised in Table 3.3.1. The conversion of furfural can follow several 

pathways, illustrated in Fig. 3.3.1. In the absence of any solid material, neither hydrogenation nor 

decarbonylation reactions were observed. With minimal conversion, the parent Al2O3 support was found 

to favour decarbonylation or acetalisation reaction while being inactive to hydrogenation reactions 

(Table 3.3.2). 

Table 3.3.1 Bulk elemental analysis, surface area measurements, Cu crystallite, Cu particle size analysis and EXAFS 

determined structure. Catalysts synthesised using copper nitrate, copper acetate and copper sulfate pentahydrate were 

denoted (N), (A) and (S), respectively. 

Catalyst 

Nominal 

Cu 

loading 

Actual Cu 

loadinga 

Surface 

areab 

Cu 

crystallite 

sizec 

Cu 

particle 

sized 

EXAFS 

structure 

(wt%) (wt%) (m2g-1) (nm) (nm)  

Cu/Al2O3 (N) 1.0 0.83 ± 0.04 36 ± 2 - - Isolated atoms 

Cu/Al2O3 (A) 1.0 0.91 ± 0.05 35 ± 2 - - Isolated atoms and dimers 

Cu/Al2O3 (S) 1.0 0.66 ± 0.08 39 ± 2 - - Isolated atoms and dimers 

Cu/Al2O3 (N) 5.0 4.22 ± 0.32 34 ± 2 13.2 ± 9.5 3.9 ± 1.9 Small nanoparticles 

Cu/Al2O3 (A) 5.0 4.56 ± 0.36 33 ± 2 13.0 ± 9.4 6.8 ± 5.5 Paracrystalline structure 

Cu/Al2O3 (S) 5.0 4.22 ± 0.31 30 ± 2 18.7 ± 12.9 12.8 ± 9.3 Large nanoparticles 

Al2O3 - - 38 ± 2 - - - 
a Determined by ICP-OES, b BET surface area from N2 porosimetry, c WPPM via XRD, d STEM 
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Fig. 3.3.1 Reaction scheme for upgrading furfural [51]. 

 

Table 3.3.2 Summary of blanks and bare support catalytic data for the hydrogenation of furfural. Reaction conditions: 7 h, 

50 °C, 1.5 bar and 10 bar of H2, 600 RPM, and 30 mg of catalyst. 

Catalyst 

H2 pressure 

(bar) 

Conversion 

(%) 

Furfuryl alcohol 

S (%) 
Furan S (%) FDMA S (%) 

Blank 

1.5 1.1 ± 0.1 0.0 0.0 100 ± 5.0 

10 1.6 ± 0.1 0.0 0.0 100 ± 5.0 

Al2O3 

1.5 1.1 ± 0.1 0.0 1.0 ± 0.1 99.0 ± 5.0 

10 0.5 ± 0.1 0.0 1.5 ± 0.1 98.5 ± 4.9 

 

In all cases, for the supported Cu-based catalysts, the selective hydrogenation of furfural to furfuryl 

alcohol was observed and are tabulated in Table 3.3.3. The catalysts were generally discovered to be 

highly selective to furfuryl alcohol due to the reaction parameters being tuned to favour furfuryl alcohol 

formation and the inherent selectivity of Cu surfaces [9, 14, 51]. However, the introduction of sulfur via 

CuSO4 derived catalysts were found to severely alter the direction of the reaction towards the 

acetalisation pathway, producing 2-furaldehyde dimethyl acetal (FDMA, Fig. 7.1.1 GCMS spectrum in 

the appendices), which is a high-cost compound that can be fed into subsequent reactions such as the 
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Mukaiyama aldol reaction [52]. Furfural conversion was observed to decrease using the materials 

synthesised from the following metal precursors copper acetate > copper nitrate > copper sulfate. 

Increasing the pressure of the hydrogen was found to increase the conversion and selectivity towards 

furfuryl alcohol as the abundance of adsorbed hydrogens makes the pathway more favourable.  The low 

activity of the material synthesised from the sulfate precursor was also accompanied by the production 

of furan arising from the decarbonylation of furfural and the formation of the acetalisation product 

FDMA. 

Table 3.3.3. Summary of catalytic data for the hydrogenation of furfural using copper catalysts. Reaction conditions: 7 h, 

50 °C, 1.5 bar and 10 bar of H2, 600 RPM, and 30 mg of catalyst. 

Cu 

precursor 

Nominal 

Cu wt% 

H2 

pressure 

(bar) 

Conversion 

(%) 

Furfuryl alcohol 

S (%) 

Furan S 

(%) 

FDMA S 

(%) 

Nitrate 

1.0 
1.5 

9.2 ± 0.5 86.3 ± 4.3 13.7 ± 0.7 0 

5.0 14.1 ± 0.7 94.6 ± 4.7 5.4 ± 0.3 0 

1.0 
10 

99.3 ± 5.0 99.8 ± 5.0 0.2 ± 0.1 0 

5.0 99.0 ± 5.0 99.5 ± 5.0 0.5 ± 0.1 0 

Acetate 

1.0 
1.5 

24.2 ± 1.2 96.0 ± 4.8 4.0 ± 0.2 0 

5.0 47.7 ± 2.4 97.6 ± 4.9 2.4 ± 0.1 0 

1.0 
10 

99.0 ± 5.0 99.8 ± 5.0 0.2 ± 0.1 0 

5.0 99.4 ± 5.0 99.6 ± 5.0 0.4 ± 0.1 0 

Sulfate 

1.0 
1.5 

2.2 ± 0.1 5.1 ± 0.3 61.4 ± 3.1 33.5 ± 1.7 

5.0 7.8 ± 0.4 0.8 ± 0.1 11.3 ± 0.6 89 ± 4.5 

1.0 
10 

94.9 ± 4.7 94.7 ± 4.7 0.3 ± 0.1 5.1 ± 0.3 

5.0 91.8 ± 4.6 83.5 ± 4.2 0.9 ± 0.1 15.6 ± 0.8 

Rounding errors may be present. 

 

The reaction profiles of 1 wt% Cu/Al2O3 catalysts for the selective hydrogenation of furfural 

operating at a mild pressure of 1.5 bar are illustrated in Fig. 3.3.2a. An induction period of 5 to 6 h is 

noticed where the catalysts are mostly inactive in terms of conversion and furfural alcohol production; 

most clear for the Cu/Al2O3 (N) and (A) catalysts.  Performing the reaction at a higher hydrogen pressure 

of 10 bar, the induction period is alleviated to ~1 h (Fig. 3.3.2b). This phenomenon can be thought to 

be attributed to insufficient hydrogen adsorption on the surface, limiting activity or the formation of 

surface oxide on the copper surface. Arising from pre-dissolved oxygen in the reaction mixture or the 

in-situ reduction procedure at 300 °C for 0.5 h being inadequate. Performing a more rigorous in-situ 
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reduction strategy (320 °C for 0.5 h) had left the induction period unchanged suggesting the reduction 

procedure was adequate. DFT calculations [53] suggests that CuO is unable to catalyse the reactions 

due to being unable to produce atomic hydrogen which would enable hydrogenation reactions until the 

oxide had been reduced. While as expected, the induction period is found inversely proportional to 

hydrogen partial pressures which have been examined previously by Kim et al. [54] via time-resolved 

XRD and XAS. The authors found the reduction of CuO being complex, involving an induction period 

and the embedding of hydrogen into the bulk oxide. Their in-situ experimentation indicates that under 

a large supply of hydrogen the reduction process completely reduces the CuO to metallic Cu. This is 

done without the formation of an intermediate or suboxide (i.e., no Cu2O or Cu4O3) with an apparent 

activation-energy of 60.7 kJ mol-1, while the value for Cu2O is 114.7 kJ mol-1.  Consequently, at low 

hydrogen partial pressures intermediate oxides are formed that have a higher activation-energy for the 

final reduction step lengthening the observed induction period. While the possible explanation could be 

insufficient hydrogen adsorption on the surface, limiting the initial rate of hydrogenation. As the 

reaction progresses, sufficient adsorbed hydrogen is available for the reaction to progress unhindered. 

Either way, a poison is present at the start of the reaction in the form of oxide or insufficient hydrogen 

coverage, observed as an induction period. 
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Fig. 3.3.2 The reaction profiles of furfural conversion and furfuryl alcohol selectivity. Reaction conditions: 50 °C, (a) 1.5 

bar and (b) 10 bar of H2, 600 RPM, 30 mg of catalyst and using supported 1 wt% Cu/Al2O3 catalysts. Solid and dashed 

lines represent the conversion and selectivity to furfuryl alcohol, respectively. 

 

Reaction profiles are presented of the 5 wt% Cu/Al2O3 catalysts in Fig. 3.3.3. Evidently, CuSO4 

derived Cu/Al2O3 (S) catalyst, demonstrates the worst furfuryl alcohol selectivity with differences 

becoming more apparent at 1.5 bar of H2. The presence of remnant sulfur species (primarily sulfates) 

on the surface of the catalyst determined through XPS measurements (Fig. 3.2.7a) is thought to be 

explained by these species. The catalyst deactivation arising from sulfur species is likely related to S 

being more electronegative than the Cu, thus withdrawing electron density from the surface and causing 

an electronic modification to the surface [55]. It should be noted that a DFT study by Kitchin et al. [56], 

reported that sulfur preferentially adsorbs onto the high surface energy and high co-ordinated HCP and 

FCC sites on the copper surface, which hydrogen also favours to adsorb to [57, 58]. The sulfur 

contamination further cripples copper’s ability to chemisorb hydrogen, an activated process (requires 

energy) [59] unlike other metals such as Pt, Pd and Ni [60]. Alterations to the surface electron density 
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permit side reactions to be more prominent such as furan and FDMA formation (observed by the 

immediate increase in conversion in Fig. 3.3.3b). As the partial pressure of hydrogen is increased (Fig. 

3.3.2b and Fig. 3.3.3b), the selectivity is noticed to flip towards furfuryl alcohol as the rate-determining 

is no longer the adsorption of hydrogen. While the increased acetal formation of the 5 wt% Cu (S) 

against the lower loading counterpart may arise to due the presence of larger Cu surfaces able to promote 

the reaction and the greater interaction ability of the sulfur species on the Cu surface.  

 

Fig. 3.3.3 The reaction profiles of furfural conversion and furfuryl alcohol selectivity. Reaction conditions: 7 h, 50 °C, (a) 

1.5 bar and (b) 10 bar of H2, 600 RPM, 30 mg of catalyst and using supported 5 wt% Cu/Al2O3 catalysts. Solid and dashed 

lines represent the conversion and selectivity to furfuryl alcohol, respectively. 

 

Frequently reported in the literature [15, 61-66], the acetalisation of aldehydes, including furfural 

(Fig. 3.3.4), in alcoholic solvents is observed. With the presence of Lewis [65, 66] or protic [65] acid 

catalysts, the acetalisation with alcohols can be achieved. Taylor et al. [15] also reported the 

acetalisation of furfural with their alcoholic solvent utilising supported Pt catalysts. The authors 
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observed that the hydrogenation of furfural is receptive to the choice of the solvent, with alcohols 

described as being more active than non-polar solvents. Influencing the current reaction parameters, 

their findings also suggest that alcohols such as ethanol favours the formation of the undesired acetal 

products. However, using solvents such as methanol and operating the reaction at lower temperatures 

was found to suppress the side reaction. 

 

Fig. 3.3.4 Acetalisation of furfural with methanol [15]. 

 

As shown in Table 3.3.3, significant FDMA is produced with the sulfate-derived catalysts accredited 

to sulfur species catalysing the acetalisation of furfural and methanol. In addition, this observation has 

not yet been reported in this reaction system. Further investigations involved two likely forms of metal 

sulfates that may be present. The bulk Al2(SO4)3 catalyst demonstrated to be the most active, instantly 

catalysing the reaction at room temperature with minimal agitation (conversion = 92.7%). The 

remarkable activity and selectivity are attributed to the ‘super Lewis acid sites’ [67] and possibly some 

homogeneous catalytic character as it was the only catalyst to be completely dissolved into the reaction 

mixture after 7 hours at 50 °C. Likewise, the bulk CuSO4 and non-reduced 5 wt% Cu/Al2O3 (S) (CuSO4 

reflections detected in Fig. 3.2.2b and Fig. 3.2.3b) were also found active and selective for these 

reactions (Table 3.3.4). Note that at an intermediary reduction temperature of 200 °C, the sulfur-derived 

catalyst has both the characteristics of CuSO4 and metallic Cu (Fig. 3.2.3b) while the sulfur-free 5.0 

wt% Cu/Al2O3 (A) catalyst only has metallic Cu reflections (Fig. 3.2.3a). The resulting catalytic data 

suggest that sulfate species in the catalyst can direct the reaction towards acetalisation. Leaching of 
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sulfur was confirmed through ICP-OES of the supernatant fluid after ageing the sulfate-derived catalyst 

in MeOH for 7 h at 50 °C (section 2.3.1.1). Under identical experimental conditions, the resulting 

“cleaned” catalyst and the supernatant fluid was able to promote acetalisation via a homogeneous route 

(Table 3.3.4 and Fig. 3.3.5) 

 

Table 3.3.4 Summary of catalytic data for the acetalization of furfural using sulfate and sulfate-free catalysts. Reaction 

conditions: 7 h, 50 °C, 1.5 bar, 600 RPM, and 30 mg of catalyst. 

Catalyst 
Reduction 

temperature (°C) 

Conversion 

(%) 

Furfuryl 

alcohol S (%) 

Furan 

S (%) 

FDMA S 

(%) 

Al2(SO4)3 n/a 84.5 ± 4.2 0 0 100 ± 5.0 

CuSO4 n/a 89.6 ± 4.5 0 0 100 ± 5.0 

Cu/Al2O3 (S) 5.0 

wt% 
n/a 94.0 ± 4.7 0 0 100 ± 5.0 

Cu/Al2O3 (S) 5.0 

wt% 
200 95.8 ± 4.8 2.3 ± 0.1 0 97.7 ± 4.9 

Cu/Al2O3 (A) 5.0 

wt% 
200 34.0 ± 1.7 98.6 ± 4.9 0 1.4 ± 0.1 

Cu/Al2O3 (S) 5.0 

wt% 
300 7.8 ± 0.4 0.8 ± 0.1 

11.3 ± 

0.6 
89.0 ± 4.5 

Cu/Al2O3 (S) 5.0 

wt% cleaned* 
n/a 70.5 ± 3.5 36.4 ± 1.8 0 63.6 ± 3.2 

Supernatant fluid n/a 93.1 ± 4.7 0 0 100 ± 5.0 

* Catalyst was washed in methanol at 50 °C for 7h before use. 
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Fig. 3.3.5 Acetalization of furfural with metal sulfate catalyst. The reaction profiles of furfural conversion and 2-

furaldehyde dimethyl acetal (FDMA) selectivity. Reaction conditions: 50 °C, 1.5 bar of H2, 600 RPM, 30 mg of catalyst and 

using CuSO4, Al2(SO4)3 and 5 wt% Cu/Al2O3 catalysts at varying states of reduction.  

 

 

 

Table 3.3.3 shows increasing the copper loading of the catalyst and consequently increasing the size 

of the Cu ensembles, demonstrates an improved conversion and selectivity towards furfuryl alcohol for 

all the sulfur-free catalysts at low hydrogen pressures. The increased conversion at lower pressures can 

be simply explained due to the higher copper content and availability of sites able to adsorb hydrogen 

onto the surface. Whilst, at higher pressures this limiting factor is removed for 1 wt% catalysts. 

However, once the 1 wt% catalysts have been normalised to metal content (Fig. 3.3.6), they are superior 

in terms of catalytic activity against their higher loaded counterparts. Turnover frequencies were 

estimated using dispersions calculated by XPS (Table 3.2.4). TOFs (in Table 3.3.5) suggest that the Cu 

surface sites in the 1 wt% catalysts are generally better, conceivably due to their lack of coordination 

and greater reactivity for the transformation of the substrate. Comparing the nitrate and acetate materials, 

it is also found that they are approximately the same when Cu content/active sites are normalised (Fig. 
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3.3.6 and  Table 3.3.5) for the 1 wt% catalyst with the increased conversion most likely arising due to 

the most efficient Cu deposition on the support. However, at the Cu 5 wt% loadings the acetate is 

noticeably better as a higher dispersed Cu phase is formed which can accelerate the reaction at near-

ambient hydrogen pressures. Supporting the previous findings, TOFs shows that at milder hydrogen 

partial pressures,  sulfur contaminants could inhibit the formation of active sites compared to the free-

sulfur catalysts, or create the same number of active sites but less efficient for hydrogenation. 

 

Fig. 3.3.6 Normalised initial rates of furfural consumption per gram of Cu after the induction period across the (a) 1.0 wt% 

and (b) 5.0 wt% Cu/Al2O3 catalysts at differing hydrogen pressures. 
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Table 3.3.5 Turnover frequencies for the hydrogenation of furfural using copper catalysts. Reaction conditions: 7 h, 50 °C, 

1.5 bar and 10 bar of H2, 600 RPM, and 30 mg of catalyst. 

Cu precursor 
Nominal Cu 

(wt%) 

H2 pressure 

(bar) 
TOF (h-1) a 

Nitrate 

1 
1.5 

3.1 ± 0.3 

5 1.4 ± 0.2 

1 
10 

21.2 ± 2.4 

5 14.0 ± 1.6 

Acetate 

1 
1.5 

3.1 ± 0.3 

5 4.8 ± 0.5 

1 
10 

18.3 ± 2.0 

5 15.7 ± 1.7 

Sulfate 

1 
1.5 

0.5 ± 0.1 

5 1.0 ± 0.1 

1 
10 

30.9 ± 3.4 

5 8.8 ± 1.0 

a TOF determined from dispersion calculated by XPS. 

Across all the catalyst series tested, at near-ambient hydrogen pressures (Table 3.3.3), the furan 

selectivity is inversely proportional to the Cu loading suggesting the reaction is structure sensitive. 

Structure sensitivity has been reported previously by Somorjai et al. [68] employing supported platinum 

catalysts. The authors reported that larger Pt particles (7.1 nm) displayed increased selectivity to furfuryl 

alcohol, while smaller Pt nanoparticles (1.5 nm) were more proficient in accessing the decarbonylation 

furan pathway. So, similar behaviour is inferred to influence the current behaviour. It is well known that 

Cu (111) surfaces interact with furfural via its lone pair on the oxygen atom of the carbonyl group. 

Resulting in a perpendicular η1(O)-aldehyde conformation [13, 14, 51, 69]. Sitthisa et al. [69] suggest 

this specific conformation is preferred due to the repulsion of the furan ring from the close-packed Cu 

(111) surface. Due to the overlap of the 3d band of the Cu surface atoms and the anti-bonding orbitals 

of the aromatic furan ring. The interaction of furfural via this η1(O)-aldehyde adsorption mode and the 

instability of the η2(C, O)-aldehyde conformation is thought to explain the higher selectivity of the 

hydrogenation of the C ═ O bond over decarbonylation observed for Pd catalysts [70]. Generally, as the 

size of the metal ensemble size decreases, the generation of lower coordination facets are preferred (such 

as Cu (110) and Cu (100) surfaces). Further theoretical calculations by Sitthisa et al. [69], implies that 

more open Cu (110) planes permits the furan ring to move closer to the surface due to the lower Cu 

atom density that interacts with the furan ring. Therefore, the 5 wt% catalysts (N and A) are selective 
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towards furfuryl alcohol at low hydrogen pressures. Decreasing the ensemble size with the 1 wt% 

catalysts (N and A) the repulsion of the furan ring falls due to the formation of isolated and dimer Cu 

species and decarbonylation is more favoured. 

The recyclability of the 1 wt% and 5 wt% catalysts synthesised from the acetate precursor was also 

investigated. Once the catalyst was recovered via centrifugation following the reaction, the catalysts 

were tested under optimal conditions and downscaling the reaction by 15% (since 15% of the catalyst 

was lost during the recovery process). Table 3.3.6 shows that the activity and selectivity remain 

unaffected after the reuse of both catalysts.  

Table 3.3.6 Furfural hydrogenation over recycled catalysts. Reaction conditions: 4 h, 50 °C, 10 bar of H2 and 600 RPM. 

Catalyst Nominal 

Cu (wt%) 

Hydrogen 

Pressure (bar) 

Conversion 

(%) 

Furfuryl 

Alcohol S (%) 

Furan S (%) FDMA S 

(%) 
1Cu/ Al2O3 (A) 1.0 10 73.0 ± 3.7 99.8 ± 5.0 0.2 ± 0.1 0 

2Cu/ Al2O3 (A) 1.0 10 72.4 ± 3.6 99.2 ± 5.0 0.8 ± 0.1 0 

1Cu/ Al2O3 (A) 5.0 10 87.5 ± 4.4 99.8 ± 5.0 0.2 ± 0.1 0 

2Cu/ Al2O3 (A) 5.0 10 86.3 ± 4.3 99.6 ± 5.0 0.4 ± 0.1 0 

Superscripts 1 and 2 indicate the catalyst cycle of testing. 

 

 

  



120 

 

 

M. J. Islam, PhD Thesis, Aston University, 2021 

3.4 Conclusions 

Liquid-phase hydrogenation of furfural was studied with a series of supported monometallic 

Cu/Al2O3 catalysts synthesised from various Cu metal precursors by wet impregnation. The catalysts’ 

electronic and morphological structure was analysed via ICP-OES, BET, PXRD, STEM, XPS, XAES 

and XAS. Furfural hydrogenation was receptive to the presence of sulfates in the catalyst, entirely 

altering the reaction selectivity to the acetalisation pathway of furfural with methanol at over 90% 

conversion at mild conditions. While at near ambient hydrogen pressures, catalytic tests show that 

sulfate impurities deactivate the catalyst leading to lower conversion and altered selectivities. It has also 

been shown that the selective furfural hydrogenation can be structure sensitive, as isolated and dimer 

Cu atoms were found to promote decarbonylation reactions due to their lower-packed copper structures 

influencing the interaction of the furan ring with the underlying surface; mimicking platinum group 

catalysts [13, 70, 71]. In all cases catalysts derived from copper acetate were found to be superior which 

likely due to their altered structure, suggesting the metal precursor selection appears to be critical to 

achieving optimal catalytic activity. The mechanism of the precursor decomposition and anchoring onto 

the support plays a substantial role in the final catalytically active copper morphology. Thus, influencing 

the synthesis of a cheap, non-toxic, and selective catalyst. 
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4.1 Introduction 

In the earlier chapter, it is shown that Cu catalysts derived from Cu acetate are optimal for the 

selective hydrogenation of furfural. However, while Cu is very selective for the reaction, it lacks the 

activity that other more expensive metals such as Ir, Pt, Pd and Ru can provide [1-6].  

In most cases, only the surface atoms of the nanoparticle are the active sites, whereas those inside 

the nanoparticle are spectators. For example, in a 5 nm particle, only about 22% of the atoms are 

available for catalysis, which leads to inefficient use of precious metals (Fig. 1.7.1). This is problematic 

since the scarce nature of precious metals requires intensive mining operations that are environmentally 

damaging [7]. Catalysts that use more abundant elements normally need harsher conditions and/or 

augmentation of their catalytic activity by combining them with precious metals [3]. A method of 

improving atom efficiency is to develop more and more dispersed catalysts up to the atomic limit. This 

is where single-atom catalysis exists, where traditional heterogeneous and homogeneous distinctions 

become blurred [8]. Several investigations have been published on whether a single atom attached to 

the support would work as an efficient catalyst [9-11]. Flytzani-Stephanopoulos et al. [12] stumbled 

onto single atoms of Au, present as surface Au-Ox species serving as effective catalysts for the low-

temperature water-gas shift reaction, as they found no evidence of Au nanoparticles taking part as the 

active species. Various other studies have investigated single-atom catalysts (SAC) theoretically and 

experimentally looking at unique preparation methods and catalytic processes [13-18]. Advantages of 

single atoms include incredible activity [19] with chemoselectivity due to the isolated active sites. As 

one can expect, there is better control of sites compared to a nanoparticle where multiple different active 

sites are present (e.g., on different surfaces such as 111, 110 and 100). A subclass of SACs supported 

on typically a base metal such as copper were reported initially by Kyriakou et al. [20]. The Pd atoms 

were deposited on a Cu (111) surface in Ultra High Vacuum (UHV) conditions, where they observed 

stable isolated Pd species via LT-STM (low-temperature scanning tunnelling microscopy) and named 

the structure as a single-atom alloy (SAA). Various DFT studies also supported their findings that the 

isolated Pd atoms present can act as entry and exit sites for hydrogen dissociation and recombination 
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with the reported activation energy dropping from 0.4 eV (Cu 111) to ~0.02 eV with the SAA [16, 20-

22]. These fundamental experiments in UHV led to the development of actual SAA catalysts used in 

various catalytic reactions [15, 18, 23, 24].   

This chapter investigates the synthesis of atom efficient SAA catalysts for selective hydrogenation 

of furfural. In this chapter the Cu nanoparticle formation was controlled colloidally, as it was previously 

shown in Chapter 3 how wet impregnation creates a range of different nanostructures. The resulting 

monodisperse Cu nanoparticle will be used as a sacrificial host for the Pd atoms to be implanted. Since 

hydrogen dissociation is an activated process on Cu surfaces, the isolated Pd atoms will enhance 

hydrogen dissociation and spillover hydrogen onto the copper surface, increasing the activity of the 

catalyst. Investigations will also be conducted to optimise the catalytic behaviour by adjusting synthetic 

parameters. Due to the lack of experimental studies on whether the isolated surface Pd atoms can sink 

into the nanoparticle, XAS experiments will be used to give insight into this. 
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4.2 Characterisation of alumina supported catalysts 

4.2.1 PdCu SAA catalysts 12 wt% 

4.2.1.1 Elemental and Surface Area Analysis 

Bulk elemental analysis of the 12 wt% catalytic materials (Table 4.2.1) shows that adjusting the 

galvanic replacement (GR) method to synthesise the SAA catalysts can significantly affect the final 

loading of both Cu and Pd. GR is a simple way to prepare bimetallic nanostructures using metal hosts 

as templates for the minority metal [18, 25, 26]. In the present case, the Pd (II) precursors are reduced 

by the Cu0 (Cu + Pd2+ → Cu2+ + Pd). The process is rationalised by Cu having the lower reduction 

potential (Cu2+/Cu, E0 = +0.340 V) compared to Pd (Pd2+/Pd, E0 = +0.575 V) so enabling the electron 

transfer from Cu to Pd. Utilising method 1 (M1), causes the least amount of leaching of the host 12% 

Cu/Al2O3 catalyst but also leading to the lowest resulting Pd loading.  While M3’s conditions observed 

to be the harshest utilising 2 mM HCl (20 times more concentrated than M1) causing substantial leaching 

of the Cu phase. The purpose of the HCl in the procedure is to dissolve any surface Cu oxide that may 

be present as the GR reaction will be severely hindered [15] while the metallic Cu phase should be more 

chemically resistant to HCl [27].  

Table 4.2.1 Bulk elemental analysis, for the 12 wt% PdCu catalysts determined by ICP-OES. 

Sample GR method Pd loading (wt%) Cu loading (wt%) 

Cu100 (12%) - - 12.525 ± 0.250 

Pd1Cu153 (12% M1) 0.1mM HCl, 100 °C 0.132 ± 0.005 12.476 ± 0.123 

Pd1Cu100 (12% M2) 
Aqueous media, 

sonication, 50 °C 
0.189 ± 0.015 11.341 ± 0.215 

Pd1Cu98 (12% M3) 2.0 mM HCl, 100 °C 0.175 ± 0.006 10.262 ± 0.047 

Pd1Cu93 (12% M4) 
0.1 mM HCl, sonication,  

50 °C 
0.199 ± 0.016 11.076 ± 0.175 

 

It has also been shown the reduction of Pd2+ and Pt2+ can be accelerated by sonication [18, 25, 26] 

with PdCu SAA catalysts previously being synthesised this way [18]. Therefore, sonication was 

implemented for methods 2 and 4 (M2 and M4). Sonication caused the noticeable dissolution of the Cu 

nanoparticles, observed by the reduction in the Cu loading which has been reported earlier [28] and has 
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been further exacerbated with the addition of 0.1 mM HCl (M4). But as previously reported, the GR 

reaction was found significantly enhanced by increased Pd uptake.  

Porosimetry of the bare Al2O3 support (Fig. 4.2.1) showed that it has a type II isotherm with a surface 

area of 38.2 m2g-1 indicating the material is non-porous/macro-porous. The data is consistent with the 

manufactured specifications that the material is composed of non-porous crystalline nanoparticles. Only 

the bare support was investigated as the previous chapter showed minimal differences in surface area 

between the catalysts. 

 

Fig. 4.2.1 BET isotherm for the bare Al2O3 support. 
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4.2.1.2 Powder X-ray Diffraction (PXRD) 

Fig. 4.2.2 displays the ex-situ reduced (300 °C, 0.5 h) diffractograms for the 12 wt% loaded catalysts. 

The diffractograms show broad but discernible reflections characteristic of nano-crystalline -Al2O3 

(JCPDS card No. 29-0063) and -Al2O3 (JCPDS card No. 46-1215), and a small impurity arising from 

the -Al2O3 phase (JCPDS card No. 11-0517). Qualitatively examining the alumina diffraction data, the 

morphology of the support after Cu and Pd deposition seems largely unchanged. The host Cu100 (12%) 

catalyst shows observable diffraction peaks associated with the copper phase, with a calculated average 

lattice of 3.621 Å (Table 4.2.2). Similarly, the PdCu bimetallic catalysts also show observable Cu 

diffraction peaks. However, insignificant changes in the lattice parameters are observed with Pd 

addition, which contradicts Vegard rule [29] suggestion that the lattice should expand. However, a 

recent paper by Gamler et al. [30] suggests that when there is a lattice mismatch in core-shell bimetallic 

systems a compressive strain develops, resulting in the diffraction peak shifting to higher angles and the 

observation of lattice contractions. It should be noted the lattice parameters determined from whole 

pattern powder modelling (WPPM) lacks the accuracy of methods such as Rietveld refinement as 

WPPM has only the position of the peaks constrained while the latter has both the position and intensity 

of the peaks constrained to the crystal structure.  
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Fig. 4.2.2 XRD diffractograms of reduced ex-situ 12 wt% PdCu species supported on Al2O3 catalysts and the bare support.  

 

Table 4.2.2 Crystallite size and lattice parameters for the 12 wt% PdCu catalysts 
 

Sample GR method 
Crystallite size 

(nm)a 

Crystallite size 

(nm)b 

Lattice 

Parameter (Å)b 

Cu100 (12%) - 8.2 ± 0.8 6.4 ± 3.7 3.621 

Pd1Cu153 (12% M1) 0.1mM HCl 10.4 ± 1.0 7.7 ± 5.0 3.615 

Pd1Cu100 (12% M2) Aqueous sonication 11.0 ± 1.1 7.1 ± 5.1 3.620 

Pd1Cu98 (12% M3) 2.0 mM HCl 21.7 ± 2.2 9.9 ± 8.7 3.617 

Pd1Cu93 (12% M4) 0.1 mM HCl sonication 11.9 ± 1.2 5.1 ± 4.0 3.617 
 

a Determined by XRD via the integral breadth method, b WPPM via XRD 

 

The crystallite size of the host Cu100 (12%)/Al2O3 is observed to be 6.4 ± 3.7 nm, which is small 

considering the very high Cu loading of the catalyst. And since the nanoparticles were colloidally 

synthesised, the size and shape of the particles can be controlled before deposition onto the support. 

Similar control of the nanoparticle formation would not be possible for an equivalent wet impregnation 

synthesis. Consequently, this method has given a good sacrificial platform for the subsequent Pd 

incorporation. Examining the Cu crystallite sizes in Table 4.2.2, one can observe that as Pd is introduced 
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onto the host Cu catalyst, the crystallite sizes are within error similar, but the particles generally become 

less monodisperse (higher standard deviation, WPPM). Mohl et al. [25] reported that after the GR 

process the Cu ions can be reduced again from the solution and deposited onto the nanoparticle. 

Consequently, this uncontrolled reduction can explain altered the particle size distribution compared to 

the host catalyst.  

The absence of detectable Pd reflections of the bimetallic catalyst in Fig. 4.2.2 indicates the absence 

of long-range Pd crystalline structure, suggesting the Pd phase is highly dispersed in all these catalysts. 

It should be also noted Pd (29.5° for PdO, JCPDS 41-1107) and Cu oxides (36.4° and 38.8° for Cu2O, 

05–0667 and CuO, JCPDS 45-0937, respectively) were also not detected implying the nanoparticle 

mostly has taken on a core-shell type structure with a metallic core and an passivation layer. 
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4.2.1.3 X-ray Photoelectron Spectroscopy (XPS) and X-ray excited Auger Electron 

Spectroscopy (XAES) 

Fig. 4.2.3 shows XPS spectra of the ex-situ reduced catalysts along with reference spectra of Cu, CuO, 

Cu2O, Pd and PdO. The characteristic Cu 2p doublet is observed with the Cu 2p3/2 transition centred at 

932.50 eV (Table 4.2.3). The absence of strong shake-up satellites at 942.6 eV and 962.3 eV, shows the 

absence of Cu2+ species so, the Cu is largely in its Cu0 or Cu+ oxidation state. Note that passivation of 

the copper nanoparticles is expected after exposure to atmospheric oxygen before analysis. Minimal 

differences in the Cu 2p3/2 transition are observed between the catalysts. It should also be noted, the 

binding energies of Cu+ and Cu0 are very similar making deconvolution problematic. With this problem 

in mind, the composition of the Cu species was determined according to the Cu 2p3/2 and satellite peaks 

[31-33]. The surface compositional analysis (Table 4.2.3) shows that overall, the surface Cu species are 

dominantly in the Cu0 or Cu+ state with ⁓15% composing of Cu2+ (CuO) supporting the idea of an 

surface Cu oxide layer.   

 

Fig. 4.2.3 High-resolution stacked XPS and XAES spectra of the (a) Cu 2p, (b) Cu L3VV and (c) Pd 3d regions for the  

12 wt% PdCu catalysts synthesised using different methods after being reduced ex-situ at 300 °C for 0.5 h under flowing H2. 
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Table 4.2.3 Summarised binding energies for the Pd 3d5/2 and Cu 2p3/2, kinetic energies for the Auger Cu L3VV transitions, 

surface composition, modified Auger parameters for copper catalysts and change in relaxation energy compared to bulk Cu 

for the ex-situ reduced 12 wt% catalysts and reference materials. 

Sample 
Pd 3d5/2 

(eV) 

Cu 2p3/2 

(eV) 

L3VV 

(eV) 

Cu0 + Cu+ 

(%) 

Cu2+ 

(%) 

Modified 

Auger 

parameter (eV) 

 Relaxation 

energy (eV) 

Cu100 (12%) - 932.47 916.42 86.2 13.8 1848.89 1.25 

Pd1Cu153 (12% M1) 335.41 932.40 916.49 84.4 15.6 1848.89 1.25 

Pd1Cu100 (12% M2) 335.70 932.50 916.59 85.4 14.6 1849.09 1.14 

Pd1Cu98 (12% M3) 335.47 932.47 916.62 85.4 14.6 1849.09 1.14 

Pd1Cu93 (12% M4) 335.65 932.75 916.34 83.6 16.4 1849.09 1.14 

CuO - 933.62 917.78 - - 1851.40 -0.01 

Cu2O - 932.29 916.70 - - 1848.99 1.20 

Cu foil* - 932.63 918.75 - - 1851.38 0 

PdO 337.26 - - - - - - 

Pd foil 335.20 - - - - - - 

*Cu 2p3/2 was calibrated to the ISO standard of 932.63 eV. 

 

Contrarily to the small difference in the Cu 2p3/2 transition binding energy between Cu2O and Cu, 

chemical shifts in the Auger transitions are much more prominent due to the altered pathway for the 

transition involving electrons closer to the valence electrons, which are involved in bonding [34]. 

Consequently, the L3VV Auger transition for the reference Cu2O sample is found shifted to lower kinetic 

energies (⁓2 eV) when compared to the reference Cu sample (Table 4.2.3). Cu L3VV Auger transitions 

for the catalysts were found to be comparable to Cu2O, though shifted to slightly lower kinetic energies 

(by 0.1 eV). The modified Auger parameter/relaxation energies which are dependent on initial and final 

state effects show similar trends suggesting the surface is largely composed of Cu2O with the further 

shift from bulk Cu2O due to the polarizable support. The latter point will be discussed further in section 

4.2.2.6.  

Fig. 4.2.3c shows the attenuated Pd 3d5/2 transition centred at approximately 335.5 eV, shifted 0.3 eV 

higher the metallic Pd. This expected result supports the idea that the surface oxidised Cu nanoparticles 

withdraw electrons from the Pd atoms, therefore increasing the binding energy. It should be noted bulk 

PdO is not formed as PdO will cause a large binding energy shift of 2.1 eV (Table 4.2.3). So, it is likely 

that the surface Pd analysed by XPS is likely near or in the Cu oxide layer via Pd-O-Cu/O-Cu-Pd 

interactions.  
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Fig. 4.2.4 shows the XPS derived dispersion calculations, giving an insight into the location of the 

Cu and Pd atoms present in the catalysts. Supported by the previous characterisation techniques, the 

Pd1Cu153 (12% M1) catalyst seems to be the most unaffected by the GR process by observing similar 

Cu dispersion values. The calculated Cu dispersion for both catalysts equates to a nanoparticle size 

⁓10.5 ± 1.5 nm (according to the dispersion vs Cu nanoparticle plot in Fig. 1.7.1) which is within error 

similar to the XRD results.  It can be also observed that the Pd1Cu98 (12% M3) catalyst has the lowest 

dispersion (nanoparticle size of ⁓11.0 nm), though the difference is slight compared to the data from the 

crystallite size calculations. This can be rationalised by the fact that XPS observe all atoms on the surface 

no matter if they are in small or larger nanoparticles. While the sonicated catalysts (M2 and M4) appear 

to have the highest Cu dispersion (nanoparticle sizes of ⁓7.5 nm and ⁓6.8 nm, respectively) which is 

consistent with sonication’s ability to break up aggregates [28]. However, sonication can promote the 

Kirkendall effect [26, 35], whereby the diffusion of elements like Pt into Cu is faster than the opposite 

reaction. Consequently, the promotion of the diffusion of the Pd into the bulk of the copper phase is 

detected by the decrease in the Pd dispersion.  Though, the bimetallic catalyst synthesised from method 

1 (Pd1Cu153 (12% M1)) appears to have the highest relative surface Pd concentration (highest Pd 

dispersion).  Such results are consistent with previous observations [36] that core-shell morphology is 

favoured when the GR process occurs slowly, while harsher conditions (in the current case, 2 mM HCl 

and sonication) promote full alloy formation. High surface Pd concentration is crucial, as surface Pd 

species are responsible for the enhanced hydrogen dissociation capability of the catalyst. This is due to 

the Pd surface atoms acting as entrance and exit sites for hydrogen dissociation and the subsequent 

spillover onto the copper phase [37] where the rest of the reaction takes place.  
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Fig. 4.2.4 XPS derived dispersions for the 12 wt% PdCu catalysts synthesised using different methods after being reduced 

ex-situ at 300 °C for 0.5 h under flowing H2. 

 

It has been reported by Elzey et al. [38] that Cu nanoparticles aged in aqueous HCl (25 mM) solutions 

in air can form a paratacamite (Cu2(OH)3Cl) phase. The Cl 2s/2p region of the survey spectrum (Fig. 

4.2.5) for the Pd1Cu98 (12% M3) catalyst is unable to detect the presence of Cl. The absence of Cl 

suggests that in 2 mM HCl aqueous conditions, detectable Cl is not formed on the nanoparticle after 

reduction at 300 °C. The survey spectrum also shows the absence of any other contamination other than 

adventitious carbon which is thought to be deposited from the atmosphere and is typically comprised of 

short-chain and possibly polymeric carbon compounds [39]. 
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Fig. 4.2.5 Survey XPS spectrum of the ex-situ reduced Pd1Cu98 (12% M3) catalyst with an insert of the Cl 2s and 2p region. 
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4.2.1.4 X-ray Absorption Spectroscopy (XAS)  

The PdCu catalyst synthesised via method 1 (Pd1Cu158 (12% M1)) was chosen for XAS analysis, as 

the catalyst was found to be the most promising from the Pd dispersion and the later shown catalytic 

testing data. The EXAFS modelling is displayed in Table 4.2.4 and Fig. 4.2.6, the fitting was completed 

by assuming the Cu structure was largely unchanged with one of the Cu atoms replaced with Pd. The 

data suggests the absence of Pd-Pd coordination at 2.742 Å. Therefore, a single scattering path (Pd-Cu) 

was included in the fit relating to the bonding between the Cu atoms and Pd atom. After the first 

coordination shell, the intensity of the oscillations (in R-space) quickly falls away which suggests that 

the structure is quite disordered after the first-shell or lack of adequate signal to noise. The data, 

therefore, suggest the Pd atoms have successfully been atomically dispersed throughout the Cu phase 

without clustering of the Pd atoms. This conclusion can be further supported by the calculated Pd-Cu 

bond length of 2.572 Å, which matches well to the bulk Cu-Cu bond length of 2.551 Å considering the 

slightly larger Pd atomic radius (1.40 Å) compared to Cu (1.35 Å). It should be noted that EXAFS can 

only distinguish similar bond length elements if the difference in the atomic number is approximately 

at least 3 (for higher atomic number elements this can increase to 5-7), as the difference in the computed 

intensity of the scattering path is nearly identical. In the present case, the difference in the atomic number 

between Cu and Pd is 17 and have a significant difference in their bond lengths making their 

differentiation possible. 

Table 4.2.4 EXAFS model fitting of the re-oxidised PdCu/Al2O3 catalyst, Pd and Cu reference foils. 

Sample Sample form Shell CN R (Å) 
σ2 (Å2) 

×103 ΔE0 (eV) R factor 

Pd foil - Pd-Pd 12 2.742 ± 0.002 5.6 ± 0.4 3.70 ± 0.39 0.0163 

Cu foil - Cu-Cu 12 2.551 ± 0.054 9.3 ± 0.8 2.96 ± 0.84 0.0270 

Pd1Cu158 (12% M1) Re-oxidised Pd-Cu 6.2 ± 0.8 2.572 ± 0.007 4.2 ± 0. 8 1.40 ± 1.56 0.0063 

CN, average coordination number; R, the distance between the absorber and backscattered atoms. 2 multiplied by 103, 

Debye-Waller factor; ΔE0, the photoelectron energy origin; R-factor, the closeness of fit. 
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Fig. 4.2.6 EXAFS spectra in k-space (k-weight = 3) and (b) R-space (k-weight = 3) for the Pd1Cu158/Al2O3 catalyst (reduced 

ex-situ) along with Pd and Cu reference foils. Dashed-lined rectangles indicate k ranges over which the data were then 

Fourier transformed and analysed. 
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4.2.2 PdCu SAA catalysts 1 wt% 

4.2.2.1 Elemental and Surface Area Analysis 

A series of lower Cu loading catalysts were made so that sintering of the nanoparticles due to the 

high metal content would be less of an issue, thus improving nanoparticle monodispersity. Bulk 

elemental analysis of the catalytic materials (Table 4.2.5) shows that monometallic catalysts with an 

approximate Cu/Pd loading of 1 wt% were successfully synthesised. Bimetallic PdCu/Al2O3 catalysts 

show trace quantities of Pd being incorporated into the monometallic host Cu/Al2O3 catalyst giving 

Pd:Cu atomic ratios of 1:234, 1:216 and 1:53. Galvanic replacement method 1 was chosen for these 

catalysts as superior Pd dispersion was achieved with their higher loaded  Pd1Cu158 analogue. As 

mentioned earlier (section 4.2.1.1), a type II isotherm was observed for the bare support with a surface 

area of 38.2 m2 g–1 showing that the material is non-porous/macro-porous. 

Table 4.2.5 Bulk elemental analysis of the 1 wt% catalysts determined by ICP-OES. 
  

Catalyst Pd loadinga (wt%) Cu loadinga (wt%) Pd:Cu atomic ratio 
 

Cu100 - 0.9403 ± 0.0267 -  

Pd1Cu234 0.0064 ± 0.0006 0.8947 ± 0.0253 1: 234  

Pd1Cu216 0.0067 ± 0.0006 0.8599 ± 0.0262 1: 216  

Pd1Cu53 0.0296 ± 0.0022 0.9296 ± 0.0232 1: 53  

Pd100 0.8882 ± 0.0529 - -  
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4.2.2.2 Thermogravimetric Analysis with Mass Spectrometry (TGA-MS) 

Thermal analysis of the colloidally capped nanoparticles was performed to understand their 

decomposition modes during catalyst synthesis. The derivative of the TGA data of the 1-amino-2-

propanol (C3H9NO) capped Cu nanoparticles is shown in Fig. 4.2.7. There is a small mass loss at ⁓180 

°C and a larger mass loss at ⁓365 °C which is correlated to the decomposition of the capping agent. MS 

spectra of the decomposition gases show that the initial small loss at ⁓180 °C is likely due to the 

formation NO, while at the higher temperatures CO2 and elemental C was released from the capping 

agent. Mass spectrometry data, however, did not detect any desorbing 1-amino-2-propanol or other 

molecules with an Mz of 14, 15, 16, 17, 18, 27 and 60, suggesting the capping agent fully decomposed 

mainly into NO, C and CO2. 

 

Fig. 4.2.7 TGA-MS data of the 1 wt% colloidally capped Cu/Al2O3 catalyst under flowing N2 with a heating rate of  

10 °C min–1. 
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4.2.2.3 H2 Temperature Programmed Reduction (H2-TPR) 

Following the decomposition of the capping agents, investigations were also conducted to observe 

the reducibility of the catalysts which is required for catalyst activation. The H2-TPR profile shown in 

Fig. 4.2.8 of the Pd100 catalyst shows that PdO can reduce to Pd metal at room temperature under flowing 

H2 which has also been reported earlier [1]. It has also been reported extensively in the literature that β-

hydride species forms when H2 interacts with Pd which is observed by its decomposition at 94 °C [1, 

40-42]. However, this negative decomposition peak is not observed for the SAA catalysts which suggest 

that such features are below the detection limit (trace Pd loading) and possibly due to the hydride species 

needing extended Pd surfaces to form [43]. TPR profiles also show that the TMax for reduction decreases 

with Pd addition which is expected as Pd can facilitate hydrogen adsorption through spillover onto the 

Cu surface [20, 22]. 

 

Fig. 4.2.8 H2 Temperature programmed reduction of Cu, PdCu and Pd catalysts. Gas composition was 5% H2/ 95% N2 v/v 

at 40 ml/min with a heating rate of approximately 6 °C min–1. 
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4.2.2.4 Powder X-ray Diffraction (PXRD) and Selected Area Electron Diffraction (SAED) 

Fig. 4.2.9 shows the catalysts’ ex-situ PXRD after reduction at 300 °C for 0.5 h. The diffractograms 

show broad but discernible reflections characteristic of nano-crystalline -Al2O3 (JCPDS card No. 29-

0063) and -Al2O3 (JCPDS card No. 46-1215), and a small impurity arising from the -Al2O3 phase 

(JCPDS card No. 11-0517). A quantitative examination of the diffractograms shows that the lattice 

parameters of the alumina phases remain unchanged (Table 4.2.6), suggesting that the copper/palladium 

phase onto the alumina did not significantly affect the overall morphology of the support. The spots 

forming rings observed in the SAED images of the catalysts (Fig. 4.2.10) suggest the support is largely 

polycrystalline, as amorphous materials will form more noticeable diffused rings. It should be noted that 

only spots relating to the -Al2O3 and -Al2O3 could be distinguished. 

Examining the PXRD diffractograms, the host Cu100/Al2O3 catalyst did not show any diffraction 

peaks arising from the copper phase, inferring that the Cu nanoparticles are very small, lacking long-

range order, leading to very broad diffraction peaks. In contrast, after galvanic replacement of the Cu 

with Pd atoms (PdCu catalysts), a broad Cu (111) reflection is observed at 43.4°, and an estimated lattice 

parameter of 3.623 Å (Table 4.2.6), which is comparable to the 12% Cu100/Al2O3 catalyst discussed 

earlier in section 4.2.1.2. However, the appearance of the Cu (111) reflection only after Pd incorporation 

can suggest that the GR process itself can increase the order of the Cu such that it is detectable. As was 

mentioned earlier in section 4.2.1.2, the GR process can cause the Cu ions produced directly from GR 

or nanoparticle dissolution to be reduced again onto the Cu nanoparticle [25], thus, increasing Cu’s 

apparent crystallinity. Increasing the Pd loading in the catalysts did not show any significant changes in 

the lattice parameters, and the absence of any Pd reflections suggests the Pd atoms have been 

incorporated into the Cu phase without forming detectable Pd ensembles or identifiable changes in the 

Cu structure. As another benchmark catalyst, the monometallic Pd100/Al2O3 catalyst showed Pd 

reflections consistent with that of an Pd crystal structure (JCPDS card No. 05-068). In the 

diffractograms, Pd (29.5° for PdO, JCPDS 41-1107) and Cu oxides (36.4° and 38.8° for Cu2O, 05–0667 
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and CuO, JCPDS 45-0937, respectively) were not detected implying the nanoparticles are 

predominately in their metallic state with an oxide passivation layer.  

 

Fig. 4.2.9 XRD diffractograms of the reduced ex-situ Pd, Cu and PdCu species supported on Al2O3 catalysts and the bare 

support.  

 

Table 4.2.6 Summary of lattice parameters determined from XRD (WPPM) for the 1% catalysts after being reduced ex-situ 

at 300 °C for 0.5 h under flowing H2. For reference data the following JCPDS cards were used 40836, 05-068, 29-0063 and 

46-1215 for Cu, Pd, - Al2O3 and δ- Al2O3. 

Sample Cu Pd −  δ- Al2O3 
 a (Å) a (Å) a (Å) a (Å) b (Å) c (Å) 

Reference 3.615 3.889 7.924 7.956 7.956 11.711 

Al2O3 - - 7.921 7.962 7.939 11.746 

Cu100 - - 7.917 7.959 7.934 11.743 

Pd1Cu234 3.622 - 7.914 7.955 7.933 11.739 

Pd1Cu216 3.624 - 7.916 7.955 7.934 11.743 

Pd1Cu53 3.623 - 7.917 7.957 7.934 11.743 

Pd100 - 3.894 7.915 7.957 7.928 11.74 
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Fig. 4.2.10 SAED images of the reduced ex-situ (a) Pd1Cu234 and (b) Pd100 catalysts supported on Al2O3 after being reduced 

ex-situ at 300 °C for 0.5 h under flowing H2. 
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4.2.2.5 Scanning and Transmission Electron Microscopy (STEM/TEM) 

Investigation of the Cu100 catalyst with STEM showed the presence of very small monodisperse Cu 

nanoparticles with an average size of 2.7 ± 0.7 nm (Fig. 4.2.11a). It should be noted, that this is in stark 

contrast to the previous Chapter where a wet impregnation synthesis gave rise to isolated and dimer 

copper atoms embedded onto an Al2O3 surface. As a consequence, wet impregnation typically gave a 

range of nanostructures, while the colloidal synthesis formed monodisperse nanoparticles ideal for 

understanding the formation of single-atom alloy catalysts. Nevertheless, the initial replacement of Pd 

atoms by galvanic replacement causes a slight decrease in the nanoparticle size (Fig. 4.2.11f and Table 

4.2.7) for the Pd1Cu234 and Pd1Cu216 catalysts. This observation is likely caused by the initial dissolution 

of the nanoparticles seen by the reduction in the Cu loading (Table 4.2.5) after the GR process. But, 

once the Pd concentration was quadrupled (Pd1Cu53 catalyst) the nanoparticles appear to grow into larger 

particles with sizes of 7.0 ± 4.4 nm (Fig. 4.2.11d).  Particle sizes (assuming particles are 

monocrystalline) were determined via XRD (Table 4.2.7) using both integral breadth and WPPM 

methods. Particle size analysis between the simple line profile analysis (integral breadth method and the 

Scherrer equation) and the STEM and WPPM were inconsistent. This can be explained as a volume-

weighted crystallite size average is determined using the integral breadth method, which can 

overestimate crystallite size by rogue large particles. In contrast, values calculated using the WPPM 

method give an area-weighted average which is influenced less by large particles. WPPM and STEM 

results support the observation that Cu particle size increase with Pd concentration, which is 

hypothesised to be attributed to the reduction of Cu ions onto the existing nanoparticles [25], thus 

possibly explaining why only the Cu peak is seen for the PdCu catalysts. TEM images of the benchmark 

Pd100 catalyst (Fig. 4.2.11e) synthesised colloidally show that the average nanoparticle size is  

5.1 nm ± 2.7 nm with the presence of larger 10 nm particles supporting the dissimilarity between the 

TEM and XRD particle sizes. 
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Fig. 4.2.11 STEM/TEM images and particle distributions of (a) Cu100/Al2O3, (b) Pd1Cu234 /Al2O3, (c) Pd1Cu216 /Al2O3, (d) 

Pd1Cu53/Al2O3, (e) Pd100/Al2O3, and (f) lognormal STEM/TEM size distributions for the catalysts reduced ex-situ at 300 °C 

for 0.5 h under flowing H2. 

 

Table 4.2.7 Pd/Cu crystallite and particle size analysis for the 1 wt% catalysts after being reduced ex-situ at 300 °C for 0.5 

h under flowing H2. 

Catalyst 
Pd crystallite/particle 

size (nm) 

Cu crystallite/particle 

size (nm) 

Cu100 - 2.7 ± 0.7d 

Pd1Cu234 - 

22.8 ± 2.3b 

2.3 ± 2.7c 

2.6 ± 0.7d 

Pd1Cu216 - 

23.7 ± 2.4b 

2.0 ± 2.4c 

2.0 ± 0.6d 

Pd1Cu53 - 

19.7 ± 2.0b 

15.2 ± 8.4c 

7.0 ± 4.4d 

Pd100 

14.0 ± 1.4b 

- 14.0 ± 6.4c 

5.1 ± 2.7d 
b Integral breadth method via XRD, c WPPM via XRD, d STEM/TEM  
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4.2.2.6 X-ray Photoelectron Spectroscopy (XPS) and X-ray excited Auger Electron 

Spectroscopy (XAES) 

XPS spectra of the ex-situ reduced catalysts along with the reference spectra (Fig. 4.2.12) mirror the 

spectra reported earlier for the 12% catalysts in section 4.2.1.3. The characteristic Cu 2p doublet is 

observed with the Cu 2p3/2 transition centred at 932.75 eV (Table 4.2.8). The absence of strong shake-

up satellites at 942.6 eV and 962.3 eV, shows the absence of Cu2+ species so, the Cu is largely in its Cu0 

or Cu+ oxidation state due to exposure to atmospheric oxygen. Minimal differences in the Cu 2p3/2 

transition are observed between the catalysts. Surface compositional analysis (Table 4.2.8) shows that 

much less Cu2+ (1-3%) compared to the 12% analogue SAA catalysts (15% Cu2+) shown earlier. 

Therefore, the surface Cu species are largely in either the Cu0 or Cu+ state. The compositional 

differences between 1% and 12% can be due to the mechanism of Cu nanoparticle oxidation, where 

initially it forms Cu2O [44] and then transforms into CuO (on the surface) [45, 46] and since the 12% 

have more Cu available the faster the full oxidation occurs. 

  

Fig. 4.2.12 High-resolution stacked XPS and XAES spectra of the (a) Cu 2p, (b) Cu L3VV and (c) Pd 3d regions for the 1 

wt% PdCu catalysts after being reduced ex-situ at 300 °C for 0.5 h under flowing H2. 
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Table 4.2.8 Summarised binding energies for Pd 3d5/2 and Cu 2p3/2, kinetic energies for the Auger Cu L3VV transitions, 

surface composition, modified Auger parameters for copper catalysts and change in relaxation energy compared to bulk Cu 

for the ex-situ reduced catalysts and reference materials. 

Sample 
Pd 3d5/2 

(eV) 

Cu 2p3/2 

(eV) 

L3VV 

(eV) 

Cu0 + Cu+ 

(%) 

Cu2+ 

(%) 

Modified 

Auger 

parameter (eV) 

 Relaxation 

energy (eV) 

Cu100 - 932.75 914.64 96.6 3.4 1847.39 2.00 

Pd1Cu234 - 932.75 914.14 97.2 2.8 1846.89 2.25 

Pd1Cu216 335.53 932.83 914.24 97.6 2.4 1847.07 2.15 

Pd1Cu53 335.34 932.74 914.24 98.9 1.1 1846.98 2.20 

Pd100 335.06 - - - - - - 

CuO - 933.62 917.78 - - 1851.40 -0.01 

Cu2O - 932.29 916.70 - - 1848.99 1.20 

Cu foil* - 932.63 918.75 - - 1851.38 0.00 

PdO 337.26 - - - - - - 

Pd foil 335.20 - - - - - - 

*Cu 2p3/2 was calibrated to the ISO standard of 932.63 eV. 

 

The Cu L3VV Auger transitions of the catalysts are found to be attenuated and significantly shifted 

to lower kinetic energies compared to even the Cu2O reference. Such observations in the shifts in the 

Auger transitions and the modified Auger parameter, ’ are not without precedent for supported 

catalysts [40, 47, 48]. The modified Auger parameter is dependent on both initial and final state effects, 

providing an estimate of the relaxation/screening energies due to the presence of core-holes [49] while 

being independent of sample charging and energy calibration problems [50]. It is observed that the ’ 

of the Cu100 catalyst to be 1847.4 eV, which is drastically lower than bulk Cu (’bulk = 1851.38 eV). The 

shift is attributed largely to the polarizability of the support [51] which can withdraw electrons from the 

Cu nanoparticles; reducing the ability of the Cu atoms to screen the core-hole after photoemission. It is 

well known that the Cu atoms in PdCu bimetallic systems can act as electron donors to Pd atoms [52], 

whereby a further decrease in screening efficiency of the conduction electrons is observed by the 

decrease in ’ with Pd introduction. The spectra in Fig. 4.2.12 suggest the surface oxide is most likely 

comprised of Cu2O for the catalysts due to the surface composition analysis and the shift in the Cu L3VV 

transition.  

The Pd 3d5/2 transition of the monometallic benchmark Pd100/Al2O3 is found at 335.06 eV consistent 

with that of bulk metallic Pd (335.20 eV, Table 4.2.8). In addition, PdO could not be 

detected/deconvoluted via fitting suggesting the Pd present is in its metallic state. A severely attenuated 
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Pd 3d5/2 transition centred at 335.34 eV is observed for the Pd1Cu53 catalyst due to the trace concentration 

of Pd. The slight observed shift compared to Pd100 catalyst correlates well with earlier literature [18, 53] 

due to the Pd-O-Cu interaction on the surface after the passivation of the Cu nanoparticles.  

Fig. 4.2.13 shows the XPS derived dispersion calculations and as mentioned earlier, it can give an 

insight of the location of the Cu and Pd atoms present in the catalysts. For the monometallic Cu100 

catalyst, a dispersion value of 71.0 ± 7.1 % is determined which equates to a spherical nanoparticle size 

of ⁓1.5 nm (according to the dispersion vs Cu nanoparticle plot in Fig. 1.7.1) which is noticeably smaller 

than both XRD and STEM measurements. The lower equivalent nanoparticle size can be attributed to 

the fact that XPS can detect Cu atoms irrespective of them being present in small nanoparticle or large 

nanoparticles while with STEM/TEM it is difficult to distinguish very small particles from the support 

because of the Z-contrast. It should be noted that XPS derived dispersion/nanoparticle size come with 

errors of ± 10% due to assumptions made during the calculation [54]. As observed in the STEM/TEM 

and XRD data the initial replacement of Cu atoms with Pd atoms appears to not decrease the dispersion 

of the Cu phase, but with significantly higher Pd loading (Pd1Cu53 catalyst) the dispersion slightly 

decreases. The Pd dispersion of the monometallic Pd100 is calculated to be 22.9 ± 2.3 % which equates 

to a nanoparticle size of ⁓ 5 nm which is consistent with the TEM data, likely due to the larger Z-contrast 

between Pd and Al and the presence of larger distinguishable nanoparticles. The significantly increased 

Pd dispersion of the Pd1Cu216 catalyst compared to the Pd1Cu53 catalyst suggests that the latter has an 

increased proportion of the Pd atoms sunk into the bulk of the nanoparticle. Due to the trace Pd loading 

of the Pd1Cu234 catalyst the Pd 3d transition could not be detected (Fig. 4.2.12c) and thus, the dispersion 

could not be determined. 
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Fig. 4.2.13 XPS derived dispersions for the 1 wt% Cu/PdCu/Pd catalysts after being reduced ex-situ at 300 °C for 0.5 h 

under flowing H2. 
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4.2.2.7 X-ray Absorption Spectroscopy (XAS)  

In Table 4.2.9 and Fig. 4.2.14, the XANES spectra and Pd K edge energy are compared. After 

reduction, the Pd atoms are slightly negatively charged [23] (discussed previously) while after oxidation 

the edge is shifted to higher energies due to oxygen withdrawing electron density from its surrounding 

atoms. The XANES (Fig. 4.2.14) also suggest the Pd species are in their zeroth oxidation state due to 

the presence of the 2nd peak (indicated by the brown arrow) after the edge appearing only after reduction 

for the Pd1Cu216 catalyst [55]. 

Table 4.2.9 Pd K edge energies for Pd foil and PdCu catalysts in their reduced and re-oxidised states. 

Sample Sample form 
Pd K-edge 

energy (eV) 

Pd foil - 24350.0 

Pd1Cu158 (12% M1) Re-oxidised 24349.5 

Pd1Cu 53 Re-oxidised 24349.6 

Pd1Cu 53 Reduced 24348.7 

Pd1Cu 216 Re-oxidised 24350.4 

Pd1Cu 216 Reduced 24349.5 

 

 

Fig. 4.2.14 Normalised Pd K edge XANES of the PdCu catalysts in their re-oxidised and reduced state. 
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Table 4.2.10 EXAFS model fitting of the re-oxidised and reduced PdCu/Al2O3 catalysts, Pd and Cu reference foils. 

Sample Sample form Shell CN R (Å) 
σ2 (Å2) 

×103 ΔE0 (eV) R factor 

Pd foil - Pd-Pd 12 2.742 ± 0.002 5.6 ± 0.4 3.70 ± 0.39 0.0163 

Cu foil - Cu-Cu 12 2.551 ± 0.054 9.3 ± 0.8 2.96 ± 0.84 0.0270 

Pd1Cu158 (12% M1) Re-oxidised Pd-Cu 6.2 ± 0.8 2.572 ± 0.007 4.2 ± 0. 8 1.40 ± 1.56 0.0063 

Pd1Cu 53 Re-oxidised Pd-Cu 5.2 ± 0.9 2.563 ± 0.011 5.5 ± 1.3 0.87 ± 2.23 0.0134 

Pd1Cu 53 Reduced Pd-Cu 5.4 ± 0.75 2.562 ± 0.087 5.1 ± 1.0 1.48 ± 1.73 0.0080 

Pd1Cu 216 Re-oxidised 
Pd-O 2.5 ± 1.3 2.003 ± 0.044 7.5 ± 5.8 

3.31 ± 5.89 0.0163 
Pd-Cu 2.5 ± 1.0 2.564 ± 0.007 4.4 ± 2.9 

Pd1Cu 216 Reduced Pd-Cu 3.7 ± 0.9 2.551 ± 0.015 5.5 ± 1.7 -0.30 ± 3.08 0.0110 

CN, average coordination number; R, the distance between the absorber and backscattered atoms. 2 multiplied by 103, 

Debye-Waller factor; ΔE0, the photoelectron energy origin; R-factor, the closeness of fit. 

 

Pseudo in-situ and ex-situ EXAFS (Fig. 4.2.15 and Fig. 4.2.16) suggest that Pd atoms have 

successfully galvanically replaced the Cu atoms on the nanoparticles while remaining atomically 

dispersed, confirming the formation of the single-atom catalysts. The tabulated (Table 4.2.10) first shell 

Pd-Cu bond lengths for the reduced Pd1Cu53 and Pd1Cu216 catalysts were found to be 2.562 ± 0.011 Å 

and 2.551 ± 0.015 Å, which coincides with a Cu-Cu bond (2.551 ± 0.054 Å). The Pd atoms determined 

to be missing Pd-Pd (2.742 Å, Pd metal, Fig. 4.2.15b) and bulk alloyed Pd-Cu (2.63 Å, Cu3Pd) 

coordination supporting theoretical calculations [16] that Pd can form a stable single-atom catalyst on 

Cu (111) surfaces. In addition, the sinusoidal waveform of the EXAFS in k-space (Fig. 4.2.15a) is 

consistent with the absence of multiple different scattering species in the measured local coordination 

environment [56]. Coordination numbers of the Pd-Cu shell were found to be 5.4 ± 0.75 (Pd1Cu53) and 

3.7 ± 0.9 (Pd1Cu216), much lower than the typical FCC bulk and surface (111) coordination numbers of 

12 and 9. This suggests the Pd atoms are incorporated on/near the surface in very small nanoparticles 

with dangling bonds. Pei et al. [23] also reported Pd-Cu bond length and coordination of 2.58 Å and 

11.6 for a PdCu SAC catalyst synthesised via co-impregnation. However, co-impregnation distributes 

Pd atoms throughout the nanoparticle while galvanic replacement selectively replaces surface atoms 

explaining the difference in coordination numbers since in one case Pd atoms are distributed 

homogeneously and the other heterogeneously.  

Typically, EXAFS alone does not provide insight into whether the Pd atoms are on the surface or in 

the bulk since the technique gives the average local environment across the whole sample, and any 
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attempts to determine such information will usually result in the use of highly correlated parameters 

producing unreliable results. This point is critical since Pd surface atoms are important in the increased 

hydrogen dissociation ability of the catalyst [16, 20-22] (atoms below the surface are inaccessible for 

the reactions) and have not been examined experimentally on real catalysts. However, in-situ FTIR 

methods exist [57] utilising CO as a surface probe molecule, but such experiments rely on the fact that 

adequate signal: noise is achieved. It is important to determine whether the absence of bridged CO 

vibrational modes is due to the presence of single atoms or the lack of signal caused by the trace loading 

of the dopant. DFT calculations suggest Pd and Pt are the most stable on a copper surface due to their 

relatively lower surface energies and higher deformation energies [16]. To examine this experimentally, 

the samples were reduced and re-oxidised at room temperature by exposing the sample with atmospheric 

oxygen. Selectively altering the surface Pd atoms with oxidation allows to easily differentiate surface 

Pd species from any Pd diffused into the bulk which will be largely unaffected. Pd-O coordination is 

observed in the Pd1Cu216 catalyst with a reduction in the Pd-Cu coordination from 3.7 to 2.5 suggesting 

a significant portion of the Pd atoms remain on the surface via selective oxidation. In contrast, the 

Pd1Cu53 catalysts seem to be largely unaffected by the surface oxidation (a slight drop in Pd-Cu 

coordination of 0.2), suggesting a significant portion of the atoms have diffused below the topmost layer 

of the nanoparticle, which supports our XPS findings. The absence of oxygen coordination was also 

observed in the high loaded PdCu SAA analogue (Pd1Cu153 12% M1, mentioned earlier in section 4.2.1). 

It should be noted also that this method is not entirely ideal, as in actual reaction conditions adsorbed 

hydrogen can stabilise surface Pd atoms bringing more atoms up to the surface [16, 58, 59]. The Pd-O 

bond length of the Pd1Cu216 catalyst is found to be 2.003 ± 0.044 Å, which is reminiscent of bulk PdO 

(2.01 Å). This indicates the surface Pd atoms can distort the Cu oxidised phase, as the Cu-O bond lengths 

are 1.88 Å and 1.96 Å for Cu2O and CuO, respectively. Additionally, it can be observed an increase in 

the Pd-Cu bond lengths with copper oxidation, the largest increase been detected in the Pd1Cu216 

catalyst. This can be correlated to the increased perturbation of the underlying Cu lattice of the 

nanoparticles by the oxide layer.  
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Fig. 4.2.15 (a) Pseudo in-situ EXAFS spectra in k-space (k-weight = 3) and (b) R-space (k-weight = 3) for PdCu/Al2O3 

catalysts (reduced ex-situ and placed in a gas-tight cell via a glovebox to prevent oxidation) along with Pd and Cu reference 

foils. Dashed-lined rectangles indicate k ranges over which the data were then Fourier transformed and analysed. 

 

Fig. 4.2.16 (a) EXAFS spectra in k-space (k-weight = 3) and (b) R-space (k-weight = 3) for PdCu/Al2O3 catalysts (reduced 

ex-situ) along with Pd and Cu reference foils. Dashed-lined rectangles indicate k ranges over which the data were then 

Fourier transformed and analysed.  
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4.3 Catalytic testing 

4.3.1 PdCu SAA catalysts 12 wt% 

Preliminary experiments on the high loading PdCu determined the optimal synthetic route of the 

formation of PdCu catalysts used for the synthesis of 1 wt% catalysts. The characterisation of the  

12 wt% catalytic materials have been summarised in Table 4.3.1. The method using minimal HCl and 

without sonication was chosen because the resulting catalyst (Pd1Cu153 12% M1) displayed superior 

activity when normalised to both Cu and Pd content (Fig. 4.3.1). The significant alterations in the Cu 

nanostructure and loading using the harsher GR conditions (methods 3 and 4) appear to significantly 

decrease the Cu normalised catalytic activity when compared to the host Cu100 (12%) catalyst. While 

the Pd1Cu100 (12% M2) catalyst synthesised in aqueous conditions with sonication appears to be the 2nd 

best catalyst as the GR process was milder (when compared to methods 2 and 3) with less leaching 

occurring. However, the catalytic performance is subpar when compared to the (Pd1Cu158 12% M1) 

catalyst which is due to the sonication’s ability to promote the diffusion of Pd into the bulk of the 

nanoparticle (Fig. 4.2.4). Therefore, reducing the Pd surface sites for hydrogen dissociation and 

hindering its catalytic ability.  Overall, the data suggest a mild GR synthetic procedure is required to 

promote the catalytic activity as it results in minimal changes in the host nanoparticle structure and 

encourages surface Pd species.  

Table 4.3.1 Summary of the characterisation data for the 12 wt% Cu/Al2O3 and PdCu/Al2O3 catalysts. 

Sample GR method 
Pd loading 

(wt%)a 

Cu loading 

(wt%)a 

Crystallite 

size (nm)b 

Cu 

Dispersion 

(%)c 

Pd 

Dispersion 

(%)c 

Cu100 (12%) - - 12.525 ± 0.250 6.4 ± 3.7 10.5 ± 1.1 - 

Pd1Cu158 (12% M1) 0.1 mM HCl, 100 °C 0.132 ± 0.005 12.476 ± 0.123 7.7 ± 5.0 10.3 ± 1.0 85.2 ± 8.5 

Pd1Cu100 (12% M2) 
Aqueous media, 

sonication, 50 °C 
0.189 ± 0.015 11.341 ± 0.215 7.1 ± 5.1 14.9 ± 1.5 32.2 ± 3.2 

Pd1Cu98 (12% M3) 2.0 mM HCl, 100 °C 0.175 ± 0.006 10.262 ± 0.047 9.9 ± 8.7 9.8 ± 1.0 38.2 ± 3.8 

Pd1Cu93 (12% M4) 
0.1 mM HCl, 

sonication, 50 °C  
0.199 ± 0.016 11.076 ± 0.175 5.1 ± 4.0 16.4 ± 1.6 31.9 ± 3.2 

aICP-OES, bWPPM via XRD and cXPS. 

 



162 

 

 

M. J. Islam, PhD Thesis, Aston University, 2021 

 

Fig. 4.3.1 Initial rate of the furfural consumption normalised to Cu and Pd content for 12 wt% PdCu catalyst using different 

GR methods. The initial rate was determined after the induction period for the Cu-based catalysts. Reaction conditions: 7 h, 

50 °C, 1.5 bar of H2, 600 RPM, 30 mg of catalyst 

 

4.3.2 PdCu SAA catalysts 1 wt% 

The characterisation data is summarised for the 1 wt% catalysts is tabulated in Table 4.3.2. 

Table 4.3.2 Summary of the characterisation data for the 1 wt% Al2O3 supported catalysts. 

Catalyst 
Pd loadinga 

(wt%) 

Cu loadinga 

(wt%) 

Pd:Cu 

atomic 

ratio 

Particle 

size (nm) 

Cu dispersion 

(%) 

Pd dispersion 

(%) 
EXAFS 

Cu100 - 0.9403 ± 0.0267 - 2.7 ± 0.7a 71.0 ± 7.1 - - 

Pd1Cu234 0.0064 ± 0.0006 0.8947 ± 0.0253 1: 234 2.6 ± 0.7a 79.9 ± 8.0 N/A - 

Pd1Cu216 0.0067 ± 0.0006 0.8599 ± 0.0262 1: 216 2.0 ± 0.6a 80.3 ± 8.0 90.9 ± 9.1 SAA 

Pd1Cu53 0.0296 ± 0.0022 0.9296 ± 0.0232 1: 53 7.0 ± 4.4a 68.9 ± 6.9 41.7 ± 4.2 SAA 

Pd100 0.8882 ± 0.0529 - - 5.1 ± 2.7b - 22.9 ± 2.3 - 

STEM/TEM aCu and bPd particle size 

 

The catalytic data reveal that adding trace amounts of Pd to the Cu nanoparticles has significantly 

improved the hydrogenation of furfural at 50 °C with 1.5 bar of hydrogen (Table 4.3.3). The PdCu 
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catalysts show higher activity than Cu and higher selectivity than Pd. As mentioned in the previous 

chapter, in absence of any solid catalyst, neither decarbonylation nor hydrogenation reactions were 

observed. The parent Al2O3 support was also found to be inactive towards the hydrogenation of furfural, 

favouring the acetalization with methanol, with minimal conversion. The major product observed for 

all catalysts were furfuryl alcohol (FFA) while other side products were 2-furaldehyde dimethyl acetal 

(FDMA, Fig. 7.1.1 GCMS spectrum in appendices) and tetrahydrofurfuryl alcohol (THFA). It should 

be noted, the lower carbon balance of the Pd100 catalyst is attributed to unquantifiable 

decomposition/ether products  [60]. 

Table 4.3.3 Summary of the catalytic data for the hydrogenation of furfural using Pd/Cu catalysts. Reaction conditions: 7 h, 

50 °C, 1.5 bar, 600 RPM, and 30 mg of catalyst. 

Catalyst 
Conversion 

(%) 

FFA 

S (%) 

FDMA S 

(%) 

THFA 

S (%) 

Carbon Balance 

S (%) 

Cu100 23.1 ± 1.2 98.2 ± 4.9 1.8 ± 0.1 0.0 98.1 ± 4.9 

Pd1Cu234 30.3 ± 1.5 97.9 ± 4.9 2.1 ± 0.1 0.0 96.6 ± 4.8 

Pd1Cu216 40.1 ± 2.0 99.1 ± 5.0 0.9 ± 0.1 0.0 96.9 ± 4.8 

Pd1Cu53 38.2 ± 2.9 98.0 ± 4.9 2.0 ± 0.1 0.0 96.2 ± 4.9 

Pd100 60.4 ± 3.0 89.7 ± 4.4 2.8 ± 0.2 7.5 ± 0.4 84.4 ± 4.3 

Rounding errors may be present. 

 

Fig. 4.3.2a indicates an induction period of approximately 1 h where the copper-based catalysts are 

inactive in terms of conversion. This behaviour is thought to be due to the limited catalytically available 

adsorbed hydrogen at the start of the reaction either through the formation of surface oxide (from O2 

contamination) or Cu’s inability to adequately chemisorb hydrogen. However, the presence of Pd with 

the SAA catalysts seems to lessen its effects. This is in stark contrast to the monometallic Pd100 catalyst 

which lacks any such induction period due to its increased resistance to oxidation, higher reducibility 

and likely also due to the extended Pd surface to store hydrogen as β-hydride species during the in-situ 

reduction treatment [1, 40-42]. However, the Cu-based catalysts’ low activity is offset by its high 

selectivity. The increased selectivity is due to furfural binding to the surface via the lone pairs in the 

carbonyl functional group, promoting hydrogenation of the C ═ O bond instead of the C ═ C bond [61, 

62]. Pd surfaces are very reactive allowing η2(C, O)-aldehyde bonding modes, in which both O and C 
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are bound [62-64]. As a result, unidentified decarboxylation/ethers products are promoted, creating a 

higher discrepancy in the carbon balance (Fig. 4.3.2b), and the THFA formation is also favoured. Such 

sides products observed for Pd catalysts are not observed with the SAA catalysts since it requires 

extended Pd surfaces for such side reactions to occur, so the selectivity is provided by the Cu surfaces. 

The isolated Pd atoms act as entry sites for hydrogen dissociate and adsorb after which they spill over 

onto the Cu surface [16, 20-22] where they react with the adsorbed substrate.  

 

Fig. 4.3.2 The reaction profiles of (a) furfural conversion, selectivity and (b) carbon balance. Reaction conditions: 7 h, 50 

°C, 1.5 bar of H2, 600 RPM, 30 mg of catalyst. Solid lines, dashed, and dotted lines represent conversion, selectivity, and 

carbon balance, respectively. 

 

Fig. 4.3.3a demonstrates the activity of the PdCu SAA catalysts are better than their monometallic 

counterparts when normalised to metal content. Particularly, the Pd1Cu216 catalyst demonstrates an 

eleven-fold increase in activity compared to the monometallic Pd100 catalyst due to the lack of spectator 

Pd atoms in the nanoparticle's bulk. Significant improvements are also observed over the Cu100 catalyst, 

showing that trace amounts of Pd atoms can augment the catalytic surface by promoting hydrogen 

adsorption. The improvement in activity with Pd loading has a diminishing return, with the Pd1Cu216 

catalyst being the superior atom-efficient catalyst. It is proposed this trend is due to the Pd atoms being 
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inaccessible to be used as hydrogen dissociation entry sites since the EXAFS suggests a significant 

portion of Pd atoms have diffused under the surface of the nanoparticle. Analysing the furfuryl alcohol 

production profile normalised to the nanoparticle metal (Fig. 4.3.3b) shows that the atomically dispersed 

Pd1Cu216 catalyst can improve the performance of the Cu host surface to that of the benchmark 

monometallic Pd100 catalyst. While it can be clearly seen that both systems follow drastically different 

reaction mechanisms, explained earlier through the different reactant binding modes/hydrogen storage 

capability of Pd and Cu majority surfaces. 

 

Fig. 4.3.3 (a) Initial rate of the furfural consumption normalised to Cu and Pd content. The initial rate was determined after 

the induction period for the Cu-based catalysts. (b) Furfuryl alcohol production over time normalised to the majority 

nanoparticle metal. Reaction conditions: 7 h, 50 °C, 1.5 bar of H2, 600 RPM, 30 mg of catalyst. 

 

Turnover frequency (TOF) was determined in Fig. 4.3.4 to determine if the surface-active sites are 

actually better by removing effect of dispersion of the catalysts. The TOF clearly shows that the 

introduction of the atomically dispersed Pd atoms increases the catalytic activity of the surface Cu sites 

with the optimal Pd1Cu216 SAA catalyst increasing Cu TOFs by ⁓85%. Further increasing the Pd loading 

with the Pd1Cu53 comes with diminishing returns as the TOFs are not seen to increase which is also 

observed in the normalised initial rates (Fig. 4.3.3a). When comparing TOFs of the monometallic Pd100 

catalyst to a SAA catalyst shows that the atomically dispersed Pd sites are ⁓173% more catalytically 
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active than the typically equivalent surface sites found on Pd nanoparticles. Supporting the previous 

data, it can be noticed that initially as the Pd loading is increased the activity of the Pd sites also increases 

to a maximum TOF of 813 ± 81 h-1. Further drastic increases in the Pd loading with the Pd1Cu53 catalyst 

appears to begin to render the Pd sites less effective, possibly changing their properties to be more like 

that of a monometallic Pd catalyst. It should be noted that due to the inability to determine the Pd 

dispersion for the Pd1Cu234 catalyst (lack of Pd 3d signal) it was assumed to be 100% for this TOF 

calculation. 

 

Fig. 4.3.4 Turnover frequency of both Cu and Pd surface atoms for the catalysts determined from the XPS calculated 

dispersion. Reaction conditions: 7 h, 50 °C, 1.5 bar of H2, 600 RPM, 30 mg of catalyst. 

 

Fig. 4.3.5 shows the produced furfuryl alcohol/metal mole ratio per hour (Equation 2.3.6) or simply 

called productivity (h-1), under mild to moderate reaction temperatures and pressures. The catalysts 

synthesised in this work and those reported in the literature are compared. The advantages of comparing 

the mole ratio furfuryl alcohol/metal per hour are that all the active metal content, yield, and reaction 

time is considered quantifying the best selective atom efficient catalysts. Comparing the monometallic 
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Cu100/Al2O3 to the industrial used Cu-Cr [65] shows the Cu-Cr catalyst is 38% better but requires higher 

temperatures and pressures of 110 °C and 10 bar of hydrogen. The optimal atom efficient catalyst under 

mild conditions (90 °C, 1 bar) reported in the literature is a Pd1/C3N4 single-atom catalyst [66] with a 

productivity of 158 h-1 while at more moderate conditions (120 °C, 6 bar) it is a Pd-Cu/C [67] catalyst 

with values of 289 h-1.  The single-atom alloy catalysts synthesised in this work are shown to make the 

most efficient use of the precious metal atoms when compared against the literature  

(Pd1Cu216 = 601 h-1) demonstrating the surface replacement of Cu atoms with Pd can create superior 

atom efficient catalysts. 

 

Fig. 4.3.5 Furfuryl alcohol/metal mole ratio per hour or called productivity of catalysts from this work and various 

catalysts found in the literature under low to moderate conditions (<140 °C and <20 bar). Square bracketed Roman 

numerals [i], [ii], [iii], [iv], [v], [vi], [vii], [viii], [ix], [x], [xi], [xii], [xiii], [xiv] and [xv] represent references [68], [69], 

[1], [6], [67], [4], [3], [70], [71], [2], [66], [72], [73], [74] and [48], respectively. Log10 scale is used for the furfuryl 

alcohol/metal ratio per hour z axis and the colour of the spheres represents which metal is used for the calculation. Pd, Pt, 

Ru, Ni and Cu represent sphere colours dark grey, red, blue, green, and orange, respectively. 
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4.3.3 Spent catalyst characterisation and recycling experiments 

Comparing the XPS spectra of the spent and fresh Pd1Cu216 catalysts (Fig. 4.3.6a) shows that after 

recovery, the spent material is significantly oxidised to CuO which is observed by the strong shake-up 

satellites and the shift of the Cu 2p3/2 transition by +0.82 eV. Surface compositional analysis in Table 

4.3.4 confirms the Cu species are largely in their Cu2+ oxidation state (77.5%). 

Table 4.3.4 Summarised energies for the Cu 2p3/2 and the Auger Cu L3VV transitions, surface composition, modified Auger 

parameters and XPS calculated dispersion for the fresh and spent catalysts. 

Sample State 

Cu 2p3/2 

(eV) 

L3VV 

(eV) 

Cu0 + 

Cu+ (%) 

Cu2+ 

(%) 

Modified Auger 

parameter (eV) 

Cu Dispersion 

(%) 

Pd1Cu216 Fresh 932.83 914.24 97.6 2.4 1847.07 80.3 ± 8.0 

Pd1Cu216 Spent 933.65 915.05 22.5 77.5 1848.70 70.5 ± 7.1 

CuO - 933.62 917.78 - - 1851.40 - 

Cu2O - 932.29 916.70 - - 1848.99 - 

Cu* - 932.63 918.75 - - 1851.38 - 

*Cu 2p3/2 was calibrated to the ISO standard of 932.63 eV. 

 

As observed for the unused catalyst, the modified Auger parameter is found noticeably lower than bulk 

Cu (’bulk = 1851.38 eV) or that of bulk CuO (’CuO = 1851.40) for the spent material. Though, the ’ 

is also shifted by +0.63 eV, like that of Cu2O, though due to the satellite structure/compositional analysis 

it can be presumed the shift arises from the presence of CuO while the overall negative shift of the 

parameter is due to Cu’s close contact to the polarisable support. However, the XPS calculated Cu 

dispersion values show that there may be some loss in Cu dispersion through nanoparticle sintering.  



169 

 

 

M. J. Islam, PhD Thesis, Aston University, 2021 

 

Fig. 4.3.6 High-resolution stacked XPS and XAES spectra of the (a) Cu 2p and (b) Cu L3VV regions for the fresh and spent 

Pd1Cu216 catalyst. 

 

The recyclability of the optimal PdCu SAA catalyst was investigated. The catalysts were recovered after 

the reaction via centrifugation followed by washing with methanol. Once dried, they were retested. 

Table 4.3.5 shows that the conversion and selectivity of the catalyst were within error minimally affected 

after reuse. This is consistent with the ICP-OES analysis of the filtered supernatant fluid as the elemental 

analysis ruled out Cu leaching. 

Table 4.3.5 Furfural hydrogenation over the recycled catalysts. Reaction conditions: 7 h, 50 °C, 1.5 bar of H2 and 600 

RPM. 

Catalyst Conversion (%) 

FFA 

S (%) 

FDMA S 

(%) 

THFA 

S (%) 

Carbon Balance  

S (%) 

Pd1Cu216
1 

40.1 ± 2.0 99.1 ± 5.0 0.9 ± 0.1 0.0 96.9 ± 4.8 

Pd1Cu216
2 37.5 ± 1.9 97.4 ± 4.9 2.6 ± 0.1 0.0 97.0 ± 4.9 

Superscripts 1 and 2 indicate the catalyst cycle of testing. 

 

  



170 

 

 

M. J. Islam, PhD Thesis, Aston University, 2021 

4.4 Conclusions 

A series of bimetallic PdCu catalysts were tested for the selective hydrogenation of furfural under 

mild conditions. The catalyst morphology and electronic properties were thoroughly studied utilising 

XRD, XPS, STEM, EXAFS, XANES, TPR and ICP-OES. Catalyst characterisation confirms that Pd 

atoms were atomically dispersed on the host copper nanoparticle surface, confirming the formation of a 

single atom catalyst. The combination of pseudo-in-situ and ex-situ EXAFS suggests that as the Pd 

loading increases, Pd atoms diffuse into the bulk reducing their catalytic effectiveness. Various 

modifications to the galvanic replacement process were made, optimising the resulting catalyst for 

improved catalytic activity. The augmentation of the copper surface with trace amounts of Pd  

(0.0067 wt%) was found to improve the normalised catalytic activity by eleven-fold when compared to 

a monometallic Pd catalyst. The synthesised atom efficient catalysts retain Cu’s high selectivity 

attributed to the incredible control of the Pd active sites since they are isolated, which eliminates 

competitive side-reactions that require more than one Pd neighbouring atom. This work also shows the 

formation of a single atom alloy catalyst is not enough, but such isolated atoms need to be present on 

the surface to be taken advantage of. Finally, when compared against the literature (Fig. 4.3.5) it is found 

that these materials are the most competitive atom efficient catalysts implemented for the selective 

hydrogenation of furfural to furfuryl alcohol. 
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5.1 Introduction 

Chapter 3 highlighted the importance of Cu metal precursor selection for the hydrogenation of 

furfural. While Chapter 4 discussed the excellent promotion of the catalytic activity for base-metal Cu 

catalysts using atomically dispersed Pd atoms. Since these Chapters focused only on the hydrogenation 

of furfural, the catalysts will now be utilised for the hydrogenation of a common α, β unsaturated 

aldehyde like crotonaldehyde. In contrast to furfural, crotonaldehyde is a smaller and relatively simpler 

unsaturated aldehyde. The hydrogenation of this planar π-conjugated molecule is complex and has been 

studied both experimentally and theoretically [1-8]. The reaction pathway can follow two routes by 

hydrogenating the C ═ C or the C ═ O bond, forming butanal or crotyl alcohol, respectively. Both these 

molecules can then be hydrogenated to butanol via the reduction of their remaining unsaturated double 

bond. Thus, the experiments will confirm if a similar promotion of the hydrogenation capability is 

observed with Pd atoms. Also, crotonaldehyde lacks the furan ring (present in furfural) which directs 

the reaction by the repulsion of its anti-bonding orbitals with the 3d orbitals of the Cu (111) surface 

atoms [9] promoting a vertical adsorption. Directing groups are important as the C ═ C hydrogenation 

is thermodynamically more favourable by 35 kJ/mol [10]. Consequently, the reactivity will be 

investigated in the case where C ═ O hydrogenation will not be specifically preferred. In the absence of 

these effects, the reactivity changes of the Pd atoms on the copper surface will be examined. 

A range of metal catalysts has already been studied for the hydrogenation of crotonaldehyde in the 

literature such as Ag, Co, Cu, Ir, Mo, Nb, Ni, Pt, Pd, Re, Rh, Ru and W [3, 7, 11-20]. Base-metals such 

as Ni and Cu [14, 20, 21] are reported to preferentially hydrogenate the C ═ C bonds, as the 

crotonaldehyde molecule typically adsorbs flat on the surface. There has been significant interest in Cu-

based catalysts [6, 7, 14, 21] for such reactions, as it is inexpensive compared to Pt-based catalysts, and 

steric [20] and electronic [6] modifications have been employed to promote perpendicular 

crotonaldehyde adsorption, thus altering the selectivity towards the C ═ O bond hydrogenation. For 

example, adsorbed sulfur species have been used to cause a rehybridisation of the adsorbed reactant, 

resulting in the weakening of the intermolecular bonding and tilting of the C ═ C and C ═ O groups 
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relative to the surface [22], thus, favouring the unsaturated alcohol formation by Cu-based catalysts.  

While Pt-based catalysts are reported to show high crotyl alcohol selectivity, due to a similar tilting 

of the reactant as the coverage of the crotonaldehyde increases [23], Pd catalysts are unselective to 

which double bond is hydrogenated. Campo et al. [13] reported that monometallic Pd catalysts were 

unselective towards crotyl alcohol. Modification of the Pd with oxidic species [13] or Ni [12] had a 

minimal effect on changing the selectivity towards crotyl alcohol or the synergistic behaviour. However, 

it has been reported earlier that the lack of selectivity towards crotyl alcohol may be the result of the 

isomerisation of crotyl alcohol to butanal (Fig. 1.6.1) promoted by Al2O3, Cu, Pd, and Ni materials [24-

26]. 

Recently, a few single-atom catalysts have been utilised to develop better atom efficient and selective 

materials for the hydrogenation of crotonaldehyde. A Pt1/MoC catalyst synthesised by Qingyuan et al. 

[27] reported a 4 times increase in TOF of the SAC (1216 h-1) versus a monometallic  

1% Pt/MoC (299 h-1). However, the reported selectivity was found to be approximately equally 

distributed across the three possible hydrogenation products (butanal, crotyl alcohol and butanol). In 

contrast, another Rh1/MoS2 SAC synthesised by and Yang et al. [17] reported a 100% crotyl alcohol 

selective catalyst. They attributed the incredible selectivity to a “pocket” like active sites, which 

promoted vertical adsorption of crotonaldehyde and hydrogenation of only the C ═ O bond through 

steric effects. However, such sites lacked the activity (TOF = 64.7 h-1) compared to the Pt1/MoC catalyst. 

This chapter investigates the adoption of the catalysts synthesised in the previous chapters for the 

hydrogenation of crotonaldehyde. The initial catalytic parameters will be chosen based on the previous 

furfural experiments to explore how under similar reactions conditions crotonaldehyde hydrogenation 

differs from furfural. And whether a similar copper catalyst promotion is observed with Pd addition and 

if Pd atoms can change the reactivity of the base copper catalyst in the absence of directing groups, and 

vice versa, how the reactivity of atomically dispersed Pd atoms on a Cu surface differs from its Pd 

monometallic counterpart. Also, the chapter will initially investigate optimising the reaction conditions 

by adjusting catalyst mass and hydrogen pressure. The novelty of the work comes from the absence of 
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literature on the metal precursors’ effect for Cu catalysts and the use of single-atom alloy catalysts for 

the hydrogenation of crotonaldehyde.  



184 

 

 

M. J. Islam, PhD Thesis, Aston University, 2021 

5.2 Catalytic testing 

5.2.1 Optimisation of the hydrogenation of crotonaldehyde 

5.2.1.1 Mass of catalyst 

 The performance of the monometallic Cu100 and Pd100 Al2O3 supported catalysts were first tested 

under the same reaction conditions for the furfural experiments in the earlier Chapter. Using 30 mg of 

catalyst, it was found that crotonaldehyde was converted into butanal (Fig. 5.2.1). This occurred through 

the hydrogenation of the C ═ C with minimal crotyl alcohol formation but proceeding to fully 

hydrogenate the molecule to butanol (Table 5.2.1). The lack of crotyl alcohol selectivity is because 

hydrogenating the C ═ C bond is thermodynamically and kinetically more favourable than the C ═ O 

bond [28]. This is not observed for the furfural experiments in the prior Chapters as crotonaldehyde is 

absent of directing groups [11] such as furan for furfural, which makes the C ═ O hydrogenation 

preferable. Comparing the yield profile of the Cu and Pd-based systems shows the superior 

hydrogenation capability of Pd, noticed by the complete conversion of crotonaldehyde to butanal within 

the first 20 minutes. Conversely, an induction period is present for the Cu catalyst and generating butanal 

over 7 hours. Likewise furfural hydrogenation, the crotonaldehyde reaction seems to form an acetal 

(crotonaldehyde dimethyl acetal, Fig. 7.1.2 GCMS found in appendices) with methanol, which has also 

been reported previously [13, 29]. 

Table 5.2.1 Summary of the catalytic hydrogenation of crotonaldehyde using monometallic Cu and Pd Al2O3 supported 

catalysts. Reaction conditions: 7 h, 50 °C, 1.5 bar, 600 RPM, and 30mg or 10 mg of catalyst. 

Catalyst 
Mass of 

catalyst (mg) 

 Conversion 

(%) 

Butanal 

S(%) 

Butanol 

S(%) 

Crotyl 

Alcohol S(%) 

Acetal 

S(%) 

Initial rate 

(mol/h·gMetal) 

Cu100 30  100.0 ± 5.0 87.1 ± 4.4 4.7 ± 0.2 2.5 ± 0.1 5.7 ± 0.3 0.12 ± 0.01 

Cu100 10  98.1 ± 4.9 93.1 ± 4.7 3.9 ± 0.2 1.5 ± 0.1 1.6 ± 0.1 0.39 ± 0.02 

Pd100 30  100.0 ± 5.0 92.5 ± 4.6 7.5 ± 0.4 0.0 0.0 2.06 ± 0.10 

Pd100 10  99.2 ± 5.0 62.8 ± 3.1 37.2 ± 1.9 0.0 0.0 5.69 ± 0.29 

Rounding errors may be present. 

Due to the excellent reactivity of both monometallic catalysts, the mass of the active material used 

was reduced by 67% to 10 mg. The drastic reduction in mass appears to improve the reactivity for both 

catalysts. A significant change in selectivity is also observed for the Pd100 catalyst with a 30% gain in 
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the butanol selectivity, while the Cu100 catalyst’s selectivity is largely unaffected. The phenomenon of 

the increase in catalytic activity (initial rates in Table 5.2.1) with less catalyst can be attributed to excess 

catalytic sites compared to the reactant molecules increasing the competition for reactant molecules. 

Justifying why normalised initial rates are inversely proportional to the amount of catalyst used.  

 

Fig. 5.2.1 Percentage yields of the products formed against time for the monometallic (a) Cu100 and (b) Pd100 Al2O3 

supported catalysts. Reaction conditions: 7 h, 50 °C, 1.5 bar, 600 RPM, and 30mg or 10 mg of catalyst. 
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5.2.1.2 Hydrogen pressure 

The effect of hydrogen pressure was also investigated for the two monometallic catalysts (Fig. 5.2.2 

and Table 5.2.2). For both catalysts, the increase of pressure accelerates the formation of butanal. While 

in the case of Cu the pressure favours the conversion of butanal to butanol, in Pd the formation of this 

final product is more inhibited.  None of the catalysts shows a significant production of crotyl alcohol, 

and the pressure has a negligible impact on the formation of acetal for the Cu catalyst. The Cu100 catalyst 

displays a mediocre initial rate increase of ⁓10% when H2 pressure increases from 1.5 to 10 bar, 

suggesting the surface is still likely to be deficient in adsorbed hydrogen. 

The reactivity of the Pd100 catalyst, however, doesn’t follow the reactivity of Pt catalysts, for which 

high hydrogen pressures enhance butanol formation and low hydrogen pressures improve crotyl alcohol 

selectivity [16]. The phenomenon with Pd100 catalyst can likely be explained by the bi-molecular 

Langmuir-Hinshelwood (LH) reaction mechanism. The LH mechanism for bi-molecular reactions 

requires both reactant molecules to be adsorbed onto the catalyst surface for the reaction to proceed. So, 

in the current case, the highest reaction rate of butanal hydrogenation to butanol occurs when both 

reactants (butanal and hydrogen) have a similar adsorbed surface concentration. It can be proposed that 

in higher H2 pressures condition (10 bar), an excess of hydrogen is available on the surface. Hence, there 

is not enough butanal on the surface to react to form butanol.  Contrarily, at 1.5 bar of H2, the imbalance 

of adsorbed reactant is less severe, so the yield of butanol is greater. In the case of Pt, the difference can 

be hypothesised to their different adsorption strengths of the reactants, where even at higher pressures 

there is still insufficient hydrogen on the surface to be detrimental to the selectivity.  

Finally, the conversion of crotonaldehyde to butanal (C ═ C hydrogenation) seems to increase with 

pressure for both Pd and Pt [16] catalysts. This may suggest an Eley-Rideal mechanism for this reaction 

since even when the surface is oversaturated with hydrogen, the reactant can interact with the adsorbed 

hydrogen and reduce the C ═ C bond. 
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Fig. 5.2.2 Percentage yields of the products formed against time for the monometallic (a) Cu100 and (b) Pd100 Al2O3 

supported catalysts. Reaction conditions: 7 h, 50 °C, 1.5 bar or 10 bar, 600 RPM, and 10 mg of catalyst. 

 

Table 5.2.2 Summary of the catalytic hydrogenation of crotonaldehyde using monometallic Cu and Pd Al2O3 supported 

catalysts. Reaction conditions: 7 h, 50 °C, 1.5 or 10 bar, 600 RPM, and 10 mg of catalyst. 

Catalyst 
H2 pressure 

(bar) 

Conversion 

(%) 

Butanal 

S(%) 

Butanol 

S(%) 

Crotyl 

Alcohol S(%) 

Acetal 

S(%) 

Initial rate 

(mol/h.gMetal) 

Cu100 1.5 98.1 ± 4.9 93.1 ± 4.7 3.9 ± 0.2 1.5 ± 0.1 1.6 ± 0.1 0.39 ± 0.02 

Cu100 10 100.0 ± 5.0 90.2 ± 4.5 7.3 ± 0.4 1.5 ± 0.1 1.1 ± 0.1 0.43 ± 0.02 

Pd100 1.5 99.2 ± 5.0 62.8 ± 3.1 37.2 ± 1.9 0.0 0.0 5.69 ± 0.29 

Pd100 10 100.0 ± 5.0 90.6 ± 4.5 9.4 ± 0.5 0.0 0.0 5.77 ± 0.29 

Rounding errors may be present. 

 

5.2.2 PdCu SAA catalysts 

Table 4.3.2 summarises the characterisation data of the 1 wt% PdCu SAA catalysts, which was 

discussed in depth in Chapter 4. In summary, three bimetallic PdCu catalysts were synthesised by 

galvanic replacement, where a monometallic Cu/Al2O3 catalyst was used as the template. Bulk 

elemental analysis showed that trace amounts of Pd were incorporated into the nanoparticles with 
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EXAFS determining the Pd species where atomically dispersed on the Cu nanoparticles. Thus, 

confirming the formation of single-atom catalysts, specifically single-atom alloy catalysts. EXAFS and 

XPS characterisation differentiated the catalysts by suggesting that the Pd1Cu216 catalyst had a larger 

ratio of Pd atoms remaining on the surface of the nanoparticle than the higher Pd loaded Pd1Cu53 catalyst. 

Table 5.2.3 Summary of the characterisation data for the 1 wt% Al2O3 supported catalysts. 

Catalyst 
Pd loadinga 

(wt%) 

Cu loadinga 

(wt%) 

Pd:Cu 

atomic 

ratio 

Particle 

size (nm) 

Cu dispersion 

(%) 

Pd dispersion 

(%) 
EXAFS 

Cu100 - 0.9403 ± 0.0267 - 2.7 ± 0.7a 71.0 ± 7.1 - - 

Pd1Cu234 0.0064 ± 0.0006 0.8947 ± 0.0253 1: 234 2.6 ± 0.7a 79.9 ± 8.0 N/A - 

Pd1Cu216 0.0067 ± 0.0006 0.8599 ± 0.0262 1: 216 2.0 ± 0.6a 80.3 ± 8.0 90.9 ± 9.1 SAA 

Pd1Cu53 0.0296 ± 0.0022 0.9296 ± 0.0232 1: 53 7.0 ± 4.4a 68.9 ± 6.9 41.7 ± 4.2 SAA 

Pd100 0.8882 ± 0.0529 - - 5.1 ± 2.7b - 22.9 ± 2.3 - 

STEM/TEM aCu and bPd particle size 

 

The catalytic performance of the Pd augmented Cu-based SAA catalysts was explored for the 

hydrogenation of crotonaldehyde at 50 °C with 1.5 bar of hydrogen. The transformation of 

crotonaldehyde can follow various pathways which have been summarised in Fig. 5.2.3. In the absence 

of any Cu/Pd material, hydrogenation reactions were not observed (Table 5.2.4). Only the acetalisation 

of crotonaldehyde with the solvent was observed with the parent Al2O3 support and without any solid 

material. 

 

Fig. 5.2.3 Reaction scheme for the transformation of crotonaldehyde. 
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Table 5.2.4 Summary of blanks and bare support catalytic data for the hydrogenation of crotonaldehyde. Reaction 

conditions: 7 h, 50 °C, 1.5 bar, 600 RPM, and 10 mg of catalyst. 

Catalyst 
Conversion 

(%) 

Butanal 

S (%) 

Butanol 

S (%) 

Crotyl Alcohol 

S (%) 

Acetal 

S (%) 

Blank 4.7 ± 0.2 0.0 0.0 0.0 100 ± 5.0 

Al2O3 1.3 ± 0.1 0.0 0.0 0.0 100 ± 5.0 

 

The catalytic data show that adding trace amounts of Pd to the Cu nanoparticles has significantly 

improved the hydrogenation of crotonaldehyde (Table 5.2.5). The PdCu SAA catalysts are found to 

promote hydrogenation of both the C ═ C and C ═ O bonds compared to the host Cu100 catalyst, which 

only improves the former. Thus, “fast-forwarding” the reaction as higher conversions are reached of 

butanal to butanol.  But, like the monometallic catalysts mentioned earlier, the catalysts appear to 

initially promote the hydrogenation of the C ═ C bond to butanal with minimal selectivity to crotyl 

alcohol (C ═ O bond). The inability to adequately hydrogenate the C ═ O bond first in crotonaldehyde 

but facilely with furfural can be traced to the furan ring being electronically repulsed from the Cu (111) 

surface. Thus, promoting a perpendicular η1(O)-aldehyde conformation [9] and the selective 

hydrogenation of the C ═ O bond. While for crotonaldehyde, XANES experiments by Chiu et al. [14] 

suggest that on Cu (111) surfaces crotonaldehyde adsorbs flat on the surface, which is attributed to the 

lack of selectivity to the C ═ O bond. Since the PdCu SAA catalysts in the present work derive their 

selectivity from the host nanoparticle’s bonding modes, the preference for C ═ C hydrogenation is 

understandable. While DFT calculations on Pd (111) surfaces found crotonaldehyde followed a similar 

binding mode, parallel to the surface via the C ═ C and C ═ O bonds. As a result, these conformations 

promoted either the full hydrogenation to butane or partially to butanal [4].  

Table 5.2.5 Summary of the catalytic data for the hydrogenation of crotonaldehyde using Pd/Cu catalysts. Reaction 

conditions: 7 h, 50 °C, 1.5 bar, 600 RPM, and 10 mg of catalyst. 

Catalyst 
Conversion 

(%) 

Butanal 

S (%) 

Butanol 

S (%) 

Crotyl Alcohol 

S (%) 

Acetal 

S (%) 

Cu100 98.1 ± 4.9 93.1 ± 4.7 3.9 ± 0.2 1.5 ± 0.1 1.6 ± 0.1 

Pd1Cu234 99.3 ± 5.0 84.3 ± 4.4 13.3 ± 0.5 1.5 ± 0.1 1.0 ± 0.1 

Pd1Cu216 99.7 ± 5.0 75.1 ± 3.8 22.0 ± 1.1 1.6 ± 0.1 1.3 ± 0.1 

Pd1Cu53 99.0 ± 5.0 77.4 ± 4.1 20.8 ± 0.8 1.2 ± 0.1 0.6 ± 0.1 

Pd100 99.2 ± 5.0 62.8 ± 3.1 37.2 ± 1.9 0.0 0.0 

Rounding errors may be present. 
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Fig. 5.2.4a illustrates that all the catalysts can achieve 100% crotonaldehyde conversion over 7 h at 

50 °C and 1.5 bar, albeit by different pathways. The conversion profiles are also reminiscent of furfural 

experiments with these catalysts in the earlier chapter, but with higher activity. Consistent with the 

catalytic data in the previous chapters, an induction period of 0.67 - 1 h are observed for all the copper-

based catalysts where the conversion is suppressed. As mentioned previously, the behaviour is assumed 

to be because of the limited catalytically available hydrogen at the beginning of the reaction, either 

through the formation of surface oxide (from O2 contamination) or Cu’s inability to adequately 

chemisorb hydrogen. But the presence of Pd with the SAA catalysts appears to lessen its effects. This 

is in stark contrast to the monometallic Pd100 catalyst, lacking any such induction period due to its 

increased resistance to oxidation, higher reducibility and likely again due to the extended Pd surface to 

store hydrogen as β-hydride species during the in-situ reduction treatment [30-33].  

 

Fig. 5.2.4 The reaction profiles of (a) crotonaldehyde conversion and (b) yield of major products across monometallic and 

bimetallic catalysts. Reaction conditions: 7 h, 50 °C, 1.5 bar, 600 RPM, and 10 mg of catalyst.  

  

Normalising the reaction in Fig. 5.2.5 facilitates the comparison of the catalytic behaviour 
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irrespective of activity and reaction time. In general, all the Cu-based catalysts follow a similar trend 

(especially for Fig. 5.2.5b), corroborating the idea that the Pd atoms fast-forward the hydrogenation of 

butanal to butanol. However, examining Fig. 5.2.5a there is a slight difference in the initial reaction 

pathway for the Pd1Cu216 and Pd1Cu53 catalysts, which can be attributed to the higher selectivity towards 

the acetal at the start of the reaction. Though, as the reaction progresses, the acetal is likely converted 

back to the reactant as the reactant is consumed. It should be noted that the Pd100 trend can be misleading 

as 0 ‒ 97% conversion (and 0 ‒ 97% butanal yield) is only characterised by 2 data points, meaning the 

reaction pathway of this phase cannot be determined. 

 

Fig. 5.2.5 (a) Yield of butanal vs conversion and (b) yield of butanol vs yield of butanal reaction graphs. Reaction 

conditions: 7 h, 50 °C, 1.5 bar, 600 RPM, and 10 mg of catalyst 

 

Analysing the yields, it can be speculated that in all the catalytic systems tested the reaction proceeds 

largely by the hydrogenation of crotonaldehyde to butanal (via the C ═ C bond) and then the subsequent 

reduction of butanal to butanol (via the C ═ O bond) [3]. However, past studies [24-26] suggest the 
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mechanism may be more complex as butanal may also be formed from crotyl alcohol acting as an 

intermediate, isomerising into the saturated aldehyde (Fig. 5.2.3). As it was also reported for Cu-Cr 

catalysts that the activity for forming crotyl alcohol is lower than its isomerisation reaction, so the 

majority of crotyl alcohol may be transformed into butanal [25]. To understand this reaction better 

further experiments were conducted replacing the reactant, crotonaldehyde with crotyl alcohol under 

the same conditions (Table 5.2.6 and Fig. 5.2.6). Both monometallic catalysts were found to be able to 

isomerise crotyl alcohol to butanal but with a major selectivity towards crotyl alcohol’s hydrogenation 

to butanol. Also, unsurprisingly the Pd100 catalyst was found to be significantly more active in 

hydrogenating to butanol compared to the Cu100 catalyst. The data also provides some evidence why the 

Pd100 catalyst is entirely unselective towards crotyl alcohol, as it is quickly either converted to butanol 

or butanal. However, since the crotyl alcohol intermediate is not detected, it is likely crotyl alcohol is 

not initially formed. 

Table 5.2.6 Summary of the catalytic data for the hydrogenation of crotyl alcohol using monometallic Pd/Cu catalysts. 

Reaction conditions: 7 h, 50 °C, 1.5 bar, 600 RPM, and 10 mg of catalyst. 

Catalyst 
Conversion 

(%) 

Butanal 

S (%) 

Butanol 

S (%) 

Carbon 

balance (%) 

Cu100 12.3 ± 0.6 5.5 ± 0.3 94.5 ± 4.8 100 ± 5.0 

Pd100 95.3 ± 4.8 9.4 ± 0.5 90.6 ± 4.5 92.1± 4.6 

Rounding errors may be present. 
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Fig. 5.2.6 The reaction profiles of (a) crotyl alcohol conversion and (b) product selectivity across the monometallic 

catalysts. Reaction conditions: 7 h, 50 °C, 1.5 bar, 600 RPM, and 10 mg of catalyst. 

 

Nevertheless, the Cu100 catalyst is shown to be the least active for forming butanol from 

crotonaldehyde but augmenting with Pd improved its yield (⁓500% butanol yield increase). The 

enhanced hydrogenation capability of the PdCu SAA catalysts can once again be credited to the isolated 

Pd atoms acting as entry sites for hydrogen to dissociate and spill over onto the Cu surface [34-37] 

where they react with the adsorbed substrate. 

Mirroring the furfural experiments, the PdCu SAA materials are considerably more atom efficient 

catalysts than their monometallic counterparts (Fig. 5.2.7). Principally, the Pd1Cu216 catalyst 

demonstrates a nineteen-fold increase in activity compared to the monometallic Pd100 catalyst, which is 

due to the lack of spectator Pd atoms in the nanoparticle's bulk. Substantial improvements are also 

observed over the Cu100 catalyst at 1.5 bar and 10 bar (⁓two-fold increase in both cases, Table 5.2.2), 

thus, demonstrating the synergistic behaviour of Pd atoms on Cu surfaces for the hydrogenation of 

crotonaldehyde. The Pd1Cu234 and Pd1Cu216 catalysts show that adding trace amounts of Pd have the 

greatest effect, while further Pd addition has a diminishing return in the activity. It is proposed this trend 
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is due to the Pd atoms being inaccessible as hydrogen dissociation entry sites since the EXAFS suggests 

a considerable quantity of the Pd atoms have diffused under the surface of the nanoparticle for the 

Pd1Cu53 catalyst. 

 

Fig. 5.2.7  Initial rate of the crotonaldehyde consumption normalised to Cu and Pd content. The initial rate was determined 

after the induction period for the Cu-based catalysts. Reaction conditions: 7 h, 50 °C, 1.5 bar, 600 RPM, and 10 mg of 

catalyst. 

 

TOFs were determined in Fig. 5.2.8 to identify whether the synergetic effect of the atomically 

dispersed Pd atoms were due to the difference in the dispersion of the catalysts. The TOF indicates the 

introduction of the atomically dispersed Pd atoms augments the catalytic activity of the surface Cu sites. 

For example, the optimal Pd1Cu216 catalyst boosts Cu TOFs by ⁓90%. Further raising the Pd loading 

with the Pd1Cu53 comes with diminishing returns as the TOF and normalised initial rates (Fig. 5.2.7) are 

not promoted. Comparing TOFs of the monometallic Pd100 catalyst to an SAA catalyst shows that the 

atomically dispersed Pd sites are ⁓373% more catalytically active than the equivalent surface sites found 

on Pd nanoparticles. Supporting the furfural experiments, it can also be noticed that initially as the Pd 
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loading is increased, the activity of the Pd sites also increases to a maximum TOF of 12500 ± 125 h-1. 

Further drastic increases in the Pd loading with the Pd1Cu53 catalyst appears to begin to render the Pd 

sites less effective, possibly changing their properties to be more like that of a monometallic Pd catalyst. 

It should be noted that due to the inability to determine the Pd dispersion for the Pd1Cu234 catalyst (lack 

of Pd 3d signal) it was assumed to be 100% for this TOF calculation. 

 

Fig. 5.2.8 Turnover frequency of both Cu and Pd surface atoms for the catalysts determined from the XPS calculated 

dispersion. Reaction conditions: 7 h, 50 °C, 1.5 bar, 600 RPM, and 10 mg of catalyst. 

 

5.2.2.1 Spent catalyst characterisation and recycling experiments  

Comparing the XPS spectra of the spent and unused Pd1Cu216 catalysts (Fig. 5.2.9a) shows that like 

the furfural experiments, the spent catalyst is significantly oxidised to CuO, which is observed by the 

shake-up satellites and the broadening of the Cu 2p3/2 transition to higher energies. Supporting this, the 

surface compositional analysis in Table 4.3.4 confirms the Cu species are largely in their Cu2+ oxidation 

state (58.7%) which is not as pronounced as with furfural. 
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Table 5.2.7 Summarised energies for the Cu 2p3/2 and the Auger Cu L3VV transitions, surface composition, modified Auger 

parameters and XPS calculated dispersion for the unused and spent catalysts. 

Sample State 
Cu 2p3/2 

(eV) 

L3VV 

(eV) 

Cu0 + Cu+ 

(%) 

Cu2+ 

(%) 

Cu Dispersion 

(%) 

Pd1Cu216 Fresh 932.83 914.24 97.6 2.4 80.3 ± 8.0 

Pd1Cu216 Spent 932.73 N/A 41.3 58.7 61.5 ± 6.2 

CuO - 933.62 917.78 - - - 

Cu2O - 932.29 916.70 - - - 

Cu* - 932.63 918.75 - - - 

*Cu 2p3/2 was calibrated to the ISO standard of 932.63 eV. 

 

The spectrum of the spent material is also found to be severely attenuated compared to the unused 

catalyst, which is likely due to the small amount of catalyst used and recovered from the catalytic testing. 

Consequently, the position of the Cu L3VV Auger transition cannot accurately be determined (Fig. 

5.2.9b). The XPS calculated Cu dispersion values show that there is some loss in Cu dispersion likely 

through nanoparticle sintering.  

 

Fig. 5.2.9 High-resolution stacked XPS and XAES spectra of the (a) Cu 2p and (b) Cu L3VV regions for the unused and 

spent Pd1Cu216 catalyst. 
 

The recyclability of the catalysts was investigated. The catalysts were recovered after the reaction 

via centrifugation, followed by washing with methanol. Once dried, they were retested at 75% scale. 

Table 4.3.5 shows that the conversion and selectivity of the catalysts were within error minimally 
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affected after reuse. This is consistent with the ICP-OES analysis of the filtered supernatant fluid as the 

elemental analysis ruled out Cu leaching. 

Table 5.2.8 Crotonaldehyde hydrogenation over the recycled catalysts. Reaction conditions: 7 h, 50 °C, 1.5 bar, 600 RPM, 

and 10 mg of catalyst. 

Catalyst 
Conversion 

(%) 

Butanal 

S (%) 

Butanol 

S (%) 

Crotyl Alcohol 

S (%) 

Acetal 

S (%) 

Cu100
1 98.1 ± 4.9 93.1 ± 4.7 3.9 ± 0.2 1.5 ± 0.1 1.6 ± 0.1 

Cu100
2 98.1 ± 4.9 94.4 ± 4.7 1.9 ± 0.1 1.6 ± 0.1 2.1 ± 0.1 

Pd1Cu216
1 99.7 ± 5.0 75.1 ± 3.8 22.0 ± 1.1 1.6 ± 0.1 1.3 ± 0.1 

Pd1Cu216
2 99.2 ± 5.0 73.7 ± 3.7 23.7 ± 1.2 1.5 ± 0.1 1.2 ± 0.1 

Pd1Cu53
1 99.0 ± 5.0 77.4 ± 4.1 20.8 ± 0.8 1.2 ± 0.1 0.6 ± 0.1 

Pd1Cu53
2 99.0 ± 5.0 77.8 ± 4.2 18.2 ± 0.6 1.6 ± 0.1 2.3 ± 0.1 

Pd100
1 99.7 ± 5.0 62.8 ± 3.1 37.2 ± 1.9 0.0 0.0 

Pd100
2 100.0 ± 5.0 65.3 ± 3.3 34.7 ± 1.7 0.0 0.0 

Superscripts 1 and 2 indicate the catalyst cycle of testing. 
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5.2.3 Cu/Al2O3 wet impregnation catalysts 

The characterisation of the Cu/Al2O3 catalysts discussed in depth in Chapter 3 is summarised in Table 

3.3.1. In summary, six catalysts were synthesised by wet impregnation with three different Cu precursors 

(nitrate, acetate, and sulfate) and at two loadings of 1 wt% and 5 wt%. EXAFS analysis suggested at 1 

wt% the Cu phase formed into isolated and dimer atoms attached to the support. While at 5 wt%, the 

sulfate derived catalyst formed larger defined nanoparticles, the nitrate formed small nanoparticles, and 

the acetate formed a layered/paracrystalline structure.  

Table 5.2.9 Bulk elemental analysis, surface area measurements, Cu crystallite, Cu particle size analysis and EXAFS 

determined structure. Catalysts synthesised using copper nitrate, copper acetate and copper sulfate pentahydrate were 

denoted (N), (A) and (S), respectively. 

Catalyst 

Nominal 

Cu 

loading 

Actual Cu 

loadinga 

Surface 

areab 

Cu 

crystallite 

sizec 

Cu 

particle 

sized 

EXAFS 

structure 

(wt%) (wt%) (m2g-1) (nm) (nm)  

Cu/Al2O3 (N) 1.0 0.83 ± 0.04 35.9 ± 1.8 - - Isolated atoms 

Cu/Al2O3 (A) 1.0 0.91 ± 0.05 35.0 ± 1.8 - - Isolated atoms and dimers 

Cu/Al2O3 (S) 1.0 0.66 ± 0.08 38.8 ± 1.9 - - Isolated atoms and dimers 

Cu/Al2O3 (N) 5.0 4.22 ± 0.32 33.5 ± 1.7 13.2 ± 9.5 3.9 ± 1.9 Small nanoparticles 

Cu/Al2O3 (A) 5.0 4.56 ± 0.36 33.3 ± 1.7 13.0 ± 9.4 6.8 ± 5.5 Paracrystalline structure 

Cu/Al2O3 (S) 5.0 4.22 ± 0.31 29.7 ± 1.5 18.7 ± 12.9 12.8 ± 9.3 Large nanoparticles 
a Determined by ICP-OES, b BET surface area from N2 porosimetry, c WPPM via XRD, d STEM 

The catalytic data of the Cu/Al2O3 catalysts derived from wet impregnation in Table 5.2.10 is found 

to mirror the reactivity of the earlier shown PdCu catalysts. In all cases, the wet impregnation 

monometallic catalysts are found to be more selective towards the complete hydrogenation of 

crotonaldehyde compared to the monometallic colloidal Cu100 catalyst (4% butanol selectivity, Table 

5.2.5). The difference in selectivity can be due to the different ratios of active sites present in the wet 

impregnation catalysts as a range of Cu nanostructures are formed (Table 3.3.1) from the synthetic 

process.  

The effect of remnant sulfate species appears to have a minimal effect on the hydrogenation of 

crotonaldehyde when compared to furfural (Chapter 3). For example, the acetal, butanol and crotyl 

alcohol selectivity were largely unaffected by the choice of the precursor. However, it should be noted 

it is widely reported in the literature that sulfur can be beneficial to promote crotyl alcohol selectivity 

[7, 14, 21, 38, 39]. Lambert et al. [6, 14] found that sulfur atoms activate the copper surface towards the 
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chemoselective transformation of crotonaldehyde. It was found that the presence of S adatoms 

electronically perturbs and strongly tilts the reactant favouring C ═ O over C ═ C hydrogenation. Their 

observations also support earlier investigations by Hutchings et al. [7, 21, 39], sulfur promotes crotyl 

alcohol formations using Cu/Al2O3 catalysts under atmospheric conditions. The ineffectiveness of 

sulfates in the current work may likely be due to the source of sulfur, where in the literature S2 and 

thiophene are used and the location of sulfur species. As the previous studies feed the sulfur source with 

the reactant so sulfur species are adsorbed on the surface instead of being embedded in the Cu 

nanostructure, which likely is the case with the sulfate-derived catalysts. Thus, the source of sulfur and 

the location may have different degrees of effectiveness in changing the reactivity. Though the  

5 wt% (S) catalyst appears to have the lowest conversion (88% versus 99%) across the 5 wt% catalysts 

suggesting the sulfate may be detrimental through site blocking. 

Table 5.2.10 Summary of the catalytic data for the hydrogenation of crotonaldehyde using Cu/Al2O3 catalysts derived from 

different metal precursors. Reaction conditions: 7 h, 50 °C, 1.5 bar, 600 RPM, and 10 mg of catalyst. 

Cu 

precursor 

Nominal 

Cu wt% 

Conversion 

(%) 

Butanal S 

(%) 

Butanol S 

(%) 

Crotyl alcohol 

S (%) 

Acetal S 

(%) 

Nitrate 
1 98.5 ± 4.9 86.7 ± 4.4 10.4 ± 0.4 1.5 ± 0.1 1.4 ± 0.1 

5 98.9 ± 4.9 83.8 ± 4.5 12.5 ± 0.3 2.1 ± 0.1 1.6 ± 0.1 

Acetate 
1 100.0 ± 5.0 68.4 ± 3.4 30.4 ± 1.5 0.9 ± 0.1 0.3 ± 0.1 

5 99.2 ± 5.0 80.5 ± 4.3 16.5 ± 0.5 1.8 ± 0.1 1.2 ± 0.1 

Sulfate 
1 99.0 ± 4.9 84.6 ± 4.2 11.9 ± 0.6 1.9 ± 0.1 1.6 ± 0.1 

5 88.1 ± 4.4 88.0 ± 4.6 10.5 ± 0.3 1.0 ± 0.1 0.6 ± 0.1 

Rounding errors may be present. 

 

The conversion profiles in Fig. 5.2.10a shows once again, an induction period is present for all the 

catalysts. Such results are consistent with all the catalytic data presented in this thesis. Whereby the Cu-

based catalysts are inactive at the start of the reaction where reduced activity is observed. However, 

while the catalyst is inactive in terms of hydrogenation reactions (Fig. 5.2.10) there is an uptick in the 

reversible acetalisation reactions which is especially noticeable for the 5 wt% Cu (A) catalyst (Fig. 

5.2.10a). After the induction period, crotonaldehyde is hydrogenated to butanal across all the catalysts 

with the acetate derived catalysts being superior. The superior activity of the acetate can likely be 

attributed to the different modes of decomposition of the precursors during the synthesis (Chapter 3) 
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creating further dispersed paracrystalline nanostructure. Another observation that can be made is the  

1 wt% (A) appears to be significantly more active at fully hydrogenating crotonaldehyde to butanol 

when compared against its higher loaded counterpart.  

 

 

Fig. 5.2.10 The reaction profiles of (a) crotonaldehyde conversion and (b) yield of major products across the 1 wt% and 5 

wt% Cu/Al2O3 wet impregnation catalysts. Reaction conditions: 7 h, 50 °C, 1.5 bar, 600 RPM, and 10 mg of catalyst. 

 

Fig. 5.2.11a shows the initial rates normalised to Cu content and TOFs. Such values support the 

initial observation that sulfate content has a minor non-beneficial effect compared to the furfural 

experiments (5 wt% catalysts). While the initial rates and TOFs of sulfur-free 5 wt% catalysts indicate 

the active sites are largely identical. However, in the case of the 1 wt% catalysts sulfur does not seem 

to affect the active sites performing just as well as the acetate derived catalyst. Like the 5 wt% catalysts, 

the effect of metal precursor choice appears not to substantially affect the activity of the sites for the 

hydrogenation to butanal. But looking at the initial rate of consumption of butanal to butanol (Fig. 
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5.2.11b) the acetate derived catalysts are excellent at hydrogenating the C ═ O bond to butanol. Overall, 

the 1 wt% catalysts are found to be more active than the 5 wt% in terms of TOFs and normalised initial 

rates, likely due to the highly dispersed nature of the Cu species into isolated and small clusters of Cu 

atoms. 

 

Fig. 5.2.11 (a) Normalised initial rates of crotonaldehyde consumption per gram of Cu and TOF (b) Normalised initial 

rates of butanal consumption after the induction period across the 1 wt% and 5 wt% Cu/Al2O3 catalysts. 

 

5.2.4 Catalyst performance against literature 

Finally, the catalysts in this Chapter were compared against the literature in Fig. 5.2.12. The catalyst 

performance was calculated by TOF* (promoting metal content, Equation 2.3.7) quantifying the most 

active atom efficient catalyst. It should also be noted the colour of the spheres represents which metal 

is used for the calculation. Pd, Pt, Ir, Ag, Ni, Cu, Ru, Rh, Au and Co represent sphere colours dark grey, 

blue, red, purple, green, orange, greenish-yellow, yellow, cyan, and brown, respectively.  The Cu (A)  

1 wt% synthesised by wet impregnation is more active than the colloidally synthesised Cu100 catalyst, 

likely due to isolated atom and dimer Cu atoms. However, both monometallic Cu catalysts were found 

to be superior compared to a Cu-Cr catalyst reported in the literature [25]. The most active catalyst 

reported in the literature is a Pt1/MoC single-atom catalyst (SAC) [27] (TOF* = 1216 h-1) but operating 

at moderate reaction conditions (100 °C, 20 bar). Nevertheless, the TOF* for the SAA catalysts in this 

work are between 2000 ‒ 11,000 h-1 while operating at milder conditions.  
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Fig. 5.2.12 TOF* (h-1) of catalysts from this work and various catalysts found in the literature under low to moderate 

conditions (<150 °C and <20 bar). TOF* calculation took in consideration both metal atoms on the surface and in the bulk. 

Reference represented by the square bracketed Roman numerals [i]=[40] , [ii]=[41], [iii]=[20], [iv]=[18], [v]=[27], 

[vi]=[17], [vii]=[16], [viii]=[42], [ix]=[11], [x]=[43], [xi]=[44], [xii]=[45], [xiii]=[25], [xiv]=[46], [xv]=[47] and 

[xvi]=[48] . Log10 scale is used for the TOF*(h-1) z-axis and the colour of the spheres represents which metal is used for the 

calculation. Pd, Pt, Ir, Ag, Ni, Cu, Ru, Rh, Au and Co represent sphere colours dark grey, blue, red, purple, green, orange, 

greenish-yellow, yellow, cyan, and brown, respectively. 
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5.3 Conclusions 

A series of bimetallic PdCu catalysts were tested for the hydrogenation of crotonaldehyde under mild 

conditions. The augmentation of the copper surface with trace amounts of Pd (0.0067 wt%) was found 

to improve the normalised catalytic activity by nineteen-fold and two-fold when compared to the 

monometallic Pd and Cu catalysts, respectively. Atomically dispersed Pd atoms augmentation was also 

found to improve the hydrogenation capability of the Cu100/Al2O3 catalyst by “fast-forwarding” the 

reaction, and consequently, increasing the yield of butanol by 4.8 times. Also adding trace amounts of 

Pd has a far greater effect on the hydrogenation capability of copper catalysts than increasing the 

pressure to 10 bar (from 1.5 bar). However, the promotion of crotyl alcohol selectivity was not observed. 

This is due to the inherent lack of selectivity of Cu surfaces under the current conditions. as Cu surfaces 

can also isomerise crotonaldehyde to butanal and hydrogenate it to butanol. This work confirms the 

formation of a single atom alloy catalyst is not enough, but such isolated atoms need to be present on 

the surface to be taken advantage of. In addition, the work also shows the selectivity of the SAA is 

constrained to the reactivity of the host nanoparticle. For example, on Cu surfaces, furfural’s C ═ O 

bond is selectively hydrogenated (Chapter 4) while for crotonaldehyde it is not because of the different 

adsorption mode of the molecule. 

The effect of Cu metal precursor selection was also tested for the crotonaldehyde hydrogenation 

using supported monometallic catalysts. The presence of remnant sulfates from catalyst synthesis was 

found to have a minor non-beneficial effect on the reaction. The promotion effect reported in the 

literature [7, 21, 39] was not observed, which is likely to be due to the source and location of the sulfur 

species on the catalytic surface. Like the furfural experiments in Chapter 3, the acetate derived catalysts 

were found to be optimal for the hydrogenation reactions, in this case, for the hydrogenation of 

crotonaldehyde to butanol.  
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6.1 Conclusions 

6.1.1 Effect of metal precursors on nanoparticle morphology for the copper catalysed 

transformation of furfural 

This thesis set out to explore the hydrogenation of α, β unsaturated aldehydes with inexpensive Cu-

based catalysts. The first study (Chapter 3) looked at the liquid-phase hydrogenation of furfural with a 

series of supported monometallic Cu/Al2O3 catalysts synthesised via various Cu metal precursors by 

wet impregnation. With the loadings also being changed, ICP-OES, BET, PXRD, STEM, XPS, XAES 

and XAS suggested a range of Cu nanostructures were formed from isolated Cu atoms embedded onto 

the support to island type structures and defined nanoparticles (Fig. 6.1.1). Furfural hydrogenation was 

sensitive to the presence of sulfates in the catalyst. Sulfates altered the reaction selectivity to the 

acetalisation pathway of furfural with methanol at over 90% conversion in mild conditions. While at 

near ambient hydrogen pressures, catalytic tests show that sulfate impurities deactivate the catalyst 

leading to lower conversion and altered selectivities. Catalytic data also suggested the reaction is likely 

structure sensitive, as isolated and dimer Cu atoms were found to promote decarbonylation reactions 

due to their lower-packed copper structures reducing the repulsion of the furan ring with the underlying 

surface. Consistently, however, catalysts derived from copper acetate were found to be superior, 

suggesting the metal precursor selection appears to be critical to achieving optimal catalytic activity via 

changes in the Cu nanostructures. 

 

Fig. 6.1.1 Schematic representation of the Cu nanostructures observed as the Cu precursor and loading are altered. 
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6.1.2 PdCu single atom alloys for the hydrogenation of furfural 

Following the research on monometallic Cu catalysts in Chapter 3, Cu catalysts were enhanced with 

the introduction of Pd atoms in Chapter 4. A series of PdCu/Al2O3 catalysts were made from a host 

colloidally synthesised Cu100/Al2O3 catalyst using galvanic replacement techniques. The catalyst 

morphology and electronic properties were thoroughly studied utilising XRD, XPS, STEM, XANES, 

EXAFS, TPR and ICP-OES. The material characterisation confirmed that Pd atoms were atomically 

dispersed on the host copper nanoparticle surface, confirming the formation of a single atom catalyst or 

specifically a single atom alloy catalyst (SAA). The combination of pseudo-in-situ and ex-situ EXAFS 

suggested that as the Pd loading increases, Pd atoms diffuse into the bulk reducing their catalytic 

effectiveness. Various optimisations were made to the galvanic replacement synthetic method; finding 

mild reaction conditions encouraged Pd atoms to stay on the surface. The augmentation of the copper 

surface with trace amounts of Pd (0.0067 wt%) was found to be the most effective and improve the 

normalised catalytic activity by eleven-fold when compared to a monometallic Pd catalyst. The 

synthesised atom efficient SAA catalysts retain Cu’s high selectivity attributed to the incredible control 

of the Pd active sites since they are isolated. Therefore, eliminating competitive side-reactions that 

require more than one Pd neighbouring atom. The work also highlighted the effectiveness of different 

SAA catalysts, where the catalysts with the largest portion of precious metal atoms on the surface 

performing the best. 

6.1.3 Single-atom alloy and monometallic catalysts for the hydrogenation of 

crotonaldehyde 

Finally, the catalysts synthesised were tested for the hydrogenation of another α, β unsaturated 

aldehyde. Crotonaldehyde was chosen as it lacked the directing group present in furfural (furan ring), 

so the catalysts can be examined in a situation where C ═ O hydrogenation is not specifically preferred. 

Similarly, to the furfural experiments, the addition of trace amounts of Pd (0.0067 wt%) onto the Cu 

surface was found to improve the normalised catalytic activity by nineteen-fold and two-fold when 

compared to the monometallic Pd and Cu catalysts, respectively. The atomically dispersed Pd atoms 
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were also observed to improve the hydrogenation capability of the Cu100/Al2O3 catalyst by “fast-

forwarding” the reaction, increasing the yield of butanol by 4.8 times. In addition, adding trace amounts 

of Pd has a far greater effect on the hydrogenation capability of copper catalysts than increasing the 

pressure to 10 bar (from 1.5 bar). However, unlike the previous experiments, the PdCu SAA catalysts 

were not selective to crotyl alcohol (selective C ═ O hydrogenation) due to the inherent lack of 

selectivity of Cu surfaces without the furan directing group. Thus, these experiments confirm the 

selectivity of the SAA catalysts is constrained by the reactivity of the host nanoparticle. 

The catalytic data of the effect of metal precursor showed that remnant sulfate species were found to 

have a minor non-beneficial effect on the reaction. The promotional effect observed previously [1-3] 

was not observed, which is likely to be due to the source and location of the sulfur species on the catalytic 

surface. The acetate derived catalysts were once again found to be superior for the hydrogenation of 

crotonaldehyde to butanol. Specifically, the 1 wt% (A) catalyst was found to be optimal for the 

formation of butanol, which was likely due to its highly dispersed Cu phase.  

6.2 Future work 

To understand the Cu-based catalysts better, more characterisations could have been conducted in 

an inert atmosphere to prevent surface oxidation. This would have been most beneficial for surface 

sensitive techniques like XPS and XAES, as more robust links could be made between the 

characterisation data and the catalysis.  

Further investigations could be conducted to understand the Cu/Al2O3 catalyst wet impregnation 

synthesis better. The most useful technique to probe this would be performing the calcination and 

reduction step in-situ with XANES and EXAFS. For example, creating a 1 wt% catalyst with Cu acetate 

both the C K-edge and Cu L-edge can be followed, thus the oxidation and the local coordination 

environment changes could be understood as atomic and dimeric Cu atoms are formed. 

All the hydrogenation reactions presented in this thesis could also benefit from the conversion of 

batch reactors to continuous flow reactors. Such reactors are more industrially relevant as the advantages 
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include simpler catalyst activation, scale-up, space reduction, energy efficiency, and waste reduction. 

Operando experiments can also be easily conducted with such reactors as the reactant is passed through 

the catalyst bed. Both the electronic and local environments of the catalyst and the reactant can be 

tracked with XAS in real-time under real reaction conditions. Data on the stability/reusability of the 

single-atom catalysts can also be collected as the catalyst ages in the reactor. So, the deactivation modes 

of such catalysts can be easily understood. 

Finally, the scaling up of the synthesis of single atom alloy catalysts could be investigated to see 

whether the atomically dispersed Pd atoms can be maintained and if they could be mass produced for 

industry. Further applications of such catalysts also be explored for their use in automotive catalytic 

converters and fuel cells where different metallic compositions would be required. 
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7.1 Figures 

 

 

Fig. 7.1.1 MS spectrum 2-furaldehyde dimethyl acetal [1]. 
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Fig. 7.1.2 Actual and computed [2-4] MS spectra of crotonaldehyde dimethyl acetal. 
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